WorldWideScience

Sample records for left frontal region

  1. Memory of music: roles of right hippocampus and left inferior frontal gyrus.

    Science.gov (United States)

    Watanabe, Takamitsu; Yagishita, Sho; Kikyo, Hideyuki

    2008-01-01

    We investigated neural correlates of retrieval success for music memory using event-related functional magnetic resonance imaging. To minimize the interference from MRI scan noise, we used sparse temporal sampling technique. Newly composed music materials were employed as stimuli, which enabled us to detect regions in absence of effects of experience with the music stimuli in this study. Whole brain analyses demonstrated significant retrieval success activities in the right hippocampus, bilateral lateral temporal regions, left inferior frontal gyrus and left precuneus. Anatomically defined region-of-interests analyses showed that the activity of the right hippocampus was stronger than that of the left, while the activities of the inferior frontal gyri showed the reverse pattern. Furthermore, performance-based analyses demonstrated that the retrieval success activity of the right hippocampus was positively correlated with the corrected recognition rate, suggesting that the right hippocampus contributes to the accuracy of music retrieval outcome.

  2. Functional and anatomical connectivity abnormalities in left inferior frontal gyrus in schizophrenia.

    Science.gov (United States)

    Jeong, Bumseok; Wible, Cynthia G; Hashimoto, Ryu-ichiro; Kubicki, Marek

    2009-12-01

    Functional studies in schizophrenia demonstrate prominent abnormalities within the left inferior frontal gyrus (IFG) and also suggest the functional connectivity abnormalities in language network including left IFG and superior temporal gyrus during semantic processing. White matter connections between regions involved in the semantic network have also been indicated in schizophrenia. However, an association between functional and anatomical connectivity disruptions within the semantic network in schizophrenia has not been established. Functional (using levels of processing paradigm) as well as diffusion tensor imaging data from 10 controls and 10 chronic schizophrenics were acquired and analyzed. First, semantic encoding specific activation was estimated, showing decreased activation within the left IFG in schizophrenia. Second, functional time series were extracted from this area, and left IFG specific functional connectivity maps were produced for each subject. In an independent analysis, tract-based spatial statistics (TBSS) was used to compare fractional anisotropy (FA) values between groups, and to correlate these values with functional connectivity maps. Schizophrenia patients showed weaker functional connectivity within the language network that includes left IFG and left superior temporal sulcus/middle temporal gyrus. FA was reduced in several white matter regions including left inferior frontal and left internal capsule. Finally, left inferior frontal white matter FA was positively correlated with connectivity measures of the semantic network in schizophrenics, but not in controls. Our results indicate an association between anatomical and functional connectivity abnormalities within the semantic network in schizophrenia, suggesting further that the functional abnormalities observed in this disorder might be directly related to white matter disruptions. 2009 Wiley-Liss, Inc.

  3. Statistical parametric mapping for analyzing interictal magnetoencephalography in patients with left frontal lobe epilepsy.

    Science.gov (United States)

    Zhu, Haitao; Zhu, Jinlong; Bao, Forrest Sheng; Liu, Hongyi; Zhu, Xuchuang; Wu, Ting; Yang, Lu; Zou, Yuanjie; Zhang, Rui; Zheng, Gang

    2016-01-01

    Frontal lobe epilepsy is a common epileptic disorder and is characterized by recurring seizures that arise in the frontal lobes. The purpose of this study is to identify the epileptogenic regions and other abnormal regions in patients with left frontal lobe epilepsy (LFLE) based on the magnetoencephalogram (MEG), and to understand the effects of clinical variables on brain activities in patients with LFLE. Fifteen patients with LFLE (23.20 ± 8.68 years, 6 female and 9 male) and 16 healthy controls (23.13 ± 7.66 years, 6 female and 10 male) were included in resting-stage MEG examinations. Epileptogenic regions of LFLE patients were confirmed by surgery. Regional brain activations were quantified using statistical parametric mapping (SPM). The correlation between the activations of the abnormal brain regions and the clinical seizure parameters were computed for LFLE patients. Brain activations of LFLE patients were significantly elevated in left superior/middle/inferior frontal gyri, postcentral gyrus, inferior temporal gyrus, insula, parahippocampal gyrus and amygdala, including the epileptogenic regions. Remarkable decreased activations were found mainly in the left parietal gyrus and precuneus. There is a positive correlation between the duration of the epilepsy (in month) and activations of the abnormal regions, while no relation was found between age of seizure onset (year), seizure frequency and the regions of the abnormal activity of the epileptic patients. Our findings suggest that the aberrant brain activities of LFLE patients were not restricted to the epileptogenic zones. Long duration of epilepsy might induce further functional damage in patients with LFLE. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  4. Specific marker of feigned memory impairment: The activation of left superior frontal gyrus.

    Science.gov (United States)

    Chen, Zi-Xiang; Xue, Li; Liang, Chun-Yu; Wang, Li-Li; Mei, Wei; Zhang, Qiang; Zhao, Hu

    2015-11-01

    Faking memory impairment means normal people complain lots of memory problems without organic damage in forensic assessments. Using alternative forced-choice paradigm, containing digital or autobiographical information, previous neuroimaging studies have indicated that faking memory impairment could cause the activation in the prefrontal and parietal regions, and might involve a fronto-parietal-subcortical circuit. However, it is still unclear whether different memory types have influence on faking or not. Since different memory types, such as long-term memory (LTM) and short-term memory (STM), were found supported by different brain areas, we hypothesized that feigned STM or LTM impairment had distinct neural activation mapping. Besides that, some common neural correlates may act as the general characteristic of feigned memory impairment. To verify this hypothesis, the functional magnetic resonance imaging (fMRI) combined with an alternative word forced-choice paradigm were used in this study. A total of 10 right-handed participants, in this study, had to perform both STW and LTM tasks respectively under answering correctly, answering randomly and feigned memory impairment conditions. Our results indicated that the activation of the left superior frontal gyrus and the left medial frontal gyrus was associated with feigned LTM impairment, whereas the left superior frontal gyrus, the left precuneus and the right anterior cingulate cortex (ACC) were highly activated while feigning STM impairment. Furthermore, an overlapping was found in the left superior frontal gyrus, and it suggested that the activity of the left superior frontal gyrus might be acting as a specific marker of feigned memory impairment. Copyright © 2015. Published by Elsevier Ltd.

  5. Relative left frontal activity in reappraisal and suppression of negative emotion: Evidence from frontal alpha asymmetry (FAA).

    Science.gov (United States)

    Choi, Damee; Sekiya, Takahiro; Minote, Natsumi; Watanuki, Shigeki

    2016-11-01

    Previous studies have shown that reappraisal (changing the way that one thinks about emotional events) is an effective strategy for regulating emotion, compared with suppression (reducing emotion-expressive behavior). In the present study, we investigated relative left frontal activity when participants were instructed to use reappraisal and suppression of negative emotion, by measuring frontal alpha asymmetry (FAA). Two electroencephalography (EEG) experiments were conducted; FAA was analyzed while 102 healthy participants (59 men, 43 women) watched negative images after being instructed to perform reappraisal (Experiment 1) and suppression (Experiment 2). Habitual use of reappraisal and suppression was also assessed using the emotion regulation questionnaire (ERQ). The results of Experiment 1 showed that relative left frontal activity was greater when instructed to use reappraisal of negative images than when normally viewing negative images. In contrast, we observed no difference between conditions of instructed suppression and normal viewing in Experiment 2. In addition, in male participants, habitual use of reappraisal was positively correlated with increased relative left frontal activity for instructed reappraisal, while habitual use of suppression did not show a significant correlation with changes in relative left frontal activity for instructed suppression. These results suggest that emotional responses to negative images might be decreased for instructed reappraisal, but not suppression. These findings support previous reports that reappraisal is an effective emotion regulation strategy, compared with suppression. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Neural substrates of semantic relationships: common and distinct left-frontal activities for generation of synonyms vs. antonyms.

    Science.gov (United States)

    Jeon, Hyeon-Ae; Lee, Kyoung-Min; Kim, Young-Bo; Cho, Zang-Hee

    2009-11-01

    Synonymous and antonymous relationships among words may reflect the organization and/or processing in the mental lexicon and its implementation in the brain. In this study, functional magnetic resonance imaging (fMRI) is employed to compare brain activities during generation of synonyms (SYN) and antonyms (ANT) prompted by the same words. Both SYN and ANT, when compared with reading nonwords (NW), activated a region in the left middle frontal gyrus (BA 46). Neighboring this region, there was a dissociation observed in that the ANT activation extended more anteriorly and laterally to the SYN activation. The activations in the left middle frontal gyrus may be related to mental processes that are shared in the SYN and ANT generations, such as engaging semantically related parts of mental lexicon for the word search, whereas the distinct activations unique for either SYN or ANT generation may reflect the additional component of antonym retrieval, namely, reversing the polarity of semantic relationship in one crucial dimension. These findings suggest that specific components in the semantic processing, such as the polarity reversal for antonym generation and the similarity assessment for synonyms, are separately and systematically laid out in the left-frontal cortex.

  7. Jealousy increased by induced relative left frontal cortical activity.

    Science.gov (United States)

    Kelley, Nicholas J; Eastwick, Paul W; Harmon-Jones, Eddie; Schmeichel, Brandon J

    2015-10-01

    Asymmetric frontal cortical activity may be one key to the process linking social exclusion to jealous feelings. The current research examined the causal role of asymmetric frontal brain activity in modulating jealousy in response to social exclusion. Transcranial direct-current stimulation (tDCS) over the frontal cortex to manipulate asymmetric frontal cortical activity was combined with a modified version of the Cyberball paradigm designed to induce jealousy. After receiving 15 min of tDCS, participants were excluded by a desired partner and reported how jealous they felt. Among individuals who were excluded, tDCS to increase relative left frontal cortical activity caused greater levels of self-reported jealousy compared to tDCS to increase relative right frontal cortical activity or sham stimulation. Limitations concerning the specificity of this effect and implications for the role of the asymmetric prefrontal cortical activity in motivated behaviors are discussed. (c) 2015 APA, all rights reserved).

  8. Subliminal semantic priming changes the dynamic causal influence between the left frontal and temporal cortex.

    Science.gov (United States)

    Matsumoto, Atsushi; Kakigi, Ryusuke

    2014-01-01

    Recent neuroimaging experiments have revealed that subliminal priming of a target stimulus leads to the reduction of neural activity in specific regions concerned with processing the target. Such findings lead to questions about the degree to which the subliminal priming effect is based only on decreased activity in specific local brain regions, as opposed to the influence of neural mechanisms that regulate communication between brain regions. To address this question, this study recorded EEG during performance of a subliminal semantic priming task. We adopted an information-based approach that used independent component analysis and multivariate autoregressive modeling. Results indicated that subliminal semantic priming caused significant modulation of alpha band activity in the left inferior frontal cortex and modulation of gamma band activity in the left inferior temporal regions. The multivariate autoregressive approach confirmed significant increases in information flow from the inferior frontal cortex to inferior temporal regions in the early time window that was induced by subliminal priming. In the later time window, significant enhancement of bidirectional causal flow between these two regions underlying subliminal priming was observed. Results suggest that unconscious processing of words influences not only local activity of individual brain regions but also the dynamics of neural communication between those regions.

  9. Decoding rule search domain in the left inferior frontal gyrus

    Science.gov (United States)

    Babcock, Laura; Vallesi, Antonino

    2018-01-01

    Traditionally, the left hemisphere has been thought to extract mainly verbal patterns of information, but recent evidence has shown that the left Inferior Frontal Gyrus (IFG) is active during inductive reasoning in both the verbal and spatial domains. We aimed to understand whether the left IFG supports inductive reasoning in a domain-specific or domain-general fashion. To do this we used Multi-Voxel Pattern Analysis to decode the representation of domain during a rule search task. Thirteen participants were asked to extract the rule underlying streams of letters presented in different spatial locations. Each rule was either verbal (letters forming words) or spatial (positions forming geometric figures). Our results show that domain was decodable in the left prefrontal cortex, suggesting that this region represents domain-specific information, rather than processes common to the two domains. A replication study with the same participants tested two years later confirmed these findings, though the individual representations changed, providing evidence for the flexible nature of representations. This study extends our knowledge on the neural basis of goal-directed behaviors and on how information relevant for rule extraction is flexibly mapped in the prefrontal cortex. PMID:29547623

  10. Left frontal hub connectivity delays cognitive impairment in autosomal-dominant and sporadic Alzheimer’s disease

    Science.gov (United States)

    Franzmeier, Nicolai; Düzel, Emrah; Jessen, Frank; Buerger, Katharina; Levin, Johannes; Duering, Marco; Dichgans, Martin; Haass, Christian; Suárez-Calvet, Marc; Fagan, Anne M; Paumier, Katrina; Benzinger, Tammie; Masters, Colin L; Morris, John C; Perneczky, Robert; Janowitz, Daniel; Catak, Cihan; Wolfsgruber, Steffen; Wagner, Michael; Teipel, Stefan; Kilimann, Ingo; Ramirez, Alfredo; Rossor, Martin; Jucker, Mathias; Chhatwal, Jasmeer; Spottke, Annika; Boecker, Henning; Brosseron, Frederic; Falkai, Peter; Fliessbach, Klaus; Heneka, Michael T; Laske, Christoph; Nestor, Peter; Peters, Oliver; Fuentes, Manuel; Menne, Felix; Priller, Josef; Spruth, Eike J; Franke, Christiana; Schneider, Anja; Kofler, Barbara; Westerteicher, Christine; Speck, Oliver; Wiltfang, Jens; Bartels, Claudia; Araque Caballero, Miguel Ángel; Metzger, Coraline; Bittner, Daniel; Weiner, Michael; Lee, Jae-Hong; Salloway, Stephen; Danek, Adrian; Goate, Alison; Schofield, Peter R; Bateman, Randall J; Ewers, Michael

    2018-01-01

    Abstract Patients with Alzheimer’s disease vary in their ability to sustain cognitive abilities in the presence of brain pathology. A major open question is which brain mechanisms may support higher reserve capacity, i.e. relatively high cognitive performance at a given level of Alzheimer’s pathology. Higher functional MRI-assessed functional connectivity of a hub in the left frontal cortex is a core candidate brain mechanism underlying reserve as it is associated with education (i.e. a protective factor often associated with higher reserve) and attenuated cognitive impairment in prodromal Alzheimer’s disease. However, no study has yet assessed whether such hub connectivity of the left frontal cortex supports reserve throughout the evolution of pathological brain changes in Alzheimer’s disease, including the presymptomatic stage when cognitive decline is subtle. To address this research gap, we obtained cross-sectional resting state functional MRI in 74 participants with autosomal dominant Alzheimer’s disease, 55 controls from the Dominantly Inherited Alzheimer’s Network and 75 amyloid-positive elderly participants, as well as 41 amyloid-negative cognitively normal elderly subjects from the German Center of Neurodegenerative Diseases multicentre study on biomarkers in sporadic Alzheimer’s disease. For each participant, global left frontal cortex connectivity was computed as the average resting state functional connectivity between the left frontal cortex (seed) and each voxel in the grey matter. As a marker of disease stage, we applied estimated years from symptom onset in autosomal dominantly inherited Alzheimer’s disease and cerebrospinal fluid tau levels in sporadic Alzheimer’s disease cases. In both autosomal dominant and sporadic Alzheimer’s disease patients, higher levels of left frontal cortex connectivity were correlated with greater education. For autosomal dominant Alzheimer’s disease, a significant left frontal cortex connectivity

  11. Enhanced activation of the left inferior frontal gyrus in deaf and dyslexic adults during rhyming.

    Science.gov (United States)

    MacSweeney, Mairéad; Brammer, Michael J; Waters, Dafydd; Goswami, Usha

    2009-07-01

    Hearing developmental dyslexics and profoundly deaf individuals both have difficulties processing the internal structure of words (phonological processing) and learning to read. In hearing non-impaired readers, the development of phonological representations depends on audition. In hearing dyslexics, many argue, auditory processes may be impaired. In congenitally profoundly deaf individuals, auditory speech processing is essentially absent. Two separate literatures have previously reported enhanced activation in the left inferior frontal gyrus in both deaf and dyslexic adults when contrasted with hearing non-dyslexics during reading or phonological tasks. Here, we used a rhyme judgement task to compare adults from these two special populations to a hearing non-dyslexic control group. All groups were matched on non-verbal intelligence quotient, reading age and rhyme performance. Picture stimuli were used since this requires participants to generate their own phonological representations, rather than have them partially provided via text. By testing well-matched groups of participants on the same task, we aimed to establish whether previous literatures reporting differences between individuals with and without phonological processing difficulties have identified the same regions of differential activation in these two distinct populations. The data indicate greater activation in the deaf and dyslexic groups than in the hearing non-dyslexic group across a large portion of the left inferior frontal gyrus. This includes the pars triangularis, extending superiorly into the middle frontal gyrus and posteriorly to include the pars opercularis, and the junction with the ventral precentral gyrus. Within the left inferior frontal gyrus, there was variability between the two groups with phonological processing difficulties. The superior posterior tip of the left pars opercularis, extending into the precentral gyrus, was activated to a greater extent by deaf than dyslexic

  12. Reasoning by analogy requires the left frontal pole: lesion-deficit mapping and clinical implications.

    Science.gov (United States)

    Urbanski, Marika; Bréchemier, Marie-Laure; Garcin, Béatrice; Bendetowicz, David; Thiebaut de Schotten, Michel; Foulon, Chris; Rosso, Charlotte; Clarençon, Frédéric; Dupont, Sophie; Pradat-Diehl, Pascale; Labeyrie, Marc-Antoine; Levy, Richard; Volle, Emmanuelle

    2016-06-01

    SEE BURGESS DOI101093/BRAIN/AWW092 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE  : Analogical reasoning is at the core of the generalization and abstraction processes that enable concept formation and creativity. The impact of neurological diseases on analogical reasoning is poorly known, despite its importance in everyday life and in society. Neuroimaging studies of healthy subjects and the few studies that have been performed on patients have highlighted the importance of the prefrontal cortex in analogical reasoning. However, the critical cerebral bases for analogical reasoning deficits remain elusive. In the current study, we examined analogical reasoning abilities in 27 patients with focal damage in the frontal lobes and performed voxel-based lesion-behaviour mapping and tractography analyses to investigate the structures critical for analogical reasoning. The findings revealed that damage to the left rostrolateral prefrontal region (or some of its long-range connections) specifically impaired the ability to reason by analogies. A short version of the analogy task predicted the existence of a left rostrolateral prefrontal lesion with good accuracy. Experimental manipulations of the analogy tasks suggested that this region plays a role in relational matching or integration. The current lesion approach demonstrated that the left rostrolateral prefrontal region is a critical node in the analogy network. Our results also suggested that analogy tasks should be translated to clinical practice to refine the neuropsychological assessment of patients with frontal lobe lesions. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Bihemispheric stimulation over left and right inferior frontal region enhances recovery from apraxia of speech in chronic aphasia.

    Science.gov (United States)

    Marangolo, Paola; Fiori, Valentina; Cipollari, Susanna; Campana, Serena; Razzano, Carmelina; Di Paola, Margherita; Koch, Giacomo; Caltagirone, Carlo

    2013-11-01

    Several studies have already shown that transcranial direct current stimulation (tDCS) is a useful tool for enhancing recovery in aphasia. However, all tDCS studies have previously investigated the effects using unihemisperic stimulation. No reports to date have examined the role of bihemispheric tDCS on aphasia recovery. Here, eight aphasic persons with apraxia of speech underwent intensive language therapy in two different conditions: real bihemispheric anodic ipsilesional stimulation over the left Broca's area and cathodic contralesional stimulation over the right homologue of Broca's area, and a sham condition. In both conditions, patients underwent concurrent language therapy for their apraxia of speech. The language treatment lasted 10 days (Monday to Friday, then weekend off, then Monday to Friday). There was a 14-day intersession interval between the real and the sham conditions. In all patients, language measures were collected before (T0), at the end of (T10) and 1 week after the end of (F/U) treatment. Results showed that after simultaneous excitatory stimulation to the left frontal hemisphere and inhibitory stimulation to the right frontal hemisphere regions, patients exhibited a significant recovery not only in terms of better accuracy and speed in articulating the treated stimuli but also in other language tasks (picture description, noun and verb naming, word repetition, word reading) which persisted in the follow-up session. Taken together, these data suggest that bihemispheric anodic ipsilesional and cathodic contralesional stimulation in chronic aphasia patients may affect the treated function, resulting in a positive influence on different language tasks. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Grammatical distinctions in the left frontal cortex.

    Science.gov (United States)

    Shapiro, K A; Pascual-Leone, A; Mottaghy, F M; Gangitano, M; Caramazza, A

    2001-08-15

    Selective deficits in producing verbs relative to nouns in speech are well documented in neuropsychology and have been associated with left hemisphere frontal cortical lesions resulting from stroke and other neurological disorders. The basis for these impairments is unresolved: Do they arise because of differences in the way grammatical categories of words are organized in the brain, or because of differences in the neural representation of actions and objects? We used repetitive transcranial magnetic stimulation (rTMS) to suppress the excitability of a portion of left prefrontal cortex and to assess its role in producing nouns and verbs. In one experiment subjects generated real words; in a second, they produced pseudowords as nouns or verbs. In both experiments, response latencies increased for verbs but were unaffected for nouns following rTMS. These results demonstrate that grammatical categories have a neuroanatomical basis and that the left prefrontal cortex is selectively engaged in processing verbs as grammatical objects.

  15. Are orchids left and dandelions right? Frontal brain activation asymmetry and its sensitivity to developmental context.

    Science.gov (United States)

    Fortier, Paz; Van Lieshout, Ryan J; Waxman, Jordana A; Boyle, Michael H; Saigal, Saroj; Schmidt, Louis A

    2014-08-01

    To clarify long-standing conceptual and empirical inconsistencies in models describing the relation between frontal brain asymmetry and emotion, we tested a theory of biological sensitivity to context. We examined whether asymmetry of alpha activation in frontal brain regions, as measured by resting electroencephalography, is sensitive to early developmental contexts. Specifically, we investigated whether frontal asymmetry moderates the association between birth weight and adult outcomes. Adults with left frontal asymmetry (LFA) who were born at extremely low birth weight exhibited high levels of attention problems and withdrawn behaviors in their 30s, whereas normal-birth-weight adults with LFA had low levels of these problem behaviors. Adults with right frontal asymmetry (RFA) displayed a relatively moderate amount of problem behavior regardless of birth weight. Our findings suggest that LFA is associated with sensitivity to developmental context and may help explain why LFA is associated with both positive and negative outcomes, whereas RFA seems to be associated with a more canalized process in some contexts. © The Author(s) 2014.

  16. Modulating phonemic fluency performance in healthy subjects with transcranial magnetic stimulation over the left or right lateral frontal cortex.

    Science.gov (United States)

    Smirni, Daniela; Turriziani, Patrizia; Mangano, Giuseppa Renata; Bracco, Martina; Oliveri, Massimiliano; Cipolotti, Lisa

    2017-07-28

    A growing body of evidence have suggested that non-invasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), can improve the performance of aphasic patients in language tasks. For example, application of inhibitory rTMS or tDCs over the right frontal lobe of dysphasic patients resulted in improved naming abilities. Several studies have also reported that in healthy controls (HC) tDCS application over the left prefrontal cortex (PFC) improve performance in naming and semantic fluency tasks. The aim of this study was to investigate in HC, for the first time, the effects of inhibitory repetitive TMS (rTMS) over left and right lateral frontal cortex (BA 47) on two phonemic fluency tasks (FAS or FPL). 44 right-handed HCs were administered rTMS or sham over the left or right lateral frontal cortex in two separate testing sessions, with a 24h interval, followed by the two phonemic fluency tasks. To account for possible practice effects, an additional 22 HCs were tested on only the phonemic fluency task across two sessions with no stimulation. We found that rTMS-inhibition over the left lateral frontal cortex significantly worsened phonemic fluency performance when compared to sham. In contrast, rTMS-inhibition over the right lateral frontal cortex significantly improved phonemic fluency performance when compared to sham. These results were not accounted for practice effects. We speculated that rTMS over the right lateral frontal cortex may induce plastic neural changes to the left lateral frontal cortex by suppressing interhemispheric inhibitory interactions. This resulted in an increased excitability (disinhibition) of the contralateral unstimulated left lateral frontal cortex, consequently enhancing phonemic fluency performance. Conversely, application of rTMS over the left lateral frontal cortex may induce a temporary, virtual lesion, with effects similar to those reported in left frontal

  17. Left-right cortical asymmetries of regional cerebral blood flow during listening to words

    DEFF Research Database (Denmark)

    Nishizawa, Y; Olsen, T S; Larsen, B

    1982-01-01

    1. Regional cerebral blood flow (rCBF) was measured during rest and during listening to simple words. The xenon-133 intracarotid technique was used and results were obtained from 254 regions of seven right hemispheres and seven left hemispheres. The measurements were performed just after carotid...... of the entire hemisphere. The focal rCBF increases were localized to the superior part of the temporal regions, the prefrontal regions, the frontal eye fields, and the orbitofrontal regions. Significant asymmetries were found in particular in the superior temporal region with the left side showing a more...

  18. Palilalia, echolalia, and echopraxia-palipraxia as ictal manifestations in a patient with left frontal lobe epilepsy.

    Science.gov (United States)

    Cho, Yang-Je; Han, Sang-Don; Song, Sook Keun; Lee, Byung In; Heo, Kyoung

    2009-06-01

    Palilalia is a relatively rare pathologic speech behavior and has been reported in various neurologic and psychiatric disorders. We encountered a case of palilalia, echolalia, and echopraxia-palipraxia as ictal phenomena of left frontal lobe epilepsy. A 55-year-old, right-handed man was admitted because of frequent episodes of rapid reiteration of syllables. Video-electroencephalography monitoring revealed stereotypical episodes of palilalia accompanied by rhythmic head nodding and right-arm posturing with ictal discharges over the left frontocentral area. He also displayed echolalia or echopraxia-palipraxia, partially responding to an examiner's stimulus. Magnetic resonance imaging revealed encephalomalacia on the left superior frontal gyrus and ictal single photon emission computed tomography showed hyperperfusion just above the lesion, corresponding to the left supplementary motor area (SMA), and subcortical nuclei. This result suggests that the neuroanatomic substrate involved in the generation of these behaviors as ictal phenomena might exist in the SMA of the left frontal lobe.

  19. Vulnerability of the frontal and parietal regions in hypertensive patients during working memory task.

    Science.gov (United States)

    Li, Xin; Wang, Wenxiao; Wang, Ailin; Li, Peng; Zhang, Junying; Tao, Wuhai; Zhang, Zhanjun

    2017-05-01

    Hypertension is related with cognitive decline in the elderly. The frontal-parietal executive system plays an important role in cognitive aging and is also vulnerable to damage in elderly patients with hypertension. Examination of the brain's functional characteristics in frontal-parietal regions of hypertension is likely to be important for understanding the neural mechanisms of hypertension's effect on cognitive aging. We address this issue by comparing hypertension and control-performers in a functional MRI study. Twenty-eight hypertensive patients and 32 elderly controls were tested with n-back task with two load levels. The hypertensive patients exhibited worse executive and memory abilities than control subjects. The patterns of brain activation changed under different working memory loads in the hypertensive patients, who exhibited reduced activation only in the precentral gyrus under low loads and reduced activation in the middle frontal gyrus, left medial superior frontal gyrus and right precuneus under high loads. Thus, more regions of diminished activation were observed in the frontal and parietal regions with increasing task difficulty. More importantly, we found that lower activation in changed frontal and parietal regions was associated with worse cognitive function in high loads. The results demonstrate the relationship between cognitive function and frontoparietal functional activation in hypertension and their relevance to cognitive aging risk. Our findings provide a better understanding of the mechanism of cognitive decline in hypertension and highlight the importance of brain protection in hypertension.

  20. Right inferior frontal gyrus activation is associated with memory improvement in patients with left frontal low-grade glioma resection.

    Directory of Open Access Journals (Sweden)

    Eliane C Miotto

    Full Text Available Patients with low-grade glioma (LGG have been studied as a model of functional brain reorganization due to their slow-growing nature. However, there is no information regarding which brain areas are involved during verbal memory encoding after extensive left frontal LGG resection. In addition, it remains unknown whether these patients can improve their memory performance after instructions to apply efficient strategies. The neural correlates of verbal memory encoding were investigated in patients who had undergone extensive left frontal lobe (LFL LGG resections and healthy controls using fMRI both before and after directed instructions were given for semantic organizational strategies. Participants were scanned during the encoding of word lists under three different conditions before and after a brief period of practice. The conditions included semantically unrelated (UR, related-non-structured (RNS, and related-structured words (RS, allowing for different levels of semantic organization. All participants improved on memory recall and semantic strategy application after the instructions for the RNS condition. Healthy subjects showed increased activation in the left inferior frontal gyrus (IFG and middle frontal gyrus (MFG during encoding for the RNS condition after the instructions. Patients with LFL excisions demonstrated increased activation in the right IFG for the RNS condition after instructions were given for the semantic strategies. Despite extensive damage in relevant areas that support verbal memory encoding and semantic strategy applications, patients that had undergone resections for LFL tumor could recruit the right-sided contralateral homologous areas after instructions were given and semantic strategies were practiced. These results provide insights into changes in brain activation areas typically implicated in verbal memory encoding and semantic processing.

  1. Right inferior frontal gyrus activation is associated with memory improvement in patients with left frontal low-grade glioma resection.

    Science.gov (United States)

    Miotto, Eliane C; Balardin, Joana B; Vieira, Gilson; Sato, Joao R; Martin, Maria da Graça M; Scaff, Milberto; Teixeira, Manoel J; Junior, Edson Amaro

    2014-01-01

    Patients with low-grade glioma (LGG) have been studied as a model of functional brain reorganization due to their slow-growing nature. However, there is no information regarding which brain areas are involved during verbal memory encoding after extensive left frontal LGG resection. In addition, it remains unknown whether these patients can improve their memory performance after instructions to apply efficient strategies. The neural correlates of verbal memory encoding were investigated in patients who had undergone extensive left frontal lobe (LFL) LGG resections and healthy controls using fMRI both before and after directed instructions were given for semantic organizational strategies. Participants were scanned during the encoding of word lists under three different conditions before and after a brief period of practice. The conditions included semantically unrelated (UR), related-non-structured (RNS), and related-structured words (RS), allowing for different levels of semantic organization. All participants improved on memory recall and semantic strategy application after the instructions for the RNS condition. Healthy subjects showed increased activation in the left inferior frontal gyrus (IFG) and middle frontal gyrus (MFG) during encoding for the RNS condition after the instructions. Patients with LFL excisions demonstrated increased activation in the right IFG for the RNS condition after instructions were given for the semantic strategies. Despite extensive damage in relevant areas that support verbal memory encoding and semantic strategy applications, patients that had undergone resections for LFL tumor could recruit the right-sided contralateral homologous areas after instructions were given and semantic strategies were practiced. These results provide insights into changes in brain activation areas typically implicated in verbal memory encoding and semantic processing.

  2. Functions of the left superior frontal gyrus in humans: a lesion study.

    Science.gov (United States)

    du Boisgueheneuc, Foucaud; Levy, Richard; Volle, Emmanuelle; Seassau, Magali; Duffau, Hughes; Kinkingnehun, Serge; Samson, Yves; Zhang, Sandy; Dubois, Bruno

    2006-12-01

    The superior frontal gyrus (SFG) is thought to contribute to higher cognitive functions and particularly to working memory (WM), although the nature of its involvement remains a matter of debate. To resolve this issue, methodological tools such as lesion studies are needed to complement the functional imaging approach. We have conducted the first lesion study to investigate the role of the SFG in WM and address the following questions: do lesions of the SFG impair WM and, if so, what is the nature of the WM impairment? To answer these questions, we compared the performance of eight patients with a left prefrontal lesion restricted to the SFG with that of a group of 11 healthy control subjects and two groups of patients with focal brain lesions [prefrontal lesions sparing the SFG (n = 5) and right parietal lesions (n = 4)] in a series of WM tasks. The WM tasks (derived from the classical n-back paradigm) allowed us to study the impact of the SFG lesions on domain (verbal, spatial, face) and complexity (1-, 2- and 3-back) processing within WM. As expected, patients with a left SFG lesion exhibited a WM deficit when compared with all control groups, and the impairment increased with the complexity of the tasks. This complexity effect was significantly more marked for the spatial domain. Voxel-to-voxel mapping of each subject's performance showed that the lateral and posterior portion of the SFG (mostly Brodmann area 8, rostral to the frontal eye field) was the subregion that contributed the most to the WM impairment. These data led us to conclude that (i) the lateral and posterior portion of the left SFG is a key component of the neural network of WM; (ii) the participation of this region in WM is triggered by the highest level of executive processing; (iii) the left SFG is also involved in spatially oriented processing. Our findings support a hybrid model of the anatomical and functional organization of the lateral SFG for WM, according to which this region is

  3. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving.

    Directory of Open Access Journals (Sweden)

    Noriyuki Oka

    Full Text Available In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves, but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS.The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task. Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections.Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05, but cerebral oxygen exchange increased significantly more during left curves (p < 0.05 in the right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p < 0.05 only in the right frontal eye field.Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions.

  4. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving

    Science.gov (United States)

    Oka, Noriyuki; Yoshino, Kayoko; Yamamoto, Kouji; Takahashi, Hideki; Li, Shuguang; Sugimachi, Toshiyuki; Nakano, Kimihiko; Suda, Yoshihiro; Kato, Toshinori

    2015-01-01

    Objectives In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves), but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS). Research Design and Methods The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task). Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections. Results Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05), but cerebral oxygen exchange increased significantly more during left curves (p right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p right frontal eye field. Conclusions Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions

  5. Roles of frontal and temporal regions in reinterpreting semantically ambiguous sentences

    Directory of Open Access Journals (Sweden)

    Sylvia eVitello

    2014-07-01

    Full Text Available Semantic ambiguity resolution is an essential and frequent part of speech comprehension because many words map onto multiple meanings (e.g., bark, bank. Neuroimaging research highlights the importance of the left inferior frontal gyrus (LIFG and the left posterior temporal cortex in this process but the roles they serve in ambiguity resolution are uncertain. One possibility is that both regions are engaged in the processes of semantic reinterpretation that follows incorrect interpretation of an ambiguous word. Here we used fMRI to investigate this hypothesis. 20 native British English monolinguals were scanned whilst listening to sentences that contained an ambiguous word. To induce semantic reinterpretation, the disambiguating information was presented after the ambiguous word and delayed until the end of the sentence (e.g., the teacher explained that the BARK was going to be very damp. These sentences were compared to well-matched unambiguous sentences. Supporting the reinterpretation hypothesis, these ambiguous sentences produced more activation in both the LIFG and the left posterior inferior temporal cortex. Importantly, all but one subject showed ambiguity-related peaks within both regions, demonstrating that the group-level results were driven by high inter-subject consistency. Further support came from the finding that activation in both regions was modulated by meaning dominance. Specifically, sentences containing biased ambiguous words, which have one more dominant meaning, produced greater activation than those with balanced ambiguous words, which have two equally frequent meanings. Because the context always supported the less frequent meaning, the biased words require reinterpretation more often than balanced words. This is the first evidence of dominance effects in the spoken modality and provides strong support that frontal and temporal regions support the updating of semantic representations during speech comprehension.

  6. Role of the left frontal aslant tract in stuttering: a brain stimulation and tractographic study.

    Science.gov (United States)

    Kemerdere, Rahsan; de Champfleur, Nicolas Menjot; Deverdun, Jérémy; Cochereau, Jérôme; Moritz-Gasser, Sylvie; Herbet, Guillaume; Duffau, Hugues

    2016-01-01

    The neural correlates of stuttering are to date incompletely understood. Although the possible involvement of the basal ganglia, the cerebellum and certain parts of the cerebral cortex in this speech disorder has previously been reported, there are still not many studies investigating the role of white matter fibers in stuttering. Axonal stimulation during awake surgery provides a unique opportunity to study the functional role of structural connectivity. Here, our goal was to investigate the white matter tracts implicated in stuttering, by combining direct electrostimulation mapping and postoperative tractography imaging, with a special focus on the left frontal aslant tract. Eight patients with no preoperative stuttering underwent awake surgery for a left frontal low-grade glioma. Intraoperative cortical and axonal electrical mapping was used to interfere in speech processing and subsequently provoke stuttering. We further assessed the relationship between the subcortical sites leading to stuttering and the spatial course of the frontal aslant tract. All patients experienced intraoperative stuttering during axonal electrostimulation. On postsurgical tractographies, the subcortical distribution of stimulated sites matched the topographical position of the left frontal aslant tract. This white matter pathway was preserved during surgery, and no patients had postoperative stuttering. For the first time to our knowledge, by using direct axonal stimulation combined with postoperative tractography, we provide original data supporting a pivotal role of the left frontal aslant tract in stuttering. We propose that this speech disorder could be the result of a disconnection within a large-scale cortico-subcortical circuit subserving speech motor control.

  7. Spontaneous Activity Associated with Delusions of Schizophrenia in the Left Medial Superior Frontal Gyrus: A Resting-State fMRI Study.

    Directory of Open Access Journals (Sweden)

    Bin Gao

    Full Text Available Delusions of schizophrenia have been found to be associated with alterations of some brain regions in structure and task-induced activation. However, the relationship between spontaneously occurring symptoms and spontaneous brain activity remains unclear. In the current study, 14 schizophrenic patients with delusions and 14 healthy controls underwent a resting-state functional magnetic resonance imaging (RS-fMRI scan. Patients with delusions of schizophrenia patients were rated with Positive and Negative Syndrome Scale (PANSS and Characteristics of Delusional Rating Scale (CDRS. Regional homogeneity (ReHo was calculated to measure the local synchronization of the spontaneous activity in a voxel-wise way. A two-sample t-test showed that ReHo of the right anterior cingulate gyrus and left medial superior frontal gyrus were higher in patients, and ReHo of the left superior occipital gyrus was lower, compared to healthy controls. Further, among patients, correlation analysis showed a significant difference between delusion scores of CRDS and ReHo of brain regions. ReHo of the left medial superior frontal gyrus was negatively correlated with patients' CDRS scores but not with delusional PANSS scores. These results suggested that altered local synchronization of spontaneous brain activity may be related to the pathophysiology of delusion in schizophrenia.

  8. Spontaneous Activity Associated with Delusions of Schizophrenia in the Left Medial Superior Frontal Gyrus: A Resting-State fMRI Study.

    Science.gov (United States)

    Gao, Bin; Wang, Yiquan; Liu, Weibo; Chen, Zhiyu; Zhou, Heshan; Yang, Jinyu; Cohen, Zachary; Zhu, Yihong; Zang, Yufeng

    2015-01-01

    Delusions of schizophrenia have been found to be associated with alterations of some brain regions in structure and task-induced activation. However, the relationship between spontaneously occurring symptoms and spontaneous brain activity remains unclear. In the current study, 14 schizophrenic patients with delusions and 14 healthy controls underwent a resting-state functional magnetic resonance imaging (RS-fMRI) scan. Patients with delusions of schizophrenia patients were rated with Positive and Negative Syndrome Scale (PANSS) and Characteristics of Delusional Rating Scale (CDRS). Regional homogeneity (ReHo) was calculated to measure the local synchronization of the spontaneous activity in a voxel-wise way. A two-sample t-test showed that ReHo of the right anterior cingulate gyrus and left medial superior frontal gyrus were higher in patients, and ReHo of the left superior occipital gyrus was lower, compared to healthy controls. Further, among patients, correlation analysis showed a significant difference between delusion scores of CRDS and ReHo of brain regions. ReHo of the left medial superior frontal gyrus was negatively correlated with patients' CDRS scores but not with delusional PANSS scores. These results suggested that altered local synchronization of spontaneous brain activity may be related to the pathophysiology of delusion in schizophrenia.

  9. Dissociating Effects of Scrambling and Topicalization within the Left Frontal and Temporal Language Areas: An fMRI Study in Kaqchikel Maya.

    Science.gov (United States)

    Ohta, Shinri; Koizumi, Masatoshi; Sakai, Kuniyoshi L

    2017-01-01

    Some natural languages grammatically allow different types of changing word orders, such as object scrambling and topicalization. Scrambling and topicalization are more related to syntax and semantics/phonology, respectively. Here we hypothesized that scrambling should activate the left frontal regions, while topicalization would affect the bilateral temporal regions. To examine such distinct effects in our functional magnetic resonance imaging study, we targeted the Kaqchikel Maya language, a Mayan language spoken in Guatemala. In Kaqchikel, the syntactically canonical word order is verb-object-subject (VOS), but at least three non-canonical word orders (i.e., SVO, VSO, and OVS) are also grammatically allowed. We used a sentence-picture matching task, in which the participants listened to a short Kaqchikel sentence and judged whether a picture matched the meaning of the sentence. The advantage of applying this experimental paradigm to an understudied language such as Kaqchikel is that it will allow us to validate the universality of linguistic computation in the brain. We found that the conditions with scrambled sentences [+scrambling] elicited significant activation in the left inferior frontal gyrus and lateral premotor cortex, both of which have been proposed as grammar centers, indicating the effects of syntactic loads. In contrast, the conditions without topicalization [-topicalization] resulted in significant activation in bilateral Heschl's gyrus and superior temporal gyrus, demonstrating that the syntactic and phonological processes were clearly dissociated within the language areas. Moreover, the pre-supplementary motor area and left superior/middle temporal gyri were activated under relatively demanding conditions, suggesting their supportive roles in syntactic or semantic processing. To exclude any semantic/phonological effects of the object-subject word orders, we performed direct comparisons while making the factor of topicalization constant, and

  10. Transcortical mixed aphasia due to cerebral infarction in left inferior frontal lobe and temporo-parietal lobe

    International Nuclear Information System (INIS)

    Maeshima, S.; Matsumoto, T.; Ueyoshi, A.; Toshiro, H.; Sekiguchi, E.; Okita, R.; Yamaga, H.; Ozaki, F.; Moriwaki, H.; Roger, P.

    2002-01-01

    We present a case of transcortical mixed aphasia caused by a cerebral embolism. A 77-year-old right-handed man was admitted to our hospital with speech disturbance and a right hemianopia. His spontaneous speech was remarkably reduced, and object naming, word fluency, comprehension, reading and writing were all severely disturbed. However, repetition of phonemes and sentences and reading aloud were fully preserved. Although magnetic resonance imaging (MRI) showed cerebral infarcts in the left frontal and parieto-occipital lobe which included the inferior frontal gyrus and angular gyrus, single photon emission CT revealed a wider area of low perfusion over the entire left hemisphere except for part of the left perisylvian language areas. The amytal (Wada) test, which was performed via the left internal carotid artery, revealed that the left hemisphere was dominant for language. Hence, it appears that transcortical mixed aphasia may be caused by the isolation of perisylvian speech areas, even if there is a lesion in the inferior frontal gyrus, due to disconnection from surrounding areas. (orig.)

  11. Transcortical mixed aphasia due to cerebral infarction in left inferior frontal lobe and temporo-parietal lobe

    Energy Technology Data Exchange (ETDEWEB)

    Maeshima, S.; Matsumoto, T.; Ueyoshi, A. [Department of Physical Medicine and Rehabilitation, Wakayama Medical University, Wakayama (Japan); Toshiro, H.; Sekiguchi, E.; Okita, R.; Yamaga, H.; Ozaki, F.; Moriwaki, H. [Department of Neurological Surgery, Hidaka General Hospital, Wakayama (Japan); Roger, P. [School of Communication Sciences and Disorders, University of Sydney, Sydney, NSW (Australia)

    2002-02-01

    We present a case of transcortical mixed aphasia caused by a cerebral embolism. A 77-year-old right-handed man was admitted to our hospital with speech disturbance and a right hemianopia. His spontaneous speech was remarkably reduced, and object naming, word fluency, comprehension, reading and writing were all severely disturbed. However, repetition of phonemes and sentences and reading aloud were fully preserved. Although magnetic resonance imaging (MRI) showed cerebral infarcts in the left frontal and parieto-occipital lobe which included the inferior frontal gyrus and angular gyrus, single photon emission CT revealed a wider area of low perfusion over the entire left hemisphere except for part of the left perisylvian language areas. The amytal (Wada) test, which was performed via the left internal carotid artery, revealed that the left hemisphere was dominant for language. Hence, it appears that transcortical mixed aphasia may be caused by the isolation of perisylvian speech areas, even if there is a lesion in the inferior frontal gyrus, due to disconnection from surrounding areas. (orig.)

  12. Enhancing verbal creativity: modulating creativity by altering the balance between right and left inferior frontal gyrus with tDCS.

    Science.gov (United States)

    Mayseless, N; Shamay-Tsoory, S G

    2015-04-16

    Creativity is the production of novel ideas that have value. Previous research indicated that while regions in the right hemisphere are implicated in the production of new ideas, damage to the left inferior frontal gyrus (IFG) is associated with increased creativity, indicating that the left IFG damage may have a "releasing" effect on creativity. To examine this, in the present study we used transcranial direct current stimulation (tDCS) to modulate activity of the right and the left IFG. In the first experiment we show that whereas anodal tDCS over the right IFG coupled with cathodal tDCS over the left IFG increases creativity as measured by a verbal divergent thinking task, the reverse stimulation does not affect creative production. To further confirm that only altering the balance between the two hemispheres is crucial in modulating creativity, in the second experiment we show that stimulation targeting separately the left IFG (cathodal stimulation) or the right IFG (anodal stimulation) did not result in changes in creativity as measured by verbal divergent thinking. These findings support the balance hypothesis, according to which verbal creativity requires a balance of activation between the right and the left frontal lobes, and more specifically, between the right and the left IFG. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. The frontal lobes and inhibitory function

    International Nuclear Information System (INIS)

    Konishi, Seiki

    2011-01-01

    Neuropsychological studies using traditional tasks of inhibitory functions, such as the Wisconsin card sorting test (WCST) and the Go/No-Go Task have revealed that the frontal lobe is responsible for several types of inhibitory functions. However, the detailed psychological nature of the inhibitory functions and the precise location of their critical foci within the frontal lobe remain to be investigated. Functional magnetic resonance imaging provides spatial and temporal resolution that allowed us to illuminate at least 4 frontal regions involved in inhibitory functions: the dorsolateral, ventrolateral, and rostral parts of the frontal lobe and the presupplementary motor area (preSMA). The ventrolateral part of the frontal lobe in the right hemisphere was activated during response inhibition. The preSMA in the left hemisphere was activated during inhibition of proactive interference immediately after the dimension changes of the WCST. The rostral part of the frontal lobe in the left hemisphere was activated during inhibition long after the dimension changes. The dorsolateral part of the frontal lobe in the left hemisphere was activated at the dimension changes in the first time, but not in the second time. These findings provide clues to our understanding of functional differentiation of inhibitory functions and their localization in the frontal lobe. (author)

  14. Correlations between measures of executive attention and cortical thickness of left posterior middle frontal gyrus - a dichotic listening study

    Directory of Open Access Journals (Sweden)

    Lundervold Arvid

    2009-10-01

    Full Text Available Abstract Background The frontal lobe has been associated to a wide range of cognitive control functions and is also vulnerable to degeneration in old age. A recent study by Thomsen and colleagues showed a difference between a young and old sample in grey matter density and activation in the left middle frontal cortex (MFC and performance on a dichotic listening task. The present study investigated this brain behaviour association within a sample of healthy older individuals, and predicted a positive correlation between performance in a condition requiring executive attention and measures of grey matter structure of the posterior left MFC. Methods A dichotic listening forced attention paradigm was used to measure attention control functions. Subjects were instructed to report only the left or the right ear syllable of a dichotically presented consonant-vowel syllable pair. A conflict situation appears when subjects are instructed to report the left ear stimulus, caused by the conflict with the bottom-up, stimulus-driven right ear advantage. Overcoming this processing conflict was used as a measure of executive attention. Thickness and volumes of frontal lobe regions were derived from automated segmentation of 3D magnetic resonance image acquisitions. Results The results revealed a statistically significant positive correlation between the thickness measure of the left posterior MFC and performance on the dichotic listening measures of executive attention. Follow-up analyses showed that this correlation was only statistically significant in the subgroup that showed the typical bottom-up, stimulus-driven right ear advantage. Conclusion The results suggest that the left MFC is a part of an executive attention network, and that the dichotic listening forced attention paradigm may be a feasible tool for assessing subtle attentional dysfunctions in older adults.

  15. Working memory and the identification of facial expression in patients with left frontal glioma.

    Science.gov (United States)

    Mu, Yong-Gao; Huang, Ling-Juan; Li, Shi-Yun; Ke, Chao; Chen, Yu; Jin, Yu; Chen, Zhong-Ping

    2012-09-01

    Patients with brain tumors may have cognitive dysfunctions including memory deterioration, such as working memory, that affect quality of life. This study was to explore the presence of defects in working memory and the identification of facial expressions in patients with left frontal glioma. This case-control study recruited 11 matched pairs of patients and healthy control subjects (mean age ± standard deviation, 37.00 ± 10.96 years vs 36.73 ± 11.20 years; 7 male and 4 female) from March through December 2011. The psychological tests contained tests that estimate verbal/visual-spatial working memory, executive function, and the identification of facial expressions. According to the paired samples analysis, there were no differences in the anxiety and depression scores or in the intelligence quotients between the 2 groups (P > .05). All indices of the Digit Span Test were significantly worse in patients than in control subjects (P patient and control groups. Of all 7 Wisconsin Card Sorting Test (WCST) indexes, only the Preservative Response was significantly different between patients and control subjects (P Patients were significantly less accurate in detecting angry facial expressions than were control subjects (30.3% vs 57.6%; P identification of other expressions. The backward indexes of the Digit Span Test were associated with emotion scores and tumor size and grade (P Patients with left frontal glioma had deficits in verbal working memory and the ability to identify anger. These may have resulted from damage to functional frontal cortex regions, in which roles in these 2 capabilities have not been confirmed. However, verbal working memory performance might be affected by emotional and tumor-related factors.

  16. Origin of human motor readiness field linked to left middle frontal gyrus by MEG and PET

    DEFF Research Database (Denmark)

    Pedersen, Jane Rygaard; Johannsen, P; Bak, Christen Kjeldahl

    1998-01-01

    Combined magnetoencephalography and positron emission tomography identified a prior source of activity in the left middle frontal gyrus duping uncued movements of the right index finger Voluntary movements gave rise to a change in the cortical electrical potential known as the Bereitschaftspotent......Combined magnetoencephalography and positron emission tomography identified a prior source of activity in the left middle frontal gyrus duping uncued movements of the right index finger Voluntary movements gave rise to a change in the cortical electrical potential known...... sources subsequently to be active were mapped to the supplementary motor area, premotor cortex, and motor cortex (M1), all in the left hemisphere. (C) 1998 Academic Press....

  17. Elevated left mid-frontal cortical activity prospectively predicts conversion to bipolar I disorder

    Science.gov (United States)

    Nusslock, Robin; Harmon-Jones, Eddie; Alloy, Lauren B.; Urosevic, Snezana; Goldstein, Kim; Abramson, Lyn Y.

    2013-01-01

    Bipolar disorder is characterized by a hypersensitivity to reward-relevant cues and a propensity to experience an excessive increase in approach-related affect, which may be reflected in hypo/manic symptoms. The present study examined the relationship between relative left-frontal electroencephalographic (EEG) activity, a proposed neurophysiological index of approach-system sensitivity and approach/reward-related affect, and bipolar course and state-related variables. Fifty-eight individuals with cyclothymia or bipolar II disorder and 59 healthy control participants with no affective psychopathology completed resting EEG recordings. Alpha power was obtained and asymmetry indices computed for homologous electrodes. Bipolar spectrum participants were classified as being in a major/minor depressive episode, a hypomanic episode, or a euthymic/remitted state at EEG recording. Participants were then followed prospectively for an average 4.7 year follow-up period with diagnostic interview assessments every four-months. Sixteen bipolar spectrum participants converted to bipolar I disorder during follow-up. Consistent with hypotheses, elevated relative left-frontal EEG activity at baseline 1) prospectively predicted a greater likelihood of converting from cyclothymia or bipolar II disorder to bipolar I disorder over the 4.7 year follow-up period, 2) was associated with an earlier age-of-onset of first bipolar spectrum episode, and 3) was significantly elevated in bipolar spectrum individuals in a hypomanic episode at EEG recording. This is the first study to identify a neurophysiological marker that prospectively predicts conversion to bipolar I disorder. The fact that unipolar depression is characterized by decreased relative left-frontal EEG activity suggests that unipolar depression and vulnerability to hypo/mania may be characterized by different profiles of frontal EEG asymmetry. PMID:22775582

  18. Differential activity in left inferior frontal gyrus for pseudo and real words: an event-related functional MRI study on auditory lexical decision

    International Nuclear Information System (INIS)

    Xiao Zhuangwei; Xu Weixiong; Zhang Xuexin; Wang Xiaoyi; Weng Xuchu; Wu Renhua; Wu Xiaoping

    2006-01-01

    Objective: To study lexical processing of pseudo words and real words by using a fast event-related functional MRI (ER-fMRI) design. Methods: Participants did an auditory lexical decision task on a list of pseudo-randomly intermixed real and pseudo Chinese two-character (or two-syllable) words. Pseudo words were constructed by recombining constituent characters of the real words to control for sublexical codes properties. Results: The behavioral performance of fourteen participants indicated that response to pseudowords was significantly slower and less accurate than to real words (mean error rate: 9.9% versus 3.9%, mean reaction time: 1618 ms versus 1143 ms). Processing of pseudo words and real words activated a highly comparable network of brain regions, including bilateral inferior frontal gyrus, superior, middle temporal gyrus, calcarine and lingual gyrus, and left supramarginal gyrus. Mirroring a behavioral lexical effect, left inferior frontal gyrus (IFG) was significantly more activated for pseudo words than for real words. Conclusion: The results indicate that the processing of left inferior frontal gyrus in judging pseudo words and real words is not related to grapheme-to-phoneme conversion, but rather to making positive versus negative responses in decision making. (authors)

  19. Synchronous retinotopic frontal-temporal activity during long-term memory for spatial location.

    Science.gov (United States)

    Slotnick, Scott D

    2010-05-12

    Early visual areas in occipital cortex are known to be retinotopic. Recently, retinotopic maps have been reported in frontal and parietal cortex during spatial attention and working memory. The present event-related potential (ERP) and functional magnetic resonance imaging (fMRI) study determined whether spatial long-term memory was associated with retinotopic activity in frontal and parietal regions, and assessed whether retinotopic activity in these higher level control regions was synchronous with retinotopic activity in lower level visual sensory regions. During encoding, abstract shapes were presented to the left or right of fixation. During retrieval, old and new shapes were presented at fixation and participants classified each shape as old and previously on the "left", old and previously on the "right", or "new". Retinotopic effects were manifested by accurate memory for items previously presented on the left producing activity in the right hemisphere and accurate memory for items previously presented on the right producing activity in the left hemisphere. Retinotopic ERP activity was observed in frontal regions and visual sensory (occipital and temporal) regions. In frontal cortex, retinotopic fMRI activity was localized to the frontal eye fields. There were no significant ERP or fMRI retinotopic memory effects in parietal regions. The present long-term memory retinotopic effects complement previous spatial attention and working memory findings (and suggest retinotopic activity in parietal cortex may require an external peripheral stimulus). Furthermore, ERP cross-correlogram analysis revealed that retinotopic activations in frontal and temporal regions were synchronous, indicating that these regions interact during retrieval of spatial information. (c) 2010 Elsevier B.V. All rights reserved.

  20. Effects of childhood trauma on left inferior frontal gyrus function during response inhibition across psychotic disorders.

    Science.gov (United States)

    Quidé, Y; O'Reilly, N; Watkeys, O J; Carr, V J; Green, M J

    2018-07-01

    Childhood trauma is a risk factor for psychosis. Deficits in response inhibition are common to psychosis and trauma-exposed populations, and associated brain functions may be affected by trauma exposure in psychotic disorders. We aimed to identify the influence of trauma-exposure on brain activation and functional connectivity during a response inhibition task. We used functional magnetic resonance imaging to examine brain function within regions-of-interest [left and right inferior frontal gyrus (IFG), right dorsolateral prefrontal cortex, right supplementary motor area, right inferior parietal lobule and dorsal anterior cingulate cortex], during the performance of a Go/No-Go Flanker task, in 112 clinical cases with psychotic disorders and 53 healthy controls (HCs). Among the participants, 71 clinical cases and 21 HCs reported significant levels of childhood trauma exposure, while 41 clinical cases and 32 HCs did not. In the absence of effects on response inhibition performance, childhood trauma exposure was associated with increased activation in the left IFG, and increased connectivity between the left IFG seed region and the cerebellum and calcarine sulcus, in both cases and healthy individuals. There was no main effect of psychosis, and no trauma-by-psychosis interaction for any other region-of-interest. Within the clinical sample, the effects of trauma-exposure on the left IFG activation were mediated by symptom severity. Trauma-related increases in activation of the left IFG were not associated with performance differences, or dependent on clinical diagnostic status; increased IFG functionality may represent a compensatory (overactivation) mechanism required to exert adequate inhibitory control of the motor response.

  1. Differential activity in left inferior frontal gyrus for pseudowords and real words: an event-related fMRI study on auditory lexical decision.

    Science.gov (United States)

    Xiao, Zhuangwei; Zhang, John X; Wang, Xiaoyi; Wu, Renhua; Hu, Xiaoping; Weng, Xuchu; Tan, Li Hai

    2005-06-01

    After Newman and Twieg and others, we used a fast event-related functional magnetic resonance imaging (fMRI) design and contrasted the lexical processing of pseudowords and real words. Participants carried out an auditory lexical decision task on a list of randomly intermixed real and pseudo Chinese two-character (or two-syllable) words. The pseudowords were constructed by recombining constituent characters of the real words to control for sublexical code properties. Processing of pseudowords and real words activated a highly comparable network of brain regions, including bilateral inferior frontal gyrus, superior, middle temporal gyrus, calcarine and lingual gyrus, and left supramarginal gyrus. Mirroring a behavioral lexical effect, left inferior frontal gyrus (IFG) was significantly more activated for pseudowords than for real words. This result disconfirms a popular view that this area plays a role in grapheme-to-phoneme conversion, as such a conversion process was unnecessary in our task with auditory stimulus presentation. An alternative view was supported that attributes increased activity in left IFG for pseudowords to general processes in decision making, specifically in making positive versus negative responses. Activation in left supramarginal gyrus was of a much larger volume for real words than for pseudowords, suggesting a role of this region in the representation of phonological or semantic information for two-character Chinese words at the lexical level.

  2. Prominence vs. aboutness in sequencing: a functional distinction within the left inferior frontal gyrus.

    Science.gov (United States)

    Bornkessel-Schlesewsky, Ina; Grewe, Tanja; Schlesewsky, Matthias

    2012-02-01

    Prior research on the neural bases of syntactic comprehension suggests that activation in the left inferior frontal gyrus (lIFG) correlates with the processing of word order variations. However, there are inconsistencies with respect to the specific subregion within the IFG that is implicated by these findings: the pars opercularis or the pars triangularis. Here, we examined the hypothesis that the dissociation between pars opercularis and pars triangularis activation may reflect functional differences between clause-medial and clause-initial word order permutations, respectively. To this end, we directly compared clause-medial and clause-initial object-before-subject orders in German in a within-participants, event-related fMRI design. Our results showed increased activation for object-initial sentences in a bilateral network of frontal, temporal and subcortical regions. Within the lIFG, posterior and inferior subregions showed only a main effect of word order, whereas more anterior and superior subregions showed effects of word order and sentence type, with higher activation for sentences with an argument in the clause-initial position. These findings are interpreted as evidence for a functional gradation of sequence processing within the left IFG: posterior subportions correlate with argument prominence-based (local) aspects of sequencing, while anterior subportions correlate with aboutness-based aspects of sequencing, which are crucial in linking the current sentence to the wider discourse. This proposal appears compatible with more general hypotheses about information processing gradients in prefrontal cortex (Koechlin & Summerfield, 2007). Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Impairments in proverb interpretation following focal frontal lobe lesions☆

    Science.gov (United States)

    Murphy, Patrick; Shallice, Tim; Robinson, Gail; MacPherson, Sarah E.; Turner, Martha; Woollett, Katherine; Bozzali, Marco; Cipolotti, Lisa

    2013-01-01

    The proverb interpretation task (PIT) is often used in clinical settings to evaluate frontal “executive” dysfunction. However, only a relatively small number of studies have investigated the relationship between frontal lobe lesions and performance on the PIT. We compared 52 patients with unselected focal frontal lobe lesions with 52 closely matched healthy controls on a proverb interpretation task. Participants also completed a battery of neuropsychological tests, including a fluid intelligence task (Raven’s Advanced Progressive Matrices). Lesions were firstly analysed according to a standard left/right sub-division. Secondly, a finer-grained analysis compared the performance of patients with medial, left lateral and right lateral lesions with healthy controls. Thirdly, a contrast of specific frontal subgroups compared the performance of patients with medial lesions with patients with lateral frontal lesions. The results showed that patients with left frontal lesions were significantly impaired on the PIT, while in patients with right frontal lesions the impairments approached significance. Medial frontal patients were the only frontal subgroup impaired on the PIT, relative to healthy controls and lateral frontal patients. Interestingly, an error analysis indicated that a significantly higher number of concrete responses were found in the left lateral subgroup compared to healthy controls. We found no correlation between scores on the PIT and on the fluid intelligence task. Overall our results suggest that specific regions of the frontal lobes contribute to the performance on the PIT. PMID:23850600

  4. Impairments in proverb interpretation following focal frontal lobe lesions.

    Science.gov (United States)

    Murphy, Patrick; Shallice, Tim; Robinson, Gail; MacPherson, Sarah E; Turner, Martha; Woollett, Katherine; Bozzali, Marco; Cipolotti, Lisa

    2013-09-01

    The proverb interpretation task (PIT) is often used in clinical settings to evaluate frontal "executive" dysfunction. However, only a relatively small number of studies have investigated the relationship between frontal lobe lesions and performance on the PIT. We compared 52 patients with unselected focal frontal lobe lesions with 52 closely matched healthy controls on a proverb interpretation task. Participants also completed a battery of neuropsychological tests, including a fluid intelligence task (Raven's Advanced Progressive Matrices). Lesions were firstly analysed according to a standard left/right sub-division. Secondly, a finer-grained analysis compared the performance of patients with medial, left lateral and right lateral lesions with healthy controls. Thirdly, a contrast of specific frontal subgroups compared the performance of patients with medial lesions with patients with lateral frontal lesions. The results showed that patients with left frontal lesions were significantly impaired on the PIT, while in patients with right frontal lesions the impairments approached significance. Medial frontal patients were the only frontal subgroup impaired on the PIT, relative to healthy controls and lateral frontal patients. Interestingly, an error analysis indicated that a significantly higher number of concrete responses were found in the left lateral subgroup compared to healthy controls. We found no correlation between scores on the PIT and on the fluid intelligence task. Overall our results suggest that specific regions of the frontal lobes contribute to the performance on the PIT. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

  5. Differences in the neural correlates of frontal lobe tests.

    Science.gov (United States)

    Matsuoka, Teruyuki; Kato, Yuka; Imai, Ayu; Fujimoto, Hiroshi; Shibata, Keisuke; Nakamura, Kaeko; Yamada, Kei; Narumoto, Jin

    2018-01-01

    The Executive Interview (EXIT25), the executive clock-drawing task (CLOX1), and the Frontal Assessment Battery (FAB) are used to assess executive function at the bedside. These tests assess distinct psychometric properties. The aim of this study was to examine differences in the neural correlates of the EXIT25, CLOX1, and FAB based on magnetic resonance imaging. Fifty-eight subjects (30 with Alzheimer's disease, 10 with mild cognitive impairment, and 18 healthy controls) participated in this study. Multiple regression analyses were performed to examine the brain regions correlated with the EXIT25, CLOX1, and FAB scores. Age, gender, and years of education were included as covariates. Statistical thresholds were set to uncorrected P-values of 0.001 at the voxel level and 0.05 at the cluster level. The EXIT25 score correlated inversely with the regional grey matter volume in the left lateral frontal lobe (Brodmann areas 6, 9, 44, and 45). The CLOX1 score correlated positively with the regional grey matter volume in the right orbitofrontal cortex (Brodmann area 11) and the left supramarginal gyrus (Brodmann area 40). The FAB score correlated positively with the regional grey matter volume in the right precentral gyrus (Brodmann area 6). The left lateral frontal lobe (Brodmann area 9) and the right lateral frontal lobe (Brodmann area 46) were identified as common brain regions that showed association with EXIT25, CLOX1, and FAB based only a voxel-level threshold. The results of this study suggest that the EXIT25, CLOX1, and FAB may be associated with the distinct neural correlates of the frontal cortex. © 2018 Japanese Psychogeriatric Society.

  6. The Role of Medial Frontal Cortex in Action Anticipation in Professional Badminton Players.

    Science.gov (United States)

    Xu, Huan; Wang, Pin; Ye, Zhuo'er; Di, Xin; Xu, Guiping; Mo, Lei; Lin, Huiyan; Rao, Hengyi; Jin, Hua

    2016-01-01

    Some studies show that the medial frontal cortex is associated with more skilled action anticipation, while similar findings are not observed in some other studies, possibly due to the stimuli employed and the participants used as the control group. In addition, no studies have investigated whether there is any functional connectivity between the medial frontal cortex and other brain regions in more skilled action anticipation. Therefore, the present study aimed to re-investigate how the medial frontal cortex is involved in more skilled action anticipation by circumventing the limitations of previous research and to investigate that the medial frontal cortex functionally connected with other brain regions involved in action processing in more skilled action anticipation. To this end, professional badminton players and novices were asked to anticipate the landing position of the shuttlecock while watching badminton match videos or to judge the gender of the players in the matches. The video clips ended right at the point that the shuttlecock and the racket came into contact to reduce the effect of information about the trajectory of the shuttlecock. Novices who lacked training and watching experience were recruited for the control group to reduce the effect of sport-related experience on the medial frontal cortex. Blood oxygenation level-dependent activation was assessed by means of functional magnetic resonance imaging. Compared to novices, badminton players exhibited stronger activation in the left medial frontal cortex during action anticipation and greater functional connectivity between left medial frontal cortex and some other brain regions (e.g., right posterior cingulate cortex). Therefore, the present study supports the position that the medial frontal cortex plays a role in more skilled action anticipation and that there is a specific brain network for more skilled action anticipation that involves right posterior cingulate cortex, right fusiform gyrus

  7. Trauma of the Frontal Region Is Influenced by the Volume of Frontal Sinuses. A Finite Element Study

    Directory of Open Access Journals (Sweden)

    Srbislav S. Pajic

    2017-07-01

    Full Text Available Anatomy of frontal sinuses varies individually, from differences in volume and shape to a rare case when the sinuses are absent. However, there are scarce data related to influence of these variations on impact generated fracture pattern. Therefore, the aim of this study was to analyse the influence of frontal sinus volume on the stress distribution and fracture pattern in the frontal region. The study included four representative Finite Element models of the skull. Reference model was built on the basis of computed tomography scans of a human head with normally developed frontal sinuses. By modifying the reference model, three additional models were generated: a model without sinuses, with hypoplasic, and with hyperplasic sinuses. A 7.7 kN force was applied perpendicularly to the forehead of each model, in order to simulate a frontal impact. The results demonstrated that the distribution of impact stress in frontal region depends on the frontal sinus volume. The anterior sinus wall showed the highest fragility in case with hyperplasic sinuses, whereas posterior wall/inner plate showed more fragility in cases with hypoplasic and undeveloped sinuses. Well-developed frontal sinuses might, through absorption of the impact energy by anterior wall, protect the posterior wall and intracranial contents.

  8. Behavioral approach system sensitivity and risk taking interact to predict left-frontal EEG asymmetry.

    Science.gov (United States)

    Black, Chelsea L; Goldstein, Kim E; LaBelle, Denise R; Brown, Christopher W; Harmon-Jones, Eddie; Abramson, Lyn Y; Alloy, Lauren B

    2014-09-01

    The Behavioral Approach System (BAS) hypersensitivity theory of bipolar disorder (BD; Alloy & Abramson, 2010; Depue & Iacono, 1989) suggests that hyperreactivity in the BAS results in the extreme fluctuations of mood characteristic of BD. In addition to risk conferred by BAS hypersensitivity, cognitive and personality variables may play a role in determining risk. We evaluated relationships among BAS sensitivity, risk taking, and an electrophysiological correlate of approach motivation, relative left-frontal electroencephalography (EEG) asymmetry. BAS sensitivity moderated the relationship between risk taking and EEG asymmetry. More specifically, individuals who were high in BAS sensitivity showed left-frontal EEG asymmetry regardless of their level of risk-taking behavior. However, among individuals who were moderate in BAS sensitivity, risk taking was positively associated with asymmetry. These findings suggest that cognitive and personality correlates of bipolar risk may evidence unique contributions to a neural measure of trait-approach motivation. Clinical implications of these findings are discussed. Copyright © 2014. Published by Elsevier Ltd.

  9. Repetition Suppression in the Left Inferior Frontal Gyrus Predicts Tone Learning Performance.

    Science.gov (United States)

    Asaridou, Salomi S; Takashima, Atsuko; Dediu, Dan; Hagoort, Peter; McQueen, James M

    2016-06-01

    Do individuals differ in how efficiently they process non-native sounds? To what extent do these differences relate to individual variability in sound-learning aptitude? We addressed these questions by assessing the sound-learning abilities of Dutch native speakers as they were trained on non-native tone contrasts. We used fMRI repetition suppression to the non-native tones to measure participants' neuronal processing efficiency before and after training. Although all participants improved in tone identification with training, there was large individual variability in learning performance. A repetition suppression effect to tone was found in the bilateral inferior frontal gyri (IFGs) before training. No whole-brain effect was found after training; a region-of-interest analysis, however, showed that, after training, repetition suppression to tone in the left IFG correlated positively with learning. That is, individuals who were better in learning the non-native tones showed larger repetition suppression in this area. Crucially, this was true even before training. These findings add to existing evidence that the left IFG plays an important role in sound learning and indicate that individual differences in learning aptitude stem from differences in the neuronal efficiency with which non-native sounds are processed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Activation of the left inferior frontal gyrus in the first 200 ms of reading: evidence from magnetoencephalography (MEG).

    Science.gov (United States)

    Cornelissen, Piers L; Kringelbach, Morten L; Ellis, Andrew W; Whitney, Carol; Holliday, Ian E; Hansen, Peter C

    2009-01-01

    It is well established that the left inferior frontal gyrus plays a key role in the cerebral cortical network that supports reading and visual word recognition. Less clear is when in time this contribution begins. We used magnetoencephalography (MEG), which has both good spatial and excellent temporal resolution, to address this question. MEG data were recorded during a passive viewing paradigm, chosen to emphasize the stimulus-driven component of the cortical response, in which right-handed participants were presented words, consonant strings, and unfamiliar faces to central vision. Time-frequency analyses showed a left-lateralized inferior frontal gyrus (pars opercularis) response to words between 100-250 ms in the beta frequency band that was significantly stronger than the response to consonant strings or faces. The left inferior frontal gyrus response to words peaked at approximately 130 ms. This response was significantly later in time than the left middle occipital gyrus, which peaked at approximately 115 ms, but not significantly different from the peak response in the left mid fusiform gyrus, which peaked at approximately 140 ms, at a location coincident with the fMRI-defined visual word form area (VWFA). Significant responses were also detected to words in other parts of the reading network, including the anterior middle temporal gyrus, the left posterior middle temporal gyrus, the angular and supramarginal gyri, and the left superior temporal gyrus. These findings suggest very early interactions between the vision and language domains during visual word recognition, with speech motor areas being activated at the same time as the orthographic word-form is being resolved within the fusiform gyrus. This challenges the conventional view of a temporally serial processing sequence for visual word recognition in which letter forms are initially decoded, interact with their phonological and semantic representations, and only then gain access to a speech code.

  11. The role of medial frontal gyrus in action anticipation in professional badminton players

    Directory of Open Access Journals (Sweden)

    Huan Xu

    2016-11-01

    Full Text Available Some studies show that the medial frontal cortex is associated with more skilled action anticipation, while similar findings are not observed in some other studies, possibly due to the stimuli employed and the participants used as the control group. In addition, no studies have investigated whether there is any functional connectivity between the medial frontal cortex and other brain regions in more skilled action anticipation. Therefore, the present study aimed to re-investigate how the medial frontal cortex is involved in more skilled action anticipation by circumventing the limitations of previous research and to investigate that the medial frontal cortex functionally connected with other brain regions involved in action processing in more skilled action anticipation. To this end, professional badminton players and novices were asked to anticipate the landing position of the shuttlecock while watching badminton match videos or to judge the gender of the players in the matches. The video clips ended right at the point that the shuttlecock and the racket came into contact to reduce the effect of information about the trajectory of the shuttlecock. Novices who lacked training and watching experience were recruited for the control group to reduce the effect of sport-related experience on the medial frontal cortex. Blood oxygenation level-dependent (BOLD activation was assessed by means of functional magnetic resonance imaging (fMRI. Compared to novices, badminton players exhibited stronger activation in the left medial frontal cortex during action anticipation and greater functional connectivity between left medial frontal cortex and some other brain regions (e.g., right posterior cingulate cortex. Therefore, the present study supports the position that the medial frontal cortex plays a role in more skilled action anticipation and that there is a specific brain network for more skilled action anticipation that involves right posterior cingulate

  12. The Role of Medial Frontal Cortex in Action Anticipation in Professional Badminton Players

    Science.gov (United States)

    Xu, Huan; Wang, Pin; Ye, Zhuo’er; Di, Xin; Xu, Guiping; Mo, Lei; Lin, Huiyan; Rao, Hengyi; Jin, Hua

    2016-01-01

    Some studies show that the medial frontal cortex is associated with more skilled action anticipation, while similar findings are not observed in some other studies, possibly due to the stimuli employed and the participants used as the control group. In addition, no studies have investigated whether there is any functional connectivity between the medial frontal cortex and other brain regions in more skilled action anticipation. Therefore, the present study aimed to re-investigate how the medial frontal cortex is involved in more skilled action anticipation by circumventing the limitations of previous research and to investigate that the medial frontal cortex functionally connected with other brain regions involved in action processing in more skilled action anticipation. To this end, professional badminton players and novices were asked to anticipate the landing position of the shuttlecock while watching badminton match videos or to judge the gender of the players in the matches. The video clips ended right at the point that the shuttlecock and the racket came into contact to reduce the effect of information about the trajectory of the shuttlecock. Novices who lacked training and watching experience were recruited for the control group to reduce the effect of sport-related experience on the medial frontal cortex. Blood oxygenation level-dependent activation was assessed by means of functional magnetic resonance imaging. Compared to novices, badminton players exhibited stronger activation in the left medial frontal cortex during action anticipation and greater functional connectivity between left medial frontal cortex and some other brain regions (e.g., right posterior cingulate cortex). Therefore, the present study supports the position that the medial frontal cortex plays a role in more skilled action anticipation and that there is a specific brain network for more skilled action anticipation that involves right posterior cingulate cortex, right fusiform gyrus

  13. Co-activation-based parcellation of the lateral prefrontal cortex delineates the inferior frontal junction area

    OpenAIRE

    Muhle-Karbe, Paul Simon; Derrfuss, Jan; Lynn, Maggie; Neubert, Franz Xaver; Fox, Peter; Brass, Marcel; Eickhoff, Simon

    2016-01-01

    The inferior frontal junction (IFJ) area, a small region in the posterior lateral prefrontal cortex (LPFC), has received increasing interest in recent years due to its central involvement in the control of action, attention, and memory. Yet, both its function and anatomy remain controversial. Here, we employed a meta-analytic parcellation of the left LPFC to show that the IFJ can be isolated based on its specific functional connections. A seed region, oriented along the left inferior frontal ...

  14. The left inferior frontal gyrus is involved in adjusting response bias during a perceptual decision-making task.

    Science.gov (United States)

    Reckless, Greg E; Ousdal, Olga T; Server, Andres; Walter, Henrik; Andreassen, Ole A; Jensen, Jimmy

    2014-05-01

    Changing the way we make decisions from one environment to another allows us to maintain optimal decision-making. One way decision-making may change is how biased one is toward one option or another. Identifying the regions of the brain that underlie the change in bias will allow for a better understanding of flexible decision-making. An event-related, perceptual decision-making task where participants had to detect a picture of an animal amongst distractors was used during functional magnetic resonance imaging. Positive and negative financial motivation were used to affect a change in response bias, and changes in decision-making behavior were quantified using signal detection theory. Response bias became relatively more liberal during both positive and negative motivated trials compared to neutral trials. For both motivational conditions, the larger the liberal shift in bias, the greater the left inferior frontal gyrus (IFG) activity. There was no relationship between individuals' belief that they used a different strategy and their actual change in response bias. The present findings suggest that the left IFG plays a role in adjusting response bias across different decision environments. This suggests a potential role for the left IFG in flexible decision-making.

  15. Mind the movement: Frontal asymmetry stands for behavioral motivation, bilateral frontal activation for behavior.

    Science.gov (United States)

    Rodrigues, Johannes; Müller, Mathias; Mühlberger, Andreas; Hewig, Johannes

    2018-01-01

    Frontal asymmetry has been investigated over the past 30 years, and several theories have been developed about its meaning. The original theory of Davidson and its diversification by Harmon-Jones & Allen allocated approach motivation to relative left frontal brain activity and withdrawal motivation to relative right frontal brain activity. Hewig and colleagues extended this theory by adding bilateral frontal activation representing a biological correlate of the behavioral activation system if actual behavior is shown. Wacker and colleagues formulated a theory related to the revised reinforcement sensitivity theory by Gray & McNaughton. Here, relative left frontal brain activation represents the revised behavioral activation system and behavior, while relative right frontal brain activation represents the revised behavioral inhibition system, representing the experience of conflict. These theories were investigated with a newly developed paradigm where participants were able to move around freely in a virtual T maze via joystick while having their EEG recorded. Analyzing the influence of frontal brain activation during this virtual reality task on observable behavior for 30 participants, we found more relative left frontal brain activation during approach behavior and more relative right brain activation for withdrawal behavior of any kind. Additionally, there was more bilateral frontal brain activation when participants were engaged in behavior compared to doing nothing. Hence, this study provides evidence for the idea that frontal asymmetry stands for behavioral approach or avoidance motivation, and bilateral frontal activation stands for behavior. Additionally, observable behavior is not only determined by frontal asymmetry, but also by relevant traits. © 2017 Society for Psychophysiological Research.

  16. Perturbation of the left inferior frontal gyrus triggers adaptive plasticity in the right homologous area during speech production

    OpenAIRE

    Hartwigsen, Gesa; Saur, Dorothee; Price, Cathy J.; Ulmer, Stephan; Baumgaertner, Annette; Siebner, Hartwig R.

    2013-01-01

    The role of the right hemisphere in aphasia recovery is unclear. We demonstrate that a virtual lesion of left inferior frontal gyrus (IFG) decreased activity in the targeted area and increased activity in the contralateral homologous area during pseudoword repetition. This was associated with a stronger facilitatory drive from the right IFG to the left IFG. Importantly, responses became faster with increased influence of the right IFG on the left IFG. Our results shed new light on the dynamic...

  17. Facilitation of speech repetition accuracy by theta burst stimulation of the left posterior inferior frontal gyrus.

    Science.gov (United States)

    Restle, Julia; Murakami, Takenobu; Ziemann, Ulf

    2012-07-01

    The posterior part of the inferior frontal gyrus (pIFG) in the left hemisphere is thought to form part of the putative human mirror neuron system and is assigned a key role in mapping sensory perception onto motor action. Accordingly, the pIFG is involved in motor imitation of the observed actions of others but it is not known to what extent speech repetition of auditory-presented sentences is also a function of the pIFG. Here we applied fMRI-guided facilitating intermittent theta burst transcranial magnetic stimulation (iTBS), or depressant continuous TBS (cTBS), or intermediate TBS (imTBS) over the left pIFG of healthy subjects and compared speech repetition accuracy of foreign Japanese sentences before and after TBS. We found that repetition accuracy improved after iTBS and, to a lesser extent, after imTBS, but remained unchanged after cTBS. In a control experiment, iTBS was applied over the left middle occipital gyrus (MOG), a region not involved in sensorimotor processing of auditory-presented speech. Repetition accuracy remained unchanged after iTBS of MOG. We argue that the stimulation type and stimulation site specific facilitating effect of iTBS over left pIFG on speech repetition accuracy indicates a causal role of the human left-hemispheric pIFG in the translation of phonological perception to motor articulatory output for repetition of speech. This effect may prove useful in rehabilitation strategies that combine repetitive speech training with iTBS of the left pIFG in speech disorders, such as aphasia after cerebral stroke. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. [Hyperlexia in an adult patient with lesions in the left medial frontal lobe].

    Science.gov (United States)

    Suzuki, K; Yamadori, A; Kumabe, T; Endo, K; Fujii, T; Yoshimoto, T

    2000-04-01

    A 69-year-old right-handed woman developed a transcortical motor aphasia with hyperlexia following resection of a glioma in the left medial frontal lobe. Neurological examination revealed grasp reflex in the right hand and underutilization of the right upper extremity. An MRI demonstrated lesions in the left medial frontal lobe including the supplementary motor area and the anterior part of the cingulate gyrus, which extended to the anterior part of the body of corpus callosum. Neuropsychologically she was alert and cooperative. She demonstrated transcortical motor aphasia. Her verbal output began with echolalia. Furthermore hyperlexia was observed in daily activities and during examinations. During conversation she suddenly read words written on objects around her which were totally irrelevant to the talk. When she was walking in the ward with an examiner she read words written on a trash bag that passed by and signboards which indicated a name of a room. Her conversation while walking was intermingled with reading words, which was irrelevant to the conversation. She also read time on analog clocks, which were hung on a wall in a watch store. In a naming task, she read words written on objects first and named them upon repeated question about their names. When an examiner opened a newspaper in front of her without any instructions she began reading until the examiner prohibited it. Then she began reading again when an examiner turned the page, although she remembered that she should not read it aloud. She showed mild ideomotor apraxia of a left hand. Utilization behavior, imitation behavior, hypergraphia, or compulsive use of objects was not observed throughout the course. Hyperlexic tendency is a prominent feature of this patient's language output. Hyperlexia was often reported in children with pervasive developmental disorders including autism. There are only a few reports about hyperlexia in adults and some of them were related to diffuse brain dysfunction

  19. The left inferior frontal gyrus: A neural crossroads between abstract and concrete knowledge.

    Science.gov (United States)

    Della Rosa, Pasquale Anthony; Catricalà, Eleonora; Canini, Matteo; Vigliocco, Gabriella; Cappa, Stefano F

    2018-07-15

    Evidence from both neuropsychology and neuroimaging suggests that different types of information are necessary for representing and processing concrete and abstract word meanings. Both abstract and concrete concepts, however, conjointly rely on perceptual, verbal and contextual knowledge, with abstract concepts characterized by low values of imageability (IMG) (low sensory-motor grounding) and low context availability (CA) (more difficult to contextualize). Imaging studies supporting differences between abstract and concrete concepts show a greater recruitment of the left inferior frontal gyrus (LIFG) for abstract concepts, which has been attributed either to the representation of abstract-specific semantic knowledge or to the request for more executive control than in the case of concrete concepts. We conducted an fMRI study on 27 participants, using a lexical decision task involving both abstract and concrete words, whose IMG and CA values were explicitly modelled in separate parametric analyses. The LIFG was significantly more activated for abstract than for concrete words, and a conjunction analysis showed a common activation for words with low IMG or low CA only in the LIFG, in the same area reported for abstract words. A regional template map of brain activations was then traced for words with low IMG or low CA, and BOLD regional time-series were extracted and correlated with the specific LIFG neural activity elicited for abstract words. The regions associated to low IMG, which were functionally correlated with LIFG, were mainly in the left hemisphere, while those associated with low CA were in the right hemisphere. Finally, in order to reveal which LIFG-related network increased its connectivity with decreases of IMG or CA, we conducted generalized psychophysiological interaction analyses. The connectivity strength values extracted from each region connected with the LIFG were correlated with specific LIFG neural activity for abstract words, and a regression

  20. [Mirror movement due to the medial frontal lobe lesion].

    Science.gov (United States)

    Takahashi, N; Kawamura, M; Hirayama, K

    1995-01-01

    We reported a case with acquired mirror movement in upper limbs due to the lesion of right medial frontal lobe including supplementary motor area, and also discussed a possible mechanism underlying it. A 59-year-old right-handed woman developed left hemiparesis caused by cerebral hemorrhage in the right frontoparietal lobe, on April 5, 1981. She had right hemiparesis and right hemianopsia due to cerebral hemorrhage in the left parieto-occipital lobe, 13 days later. As the patient was recovering from paresis, mirror movement appeared on upper limbs. The features of the mirror movement of this case are summarized as follows: (1) it appeared when using both proximal and distal region of upper limbs; (2) it appeared on left upper limb when the patient intended to move right upper limb or on right upper limb when intended to move left upper limb, while it appeared predominantly in the former; and (3) it was more remarkably found in habitual movement using gesture and pantomimic movement for the use of objects, and it was found in lower degree when actual object was used or when the patient tried to imitate the gesture of the examiner. The lesions in MRI were found in medial region of right frontal lobe (supplementary motor area, medial region of motor area, and cingulate gyrus), right medial parietal lobe, posterior region of right occipital lobe, and medial regions of left parietal and occipital lobes. There was no apparent abnormality in corpus callosum.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Dissociating frontal regions that co-lateralize with different ventral occipitotemporal regions during word processing☆

    Science.gov (United States)

    Seghier, Mohamed L.; Price, Cathy J.

    2013-01-01

    The ventral occipitotemporal sulcus (vOT) sustains strong interactions with the inferior frontal cortex during word processing. Consequently, activation in both regions co-lateralize towards the same hemisphere in healthy subjects. Because the determinants of lateralisation differ across posterior, middle and anterior vOT subregions, we investigated whether lateralisation in different inferior frontal regions would co-vary with lateralisation in the three different vOT subregions. A whole brain analysis found that, during semantic decisions on written words, laterality covaried in (1) posterior vOT and the precentral gyrus; (2) middle vOT and the pars opercularis, pars triangularis, and supramarginal gyrus; and (3) anterior vOT and the pars orbitalis, middle frontal gyrus and thalamus. These findings increase the spatial resolution of our understanding of how vOT interacts with other brain areas during semantic categorisation on words. PMID:23728081

  2. Effects of excision of a mass lesion of the precentral region of the left hemisphere on disturbances of graphomotor output

    NARCIS (Netherlands)

    Tucha, Oliver; Tucha, L.I.; Smely, C.; Lange, K.W.

    2012-01-01

    In the present study, the effect of neurosurgery on graphomotor output of a right-handed female patient with a mass lesion of the precentral region of the left frontal lobe was reported. For examination of handwriting movements a digitizing tablet was used. Preoperatively, the patient showed longer

  3. [Language Functions in the Frontal Association Area: Brain Mechanisms That Create Language].

    Science.gov (United States)

    Yamamoto, Kayako; Sakai, Kuniyoshi L

    2016-11-01

    Broca's area is known to be critically involved in language processing for more than 150 years. Recent neuroimaging techniques, including functional magnetic resonance imaging (fMRI) and diffusion MRI, enabled the subdivision of Broca's area based on both functional and anatomical aspects. Networks among the frontal association areas, especially the left inferior frontal gyrus (IFG), and other cortical regions in the temporal/parietal association areas, are also important for language-related information processing. Here, we review how neuroimaging studies, combined with research paradigms based on theoretical linguistics, have contributed to clarifying the critical roles of the left IFG in syntactic processing and those of language-related networks, including cortical and cerebellar regions.

  4. Frontal brain asymmetry as a marker of depression and effectiveness of TMS therapy

    International Nuclear Information System (INIS)

    Mani, D.; Lithgow, B.

    2010-01-01

    Full text: Resting frontal brain electroencephalography (EEG) asymmetry has been hypothesi sed as a diagnostic marker for depression. A number of studies have shown that depressed individuals are characterised by diminished left sided activation of the prefrontal cortex, which is indicated by greater left than right alpha-band power. Relative left frontal region activity is believed to be associated with positive approach related behaviour and relative right frontal activity is seen to be linked to negative withdrawal related behaviour. In this study, frontal brain EEG was recorded from 17 depressed and 19 control subjects, from which frontal brain asymmetry ratios were calculated. The results confirmed the trend of relative left anterior hypoaclivation for individuals with depression compared to the healthy controls. This study also looked at beta and theta band ratios and found theta for depressed is predominantly negative, while the control group dis played mainly positive values. Beta comparison showed little significant difference between control and depressed groups. In addition, there have been few studies that examined frontal brain asymmetry in depression soon after treatment to gauge its effectiv ness. In a very preliminary study, the effect of Transcranial Magnetic Stimulation (TMS) therapy on the alpha band frontal brain asymmetry ratio for 5 depl'essed subjects before and after treatment found a slight increase in FBA ratio for 4 subjects. Further research and a larger subject group is required to validate these results.

  5. Differentiated parietal connectivity of frontal regions for "what" and "where" memory.

    Science.gov (United States)

    Rottschy, C; Caspers, S; Roski, C; Reetz, K; Dogan, I; Schulz, J B; Zilles, K; Laird, A R; Fox, P T; Eickhoff, S B

    2013-11-01

    In a previous meta-analysis across almost 200 neuroimaging experiments, working memory for object location showed significantly stronger convergence on the posterior superior frontal gyrus, whereas working memory for identity showed stronger convergence on the posterior inferior frontal gyrus (dorsal to, but overlapping with Brodmann's area BA 44). As similar locations have been discussed as part of a dorsal frontal-superior parietal reach system and an inferior frontal grasp system, the aim of the present study was to test whether the regions of working-memory related "what" and "where" processing show a similar distinction in parietal connectivity. The regions that were found in the previous meta-analysis were used as seeds for functional connectivity analyses using task-based meta-analytic connectivity modelling and task-independent resting state correlations. While the ventral seed showed significantly stronger connectivity with the bilateral intraparietal sulcus (IPS), the dorsal seed showed stronger connectivity with the bilateral posterior inferior parietal and the medial superior parietal lobule. The observed connections of regions involved in memory for object location and identity thus clearly demonstrate a distinction into separate pathways that resemble the parietal connectivity patterns of the dorsal and ventral premotor cortex in non-human primates and humans. It may hence be speculated that memory for a particular location and reaching towards it as well as object memory and finger positioning for manipulation may rely on shared neural systems. Moreover, the ensuing regions, in turn, featured differential connectivity with the bilateral ventral and dorsal extrastriate cortex, suggesting largely segregated bilateral connectivity pathways from the dorsal visual cortex via the superior and inferior parietal lobules to the dorsal posterior frontal cortex and from the ventral visual cortex via the IPS to the ventral posterior frontal cortex that may

  6. Task-modulated activation and functional connectivity of the temporal and frontal areas during speech comprehension.

    Science.gov (United States)

    Yue, Q; Zhang, L; Xu, G; Shu, H; Li, P

    2013-05-01

    There is general consensus in the literature that a distributed network of temporal and frontal brain areas is involved in speech comprehension. However, how active versus passive tasks modulate the activation and the functional connectivity of the critical brain areas is not clearly understood. In this study, we used functional magnetic resonance imaging (fMRI) to identify intelligibility and task-related effects in speech comprehension. Participants performed a semantic judgment task on normal and time-reversed sentences, or passively listened to the sentences without making an overt response. The subtraction analysis demonstrated that passive sentence comprehension mainly engaged brain areas in the left anterior and posterior superior temporal sulcus and middle temporal gyrus (aSTS/MTG and pSTS/MTG), whereas active sentence comprehension recruited bilateral frontal regions in addition to the aSTS/MTG and pSTS/MTG regions. Functional connectivity analysis revealed that during passive sentence comprehension, the left aSTS/MTG was functionally connected with the left Heschl's gyrus (HG) and bilateral superior temporal gyrus (STG) but no area was functionally connected with the left pSTS/MTG; during active sentence comprehension, however, both the left aSTS/MTG and pSTS/MTG were functionally connected with bilateral superior temporal and inferior frontal areas. While these results are consistent with the view that the ventral stream of the temporo-frontal network subserves semantic processing, our findings further indicate that both the activation and the functional connectivity of the temporal and frontal areas are modulated by task demands. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Accurate external localization of the left frontal cortex in dogs by using pointer based frameless neuronavigation

    Directory of Open Access Journals (Sweden)

    Robrecht Dockx

    2017-07-01

    Full Text Available Background In humans, non-stereotactic frameless neuronavigation systems are used as a topographical tool for non-invasive brain stimulation methods such as Transcranial Magnetic Stimulation (TMS. TMS studies in dogs may provide treatment modalities for several neuropsychological disorders in dogs. Nevertheless, an accurate non-invasive localization of a stimulation target has not yet been performed in this species. Hypothesis This study was primarily put forward to externally locate the left frontal cortex in 18 healthy dogs by means of a human non-stereotactic neuronavigation system. Secondly, the accuracy of the external localization was assessed. Animals A total of 18 healthy dogs, drawn at random from the research colony present at the faculty of Veterinary Medicine (Ghent University, were used. Methods Two sets of coordinates (X, Y, Z and X″, Y″, Z″ were compared on each dog their tomographical dataset. Results The non-stereotactic neuronavigation system was able to externally locate the frontal cortex in dogs with accuracy comparable with human studies. Conclusion and clinical importance This result indicates that a non-stereotactic neuronavigation system can accurately externally locate the left frontal cortex and paves the way to use guided non-invasive brain stimulation methods as an alternative treatment procedure for neurological and behavioral disorders in dogs. This technique could, in analogy with human guided non-invasive brain stimulation, provide a better treatment outcome for dogs suffering from anxiety disorders when compared to its non-guided alternative.

  8. Perturbation of the left inferior frontal gyrus triggers adaptive plasticity in the right homologous area during speech production

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Saur, Dorothee; Price, Cathy J

    2013-01-01

    The role of the right hemisphere in aphasia recovery after left hemisphere damage remains unclear. Increased activation of the right hemisphere has been observed after left hemisphere damage. This may simply reflect a release from transcallosal inhibition that does not contribute to language...... functions. Alternatively, the right hemisphere may actively contribute to language functions by supporting disrupted processing in the left hemisphere via interhemispheric connections. To test this hypothesis, we applied off-line continuous theta burst stimulation (cTBS) over the left inferior frontal gyrus...... (IFG) in healthy volunteers, then used functional MRI to investigate acute changes in effective connectivity between the left and right hemispheres during repetition of auditory and visual words and pseudowords. In separate sessions, we applied cTBS over the left anterior IFG (aIFG) or posterior IFG (p...

  9. Regulatory behavior and frontal activity: Considering the role of revised-BIS in relative right frontal asymmetry.

    Science.gov (United States)

    Gable, Philip A; Neal, Lauren B; Threadgill, A Hunter

    2018-01-01

    Essential to human behavior are three core personality systems: approach, avoidance, and a regulatory system governing the two motivational systems. Decades of research has linked approach motivation with greater relative left frontal-cortical asymmetry. Other research has linked avoidance motivation with greater relative right frontal-cortical asymmetry. However, past work linking withdrawal motivation with greater relative right frontal asymmetry has been mixed. The current article reviews evidence suggesting that activation of the regulatory system (revised Behavioral Inhibition System [r-BIS]) may be more strongly related to greater relative right frontal asymmetry than withdrawal motivation. Specifically, research suggests that greater activation of the r-BIS is associated with greater relative right frontal activity, and reduced r-BIS activation is associated with reduced right frontal activity (greater relative left frontal activity). We review evidence examining trait and state frontal activity using EEG, source localization, lesion studies, neuronal stimulation, and fMRI supporting the idea that r-BIS may be the core personality system related to greater relative right frontal activity. In addition, the current review seeks to disentangle avoidance motivation and r-BIS as substrates of relative right frontal asymmetry. © 2017 Society for Psychophysiological Research.

  10. Frontal and subcortical grey matter reductions in PTSD.

    Science.gov (United States)

    O'Doherty, Daniel C M; Tickell, Ashleigh; Ryder, Will; Chan, Charles; Hermens, Daniel F; Bennett, Maxwell R; Lagopoulos, Jim

    2017-08-30

    Post-traumatic stress disorder (PTSD) is characterised by a range of debilitating psychological, physical and cognitive symptoms. PTSD has been associated with grey matter atrophy in limbic and frontal cortical brain regions. However, previous studies have reported heterogeneous findings, with grey matter changes observed beyond limbic/frontal areas. Seventy-five adults were recruited from the community, 25 diagnosed with PTSD along with 25 healthy and 25 trauma exposed age and gender matched controls. Participants underwent clinical assessment and magnetic resonance imaging. The data-analyses method Voxel Based Morphometry (VBM) was used to estimate cortical grey matter volumes. When compared to both healthy and trauma exposed controls, PTSD subjects demonstrated decreased grey matter volumes within subcortical brain regions-including the hippocampus and amygdala-along with reductions in the anterior cingulate cortex, frontal medial cortex, middle frontal gyrus, superior frontal gyrus, paracingulate gyrus, and precuneus cortex. Significant negative correlations were found between total CAPS lifetime clinical scores/sub-scores and GM volume of both the PTSD and TC groups. GM volumes of the left rACC and right amygdala showed a significant negative correlation within PTSD diagnosed subjects. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  11. Hostile Attribution Bias Mediates the Relationship Between Structural Variations in the Left Middle Frontal Gyrus and Trait Angry Rumination

    Directory of Open Access Journals (Sweden)

    Yueyue Wang

    2018-04-01

    Full Text Available Angry rumination is a common mental phenomenon which may lead to negative social behaviors such as aggression. Although numerous neuroimaging studies have focused on brain area activation during angry rumination, to our knowledge no study has examined the neuroanatomical and cognitive mechanisms of this process. In this study, we conducted a voxel-based morphometry analysis, using a region of interest analysis to identify the structural and cognitive mechanisms underlying individual differences in trait angry rumination (as measured by the Angry Rumination Scale in a sample of 82 undergraduate students. We found that angry rumination was positively correlated with gray matter density in the left middle frontal gyrus (left-MFG, which is implicated in inhibition control, working memory, and emotional regulation. The mediation analysis further revealed that hostile attribution bias (as measured by the Social Information Processing–Attribution Bias Questionnaire acted as a cognitive mechanism underlying the positive association between the left-MFG gray matter density and trait angry rumination. These findings suggest that hostile attribution bias may contribute to trait angry rumination, while the left-MFG may play an important role in the development of hostile attribution bias and trait angry rumination. The study reveals the brain mechanisms of trait angry rumination and plays a role in revealing the cognitive mechanisms of the development of trait angry rumination.

  12. Dyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex

    Directory of Open Access Journals (Sweden)

    O.A. Olulade

    2015-01-01

    Full Text Available fMRI studies using a region-of-interest approach have revealed that the ventral portion of the left occipito-temporal cortex, which is specialized for orthographic processing of visually presented words (and includes the so-called “visual word form area”, VWFA, is characterized by a posterior-to-anterior gradient of increasing selectivity for words in typically reading adults, adolescents, and children (e.g. Brem et al., 2006, 2009. Similarly, the left inferior frontal cortex (IFC has been shown to exhibit a medial-to-lateral gradient of print selectivity in typically reading adults (Vinckier et al., 2007. Functional brain imaging studies of dyslexia have reported relative underactivity in left hemisphere occipito-temporal and inferior frontal regions using whole-brain analyses during word processing tasks. Hence, the question arises whether gradient sensitivities in these regions are altered in dyslexia. Indeed, a region-of-interest analysis revealed the gradient-specific functional specialization in the occipito-temporal cortex to be disrupted in dyslexic children (van der Mark et al., 2009. Building on these studies, we here (1 investigate if a word-selective gradient exists in the inferior frontal cortex in addition to the occipito-temporal cortex in normally reading children, (2 compare typically reading with dyslexic children, and (3 examine functional connections between these regions in both groups. We replicated the previously reported anterior-to-posterior gradient of increasing selectivity for words in the left occipito-temporal cortex in typically reading children, and its absence in the dyslexic children. Our novel finding is the detection of a pattern of increasing selectivity for words along the medial-to-lateral axis of the left inferior frontal cortex in typically reading children and evidence of functional connectivity between the most lateral aspect of this area and the anterior aspects of the occipito-temporal cortex. We

  13. Frontal Brain Asymmetry in Depression with Comorbid Anxiety: A Neuropsychological Investigation

    OpenAIRE

    Nelson, Brady D.; Sarapas, Casey; Robison-Andrew, E. Jenna; Altman, Sarah E.; Campbell, Miranda L.; Shankman, Stewart A.

    2012-01-01

    The approach-withdrawal model posits that depression and anxiety are associated with a relative right asymmetry in frontal brain activity. Most studies have tested this model using measures of cortical brain activity such as electroencephalography. However, neuropsychological tasks that differentially employ left vs. right frontal cortical regions can also be used to test hypotheses from the model. In two independent samples (Study 1 and 2), the present study investigated the performance of c...

  14. Reduced left precentral regional responses in patients with major depressive disorder and history of suicide attempts.

    Science.gov (United States)

    Tsujii, Noa; Mikawa, Wakako; Tsujimoto, Emi; Adachi, Toru; Niwa, Atsushi; Ono, Hisae; Shirakawa, Osamu

    2017-01-01

    Previous neuroimaging studies have revealed frontal and temporal functional abnormalities in patients with major depressive disorder (MDD) and a history of suicidal behavior. However, it is unknown whether multi-channel near-infrared spectroscopy (NIRS) signal changes among individuals with MDD are associated with a history of suicide attempts and a diathesis for suicidal behavior (impulsivity, hopelessness, and aggression). Therefore, we aimed to explore frontotemporal hemodynamic responses in depressed patients with a history of suicide attempts using 52-channel NIRS. We recruited 30 patients with MDD and a history of suicidal behavior (suicide attempters; SAs), 38 patient controls without suicidal behavior (non-attempters; NAs), and 40 healthy controls (HCs) matched by age, gender ratio, and estimated IQ. Regional hemodynamic responses during a verbal fluency task (VFT) were monitored using NIRS. Our results showed that severities of depression, impulsivity, aggression, and hopelessness were similar between SAs and NAs. Both patient groups had significantly reduced activation compared with HCs in the bilateral frontotemporal regions. Post hoc analyses revealed that SAs exhibited a smaller hemodynamic response in the left precentral gyrus than NAs and HCs. Furthermore, the reduced response in the left inferior frontal gyrus was negatively correlated with impulsivity level and hemodynamic responses in the right middle frontal gyrus were negatively associated with hopelessness and aggression in SAs but not in NAs and HCs. Our findings suggest that MDD patients with a history of suicide attempts demonstrate patterns of VFT-induced NIRS signal changes different from those demonstrated by individuals without a history of suicidal behaviors, even in cases where clinical symptoms are similar. NIRS has a relatively high time resolution, which may help visually differentiate SAs from NAs.

  15. Dissociating Parieto-Frontal Networks for Phonological and Semantic Word Decisions

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Weigel, Anni; Schuschan, Paul

    2016-01-01

    Left posterior inferior frontal gyrus (pIFG) and supramarginal gyrus (SMG) are key regions for phonological decisions, whereas angular gyrus (ANG) and anterior IFG (aIFG) are associated with semantics. However, it is less clear whether the functional contribution of one area changes in the presen...

  16. Motor Speech Apraxia in a 70-Year-Old Man with Left Dorsolateral Frontal Arachnoid Cyst: A [18F]FDG PET-CT Study

    Directory of Open Access Journals (Sweden)

    Nicolaas I. Bohnen

    2016-01-01

    Full Text Available Motor speech apraxia is a speech disorder of impaired syllable sequencing which, when seen with advancing age, is suggestive of a neurodegenerative process affecting cortical structures in the left frontal lobe. Arachnoid cysts can be associated with neurologic symptoms due to compression of underlying brain structures though indications for surgical intervention are unclear. We present the case of a 70-year-old man who presented with a two-year history of speech changes along with decreased initiation and talkativeness, shorter utterances, and dysnomia. [18F]Fluorodeoxyglucose (FDG Positron Emission and Computed Tomography (PET-CT and magnetic resonance imaging (MRI showed very focal left frontal cortical hypometabolism immediately adjacent to an arachnoid cyst but no specific evidence of a neurodegenerative process.

  17. Regional ejection fraction: a quantitative radionuclide index of regional left ventricular performance

    International Nuclear Information System (INIS)

    Maddox, D.E.; Wynne, J.; Uren, R.; Parker, J.A.; Idoine, J.; Siegel, L.C.; Neill, J.M.; Cohn, P.F.; Holman, B.L.

    1979-01-01

    Left ventricular regional ejection fractions were derived from background-corrected, time-activity curves in 43 patients assessed by both gated equilibrium radionuclide angiocardiography and left ventricular contrast angiography. From a single, modified left anterior oblique projection, the regional change in background corrected counts was determined in each of three anatomic regions. The normal range for regional radionuclide ejection fraction was determined in 10 patients with normal contrast ventriculograms and without obstructive coronary artery disease at coronary arteriography. Regional ejection fraction was compared with percent segmental axis shortening and extent of akinetic segments in corresponding regions of the contrast ventriculogram. Radionuclide and roentgenographic methods were in agreement as to the presence or absence of abnormal wall motion in 83 of 99 left ventricular regions (84%) in 33 patients evaluated prospectively. Comparison of regional ejection fraction demonstrated significant differences between regions with roentgenographically determined normokinesis hypokinesis, and akinesis. We conclude that the left ventricular regional ejection fraction provides a reliable quantitative assessment of regional left ventricular performance

  18. Exercising self-control increases relative left frontal cortical activation.

    Science.gov (United States)

    Schmeichel, Brandon J; Crowell, Adrienne; Harmon-Jones, Eddie

    2016-02-01

    Self-control refers to the capacity to override or alter a predominant response tendency. The current experiment tested the hypothesis that exercising self-control temporarily increases approach motivation, as revealed by patterns of electrical activity in the prefrontal cortex. Participants completed a writing task that did vs did not require them to exercise self-control. Then they viewed pictures known to evoke positive, negative or neutral affect. We assessed electroencephalographic (EEG) activity while participants viewed the pictures, and participants reported their trait levels of behavioral inhibition system (BIS) and behavioral activation system (BAS) sensitivity at the end of the study. We found that exercising (vs not exercising) self-control increased relative left frontal cortical activity during picture viewing, particularly among individuals with relatively higher BAS than BIS, and particularly during positive picture viewing. A similar but weaker pattern emerged during negative picture viewing. The results suggest that exercising self-control temporarily increases approach motivation, which may help to explain the aftereffects of self-control (i.e. ego depletion). © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. Abnormal Degree Centrality of Bilateral Putamen and Left Superior Frontal Gyrus in Schizophrenia with Auditory Hallucinations: A Resting-state Functional Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Chen, Cheng; Wang, Hui-Ling; Wu, Shi-Hao; Huang, Huan; Zou, Ji-Lin; Chen, Jun; Jiang, Tian-Zi; Zhou, Yuan; Wang, Gao-Hua

    2015-12-05

    Dysconnectivity hypothesis of schizophrenia has been increasingly emphasized. Recent researches showed that this dysconnectivity might be related to occurrence of auditory hallucination (AH). However, there is still no consistent conclusion. This study aimed to explore intrinsic dysconnectivity pattern of whole-brain functional networks at voxel level in schizophrenic with AH. Auditory hallucinated patients group (n = 42 APG), no hallucinated patients group (n = 42 NPG) and normal controls (n = 84 NCs) were analyzed by resting-state functional magnetic resonance imaging. The functional connectivity metrics index (degree centrality [DC]) across the entire brain networks was calculated and evaluated among three groups. DC decreased in the bilateral putamen and increased in the left superior frontal gyrus in all the patients. However, in APG, the changes of DC were more obvious compared with NPG. Symptomology scores were negatively correlated with the DC of bilateral putamen in all patients. AH score of APG positively correlated with the DC in left superior frontal gyrus but negatively correlated with the DC in bilateral putamen. Our findings corroborated that schizophrenia was characterized by functional dysconnectivity, and the abnormal DC in bilateral putamen and left superior frontal gyrus might be crucial in the occurrence of AH.

  20. Developmental dyslexia: dysfunction of a left hemisphere reading network

    Directory of Open Access Journals (Sweden)

    Fabio eRichlan

    2012-05-01

    Full Text Available This mini-review summarizes and integrates findings from recent meta-analyses and original neuroimaging studies on functional brain abnormalities in dyslexic readers. Surprisingly, there is little empirical support for the standard neuroanatomical model of developmental dyslexia, which localizes the primary phonological decoding deficit in left temporo-parietal regions. Rather, recent evidence points to a dysfunction of a left hemisphere reading network, which includes occipito-temporal, inferior frontal, and inferior parietal regions.

  1. Dysconnection of right parietal and frontal cortex in neglect syndrome

    DEFF Research Database (Denmark)

    Dietz, Martin; Nielsen, Jørgen Feldbæk; Roepstorff, Andreas

    2017-01-01

    A lesion to the right hemisphere of the brain often leads to perceptual neglect of the left side of the sensorium. The fact that lesions to different cortical regions lead to the same symptoms points to neglect as a dysconnection syndrome that may result from the dysconnection of a distributed...... network, rather than a disruption of computation in any particular brain region. To test this hypothesis, we used Bayesian analysis of effective connectivity based on electroencephalographic recordings in patients with left-sided neglect after a right-hemisphere lesion. While age-matched healthy controls...... connectivity in the left hemisphere when stimuli appeared on their right. Crucially, this parieto-frontal feedback connectivity was aggravated in patients with more severe symptoms. In contrast, patients and controls did not show differences in the local connectivity within regions. These findings suggest...

  2. Rostro-Caudal Organization of Connectivity between Cingulate Motor Areas and Lateral Frontal Regions

    Directory of Open Access Journals (Sweden)

    Kep Kee Loh

    2018-01-01

    Full Text Available According to contemporary views, the lateral frontal cortex is organized along a rostro-caudal functional axis with increasingly complex cognitive/behavioral control implemented rostrally, and increasingly detailed motor control implemented caudally. Whether the medial frontal cortex follows the same organization remains to be elucidated. To address this issue, the functional connectivity of the 3 cingulate motor areas (CMAs in the human brain with the lateral frontal cortex was investigated. First, the CMAs and their representations of hand, tongue, and eye movements were mapped via task-related functional magnetic resonance imaging (fMRI. Second, using resting-state fMRI, their functional connectivity with lateral prefrontal and lateral motor cortical regions of interest (ROIs were examined. Importantly, the above analyses were conducted at the single-subject level to account for variability in individual cingulate morphology. The results demonstrated a rostro-caudal functional organization of the CMAs in the human brain that parallels that in the lateral frontal cortex: the rostral CMA has stronger functional connectivity with prefrontal regions and weaker connectivity with motor regions; conversely, the more caudal CMAs have weaker prefrontal and stronger motor connectivity. Connectivity patterns of the hand, tongue and eye representations within the CMAs are consistent with that of their parent CMAs. The parallel rostral-to-caudal functional organization observed in the medial and lateral frontal cortex could likely contribute to different hierarchies of cognitive-motor control.

  3. Regional cerebral blood flow in schizophrenia

    International Nuclear Information System (INIS)

    Kanoh, Masayuki

    1989-01-01

    Regional cerebral blood flow (rCBF) was measured at rest using the 133 Xe inhalation technique in 40 DSM-III-diagnosed schizophrenics (22 males, 18 females: mean age 35.0 years, range 20-49 years) and 31 age-and sex-matched normal controls (16 males, 15 females: mean age 34.3 years, range 21-49 years). The absolute value (AV) and the percent value (PV) of the rCBF in schizophrenics were compared with those in controls. Correlations between rCBF and the Brief Psychiatric Rating Scale (BPRS) scores or the performance of Wisconsin Card Sorting Test (WCST) were examined in schizophrenics. Schizophrenics showed significantly lower AVs in all brain regions examined and a significantly lower PV in the left superior frontal region than controls. The hyperfrontal rCBF distribution which was found in both hemispheres in controls, was absent in the left hemisphere in schizophrenics. In schizophrenics, superior frontal blood flows were significantly negatively correlated with the negative symptom scores of the BPRS but not with the total scores and the positive symptom scores of the BPRS. In schizophrenics, inferior frontal blood flows were significantly correlated with the number of sorting categories achieved. These results indicate that rCBF in schizophrenia is reduced in the whole brain and especially in the left superior frontal region. These findings suggest a frontal lobe dysfunction in schizophrenia. (author)

  4. Significant decreases in frontal and temporal [11C]-raclopride binding after THC challenge.

    Science.gov (United States)

    Stokes, Paul R A; Egerton, Alice; Watson, Ben; Reid, Alistair; Breen, Gerome; Lingford-Hughes, Anne; Nutt, David J; Mehta, Mitul A

    2010-10-01

    Delta9-tetrahydrocannabinol (THC) increases prefrontal cortical dopamine release in animals, but this is yet to be examined in humans. In man, striatal dopamine release can be indexed using [11C]-raclopride positron emission tomography (PET), and recent reports suggest that cortical [11C]-raclopride binding may also be sensitive to dopaminergic challenges. Using an existing dataset we examined whether THC alters [11C]-raclopride binding potential (BP(ND)) in cortical regions. Thirteen healthy volunteers underwent two [11C]-raclopride PET scans following either oral 10 mg THC or placebo. Significant areas of decreased cortical [11C]-raclopride BP(ND) were identified using whole brain voxel-wise analysis and quantified using a region of interest (ROI) ratio analysis. Effect of blood flow on binding was estimated using a simplified reference tissue model analysis. Results were compared to [11C]-raclopride test-retest reliability in the ROIs identified using a separate cohort of volunteers. Voxel-wise analysis identified three significant clusters of decreased [11C]-raclopride BP(ND) after THC in the right middle frontal gyrus, left superior frontal gyrus and left superior temporal gyrus. Decreases in [11C]-raclopride BPND following THC were greater than test-retest variability in these ROIs. R1, an estimate of blood flow, significantly decreased in the left superior frontal gyrus in the THC condition but was unchanged in the other ROIs. Decreased frontal binding significantly correlated to catechol-o-methyl transferase (COMT) val108 status. We have demonstrated for the first time significant decreases in bilateral frontopolar cortical and left superior temporal gyrus [11C]-raclopride binding after THC. The interpretation of these findings in relation to prefrontal dopamine release is discussed. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Frontal networks in adults with autism spectrum disorder.

    Science.gov (United States)

    Catani, Marco; Dell'Acqua, Flavio; Budisavljevic, Sanja; Howells, Henrietta; Thiebaut de Schotten, Michel; Froudist-Walsh, Seán; D'Anna, Lucio; Thompson, Abigail; Sandrone, Stefano; Bullmore, Edward T; Suckling, John; Baron-Cohen, Simon; Lombardo, Michael V; Wheelwright, Sally J; Chakrabarti, Bhismadev; Lai, Meng-Chuan; Ruigrok, Amber N V; Leemans, Alexander; Ecker, Christine; Consortium, Mrc Aims; Craig, Michael C; Murphy, Declan G M

    2016-02-01

    It has been postulated that autism spectrum disorder is underpinned by an 'atypical connectivity' involving higher-order association brain regions. To test this hypothesis in a large cohort of adults with autism spectrum disorder we compared the white matter networks of 61 adult males with autism spectrum disorder and 61 neurotypical controls, using two complementary approaches to diffusion tensor magnetic resonance imaging. First, we applied tract-based spatial statistics, a 'whole brain' non-hypothesis driven method, to identify differences in white matter networks in adults with autism spectrum disorder. Following this we used a tract-specific analysis, based on tractography, to carry out a more detailed analysis of individual tracts identified by tract-based spatial statistics. Finally, within the autism spectrum disorder group, we studied the relationship between diffusion measures and autistic symptom severity. Tract-based spatial statistics revealed that autism spectrum disorder was associated with significantly reduced fractional anisotropy in regions that included frontal lobe pathways. Tractography analysis of these specific pathways showed increased mean and perpendicular diffusivity, and reduced number of streamlines in the anterior and long segments of the arcuate fasciculus, cingulum and uncinate--predominantly in the left hemisphere. Abnormalities were also evident in the anterior portions of the corpus callosum connecting left and right frontal lobes. The degree of microstructural alteration of the arcuate and uncinate fasciculi was associated with severity of symptoms in language and social reciprocity in childhood. Our results indicated that autism spectrum disorder is a developmental condition associated with abnormal connectivity of the frontal lobes. Furthermore our findings showed that male adults with autism spectrum disorder have regional differences in brain anatomy, which correlate with specific aspects of autistic symptoms. Overall these

  6. Frontal and temporal volumes in Childhood Absence Epilepsy.

    Science.gov (United States)

    Caplan, Rochelle; Levitt, Jennifer; Siddarth, Prabha; Wu, Keng Nei; Gurbani, Suresh; Sankar, Raman; Shields, W Donald

    2009-11-01

    This study compared frontotemporal brain volumes in children with childhood absence epilepsy (CAE) to age- and gender-matched children without epilepsy. It also examined the association of these volumes with seizure, demographic, perinatal, intelligence quotient (IQ), and psychopathology variables. Twenty-six children with CAE, aged 7.5-11.8 years, and 37 children without epilepsy underwent brain magnetic resonance imaging (MRI) scans at 1.5 Tesla. Tissue was segmented, and total brain, frontal lobe, frontal parcellations, and temporal lobe volumes were computed. All children had IQ testing and structured psychiatric interviews. Parents provided seizure, perinatal, and behavioral information on each child. The CAE group had significantly smaller gray matter volumes of the left orbital frontal gyrus as well as both left and right temporal lobes compared to the age- and gender-matched children without epilepsy. In the CAE group these volumes were related to age, gender, ethnicity, and pregnancy complications but not to seizure, IQ, and psychopathology variables. In the group of children without epilepsy, however, the volumes were related to IQ. These findings suggest that CAE impacts brain development in regions implicated in behavior, cognition, and language. In addition to supporting the cortical focus theory of CAE, these findings also imply that CAE is not a benign disorder.

  7. Orbito-frontal cortex and thalamus volumes in the patients with obsessive-compulsive disorder before and after cognitive behavioral therapy.

    Science.gov (United States)

    Atmaca, Murad; Yildirim, Hanefi; Yilmaz, Seda; Caglar, Neslihan; Mermi, Osman; Korkmaz, Sevda; Akaslan, Unsal; Gurok, M Gurkan; Kekilli, Yasemin; Turkcapar, Hakan

    2018-07-01

    Background The effect of a variety of treatment modalities including psychopharmacological and cognitive behavioral therapy on the brain volumes and neurochemicals have not been investigated enough in the patients with obsessive-compulsive disorder. Therefore, in the present study, we aimed to investigate the effect of cognitive behavioral therapy on the volumes of the orbito-frontal cortex and thalamus regions which seem to be abnormal in the patients with obsessive-compulsive disorder. We hypothesized that there would be change in the volumes of the orbito-frontal cortex and thalamus. Methods Twelve patients with obsessive-compulsive disorder and same number of healthy controls were included into the study. At the beginning of the study, the volumes of the orbito-frontal cortex and thalamus were compared by using magnetic resonance imaging. In addition, volumes of these regions were measured before and after the cognitive behavioral therapy treatment in the patient group. Results The patients with obsessive-compulsive disorder had greater left and right thalamus volumes and smaller left and right orbito-frontal cortex volumes compared to those of healthy control subjects at the beginning of the study. When we compared baseline volumes of the patients with posttreatment ones, we detected that thalamus volumes significantly decreased throughout the period for both sides and that the orbito-frontal cortex volumes significantly increased throughout the period for only left side. Conclusions In summary, we found that cognitive behavioral therapy might volumetrically affect the key brain regions involved in the neuroanatomy of obsessive-compulsive disorder. However, future studies with larger sample are required.

  8. Lateral frontal cortex volume reduction in Tourette syndrome revealed by VBM

    Directory of Open Access Journals (Sweden)

    Wittfoth Matthias

    2012-02-01

    Full Text Available Abstract Background Structural changes have been found predominantly in the frontal cortex and in the striatum in children and adolescents with Gilles de la Tourette syndrome (GTS. The influence of comorbid symptomatology is unclear. Here we sought to address the question of gray matter abnormalities in GTS patients with co-morbid obsessive-compulsive disorder (OCD and/or attention deficit hyperactivity disorder (ADHD using voxel-based morphometry (VBM in twenty-nine adult actually unmedicated GTS patients and twenty-five healthy control subjects. Results In GTS we detected a cluster of decreased gray matter volume in the left inferior frontal gyrus (IFG, but no regions demonstrating volume increases. By comparing subgroups of GTS with comorbid ADHD to the subgroup with comorbid OCD, we found a left-sided amygdalar volume increase. Conclusions From our results it is suggested that the left IFG may constitute a common underlying structural correlate of GTS with co-morbid OCD/ADHD. A volume reduction in this brain region that has been previously identified as a key region in OCD and was associated with the active inhibition of attentional processes may reflect the failure to control behavior. Amygdala volume increase is discussed on the background of a linkage of this structure with ADHD symptomatology. Correlations with clinical data revealed gray matter volume changes in specific brain areas that have been described in these conditions each.

  9. Let's inhibit our excitement: the relationships between Stroop, behavioral disinhibition, and the frontal lobes.

    Science.gov (United States)

    Heflin, Lara H; Laluz, Victor; Jang, Jung; Ketelle, Robin; Miller, Bruce L; Kramer, Joel H

    2011-09-01

    The Stroop (Stroop, 1935) is a frequently used neuropsychological test, with poor performance typically interpreted as indicative of disinhibition and frontal lobe damage. This study tested those interpretations by examining relationships between Stroop performance, behavioral disinhibition, and frontal lobe atrophy. Participants were 112 patients with mild cognitive impairment or dementia, recruited through UCSF's Memory and Aging Center. Participants received comprehensive dementia evaluations including structural MRI, neuropsychological testing, and informant interviews. Freesurfer, a semiautomated parcellation program, was used to analyze 1.5T MRI scans. Behavioral disinhibition was measured using the Neuropsychiatric Inventory (Cummings, 1997; Cummings et al., 1994) Disinhibition Scale. The sample (n = 112) mean age was 65.40 (SD = 8.60) years, education was 16.64 (SD = 2.54) years, and Mini-Mental State Examination (MMSE; Folstein et al., 1975) was 26.63 (SD = 3.32). Hierarchical linear regressions were used for data analysis. Controlling for age, MMSE, and color naming, Stroop performance was not significantly associated with disinhibition (β = 0.01, ΔR² = 0.01, p = .29). Hierarchical regressions controlling for age, MMSE, color naming, intracranial volume, and temporal and parietal lobes, examined whether left or right hemisphere regions predict Stroop performance. Bilaterally, parietal lobe atrophy best predicted poorer Stroop (left: β = 0.0004, ΔR² = 0.02, p = .002; right: β = 0.0004, ΔR² = 0.02, p = .002). Of frontal regions, only dorsolateral prefrontal cortex atrophy predicted poorer Stroop (β = 0.001, ΔR² = 0.01, p = .03); left and right anterior cingulate cortex atrophy predicted better Stroop (left: β = -0.003, ΔR² = 0.01, p = .02; right: β = -0.004, ΔR² = 0.01, p = .02). These findings suggest Stroop performance is a poor measure of behavioral disinhibition and frontal lobe atrophy even among a relatively high-risk population

  10. The relation of hedonic hunger and restrained eating to lateralized frontal activation.

    Science.gov (United States)

    Winter, S R; Feig, E H; Kounios, J; Erickson, B; Berkowitz, S; Lowe, M R

    2016-09-01

    Asymmetrical alpha activation in the prefrontal cortex (frontal asymmetry) in electroencephalography (EEG) has been related to eating behavior. Prior studies linked dietary restraint with right frontal asymmetry [1] and disinhibition with left frontal asymmetry [2]. The current study simultaneously assessed restrained eating and hedonic hunger (drive for food reward in the absence of hunger) in relation to frontal asymmetry. Resting-state EEG and measures of restrained eating (Revised Restraint Scale; RRS) and hedonic hunger (Power of Food Scale; PFS) were assessed in 61 non-obese adults. Individually, hedonic hunger predicted left asymmetry. However, PFS and RRS were correlated (r=0.48, phunger exhibited left asymmetry irrespective of RRS scores; among those low in PFS, only those high in RRS showed right asymmetry. Results were consistent with literature linking avoidant behaviors (restraint) with right-frontal asymmetry and approach behaviors (binge eating) with left-frontal asymmetry. It appears that a strong drive toward palatable foods predominates at a neural level even when restraint is high. Findings suggest that lateralized frontal activity is an indicator of motivation both to consume and to avoid consuming highly palatable foods. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The regional neuronal activity in left posterior middle temporal gyrus is correlated with the severity of chronic aphasia.

    Science.gov (United States)

    Li, Jianlin; Du, Dunren; Gao, Wei; Sun, Xichun; Xie, Haizhu; Zhang, Gang; Li, Jian; Li, Honglun; Li, Kefeng

    2017-01-01

    Aphasia is one of the most disabling cognitive deficits affecting >2 million people in the USA. The neuroimaging characteristics of chronic aphasic patients (>6 months post onset) remain largely unknown. The objective of this study was to investigate the regional signal changes of spontaneous neuronal activity of brain and the inter-regional connectivity in chronic aphasia. Resting-state blood oxygenation level-dependent functional magnetic resonance imaging (fMRI) was used to obtain fMRI data from 17 chronic aphasic patients and 20 healthy control subjects in a Siemens Verio 3.0T MR Scanner. The amplitude of low-frequency fluctuation (ALFF) was determined, which directly reflects the regional neuronal activity. The functional connectivity (FC) of fMRI was assessed using a seed voxel linear correlation approach. The severity of aphasia was evaluated by aphasia quotient (AQ) scores obtained from Western Aphasia Battery test. Compared with normal subjects, aphasic patients showed decreased ALFF values in the regions of left posterior middle temporal gyrus (PMTG), left medial prefrontal gyrus, and right cerebellum. The ALFF values in left PMTG showed strong positive correlation with the AQ score (coefficient r =0.79, P temporal gyrus (BA20), fusiform gyrus (BA37), and inferior frontal gyrus (BA47\\45\\44). Left PMTG might play an important role in language dysfunction of chronic aphasia, and ALFF value might be a promising indicator to evaluate the severity of aphasia.

  12. Subcortical surgical anatomy of the lateral frontal region: human white matter dissection and correlations with functional insights provided by intraoperative direct brain stimulation: laboratory investigation.

    Science.gov (United States)

    De Benedictis, Alessandro; Sarubbo, Silvio; Duffau, Hugues

    2012-12-01

    Recent neuroimaging and surgical results support the crucial role of white matter in mediating motor and higher-level processing within the frontal lobe, while suggesting the limited compensatory capacity after damage to subcortical structures. Consequently, an accurate knowledge of the anatomofunctional organization of the pathways running within this region is mandatory for planning safe and effective surgical approaches to different diseases. The aim of this dissection study was to improve the neurosurgeon's awareness of the subcortical anatomofunctional architecture for a lateral approach to the frontal region, to optimize both resection and postoperative outcome. Ten human hemispheres (5 left, 5 right) were dissected according to the Klingler technique. Proceeding lateromedially, the main association and projection tracts as well as the deeper basal structures were identified. The authors describe the anatomy and the relationships among the exposed structures in both a systematic and topographical surgical perspective. Structural results were also correlated to the functional responses obtained during resections of infiltrative frontal tumors guided by direct cortico-subcortical electrostimulation with patients in the awake condition. The eloquent boundaries crucial for a safe frontal lobectomy or an extensive lesionectomy are as follows: 1) the motor cortex; 2) the pyramidal tract and premotor fibers in the posterior and posteromedial part of the surgical field; 3) the inferior frontooccipital fascicle and the superior longitudinal fascicle posterolaterally; and 4) underneath the inferior frontal gyrus, the head of the caudate nucleus, and the tip of the frontal horn of the lateral ventricle in the depth. Optimization of results following brain surgery, especially within the frontal lobe, requires a perfect knowledge of functional anatomy, not only at the cortical level but also with regard to subcortical white matter connectivity.

  13. The effect of focal cortical frontal and posterior lesions on recollection and familiarity in recognition memory.

    Science.gov (United States)

    Stamenova, Vessela; Gao, Fuqiang; Black, Sandra E; Schwartz, Michael L; Kovacevic, Natasha; Alexander, Michael P; Levine, Brian

    2017-06-01

    Recognition memory can be subdivided into two processes: recollection (a contextually rich memory) and familiarity (a sense that an item is old). The brain network supporting recognition encompasses frontal, parietal and medial temporal regions. Which specific regions within the frontal lobe are critical for recollection vs. familiarity, however, are unknown; past studies of focal lesion patients have yielded conflicting results. We examined patients with focal lesions confined to medial polar (MP), right dorsal frontal (RDF), right frontotemporal (RFT), left dorsal frontal (LDF), temporal, and parietal regions and matched controls. A series of words and their humorous definitions were presented either auditorily or visually to all participants. Recall, recognition, and source memory were tested at 30 min and 24 h delay, along with "remember/know" judgments for recognized items. The MP, RDF, temporal and parietal groups were impaired on subjectively reported recollection; their intact recognition performance was supported by familiarity. None of the groups were impaired on cued recall, recognition familiarity or source memory. These findings suggest that the MP and RDF regions, along with parietal and temporal regions, are necessary for subjectively-reported recollection, while the LDF and right frontal ventral regions, as those affected in the RTF group, are not. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Comparison of Metabolite Concentrations in the Left Dorsolateral Prefrontal Cortex, the Left Frontal White Matter, and the Left Hippocampus in Patients in Stable Schizophrenia Treated with Antipsychotics with or without Antidepressants. 1H-NMR Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Dominik Strzelecki

    2015-10-01

    Full Text Available Managing affective, negative, and cognitive symptoms remains the most difficult therapeutic problem in stable phase of schizophrenia. Efforts include administration of antidepressants. Drugs effects on brain metabolic parameters can be evaluated by means of proton nuclear magnetic resonance (1H-NMR spectroscopy. We compared spectroscopic parameters in the left prefrontal cortex (DLPFC, the left frontal white matter (WM and the left hippocampus and assessed the relationship between treatment and the spectroscopic parameters in both groups. We recruited 25 patients diagnosed with schizophrenia (DSM-IV-TR, with dominant negative symptoms and in stable clinical condition, who were treated with antipsychotic and antidepressive medication for minimum of three months. A group of 25 patients with schizophrenia, who were taking antipsychotic drugs but not antidepressants, was matched. We compared metabolic parameters (N-acetylaspartate (NAA, myo-inositol (mI, glutamatergic parameters (Glx, choline (Cho, and creatine (Cr between the two groups. All patients were also assessed with the Positive and Negative Syndrome Scale (PANSS and the Calgary Depression Scale for Schizophrenia (CDSS. In patients receiving antidepressants we observed significantly higher NAA/Cr and NAA/Cho ratios within the DLPFC, as well as significantly higher mI/Cr within the frontal WM. Moreover, we noted significantly lower values of parameters associated with the glutamatergic transmission—Glx/Cr and Glx/Cho in the hippocampus. Doses of antipsychotic drugs in the group treated with antidepressants were also significantly lower in the patients showing similar severity of psychopathology.

  15. Amygdala-frontal connectivity predicts internalizing symptom recovery among inpatient adolescents.

    Science.gov (United States)

    Venta, Amanda; Sharp, Carla; Patriquin, Michelle; Salas, Ramiro; Newlin, Elizabeth; Curtis, Kaylah; Baldwin, Philip; Fowler, Christopher; Frueh, B Christopher

    2018-01-01

    The possibility of using biological measures to predict the trajectory of symptoms among adolescent psychiatric inpatients has important implications. This study aimed to examine emotion regulation ability (measured via self-report) and a hypothesized proxy in resting-state functional connectivity [RSFC] between the amygdala and frontal brain regions as baseline predictors of internalizing symptom recovery during inpatient care. 196 adolescents (61% female; Mage = 15.20; SD = 1.48) completed the Achenbach Brief Problem Monitor (BPM) each week during their inpatient care. RSFC (n = 45) and self-report data of emotion regulation (n = 196) were collected at baseline. The average internalizing symptom score at admission was high (α 0 = 66.52), exceeding the BPM's clinical cut off score of 65. On average, internalizing symptom scores declined significantly, by 0.40 points per week (p = 0.004). While self-reported emotion regulation was associated with admission levels of internalizing problems, it did not predict change in symptoms. RSFC between left amygdala and left superior frontal gyrus was significantly associated with the intercept-higher connectivity was associated with higher internalizing at admission-and the slope- higher connectivity was associated with a more positive slope (i.e., less decline in symptoms). RSFC between the right amygdala and the left superior frontal gyrus was significantly, positively correlated with the slope parameter. Results indicate the potential of biologically-based measures that can be developed further for personalized care in adolescent psychiatry. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Bilateral generic working memory circuit requires left-lateralized addition for verbal processing.

    Science.gov (United States)

    Ray, Manaan Kar; Mackay, Clare E; Harmer, Catherine J; Crow, Timothy J

    2008-06-01

    According to the Baddeley-Hitch model, phonological and visuospatial representations are separable components of working memory (WM) linked by a central executive. The traditional view that the separation reflects the relative contribution of the 2 hemispheres (verbal WM--left; spatial WM--right) has been challenged by the position that a common bilateral frontoparietal network subserves both domains. Here, we test the hypothesis that there is a generic WM circuit that recruits additional specialized regions for verbal and spatial processing. We designed a functional magnetic resonance imaging paradigm to elicit activation in the WM circuit for verbal and spatial information using identical stimuli and applied this in 33 healthy controls. We detected left-lateralized quantitative differences in the left frontal and temporal lobe for verbal > spatial WM but no areas of activation for spatial > verbal WM. We speculate that spatial WM is analogous to a "generic" bilateral frontoparietal WM circuit we inherited from our great ape ancestors that evolved, by recruitment of additional left-lateralized frontal and temporal regions, to accommodate language.

  17. Measuring the volume of frontal lobe in healthy Chinese adults of the Han nationality on the high-resolution MRI

    International Nuclear Information System (INIS)

    Yin Lu; Liu Peifang; Ye Zhaoxiang; Chen Nan; Wang Xing; Li Kuncheng; Zhuo Yan; Chen Lin

    2010-01-01

    Objective: To explore the normal range of the volume of frontal lobe in Chinese adults of the Han nationality and provide morphological data for the construction of database for Chinese Standard Brain. Methods: This is a clinical multi-center study. Two hundred Chinese healthy volunteers (age range =18 to 70) recruited from 16 hospitals were divided into 5 groups, i.e., age range from 18 to 30, age range from 31 to 40, age range from 41 to 50, age range from 51 to 60, and age range from 61 to 70. Each group contained 20 males and 20 females. All of the volunteers were scanned by MR using T 1 weighted three- dimensional magnetization prepared rapid acquisition gradient echo sequence. We used the manual method to trace the region of interest and measured the left and right frontal lobe volumes separately. All the data were analyzed with SPSS (version 13.0). The sex differences in the frontal lobe volumes were analyzed by independent-samples t test, and the side differences were analyzed by paired-samples t test. Correlation and regression analysis was used between the age and the frontal lobe volumes. Results: In 200 healthy Chinese Han volunteers, the total frontal lobe volumes was (563±73) cm 3 . For male, the volumes of the left and the right frontal lobe were (288±42) cm 3 and (292±41) cm 3 , respectively. The volumes of the left and right frontal lobe in 100 women were (273±30)cm 3 and (274±30) cm 3 respectively. The differences of sex (t=3.334, P 0.05). There were negative correlations between the frontal lobe volumes and age in men and women (r=-0.586, -0.498, P< 0.01). Conclusions: The total frontal lobe volume of men was larger than that of women. The volume of the right frontal lobe was larger than the left frontal lobe in men, and the asymmetries didn't exist in women. The total frontal lobe volumes were both shrinking with age in men and women, which was more rapid in men than in women. (authors)

  18. Atypical frontal-posterior synchronization of Theory of Mind regions in autism during mental state attribution.

    Science.gov (United States)

    Kana, Rajesh K; Keller, Timothy A; Cherkassky, Vladimir L; Minshew, Nancy J; Just, Marcel Adam

    2009-01-01

    This study used fMRI to investigate the functioning of the Theory of Mind (ToM) cortical network in autism during the viewing of animations that in some conditions entailed the attribution of a mental state to animated geometric figures. At the cortical level, mentalizing (attribution of metal states) is underpinned by the coordination and integration of the components of the ToM network, which include the medial frontal gyrus, the anterior paracingulate, and the right temporoparietal junction. The pivotal new finding was a functional underconnectivity (a lower degree of synchronization) in autism, especially in the connections between frontal and posterior areas during the attribution of mental states. In addition, the frontal ToM regions activated less in participants with autism relative to control participants. In the autism group, an independent psychometric assessment of ToM ability and the activation in the right temporoparietal junction were reliably correlated. The results together provide new evidence for the biological basis of atypical processing of ToM in autism, implicating the underconnectivity between frontal regions and more posterior areas.

  19. Osteossarcoma extra-esquelético primário da região frontal Extraskeletal primary osteosarcoma of the frontal region

    Directory of Open Access Journals (Sweden)

    M.A. Lima

    1998-03-01

    Full Text Available OBJETIVO: Osteossarcoma extra-esquelético (OSEE primário de partes moles da cabeça é raro e não há, ao que nos parece, relato dele originando na região frontal. MÉTODOS: Homem de 78 anos, italiano, com história de tumoração em partes moles de região frontal há um mês. Tomografia computadorizada mostrou massa de densidade irregular ocupando tecido celular subcutâneo e fáscia. Nenhum tumor ósseo foi encontrado. A tumoração foi completamente ressecada, media 0,8x0,6x0,5cm, e a superfície de corte era sólida. Diagnosticou-se osteossarcoma osteoblástico extra-esquelético. A neoplasia recorreu quatro meses após o diagnóstico e foi novamente ressecado. O paciente foi submetido também a radioterapia de baixa penetração, e nove meses depois da primeira biópsia tinha sintomas em decorrência da infiltração neoplásica na base do crânio. O óbito ocorreu dez meses após a primeira biópsia. CONCLUSÃO: Os autores descrevem o primeiro caso de OSEE da região frontal sem uma condição preexistente ou história de irradiação.BACKGROUND: Extraskeletal osteosarcoma (ESOS in the head as a primary site has seldom been re-ported and none in the frontal region. METHODS: A 78-year-old Italian man presented with one month history of a frontal soft tissue mass. A CT scan showed a mass of uneven density occupying the subcutaneous soft tissue and involving fascial planes. No primary bone tumor was found. The entire mass was excised. The mass was solid measuring 0.8 x 0.6 x 0.5cm. Extraskeletal osteoblastic osteosarcoma was diagnosed by ligh microscopy. The tumor recurred four months after the diagnosis. The tumor was again ressected. The patient was also submitted to low penetration radiation therapy. Nine months after the first biopsy the patient had symptoms due to infiltration to the base of the cranium. He died 10 months after the first biopsy. CONCLUSIONS: The first case with ESOS of the frontal region without a pre

  20. Frontal alpha asymmetry neurofeedback for the reduction of negative affect and anxiety.

    Science.gov (United States)

    Mennella, Rocco; Patron, Elisabetta; Palomba, Daniela

    2017-05-01

    Frontal alpha asymmetry has been proposed to underlie the balance between approach and withdrawal motivation associated to each individual's affective style. Neurofeedback of EEG frontal alpha asymmetry represents a promising tool to reduce negative affect, although its specific effects on left/right frontal activity and approach/withdrawal motivation are still unclear. The present study employed a neurofeedback training to increase frontal alpha asymmetry (right - left), in order to evaluate discrete changes in alpha power at left and right sites, as well as in positive and negative affect, anxiety and depression. Thirty-two right-handed females were randomly assigned to receive either the neurofeedback on frontal alpha asymmetry, or an active control training (N = 16 in each group). The asymmetry group showed an increase in alpha asymmetry driven by higher alpha at the right site (p neurofeedback for the reduction of negative affect and anxiety in clinical settings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Storage and executive processes in the frontal lobes.

    Science.gov (United States)

    Smith, E E; Jonides, J

    1999-03-12

    The human frontal cortex helps mediate working memory, a system that is used for temporary storage and manipulation of information and that is involved in many higher cognitive functions. Working memory includes two components: short-term storage (on the order of seconds) and executive processes that operate on the contents of storage. Recently, these two components have been investigated in functional neuroimaging studies. Studies of storage indicate that different frontal regions are activated for different kinds of information: storage for verbal materials activates Broca's area and left-hemisphere supplementary and premotor areas; storage of spatial information activates the right-hemisphere premotor cortex; and storage of object information activates other areas of the prefrontal cortex. Two of the fundamental executive processes are selective attention and task management. Both processes activate the anterior cingulate and dorsolateral prefrontal cortex.

  2. Subliminal and supraliminal processing of facial expression of emotions: brain oscillation in the left/right frontal area.

    Science.gov (United States)

    Balconi, Michela; Ferrari, Chiara

    2012-03-26

    The unconscious effects of an emotional stimulus have been highlighted by a vast amount of research, whereover it remains questionable whether it is possible to assign a specific function to cortical brain oscillations in the unconscious perception of facial expressions of emotions. Alpha band variation was monitored within the right- and left-cortical side when subjects consciously (supraliminal stimulation) or unconsciously (subliminal stimulation) processed facial patterns. Twenty subjects looked at six facial expressions of emotions (anger, fear, surprise, disgust, happiness, sadness, and neutral) under two different conditions: supraliminal (200 ms) vs. subliminal (30 ms) stimulation (140 target-mask pairs for each condition). The results showed that conscious/unconscious processing and the significance of the stimulus can modulate the alpha power. Moreover, it was found that there was an increased right frontal activity for negative emotions vs. an increased left response for positive emotion. The significance of facial expressions was adduced to elucidate cortical different responses to emotional types.

  3. Subliminal and Supraliminal Processing of Facial Expression of Emotions: Brain Oscillation in the Left/Right Frontal Area

    Directory of Open Access Journals (Sweden)

    Michela Balconi

    2012-03-01

    Full Text Available The unconscious effects of an emotional stimulus have been highlighted by a vast amount of research, whereover it remains questionable whether it is possible to assign a specific function to cortical brain oscillations in the unconscious perception of facial expressions of emotions. Alpha band variation was monitored within the right- and left-cortical side when subjects consciously (supraliminal stimulation or unconsciously (subliminal stimulation processed facial patterns. Twenty subjects looked at six facial expressions of emotions (anger, fear, surprise, disgust, happiness, sadness, and neutral under two different conditions: supraliminal (200 ms vs. subliminal (30 ms stimulation (140 target-mask pairs for each condition. The results showed that conscious/unconscious processing and the significance of the stimulus can modulate the alpha power. Moreover, it was found that there was an increased right frontal activity for negative emotions vs. an increased left response for positive emotion. The significance of facial expressions was adduced to elucidate cortical different responses to emotional types.

  4. Left-handedness and language lateralization in children.

    Science.gov (United States)

    Szaflarski, Jerzy P; Rajagopal, Akila; Altaye, Mekibib; Byars, Anna W; Jacola, Lisa; Schmithorst, Vincent J; Schapiro, Mark B; Plante, Elena; Holland, Scott K

    2012-01-18

    This fMRI study investigated the development of language lateralization in left- and righthanded children between 5 and 18 years of age. Twenty-seven left-handed children (17 boys, 10 girls) and 54 age- and gender-matched right-handed children were included. We used functional MRI at 3T and a verb generation task to measure hemispheric language dominance based on either frontal or temporo-parietal regions of interest (ROIs) defined for the entire group and applied on an individual basis. Based on the frontal ROI, in the left-handed group, 23 participants (85%) demonstrated left-hemispheric language lateralization, 3 (11%) demonstrated symmetric activation, and 1 (4%) demonstrated right-hemispheric lateralization. In contrast, 50 (93%) of the right-handed children showed left-hemispheric lateralization and 3 (6%) demonstrated a symmetric activation pattern, while one (2%) demonstrated a right-hemispheric lateralization. The corresponding values for the temporo-parietal ROI for the left-handed children were 18 (67%) left-dominant, 6 (22%) symmetric, 3 (11%) right-dominant and for the right-handed children 49 (91%), 4 (7%), 1 (2%), respectively. Left-hemispheric language lateralization increased with age in both groups but somewhat different lateralization trajectories were observed in girls when compared to boys. The incidence of atypical language lateralization in left-handed children in this study was similar to that reported in adults. We also found similar rates of increase in left-hemispheric language lateralization with age between groups (i.e., independent of handedness) indicating the presence of similar mechanisms for language lateralization in left- and right-handed children. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Dopamine D4 Receptor Gene Associated with the Frontal-Striatal-Cerebellar Loop in Children with ADHD: A Resting-State fMRI Study.

    Science.gov (United States)

    Qian, Andan; Wang, Xin; Liu, Huiru; Tao, Jiejie; Zhou, Jiejie; Ye, Qiong; Li, Jiance; Yang, Chuang; Cheng, Jingliang; Zhao, Ke; Wang, Meihao

    2018-03-21

    Attention deficit hyperactivity disorder (ADHD) is a common childhood neuropsychiatric disorder that has been linked to the dopaminergic system. This study aimed to investigate the effects of regulation of the dopamine D4 receptor (DRD4) on functional brain activity during the resting state in ADHD children using the methods of regional homogeneity (ReHo) and functional connectivity (FC). Resting-state functional magnetic resonance imaging data were analyzed in 49 children with ADHD. All participants were classified as either carriers of the DRD4 4-repeat/4-repeat (4R/4R) allele (n = 30) or the DRD4 2-repeat (2R) allele (n = 19). The results showed that participants with the DRD4 2R allele had decreased ReHo bilaterally in the posterior lobes of the cerebellum, while ReHo was increased in the left angular gyrus. Compared with participants carrying the DRD4 4R/4R allele, those with the DRD4 2R allele showed decreased FC to the left angular gyrus in the left striatum, right inferior frontal gyrus, and bilateral lobes of the cerebellum. The increased FC regions included the left superior frontal gyrus, medial frontal gyrus, and rectus gyrus. These data suggest that the DRD4 polymorphisms are associated with localized brain activity and specific functional connections, including abnormality in the frontal-striatal-cerebellar loop. Our study not only enhances the understanding of the correlation between the cerebellar lobes and ADHD, but also provides an imaging basis for explaining the neural mechanisms underlying ADHD in children.

  6. The frontal-anatomic specificity of design fluency repetitions and their diagnostic relevance for behavioral variant frontotemporal dementia.

    Science.gov (United States)

    Possin, Katherine L; Chester, Serana K; Laluz, Victor; Bostrom, Alan; Rosen, Howard J; Miller, Bruce L; Kramer, Joel H

    2012-09-01

    On tests of design fluency, an examinee draws as many different designs as possible in a specified time limit while avoiding repetition. The neuroanatomical substrates and diagnostic group differences of design fluency repetition errors and total correct scores were examined in 110 individuals diagnosed with dementia, 53 with mild cognitive impairment (MCI), and 37 neurologically healthy controls. The errors correlated significantly with volumes in the right and left orbitofrontal cortex (OFC), the right and left superior frontal gyrus, the right inferior frontal gyrus, and the right striatum, but did not correlate with volumes in any parietal or temporal lobe regions. Regression analyses indicated that the lateral OFC may be particularly crucial for preventing these errors, even after excluding patients with behavioral variant frontotemporal dementia (bvFTD) from the analysis. Total correct correlated more diffusely with volumes in the right and left frontal and parietal cortex, the right temporal cortex, and the right striatum and thalamus. Patients diagnosed with bvFTD made significantly more repetition errors than patients diagnosed with MCI, Alzheimer's disease, semantic dementia, progressive supranuclear palsy, or corticobasal syndrome. In contrast, total correct design scores did not differentiate the dementia patients. These results highlight the frontal-anatomic specificity of design fluency repetitions. In addition, the results indicate that the propensity to make these errors supports the diagnosis of bvFTD. (JINS, 2012, 18, 1-11).

  7. Left insular cortex and left SFG underlie prismatic adaptation effects on time perception: evidence from fMRI.

    Science.gov (United States)

    Magnani, Barbara; Frassinetti, Francesca; Ditye, Thomas; Oliveri, Massimiliano; Costantini, Marcello; Walsh, Vincent

    2014-05-15

    Prismatic adaptation (PA) has been shown to affect left-to-right spatial representations of temporal durations. A leftward aftereffect usually distorts time representation toward an underestimation, while rightward aftereffect usually results in an overestimation of temporal durations. Here, we used functional magnetic resonance imaging (fMRI) to study the neural mechanisms that underlie PA effects on time perception. Additionally, we investigated whether the effect of PA on time is transient or stable and, in the case of stability, which cortical areas are responsible of its maintenance. Functional brain images were acquired while participants (n=17) performed a time reproduction task and a control-task before, immediately after and 30 min after PA inducing a leftward aftereffect, administered outside the scanner. The leftward aftereffect induced an underestimation of time intervals that lasted for at least 30 min. The left anterior insula and the left superior frontal gyrus showed increased functional activation immediately after versus before PA in the time versus the control-task, suggesting these brain areas to be involved in the executive spatial manipulation of the representation of time. The left middle frontal gyrus showed an increase of activation after 30 min with respect to before PA. This suggests that this brain region may play a key role in the maintenance of the PA effect over time. Copyright © 2014. Published by Elsevier Inc.

  8. Dysregulated left inferior parietal activity in schizophrenia and depression: functional connectivity and characterization

    Directory of Open Access Journals (Sweden)

    Veronika I. Müller

    2013-06-01

    Full Text Available The inferior parietal cortex (IPC is a heterogeneous region that is known to be involved in a multitude of diverse different tasks and processes, though its contribution to these often-complex functions is yet poorly understood. In a previous study we demonstrated that patients with depression failed to deactivate the left IPC during processing of congruent audiovisual information. We now found the same dysregulation (same region and condition in schizophrenia. By using task-independent (resting state and task-dependent (MACM analyses we aimed at characterizing this particular region with regard to its connectivity and function. Across both approaches, results revealed functional connectivity of the left inferior parietal seed region with bilateral IPC, precuneus and posterior cingulate cortex (PrC/PCC, medial orbitofrontal cortex (mOFC, left middle frontal (MFG as well as inferior frontal (IFG gyrus. Network-level functional characterization further revealed that on the one hand, all interconnected regions are part of a network involved in memory processes. On the other hand, sub-networks are formed when emotion, language, social cognition and reasoning processes are required. Thus, the IPC-region that is dysregulated in both depression and schizophrenia is functionally connected to a network of regions which, depending on task demands may form sub-networks. These results therefore indicate that dysregulation of left IPC in depression and schizophrenia might not only be connected to deficits in audiovisual integration, but is possibly also associated to impaired memory and deficits in emotion processing in these patient groups.

  9. Representation of cognitive reappraisal goals in frontal gamma oscillations.

    Science.gov (United States)

    Kang, Jae-Hwan; Jeong, Ji Woon; Kim, Hyun Taek; Kim, Sang Hee; Kim, Sung-Phil

    2014-01-01

    Recently, numerous efforts have been made to understand the neural mechanisms underlying cognitive regulation of emotion, such as cognitive reappraisal. Many studies have reported that cognitive control of emotion induces increases in neural activity of the control system, including the prefrontal cortex and the dorsal anterior cingulate cortex, and increases or decreases (depending upon the regulation goal) in neural activity of the appraisal system, including the amygdala and the insula. It has been hypothesized that information about regulation goals needs to be processed through interactions between the control and appraisal systems in order to support cognitive reappraisal. However, how this information is represented in the dynamics of cortical activity remains largely unknown. To address this, we investigated temporal changes in gamma band activity (35-55 Hz) in human electroencephalograms during a cognitive reappraisal task that was comprised of three reappraisal goals: to decease, maintain, or increase emotional responses modulated by affect-laden pictures. We examined how the characteristics of gamma oscillations, such as spectral power and large-scale phase synchronization, represented cognitive reappraisal goals. We found that left frontal gamma power decreased, was sustained, or increased when the participants suppressed, maintained, or amplified their emotions, respectively. This change in left frontal gamma power appeared during an interval of 1926 to 2453 ms after stimulus onset. We also found that the number of phase-synchronized pairs of gamma oscillations over the entire brain increased when participants regulated their emotions compared to when they maintained their emotions. These results suggest that left frontal gamma power may reflect cortical representation of emotional states modulated by cognitive reappraisal goals and gamma phase synchronization across whole brain regions may reflect emotional regulatory efforts to achieve these goals

  10. Frontal subregions mediating Elevator Counting task performance.

    Science.gov (United States)

    MacPherson, Sarah E; Turner, Martha S; Bozzali, Marco; Cipolotti, Lisa; Shallice, Tim

    2010-10-01

    Deficits in sustained attention may lead to action slips in everyday life as irrelevant action sequences are inappropriately triggered internally or by the environment. While deficits in sustained attention have been associated with damage to the frontal lobes of the brain, little is known about the role of the frontal lobes in the Elevator Counting subtest of the Test of Everyday Attention. In the current study, 55 frontal patients subdivided into medial, orbital and lateral subgroups, 18 patients with posterior lesions and 82 healthy controls performed the Elevator Counting task. The results revealed that patients with medial and left lateral prefrontal lesions were significantly impaired on the task compared to healthy controls. Research suggests that patients with medial lesions are susceptible to competition from task irrelevant schema; whereas the left lateral group in the current study may fail to keep track of the tones already presented. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Inferior frontal gyrus activation predicts individual differences in perceptual learning of cochlear-implant simulations.

    Science.gov (United States)

    Eisner, Frank; McGettigan, Carolyn; Faulkner, Andrew; Rosen, Stuart; Scott, Sophie K

    2010-05-26

    This study investigated the neural plasticity associated with perceptual learning of a cochlear implant (CI) simulation. Normal-hearing listeners were trained with vocoded and spectrally shifted speech simulating a CI while cortical responses were measured with functional magnetic resonance imaging (fMRI). A condition in which the vocoded speech was spectrally inverted provided a control for learnability and adaptation. Behavioral measures showed considerable individual variability both in the ability to learn to understand the degraded speech, and in phonological working memory capacity. Neurally, left-lateralized regions in superior temporal sulcus and inferior frontal gyrus (IFG) were sensitive to the learnability of the simulations, but only the activity in prefrontal cortex correlated with interindividual variation in intelligibility scores and phonological working memory. A region in left angular gyrus (AG) showed an activation pattern that reflected learning over the course of the experiment, and covariation of activity in AG and IFG was modulated by the learnability of the stimuli. These results suggest that variation in listeners' ability to adjust to vocoded and spectrally shifted speech is partly reflected in differences in the recruitment of higher-level language processes in prefrontal cortex, and that this variability may further depend on functional links between the left inferior frontal gyrus and angular gyrus. Differences in the engagement of left inferior prefrontal cortex, and its covariation with posterior parietal areas, may thus underlie some of the variation in speech perception skills that have been observed in clinical populations of CI users.

  12. SPM analysis of brain perfusion SPECT and F-18 FDG PET in the Korean autosomal dominant nocturnal frontal lobe epilepsy family

    International Nuclear Information System (INIS)

    Won, Kyoung Sook; Zeon, Seok Kil

    2004-01-01

    This study attempted to investigate the specific pattern of brain perfusion and glucose metabolism in the Korean autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) family. Using Tc-99m ECD brain perfusion SPECT. we assessed brain perfusion in 6 patients at interictal period and 5 patients at ictal period. Interictal F-18 FDG PET was performed on 6 affected family members. The scans were statistically analyzed by using statistical parametric mapping (SPM99). The data of the affected family members were compared to those of the control subjects. Interictal F-18 FDG PET SPM group analysis showed decreased glucose metabolism over the left middle and superior frontal gyri and the left central regions including the anterior parietal lobe. There was a less pronounced decrease in glucose uptake in the right anterior superior frontal gyrus. Interictal brain perfusion SPECT SPM group analysis showed similar pattern of decreased perfusion compared to those of interictal F-18 FDG PET. Ictal brain perfusion SPECT SPM group analysis revealed increased perfusion over the left pre-and postcentral gyri and less pronounced increased perfusion in the right postcentral gyrus. lnterictal F -18 PET and brain perfusion SPECT SPM group analysis suggest that major abnormalities of ADNFLE family are in the left frontal lobe. These findings may be helpful to elucidate the pathophysiological mechanism of this rare disease entity

  13. SPM analysis of brain perfusion SPECT and F-18 FDG PET in the Korean autosomal dominant nocturnal frontal lobe epilepsy family

    Energy Technology Data Exchange (ETDEWEB)

    Won, Kyoung Sook; Zeon, Seok Kil [Keimyung University Dongsan Medical Center, Daegu (Korea, Republic of)

    2004-07-01

    This study attempted to investigate the specific pattern of brain perfusion and glucose metabolism in the Korean autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) family. Using Tc-99m ECD brain perfusion SPECT. we assessed brain perfusion in 6 patients at interictal period and 5 patients at ictal period. Interictal F-18 FDG PET was performed on 6 affected family members. The scans were statistically analyzed by using statistical parametric mapping (SPM99). The data of the affected family members were compared to those of the control subjects. Interictal F-18 FDG PET SPM group analysis showed decreased glucose metabolism over the left middle and superior frontal gyri and the left central regions including the anterior parietal lobe. There was a less pronounced decrease in glucose uptake in the right anterior superior frontal gyrus. Interictal brain perfusion SPECT SPM group analysis showed similar pattern of decreased perfusion compared to those of interictal F-18 FDG PET. Ictal brain perfusion SPECT SPM group analysis revealed increased perfusion over the left pre-and postcentral gyri and less pronounced increased perfusion in the right postcentral gyrus. lnterictal F -18 PET and brain perfusion SPECT SPM group analysis suggest that major abnormalities of ADNFLE family are in the left frontal lobe. These findings may be helpful to elucidate the pathophysiological mechanism of this rare disease entity.

  14. Effects of Level of Retrieval Success on Recall-Related Frontal and Medial Temporal Lobe Activations

    Directory of Open Access Journals (Sweden)

    Daniela Montaldi

    2002-01-01

    Full Text Available Brain dedicated single photon emission computed tomography (SPECT was used to compare the neuroactivation produced by the cued recall of response words in a set of studied word pairs with that produced by the cued retrieval of words semantically related to unstudied stimulus words. Six of the 12 subjects scanned were extensively trained so as to have good memory of the studied pairs and the remaining six were minimally trained so as to have poor memory. When comparing episodic with semantic retrieval, the well-trained subjects showed significant left medial temporal lobe activation, which was also significantly greater than that shown by the poorly trained subjects, who failed to show significant medial temporal lobe activation. In contrast, the poorly trained subjects showed significant bilateral frontal lobe activation, which was significantly greater than that shown by the well-trained subjects who failed to show significant frontal lobe activation. The frontal activations occurred mainly in the dorsolateral region, but extended into the ventrolateral and, to a lesser extent, the frontal polar regions. It is argued that whereas the medial temporal lobe activation increased as the proportion of response words successfully recalled increased, the bilateral frontal lobe activation increased in proportion to retrieval effort, which was greater when learning had been less good.

  15. Transcranial Magnetic Stimulation over Left Inferior Frontal and Posterior Temporal Cortex Disrupts Gesture-Speech Integration.

    Science.gov (United States)

    Zhao, Wanying; Riggs, Kevin; Schindler, Igor; Holle, Henning

    2018-02-21

    Language and action naturally occur together in the form of cospeech gestures, and there is now convincing evidence that listeners display a strong tendency to integrate semantic information from both domains during comprehension. A contentious question, however, has been which brain areas are causally involved in this integration process. In previous neuroimaging studies, left inferior frontal gyrus (IFG) and posterior middle temporal gyrus (pMTG) have emerged as candidate areas; however, it is currently not clear whether these areas are causally or merely epiphenomenally involved in gesture-speech integration. In the present series of experiments, we directly tested for a potential critical role of IFG and pMTG by observing the effect of disrupting activity in these areas using transcranial magnetic stimulation in a mixed gender sample of healthy human volunteers. The outcome measure was performance on a Stroop-like gesture task (Kelly et al., 2010a), which provides a behavioral index of gesture-speech integration. Our results provide clear evidence that disrupting activity in IFG and pMTG selectively impairs gesture-speech integration, suggesting that both areas are causally involved in the process. These findings are consistent with the idea that these areas play a joint role in gesture-speech integration, with IFG regulating strategic semantic access via top-down signals acting upon temporal storage areas. SIGNIFICANCE STATEMENT Previous neuroimaging studies suggest an involvement of inferior frontal gyrus and posterior middle temporal gyrus in gesture-speech integration, but findings have been mixed and due to methodological constraints did not allow inferences of causality. By adopting a virtual lesion approach involving transcranial magnetic stimulation, the present study provides clear evidence that both areas are causally involved in combining semantic information arising from gesture and speech. These findings support the view that, rather than being

  16. Changes of functional connectivity in the left frontoparietal network following aphasic stroke

    Directory of Open Access Journals (Sweden)

    Dan eZhu

    2014-05-01

    Full Text Available Language is an essential higher cognitive function supported by large-scale brain networks. In this study, we investigated functional connectivity changes in the left frontoparietal network (LFPN, a language-cognition related brain network in aphasic patients. We enrolled thirteen aphasic patients who had undergone a stroke in the left hemisphere and age-, gender-, educational level-matched controls and analyzed the data by integrating independent component analysis (ICA with a network connectivity analysis method. Resting state functional magnetic resonance imaging (fMRI and clinical evaluation of language function were assessed at two stages: one and two months after stroke onset. We found reduced functional connectivity between the LFPN and the right middle frontal cortex, medial frontal cortex and right inferior frontal cortex in aphasic patients as compared to controls. Correlation analysis showed that stronger functional connectivity between the LFPN and the right middle frontal cortex and medial frontal cortex coincided with more preserved language comprehension ability after stroke. Network connectivity analysis showed reduced LFPN connectivity as indicated by the mean network connectivity index of key regions in the LFPN of aphasic patients. The decreased LFPN connectivity in stroke patients was significantly associated with the impairment of language function in their comprehension ability. We also found significant association between recovery of comprehension ability and the mean changes in intrinsic LFPN connectivity. Our findings suggest that brain lesions may influence language comprehension by altering functional connectivity between regions and that the patterns of abnormal functional connectivity may contribute to the recovery of language deficits.

  17. Alterations of Regional Cerebral Blood Flow in Major Depressive Disorder

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Hyoung; Chung, Yong An; Seo, Ye Young; Yoo, Ik Dong; Na, Sae Jung; Jung, Hyun Suk; Kim, Ki Jun [College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2009-04-15

    The authors analyzed how the regional cerebral blood flow (rCBF) findings of patients with major depression differ from the normal control, and our results were compared to previous reports. Twelve patients fulfilling DSM-IV criteria for major depression who were off all psychotropic medications for > 4 weeks (male: 7, female: 5, age range: 19approx52 years, average age: 29.3+-9.9 years) and 14 normal volunteers (male: 8, female: 6, age range: 19approx53 years, average age: 31.4+-9.2 years) were recruited. Images of brain perfusion SPECT were obtained using Tc-99m ECD and patterns of the rCBF were compared between patients with major depression and the healthy control subjects. The patients with major depression showed increase of the r-CBF in right lingual gyrus, right fusiform gyrus, left lingual gyrus, left precuneus, and left superior temporal gyrus, and showed decrease of r-CBF in right pons, left medial frontal gyrus, cingulate gyrus of left limbic lobe, cingulate gyrus of right frontal lobe, and cingulate gyrus of right limbic lobe compared to the normal control. The Tc-99m ECD brain perfusion SPECT findings in our study did not differ from the previously reported regional cerebral blood flow pattern of patients with major depression. Especially, decreased rCBF pattern typical to major depression patients in the right pons, left medial frontal gyrus, and cingulate regions was clearly demonstrated

  18. Alterations of Regional Cerebral Blood Flow in Major Depressive Disorder

    International Nuclear Information System (INIS)

    Lee, Won Hyoung; Chung, Yong An; Seo, Ye Young; Yoo, Ik Dong; Na, Sae Jung; Jung, Hyun Suk; Kim, Ki Jun

    2009-01-01

    The authors analyzed how the regional cerebral blood flow (rCBF) findings of patients with major depression differ from the normal control, and our results were compared to previous reports. Twelve patients fulfilling DSM-IV criteria for major depression who were off all psychotropic medications for > 4 weeks (male: 7, female: 5, age range: 19∼52 years, average age: 29.3±9.9 years) and 14 normal volunteers (male: 8, female: 6, age range: 19∼53 years, average age: 31.4±9.2 years) were recruited. Images of brain perfusion SPECT were obtained using Tc-99m ECD and patterns of the rCBF were compared between patients with major depression and the healthy control subjects. The patients with major depression showed increase of the r-CBF in right lingual gyrus, right fusiform gyrus, left lingual gyrus, left precuneus, and left superior temporal gyrus, and showed decrease of r-CBF in right pons, left medial frontal gyrus, cingulate gyrus of left limbic lobe, cingulate gyrus of right frontal lobe, and cingulate gyrus of right limbic lobe compared to the normal control. The Tc-99m ECD brain perfusion SPECT findings in our study did not differ from the previously reported regional cerebral blood flow pattern of patients with major depression. Especially, decreased rCBF pattern typical to major depression patients in the right pons, left medial frontal gyrus, and cingulate regions was clearly demonstrated

  19. Distinct frontal regions for processing sentence syntax and story grammar.

    Science.gov (United States)

    Sirigu, A; Cohen, L; Zalla, T; Pradat-Diehl, P; Van Eeckhout, P; Grafman, J; Agid, Y

    1998-12-01

    Time is a fundamental dimension of cognition. It is expressed in the sequential ordering of individual elements in a wide variety of activities such as language, motor control or in the broader domain of long range goal-directed actions. Several studies have shown the importance of the frontal lobes in sequencing information. The question addressed in this study is whether this brain region hosts a single supramodal sequence processor, or whether separate mechanisms are required for different kinds of temporally organised knowledge structures such as syntax and action knowledge. Here we show that so-called agrammatic patients, with lesions in Broca's area, ordered word groups correctly to form a logical sequence of actions but they were severely impaired when similar word groups had to be ordered as a syntactically well-formed sentence. The opposite performance was observed in patients with dorsolateral prefrontal lesions, that is, while their syntactic processing was intact at the sentence level, they demonstrated a pronounced deficit in producing temporally coherent sequences of actions. Anatomical reconstruction of lesions from brain scans revealed that the sentence and action grammar deficits involved distinct, non-overlapping sites within the frontal lobes. Finally, in a third group of patients whose lesions encompassed both Broca's area and the prefrontal cortex, the two types of deficits were found. We conclude that sequence processing is specific to knowledge domains and involves different networks within the frontal lobes.

  20. Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions.

    Science.gov (United States)

    Morgan, Helen M; Jackson, Margaret C; van Koningsbruggen, Martijn G; Shapiro, Kimron L; Linden, David E J

    2013-03-01

    In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome

    Science.gov (United States)

    Mizuno, Kei; Tanaka, Masaaki; Tanabe, Hiroki C.; Joudoi, Takako; Kawatani, Junko; Shigihara, Yoshihito; Tomoda, Akemi; Miike, Teruhisa; Imai-Matsumura, Kyoko; Sadato, Norihiro; Watanabe, Yasuyoshi

    2015-01-01

    The ability to divide one's attention deteriorates in patients with childhood chronic fatigue syndrome (CCFS). We conducted a study using a dual verbal task to assess allocation of attentional resources to two simultaneous activities (picking out vowels and reading for story comprehension) and functional magnetic resonance imaging. Patients exhibited a much larger area of activation, recruiting additional frontal areas. The right middle frontal gyrus (MFG), which is included in the dorsolateral prefrontal cortex, of CCFS patients was specifically activated in both the single and dual tasks; this activation level was positively correlated with motivation scores for the tasks and accuracy of story comprehension. In addition, in patients, the dorsal anterior cingulate gyrus (dACC) and left MFG were activated only in the dual task, and activation levels of the dACC and left MFG were positively associated with the motivation and fatigue scores, respectively. Patients with CCFS exhibited a wider area of activated frontal regions related to attentional resources in order to increase their poorer task performance with massive mental effort. This is likely to be less efficient and costly in terms of energy requirements. It seems to be related to the pathophysiology of patients with CCFS and to cause a vicious cycle of further increases in fatigue. PMID:26594619

  2. Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome.

    Science.gov (United States)

    Mizuno, Kei; Tanaka, Masaaki; Tanabe, Hiroki C; Joudoi, Takako; Kawatani, Junko; Shigihara, Yoshihito; Tomoda, Akemi; Miike, Teruhisa; Imai-Matsumura, Kyoko; Sadato, Norihiro; Watanabe, Yasuyoshi

    2015-01-01

    The ability to divide one's attention deteriorates in patients with childhood chronic fatigue syndrome (CCFS). We conducted a study using a dual verbal task to assess allocation of attentional resources to two simultaneous activities (picking out vowels and reading for story comprehension) and functional magnetic resonance imaging. Patients exhibited a much larger area of activation, recruiting additional frontal areas. The right middle frontal gyrus (MFG), which is included in the dorsolateral prefrontal cortex, of CCFS patients was specifically activated in both the single and dual tasks; this activation level was positively correlated with motivation scores for the tasks and accuracy of story comprehension. In addition, in patients, the dorsal anterior cingulate gyrus (dACC) and left MFG were activated only in the dual task, and activation levels of the dACC and left MFG were positively associated with the motivation and fatigue scores, respectively. Patients with CCFS exhibited a wider area of activated frontal regions related to attentional resources in order to increase their poorer task performance with massive mental effort. This is likely to be less efficient and costly in terms of energy requirements. It seems to be related to the pathophysiology of patients with CCFS and to cause a vicious cycle of further increases in fatigue.

  3. Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Kei Mizuno

    2015-01-01

    Full Text Available The ability to divide one's attention deteriorates in patients with childhood chronic fatigue syndrome (CCFS. We conducted a study using a dual verbal task to assess allocation of attentional resources to two simultaneous activities (picking out vowels and reading for story comprehension and functional magnetic resonance imaging. Patients exhibited a much larger area of activation, recruiting additional frontal areas. The right middle frontal gyrus (MFG, which is included in the dorsolateral prefrontal cortex, of CCFS patients was specifically activated in both the single and dual tasks; this activation level was positively correlated with motivation scores for the tasks and accuracy of story comprehension. In addition, in patients, the dorsal anterior cingulate gyrus (dACC and left MFG were activated only in the dual task, and activation levels of the dACC and left MFG were positively associated with the motivation and fatigue scores, respectively. Patients with CCFS exhibited a wider area of activated frontal regions related to attentional resources in order to increase their poorer task performance with massive mental effort. This is likely to be less efficient and costly in terms of energy requirements. It seems to be related to the pathophysiology of patients with CCFS and to cause a vicious cycle of further increases in fatigue.

  4. Regional cerebral blood flow changes associated with transcranial magnetic stimulation in refractory depressed patients

    International Nuclear Information System (INIS)

    Kim, C. H.; Chung, Y. A.; Chae, J. H.; Oh, J. H.; Kim, S. H.; Sohn, H. S.; Chung, S. K.

    2005-01-01

    Imaging studies by repetitive transcranial magnetic stimulation (rTMS) demonstrates biological activities of the brain. The aim of this study was to investigate the patterns of regional cerebral blood flow (rCBF) after a series of therapeutic rTMS sessions. Nine patients with refractory depression who had not been responsive to appropriate pharmacotherapy over 1 year were randomly assigned to daily 1 Hz right-sided rTMS or 20 Hz left-sided rTMS sessions for over 3 weeks. Baseline and 3-week post-rTMS treatment SPECT images were obtained 40 minutes after intravenous injection of approximately 740925 MBq of Tc-99m ECD using a multi-detector scanner (ECAM plus; Siemens, Erlangen, Germany) equipped with a low-energy, fan-beam collimator. All patients showed a good clinical outcome. Statistically significant common increase in rCBF patterns was found in the fusiform gyrus of left temporal lobe, left hippocampus, left superior parietal lobule, superior frontal gyrus of right frontal lobe, right lateral globus pallidus and cingulated gyrus of both limbic lobes. And in the fusiform gyrus of left occipital lobe and middle frontal gyrus of right frontal lobe decreased uptake was seen compared to controls. Low-frequency rTMS on the right prefrontal cortex and high-frequency rTMS on the left prefrontal cortex for 3 weeks as an add-on regimen have increased activity in specific brain regions in patients with treatment refractory depression. Therapeutic TMS seems to influence distinct cortical regions, as well as different pathways, affecting rCBF in a homogeneous manner that is probably region dependent and illness related

  5. Regional cerebral blood flow changes associated with transcranial magnetic stimulation in refractory depressed patients

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. H.; Chung, Y. A.; Chae, J. H.; Oh, J. H.; Kim, S. H.; Sohn, H. S.; Chung, S. K. [The Catholic University of Korea, Seoul (Korea, Republic of)

    2005-07-01

    Imaging studies by repetitive transcranial magnetic stimulation (rTMS) demonstrates biological activities of the brain. The aim of this study was to investigate the patterns of regional cerebral blood flow (rCBF) after a series of therapeutic rTMS sessions. Nine patients with refractory depression who had not been responsive to appropriate pharmacotherapy over 1 year were randomly assigned to daily 1 Hz right-sided rTMS or 20 Hz left-sided rTMS sessions for over 3 weeks. Baseline and 3-week post-rTMS treatment SPECT images were obtained 40 minutes after intravenous injection of approximately 740925 MBq of Tc-99m ECD using a multi-detector scanner (ECAM plus; Siemens, Erlangen, Germany) equipped with a low-energy, fan-beam collimator. All patients showed a good clinical outcome. Statistically significant common increase in rCBF patterns was found in the fusiform gyrus of left temporal lobe, left hippocampus, left superior parietal lobule, superior frontal gyrus of right frontal lobe, right lateral globus pallidus and cingulated gyrus of both limbic lobes. And in the fusiform gyrus of left occipital lobe and middle frontal gyrus of right frontal lobe decreased uptake was seen compared to controls. Low-frequency rTMS on the right prefrontal cortex and high-frequency rTMS on the left prefrontal cortex for 3 weeks as an add-on regimen have increased activity in specific brain regions in patients with treatment refractory depression. Therapeutic TMS seems to influence distinct cortical regions, as well as different pathways, affecting rCBF in a homogeneous manner that is probably region dependent and illness related.

  6. [Trauma induced left maxillary sinus dislocation of eyeball--a case report].

    Science.gov (United States)

    Chen, Yu; Liu, Cuiping; Cui, Liping

    2013-01-01

    Patient male, 27 year old. Left facial and head trauma for 6 hours, due to motor vehicle accident. Patient state of mind was clear at arrival to hospital. Body temperature: 36C; Pulse: 80 Time/Minute; Breath: 20 Time/Minute; Blood pressure: 120/80 mm Hg. An irregular, horizontal laceration at arch of left eyebrow, approximately 8-10 cm. A laceration on left wing of nose skin, approximately 1 cm. A laceration also under lower eyelid skin of right eye, approximately 2 cm. Left blepharedema and enophthalmos. Orbital and nasal sinuses CT indications:contusion and laceration of the left frontal lobe of brain; fracture of the left orbital frontal, ethmoid, sphenoid bone, left nasal, maxillary sinus and zygoma with soft tissue contusion and laceration; the left eyeball and optic nerve sunk into the maxillary sinus (See figure 1). (1) Multiple orbital fractures; (2) Left maxillary sinus dislocation of eyeball; (3) The left frontal lobe contusion and laceration of brain.

  7. Regional cerebral blood flow changes and neuropsychological functioning in early and late onset alcoholism

    International Nuclear Information System (INIS)

    Demir, B.; Ulug, B.; Ergun, E.; Erbas, B.

    2002-01-01

    Aim: Chronic alcoholism is strongly associated with morphologic and functional abnormalities in the brain. The age-of-onset of alcoholism symptoms might be of discriminating value and can be used to subdivide the population into more homogeneous groups. The aim of the study was to compare late and early onset alcoholism with regard to regional cerebral blood flow (rCBF) and neuropsychological functioning. Methods: Ten late onset (Type I) and thirteen early onset (Type II) male alcoholics were included in the study, the criterion being the age of onset for alcohol abuse. Six healthy, age-matched, male volunteers were included as a control group. rCBF changes were assessed using Tc-99m-HMPAO/SPECT after a detoxification period. Transaxial slices were assessed visually and semi quantitatively. Regional mean counts were divided to the mean counts of cerebellar and occipital regions to obtain semiquantitative ratios for superior frontal, middle frontal, inferior frontal, temporal and parietal lobes for the left and right hemispheres. The neuropsychological battery consisted of the Wisconsin Card Sorting Test, the Wechsler Memory Scale and the Word Fluency Test. Results: Type I and II groups had significantly asymmetric blood flow in the frontal region compared to control group (Left frontal percentage; Type I%46.8±2, Type II=48.3±2.3, Control=50.8±3, p=0.008). The semiquantitative ratios for the frontal subregions were lower for the patients compared to those of control group, however, statistically significant difference was observed only for the ratio of superior frontal region to occipital region in type I patients, for both left and right. The difference between the two subgroups was not statistically significant. Both groups of alcoholic patients also displayed impairment in frontal lobe functions and non-verbal memory. No significant difference was detected between the alcoholic subgroups on neuropsychological measures. There was no significant correlation

  8. Occipital cortex of blind individuals is functionally coupled with executive control areas of frontal cortex.

    Science.gov (United States)

    Deen, Ben; Saxe, Rebecca; Bedny, Marina

    2015-08-01

    In congenital blindness, the occipital cortex responds to a range of nonvisual inputs, including tactile, auditory, and linguistic stimuli. Are these changes in functional responses to stimuli accompanied by altered interactions with nonvisual functional networks? To answer this question, we introduce a data-driven method that searches across cortex for functional connectivity differences across groups. Replicating prior work, we find increased fronto-occipital functional connectivity in congenitally blind relative to blindfolded sighted participants. We demonstrate that this heightened connectivity extends over most of occipital cortex but is specific to a subset of regions in the inferior, dorsal, and medial frontal lobe. To assess the functional profile of these frontal areas, we used an n-back working memory task and a sentence comprehension task. We find that, among prefrontal areas with overconnectivity to occipital cortex, one left inferior frontal region responds to language over music. By contrast, the majority of these regions responded to working memory load but not language. These results suggest that in blindness occipital cortex interacts more with working memory systems and raise new questions about the function and mechanism of occipital plasticity.

  9. Structural connectivity of right frontal hyperactive areas scales with stuttering severity

    Science.gov (United States)

    Neef, Nicole E; Bütfering, Christoph; Schmidt-Samoa, Carsten; Friederici, Angela D; Paulus, Walter; Sommer, Martin

    2018-01-01

    Abstract A neuronal sign of persistent developmental stuttering is the magnified coactivation of right frontal brain regions during speech production. Whether and how stuttering severity relates to the connection strength of these hyperactive right frontal areas to other brain areas is an open question. Scrutinizing such brain–behaviour and structure–function relationships aims at disentangling suspected underlying neuronal mechanisms of stuttering. Here, we acquired diffusion-weighted and functional images from 31 adults who stutter and 34 matched control participants. Using a newly developed structural connectivity measure, we calculated voxel-wise correlations between connection strength and stuttering severity within tract volumes that originated from functionally hyperactive right frontal regions. Correlation analyses revealed that with increasing speech motor deficits the connection strength increased in the right frontal aslant tract, the right anterior thalamic radiation, and in U-shaped projections underneath the right precentral sulcus. In contrast, with decreasing speech motor deficits connection strength increased in the right uncinate fasciculus. Additional group comparisons of whole-brain white matter skeletons replicated the previously reported reduction of fractional anisotropy in the left and right superior longitudinal fasciculus as well as at the junction of right frontal aslant tract and right superior longitudinal fasciculus in adults who stutter compared to control participants. Overall, our investigation suggests that right fronto-temporal networks play a compensatory role as a fluency enhancing mechanism. In contrast, the increased connection strength within subcortical-cortical pathways may be implied in an overly active global response suppression mechanism in stuttering. Altogether, this combined functional MRI–diffusion tensor imaging study disentangles different networks involved in the neuronal underpinnings of the speech motor

  10. Localised mixing and heterogeneity in the plankton food web in a frontal region of the Sargasso Sea

    DEFF Research Database (Denmark)

    Richardson, Katherine; Bendtsen, Joøgen; Christensen, Jens Tang

    2014-01-01

    the diatom communities at 10 m and > 100 m (in the deep chlorophyll maximum, DCM) than in other parts of the frontal region. Thorpe displacements supported the hypothesis of elevated mixing intensities around these stations, as did vertical mixing rates inferred from stratification and vertical current shear...... influence the plankton food web, as indicated by elevated values/concentrations of (1) primary production, (2) variable fluorescence (F-v/F-m) and (3) total seston. In addition, the fraction of the total biomass of both copepods and nauplii found closest to the DCM in the frontal region correlated...

  11. The association between hemispheric specialization for language production and for spatial attention depends on left-hand preference strength.

    Science.gov (United States)

    Zago, Laure; Petit, Laurent; Mellet, Emmanuel; Jobard, Gaël; Crivello, Fabrice; Joliot, Marc; Mazoyer, Bernard; Tzourio-Mazoyer, Nathalie

    2016-12-01

    Cerebral lateralization for language production and spatial attention and their relationships with manual preference strength (MPS) were assessed in a sample of 293 healthy volunteers, including 151 left-handers, using fMRI during covert sentence production (PROD) and line bisection judgment (LBJ) tasks, as compared to high- and low-level reference tasks. At the group level, we found the expected complementary hemispheric specialization (HS) with leftward asymmetries for PROD within frontal and temporal regions and rightward asymmetries for LBJ within frontal and posterior occipito-parieto-temporal regions. Individual hemispheric (HLI) and regional (frontal and occipital) lateralization indices (LI) were then calculated on the activation maps for PROD and LBJ. We found a correlation between the degree of rightward cerebral asymmetry and the leftward behavioral attentional bias recorded during LBJ task. This correlation was found when LBJ-LI was computed over the hemispheres, in the frontal lobes, but not in the occipital lobes. We then investigated whether language production and spatial attention cerebral lateralization relate to each other, and whether manual preference was a variable that impacted the complementary HS of these functions. No correlation was found between spatial and language LIs in the majority of our sample of participants, including right-handers with a strong right-hand preference (sRH, n=97) and mixed-handers (MH, n=97), indicating that these functions lateralized independently. By contrast, in the group of left-handers with a strong left-hand preference (sLH, n= 99), a negative correlation was found between language and spatial lateralization. This negative correlation was found when LBJ-LI and PROD-LI were computed over the hemispheres, in the frontal lobes and between the occipital lobes for LBJ and the frontal lobes for PROD. These findings underline the importance to include sLH in the study sample to reveal the underlying mechanisms of

  12. Reduced frontal-subcortical white matter connectivity in association with suicidal ideation in major depressive disorder

    Science.gov (United States)

    Myung, W; Han, C E; Fava, M; Mischoulon, D; Papakostas, G I; Heo, J-Y; Kim, K W; Kim, S T; Kim, D J H; Kim, D K; Seo, S W; Seong, J-K; Jeon, H J

    2016-01-01

    Major depressive disorder (MDD) and suicidal behavior have been associated with structural and functional changes in the brain. However, little is known regarding alterations of brain networks in MDD patients with suicidal ideation. We investigated whether or not MDD patients with suicidal ideation have different topological organizations of white matter networks compared with MDD patients without suicidal ideation. Participants consisted of 24 patients with MDD and suicidal ideation, 25 age- and gender-matched MDD patients without suicidal ideation and 31 healthy subjects. A network-based statistics (NBS) and a graph theoretical analysis were performed to assess differences in the inter-regional connectivity. Diffusion tensor imaging (DTI) was performed to assess topological changes according to suicidal ideation in MDD patients. The Scale for Suicide Ideation (SSI) and the Korean version of the Barrett Impulsiveness Scale (BIS) were used to assess the severity of suicidal ideation and impulsivity, respectively. Reduced structural connectivity in a characterized subnetwork was found in patients with MDD and suicidal ideation by utilizing NBS analysis. The subnetwork included the regions of the frontosubcortical circuits and the regions involved in executive function in the left hemisphere (rostral middle frontal, pallidum, superior parietal, frontal pole, caudate, putamen and thalamus). The graph theoretical analysis demonstrated that network measures of the left rostral middle frontal had a significant positive correlation with severity of SSI (r=0.59, P=0.02) and BIS (r=0.59, P=0.01). The total edge strength that was significantly associated with suicidal ideation did not differ between MDD patients without suicidal ideation and healthy subjects. Our findings suggest that the reduced frontosubcortical circuit of structural connectivity, which includes regions associated with executive function and impulsivity, appears to have a role in the emergence of suicidal

  13. Reduced frontal brain volume in non-treatment-seeking cocaine-dependent individuals: exploring the role of impulsivity, depression, and smoking.

    Science.gov (United States)

    Crunelle, Cleo L; Kaag, Anne Marije; van Wingen, Guido; van den Munkhof, Hanna E; Homberg, Judith R; Reneman, Liesbeth; van den Brink, Wim

    2014-01-01

    In cocaine-dependent patients, gray matter (GM) volume reductions have been observed in the frontal lobes that are associated with the duration of cocaine use. Studies are mostly restricted to treatment-seekers and studies in non-treatment-seeking cocaine abusers are sparse. Here, we assessed GM volume differences between 30 non-treatment-seeking cocaine-dependent individuals and 33 non-drug using controls using voxel-based morphometry. Additionally, within the group of non-treatment-seeking cocaine-dependent individuals, we explored the role of frequently co-occurring features such as trait impulsivity (Barratt Impulsivity Scale, BIS), smoking, and depressive symptoms (Beck Depression Inventory), as well as the role of cocaine use duration, on frontal GM volume. Smaller GM volumes in non-treatment-seeking cocaine-dependent individuals were observed in the left middle frontal gyrus. Moreover, within the group of cocaine users, trait impulsivity was associated with reduced GM volume in the right orbitofrontal cortex, the left precentral gyrus, and the right superior frontal gyrus, whereas no effect of smoking severity, depressive symptoms, or duration of cocaine use was observed on regional GM volumes. Our data show an important association between trait impulsivity and frontal GM volumes in cocaine-dependent individuals. In contrast to previous studies with treatment-seeking cocaine-dependent patients, no significant effects of smoking severity, depressive symptoms, or duration of cocaine use on frontal GM volume were observed. Reduced frontal GM volumes in non-treatment-seeking cocaine-dependent subjects are associated with trait impulsivity and are not associated with co-occurring nicotine dependence or depression.

  14. Auditory aura in nocturnal frontal lobe epilepsy: a red flag to suspect an extra-frontal epileptogenic zone.

    Science.gov (United States)

    Ferri, Lorenzo; Bisulli, Francesca; Nobili, Lino; Tassi, Laura; Licchetta, Laura; Mostacci, Barbara; Stipa, Carlotta; Mainieri, Greta; Bernabè, Giorgia; Provini, Federica; Tinuper, Paolo

    2014-11-01

    To describe the anatomo-electro-clinical findings of patients with nocturnal hypermotor seizures (NHS) preceded by auditory symptoms, to evaluate the localizing value of auditory aura. Our database of 165 patients with nocturnal frontal lobe epilepsy (NFLE) diagnosis confirmed by videopolysomnography (VPSG) was reviewed, selecting those who reported an auditory aura as the initial ictal symptom in at least two NHS during their lifetime. Eleven patients were selected (seven males, four females). According to the anatomo-electro-clinical data, three groups were identified. Group 1 [defined epileptogenic zone (EZ)]: three subjects were studied with stereo-EEG. The EZ lay in the left superior temporal gyrus in two cases, whereas in the third case seizures arose from a dysplastic lesion located in the left temporal lobe. One of these three patients underwent left Heschl's gyrus resection, and is currently seizure-free. Group 2 (presumed EZ): three cases in which a presumed EZ was identified; in the left temporal lobe in two cases and in the left temporal lobe extending to the insula in one subject. Group 3 (uncertain EZ): five cases had anatomo-electro-clinical correlations discordant. This work suggests that auditory aura may be a helpful anamnestic feature suggesting an extra-frontal seizure origin. This finding could guide secondary investigations to improve diagnostic definition and selection of candidates for surgical treatment. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Self-regulation therapy increases frontal gray matter in children with fetal alcohol spectrum disorder: evaluation by voxel-based morphometry

    Directory of Open Access Journals (Sweden)

    Debra W. Soh

    2015-03-01

    Full Text Available Children with fetal alcohol spectrum disorder show executive function (EF deficits, particularly in self-regulation skills, and abnormalities in brain regions critical for these skills. None of the validated EF interventions for these children has been evaluated with regards to impacts on brain structure. Twenty-nine children with FASD were assigned to either an immediate-treatment (TX or delayed-treatment control group (DTC. Nineteen typically developing children served as healthy controls (CT. All received a structural MRI scan and baseline neuropsychological testing, following which the TX group underwent 12 weekly 1.5-hour sessions of the Alert Program for Self-Regulation®. After treatment or a period of ~14 weeks, all received a repeat scan and post-intervention testing. Whole-brain and region-of-interest analyses using voxel-based morphometry evaluated group differences and changes over time in gray matter (GM. Exploratory analyses revealed significant group changes: (1 At baseline, combined TX and DTC groups demonstrated global GM reductions compared with the CT group. (2 Region-of-interest analysis using a frontal mask, comparing post-intervention to pre-intervention results, showed significantly increased GM in the left middle frontal gyrus (BA10, right frontal pole (BA11, and right anterior cingulate (BA32 in the TX group. Similar results were not found in the DTC or CT groups. (3 At post-intervention, both TX and CT groups showed larger GM volumes than the DTC group in the left superior frontal gyrus (BA9, which was smaller in the FASD group at baseline. These results suggested that Alert led to improvements in post-intervention testing of self-regulation skills and typical brain development in treated children.

  16. Self-regulation therapy increases frontal gray matter in children with fetal alcohol spectrum disorder: evaluation by voxel-based morphometry

    Science.gov (United States)

    Soh, Debra W.; Skocic, Jovanka; Nash, Kelly; Stevens, Sara; Turner, Gary R.; Rovet, Joanne

    2015-01-01

    Children with fetal alcohol spectrum disorder show executive function (EF) deficits, particularly in self-regulation skills, and abnormalities in brain regions critical for these skills. None of the validated EF interventions for these children has been evaluated with regards to impacts on brain structure. Twenty-nine children with FASD were assigned to either an immediate-treatment (TX) or delayed-treatment control (DTC) group (DTC). Nineteen typically developing children served as healthy controls (CT). All received a structural MRI scan and baseline neuropsychological testing, following which the TX group underwent 12 weekly 1.5-h sessions of the Alert Program for Self-Regulation®. After treatment or a period of ~14 weeks, all received a repeat scan and post-intervention testing. Whole-brain and region-of-interest analyses using voxel-based morphometry evaluated group differences and changes over time in gray matter (GM). Exploratory analyses revealed significant group changes: (1) At baseline, combined TX and DTC groups demonstrated global GM reductions compared with the CT group. (2) Region-of-interest analysis using a frontal mask, comparing post-intervention to pre-intervention results, showed significantly increased GM in the left middle frontal gyrus (BA10), right frontal pole (BA11), and right anterior cingulate (BA32) in the TX group. Similar results were not found in the DTC or CT groups. (3) At post-intervention, both TX and CT groups showed larger GM volumes than the DTC group in the left superior frontal gyrus (BA9), which was smaller in the FASD group at baseline. These results suggested that Alert led to improvements in post-intervention testing of self-regulation skills and typical brain development in treated children. PMID:25788884

  17. Visuo-spatial construction in patients with frontal and parietal lobe lesions

    Directory of Open Access Journals (Sweden)

    Himani Kashyap

    2011-04-01

    Full Text Available Visuospatial construction, traditionally viewed as a putative parietal function, also requires sustained attention, planning, organization strategies and error correction, and hence frontal lobe mediation. The relative contributions of the frontal and parietal lobes are poorly understood. To examine the contributions of parietal, frontal lobes, as well as right and left cerebral hemispheres to visuospatial construction. The Stick Construction Test for two-dimensional construction and the Block Construction Test for three-dimensional construction were administered pre-surgically to patients with lesions in the parietal lobe (n =9 and the frontal lobe (n=11, along with normal control subjects (n =20 matched to the patients on age (+/- 3 years, gender, education (+/- 3 years and handedness. The patients were significantly slower than the controls on both two-dimensional and three-dimensional tests. Patients with parietal lesions were slower than those with frontal lesions on the test of three-dimensional construction. Within each lobe patients with right and left sided lesions did not differ significantly. It appears that tests of three-dimensional construction might be most sensitive to visuospatial construction deficits. Visuospatial construction involves the mediation of both frontal and parietal lobes. The function does not appear to be lateralized. The networks arising from the parieto-occipital areas and projecting to the frontal cortices (e.g., occipito-frontal fasciculus may be the basis of the mediation of both lobes in visuospatial construction. The present findings need replication from studies with larger sample sizes.

  18. Frontal alpha asymmetry predicts inhibitory processing in youth with attention deficit/hyperactivity disorder.

    Science.gov (United States)

    Ellis, Alissa J; Kinzel, Chantelle; Salgari, Giulia C; Loo, Sandra K

    2017-07-28

    Atypical asymmetry in brain activity has been implicated in the behavioral and attentional dysregulation observed in ADHD. Specifically, asymmetry in neural activity in the right versus left frontal regions has been linked to ADHD, as well as to symptoms often associated with ADHD such as heightened approach behaviors, impulsivity and difficulties with inhibition. Clarifying the role of frontal asymmetry in ADHD-like traits, such as disinhibition, may provide information on the neurophysiological processes underlying these behaviors. ADHD youth (ADHD: n = 25) and healthy, typically developing controls (TD: n = 25) underwent an electroencephalography (EEG) recording while completing a go/no-go task-a commonly used test measuring behavioral inhibition. In addition, advanced signal processing for source localization estimated the location of signal generators underlying frontal alpha asymmetry (FA) during correct and incorrect trials. This is the first study in ADHD to demonstrate that the dorsal-lateral prefrontal cortex (DLPFC) may be responsible for generating frontal alpha. During failed inhibition trials, ADHD youth displayed greater FA than TD youth. In addition, within the ADHD group, frontal asymmetry during later processing stages (i.e., 400-800ms after stimulus) predicted a higher number of commission errors throughout the task. These results suggest that frontal alpha asymmetry may be a specific biomarker of cognitive disinhibition among youth with ADHD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Electroconvulsive therapy changes the regional resting state function measured by regional homogeneity (ReHo) and amplitude of low frequency fluctuations (ALFF) in elderly major depressive disorder patients: An exploratory study.

    Science.gov (United States)

    Kong, Xiao-Ming; Xu, Shu-Xian; Sun, Yan; Wang, Ke-Yong; Wang, Chen; Zhang, Ji; Xia, Jin-Xiang; Zhang, Li; Tan, Bo-Jian; Xie, Xin-Hui

    2017-06-30

    Electroconvulsive therapy (ECT) is the most effective and rapid treatment for severe major depressive disorder (MDD) in elderly patients. The mechanism of ECT is unclear, and studies on ECT in elderly MDD patients by resting-state functional magnetic resonance imaging are rare. Thirteen elderly MDD patients were scanned before and after ECT using a 3.0T MRI scanner. Regional homogeneity (ReHo) and amplitude of low-frequency fluctuations (ALFF) were processed to compare resting-state function before and after treatment. Depression and anxiety symptoms of all patients abated after ECT. Decreased ReHo values in the bilateral superior frontal gyrus (SFG) were observed after ECT, and the values of right SFG significantly correlated with an altered Hamilton depression rating scale score. Increased ALFF values in the left middle frontal gyrus, right middle frontal gyrus, orbital part, and decreased ALFF values in the left midcingulate area, left precentral gyrus, right SFG/middle frontal gyrus after ECT were also observed. These results support the hypothesis that ECT may affect the regional resting state brain function in geriatric MDD patients. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  20. Resting-state, functional MRI on regional homogeneity changes of brain in the heavy smokers

    International Nuclear Information System (INIS)

    Yang Shiqi; Wu Guangyao; Lin Fuchun; Kong Xiangquan; Zhou Guofeng; Pang Haopeng; Zhu Ling; Liu Guobing; Lei Hao

    2012-01-01

    Objective: To explore the mechanism of self-awareness in the heavy smokers (HS) by using regional homogeneity (ReHo) combined with resting-state functional MRI (fMRI). Methods: Thirty HS and 31 healthy non-smokers (NS) matched for age and sex underwent a 3.0 T resting-state fMRI. The data were post-processed by SPM 5 and then the ReHo values were calculated by REST software. The ReHo values between the two groups were compared by two-sample t-test. The brain map with significant difference of ReHo value was obtained. Results: Compared with that in NS group, the regions with decreased ReHo value included the bilateral precuneus, superior frontal gyrus,medial prefrontal cortex, right angular gyrus, inferior frontal gyrus, inferior occipital gyrus, cerebellum, and left middle frontal gyrus in HS group. The regions of increased ReHo value included the bilateral insula, parahippocampal gyrus, white matter of parietal lobe, pons, left inferior parietal lobule, lingual gyrus, thalamus, inferior orbital gyrus, white matter of temporal-frontal lobe, and cerebellum. The difference was more obvious in the left hemisphere. Conclusions: In HS, abnormal ReHo on a resting state which reflects network of smoking addiction. This method may be helpful in understanding the mechanism of self-awareness in HS. (authors)

  1. Transcranial direct current stimulation over left inferior frontal cortex improves speech fluency in adults who stutter.

    Science.gov (United States)

    Chesters, Jennifer; Möttönen, Riikka; Watkins, Kate E

    2018-04-01

    See Crinion (doi:10.1093/brain/awy075) for a scientific commentary on this article.Stuttering is a neurodevelopmental condition affecting 5% of children, and persisting in 1% of adults. Promoting lasting fluency improvement in adults who stutter is a particular challenge. Novel interventions to improve outcomes are of value, therefore. Previous work in patients with acquired motor and language disorders reported enhanced benefits of behavioural therapies when paired with transcranial direct current stimulation. Here, we report the results of the first trial investigating whether transcranial direct current stimulation can improve speech fluency in adults who stutter. We predicted that applying anodal stimulation to the left inferior frontal cortex during speech production with temporary fluency inducers would result in longer-lasting fluency improvements. Thirty male adults who stutter completed a randomized, double-blind, controlled trial of anodal transcranial direct current stimulation over left inferior frontal cortex. Fifteen participants received 20 min of 1-mA stimulation on five consecutive days while speech fluency was temporarily induced using choral and metronome-timed speech. The other 15 participants received the same speech fluency intervention with sham stimulation. Speech fluency during reading and conversation was assessed at baseline, before and after the stimulation on each day of the 5-day intervention, and at 1 and 6 weeks after the end of the intervention. Anodal stimulation combined with speech fluency training significantly reduced the percentage of disfluent speech measured 1 week after the intervention compared with fluency intervention alone. At 6 weeks after the intervention, this improvement was maintained during reading but not during conversation. Outcome scores at both post-intervention time points on a clinical assessment tool (the Stuttering Severity Instrument, version 4) also showed significant improvement in the group receiving

  2. The validity of individual frontal alpha asymmetry EEG neurofeedback.

    Science.gov (United States)

    Quaedflieg, C W E M; Smulders, F T Y; Meyer, T; Peeters, F; Merckelbach, H; Smeets, T

    2016-01-01

    Frontal asymmetry in alpha oscillations is assumed to be associated with psychopathology and individual differences in emotional responding. Brain-activity-based feedback is a promising tool for the modulation of cortical activity. Here, we validated a neurofeedback protocol designed to change relative frontal asymmetry based on individual alpha peak frequencies, including real-time average referencing and eye-correction. Participants (N = 60) were randomly assigned to a right, left or placebo neurofeedback group. Results show a difference in trainability between groups, with a linear change in frontal alpha asymmetry over time for the right neurofeedback group during rest. Moreover, the asymmetry changes in the right group were frequency and location specific, even though trainability did not persist at 1 week and 1 month follow-ups. On the behavioral level, subjective stress on the second test day was reduced in the left and placebo neurofeedback groups, but not in the right neurofeedback group. We found individual differences in trainability that were dependent on training group, with participants in the right neurofeedback group being more likely to change their frontal asymmetry in the desired direction. Individual differences in trainability were also reflected in the ability to change frontal asymmetry during the feedback. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Structural connectivity of right frontal hyperactive areas scales with stuttering severity.

    Science.gov (United States)

    Neef, Nicole E; Anwander, Alfred; Bütfering, Christoph; Schmidt-Samoa, Carsten; Friederici, Angela D; Paulus, Walter; Sommer, Martin

    2018-01-01

    A neuronal sign of persistent developmental stuttering is the magnified coactivation of right frontal brain regions during speech production. Whether and how stuttering severity relates to the connection strength of these hyperactive right frontal areas to other brain areas is an open question. Scrutinizing such brain-behaviour and structure-function relationships aims at disentangling suspected underlying neuronal mechanisms of stuttering. Here, we acquired diffusion-weighted and functional images from 31 adults who stutter and 34 matched control participants. Using a newly developed structural connectivity measure, we calculated voxel-wise correlations between connection strength and stuttering severity within tract volumes that originated from functionally hyperactive right frontal regions. Correlation analyses revealed that with increasing speech motor deficits the connection strength increased in the right frontal aslant tract, the right anterior thalamic radiation, and in U-shaped projections underneath the right precentral sulcus. In contrast, with decreasing speech motor deficits connection strength increased in the right uncinate fasciculus. Additional group comparisons of whole-brain white matter skeletons replicated the previously reported reduction of fractional anisotropy in the left and right superior longitudinal fasciculus as well as at the junction of right frontal aslant tract and right superior longitudinal fasciculus in adults who stutter compared to control participants. Overall, our investigation suggests that right fronto-temporal networks play a compensatory role as a fluency enhancing mechanism. In contrast, the increased connection strength within subcortical-cortical pathways may be implied in an overly active global response suppression mechanism in stuttering. Altogether, this combined functional MRI-diffusion tensor imaging study disentangles different networks involved in the neuronal underpinnings of the speech motor deficit in

  4. Regional cerebral blood flow in pure dysarthria. A 3D-SSP study

    International Nuclear Information System (INIS)

    Okamoto, Kensho; Kamogawa, Kenji; Okuda, Bungo; Kawabata, Keita; Tachibana, Hisao

    2007-01-01

    Pure dysarthria from brain infarction is a rare condition, and its pathophysiology remains unclear. To clarify the underlying mechanism of pure dysarthria, we investigated the lesion sites and regional cerebral blood flow in patients with pure dysarthria. We examined 18 consecutive patients with pure dysarthria (9 men and 9 women; mean age, 71 years) who underwent MRI and cerebral blood flow studies. To visualize the regional cerebral blood flow, we generated Z score images using the three-dimensional stereotactic surface projection (3D-SSP) method with single-photon emission computed tomography (SPECT) and N-isopropyl-p [ 123 I]iodoamphetamine. Data on the brain surface perfusion extracted by the 3D-SSP analysis were compared between the pure dysarthria (PD) patients and 9 control subjects. MRI revealed multiple lacunar infarctions involving the internal capsule and/or corona radiata in 11 patients, left internal capsule-corona radiata infarction in 4 patients, and pontine infarction in 3 patients. SPECT with 3D-SSP demonstrated bilateral frontal cortical hypoperfusion in all patients, particularly in the anterior opercular region. Based on intergroup comparisons, the PD group exhibited pronounced cortical hypoperfusion in the opercular and medial frontal regions, left more than right. In conclusion, pure dysarthria is considered to originate from frontal cortical hypoperfusion, mainly in the anterior opercular and medial frontal regions, which is probably due to interruption of the corticosubcortical neural networks relevant to speech expression and articulation. In addition, it is suggested that left hemispheric lesions may make a greater contribution to the development of pure dysarthria than do right ones. (author)

  5. Secondary adult encephalocele with abscess formation of calcified frontal sinus mucocele.

    Science.gov (United States)

    Oh, Byeong Ho; Lee, Ok-Jun; Park, Young Seok

    2016-07-01

    Although encephalocele is a rare congenital abnormality, secondary encephalocele is extremely rare and can cause fatal complications. Here, we report a case of secondary encephalocele caused by frontal sinus wall defect due to chronic sinusitis, which was completely removed by cranialization with autologous bone graft. A 50-year-old man with a 10-year history of chronic sinusitis visited our hospital due to suddenly altered mentality characterized by stupor. Computerized tomography scanning and magnetic resonance imaging revealed an enlarged left frontal sinus with sinusitis. The frontal sinus cavity was calcified, and the left frontal lobe had herniated into the cavity accompanied by yellow pus. A large dural defect was also found around the frontal sinus area. After removal of the abscess and some of the frontal lobe, frontal skull base repair by cranialization was performed using autologous bone graft. Streptococcus pneumoniae was cultured from the cerebrospinal fluid (CSF), necessitating treatment with antibiotics. After the operation, the mental status of the patient improved and no CSF leakage was observed. In addition to correct diagnosis and early treatment including antibiotics, the surgical repair of defects is needed in patients with secondary encephalocele to prevent further episodes of meningitis. Surgical correction of frontal sinus encephalocele can be achieved through bifrontal craniotomy or endoscopic transnasal repair. If a patient has CSF leakage, open craniotomy may facilitate repair of the dural defect and allow for cranialization of the sinus. Removal of dysplastic herniated brain tissue and cranialization of the frontal sinus may be a good option for treating secondary encephalocele and its associated complications, including meningitis, abscess formation, and infarction of the herniated brain parenchyma.

  6. [Tourette syndrome and reading disorder in a boy with left parietofrontal tract disruption].

    Science.gov (United States)

    Martín Fernández-Mayoralas, D; Fernández-Jaén, A; Gómez Herrera, J J; Jiménez de la Peña, M

    2014-01-01

    We present the case of a nine-year-old boy with Tourette syndrome and reading disorder with a history of a severe infectious process in the late neonatal period. Brain MRI showed a left parietal malacotic cavity and diffusion tensor imaging and tractography showed a striking disruption of the white matter bundle that joins the left parietal region with the ipsilateral frontal region with involvement of the left superior longitudinal fasciculus and of the left arcuate fasciculus. Although Tourette syndrome and reading disorder are fundamentally hereditary neuropsychiatric disorders, they can also occur secondary to cerebral alterations like those existing in this boy. The introduction of modern neuroimaging techniques in patients with neuropsychiatric disorders (or the risk of developing them) can be very useful in the diagnosis and prognosis in the future. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  7. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey

    International Nuclear Information System (INIS)

    Petrides, M.; Pandya, D.N.

    1988-01-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus

  8. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey.

    Science.gov (United States)

    Petrides, M; Pandya, D N

    1988-07-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus.

  9. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey

    Energy Technology Data Exchange (ETDEWEB)

    Petrides, M.; Pandya, D.N.

    1988-07-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus.

  10. Regional cerebral blood flow pattern in normal young and aged volunteers: a 99mTc-HMPAO SPET study

    International Nuclear Information System (INIS)

    Catafau, A.M.; Lomena, J.; Pavia, J.; Parellada, E.; Bernardo, M.; Setoain, J.; Tolosa, E.

    1996-01-01

    The aim of this study was to investigate the normal pattern of regional cerebral blood flow (rCBF) distribution in normal young and aged volunteers using technetium-99m hexamethylpropylene amine oxime ( 99m -Tc-HMPAO) as a tracer. The region brain perfusion of young and aged subjects was compared, especially regarding rCBF differences due to age and gender, and interhemispheric rCBF asymmetries. Sixty-eight right-handed normal volunteers -40 young (mean age 29.5±6.3 years) and 28 aged (mean age 71.2±4.3 years) - were included in the study. rCBF was estimated on the basis of a semiquantitative approach by means of a left-right index and two region/reference ratios, using the cerebellum and the whole brain activity as references. A good correlation between these two region/reference ratios was found (P<0.005 in all cerebral regions). The highest rCBF ratios corresponded to the cerebellum, followed by the occipital lobe. The remaining cortical regions (temporal, parietal, frontal and basal ganglia) showed slightly lower values. The white matter showed rCBF ratios substantially lower than the grey matter. In neighter young nor aged subjects were significant rCBF differences between the genders found in any of the two region/reference indices employed. Aged sugjects showed significantly lower rCBF ratios than young subjects in the left frontal lobe and in the posterior region of the left temporal lobe. In both young and aged subjects, lower perfusion was found in the left hemisphere, except for the white matter region in both age groups and the frontal lobe in the young subjects. Aged subjects presented a slightly higher interhemispheric asymmetry in the frontal lobe. However, interhemispheric asymmetry was minimal (-1.01% to 3.14%). Consequently, a symmetrical rCBF distribution can be assumed between homologous regions, independent of age. (orig.)

  11. Selective activation of the superior frontal gyrus in task-switching: an event-related fNIRS study.

    Science.gov (United States)

    Cutini, Simone; Scatturin, Pietro; Menon, Enrica; Bisiacchi, Patrizia Silvia; Gamberini, Luciano; Zorzi, Marco; Dell'Acqua, Roberto

    2008-08-15

    In the task-switching paradigm, reaction time is longer and accuracy is worse in switch trials relative to repetition trials. This so-called switch cost has been ascribed to the engagement of control processes required to alternate between distinct stimulus-response mapping rules. Neuroimaging studies have reported an enhanced activation of the human lateral prefrontal cortex and the superior frontal gyrus during the task-switching paradigm. Whether neural activation in these regions is dissociable and associated with separable cognitive components of task switching has been a matter of recent debate. We used multi-channel near-infrared spectroscopy (fNIRS) to measure brain cortical activity in a task-switching paradigm designed to avoid task differences, order predictability, and frequency effects. The results showed a generalized bilateral activation of the lateral prefrontal cortex and the superior frontal gyrus in both switch trials and repetition trials. To isolate the activity selectively associated with the task-switch, the overall activity recorded during repetition trials was subtracted from the activity recorded during switch trials. Following subtraction, the remaining activity was entirely confined to the left portion of the superior frontal gyrus. The present results suggest that factors associated with load and maintenance of distinct stimulus-response mapping rules in working memory are likely contributors to the activation of the lateral prefrontal cortex, whereas only activity in the left superior frontal gyrus can be linked unequivocally to switching between distinct cognitive tasks.

  12. Regional cerebral blood flow in Angelman syndrome

    International Nuclear Information System (INIS)

    Guecueyener, K.; Goekcora, N.; Ilgin, N.; Buyan, N.; Sayli, A.

    1993-01-01

    A patient with typical features of Angelman syndrome - a genetically inherited disorder involving developmental delay, ataxia, episodes of paroxysmal laughter and brachiocephaly - was studied with single-photon emission tomography. Hyperfusion found in the left frontal and left temporoparietal regions can provide insights into the functional cerebral pathology, which may be due to a disturbance of the developmental process related to a chromosomal abnormality. (orig.)

  13. Regional cerebral blood flow in Angelman syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Guecueyener, K [Dept. of Pediatric Neurology, Faculty of Medicine, Gazi Univ., Ankara (Turkey); Goekcora, N [Dept. of Nuclear Medicine, Faculty of Medicine, Gazi Univ., Ankara (Turkey); Ilgin, N [Dept. of Nuclear Medicine, Faculty of Medicine, Gazi Univ., Ankara (Turkey); Buyan, N [Dept. of Pediatric Neurology, Faculty of Medicine, Gazi Univ., Ankara (Turkey); Sayli, A [Dept. of Molecular Biology and Genetics, Faculty of Medicine, Gazi Univ., Ankara (Turkey)

    1993-07-01

    A patient with typical features of Angelman syndrome - a genetically inherited disorder involving developmental delay, ataxia, episodes of paroxysmal laughter and brachiocephaly - was studied with single-photon emission tomography. Hyperfusion found in the left frontal and left temporoparietal regions can provide insights into the functional cerebral pathology, which may be due to a disturbance of the developmental process related to a chromosomal abnormality. (orig.)

  14. Early aphasia rehabilitation is associated with functional reactivation of the left inferior frontal gyrus: a pilot study.

    Science.gov (United States)

    Mattioli, Flavia; Ambrosi, Claudia; Mascaro, Lorella; Scarpazza, Cristina; Pasquali, Patrizia; Frugoni, Marina; Magoni, Mauro; Biagi, Laura; Gasparotti, Roberto

    2014-02-01

    Early poststroke aphasia rehabilitation effects and their functional MRI (fMRI) correlates were investigated in a pilot, controlled longitudinal study. Twelve patients with mild/moderate aphasia (8 Broca, 3 anomic, and 1 Wernicke) were randomly assigned to daily language rehabilitation for 2 weeks (starting 2.2 [mean] days poststroke) or no rehabilitation. The Aachen Aphasia Test and fMRI recorded during an auditory comprehension task were performed at 3 time intervals: mean 2.2 (T1), 16.2 (T2), and 190 (T3) days poststroke. Groups did not differ in terms of age, education, aphasia severity, lesions volume, baseline fMRI activations, and in task performance during fMRI across examinations. Rehabilitated patients significantly improved in naming and written language tasks (Paphasia treatment is useful, has durable effects, and may lead to early enhanced recruitment of brain areas, particularly the left inferior frontal gyrus, which persists in the chronic phase.

  15. Regional brain structural abnormality in ischemic stroke patients: a voxel-based morphometry study

    Directory of Open Access Journals (Sweden)

    Ping Wu

    2016-01-01

    Full Text Available Our previous study used regional homogeneity analysis and found that activity in some brain areas of patients with ischemic stroke changed significantly. In the current study, we examined structural changes in these brain regions by taking structural magnetic resonance imaging scans of 11 ischemic stroke patients and 15 healthy participants, and analyzing the data using voxel-based morphometry. Compared with healthy participants, patients exhibited higher gray matter density in the left inferior occipital gyrus and right anterior white matter tract. In contrast, gray matter density in the right cerebellum, left precentral gyrus, right middle frontal gyrus, and left middle temporal gyrus was less in ischemic stroke patients. The changes of gray matter density in the middle frontal gyrus were negatively associated with the clinical rating scales of the Fugl-Meyer Motor Assessment (r = -0.609, P = 0.047 and the left middle temporal gyrus was negatively correlated with the clinical rating scales of the nervous functional deficiency scale (r = -0.737, P = 0.010. Our findings can objectively identify the functional abnormality in some brain regions of ischemic stroke patients.

  16. Contrasting losses and gains increases the predictability of behavior by frontal EEG asymmetry

    Science.gov (United States)

    Telpaz, Ariel; Yechiam, Eldad

    2014-01-01

    Frontal asymmetry measured at rest using EEG is considered a stable marker of approach-avoidance behaviors and risk taking. We examined whether without salient cues of attention in the form of losses, predictability is reduced. Fifty-seven participants performed an experiential decision task in a gain-only, loss-only, and mixed (gains and losses) condition. Increased risk taking on the part of individuals with relatively high left frontal activation, as denoted by the Alpha band, was only observed in the task involving both gains and losses. Event-related potential analysis sheds light on the processes leading to this pattern. Left-frontal dominant individuals had increased fronto-central P300 activation following risky compared to safe outcomes, while right-frontal dominant individuals did not show a P300 difference following safe and risky outcomes. This interaction also only emerged when losses were contrasted with gains. The findings highlight the sensitivity of behavioral predictability to cues of valence. PMID:24817845

  17. The role of asymmetric frontal cortical activity in emotion-related phenomena: a review and update.

    Science.gov (United States)

    Harmon-Jones, Eddie; Gable, Philip A; Peterson, Carly K

    2010-07-01

    Conceptual and empirical approaches to the study of the role of asymmetric frontal cortical activity in emotional processes are reviewed. Although early research suggested that greater left than right frontal cortical activity was associated with positive affect, more recent research, primarily on anger, suggests that greater left than right frontal cortical activity is associated with approach motivation, which can be positive (e.g., enthusiasm) or negative in valence (e.g., anger). In addition to reviewing this research on anger, research on guilt, bipolar disorder, and various types of positive affect is reviewed with relation to their association with asymmetric frontal cortical activity. The reviewed research not only contributes to a more complete understanding of the emotive functions of asymmetric frontal cortical activity, but it also points to the importance of considering motivational direction as separate from affective valence in psychological models of emotional space. Copyright © 2009 Elsevier B.V. All rights reserved.

  18. Issues in localization of brain function: The case of lateralized frontal cortex in cognition, emotion, and psychopathology.

    Science.gov (United States)

    Miller, Gregory A; Crocker, Laura D; Spielberg, Jeffrey M; Infantolino, Zachary P; Heller, Wendy

    2013-01-01

    The appeal of simple, sweeping portraits of large-scale brain mechanisms relevant to psychological phenomena competes with a rich, complex research base. As a prominent example, two views of frontal brain organization have emphasized dichotomous lateralization as a function of either emotional valence (positive/negative) or approach/avoidance motivation. Compelling findings support each. The literature has struggled to choose between them for three decades, without success. Both views are proving untenable as comprehensive models. Evidence of other frontal lateralizations, involving distinctions among dimensions of depression and anxiety, make a dichotomous view even more problematic. Recent evidence indicates that positive valence and approach motivation are associated with different areas in the left-hemisphere. Findings that appear contradictory at the level of frontal lobes as the units of analysis can be accommodated because hemodynamic and electromagnetic neuroimaging studies suggest considerable functional differentiation, in specialization and activation, of subregions of frontal cortex, including their connectivity to each other and to other regions. Such findings contribute to a more nuanced understanding of functional localization that accommodates aspects of multiple theoretical perspectives.

  19. Morphometry of Left Frontal and Temporal Poles Predicts Analogical Reasoning Abilities.

    Science.gov (United States)

    Aichelburg, Clarisse; Urbanski, Marika; Thiebaut de Schotten, Michel; Humbert, Frederic; Levy, Richard; Volle, Emmanuelle

    2016-03-01

    Analogical reasoning is critical for making inferences and adapting to novelty. It can be studied experimentally using tasks that require creating similarities between situations or concepts, i.e., when their constituent elements share a similar organization or structure. Brain correlates of analogical reasoning have mostly been explored using functional imaging that has highlighted the involvement of the left rostrolateral prefrontal cortex (rlPFC) in healthy subjects. However, whether inter-individual variability in analogical reasoning ability in a healthy adult population is related to differences in brain architecture is unknown. We investigated this question by employing linear regression models of performance in analogy tasks and voxel-based morphometry in 54 healthy subjects. Our results revealed that the ability to reason by analogy was associated with structural variability in the left rlPFC and the anterior part of the inferolateral temporal cortex. Tractography of diffusion-weighted images suggested that these 2 regions have a different set of connections but may exchange information via the arcuate fasciculus. These results suggest that enhanced integrative and semantic abilities supported by structural variation in these areas (or their connectivity) may lead to more efficient analogical reasoning. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Autobiographical memory of the recent past following frontal cortex or temporal lobe excisions.

    Science.gov (United States)

    Thaiss, Laila; Petrides, Michael

    2008-08-01

    Previous research has raised questions regarding the necessity of the frontal cortex in autobiographical memory and the role that it plays in actively retrieving contextual information associated with personally relevant events. Autobiographical memory was studied in patients with unilateral excisions restricted to the frontal cortex or temporal lobe involving the amygdalo-hippocampal region and in normal controls using an event-sampling method. We examined accuracy of free recall, use of strategies during retrieval and memory for specific aspects of the autobiographical events, including temporal order. Patients with temporal lobe excisions were impaired in autobiographical recall. By contrast, patients with frontal cortical excisions exhibited normal autobiographical recall but were less likely to use temporal order spontaneously to organize event retrieval. Instruction to organize retrieval by temporal order failed to improve recall in temporal lobe patients and increased the incidence of plausible intrusion errors in left temporal patients. In contrast, patients with frontal cortical excisions now surpassed control subjects in recall of autobiographical events. Furthermore, the retrieval accuracy for the temporal order of diary events was not impaired in these patients. In a subsequent cued recall test, temporal lobe patients were impaired in their memory for the details of the diary events and their context. In conclusion, a basic impairment in autobiographical memory (including memory for temporal context) results from damage to the temporal lobe and not the frontal cortex. Patients with frontal excisions fail to use organizational strategies spontaneously to aid retrieval but can use these effectively if instructed to do so.

  1. Study of regional cerebral blood flow in obsessive compulsive disorder patients with SPM and ROI method

    International Nuclear Information System (INIS)

    Li Peiyong; Jiang Xufeng; Zhang Liying; Guo Wanhua; Zhu Chengmo

    2002-01-01

    Objective: To investigate the alternations in regional cerebral blood flow (rCBF) in obsessive compulsive disorder (OCD) patients using statistical parametric mapping (SPM). Methods: rCBF measurements using 99 Tc m -ethyl cysteinate dimer (ECD) SPECT was performed on 14 OCD patients and 23 age-matched healthy volunteers. The rCBF distribution was compared between these two groups with SPM under the conditions of increased and decreased perfusion, and with regions of interest (ROIs) using cerebral template. P value was set at 0.01 level. Results: SPM analysis showed that rCBF decreased in cerebral areas including bilateral putamen, superior temporal gyrus and precuneus, and right orbital gyrus, superior and middle frontal gyrus, and left temporo-occipital lobule and superior parietal gyrus, and vermis. rCBF was also increased in left inferior frontal gyrus and posterior cingulate gyrus. With ROIs method, rCBF was decreased in right anterior frontal, temporo-parietal lobule and left temporo-occipital lobule. Conclusions: The study supports the viewpoint that rCBF abnormality of fronto-striatal circuits is involved in OCD patients. SPM method is a forceful tool in analyzing cerebral regional characters

  2. Left Frontal Hub Connectivity during Memory Performance Supports Reserve in Aging and Mild Cognitive Impairment.

    Science.gov (United States)

    Franzmeier, Nicolai; Hartmann, Julia C; Taylor, Alexander N W; Araque Caballero, Miguel Á; Simon-Vermot, Lee; Buerger, Katharina; Kambeitz-Ilankovic, Lana M; Ertl-Wagner, Birgit; Mueller, Claudia; Catak, Cihan; Janowitz, Daniel; Stahl, Robert; Dichgans, Martin; Duering, Marco; Ewers, Michael

    2017-01-01

    Reserve in aging and Alzheimer's disease (AD) is defined as maintaining cognition at a relatively high level in the presence of neurodegeneration, an ability often associated with higher education among other life factors. Recent evidence suggests that higher resting-state functional connectivity within the frontoparietal control network, specifically the left frontal cortex (LFC) hub, contributes to higher reserve. Following up these previous resting-state fMRI findings, we probed memory-task related functional connectivity of the LFC hub as a neural substrate of reserve. In elderly controls (CN, n = 37) and patients with mild cognitive impairment (MCI, n = 17), we assessed global connectivity of the LFC hub during successful face-name association learning, using generalized psychophysiological interaction analyses. Reserve was quantified as residualized memory performance, accounted for gender and proxies of neurodegeneration (age, hippocampus atrophy, and APOE genotype). We found that greater education was associated with higher LFC-connectivity in both CN and MCI during successful memory. Furthermore, higher LFC-connectivity predicted higher residualized memory (i.e., reserve). These results suggest that higher LFC-connectivity contributes to reserve in both healthy and pathological aging.

  3. Frontal Eye Field, Where Art Thou? Anatomy, function and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations

    Directory of Open Access Journals (Sweden)

    Marine eVernet

    2014-08-01

    Full Text Available The planning, control and execution of eye movements in 3D space relies on a distributed system of cortical and subcortical brain regions. Within this network, the Eye Fields have been described in animals as cortical regions in which electrical stimulation is able to trigger eye movements and influence their latency or accuracy. This review will focus on the Frontal Eye Field (FEF a hub region located in Humans in the vicinity of the pre-central sulcus and the dorsal-most portion of the superior frontal sulcus. The straightforward localization of the FEF through electrical stimulation in animals is difficult to translate to the healthy human brain, particularly with non-invasive neuroimaging techniques. Hence, in the first part of this review, we will describe attempts made to characterize the anatomical localization of this area in the human brain. The outcome of functional Magnetic Resonance Imaging (fMRI, Magneto-encephalography (MEG and particularly, non-invasive mapping methods such a Transcranial Magnetic Stimulation (TMS will be described and the variability of FEF localization across individuals and mapping techniques will be discussed. In the second part of this review, we will address the role of the FEF. We will explore its involvement both in the physiology of fixation, saccade, pursuit and vergence movements and in associated cognitive processes such as attentional orienting, visual awareness and perceptual modulation. Finally in the third part, we will review recent evidence suggesting the high level of malleability and plasticity of these regions and associated networks to non-invasive stimulation. The exploratory, diagnostic and therapeutic interest of such interventions for the modulation and improvement of perception in 3D space will be discussed.

  4. Frontal alpha asymmetry in OCD patients and unaffected first-degree relatives.

    Science.gov (United States)

    Grützmann, Rosa; Riesel, Anja; Klawohn, Julia; Heinzel, Stephan; Kaufmann, Christian; Bey, Katharina; Lennertz, Leonard; Wagner, Michael; Kathmann, Norbert

    2017-08-01

    Frontal electroencephalographic alpha asymmetry as an indicator of trait approach and trait inhibition systems has previously been studied in individuals with obsessive-compulsive disorder (OCD) with mixed results. We explored frontal alpha asymmetry as a possible risk factor in OCD by investigating a large sample of OCD patients (n = 113), healthy control participants (n = 113), and unaffected 1st-degree relatives of OCD patients (n = 37). Additionally, the relationship between OCD symptom dimensions and frontal alpha asymmetry was explored. OCD patients and healthy control participants did not differ in alpha asymmetry scores. Hence, the current results do not support the notion that OCD as a diagnostic entity is associated with a shift in frontal cortical activity. Furthermore, alpha asymmetry scores were not statistically related to specific OCD symptom dimensions. Reasons for inconsistent results in OCD are discussed and should be explored in future studies. Compared to OCD patients and healthy control participants, unaffected 1st-degree relatives of OCD patients showed increased left frontal activity. Such asymmetry has previously been found to be associated with positive affect and adaptive emotion regulation under stress. Because stressful life events play an important role in the onset and exacerbation of OCD, increased left frontal activity might serve as a resilience factor in unaffected 1st-degree relatives. Future studies should follow up on these results with longitudinal risk studies and pre- and posttherapy assessments to further explore causality of this putative factor. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. An unusual association of headache, epilepsy, and late-onset Kleist’s pseudodepression syndrome in frontal lobe cavernoma of the cerebral left hemisphere

    Directory of Open Access Journals (Sweden)

    Chirchiglia D

    2017-05-01

    Full Text Available Domenico Chirchiglia,1 Attilio Della Torre,1 Domenico Murrone,2 Pasquale Chirchiglia,3 Rosa Marotta4 1Department of Neurosurgery, Neurophysiopathology Unit, University of Catanzaro “Magna Graecia”, Catanzaro, 2Neurosurgery Department, Di Venere Hospital, Bari, 3School of Medicine, University of Catanzaro, Catanzaro, 4Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy Abstract: Cerebral cavernous angioma or cavernoma is a benign vascular malformation, usually asymptomatic. It is infrequent and often its discovery is incidental, a so-called incidentaloma. However, these lesions can be symptomatic, causing headaches, epilepsy, cerebral hemorrhage and other neurological signs depending on the brain area involved. Frontal localization is responsible for psychiatric disorders, particularly the prefrontal region, leading to prefrontal syndrome, a condition common in all frontal lobe tumors. Psychopathological syndrome can be depression-type, pseudodepression syndrome or maniac-type, pseudomaniac syndrome. Surgical treatment of lesions like this may not always be possible due to their location in eloquent areas. In this study, we describe an unusual association of migraine-like headache, epilepsy and frontal lobe pseudodepression late-onset syndrome in the same patient. We have considered this case interesting mainly for the rarity of both a headache with migraine features and for the late onset of pseudodepression syndrome. Pathophysiology underlying migraine-like headache and that concerning the late-onset pseudodepression frontal lobe syndrome seems to be unclear. This case leads to further hypotheses about the mechanisms responsible for headache syndromes and psychopathological disorders, in the specific case when caused by a cerebral frontal lobe lesion. Keywords: cerebral cavernoma, cavernous angioma, headache, frontal syndrome, pseudodepression syndrome 

  6. Merge processing in the human brain: a sub-region based functional investigation in the left pars opercularis

    Directory of Open Access Journals (Sweden)

    Emiliano eZaccarella

    2015-11-01

    Full Text Available Language is thought to represent one of the most complex cognitive functions in humans. Here we break down complexity of language to its most basic syntactic computation which hierarchically binds single words together to form larger phrases and sentences. So far, the neural implementation of this basic operation has only been inferred indirectly from studies investigating more complex linguistic phenomena. In the present sub-region based functional magnetic resonance imaging (fMRI study we directly assessed the neuroanatomical nature of this process. Our results showed that syntactic phrases—compared to word-list sequences—corresponded to increased neural activity in the ventral-anterior portion of the left pars opercularis (Brodmann Area (BA 44, whereas the adjacently located deep frontal operculum/anterior insula (FOP/aINS, a phylogenetically older and less specialized region, was found to be equally active for both conditions. Crucially, the functional activity of syntactic binding was confined to one out of five clusters proposed by a recent fine-grained sub-anatomical parcellation for BA 44, with consistency across individuals. Neuroanatomically, the present results call for a redefinition of BA 44 as a region with internal functional specializations. Neurocomputationally, they support the idea of invariance within BA 44 in the location of activation across participants for basic syntactic building processing.

  7. Conceptual control across modalities: graded specialisation for pictures and words in inferior frontal and posterior temporal cortex

    OpenAIRE

    Krieger-Redwood, Katya; Teige, Catarina; Davey, James; Hymers, Mark; Jefferies, Elizabeth

    2015-01-01

    Controlled semantic retrieval to words elicits co-activation of inferior frontal (IFG) and left posterior temporal cortex (pMTG), but research has not yet established (i) the distinct contributions of these regions or (ii) whether the same processes are recruited for non-verbal stimuli. Words have relatively flexible meanings – as a consequence, identifying the context that links two specific words is relatively demanding. In contrast, pictures are richer stimuli and their precise meaning is ...

  8. Greater pre-stimulus effective connectivity from the left inferior frontal area to other areas is associated with better phonological decoding in dyslexic readers

    Directory of Open Access Journals (Sweden)

    Richard E Frye

    2010-12-01

    Full Text Available Functional neuroimaging studies suggest that neural networks that subserve reading are organized differently in dyslexic readers (DRs and typical readers (TRs, yet the hierarchical structure of these networks has not been well studied. We used Granger Causality (GC to examine the effective connectivity of the preparatory network that occurs prior to viewing a non-word stimulus that requires phonological decoding in 7 DRs and 10 TRs who were young adults. The neuromagnetic activity that occurred 500 ms prior to each rhyme trial was analyzed from sensors overlying the left and right inferior frontal areas (IFA, temporoparietal areas (TPA, and ventral occipitotemporal areas (VOTA within the low, medium, and high beta and gamma sub-bands. A mixed-model analysis determined whether connectivity to or from the left and right IFAs differed across connectivity direction (into vs. out of the IFAs, brain areas, reading group, and/or performance. Results indicated that greater connectivity in the low beta sub-band from the left IFA to other cortical areas was significantly related to better non-word rhyme discrimination in DRs but not TRs. This suggests that the left IFA is an important cortical area involved in compensating for poor phonological function in DRs. We suggest that the left IFA activates a wider-than usual network prior to each trial in the service of supporting otherwise effortful phonological decoding in DRs. The fact that the left IFA provides top-down activation to both posterior left hemispheres areas used by typical readers for phonological decoding and homologous right hemisphere areas is discussed. In contrast, within the high gamma sub-band, better performance was associated with decreased connectivity between the left IFA and other brain areas, in both reading groups. Overly strong gamma connectivity during the pre-stimulus period may interfere with subsequent transient activation and deactivation of sub-networks once the non

  9. Supplementation of Antipsychotic Treatment with the Amino Acid Sarcosine Influences Proton Magnetic Resonance Spectroscopy Parameters in Left Frontal White Matter in Patients with Schizophrenia

    Directory of Open Access Journals (Sweden)

    Dominik Strzelecki

    2015-10-01

    Full Text Available Dysfunction of the glutamatergic system, the main stimulating system in the brain, has a major role in pathogenesis of schizophrenia. The frontal white matter (WM is partially composed of axons from glutamatergic pyramidal neurons and glia with glutamatergic receptors. The natural amino acid sarcosine, a component of a normal diet, inhibits the glycine type 1 transporter, increasing the glycine level. Thus, it modulates glutamatergic transmission through the glutamatergic ionotropic NMDA (N-methyl-d-aspartate receptor, which requires glycine as a co-agonist. To evaluate the concentrations of brain metabolites (NAA, N-acetylaspartate; Glx, complex of glutamate, glutamine, and γ-aminobutyric acid (GABA; mI, myo-inositol; Cr, creatine; Cho, choline in the left frontal WM, Proton Nuclear Magnetic Resonance (1H-NMR spectroscopy was used. Twenty-five patients randomly chosen from a group of fifty with stable schizophrenia (DSM-IV-TR and dominant negative symptoms, who were receiving antipsychotic therapy, were administered 2 g of sarcosine daily for six months. The remaining 25 patients received placebo. Assignment was double blinded. 1H-NMR spectroscopy (1.5 T was performed twice: before and after the intervention. NAA, Glx and mI were evaluated as Cr and Cho ratios. All patients were also assessed twice with the Positive and Negative Syndrome Scale (PANSS. Results were compared between groups and in two time points in each group. The sarcosine group demonstrated a significant decrease in WM Glx/Cr and Glx/Cho ratios compared to controls after six months of therapy. In the experimental group, the final NAA/Cr ratio significantly increased and Glx/Cr ratio significantly decreased compared to baseline values. Improvement in the PANSS scores was significant only in the sarcosine group. In patients with schizophrenia, sarcosine augmentation can reverse the negative effect of glutamatergic system overstimulation, with a simultaneous beneficial increase

  10. Brain regions associated with cognitive impairment in patients with Parkinson disease: quantitative analysis of cerebral blood flow using 123I iodoamphetamine SPECT.

    Science.gov (United States)

    Hattori, Naoya; Yabe, Ichiro; Hirata, Kenji; Shiga, Tohru; Sakushima, Ken; Tsuji-Akimoto, Sachiko; Sasaki, Hidenao; Tamaki, Nagara

    2013-05-01

    Cognitive impairment is a representative neuropsychiatric presentation that accompanies Parkinson disease (PD). The purpose of this study was to localize the cerebral regions associated with cognitive impairment in patients with PD using quantitative SPECT. Thirty-two patients with PD (mean [SD] age, 75 [8] years; 25 women; Hoehn-Yahr scores from 2 to 5) underwent quantitative brain SPECT using 123I iodoamphetamine. Parametric images of regional cerebral blood flow (rCBF) were spatially normalized to the standard brain atlas. First, voxel-by-voxel comparison between patients with PD with versus without cognitive impairment was performed to visualize overall trend of regional differences. Next, the individual quantitative rCBF values were extracted in representative cortical regions using a standard region-of-interest template to compare the quantitative rCBF values. Patients with cognitive impairment showed trends of lower rCBF in the left frontal and temporal cortices as well as in the bilateral medial frontal and anterior cingulate cortices in the voxel-by-voxel analyses. Region-of-interest-based analysis demonstrated significantly lower rCBF in the bilateral anterior cingulate cortices (right, 25.8 [5.5] vs 28.9 [5.7] mL per 100 g/min, P left, 25.8 [5.8] vs 29.1 [5.7] mL per 100 g/min, P left frontal and temporal cortices as well as in the bilateral medial frontal and anterior cingulate cortices. The results suggested dysexecutive function as an underlining mechanism of cognitive impairment in patients with PD.

  11. Issues in Localization of brain function: The case of lateralized frontal cortex in cognition, emotion, and psychopathology

    Directory of Open Access Journals (Sweden)

    Gregory A. Miller

    2013-01-01

    Full Text Available The appeal of simple, sweeping portraits of large-scale brain mechanisms relevant to psychological phenomena competes with a rich, complex research base. As a prominent example, two views of frontal brain organization have emphasized dichotomous lateralization as a function of either emotional valence (positive/negative or approach/avoidance motivation. Compelling findings support each. The literature has struggled to choose between them for three decades, without success. Both views are proving untenable as comprehensive models. Recent evidence indicates that positive valence and approach motivation are associated with different areas in the left hemisphere. Evidence of other frontal lateralizations, involving distinctions among dimensions of depression and anxiety, make a dichotomous view even more problematic. Hemodynamic and electromagnetic neuroimaging studies suggest considerable functional differentiation, in specialization and activation, of subregions of frontal cortex, including their connectivity to each other and to other regions. Such findings contribute to a more nuanced understanding of functional localization that accommodates aspects of multiple theoretical perspectives.

  12. Altered regional homogeneity of brain spontaneous signals in SIV infected rhesus macaque model.

    Science.gov (United States)

    Zhao, Jing; Jing, Bin; Chen, Feng; Liu, Jiaojiao; Wang, Yuanyuan; Li, Hongjun

    2017-04-01

    Regional homogeneity (ReHo), a measurement from resting-state functional magnetic imaging (rs-fMRI) to reflect local synchronization of brain activities, has been widely explored in previous studies of neurological diseases. SIV infected model for detecting the neurological changes with progression was studied. In the study, six rhesus macaques infected by simian immunodeficiency virus (SIV) were scanned by resting-state fMRI at the following time points: before SIV inoculation (baseline), 12weeks and 24weeks post inoculation (12wpi, 24wpi). Meanwhile, the immunological parameters including serum percentage of CD4+ T cell, CD4/CD8 ratio and absolute CD4+ T cell number were measured and analyzed. In comparison of baseline, significant decreased ReHo was found in the left superior frontal gyrus, left superior temporal gyrus, left hippocampus, right precuneus, left angular gyrus, and bilateral occipital gyrus; in contrast increased ReHo in putamen at 12wpi. Moreover, at the time of 24wpi, decreased ReHo was observed in the right postcentral gyrus, left precentral gyrus, posterior cingulated gyrus and thalamus, while ReHo was increased in the left putamen, hippocampus, left anterior cingulated cortex and precentral cortex. The correlation analysis revealed that ReHo in the superior frontal gyrus showed negative association with CD4/CD8 ratio and positive with absolute CD4+ T cell number. The correlation analysis showed that percentage of CD4+ was correlated with the ReHo values in right middle frontal gyrus, bilateral thalamus and amygdala positively; negative relationship with left putamen, left superior frontal gyrus, left superior and middle temporal gyrus. The study first indicates that hippocampus, putamen, frontal and occipital lobe were impaired by using rs-fMRI and correlated with immunological parameters. Thus, ReHo value can be utilized as a noninvasive biomarker of spontaneous brain activity changes caused by the progression of neurological impairments

  13. Nontraumatic frontal lobe hemorrhages: Clinical-computed tomographic correlations

    International Nuclear Information System (INIS)

    Weisberg, L.A.; Stazio, A.; Veterans Administration Hospital, New Orleans, LA; Charity Hospital, New Orleans, LA

    1988-01-01

    Correlation of lesion location and appearance with clinical sequelae in 25 patients with CT-proven frontal lobe hematomas reveals 10 of 25 hematomas were located above the frontal horns of the lateral ventricles. Nine of the 10 patients were normotensive. All presented with contralateral motor and sensory deficits. Four of 25 hematomas were situated inferior to the frontal horns. All these patients were hypertensive, rapidly became comatose and exhibited hemiplegia, hemianestesia and gaze preference contralateral to the hemiplegia. Five patients had frontal hematomas which extended inward from the interhemispheric fissure or caval-septal region. All were normotensive. All had anterior cerebral-anterior communicating artery aneurysms on angiography. Four patients had hematomas involving both the frontal and temporal region. All were normotensive with no known cause for hemorrhage. Two patients had bifrontal hematomas; one had butterfly appearance extending across the interhemispheric fissure and the other was midline but had no interhemispheric blood. Both were normotensive. One had an anterior cerebral-anterior communicating artery aneurysm. (orig.)

  14. Congenital olfactory impairment is linked to cortical changes in prefrontal and limbic brain regions

    DEFF Research Database (Denmark)

    Karstensen, Helena Gásdal; Vestergaard, Martin; Baaré, William F C

    2018-01-01

    differently in individuals who suffer from lifelong olfactory deprivation relative to healthy normosmic individuals. To address this question, we examined if regional variations in gray matter volume were associated with smell ability in seventeen individuals with isolated congenital olfactory impairment (COI...... in left middle frontal gyrus and right superior frontal sulcus (SFS). COI subjects with severe olfactory impairment (anosmia) had reduced grey matter volume in the left mOFC and increased volume in right piriform cortex and SFS. Within the COI group olfactory ability, measured with the "Sniffin' Sticks...... piriform cortex, while olfactory identification was negatively associated with right SFS volume. Our findings suggest that lifelong olfactory deprivation trigger changes in the cortical volume of prefrontal and limbic brain regions previously linked to olfactory memory....

  15. Frontal assessment battery and frontal atrophy in amyotrophic lateral sclerosis

    OpenAIRE

    Terada, Tatsuhiro; Miyata, Jun; Obi, Tomokazu; Kubota, Manabu; Yoshizumi, Miho; Yamazaki, Kinya; Mizoguchi, Kouichi; Murai, Toshiya

    2017-01-01

    Abstract Objectives To determine the potential utility of the frontal assessment battery (FAB) in assessing cognitive impairments in amyotrophic lateral sclerosis (ALS), we investigated the association between the FAB score and regional gray matter volume, and ascertained whether the regional brain alterations related to cognitive impairments occur in relatively mild stage of ALS. Materials and Methods Twenty?four ALS patients with a Mini?Mental State Examination score of >23, a normal score ...

  16. Tempering Proactive Cognitive Control by Transcranial Direct Current Stimulation of the Right (but Not the Left Lateral Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Carlos J. Gómez-Ariza

    2017-05-01

    Full Text Available Behavioral and neuroimaging data support the distinction of two different modes of cognitive control: proactive, which involves the active and sustained maintenance of task-relevant information to bias behavior in accordance with internal goals; and reactive, which entails the detection and resolution of interference at the time it occurs. Both control modes may be flexibly deployed depending on a variety of conditions (i.e., age, brain alterations, motivational factors, prior experience. Critically, and in line with specific predictions derived from the dual mechanisms of control account (Braver, 2012, findings from neuroimaging studies indicate that the same lateral prefrontal regions (i.e., left dorsolateral cortex and right inferior frontal junction may implement different control modes on the basis of temporal dynamics of activity, which would be modulated in response to external or internal conditions. In the present study, we aimed to explore whether transcraneal direct current stimulation over either the left dorsolateral prefrontal cortex or the right inferior frontal junction would differentially modulate performance on the AX-CPT, a well-validated task that provides sensitive and reliable behavioral indices of proactive/reactive control. The study comprised six conditions of real stimulation [3 (site: left dorsolateral, right dorsolateral and right inferior frontal junction × 2 (polarity: anodal and cathodal], and one sham condition. The reference electrode was always placed extracephalically. Performance on the AX-CPT was assessed through two blocks of trials. The first block took place while stimulation was being delivered, whereas the second block was administered after stimulation completion. The results indicate that both offline cathodal stimulation of the right dorsolateral prefrontal cortex and online anodal stimulation of the right inferior frontal junction led participants to be much less proactive, with such a dissociation

  17. Activation of extrastriate and frontal cortical areas by visual words and word-like stimuli

    International Nuclear Information System (INIS)

    Petersen, S.E.; Fox, P.T.; Snyder, A.Z.; Raichle, M.E.

    1990-01-01

    Visual presentation of words activates extrastriate regions of the occipital lobes of the brain. When analyzed by positron emission tomography (PET), certain areas in the left, medial extrastriate visual cortex were activated by visually presented pseudowords that obey English spelling rules, as well as by actual words. These areas were not activated by nonsense strings of letters or letter-like forms. Thus visual word form computations are based on learned distinctions between words and nonwords. In addition, during passive presentation of words, but not pseudowords, activation occurred in a left frontal area that is related to semantic processing. These findings support distinctions made in cognitive psychology and computational modeling between high-level visual and semantic computations on single words and describe the anatomy that may underlie these distinctions

  18. The anatomy of the human medial forebrain bundle: Ventral tegmental area connections to reward-associated subcortical and frontal lobe regions

    Directory of Open Access Journals (Sweden)

    Volker Arnd Coenen

    Full Text Available Introduction: Despite their importance in reward, motivation, and learning there is only sparse anatomical knowledge about the human medial forebrain bundle (MFB and the connectivity of the ventral tegmental area (VTA. A thorough anatomical and microstructural description of the reward related PFC/OFC regions and their connection to the VTA - the superolateral branch of the MFB (slMFB - is however mandatory to enable an interpretation of distinct therapeutic effects from different interventional treatment modalities in neuropsychiatric disorders (DBS, TMS etc.. This work aims at a normative description of the human MFB (and more detailed the slMFB anatomy with respect to distant prefrontal connections and microstructural features. Methods and material: Healthy subjects (n = 55; mean age ± SD, 40 ± 10 years; 32 females underwent high resolution anatomical magnetic resonance imaging including diffusion tensor imaging. Connectivity of the VTA and the resulting slMFB were investigated on the group level using a global tractography approach. The Desikan/Killiany parceling (8 segments of the prefrontal cortex was used to describe sub-segments of the MFB. A qualitative overlap with Brodmann areas was additionally described. Additionally, a pure visual analysis was performed comparing local and global tracking approaches for their ability to fully visualize the slMFB. Results: The MFB could be robustly described both in the present sample as well as in additional control analyses in data from the human connectome project. Most VTA- connections reached the superior frontal gyrus, the middel frontal gyrus and the lateral orbitofrontal region corresponding to Brodmann areas 10, 9, 8, 11, and 11m. The projections to these regions comprised 97% (right and 98% (left of the total relative fiber counts of the slMFB. Discussion: The anatomical description of the human MFB shows far reaching connectivity of VTA to reward-related subcortical and

  19. Auditory conflict resolution correlates with medial-lateral frontal theta/alpha phase synchrony.

    Science.gov (United States)

    Huang, Samantha; Rossi, Stephanie; Hämäläinen, Matti; Ahveninen, Jyrki

    2014-01-01

    When multiple persons speak simultaneously, it may be difficult for the listener to direct attention to correct sound objects among conflicting ones. This could occur, for example, in an emergency situation in which one hears conflicting instructions and the loudest, instead of the wisest, voice prevails. Here, we used cortically-constrained oscillatory MEG/EEG estimates to examine how different brain regions, including caudal anterior cingulate (cACC) and dorsolateral prefrontal cortices (DLPFC), work together to resolve these kinds of auditory conflicts. During an auditory flanker interference task, subjects were presented with sound patterns consisting of three different voices, from three different directions (45° left, straight ahead, 45° right), sounding out either the letters "A" or "O". They were asked to discriminate which sound was presented centrally and ignore the flanking distracters that were phonetically either congruent (50%) or incongruent (50%) with the target. Our cortical MEG/EEG oscillatory estimates demonstrated a direct relationship between performance and brain activity, showing that efficient conflict resolution, as measured with reduced conflict-induced RT lags, is predicted by theta/alpha phase coupling between cACC and right lateral frontal cortex regions intersecting the right frontal eye fields (FEF) and DLPFC, as well as by increased pre-stimulus gamma (60-110 Hz) power in the left inferior fontal cortex. Notably, cACC connectivity patterns that correlated with behavioral conflict-resolution measures were found during both the pre-stimulus and the pre-response periods. Our data provide evidence that, instead of being only transiently activated upon conflict detection, cACC is involved in sustained engagement of attentional resources required for effective sound object selection performance.

  20. Auditory Conflict Resolution Correlates with Medial–Lateral Frontal Theta/Alpha Phase Synchrony

    Science.gov (United States)

    Huang, Samantha; Rossi, Stephanie; Hämäläinen, Matti; Ahveninen, Jyrki

    2014-01-01

    When multiple persons speak simultaneously, it may be difficult for the listener to direct attention to correct sound objects among conflicting ones. This could occur, for example, in an emergency situation in which one hears conflicting instructions and the loudest, instead of the wisest, voice prevails. Here, we used cortically-constrained oscillatory MEG/EEG estimates to examine how different brain regions, including caudal anterior cingulate (cACC) and dorsolateral prefrontal cortices (DLPFC), work together to resolve these kinds of auditory conflicts. During an auditory flanker interference task, subjects were presented with sound patterns consisting of three different voices, from three different directions (45° left, straight ahead, 45° right), sounding out either the letters “A” or “O”. They were asked to discriminate which sound was presented centrally and ignore the flanking distracters that were phonetically either congruent (50%) or incongruent (50%) with the target. Our cortical MEG/EEG oscillatory estimates demonstrated a direct relationship between performance and brain activity, showing that efficient conflict resolution, as measured with reduced conflict-induced RT lags, is predicted by theta/alpha phase coupling between cACC and right lateral frontal cortex regions intersecting the right frontal eye fields (FEF) and DLPFC, as well as by increased pre-stimulus gamma (60–110 Hz) power in the left inferior fontal cortex. Notably, cACC connectivity patterns that correlated with behavioral conflict-resolution measures were found during both the pre-stimulus and the pre-response periods. Our data provide evidence that, instead of being only transiently activated upon conflict detection, cACC is involved in sustained engagement of attentional resources required for effective sound object selection performance. PMID:25343503

  1. Auditory conflict resolution correlates with medial-lateral frontal theta/alpha phase synchrony.

    Directory of Open Access Journals (Sweden)

    Samantha Huang

    Full Text Available When multiple persons speak simultaneously, it may be difficult for the listener to direct attention to correct sound objects among conflicting ones. This could occur, for example, in an emergency situation in which one hears conflicting instructions and the loudest, instead of the wisest, voice prevails. Here, we used cortically-constrained oscillatory MEG/EEG estimates to examine how different brain regions, including caudal anterior cingulate (cACC and dorsolateral prefrontal cortices (DLPFC, work together to resolve these kinds of auditory conflicts. During an auditory flanker interference task, subjects were presented with sound patterns consisting of three different voices, from three different directions (45° left, straight ahead, 45° right, sounding out either the letters "A" or "O". They were asked to discriminate which sound was presented centrally and ignore the flanking distracters that were phonetically either congruent (50% or incongruent (50% with the target. Our cortical MEG/EEG oscillatory estimates demonstrated a direct relationship between performance and brain activity, showing that efficient conflict resolution, as measured with reduced conflict-induced RT lags, is predicted by theta/alpha phase coupling between cACC and right lateral frontal cortex regions intersecting the right frontal eye fields (FEF and DLPFC, as well as by increased pre-stimulus gamma (60-110 Hz power in the left inferior fontal cortex. Notably, cACC connectivity patterns that correlated with behavioral conflict-resolution measures were found during both the pre-stimulus and the pre-response periods. Our data provide evidence that, instead of being only transiently activated upon conflict detection, cACC is involved in sustained engagement of attentional resources required for effective sound object selection performance.

  2. Regional cerebral blood flow in schizophrenics

    International Nuclear Information System (INIS)

    Uchino, Jun; Ohta, Yasuyuki; Nakane, Yoshibumi; Mori, Hiroyuki; Hirota, Noriyoshi; Yonekura, Masahiro.

    1987-01-01

    The present study on schizophrenics dealt with the relationship of regional cerebral blood flow (rCBF) to age, disease duration, and treatment length with chlorpromazine hydrochloride (CPZ). Regional cerebral blood flow in 28 cerebral regions of interest was measured by iv injection of X-133 in 54 schizophrenic patients and 39 healthy volunteers. Neither age nor dosage of CPZ significantly influenced rCBF. All patients, including 11 treated for a short period of time (6 months or less), were characterized by having a decreased rCBF over the whole cerebrum. Thirty-four patients treated for a long period of time (2 years or more) had a varied rCBF distribution in the left hemisphere, with the most predominant feature being the decrease in rCBF in the frontal lobe (i.e., ''hypofrontality''); however, there was no linear correlation between rCBF and disease duration. A decreased rCBE in the right occipital region was seen in patients with paranoid schizophrenia, suggesting that manifestations of symptoms may depend on disturbed regions. These results suggest that cerebral dysfunction in schizophrenic patients may not be restricted to the frontal lobe, but cover the whole cerebrum, and that nonuniform dysfunction in various regions of the cerebrum, including the frontal lobe, may be involved in manifestations of symptoms. (Namekawa, K.)

  3. Regional cerebral blood flow in schizophrenics

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, J.; Ohta, Y.; Nakane, Y.; Mori, H.; Hirota, N.; Yonekura, M.

    1987-01-01

    The present study on schizophrenics dealt with the relationship of regional cerebral blood flow (rCBF) to age, disease duration, and treatment length with chlorpromazine hydrochloride (CPZ). Regional cerebral blood flow in 28 cerebral regions of interest was measured by iv injection of /sup 133/X in 54 schizophrenic patients and 39 healthy volunteers. Neither age nor dosage of CPZ significantly influenced rCBF. All patients, including 11 treated for a short period of time (6 months or less), were characterized by having a decreased rCBF over the whole cerebrum. Thirty-four patients treated for a long period of time (2 years or more) had a varied rCBF distribution in the left hemisphere, with the most predominant feature being the decrease in rCBF in the frontal lobe (i.e., hypofrontality); however, there was no linear correlation between rCBF and disease duration. A decreased rCBE in the right occipital region was seen in patients with paranoid schizophrenia, suggesting that manifestations of symptoms may depend on disturbed regions. These results suggest that cerebral dysfunction in schizophrenic patients may not be restricted to the frontal lobe, but cover the whole cerebrum, and that nonuniform dysfunction in various regions of the cerebrum, including the frontal lobe, may be involved in manifestations of symptoms.

  4. Frontal and superior temporal auditory processing abnormalities in schizophrenia.

    Science.gov (United States)

    Chen, Yu-Han; Edgar, J Christopher; Huang, Mingxiong; Hunter, Michael A; Epstein, Emerson; Howell, Breannan; Lu, Brett Y; Bustillo, Juan; Miller, Gregory A; Cañive, José M

    2013-01-01

    Although magnetoencephalography (MEG) studies show superior temporal gyrus (STG) auditory processing abnormalities in schizophrenia at 50 and 100 ms, EEG and corticography studies suggest involvement of additional brain areas (e.g., frontal areas) during this interval. Study goals were to identify 30 to 130 ms auditory encoding processes in schizophrenia (SZ) and healthy controls (HC) and group differences throughout the cortex. The standard paired-click task was administered to 19 SZ and 21 HC subjects during MEG recording. Vector-based Spatial-temporal Analysis using L1-minimum-norm (VESTAL) provided 4D maps of activity from 30 to 130 ms. Within-group t-tests compared post-stimulus 50 ms and 100 ms activity to baseline. Between-group t-tests examined 50 and 100 ms group differences. Bilateral 50 and 100 ms STG activity was observed in both groups. HC had stronger bilateral 50 and 100 ms STG activity than SZ. In addition to the STG group difference, non-STG activity was also observed in both groups. For example, whereas HC had stronger left and right inferior frontal gyrus activity than SZ, SZ had stronger right superior frontal gyrus and left supramarginal gyrus activity than HC. Less STG activity was observed in SZ than HC, indicating encoding problems in SZ. Yet auditory encoding abnormalities are not specific to STG, as group differences were observed in frontal and SMG areas. Thus, present findings indicate that individuals with SZ show abnormalities in multiple nodes of a concurrently activated auditory network.

  5. The classification of frontal sinus pneumatization patterns by CT-based volumetry.

    Science.gov (United States)

    Yüksel Aslier, Nesibe Gül; Karabay, Nuri; Zeybek, Gülşah; Keskinoğlu, Pembe; Kiray, Amaç; Sütay, Semih; Ecevit, Mustafa Cenk

    2016-10-01

    We aimed to define the classification of frontal sinus pneumatization patterns according to three-dimensional volume measurements. Datasets of 148 sides of 74 dry skulls were generated by the computerized tomography-based volumetry to measure frontal sinus volumes. The cutoff points for frontal sinus hypoplasia and hyperplasia were tested by ROC curve analysis and the validity of the diagnostic points was measured. The overall frequencies were 4.1, 14.2, 37.2 and 44.5 % for frontal sinus aplasia, hypoplasia, medium size and hyperplasia, respectively. The aplasia was bilateral in all three skulls. Hypoplasia was seen 76 % at the right side and hyperplasia was seen 56 % at the left side. The cutoff points for diagnosing frontal sinus hypoplasia and hyperplasia were '1131.25 mm(3)' (95.2 % sensitivity and 100 % specificity) and '3328.50 mm(3)' (88 % sensitivity and 86 % specificity), respectively. The findings provided in the present study, which define frontal sinus pneumatization patterns by CT-based volumetry, proved that two opposite sides of the frontal sinuses are asymmetric and three-dimensional classification should be developed by CT-based volumetry, because two-dimensional evaluations lack depth measurement.

  6. Quantitative description of the regional mechanics of the left atria by electroanatomical mapping

    International Nuclear Information System (INIS)

    Kuklik, Pawel; Molaee, Payman; Brooks, Anthony G; John, Bobby; Worthley, Stephen G; Sanders, Prashanthan

    2010-01-01

    The left atrium is a complex chamber, which plays an integral role in the maintenance of physiologic hemodynamic and electrical stability of the heart and is involved in many disease states, most commonly atrial fibrillation. Preserving regions of the left atrium that contribute the greatest to atrial mechanical function during curative strategies for atrial fibrillation are important. We present here a new application of the CARTO electroanatomical mapping system in the assessment of the left atria mechanical function. Electroanatomical data were collected in course of the electrophysiological procedure in 11 control patients and 12 patients with paroxysmal atrial fibrillation. The three-dimensional geometry of the left atria was reconstructed in 10 ms intervals and segmented into distinct regions. For each segment, a regional ejection fraction was calculated. We found that anterior, septal and lateral segments have significantly greater regional ejection fraction than atria roof, inferior and posterior segments. Therefore, we hypothesize that in order to minimize the impact on atrial mechanical function, an important determinant of thromboembolic risk, damage should be minimized to these atrial regions

  7. Approach and withdrawal motivation in schizophrenia: an examination of frontal brain asymmetric activity.

    Science.gov (United States)

    Horan, William P; Wynn, Jonathan K; Mathis, Ian; Miller, Gregory A; Green, Michael F

    2014-01-01

    Although motivational disturbances are common in schizophrenia, their neurophysiological and psychological basis is poorly understood. This electroencephalography (EEG) study examined the well-established motivational direction model of asymmetric frontal brain activity in schizophrenia. According to this model, relative left frontal activity in the resting EEG reflects enhanced approach motivation tendencies, whereas relative right frontal activity reflects enhanced withdrawal motivation tendencies. Twenty-five schizophrenia outpatients and 25 healthy controls completed resting EEG assessments of frontal asymmetry in the alpha frequency band (8-12 Hz), as well as a self-report measure of behavioral activation and inhibition system (BIS/BAS) sensitivity. Patients showed an atypical pattern of differences from controls. On the EEG measure patients failed to show the left lateralized activity that was present in controls, suggesting diminished approach motivation. On the self-report measure, patients reported higher BIS sensitivity than controls, which is typically interpreted as heightened withdrawal motivation. EEG asymmetry scores did not significantly correlate with BIS/BAS scores or with clinical symptom ratings among patients. The overall pattern suggests a motivational disturbance in schizophrenia characterized by elements of both diminished approach and elevated withdrawal tendencies.

  8. The effect of left frontal transcranial direct-current stimulation on propranolol-induced fear memory acquisition and consolidation deficits.

    Science.gov (United States)

    Nasehi, Mohammad; Khani-Abyaneh, Mozhgan; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2017-07-28

    Accumulating evidence supports the efficacy of transcranial direct current stimulation (tDCS) in modulating numerous cognitive functions. Despite the fact that tDCS has been used for the enhancement of memory and cognition, very few animal studies have addressed its impact on the modulation of fear memory. This study was designed to determine whether pre/post-training frontal tDCS application would alter fear memory acquisition and/or consolidation deficits induced by propranolol in NMRI mice. Results indicated that administration of β1-adrenoceptor blocker propranolol (0.1mg/kg) impaired fear memory retrieval. Pre/post-training application of anodal tDCS when propranolol was administered prior to training reversed contextual memory retrieval whereas only the anodal application prior to training could induce the same result in the auditory test. Meanwhile, anodal stimulation had no effect on fear memories by itself. Moreover, regardless of when cathode was applied and propranolol administered, their combination restored contextual memory retrieval, while only cathodal stimulation prior to training facilitated the contextual memory retrieval. Also, auditory memory retrieval was restored when cathodal stimulation and propranolol occurred prior to training but it was abolished when stimulation occurred after training and propranolol was administered prior to training. Collectively, our findings show that tDCS applied on the left frontal cortex of mice affects fear memory performance. This alteration seems to be task-dependent and varies depending on the nature and timing of the stimulation. In certain conditions, tDCS reverses the effect of propranolol. These results provide initial evidence to support the timely use of tDCS for the modulation of fear-related memories. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Baseline and cognition activated regional cerebral brain flow of naive paranoid schizophrenics

    International Nuclear Information System (INIS)

    Li Huafang; Gu Niufan; Xiu Yan; Chen Shaoliang

    2002-01-01

    Objective: To investigate the baseline and cognition activated regional cerebral blood flow (rCBF) in naive paranoid schizophrenics and the relationships between the symptoms and rCBF. Methods: The scale of positive and negative syndrome scale (PANSS) was adopted to evaluate the symptoms of schizophrenia. The baseline and cognition activated 99 Tc m -ethylcysteinate dimmer (ECD) SPECT were performed one after the other within two days. Wisconsin card sorting test (WCST) was used as cognitive task. Semi-quantitative analyses were applied. Results: There were no significant differences of WCST results between two groups. Compared with normal controls, the baseline rCBF ratios of left to right interior posterior temporal cortex in patients were significantly higher, while that of left mid-medial frontal cortex was significantly lower in patients. There was no significant difference of rCBF ratios of baseline to cognition activated states in patients. WCST couldn't activate the frontal function in patients. The total score of PANSS, score of positive subscale and general syndrome subscale were correlated with the rCBF ratio of several regions of interest (ROIs) . Some symptoms were correlated with the rCBF ratio of some ROIs. Conclusions: The hyperperfusion of left and right temporal inferior posterior cortex and hypoperfusion of left mid-medial frontal cortex could be seen in naive paranoid schizophrenics. Hypofrontality existed in patients before treatment. Some positive symptoms were correlated with the rCBF of some ROI

  10. The Medial Temporal Lobe and the Left Inferior Prefrontal Cortex Jointly Support Interference Resolution in Verbal Working Memory

    Science.gov (United States)

    Oztekin, Ilke; Curtis, Clayton E.; McElree, Brian

    2009-01-01

    During working memory retrieval, proactive interference (PI) can be induced by semantic similarity and episodic familiarity. Here, we used fMRI to test hypotheses about the role of the left inferior frontal gyrus (LIFG) and the medial temporal lobe (MTL) regions in successful resolution of PI. Participants studied six-word lists and responded to a…

  11. Treatment with a GLP-1R agonist over four weeks promotes weight loss-moderated changes in frontal-striatal brain structures in individuals with mood disorders

    DEFF Research Database (Denmark)

    Mansur, Rodrigo B; Zugman, Andre; Ahmed, Juhie

    2017-01-01

    regions (e.g. RR: 1.011, p=0.049 in the left rostral middle frontal area). Changes in regional volumes were associated with improvement in executive function (e.g. r=0.698, p=0.003 for the right superior frontal area). Adjunctive liraglutide results in clinically significant weight loss......, with corresponding improvement in cognitive function; changes in cognitive function were partially moderated by changes in brain morphometry, underscoring the interrelationship between weight and brain structure/function.......Cognitive deficits are a core feature across psychiatric disorders. Emerging evidence indicates that metabolic pathways are highly relevant for the substrates and phenomenology of the cognitive domain. Herein, we aimed to determine the effects of liraglutide, a GLP-1R agonist, on brain structural...

  12. What makes a frontal area of primate brain the frontal eye field?

    Directory of Open Access Journals (Sweden)

    Pierre ePouget

    2015-05-01

    Full Text Available The frontal eye field region (FEF of the oculomotor pathways has been intensely studied. The primary goal of this review is to illustrate the phylogenetic displacement of the FEF locus in primate species. The locus is arrayed along the arcuate sulcus in monkeys and abuts into the primary motor strip region in humans. The strengths and limitations of the various functional, anatomical and histological methodologies used to identify such regions are also discussed.

  13. Regional cerebral blood flow in schizophrenic patients

    International Nuclear Information System (INIS)

    Sagawa, Katsuo; Sibuya, Isoo; Oiji, Arata; Kawakatsu, Sinobu; Morinobu, Shigeru; Totsuka, Shiro; Kinoshita, Osami; Yazaki, Mitsuyasu.

    1990-01-01

    Seventy-six schizophrenic patients were examined by a Xe-133 inhalation method to determine regional cerebral blood flow. A decreased blood flow was observed in the frontal lobe, especially in the right inferior part. In a study on the relationship between disease subtypes and regional cerebral blood flow, negative symptoms were found more predominantly associated with dissolution type than delusion type. In the group of dissolution type, a decreased blood flow was observed in both the right inferior frontal lobe and the right upper hemisphere, in comparison to the group of delution type. Patients presenting with auditory hallucination had a significantly higher incidence of both negative and positive symptoms, as compared with those not presenting with it. In such patients, a significantly decreased blood flow was also seen in the left upper frontal lobe and the bilateral parietal lobe. Xe-133 inhalation method should assist in evaluating brain function in schizophrenic patients, thus leading to the likelihood of developing a new treatment modality. (N.K.)

  14. Gender differences in the activation of inferior frontal cortex during emotional speech perception.

    Science.gov (United States)

    Schirmer, Annett; Zysset, Stefan; Kotz, Sonja A; Yves von Cramon, D

    2004-03-01

    We investigated the brain regions that mediate the processing of emotional speech in men and women by presenting positive and negative words that were spoken with happy or angry prosody. Hence, emotional prosody and word valence were either congruous or incongruous. We assumed that an fRMI contrast between congruous and incongruous presentations would reveal the structures that mediate the interaction of emotional prosody and word valence. The left inferior frontal gyrus (IFG) was more strongly activated in incongruous as compared to congruous trials. This difference in IFG activity was significantly larger in women than in men. Moreover, the congruence effect was significant in women whereas it only appeared as a tendency in men. As the left IFG has been repeatedly implicated in semantic processing, these findings are taken as evidence that semantic processing in women is more susceptible to influences from emotional prosody than is semantic processing in men. Moreover, the present data suggest that the left IFG mediates increased semantic processing demands imposed by an incongruence between emotional prosody and word valence.

  15. Research on spontaneous activity in adult anisometropic amblyopia with regional homogeneity

    Science.gov (United States)

    Huang, Yufeng; Zhou, Yifeng

    2017-06-01

    Amblyopia usually occurs in early childhood and results in monocular visual impairment. The functional magnetic resonance imaging (fMRI) studies have reflected functional anomaly in amblyopia. In resting-state fMRI study, spontaneous activity changes abnormally in anisometropic amblyopia could be revealed by the regional homogeneity (ReHo). Twenty two adult anisometropic amblyopes and Twenty one normal controls participated in this fMRI study. Two sample T test was carried out to analysis ReHo within the whole brain for the inter groups. Compare with normal group, our study found that the amblyopia’s ReHo mainly increased in the left frontal lobe, while decreased in the left cerebellum, the temporal lobe (left and right), and the left parietal lobe. And the ReHo values in middle and inferior temporal lobe, the prefrontal lobe, frontal lobe (positive) and parietal lobe and medial frontal gyrus (negative) could be correlated with the acuity deficit of amblyopia. The results increased in ReHo may indicate compensatory plasticity in higher vision information process, while the decreased in ReHo may reflect decreased ability in eye movement, spatial sense and visuo-motor coordination. The correlation revealed that the vision deficit may correspond to the spontaneous in certain brain area.

  16. Influence of motivation on control hierarchy in the human frontal cortex.

    Science.gov (United States)

    Bahlmann, Jörg; Aarts, Esther; D'Esposito, Mark

    2015-02-18

    The frontal cortex mediates cognitive control and motivation to shape human behavior. It is generally observed that medial frontal areas are involved in motivational aspects of behavior, whereas lateral frontal regions are involved in cognitive control. Recent models of cognitive control suggest a rostro-caudal gradient in lateral frontal regions, such that progressively more rostral (anterior) regions process more complex aspects of cognitive control. How motivation influences such a control hierarchy is still under debate. Although some researchers argue that both systems work in parallel, others argue in favor of an interaction between motivation and cognitive control. In the latter case it is yet unclear how motivation would affect the different levels of the control hierarchy. This was investigated in the present functional MRI study applying different levels of cognitive control under different motivational states (low vs high reward anticipation). Three levels of cognitive control were tested by varying rule complexity: stimulus-response mapping (low-level), flexible task updating (mid-level), and sustained cue-task associations (high-level). We found an interaction between levels of cognitive control and motivation in medial and lateral frontal subregions. Specifically, flexible updating (mid-level of control) showed the strongest beneficial effect of reward and only this level exhibited functional coupling between dopamine-rich midbrain regions and the lateral frontal cortex. These findings suggest that motivation differentially affects the levels of a control hierarchy, influencing recruitment of frontal cortical control regions depending on specific task demands. Copyright © 2015 the authors 0270-6474/15/353207-11$15.00/0.

  17. The Association Between Suicidal Behavior, Attentional Control, and Frontal Asymmetry

    Directory of Open Access Journals (Sweden)

    Catherine Thompson

    2018-03-01

    Full Text Available It can be difficult to identify those at risk of suicide because suicidal thoughts are often internalized and not shared with others. Yet to prevent suicide attempts it is crucial to identify suicidal thoughts and actions at an early stage. Past studies have suggested that deficits in attentional control are associated with suicide, with the argument that individuals are unable to inhibit negative thoughts and direct resources away from negative information. The current study aimed to investigate the association of suicidal behavior with neurological and behavioral markers, measuring attentional bias and inhibition in two Stroop tasks. Fifty-four participants responded to the color of color words in a standard Stroop task and the color of positive, negative, and neutral words in an emotional Stroop task. Electroencephalographic (EEG activity was recorded from frontal areas during each task and at resting. Participants were separated into a low-risk and high-risk group according to their self-reported suicidal behavior. Participants in the high-risk group showed slower response times in the color Stroop and reduced accuracy to incongruent trials, but faster response times in the emotional Stroop task. Response times to the word “suicide” were significantly slower for the high-risk group. This indicates an attentional bias toward specific negative stimuli and difficulties inhibiting information for those with high levels of suicidal behavior. In the emotional Stroop task the high-risk group showed reduced activity in leftward frontal areas, suggesting limitations in the ability to regulate emotional processing via the left frontal regions. The findings support the argument that deficits in attentional control are related to suicidal behavior. The research also suggests that under certain conditions frontal asymmetry may be associated with suicidal behavior.

  18. The Association Between Suicidal Behavior, Attentional Control, and Frontal Asymmetry

    Science.gov (United States)

    Thompson, Catherine; Ong, Elsie Li Chen

    2018-01-01

    It can be difficult to identify those at risk of suicide because suicidal thoughts are often internalized and not shared with others. Yet to prevent suicide attempts it is crucial to identify suicidal thoughts and actions at an early stage. Past studies have suggested that deficits in attentional control are associated with suicide, with the argument that individuals are unable to inhibit negative thoughts and direct resources away from negative information. The current study aimed to investigate the association of suicidal behavior with neurological and behavioral markers, measuring attentional bias and inhibition in two Stroop tasks. Fifty-four participants responded to the color of color words in a standard Stroop task and the color of positive, negative, and neutral words in an emotional Stroop task. Electroencephalographic (EEG) activity was recorded from frontal areas during each task and at resting. Participants were separated into a low-risk and high-risk group according to their self-reported suicidal behavior. Participants in the high-risk group showed slower response times in the color Stroop and reduced accuracy to incongruent trials, but faster response times in the emotional Stroop task. Response times to the word “suicide” were significantly slower for the high-risk group. This indicates an attentional bias toward specific negative stimuli and difficulties inhibiting information for those with high levels of suicidal behavior. In the emotional Stroop task the high-risk group showed reduced activity in leftward frontal areas, suggesting limitations in the ability to regulate emotional processing via the left frontal regions. The findings support the argument that deficits in attentional control are related to suicidal behavior. The research also suggests that under certain conditions frontal asymmetry may be associated with suicidal behavior. PMID:29593586

  19. Challenge-driven attention: interacting frontal and brainstem systems

    Directory of Open Access Journals (Sweden)

    Rajeev D S Raizada

    2008-03-01

    Full Text Available The world is an unpredictable place, presenting challenges that fl uctuate from moment to moment. However, the neural systems for responding to such challenges are far from fully understood. Using fMRI, we studied an audiovisual task in which the trials' diffi culty and onset times varied unpredictably. Two regions were found to increase their activation for challenging trials, with their activities strongly correlated: right frontal cortex and the brainstem. The frontal area matched regions found in previous human studies of cognitive control, and activated in a graded manner with increasing task diffi culty. The brainstem responded only to the most diffi cult trials, showing a phasic activity pattern paralleling locus coeruleus recordings in monkeys. These results reveal a bridge between animal and human studies, and suggest interacting roles for the brainstem and right frontal cortex: the brainstem may signal that an attentional challenge is occurring, while right frontal cortex allocates cognitive resources in response.

  20. Regional cerebral blood flow in the persistent vegetative state

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Masaharu; Kuroda, Ryotaro; Ioku, Masahiko [Kinki Univ., Osakasayama, Osaka (Japan). Faculty of Medicine; and others

    1989-05-01

    Regional cerebral blood flow (CBF) in eight patients in a persistent vegetative state was measured and compared with that in five healthy volunteers. The patients were classified into three groups: Group 1 (locked-in syndrome) consisted of a single patient, Group 2 (typical vegetative state) of five patients, and Group 3 (prolonged coma) of two patients. CBF was measured early after onset by single photon emission computed tomography with {sup 123}I-N-isopropyl-p-iodo-amphetamine and/or {sup 99m}Tc-hexamethyl-propyleneamine oxime. The regions of interest (ROIs) were the bilateral frontal, temporal, parietal, occipital, and cerebellar areas and basal ganglia. The values obtained in these areas were averaged, and the ratio for each ROI ((the value in the ROI/the mean value) x 100) was calculated. 'Hyper-frontal distribution' of CBF was found to be rare in both the normal condition and the vegetative state. Higher CBF values were noted in the left than in the right frontal area in four of the five volunteers but in only four of the eight patients. CBF distribution in the frontal lobe was characteristic for each group: Group 1 showed high CBF bilaterally, although the elevation was statistically significant only on the right side, and Group 3 exhibited significantly low values. In Group 2, CBF was variable but, for the most part, within normal limits. Awareness was closely correlated with frontal lobe function and alteration of CBF in the frontal region. (author).

  1. Intraoperative subcortical mapping of a language-associated deep frontal tract connecting the superior frontal gyrus to Broca's area in the dominant hemisphere of patients with glioma.

    Science.gov (United States)

    Fujii, Masazumi; Maesawa, Satoshi; Motomura, Kazuya; Futamura, Miyako; Hayashi, Yuichiro; Koba, Itsuko; Wakabayashi, Toshihiko

    2015-06-01

    The deep frontal pathway connecting the superior frontal gyrus to Broca's area, recently named the frontal aslant tract (FAT), is assumed to be associated with language functions, especially speech initiation and spontaneity. Injury to the deep frontal lobe is known to cause aphasia that mimics the aphasia caused by damage to the supplementary motor area. Although fiber dissection and tractography have revealed the existence of the tract, little is known about its function. The aim of this study was to determine the function of the FAT via electrical stimulation in patients with glioma who underwent awake surgery. The authors analyzed the data from subcortical mapping with electrical stimulation in 5 consecutive cases (3 males and 2 females, age range 40-54 years) with gliomas in the left frontal lobe. Diffusion tensor imaging (DTI) and tractography of the FAT were performed in all cases. A navigation system and intraoperative MRI were used in all cases. During the awake phase of the surgery, cortical mapping was performed to find the precentral gyrus and Broca's area, followed by tumor resection. After the cortical layer was removed, subcortical mapping was performed to assess language-associated fibers in the white matter. In all 5 cases, positive responses were obtained at the stimulation sites in the subcortical area adjacent to the FAT, which was visualized by the navigation system. Speech arrest was observed in 4 cases, and remarkably slow speech and conversation was observed in 1 case. The location of these sites was also determined on intraoperative MR images and estimated on preoperative MR images with DTI tractography, confirming the spatial relationships among the stimulation sites and white matter tracts. Tumor removal was successfully performed without damage to this tract, and language function did not deteriorate in any of the cases postoperatively. The authors identified the left FAT and confirmed that it was associated with language functions. This

  2. Different regional gray matter loss in recent onset PTSD and non PTSD after a single prolonged trauma exposure.

    Directory of Open Access Journals (Sweden)

    Yunchun Chen

    Full Text Available OBJECTIVE: Gray matter loss in the limbic structures was found in recent onset post traumatic stress disorder (PTSD patients. In the present study, we measured regional gray matter volume in trauma survivors to verify the hypothesis that stress may cause different regional gray matter loss in trauma survivors with and without recent onset PTSD. METHOD: High resolution T1-weighted magnetic resonance imaging (MRI were obtained from coal mine flood disaster survivors with (n = 10 and without (n = 10 recent onset PTSD and 20 no trauma exposed normal controls. The voxel-based morphometry (VBM method was used to measure the regional gray matter volume in three groups, the correlations of PTSD symptom severities with the gray matter volume in trauma survivors were also analyzed by multiple regression. RESULTS: Compared with normal controls, recent onset PTSD patients had smaller gray matter volume in left dorsal anterior cingulate cortex (ACC, and non PTSD subjects had smaller gray matter volume in the right pulvinar and left pallidum. The gray matter volume of the trauma survivors correlated negatively with CAPS scores in the right frontal lobe, left anterior and middle cingulate cortex, bilateral cuneus cortex, right middle occipital lobe, while in the recent onset PTSD, the gray matter volume correlated negatively with CAPS scores in bilateral superior medial frontal lobe and right ACC. CONCLUSION: The present study identified gray matter loss in different regions in recent onset PTSD and non PTSD after a single prolonged trauma exposure. The gray matter volume of left dorsal ACC associated with the development of PTSD, while the gray matter volume of right pulvinar and left pallidum associated with the response to the severe stress. The atrophy of the frontal and limbic cortices predicts the symptom severities of the PTSD.

  3. Evaluation of global and regional left ventricular function obtained by quantitative gated SPECT using {sup 99m}Tc-tetrofosmin for left ventricular dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Kazunobu; Nakajima, Tohru; Iseki, Harukazu; Abe, Sumihisa; Handa, Shunnosuke; Suzuki, Yutaka [Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine

    2000-08-01

    The quantitative gated SPECT (QGS) software is able to calculate LV volumes and visualize LV wall motion and perfusion throughout the cardiac cycle using an automatic edge detection algorithm of the left ventricle. We evaluated the reliability of global and regional LV function assessment derived from QGS by comparing it with the results from left ventriculo-cineangiography (LVG). In 20 patients with left ventricular dysfunction who underwent ECG gated {sup 99m}Tc-tetrofosmin SPECT, the end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (LVEF) were calculated. The QGS-assessed regional wall motion was determined using the cinematic display. QGS-derived EDV, ESV and LVEF correlated well with those by LVG (p<0.001 for each). There was a good correlation between wall motion score (WMS) derived from the QGS and the LVG (r=0.40, p<0.05). In some patients with extensive myocardial infarction, there was a discrepancy in the regional wall motion results between QGS and LVG. The ECG-gated SPECT using QGS is useful to evaluate global and regional LV functions in left ventricular dysfunction. (author)

  4. Frontal-insula gray matter deficits in first-episode medication-naïve patients with major depressive disorder.

    Science.gov (United States)

    Lai, Chien-Han; Wu, Yu-Te

    2014-05-01

    This study is designed to investigate the gray matter volume (GMV) deficits in patients with first-episode medication-naïve major depressive disorder (MDD). We enrolled 38 patients with first-episode medication-naïve MDD and 27 controls in this project. Voxel-based morphometry was used to compare GMV differences between two groups. Besides, the relationship between GMV of patients and the severity of clinical symptoms was estimated to confirm the role of GMV deficits in clinical symptoms. The correlation between total GMV and illness duration was also performed to elucidate the impacts of untreated duration on the GMV. We found that first-episode medication-naïve MDD patients had significant GMV deficits in bilateral superior frontal gyri, left middle frontal gyrus, left medial frontal gyrus and left insula. The GMV of patient group was negatively correlated with the severity of clinical symptoms and the illness duration. A pattern of GMV deficits in fronto-insula might represent the biomarker for first-episode medication-naïve MDD. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Gender differences in brain regional homogeneity of healthy subjects after normal sleep and after sleep deprivation: a resting-state fMRI study.

    Science.gov (United States)

    Dai, Xi-Jian; Gong, Hong-Han; Wang, Yi-Xiang; Zhou, Fu-Qing; Min, You-Jiang; Zhao, Feng; Wang, Si-Yong; Liu, Bi-Xia; Xiao, Xiang-Zuo

    2012-06-01

    To explore the gender differences of brain regional homogeneity (ReHo) in healthy subjects during the resting-state, after normal sleep, and after sleep deprivation (SD) using functional magnetic resonance imaging (fMRI) and the ReHo method. Sixteen healthy subjects (eight males and eight females) each underwent the resting-state fMRI exams twice, i.e., once after normal sleep and again after 24h's SD. According to the gender and sleep, 16 subjects were all measured twice and divided into four groups: the male control group (MC), female control group (FC), male SD group (MSD), and female SD group (FSD). The ReHo method was used to calculate and analyze the data, SPM5 software was used to perform a two-sample T-test and a two-pair T-test with a P value right paracentral lobule (BA3/6), but in no obviously lower regions. Compared with the FC, the FSD showed significantly higher ReHo in bilateral parietal lobes (BA2/3), bilateral vision-related regions of occipital lobes (BA17/18/19), right frontal lobe (BA4/6), and lower ReHo in the right frontal lobe. Compared with the FC, the MC showed significantly higher ReHo in the left occipital lobe (BA18/19), and left temporal lobe (BA21), left frontal lobe, and lower ReHo in the right insula and in the left parietal lobe. Compared with the FSD, the MSD showed significantly higher ReHo in the left cerebellum posterior lobe (uvula/declive of vermis), left parietal lobe, and bilateral frontal lobes, and lower ReHo in the right occipital lobe (BA17) and right frontal lobe (BA4). The differences of brain activity in the resting state can be widely found not only between the control and SD group in a same gender group, but also between the male group and female group. Thus, we should take the gender differences into consideration in future fMRI studies, especially the treatment of brain-related diseases (e.g., depression). Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Left cytoarchitectonic BA 44 processes syntactic gender violations in determiner phrases.

    Science.gov (United States)

    Heim, Stefan; van Ermingen, Muna; Huber, Walter; Amunts, Katrin

    2010-10-01

    Recent neuroimaging studies make contradictory predictions about the involvement of left Brodmann's area (BA) 44 in processing local syntactic violations in determiner phrases (DPs). Some studies suggest a role for BA 44 in detecting local syntactic violations, whereas others attribute this function to the left premotor cortex. Therefore, the present event-related functional magnetic resonance imaging (fMRI) study investigated whether left-cytoarchitectonic BA 44 was activated when German DPs involving syntactic gender violations were compared with correct DPs (correct: 'der Baum'-the[masculine] tree[masculine]; violated: 'das Baum'--the[neuter] tree[masculine]). Grammaticality judgements were made for both visual and auditory DPs to be able to generalize the results across modalities. Grammaticality judgements involved, among others, left BA 44 and left BA 6 in the premotor cortex for visual and auditory stimuli. Most importantly, activation in left BA 44 was consistently higher for violated than for correct DPs. This finding was behaviourally corroborated by longer reaction times for violated versus correct DPs. Additional brain regions, showing the same effect, included left premotor cortex, supplementary motor area, right middle and superior frontal cortex, and left cerebellum. Based on earlier findings from the literature, the results indicate the involvement of left BA 44 in processing local syntactic violations when these include morphological features, whereas left premotor cortex seems crucial for the detection of local word category violations. © 2010 Wiley-Liss, Inc.

  7. Measurement of global and regional left ventricular performance with isotope technique in coronary heart disease

    International Nuclear Information System (INIS)

    Bostroem, P.-A.; Svensson, M.; Lilja, B.

    1988-01-01

    To evaluate left ventricular function in coronary artery disease, radionuclide measurements of global and regional ejection fraction (EF), regional wall motion and phase analyses of left ventricular contraction were performed by equilibrium technique, using sup(99m)Tc. One group of patients with angina pectoris and one group with myocardial infarction were compared with a control group. All above-mentioned parameters significantly separated the infarction group from the reference group both at rest and during work, while the group of patients with angina pectoris showed disturbances mainly during work, such as impaired ability to increase global and regional ejection fraction and regional wall motion. Adding regional analysis and phase analysis to the global EF determination increases the possibility of studying the left ventricular function. However, this addition has a limited value in detecting impaired left ventricular function compared to the determination of just global EF in patients with angina pectoris and in patients with myocardial infarction. (author)

  8. Delusional misidentifications and duplications: right brain lesions, left brain delusions.

    Science.gov (United States)

    Devinsky, Orrin

    2009-01-06

    When the delusional misidentification syndromes reduplicative paramnesia and Capgras syndromes result from neurologic disease, lesions are usually bifrontal and/or right hemispheric. The related disorders of confabulation and anosognosis share overlapping mechanisms and anatomic pathology. A dual mechanism is postulated for the delusional misidentification syndromes: negative effects from right hemisphere and frontal lobe dysfunction as well as positive effects from release (i.e., overactivity) of preserved left hemisphere areas. Negative effects of right hemisphere injury impair self-monitoring, ego boundaries, and attaching emotional valence and familiarity to stimuli. The unchecked left hemisphere unleashes a creative narrator from the monitoring of self, memory, and reality by the frontal and right hemisphere areas, leading to excessive and false explanations. Further, the left hemisphere's cognitive style of categorization, often into dual categories, leads it to invent a duplicate or impostor to resolve conflicting information. Delusions result from right hemisphere lesions. But it is the left hemisphere that is deluded.

  9. Paradox image: a noninvasive index of regional left-ventricular dyskinesis

    International Nuclear Information System (INIS)

    Holman, B.L.; Wynne, J.; Idoine, J.; Zielonka, J.; Neill, J.

    1979-01-01

    The paradox image, a functional image of regional dyskinesis derived from the equilibrium (gated) radionuclide ventriculogram, was constructed by subtracting the background-corrected end-diastolic frame from the background-corrected end-systolic frame. In 11 patients showing dyskinesis by contrast ventriculography, the percentage of left-ventricular picture elements containing paradox ranged from 3.6 to 55.6% (21.44% +- 4.45 s.e.m.). In 11 patients with normokinesis and in eight patients with hypookinesis by contrast ventriculography, the left-ventricular picture elements demonstrating paradox were less than 1.1% in all cases. In nine patients with akinesis, the percentage of left-ventricular picture elements containing paradox was 2.05% +- 0.96 s.e.m. and was less than 2% in seven patients. There was also an excellent agreement between the location of dyskinesis on the paradox image and that by contrast ventriculography. The paradox image is a sensitive indicator of left-ventricular dyskinesis and should be useful in the evaluation of patients with suspected left-ventricular asynergy

  10. Functional segregation of the inferior frontal gyrus for syntactic processes: a functional magnetic-resonance imaging study.

    Science.gov (United States)

    Uchiyama, Yuji; Toyoda, Hiroshi; Honda, Manabu; Yoshida, Haruyo; Kochiyama, Takanori; Ebe, Kazutoshi; Sadato, Norihiro

    2008-07-01

    We used functional magnetic resonance imaging in 18 normal volunteers to determine whether there is separate representation of syntactic, semantic, and verbal working memory processing in the left inferior frontal gyrus (GFi). We compared a sentence comprehension task with a short-term memory maintenance task to identify syntactic and semantic processing regions. To investigate the effects of syntactic and verbal working memory load while minimizing the differences in semantic processes, we used comprehension tasks with garden-path (GP) sentences, which require re-parsing, and non-garden-path (NGP) sentences. Compared with the short-term memory task, sentence comprehension activated the left GFi, including Brodmann areas (BAs) 44, 45, and 47, and the left superior temporal gyrus. In GP versus NGP sentences, there was greater activity in the left BAs 44, 45, and 46 extending to the left anterior insula, the pre-supplementary motor area, and the right cerebellum. In the left GFi, verbal working memory activity was located more dorsally (BA 44/45), semantic processing was located more ventrally (BA 47), and syntactic processing was located in between (BA 45). These findings indicate a close relationship between semantic and syntactic processes, and suggest that BA 45 might link verbal working memory and semantic processing via syntactic unification processes.

  11. [A case of crossed aphasia with echolalia after the resection of tumor in the right medial frontal lobe].

    Science.gov (United States)

    Endo, K; Suzuki, K; Yamadori, A; Kumabe, T; Seki, K; Fujii, T

    2001-03-01

    We report a right-handed woman, who developed a non-fluent aphasia after resection of astrocytoma (grade III) in the right medial frontal lobe. On admission to the rehabilitation department, neurological examination revealed mild left hemiparesis, hyperreflexia on the left side and grasp reflex on the left hand. Neuropsychologically she showed general inattention, non-fluent aphasia, acalculia, constructional disability, and mild buccofacial apraxia. No other apraxia, unilateral spatial neglect or extinction phenomena were observed. An MRI demonstrated resected areas in the right superior frontal gyrus, subcortical region in the right middle frontal gyrus, anterior part of the cingulate gyrus, a part of supplementary motor area. Surrounding area in the right frontal lobe showed diffuse signal change. She demonstrated non-fluent aprosodic speech with word finding difficulty. No phonemic paraphasia, or anarthria was observed. Auditory comprehension was fair with some difficulty in comprehending complex commands. Naming was good, but verbal fluency tests for a category or phonemic cuing was severely impaired. She could repeat words but not sentences. Reading comprehension was disturbed by semantic paralexia and writing words was poor for both Kana (syllabogram) and Kanji(logogram) characters. A significant feature of her speech was mitigated echolalia. In both free conversation and examination setting, she often repeated phrases spoken to her which she used to start her speech. In addition, she repeated words spoken to others which were totally irrelevant to her conversation. She was aware of her echoing, which always embarrassed her. She described her echolalic tendency as a great nuisance. However, once echoing being forbidden, she could not initiate her speech and made incorrect responses after long delay. Thus, her compulsive echolalia helped to start her speech. Only four patients with crossed aphasia demonstrated echolalia in the literature. They showed severe

  12. Music increases frontal EEG coherence during verbal learning.

    Science.gov (United States)

    Peterson, David A; Thaut, Michael H

    2007-02-02

    Anecdotal and some empirical evidence suggests that music can enhance learning and memory. However, the mechanisms by which music modulates the neural activity associated with learning and memory remain largely unexplored. We evaluated coherent frontal oscillations in the electroencephalogram (EEG) while subjects were engaged in a modified version of Rey's Auditory Verbal Learning Test (AVLT). Subjects heard either a spoken version of the AVLT or the conventional AVLT word list sung. Learning-related changes in coherence (LRCC) were measured by comparing the EEG during word encoding on correctly recalled trials to the immediately preceding trial on which the same word was not recalled. There were no significant changes in coherence associated with conventional verbal learning. However, musical verbal learning was associated with increased coherence within and between left and right frontal areas in theta, alpha, and gamma frequency bands. It is unlikely that the different patterns of LRCC reflect general performance differences; the groups exhibited similar learning performance. The results suggest that verbal learning with a musical template strengthens coherent oscillations in frontal cortical networks involved in verbal encoding.

  13. Frontal dysconnectivity in 22q11.2 deletion syndrome: an atlas-based functional connectivity analysis.

    Science.gov (United States)

    Mattiaccio, Leah M; Coman, Ioana L; Thompson, Carlie A; Fremont, Wanda P; Antshel, Kevin M; Kates, Wendy R

    2018-01-20

    22q11.2 deletion syndrome (22q11DS) is a neurodevelopmental syndrome associated with deficits in cognitive and emotional processing. This syndrome represents one of the highest risk factors for the development of schizophrenia. Previous studies of functional connectivity (FC) in 22q11DS report aberrant connectivity patterns in large-scale networks that are associated with the development of psychotic symptoms. In this study, we performed a functional connectivity analysis using the CONN toolbox to test for differential connectivity patterns between 54 individuals with 22q11DS and 30 healthy controls, between the ages of 17-25 years old. We mapped resting-state fMRI data onto 68 atlas-based regions of interest (ROIs) generated by the Desikan-Killany atlas in FreeSurfer, resulting in 2278 ROI-to-ROI connections for which we determined total linear temporal associations between each. Within the group with 22q11DS only, we further tested the association between prodromal symptoms of psychosis and FC. We observed that relative to controls, individuals with 22q11DS displayed increased FC in lobar networks involving the frontal-frontal, frontal-parietal, and frontal-occipital ROIs. In contrast, FC between ROIs in the parietal-temporal and occipital lobes was reduced in the 22q11DS group relative to healthy controls. Moreover, positive psychotic symptoms were positively associated with increased functional connections between the left precuneus and right superior frontal gyrus, as well as reduced functional connectivity between the bilateral pericalcarine. Positive symptoms were negatively associated with increased functional connectivity between the right pericalcarine and right postcentral gyrus. Our results suggest that functional organization may be altered in 22q11DS, leading to disruption in connectivity between frontal and other lobar substructures, and potentially increasing risk for prodromal psychosis.

  14. Self-reflection and the inner voice: activation of the left inferior frontal gyrus during perceptual and conceptual self-referential thinking.

    Science.gov (United States)

    Morin, Alain; Hamper, Breanne

    2012-01-01

    Inner speech involvement in self-reflection was examined by reviewing 130 studies assessing brain activation during self-referential processing in key self-domains: agency, self-recognition, emotions, personality traits, autobiographical memory, and miscellaneous (e.g., prospection, judgments). The left inferior frontal gyrus (LIFG) has been shown to be reliably recruited during inner speech production. The percentage of studies reporting LIFG activity for each self-dimension was calculated. Fifty five percent of all studies reviewed indicated LIFG (and presumably inner speech) activity during self-reflection tasks; on average LIFG activation is observed 16% of the time during completion of non-self tasks (e.g., attention, perception). The highest LIFG activation rate was observed during retrieval of autobiographical information. The LIFG was significantly more recruited during conceptual tasks (e.g., prospection, traits) than during perceptual tasks (agency and self-recognition). This constitutes additional evidence supporting the idea of a participation of inner speech in self-related thinking.

  15. Correlation of neuropsychological and metabolic changes after epilepsy surgery in patients with left mesial temporal lobe epilepsy with hippocampal sclerosis.

    Science.gov (United States)

    Güvenç, Canan; Dupont, Patrick; Van den Stock, Jan; Seynaeve, Laura; Porke, Kathleen; Dries, Eva; Van Bouwel, Karen; van Loon, Johannes; Theys, Tom; Goffin, Karolien E; Van Paesschen, Wim

    2018-04-12

    Epilepsy surgery often causes changes in cognition and cerebral glucose metabolism. Our aim was to explore relationships between pre- and postoperative cerebral metabolism as measured with 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) and neuropsychological test scores in patients with left mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS), who were rendered seizure-free after epilepsy surgery. Thirteen patients were included. All had neuropsychological testing and an interictal FDG-PET scan of the brain pre- and postoperative. Correlations between changes in neuropsychological test scores and metabolism were examined using statistical parametric mapping (SPM). There were no significant changes in the neuropsychological test scores pre- and postoperatively at the group level. Decreased metabolism was observed in the left mesial temporal regions and occipital lobe. Increased metabolism was observed in the bi-frontal and right parietal lobes, temporal lobes, occipital lobes, thalamus, cerebellum, and vermis. In these regions, we did not find a correlation between changes in metabolism and neuropsychological test scores. A significant negative correlation, however, was found between metabolic changes in the precuneus and Boston Naming Test (BNT) scores. There are significant metabolic decreases in the left mesial temporal regions and increases in the bi-frontal lobes; right parietal, temporal, and occipital lobes; right thalamus; cerebellum; and vermis in patients with left MTLE-HS who were rendered seizure-free after epilepsy surgery. We could not confirm that these changes translate into significant cognitive changes. A significant negative correlation was found between changes in confrontation naming and changes in metabolism in the precuneus. We speculate that the precuneus may play a compensatory role in patients with postoperative naming difficulties after left TLE surgery. Understanding of these neural mechanisms may aid in

  16. Regional diffusion changes of cerebral grey matter during normal aging-A fluid-inversion prepared diffusion imaging study

    International Nuclear Information System (INIS)

    Ni Jianming; Chen Shuang; Liu Jianjun; Huang Gang; Shen Tianzhen; Chen Xingrong

    2010-01-01

    Background and purpose: Although diffusion characteristics of white matter (WM) and its aging effects have been well described in the literature, diffusion characteristics of grey matter (GM), especially the cortical GM, have not been fully evaluated. In the present study, we used the fluid-inversion prepared diffusion imaging (FLIPD) technique to determine if there are age-related water diffusivity changes in GM. Materials and methods: 120 healthy volunteers were recruited for our study. They were divided into three age groups: group one (20-39 years old), group two (40-59 years old) and group three (60 years or older). All patients were evaluated with MRI using FLIPD at 3.0 T. Apparent diffusion coefficient (ADC) values of the frontal GM, cingulate cortex and thalami were determined bilaterally by region-of-interest analysis. Results: Group three had significantly higher ADC values in both thalami and the left frontal GM compared to group two or group one. No ADC value difference was found among the three groups in the right frontal GM and bilateral cingulate cortex. There was a significant positive correlation between individual ADC values and age in both thalami and left frontal GM. For the cingulate cortex and the right frontal GM, ADC values did not correlate significantly with advancing age. Conclusion: Statistically significant age-related diffusion changes were observed in both thalami and the left frontal cortex. The data reported here may serve as a reference for future studies.

  17. Regional frontal gray matter volume associated with executive function capacity as a risk factor for vehicle crashes in normal aging adults.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Sakai

    Full Text Available Although low executive functioning is a risk factor for vehicle crashes among elderly drivers, the neural basis of individual differences in this cognitive ability remains largely unknown. Here we aimed to examine regional frontal gray matter volume associated with executive functioning in normal aging individuals, using voxel-based morphometry (VBM. To this end, 39 community-dwelling elderly volunteers who drove a car on a daily basis participated in structural magnetic resonance imaging, and completed two questionnaires concerning executive functioning and risky driving tendencies in daily living. Consequently, we found that participants with low executive function capacity were prone to risky driving. Furthermore, VBM analysis revealed that lower executive function capacity was associated with smaller gray matter volume in the supplementary motor area (SMA. Thus, the current data suggest that SMA volume is a reliable predictor of individual differences in executive function capacity as a risk factor for vehicle crashes among elderly persons. The implication of our results is that regional frontal gray matter volume might underlie the variation in driving tendencies among elderly drivers. Therefore, detailed driving behavior assessments might be able to detect early neurodegenerative changes in the frontal lobe in normal aging adults.

  18. The role of right frontal brain regions in integration of spatial relation.

    Science.gov (United States)

    Han, Jiahui; Cao, Bihua; Cao, Yunfei; Gao, Heming; Li, Fuhong

    2016-06-01

    Previous studies have explored the neural mechanisms of spatial reasoning on a two-dimensional (2D) plane; however, it remains unclear how spatial reasoning is conducted in a three-dimensional (3D) condition. In the present study, we presented 3D geometric objects to 16 adult participants, and asked them to process the spatial relationship between different corners of the geometric objects. In premise-1, the first two corners of a geometric shape (e.g., A vs. B) were displayed. In premise-2, the second and third corners (e.g., B vs. C) were displayed. After integrating the two premises, participants were required to infer the spatial relationship between the first and the third corners (e.g., A and C). Finally, the participants were presented with a conclusion object, and they were required to judge whether the conclusion was true or false based on their inference. The event-related potential evoked by premise-2 revealed that (1) compared with 2D spatial reasoning, 3D reasoning elicited a smaller P3b component, and (2) in the right frontal areas, increased negativities were found in the 3D condition during the N400 and late negative components (LNC). These findings imply that higher brain activity in the right frontal brain regions were related with the integration and maintenance of spatial information in working memory for reasoning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Single-photon tomographic determination of regional cerebral blood flow in psychiatric disorders

    International Nuclear Information System (INIS)

    Devous, M.D. Sr.; Rush, A.J.; Schlesser, M.A.; Debus, J.; Raese, J.D.; Chehabi, H.H.; Bonte, F.J.

    1984-01-01

    Regional cerebral blood flow (rCBF) was measured by single-photon emission computed tomography (SPECT) of 133-Xe washout in 29 normal volunteers, 22 unipolar endogenous depressives (UPE), 9 unipolar nonendogenous depressives (UPNE), 13 bipolar depressed patients (BPD), and 14 schizophrenic patients (SCHZ). RCBF was measured 2 and 6 cm above and parallel to the cantho-meatal line and quantitated in 14 gray matter regions. Most subjects were drug-free for 4-14 days. Diagnoses were made by experienced clinicians employing the Research Diagnostic Criteria, the Hamilton Rating Scale, and the dexamethasone suppression test. SCHZ were rated with the Brief Psychiatric Rating Scale. UPE had reduced flow compared to normals in the right parietal and temporal lobes and a nonsignificant trend toward left temporal flow reductions. UPNE were not different from normal or other patient groups. BPD had significant flow elevations in the left hemisphere relative to normal, and in both hemispheres relative to UPE. SCHZ were not significantly different from normal or other patient groups. Anterior-posterior flow shifts were evaluated by subtracting parietal or temporal flows from frontal flows. SCHZ demonstrated a greater posterior shift (lower relative frontal lobe flow) in comparison to both UPE and UPNE. The most significant regional flow abnormalities were observed as frontal flow reductions in individual SCHZ, although these were not significant in the whole group in comparison to normal

  20. Frontal Structural Neural Correlates of Working Memory Performance in Older Adults.

    Science.gov (United States)

    Nissim, Nicole R; O'Shea, Andrew M; Bryant, Vaughn; Porges, Eric C; Cohen, Ronald; Woods, Adam J

    2016-01-01

    Working memory is an executive memory process that allows transitional information to be held and manipulated temporarily in memory stores before being forgotten or encoded into long-term memory. Working memory is necessary for everyday decision-making and problem solving, making it a fundamental process in the daily lives of older adults. Working memory relies heavily on frontal lobe structures and is known to decline with age. The current study aimed to determine the neural correlates of decreased working memory performance in the frontal lobes by comparing cortical thickness and cortical surface area from two demographically matched groups of healthy older adults, free from cognitive impairment, with high versus low N-Back working memory performance ( N = 56; average age = 70.29 ± 10.64). High-resolution structural T1-weighted images (1 mm isotropic voxels) were obtained on a 3T Philips MRI scanner. When compared to high performers, low performers exhibited significantly decreased cortical surface area in three frontal lobe regions lateralized to the right hemisphere: medial orbital frontal gyrus, inferior frontal gyrus, and superior frontal gyrus (FDR p frontal regions may underlie age-related decline of working memory function.

  1. The right inferior frontal gyrus processes nested non-local dependencies in music.

    Science.gov (United States)

    Cheung, Vincent K M; Meyer, Lars; Friederici, Angela D; Koelsch, Stefan

    2018-02-28

    Complex auditory sequences known as music have often been described as hierarchically structured. This permits the existence of non-local dependencies, which relate elements of a sequence beyond their temporal sequential order. Previous studies in music have reported differential activity in the inferior frontal gyrus (IFG) when comparing regular and irregular chord-transitions based on theories in Western tonal harmony. However, it is unclear if the observed activity reflects the interpretation of hierarchical structure as the effects are confounded by local irregularity. Using functional magnetic resonance imaging (fMRI), we found that violations to non-local dependencies in nested sequences of three-tone musical motifs in musicians elicited increased activity in the right IFG. This is in contrast to similar studies in language which typically report the left IFG in processing grammatical syntax. Effects of increasing auditory working demands are moreover reflected by distributed activity in frontal and parietal regions. Our study therefore demonstrates the role of the right IFG in processing non-local dependencies in music, and suggests that hierarchical processing in different cognitive domains relies on similar mechanisms that are subserved by domain-selective neuronal subpopulations.

  2. Human left ventral premotor cortex mediates matching of hand posture to object use.

    Directory of Open Access Journals (Sweden)

    Guy Vingerhoets

    Full Text Available Visuomotor transformations for grasping have been associated with a fronto-parietal network in the monkey brain. The human homologue of the parietal monkey region (AIP has been identified as the anterior part of the intraparietal sulcus (aIPS, whereas the putative human equivalent of the monkey frontal region (F5 is located in the ventral part of the premotor cortex (vPMC. Results from animal studies suggest that monkey F5 is involved in the selection of appropriate hand postures relative to the constraints of the task. In humans, the functional roles of aIPS and vPMC appear to be more complex and the relative contribution of each region to grasp selection remains uncertain. The present study aimed to identify modulation in brain areas sensitive to the difficulty level of tool object - hand posture matching. Seventeen healthy right handed participants underwent fMRI while observing pictures of familiar tool objects followed by pictures of hand postures. The task was to decide whether the hand posture matched the functional use of the previously shown object. Conditions were manipulated for level of difficulty. Compared to a picture matching control task, the tool object - hand posture matching conditions conjointly showed increased modulation in several left hemispheric regions of the superior and inferior parietal lobules (including aIPS, the middle occipital gyrus, and the inferior temporal gyrus. Comparison of hard versus easy conditions selectively modulated the left inferior frontal gyrus with peak activity located in its opercular part (Brodmann area (BA 44. We suggest that in the human brain, vPMC/BA44 is involved in the matching of hand posture configurations in accordance with visual and functional demands.

  3. Quantitation of global and regional left ventricular function by MRI

    NARCIS (Netherlands)

    van der Geest, RJ; Reiber, JHC; Reiber, JHC; VanDerWall, EE

    1998-01-01

    Magnetic resonance imaging (MRI) provides several imaging strategies for assessing left ventricular function. As a three-dimensional imaging technique, all measurements can be performed without relying on geometrical assumptions. Global and regional function parameters can be derived from

  4. Differential involvement of left prefrontal cortex in inductive and deductive reasoning.

    Science.gov (United States)

    Goel, Vinod; Dolan, Raymond J

    2004-10-01

    While inductive and deductive reasoning are considered distinct logical and psychological processes, little is known about their respective neural basis. To address this issue we scanned 16 subjects with fMRI, using an event-related design, while they engaged in inductive and deductive reasoning tasks. Both types of reasoning were characterized by activation of left lateral prefrontal and bilateral dorsal frontal, parietal, and occipital cortices. Neural responses unique to each type of reasoning determined from the Reasoning Type (deduction and induction) by Task (reasoning and baseline) interaction indicated greater involvement of left inferior frontal gyrus (BA 44) in deduction than induction, while left dorsolateral (BA 8/9) prefrontal gyrus showed greater activity during induction than deduction. This pattern suggests a dissociation within prefrontal cortex for deductive and inductive reasoning.

  5. Virtual endoscopy and 3D volume rendering in the management of frontal sinus fractures.

    Science.gov (United States)

    Belina, Stanko; Cuk, Viseslav; Klapan, Ivica

    2009-12-01

    Frontal sinus fractures (FSF) are commonly caused by traffic accidents, assaults, industrial accidents and gunshot wounds. Classical roentgenography has high proportion of false negative findings in cases of FSF and is not particularly useful in examining the severity of damage to the frontal sinus posterior table and the nasofrontal duct region. High resolution computed tomography was inavoidable during the management of such patients but it may produce large quantity of 2D images. Postprocessing of datasets acquired by high resolution computer tomography from patients with severe head trauma may offer a valuable additional help in diagnostics and surgery planning. We performed virtual endoscopy (VE) and 3D volume rendering (3DVR) on high resolution CT data acquired from a 54-year-old man with with both anterior and posterior frontal sinus wall fracture in order to demonstrate advantages and disadvantages of these methods. Data acquisition was done by Siemens Somatom Emotion scanner and postprocessing was performed with Syngo 2006G software. VE and 3DVR were performed in a man who suffered blunt trauma to his forehead and nose in an traffic accident. Left frontal sinus anterior wall fracture without dislocation and fracture of tabula interna with dislocation were found. 3D position and orientation of fracture lines were shown in by 3D rendering software. We concluded that VE and 3DVR can clearly display the anatomic structure of the paranasal sinuses and nasopharyngeal cavity, revealing damage to the sinus wall caused by a fracture and its relationship to surrounding anatomical structures.

  6. Increased frontal electroencephalogram theta amplitude in patients with anorexia nervosa compared to healthy controls

    Directory of Open Access Journals (Sweden)

    Hestad KA

    2016-09-01

    Full Text Available Knut A Hestad,1–3 Siri Weider,3,4 Kristian Bernhard Nilsen,5–7 Marit Sæbø Indredavik,8,9 Trond Sand7,10 1Department of Research, Innlandet Hospital Trust, Brumunddal, Norway; 2Department of Public Health, Hedmark University of Applied Sciences, Elverum, Norway; 3Department of Psychology, Faculty of Social Sciences and Technology Management, Norwegian University of Science and Technology (NTNU, Trondheim, Norway; 4Department of Psychiatry, Specialised Unit for Eating Disorder Patients, Levanger Hospital, Health Trust Nord-Trøndelag, Levanger, Norway; 5Department of Neuroscience, Norwegian University of Science and Technology (NTNU, Trondheim, Norway; 6Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway; 7Department of Neurology, Section for Clinical Neurophysiology, Oslo University Hospital, Ullevål, Oslo, Norway; 8Regional Centre for Child and Youth Mental Health and Child Welfare, Faculty of Medicine, Norwegian University of Science and Technology (NTNU, Trondheim, Norway; 9Department of Child and Adolescent Psychiatry, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; 10Department of Neurology and Clinical Neurophysiology, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway Objective: To conduct a blind study of quantitative electroencephalogram-band amplitudes in patients with anorexia nervosa (AN and healthy controls.Methods: Twenty-one patients with AN and 24 controls were examined with eyes-closed 16-channel electroencephalogram. Main variables were absolute alpha, theta, and delta amplitudes in frontal, temporal, and posterior regions.Results: There were no significant differences between the AN patients and controls regarding absolute regional band amplitudes in µV. Borderline significance was found for anterior theta (P=0.051. Significantly increased left and right frontal electrode theta amplitude was found in AN patients (F3, P=0.014; F4, P

  7. Frontal lobe epilepsy may present as myoclonic seizures.

    Science.gov (United States)

    Cho, Yong Won; Yi, Sang Doe; Motamedi, Gholam K

    2010-04-01

    We describe a patient with seizures arising from right anterior-inferior frontal lobe presenting as myoclonic epilepsy. A 19-year-old man had experienced frequent paroxysmal bilateral myoclonic jerks involving his upper arms, shoulders, neck, and upper trunk since the age of 10. His baseline EEG showed intermittent right frontal spikes, and his ictal EEG showed rhythmic sharp theta discharges in the same area. MRI revealed cortical dysplasia in the right inferior frontal gyrus, and ictal-interictal SPECT analysis by SPM showed increased signal abnormality in this region. Diffusion tensor imaging (DTI) showed defects in fasciculi in the same area. These findings suggest that frontal lobe epilepsy should be considered in some patients with myoclonic seizures. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  8. Anodal Transcranial Direct Current Stimulation Promotes Frontal Compensatory Mechanisms in Healthy Elderly Subjects.

    Science.gov (United States)

    Cespón, Jesús; Rodella, Claudia; Rossini, Paolo M; Miniussi, Carlo; Pellicciari, Maria C

    2017-01-01

    Recent studies have demonstrated that transcranial direct current stimulation (tDCS) is potentially useful to improve working memory. In the present study, young and elderly subjects performed a working memory task ( n -back task) during an electroencephalogram recording before and after receiving anodal, cathodal, and sham tDCS over the left dorsolateral prefrontal cortex (DLPFC). We investigated modulations of behavioral performance and electrophysiological correlates of working memory processes (frontal and parietal P300 event-related potentials). A strong tendency to modulated working memory performance was observed after the application of tDCS. In detail, young, but not elderly, subjects benefited from additional practice in the absence of real tDCS, as indicated by their more accurate responses after sham tDCS. The cathodal tDCS had no effect in any group of participants. Importantly, anodal tDCS improved accuracy in elderly. Moreover, increased accuracy after anodal tDCS was correlated with a larger frontal P300 amplitude. These findings suggest that, in elderly subjects, improved working memory after anodal tDCS applied over the left DLPFC may be related to the promotion of frontal compensatory mechanisms, which are related to attentional processes.

  9. Anodal Transcranial Direct Current Stimulation Promotes Frontal Compensatory Mechanisms in Healthy Elderly Subjects

    Directory of Open Access Journals (Sweden)

    Jesús Cespón

    2017-12-01

    Full Text Available Recent studies have demonstrated that transcranial direct current stimulation (tDCS is potentially useful to improve working memory. In the present study, young and elderly subjects performed a working memory task (n-back task during an electroencephalogram recording before and after receiving anodal, cathodal, and sham tDCS over the left dorsolateral prefrontal cortex (DLPFC. We investigated modulations of behavioral performance and electrophysiological correlates of working memory processes (frontal and parietal P300 event-related potentials. A strong tendency to modulated working memory performance was observed after the application of tDCS. In detail, young, but not elderly, subjects benefited from additional practice in the absence of real tDCS, as indicated by their more accurate responses after sham tDCS. The cathodal tDCS had no effect in any group of participants. Importantly, anodal tDCS improved accuracy in elderly. Moreover, increased accuracy after anodal tDCS was correlated with a larger frontal P300 amplitude. These findings suggest that, in elderly subjects, improved working memory after anodal tDCS applied over the left DLPFC may be related to the promotion of frontal compensatory mechanisms, which are related to attentional processes.

  10. Frontally confined versus frontally emergent submarine landslides: A 3D seismic characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Frey-Martinez, Jose; Cartwright, Joe; James, David [3DLab. School of Earth, Ocean and Planetary Sciences, Cardiff University, P.O. Box 914, Cardiff CF10 3YE (United Kingdom)

    2006-06-15

    Three-dimensional (3D) seismic data from the continental margin offshore Israel (Eastern Mediterranean) have been used to analyse the compressional structures within the toe regions of two major buried submarine landslides: the ISC and the T20. Both landslides are developed within a Plio-Pleistocene slope succession composed predominately of claystones, limestones and siltstones. The high spatial resolution provided by the seismic data has allowed a detailed analysis of the geometries and deformational structures within the toe regions of the two landslides, and this has been used to develop a mechanical model for their development. Importantly, it has been recognised that submarine landslides may be divided into two main types according to their form of frontal emplacement: frontally confined and frontally emergent. In the former, the landslide undergoes a restricted downslope translation and does not overrun the undeformed downslope strata. In the latter, much larger downslope translation occurs because the landslide is able to ramp up from its original basal shear surface and translate in an unconfined manner over the seafloor. We propose that these two types of submarine landslides are end members of a continuum of gravity-driven slope failure processes, which extends from landslides where the headscarp is completely evacuated, to landslides where the material remains entirely within the headscarp. The differentiation of these two end members is of critical importance as their respective mechanisms of formation, downslope propagation and emplacement are significantly different, and hence need to be taken into consideration when analysing their respective kinematics. (author)

  11. Functional impairment of the frontal lobe in methamphetamine dependent patients detected on FDG-PET and WCST

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yang Tae; Kwon, Do Hoon [Bugok National Hostipal, Changnyeong (Korea, Republic of); Lee, Sang Woo; Seo, Ji Hyoung; Kang, Seong Min; Lee, Jae Tae; Lee, Kyu Bo [Kyungpook National University Hospital, Daeug (Korea, Republic of)

    2007-07-01

    There are mounting evidences from neuropsychological and neuroimaging studies to support the view that patients with substance dependence have abnormalities in prefrontal cortex. However, functional deficits in prefrontal cortex has not been adequately studied in methamphetamine dependence. Therefore, the purpose of this study is to examine whether methamphetamine dependent patients have metabolic abnormalities and executive dysfunction. Twenty-one abstinent methamphetamine dependent patients who were hospitalized in Bugok National Hospital underwent resting FDG-PET, after which they completed computerized versions of the Wisconsin Card Sorting Test (WCST). Brain PET images were obtained 30 minutes after intravenous injection of 370 MBq of 18F-FDG. Significant differences of glucose metabolism were estimated for every voxel using t-statistics on SPM2 implemented in Matlab between methamphetamine dependent patients and age-matched normal controls. FDG-PET revealed significant hypometabolism in the left inferior frontal white matter (Talairach coordinates (x, y, z): -34, 7, 31) in methamphetamine dependent patients compared to the normal controls (uncorrect p<0.001, t>3.39). The nearest gray matter region was the left inferior frontal cortex (Brodmann area 9). Methamphetamine dependent patients completed significantly fewer categories (3.662.19) and made more perseveration errors (22.0411.94) and total errors (44.5719.70) on the WCST compared to the normal controls (p<0.01). These data suggest that patients with methamphetamine dependence have functional impairments in prefrontal cortex.

  12. Functional impairment of the frontal lobe in methamphetamine dependent patients detected on FDG-PET and WCST

    International Nuclear Information System (INIS)

    Kim, Yang Tae; Kwon, Do Hoon; Lee, Sang Woo; Seo, Ji Hyoung; Kang, Seong Min; Lee, Jae Tae; Lee, Kyu Bo

    2007-01-01

    There are mounting evidences from neuropsychological and neuroimaging studies to support the view that patients with substance dependence have abnormalities in prefrontal cortex. However, functional deficits in prefrontal cortex has not been adequately studied in methamphetamine dependence. Therefore, the purpose of this study is to examine whether methamphetamine dependent patients have metabolic abnormalities and executive dysfunction. Twenty-one abstinent methamphetamine dependent patients who were hospitalized in Bugok National Hospital underwent resting FDG-PET, after which they completed computerized versions of the Wisconsin Card Sorting Test (WCST). Brain PET images were obtained 30 minutes after intravenous injection of 370 MBq of 18F-FDG. Significant differences of glucose metabolism were estimated for every voxel using t-statistics on SPM2 implemented in Matlab between methamphetamine dependent patients and age-matched normal controls. FDG-PET revealed significant hypometabolism in the left inferior frontal white matter (Talairach coordinates (x, y, z): -34, 7, 31) in methamphetamine dependent patients compared to the normal controls (uncorrect p 3.39). The nearest gray matter region was the left inferior frontal cortex (Brodmann area 9). Methamphetamine dependent patients completed significantly fewer categories (3.662.19) and made more perseveration errors (22.0411.94) and total errors (44.5719.70) on the WCST compared to the normal controls (p<0.01). These data suggest that patients with methamphetamine dependence have functional impairments in prefrontal cortex

  13. Measurements of the frontal and prefrontal lobe volumes by three dimensional magnetic resonance imaging scan. III. Analysis of sex differences with advanced age

    Energy Technology Data Exchange (ETDEWEB)

    Kanemura, Hideaki; Aihara, Masao; Nakazawa, Shinpei [Yamanashi Medical Univ., Tamaho (Japan)

    2002-09-01

    To determine whether there is sex difference in the growth of the frontal and prefrontal lobes, we quantitatively measured the volume of these lobes by three dimensional (3-D) MRI in healthy 12 males (5 months to 39 years) and six females (1 year 11 months to 27 years). The left and right lobes were studied separately. The 3-D MRI data were acquired by the fast spoiled gradient recalled (SPGR) sequence using a 1.5 T MR imager. The frontal and prefrontal lobe volumes were measured by the volume measurement function of the Workstation. In males, the left to right ratio (L/R ratio) of the frontal and prefrontal lobes increased with age. On the contrary, in females, L/R ratio of the frontal and prefrontal lobes showed no significant change with advancing age. These results highlighted sex-specific maturational changes of the frontal and prefrontal lobes and suggested that quantitative data on the frontal and prefrontal lobe are important in interpreting brain abnormalities in children with developmental disorders. (author)

  14. Measurements of the frontal and prefrontal lobe volumes by three dimensional magnetic resonance imaging scan. III. Analysis of sex differences with advanced age

    International Nuclear Information System (INIS)

    Kanemura, Hideaki; Aihara, Masao; Nakazawa, Shinpei

    2002-01-01

    To determine whether there is sex difference in the growth of the frontal and prefrontal lobes, we quantitatively measured the volume of these lobes by three dimensional (3-D) MRI in healthy 12 males (5 months to 39 years) and six females (1 year 11 months to 27 years). The left and right lobes were studied separately. The 3-D MRI data were acquired by the fast spoiled gradient recalled (SPGR) sequence using a 1.5 T MR imager. The frontal and prefrontal lobe volumes were measured by the volume measurement function of the Workstation. In males, the left to right ratio (L/R ratio) of the frontal and prefrontal lobes increased with age. On the contrary, in females, L/R ratio of the frontal and prefrontal lobes showed no significant change with advancing age. These results highlighted sex-specific maturational changes of the frontal and prefrontal lobes and suggested that quantitative data on the frontal and prefrontal lobe are important in interpreting brain abnormalities in children with developmental disorders. (author)

  15. Eye contact with neutral and smiling faces: effects on frontal EEG asymmetry and autonomic responses

    Directory of Open Access Journals (Sweden)

    Laura Maria Pönkänen

    2012-05-01

    Full Text Available In our previous studies we have shown that seeing another person live with a direct vs. averted gaze results in greater relative left-sided frontal asymmetry in the electroencephalography (EEG, associated with approach motivation, and in enhanced skin conductance responses indicating autonomic arousal. In our studies, however, the stimulus persons had a neutral expression. In real-life social interaction, eye contact is often associated with a smile, which is another signal of the sender’s approach-related motivation. A smile could therefore enhance the affective-motivational responses to eye contact. In the present study, we investigated whether the facial expression (neutral vs. smile would modulate the frontal EEG asymmetry and autonomic arousal to seeing a direct vs. an averted gaze in faces presented live through a liquid crystal shutter. The results showed that the skin conductance responses were greater for the direct than the averted gaze and that the effect of gaze direction was more pronounced for a smiling than a neutral face. However, the frontal EEG asymmetry results revealed a more complex pattern. Participants whose responses to seeing the other person were overall indicative of leftward frontal activity (indicative of approach showed greater relative left-sided asymmetry for the direct vs. averted gaze, whereas participants whose responses were overall indicative of rightward frontal activity (indicative of avoidance showed greater relative right-sided asymmetry to direct vs. averted gaze. The other person’s facial expression did not have an effect on the frontal EEG asymmetry. These findings may reflect that another’s direct gaze, as compared to their smile, has a more dominant role in regulating perceivers’ approach motivation.

  16. Regional Gray Matter Volume Deficits in Adolescents with First-Episode Psychosis

    Science.gov (United States)

    Janssen, Joost; Parellada, Mara; Moreno, Dolores; Graell, Montserrat; Fraguas, David; Zabala, Arantzazu; Vazquez, Veronica Garcia; Desco, Manuel; Arango, Celso

    2008-01-01

    The regional gray matter volumes of adolescents with first-episode psychosis are compared with those of a control group. Magnetic resonance imaging was conducted on 70 patients with early onset FEP and on 51 individuals without FEP. Findings revealed that volume deficits in the left medial frontal gray matter were common in individuals with…

  17. A method to quantitate regional wall motion in left ventriculography using Hildreth algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Terashima, Mikio [Hyogo Red Cross Blood Center (Japan); Naito, Hiroaki; Sato, Yoshinobu; Tamura, Shinichi; Kurosawa, Tsutomu

    1998-06-01

    Quantitative measurement of ventricular wall motion is indispensable for objective evaluation of cardiac function associated with coronary artery disease. We have modified the Hildreth`s algorithm to estimate excursions of the ventricular wall on left ventricular images yielded by various imaging techniques. Tagging cine-MRI was carried out on 7 healthy volunteers. The original Hildreth method, the modified Hildreth method and the centerline method were applied to the outlines of the images obtained, to estimate excursion of the left ventricular wall and regional shortening and to evaluate the accuracy of these methods when measuring these parameters, compared to the values of these parameters measured actually using the attached tags. The accuracy of the original Hildreth method was comparable to that of the centerline method, while the modified Hildreth method was significantly more accurate than the centerline method (P<0.05). Regional shortening as estimated using the modified Hildreth method differed less from the actually measured regional shortening than did the shortening estimated using the centerline method (P<0.05). The modified Hildreth method allowed reasonable estimation of left ventricular wall excursion in all cases where it was applied. These results indicate that when applied to left ventriculograms for ventricular wall motion analysis, the modified Hildreth method is more useful than the original Hildreth method. (author)

  18. Reduced right frontal fractional anisotropy correlated with early elevated plasma LDL levels in obese young adults.

    Directory of Open Access Journals (Sweden)

    Baohui Lou

    Full Text Available OBJECTIVE: To investigate the underlying physiological mechanisms of the structural differences in gray matter (GM and white matter (WM associated with obesity in young Chinese adults. MATERIALS AND METHODS: A total of 49 right-handed obese or overweight (n = 22, mean age 31.72±8.04 years and normal weight (n = 27, mean age 29.04±7.32 years Han Chinese individuals were recruited. All participants underwent voxel-based morphometry analysis of T1-weighted MRI and tract-based spatial statistics analysis of diffusion tensor imaging. Partial correlation analysis was performed between the physiological data obtained and the abnormal structural alterations. RESULTS: In the OO group, GM atrophy occurred in the left prefrontal cortex, bilateral cingulate gyrus, and the right temporal lobe, while enlargement was observed in the bilateral putamen. WM atrophy was observed predominantly in the regions that regulate food intake, such as the bilateral basal ganglia, the right amygdala, and the left insula. The OO group exhibited lower fractional anisotropy (FA in bilateral frontal corticospinal tracts and the right brainstem. Significant negative correlations were observed between FA values of those three clusters and BMI, and waist circumference, while the volume of bilateral putamen positively correlated with both BMI and waist circumference. High plasma LDL levels were correlated with low FA values in the right frontal corticospinal tract. Interestingly, the negative correlation was limited to male participants. CONCLUSIONS: Obesity-related alterations of GM and WM volumes were observed predominantly in food reward circuit, which may motivate abnormal dietary intake. Further, early elevated plasma LDL might contribute to low right frontal FA values of male adults, which requires further demonstration by larger-scale and longitudinal studies.

  19. Assessment of cardiac performance with quantitative radionuclide angiocardiography: sequential left ventricular ejection fraction, normalized left ventricular ejection rate, and regional wall motion

    International Nuclear Information System (INIS)

    Marshall, R.C.; Berger, H.J.; Costin, J.C.; Freedman, G.S.; Wolberg, J.; Cohen, L.S.; Gotischalk, A.; Zaret, B.L.

    1977-01-01

    Sequential quantitative first pass radionuclide angiocardiograms (RA) were used to measure left ventricular ejection fraction (LVEF) and left ventricular ejection rate (LVER), and to assess regional wall motion (RWM) in the anterior (ANT) and left anterior oblique (LAO) positions. Studies were obtained with a computerized multicrystal scintillation camera suitable for acquiring high count-rate data. Background was determined in a new fashion by selecting frames temporally from the left ventricular region of interest time-activity curve. A ''representative'' cardiac cycle was formed by summing together counts over three to six cardiac cycles. From this background corrected, high count-rate ''representative''cardiac cycle, LVEF, LVER, and RWM were determined. In 22 patients with normal sinus rhythm in the absence of significant valvular regurgitation, RA LVEF correlated well with that measured by contrast angiography (r = 0.95). LVER correlated well with LVEF measured at contrast angiography (r = 0.90) and allowed complete separation of those with normal (LVER = 3.4 +- 0.17 sec -1 ) and abnormal (LVER = 1.22 +- 0.11 sec -1 ) (P < 0.001) left ventricular performance. This separation was independent of background. Isoproterenol infusion in five normal subjects caused LVER to increase by 81 +- 17% while LVEF increased by 10 +- 2.0%. RWM was correctly defined in 21/22 patients and 89% of left ventricular segments with abnormal wall motion

  20. Pediatric frontal mucocele secondary to a bifid frontal sinus septum.

    Science.gov (United States)

    Plikaitis, Christina M; Purzycki, Adam R; Couture, Daniel; David, Lisa R

    2010-09-01

    A mucocele is a mucus-containing sac lined with epithelium that arises within a sinus when its drainage is compromised. The frontal sinus is the most common location, with frontal mucocele development occurring when the nasofrontal duct becomes obstructed because of polyps, bone tumors, prior surgery, sinusitis, trauma, or anatomic variation. We report an unusual case of a sterile pediatric frontal mucocele presenting as a slowly enlarging forehead mass due to a bifid frontal sinus septum. A 9-year-old girl presented to the craniofacial clinic for evaluation of a right frontal mass that had been slowly growing over the past year. She was otherwise healthy and had no history of previous trauma or sinus infections. Computed tomography (CT) scan results revealed a localized frontal fluid collection with protrusion and thinning of the anterior frontal bone between 2 midline bony septii. Surgical cranialization of the frontal sinus was performed. The anatomy of her lesion seen both on CT scan and intraoperatively likely explains this unusual case presentation. Instead of the usual inciting event of an intact frontal sinus drainage system becoming blocked, this patient seemed to have a primary developmental lack of any drainage system that led to her mucocele. During formation of her frontal sinus, she developed a bifid septum within the midline that excluded a portion of her frontal sinus from the lateral nasofrontal ducts. With mucus-producing epithelium trapped within these bony confines, pressure began to mount with expansion and thinning of the bone both anteriorly and posteriorly. The lack of any infectious symptoms and sterile culture results may support that this space developed primarily and was never in continuity with the external drainage system. Only 4 other patients have been reported with asymptomatic forehead swelling as the only presenting symptom, with the age ranging from 33 to 79 years. This patient represents the first clinical report of a congenital

  1. Lower limb and associated injuries in frontal-impact road traffic ...

    African Journals Online (AJOL)

    Abstract. Objectives: To study the relationship between severity of injury of the lower limb and severity of injury of the head, thoracic, and abdominal regions in frontal-impact road traffic collisions. Methods: Consecutive hospitalised trauma patients who were involved in a frontal road traffic collision were prospectively stud-.

  2. Effect of acupuncture on regional cerebral blood flow at acupoints GV 20, GV. 26, LI, 4. ST. 36, SP. 6 evaluated by Tc-99m ECD brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Chun; Bom, Hee Seung; Kang, Hwa Jeong; Kim, Seong Min; Jeong, Hwan Jeong; Kim, Ji Yeul [College of Medicine, Dongshin Univ., Naju (Korea, Republic of); Ahn, Soo Gi [College of Medicine, Wonkwang Univ., Iksan (Korea, Republic of)

    2000-12-01

    To evaluate the effect of acupuncture on regional cerebral blood flow (rCBF) at acupoints suggested by oriental medicine to be related to the treatment of cerebrovascular diseases. Rest/acupuncture-stimulation Tc-99m ECD brain SPECT using a same-dose subtraction method was performed on 54 normal volunteers (34 males, 20 females, age range from 18 to 62 years) using six paradigms: acupuncture at acupoints GV. 20, GV. 26, LI. 4, ST. 36 and SP. 6. In the control study, needle location was chosen on a non-meridian focus 1 cm posterior to the right fibular head. All images were spatially normalized, and the differences between rest and acupuncture stimulation were statistically analyzed using SPM for Windows. Acupuncture applied at acupoint GV. 20 increased rCBF in both the anterior frontal lobes, the right frontotemporal lobes, and the left anterior temporal lobe and the left cerebellar hemisphere. Acupuncture at GV. 26 increased rCBF in the left prefrontal cortex. Acupuncture at LI. 4 increased rCBF in the left prefrontal and both the inferior frontal lobes, and the left anterior temporal lobe and the left cerebellar hemisphere. Acupuncture at ST. 36 increased rCBF in the left anterior temporal lobe, the right inferior frontal lobes, and the left cerebellum. Acupuncture at SP 6 increased rCBF in the left inferior frontal and anterior temporal lobes. In the control stimulation, no significant rCBF increase was observed. The results demonstrated a correlation between stimuation at each acupoint with increase in rCBF to the corresponding brain areas.

  3. Effect of acupuncture on regional cerebral blood flow at acupoints GV 20, GV. 26, LI, 4. ST. 36, SP. 6 evaluated by Tc-99m ECD brain SPECT

    International Nuclear Information System (INIS)

    Song, Ho Chun; Bom, Hee Seung; Kang, Hwa Jeong; Kim, Seong Min; Jeong, Hwan Jeong; Kim, Ji Yeul; Ahn, Soo Gi

    2000-01-01

    To evaluate the effect of acupuncture on regional cerebral blood flow (rCBF) at acupoints suggested by oriental medicine to be related to the treatment of cerebrovascular diseases. Rest/acupuncture-stimulation Tc-99m ECD brain SPECT using a same-dose subtraction method was performed on 54 normal volunteers (34 males, 20 females, age range from 18 to 62 years) using six paradigms: acupuncture at acupoints GV. 20, GV. 26, LI. 4, ST. 36 and SP. 6. In the control study, needle location was chosen on a non-meridian focus 1 cm posterior to the right fibular head. All images were spatially normalized, and the differences between rest and acupuncture stimulation were statistically analyzed using SPM for Windows. Acupuncture applied at acupoint GV. 20 increased rCBF in both the anterior frontal lobes, the right frontotemporal lobes, and the left anterior temporal lobe and the left cerebellar hemisphere. Acupuncture at GV. 26 increased rCBF in the left prefrontal cortex. Acupuncture at LI. 4 increased rCBF in the left prefrontal and both the inferior frontal lobes, and the left anterior temporal lobe and the left cerebellar hemisphere. Acupuncture at ST. 36 increased rCBF in the left anterior temporal lobe, the right inferior frontal lobes, and the left cerebellum. Acupuncture at SP 6 increased rCBF in the left inferior frontal and anterior temporal lobes. In the control stimulation, no significant rCBF increase was observed. The results demonstrated a correlation between stimuation at each acupoint with increase in rCBF to the corresponding brain areas

  4. Frontal and temporal contributions to understanding the iconic co-speech gestures that accompany speech.

    Science.gov (United States)

    Dick, Anthony Steven; Mok, Eva H; Raja Beharelle, Anjali; Goldin-Meadow, Susan; Small, Steven L

    2014-03-01

    In everyday conversation, listeners often rely on a speaker's gestures to clarify any ambiguities in the verbal message. Using fMRI during naturalistic story comprehension, we examined which brain regions in the listener are sensitive to speakers' iconic gestures. We focused on iconic gestures that contribute information not found in the speaker's talk, compared with those that convey information redundant with the speaker's talk. We found that three regions-left inferior frontal gyrus triangular (IFGTr) and opercular (IFGOp) portions, and left posterior middle temporal gyrus (MTGp)--responded more strongly when gestures added information to nonspecific language, compared with when they conveyed the same information in more specific language; in other words, when gesture disambiguated speech as opposed to reinforced it. An increased BOLD response was not found in these regions when the nonspecific language was produced without gesture, suggesting that IFGTr, IFGOp, and MTGp are involved in integrating semantic information across gesture and speech. In addition, we found that activity in the posterior superior temporal sulcus (STSp), previously thought to be involved in gesture-speech integration, was not sensitive to the gesture-speech relation. Together, these findings clarify the neurobiology of gesture-speech integration and contribute to an emerging picture of how listeners glean meaning from gestures that accompany speech. Copyright © 2012 Wiley Periodicals, Inc.

  5. Functional Dysconnection of the Inferior Frontal Gyrus in Young People With Bipolar Disorder or at Genetic High Risk.

    Science.gov (United States)

    Roberts, Gloria; Lord, Anton; Frankland, Andrew; Wright, Adam; Lau, Phoebe; Levy, Florence; Lenroot, Rhoshel K; Mitchell, Philip B; Breakspear, Michael

    2017-04-15

    Bipolar disorder (BD) is characterized by a dysregulation of affect and impaired integration of emotion with cognition. These traits are also expressed in probands at high genetic risk of BD. The inferior frontal gyrus (IFG) is a key cortical hub in the circuits of emotion and cognitive control, and it has been frequently associated with BD. Here, we studied resting-state functional connectivity of the left IFG in participants with BD and in those at increased genetic risk. Using resting-state functional magnetic resonance imaging we compared 49 young BD participants, 71 individuals with at least one first-degree relative with BD (at-risk), and 80 control subjects. We performed between-group analyses of the functional connectivity of the left IFG and used graph theory to study its local functional network topology. We also used machine learning to study classification based solely on the functional connectivity of the IFG. In BD, the left IFG was functionally dysconnected from a network of regions, including bilateral insulae, ventrolateral prefrontal gyri, superior temporal gyri, and the putamen (p < .001). A small network incorporating neighboring insular regions and the anterior cingulate cortex showed weaker functional connectivity in at-risk than control participants (p < .006). These constellations of regions overlapped with frontolimbic regions that a machine learning classifier selected as predicting group membership with an accuracy significantly greater than chance. Functional dysconnectivity of the IFG from regions involved in emotional regulation may represent a trait abnormality for BD and could potentially aid clinical diagnosis. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Frontal ataxia in childhood.

    Science.gov (United States)

    Erasmus, C E; Beems, T; Rotteveel, J J

    2004-12-01

    Frontal ataxia may be the result of a unilateral frontal lesion. In this report three cases are presented with ataxia due to right frontal lesions. One case concerns a boy presenting with an unsteady gait and titubation of the trunk, mimicking developmental disequilibrium and with complex partial seizures. It proved to be caused by a small right-sided cavernoma in the middle frontal gyrus. After surgical intervention the symptoms and the seizures disappeared. Two subsequent cases concern teenage patients presenting with headache after an ENT infection and on physical examination mild dysmetric function of the upper limbs and slight disequilibrium, due to right-sided frontal lobe abscesses. After neurosurgical and antibiotic therapy the symptoms were relieved. The frontal origin of ataxia should be considered in children presenting with a "cerebellar syndrome". Frontal gait disorders consist of a clinical pattern of different gait disorders. The syndrome has been mentioned in the literature under different names. Our patients show signs compatible with the term frontal disequilibrium, a clinical pattern of frontal gait disorder. This assumes walking problems characterized by loss of control of motor planning, leading to imbalance. Remarkably, frontal ataxia may mimic developmental delay as demonstrated in the first case and may be the leading mild symptom in extensive frontal lobe damage as demonstrated by the two other cases. We suppose that frontal ataxia is the result of a disturbance in the cerebellar-frontal circuitries and an impairment of executive and planning functions of the basal ganglia-frontal lobe circuitry.

  7. An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging.

    Science.gov (United States)

    Nielsen, Jared A; Zielinski, Brandon A; Ferguson, Michael A; Lainhart, Janet E; Anderson, Jeffrey S

    2013-01-01

    Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right-brained" network strength

  8. Conceptual control across modalities: graded specialisation for pictures and words in inferior frontal and posterior temporal cortex.

    Science.gov (United States)

    Krieger-Redwood, Katya; Teige, Catarina; Davey, James; Hymers, Mark; Jefferies, Elizabeth

    2015-09-01

    Controlled semantic retrieval to words elicits co-activation of inferior frontal (IFG) and left posterior temporal cortex (pMTG), but research has not yet established (i) the distinct contributions of these regions or (ii) whether the same processes are recruited for non-verbal stimuli. Words have relatively flexible meanings - as a consequence, identifying the context that links two specific words is relatively demanding. In contrast, pictures are richer stimuli and their precise meaning is better specified by their visible features - however, not all of these features will be relevant to uncovering a given association, tapping selection/inhibition processes. To explore potential differences across modalities, we took a commonly-used manipulation of controlled retrieval demands, namely the identification of weak vs. strong associations, and compared word and picture versions. There were 4 key findings: (1) Regions of interest (ROIs) in posterior IFG (BA44) showed graded effects of modality (e.g., words>pictures in left BA44; pictures>words in right BA44). (2) An equivalent response was observed in left mid-IFG (BA45) across modalities, consistent with the multimodal semantic control deficits that typically follow LIFG lesions. (3) The anterior IFG (BA47) ROI showed a stronger response to verbal than pictorial associations, potentially reflecting a role for this region in establishing a meaningful context that can be used to direct semantic retrieval. (4) The left pMTG ROI also responded to difficulty across modalities yet showed a stronger response overall to verbal stimuli, helping to reconcile two distinct literatures that have implicated this site in semantic control and lexical-semantic access respectively. We propose that left anterior IFG and pMTG work together to maintain a meaningful context that shapes ongoing semantic processing, and that this process is more strongly taxed by word than picture associations. Copyright © 2015 The Authors. Published by

  9. Frontal sinus asymmetry: Is it an effect of cranial asymmetry? X-ray analysis of 469 normal adult human frontal sinus

    Directory of Open Access Journals (Sweden)

    Ayhan Kanat

    2015-01-01

    Full Text Available Background and Aims: There is no study in the literature that investigates an asymmetric morphological feature of the frontal sinus (FS. Materials and Methods: Four hundred and sixty-nine consecutive direct X-rays of FSs were analyzed for the asymmetry between the right and left sides. When an asymmetry in the height and contour of the FS existed, this difference was quantified. Results: Of the 469 patients, X-rays of 402 patients (85.7%, there was an asymmetry between right and left sides of the FS. Of these 235 (50.1% were dominant on the left side, whereas 167 (35.6% were dominant on the right, the sinuses of remaining 67 patients (14.3% was symmetric. Statistical Analysis: The comparisons between parameters were performed using Wilkinson signed rank test. The relationship between handedness and sinus asymmetry was also examined by two proportions test. There is statistically significant difference between the dominance of left and right FS. Conclusions: Hemispheric dominance may have some effect (s of on sinus asymmetry of the human cranium. Surgeons sometimes enter the cranium through the FS and knowledge of asymmetric FS is important to minimize surgical complications.

  10. An fMRI study of sex differences in regional activation to a verbal and a spatial task.

    Science.gov (United States)

    Gur, R C; Alsop, D; Glahn, D; Petty, R; Swanson, C L; Maldjian, J A; Turetsky, B I; Detre, J A; Gee, J; Gur, R E

    2000-09-01

    Sex differences in cognitive performance have been documented, women performing better on some phonological tasks and men on spatial tasks. An earlier fMRI study suggested sex differences in distributed brain activation during phonological processing, with bilateral activation seen in women while men showed primarily left-lateralized activation. This blood oxygen level-dependent fMRI study examined sex differences (14 men, 13 women) in activation for a spatial task (judgment of line orientation) compared to a verbal-reasoning task (analogies) that does not typically show sex differences. Task difficulty was manipulated. Hypothesized ROI-based analysis documented the expected left-lateralized changes for the verbal task in the inferior parietal and planum temporal regions in both men and women, but only men showed right-lateralized increase for the spatial task in these regions. Image-based analysis revealed a distributed network of cortical regions activated by the tasks, which consisted of the lateral frontal, medial frontal, mid-temporal, occipitoparietal, and occipital regions. The activation was more left lateralized for the verbal and more right for the spatial tasks, but men also showed some left activation for the spatial task, which was not seen in women. Increased task difficulty produced more distributed activation for the verbal and more circumscribed activation for the spatial task. The results suggest that failure to activate the appropriate hemisphere in regions directly involved in task performance may explain certain sex differences in performance. They also extend, for a spatial task, the principle that bilateral activation in a distributed cognitive system underlies sex differences in performance. Copyright 2000 Academic Press.

  11. Inferior Frontal Sensitivity to Common Speech Sounds Is Amplified by Increasing Word Intelligibility

    Science.gov (United States)

    Vaden, Kenneth I., Jr.; Kuchinsky, Stefanie E.; Keren, Noam I.; Harris, Kelly C.; Ahlstrom, Jayne B.; Dubno, Judy R.; Eckert, Mark A.

    2011-01-01

    The left inferior frontal gyrus (LIFG) exhibits increased responsiveness when people listen to words composed of speech sounds that frequently co-occur in the English language (Vaden, Piquado, & Hickok, 2011), termed high phonotactic frequency (Vitevitch & Luce, 1998). The current experiment aimed to further characterize the relation of…

  12. Emotional Responses to Music: Shifts in Frontal Brain Asymmetry Mark Periods of Musical Change.

    Science.gov (United States)

    Arjmand, Hussain-Abdulah; Hohagen, Jesper; Paton, Bryan; Rickard, Nikki S

    2017-01-01

    Recent studies have demonstrated increased activity in brain regions associated with emotion and reward when listening to pleasurable music. Unexpected change in musical features intensity and tempo - and thereby enhanced tension and anticipation - is proposed to be one of the primary mechanisms by which music induces a strong emotional response in listeners. Whether such musical features coincide with central measures of emotional response has not, however, been extensively examined. In this study, subjective and physiological measures of experienced emotion were obtained continuously from 18 participants (12 females, 6 males; 18-38 years) who listened to four stimuli-pleasant music, unpleasant music (dissonant manipulations of their own music), neutral music, and no music, in a counter-balanced order. Each stimulus was presented twice: electroencephalograph (EEG) data were collected during the first, while participants continuously subjectively rated the stimuli during the second presentation. Frontal asymmetry (FA) indices from frontal and temporal sites were calculated, and peak periods of bias toward the left (indicating a shift toward positive affect) were identified across the sample. The music pieces were also examined to define the temporal onset of key musical features. Subjective reports of emotional experience averaged across the condition confirmed participants rated their music selection as very positive, the scrambled music as negative, and the neutral music and silence as neither positive nor negative. Significant effects in FA were observed in the frontal electrode pair FC3-FC4, and the greatest increase in left bias from baseline was observed in response to pleasurable music. These results are consistent with findings from previous research. Peak FA responses at this site were also found to co-occur with key musical events relating to change, for instance, the introduction of a new motif, or an instrument change, or a change in low level acoustic

  13. Emotional Responses to Music: Shifts in Frontal Brain Asymmetry Mark Periods of Musical Change

    Directory of Open Access Journals (Sweden)

    Hussain-Abdulah Arjmand

    2017-12-01

    Full Text Available Recent studies have demonstrated increased activity in brain regions associated with emotion and reward when listening to pleasurable music. Unexpected change in musical features intensity and tempo – and thereby enhanced tension and anticipation – is proposed to be one of the primary mechanisms by which music induces a strong emotional response in listeners. Whether such musical features coincide with central measures of emotional response has not, however, been extensively examined. In this study, subjective and physiological measures of experienced emotion were obtained continuously from 18 participants (12 females, 6 males; 18–38 years who listened to four stimuli—pleasant music, unpleasant music (dissonant manipulations of their own music, neutral music, and no music, in a counter-balanced order. Each stimulus was presented twice: electroencephalograph (EEG data were collected during the first, while participants continuously subjectively rated the stimuli during the second presentation. Frontal asymmetry (FA indices from frontal and temporal sites were calculated, and peak periods of bias toward the left (indicating a shift toward positive affect were identified across the sample. The music pieces were also examined to define the temporal onset of key musical features. Subjective reports of emotional experience averaged across the condition confirmed participants rated their music selection as very positive, the scrambled music as negative, and the neutral music and silence as neither positive nor negative. Significant effects in FA were observed in the frontal electrode pair FC3–FC4, and the greatest increase in left bias from baseline was observed in response to pleasurable music. These results are consistent with findings from previous research. Peak FA responses at this site were also found to co-occur with key musical events relating to change, for instance, the introduction of a new motif, or an instrument change, or a

  14. Brain Abscess Associated with Isolated Left Superior Vena Cava Draining into the Left Atrium in the Absence of Coronary Sinus and Atrial Septal Defect

    International Nuclear Information System (INIS)

    Erol, Ilknur; Cetin, I. Ilker; Alehan, Fuesun; Varan, Birguel; Ozkan, Sueleyman; Agildere, A. Muhtesem; Tokel, Kursad

    2006-01-01

    A previously healthy 12-year-old girl presented with severe headache for 2 weeks. On physical examination, there was finger clubbing without apparent cyanosis. Neurological examination revealed only papiledema without focal neurologic signs. Cerebral magnetic resonance imaging showed the characteristic features of brain abscess in the left frontal lobe. Cardiologic workup to exclude a right-to-left shunt showed an abnormality of the systemic venous drainage: presence of isolated left superior vena cava draining into the left atrium in the absence of coronary sinus and atrial septal defect. This anomaly is rare, because only a few other cases have been reported

  15. Association fibers connecting the Broca center and the lateral superior frontal gyrus: a microsurgical and tractographic anatomy.

    Science.gov (United States)

    Kinoshita, Masashi; Shinohara, Harumichi; Hori, Osamu; Ozaki, Noriyuki; Ueda, Fumiaki; Nakada, Mitsutoshi; Hamada, Jun-Ichiro; Hayashi, Yutaka

    2012-02-01

    Recently, intraoperative mapping has disclosed that, in addition to the classic language centers (that is, the Broca and Wernicke centers), other cortical regions may also play an important role in language organization. In the prefrontal cortex, although the lateral superior frontal gyrus (LSFG) could have language-related functions, there are no detailed reports that demonstrate the anatomical connection between the LSFG and other well-known language cortices, such as the Broca center. To show the existence of the structural connection, white matter association fibers between the inferior frontal gyrus (IFG) and the LSFG were examined using fiber dissection (FD) and diffusion tensor (DT) imaging-based tractography. Eight cadaveric cerebral hemispheres were dissected to reveal the association fibers between the IFG and LSFG. The DT imaging-based tractography studies targeting the prefrontal cortex were obtained in 53 right-handed patients who had no organic cerebral lesions. The association fiber tract between Brodmann area 44/45 (the Broca center in the dominant hemisphere) and LSFG were detected in all specimens by FD. In the DT imaging-based tractography studies, the tract was identified in all patients bilaterally, except for the 4 in whom the tract was detected only in the left hemisphere. This tract was spread significantly wider in the left than in the right hemisphere, and left lateralization was evident in male patients. Based on its character, this tract was named the Broca-LSFG pathway. These findings suggest a close relationship between this pathway and language organization. The structural anatomy of the Broca-LSFG pathway may explain speech disturbances induced by LSFG stimulation that are sometimes observed during intraoperative language mapping.

  16. Graded representations of emotional expressions in the left superior temporal sulcus

    Directory of Open Access Journals (Sweden)

    Christopher P Said

    2010-03-01

    Full Text Available Perceptual categorization is a fundamental cognitive process that gives meaning to an often graded sensory environment. Previous research has subdivided the visual pathway into posterior regions that processes the physical properties of a stimulus, and frontal regions that process more abstract properties such as category information. The superior temporal sulcus (STS is known to be involved in face and emotion perception, but the nature of its processing remains unknown. Here, we used targeted fMRI measurements of the STS to investigate whether its representations of facial expressions are categorical or noncategorical. Multivoxel pattern analysis showed that even though subjects were performing a categorization task, the left STS contained graded, noncategorical representations. In the right STS, representations showed evidence for both stimulus-related gradations and a categorical boundary.

  17. The findings of Tc-99m ECD brain perfusion SPECT in the patients with left anterior thalamic infarction

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y. A.; Kim, S. H.; Sohn, H. S.; Jeong, S. G. [The Catholic University of Korea, Seoul (Korea, Republic of)

    2005-07-01

    The thalamus has multiple connections with areas of the cerebral cortex involved in arousal and cognition. Thalamic damage has been reported to be associated with variable neuropsychological dysfunctions and dementia. This study evaluates the changes of regional cerebral blood flow (rCBF) by using SPM analysis of brain perfusion SPECT and examining the neuropsychological abnormalities of 4 patients with anterior thalamic infarctions. Four patients with left anterior thalamic infarctions and eleven normal controls were evaluated. K-MMSE and the Seoul Neuropsychological Screening Battery were performed within 2 days after stroke. The normalized SPECT data of 4 patients were compared to those of 11 controls for the detection of areas with decreased rCBF by SPM analysis. All 4 patients showed anterograde amnesia in their verbal memory, which was not improved by recognition. Dysexecutive features were occasionally present, such as decreased word fluency and impaired Stroop test results. SPM analysis revealed decreased rCBF in the left supra marginal gyrus, the superior temporal gyrus, the middle and inferior frontal gyrus, the medial dorsal and anterior nucleus of the left thalamus. The changes of rCBF in patients with left anterior thalamic infarctions may be due to the remote suppression on metabolism by the interruption of the cortico-subcortical circuit, which connects the anterior thalamic nucleus and various cortical areas. The executive dysfunction and dysnomia may be caused by the left dorsolateral frontal dysfunction of the thalamo-cortical circuit. Anterograde amnesia with storage deficit may be caused by the disruption of mamillothalamic tract.

  18. The findings of Tc-99m ECD brain perfusion SPECT in the patients with left anterior thalamic infarction

    International Nuclear Information System (INIS)

    Jeong, Y. A.; Kim, S. H.; Sohn, H. S.; Jeong, S. G.

    2005-01-01

    The thalamus has multiple connections with areas of the cerebral cortex involved in arousal and cognition. Thalamic damage has been reported to be associated with variable neuropsychological dysfunctions and dementia. This study evaluates the changes of regional cerebral blood flow (rCBF) by using SPM analysis of brain perfusion SPECT and examining the neuropsychological abnormalities of 4 patients with anterior thalamic infarctions. Four patients with left anterior thalamic infarctions and eleven normal controls were evaluated. K-MMSE and the Seoul Neuropsychological Screening Battery were performed within 2 days after stroke. The normalized SPECT data of 4 patients were compared to those of 11 controls for the detection of areas with decreased rCBF by SPM analysis. All 4 patients showed anterograde amnesia in their verbal memory, which was not improved by recognition. Dysexecutive features were occasionally present, such as decreased word fluency and impaired Stroop test results. SPM analysis revealed decreased rCBF in the left supra marginal gyrus, the superior temporal gyrus, the middle and inferior frontal gyrus, the medial dorsal and anterior nucleus of the left thalamus. The changes of rCBF in patients with left anterior thalamic infarctions may be due to the remote suppression on metabolism by the interruption of the cortico-subcortical circuit, which connects the anterior thalamic nucleus and various cortical areas. The executive dysfunction and dysnomia may be caused by the left dorsolateral frontal dysfunction of the thalamo-cortical circuit. Anterograde amnesia with storage deficit may be caused by the disruption of mamillothalamic tract

  19. Regional differences in right versus left congenital heart disease diagnoses in neonates in the United States.

    Science.gov (United States)

    Nelson, Jennifer S; Strassle, Paula D

    2018-03-01

    Differences in the prevalence of left and right congenital heart defects (CHD) across the United States are unclear. This study evaluated the overall prevalence and the distribution of right versus left CHD across US regions and divisions in neonates. Newborns born from 2000 to 2014 diagnosed with CHD were identified using the National Inpatient Sample. Heart defects were stratified into right, left, and "neither" subtypes. The risk of right and left heart diagnoses between US Census regions and divisions was compared using multivariable binomial regression, adjusting for infant, and hospital characteristics. Two hundred forty thousand four hundred fifty-five newborns were included and 38,185 (15.9%) were classifiable as having either right or left subtypes. Between 2000 and 2014, the prevalence of right defects increased from 1.65 to 2.88 cases/1,000 live born infants (p right heart defect diagnosis compared to the West. When stratified by division, New England states had a significantly higher prevalence of right defects compared to the Pacific (RD adj .09, 95% CI .06, 0.11). No differences in the prevalence of left defects were seen. The prevalence of CHD diagnoses at birth in the US has increased, and regional differences in the prevalence of right defects appear to exist. © 2017 Wiley Periodicals, Inc.

  20. Short-term effects of escitalopram on regional brain function in first-episode drug-naive patients with major depressive disorder assessed by resting-state functional magnetic resonance imaging.

    Science.gov (United States)

    Wang, L; Li, K; Zhang, Q; Zeng, Y; Dai, W; Su, Y; Wang, G; Tan, Y; Jin, Z; Yu, X; Si, T

    2014-05-01

    Most knowledge regarding the effects of antidepressant drugs is at the receptor level, distal from the nervous system effects that mediate their clinical efficacy. Using functional magnetic resonance imaging (fMRI), this study investigated the effects of escitalopram, a selective serotonin reuptake inhibitor (SSRI), on resting-state brain function in patients with major depressive disorder (MDD). Fourteen first-episode drug-naive MDD patients completed two fMRI scans before and after 8 weeks of escitalopram therapy. Scans were also acquired in 14 matched healthy subjects. Data were analyzed using the regional homogeneity (ReHo) approach. Compared to controls, MDD patients before treatment demonstrated decreased ReHo in the frontal (right superior frontal gyrus), temporal (left middle and right inferior temporal gyri), parietal (right precuneus) and occipital (left superior occipital gyrus and right cuneus) cortices, and increased ReHo in the left dorsal medial prefrontal gyrus and left anterior lobe of the cerebellum. Compared to the unmedicated state, ReHo in the patients after treatment was decreased in the left dorsal medial prefrontal gyrus, the right insula and the bilateral thalamus, and increased in the right superior frontal gyrus. Compared to controls, patients after treatment displayed a ReHo decrease in the right precuneus and a ReHo increase in the left anterior lobe of the cerebellum. Successful treatment with escitalopram may be associated with modulation of resting-state brain activity in regions within the fronto-limbic circuit. This study provides new insight into the effects of antidepressants on functional brain systems in MDD.

  1. CE verbal episodic memory impairment in schizophrenia: a comparison with frontal lobe lesion patients.

    Science.gov (United States)

    Christensen, Bruce K; Patrick, Regan E; Stuss, Donald T; Gillingham, Susan; Zipursky, Robert B

    2013-01-01

    Schizophrenia (SCZ)-related verbal memory impairment is hypothesized to be mediated, in part, by frontal lobe (FTL) dysfunction. However, little research has contrasted the performance of SCZ patients with that of patients exhibiting circumscribed frontal lesions. The current study compared verbal episodic memory in patients with SCZ and focal FTL lesions (left frontal, LF; right frontal, RF; and bi-frontal, BF) on a four-trial list learning task consisting of three lists of varying semantic organizational structure. Each dependent variable was examined at two levels: scores collapsed across all four trials and learning scores (i.e., trial 4-trial 1). Performance deficits were observed in each patient group across most dependent measures at both levels. Regarding patient group differences, SCZ patients outperformed LF/BF patients (i.e., either learning scores or scores collapsed across trial) on free recall, primacy, primary memory, secondary memory, and subjective organization, whereas they only outperformed RF patients on the semantically blocked list on recency and primary memory. Collectively, these results indicate that the pattern of memory performance is largely similar between patients with SCZ and those with RF lesions. These data support tentative arguments that verbal episodic memory deficits in SCZ may be mediated by frontal dysfunction in the right hemisphere.

  2. On the functional relevance of frontal cortex for passive and voluntarily controlled bistable vision.

    Science.gov (United States)

    de Graaf, Tom A; de Jong, Maartje C; Goebel, Rainer; van Ee, Raymond; Sack, Alexander T

    2011-10-01

    In bistable vision, one constant ambiguous stimulus leads to 2 alternating conscious percepts. This perceptual switching occurs spontaneously but can also be influenced through voluntary control. Neuroimaging studies have reported that frontal regions are activated during spontaneous perceptual switches, leading some researchers to suggest that frontal regions causally induce perceptual switches. But the opposite also seems possible: frontal activations may themselves be caused by spontaneous switches. Classically implicated in attentional processes, these same regions are also candidates for the origins of voluntary control over bistable vision. Here too, it remains unknown whether frontal cortex is actually functionally relevant. It is even possible that spontaneous perceptual switches and voluntarily induced switches are mediated by the same top-down mechanisms. To directly address these issues, we here induced "virtual lesions," with transcranial magnetic stimulation, in frontal, parietal, and 2 lower level visual cortices using an established ambiguous structure-from-motion stimulus. We found that dorsolateral prefrontal cortex was causally relevant for voluntary control over perceptual switches. In contrast, we failed to find any evidence for an active role of frontal cortex in passive bistable vision. Thus, it seems the same pathway used for willed top-down modulation of bistable vision is not used during passive bistable viewing.

  3. Sleep-Wake Differences in Relative Regional Cerebral Metabolic Rate for Glucose among Patients with Insomnia Compared with Good Sleepers

    Science.gov (United States)

    Kay, Daniel B.; Karim, Helmet T.; Soehner, Adriane M.; Hasler, Brant P.; Wilckens, Kristine A.; James, Jeffrey A.; Aizenstein, Howard J.; Price, Julie C.; Rosario, Bedda L.; Kupfer, David J.; Germain, Anne; Hall, Martica H.; Franzen, Peter L.; Nofzinger, Eric A.; Buysse, Daniel J.

    2016-01-01

    Study Objectives: The neurobiological mechanisms of insomnia may involve altered patterns of activation across sleep-wake states in brain regions associated with cognition, self-referential processes, affect, and sleep-wake promotion. The objective of this study was to compare relative regional cerebral metabolic rate for glucose (rCMRglc) in these brain regions across wake and nonrapid eye movement (NREM) sleep states in patients with primary insomnia (PI) and good sleeper controls (GS). Methods: Participants included 44 PI and 40 GS matched for age (mean = 37 y old, range 21–60), sex, and race. We conducted [18F]fluoro-2-deoxy-d-glucose positron emission tomography scans in PI and GS during both morning wakefulness and NREM sleep at night. Repeated measures analysis of variance was used to test for group (PI vs. GS) by state (wake vs. NREM sleep) interactions in relative rCMRglc. Results: Significant group-by-state interactions in relative rCMRglc were found in the precuneus/posterior cingulate cortex, left middle frontal gyrus, left inferior/superior parietal lobules, left lingual/fusiform/occipital gyri, and right lingual gyrus. All clusters were significant at Pcorrected sleep and wakefulness. Significant group-by-state interactions in relative rCMRglc suggest that insomnia is associated with impaired disengagement of brain regions involved in cognition (left frontoparietal), self-referential processes (precuneus/posterior cingulate), and affect (left middle frontal, fusiform/lingual gyri) during NREM sleep, or alternatively, to impaired engagement of these regions during wakefulness. Citation: Kay DB, Karim HT, Soehner AM, Hasler BP, Wilckens KA, James JA, Aizenstein HJ, Price JC, Rosario BL, Kupfer DJ, Germain A, Hall MH, Franzen PL, Nofzinger EA, Buysse DJ. Sleep-wake differences in relative regional cerebral metabolic rate for glucose among patients with insomnia compared with good sleepers. SLEEP 2016;39(10):1779–1794. PMID:27568812

  4. Functional resting-state connectivity of the human motor network: differences between right- and left-handers.

    Science.gov (United States)

    Pool, Eva-Maria; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2015-04-01

    Handedness is associated with differences in activation levels in various motor tasks performed with the dominant or non-dominant hand. Here we tested whether handedness is reflected in the functional architecture of the motor system even in the absence of an overt motor task. Using resting-state functional magnetic resonance imaging we investigated 18 right- and 18 left-handers. Whole-brain functional connectivity maps of the primary motor cortex (M1), supplementary motor area (SMA), dorsolateral premotor cortex (PMd), pre-SMA, inferior frontal junction and motor putamen were compared between right- and left-handers. We further used a multivariate linear support vector machine (SVM) classifier to reveal the specificity of brain regions for classifying handedness based on individual resting-state maps. Using left M1 as seed region, functional connectivity analysis revealed stronger interhemispheric functional connectivity between left M1 and right PMd in right-handers as compared to left-handers. This connectivity cluster contributed to the individual classification of right- and left-handers with 86.2% accuracy. Consistently, also seeding from right PMd yielded a similar handedness-dependent effect in left M1, albeit with lower classification accuracy (78.1%). Control analyses of the other resting-state networks including the speech and the visual network revealed no significant differences in functional connectivity related to handedness. In conclusion, our data revealed an intrinsically higher functional connectivity in right-handers. These results may help to explain that hand preference is more lateralized in right-handers than in left-handers. Furthermore, enhanced functional connectivity between left M1 and right PMd may serve as an individual marker of handedness. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Functional connections between activated and deactivated brain regions mediate emotional interference during externally directed cognition.

    Science.gov (United States)

    Di Plinio, Simone; Ferri, Francesca; Marzetti, Laura; Romani, Gian Luca; Northoff, Georg; Pizzella, Vittorio

    2018-04-24

    Recent evidence shows that task-deactivations are functionally relevant for cognitive performance. Indeed, higher cognitive engagement has been associated with higher suppression of activity in task-deactivated brain regions - usually ascribed to the Default Mode Network (DMN). Moreover, a negative correlation between these regions and areas actively engaged by the task is associated with better performance. DMN regions show positive modulation during autobiographical, social, and emotional tasks. However, it is not clear how processing of emotional stimuli affects the interplay between the DMN and executive brain regions. We studied this interplay in an fMRI experiment using emotional negative stimuli as distractors. Activity modulations induced by the emotional interference of negative stimuli were found in frontal, parietal, and visual areas, and were associated with modulations of functional connectivity between these task-activated areas and DMN regions. A worse performance was predicted both by lower activity in the superior parietal cortex and higher connectivity between visual areas and frontal DMN regions. Connectivity between right inferior frontal gyrus and several DMN regions in the left hemisphere was related to the behavioral performance. This relation was weaker in the negative than in the neutral condition, likely suggesting less functional inhibitions of DMN regions during emotional processing. These results show that both executive and DMN regions are crucial for the emotional interference process and suggest that DMN connections are related to the interplay between externally-directed and internally-focused processes. Among DMN regions, superior frontal gyrus may be a key node in regulating the interference triggered by emotional stimuli. © 2018 Wiley Periodicals, Inc.

  6. Effects of typical antipsychotic, haloperidol on regional cerebral blood flow in drug-naive schizophrenic patients-study with 99mTc-HMPAO SPECT

    International Nuclear Information System (INIS)

    Kamoya, Masatoshi

    2001-01-01

    For the purpose of examining antipsychotic action of haloperidol (HPD), effects of chronic perioral administration of HPD 4.5 mg/day on regional cerebral blood flow (rCBF) with 99mTc-HMPAO SPECT were investigated in 12 drug-naive schizophrenic patients with acute hallucinatory and delusional state. Further, the SPECT examinations were performed on 20 normal adult volunteers to investigate differences in rCBFs between schizophrenics and the normal subjects. Results are itemized as follows. The rCBF values were significantly increased in the bilateral superior and middle frontal, cingulate, middle temporal, pre-and post-central gyri, the left superior temporal gyrus, the bilateral inferior parietal lobule, and the bilateral hippocampal and thalamic cortices in comparison between normal subjects and before the HPD dose in schizophrenics. However, the rCBF values after the HPD dose showed significant increases only in the bilateral pre-and post-central gyri in comparison with the normal subjects. The rCBF values were significantly decreased in the bilateral superior, middle and inferior frontal, superior and middle temporal gyri, and the left insular gyrus after the HPD dose in comparison with before the HPD dose. The psychiatric assessment with PANSS showed an improvement of positive symptoms consisting of auditory hallucination and delusions after the HPD dose. Statistical analyses on relationships between the rCBF values and PANSS scores before and after the HPD dose showed positive correlations between the right inferior frontal gyrus and auditory hallucination or positive symptoms, between the right superior temporal gyrus, left thalamus and delusions, and between the left thalamus, insular gyrus and negative symptoms. These results suggest that acute drug-naive schizophrenic patients have widespread cortico-subcortical energic hypermetabolism and HPD reduces the hypermetabolism, leading to whole normalized brain metabolism, in particular with the larger region

  7. Effects of typical antipsychotic, haloperidol on regional cerebral blood flow in drug-naive schizophrenic patients-study with 99mTc-HMPAO SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kamoya, Masatoshi [Kanazawa Medical Univ., Ishikawa (Japan)

    2001-03-01

    For the purpose of examining antipsychotic action of haloperidol (HPD), effects of chronic perioral administration of HPD 4.5 mg/day on regional cerebral blood flow (rCBF) with 99mTc-HMPAO SPECT were investigated in 12 drug-naive schizophrenic patients with acute hallucinatory and delusional state. Further, the SPECT examinations were performed on 20 normal adult volunteers to investigate differences in rCBFs between schizophrenics and the normal subjects. Results are itemized as follows. The rCBF values were significantly increased in the bilateral superior and middle frontal, cingulate, middle temporal, pre-and post-central gyri, the left superior temporal gyrus, the bilateral inferior parietal lobule, and the bilateral hippocampal and thalamic cortices in comparison between normal subjects and before the HPD dose in schizophrenics. However, the rCBF values after the HPD dose showed significant increases only in the bilateral pre-and post-central gyri in comparison with the normal subjects. The rCBF values were significantly decreased in the bilateral superior, middle and inferior frontal, superior and middle temporal gyri, and the left insular gyrus after the HPD dose in comparison with before the HPD dose. The psychiatric assessment with PANSS showed an improvement of positive symptoms consisting of auditory hallucination and delusions after the HPD dose. Statistical analyses on relationships between the rCBF values and PANSS scores before and after the HPD dose showed positive correlations between the right inferior frontal gyrus and auditory hallucination or positive symptoms, between the right superior temporal gyrus, left thalamus and delusions, and between the left thalamus, insular gyrus and negative symptoms. These results suggest that acute drug-naive schizophrenic patients have widespread cortico-subcortical energic hypermetabolism and HPD reduces the hypermetabolism, leading to whole normalized brain metabolism, in particular with the larger region

  8. Beyond the sniffer: frontal sinuses in Carnivora.

    Science.gov (United States)

    Curtis, Abigail A; Van Valkenburgh, Blaire

    2014-11-01

    Paranasal sinuses are some of the most poorly understood features of mammalian cranial anatomy. They are highly variable in presence and form among species, but their function is not well understood. The best-supported explanations for the function of sinuses is that they opportunistically fill mechanically unnecessary space, but that in some cases, sinuses in combination with the configuration of the frontal bone may improve skull performance by increasing skull strength and dissipating stresses more evenly. We used CT technology to investigate patterns in frontal sinus size and shape disparity among three families of carnivores: Canidae, Felidae, and Hyaenidae. We provide some of the first quantitative data on sinus morphology for these three families, and employ a novel method to quantify the relationship between three-dimensional sinus shape and skull shape. As expected, frontal sinus size and shape were more strongly correlated with frontal bone size and shape than with the morphology of the skull as a whole. However, sinus morphology was also related to allometric differences among families that are linked to biomechanical function. Our results support the hypothesis that frontal sinuses most often opportunistically fill space that is mechanically unnecessary, and they can facilitate cranial shape changes that reduce stress during feeding. Moreover, we suggest that the ability to form frontal sinuses allows species to modify skull function without compromising the performance of more functionally constrained regions such as the nasal chamber (heat/water conservation, olfaction), and braincase (housing the brain and sensory structures). © 2014 Wiley Periodicals, Inc.

  9. Bilingualism Alters Children's Frontal Lobe Functioning for Attentional Control

    Science.gov (United States)

    Arredondo, Maria M.; Hu, Xiao-Su; Satterfield, Teresa; Kovelman, Ioulia

    2017-01-01

    Bilingualism is a typical linguistic experience, yet relatively little is known about its impact on children's cognitive and brain development. Theories of bilingualism suggest early dual-language acquisition can improve children's cognitive abilities, specifically those relying on frontal lobe functioning. While behavioral findings present much conflicting evidence, little is known about its effects on children's frontal lobe development. Using functional Near-Infrared Spectroscopy (fNIRS), the findings suggest that Spanish-English bilingual children (n=13, ages 7-13) had greater activation in left prefrontal cortex during a non-verbal attentional control task relative to age-matched English monolinguals. In contrast, monolinguals (n=14) showed greater right prefrontal activation than bilinguals. The present findings suggest early bilingualism yields significant changes to the functional organization of children's prefrontal cortex for attentional control and carry implications for understanding how early life experiences impact cognition and brain development. PMID:26743118

  10. Effect of myocardial viability in the infarct area on regional left ventricular function

    International Nuclear Information System (INIS)

    Ishii, Toshihiko; Watanabe, Takeshi; Usui, Mikio; Nagai, Yoshikazu

    1990-01-01

    This study explored the relationship between global left ventricular ejection fraction (LVEF), regional LVEF of infarct myocardium, and the viability of the myocardium due to the development of collaterals in the infarct area. Each was evaluated by exercise thallium-201 myocardial SPECT, multigated blood pool scintigraphy and coronary angiography. A total of 68 patients with old anteroseptal myocardial infarction and 23 normal persons were studied. The patients were found to have septal defect on exercise thallium images. According to the appearance of redistribution (RD) on delayed images, the patients were classified as having positive RD (n=42, 62%) or negative RD (n=26, 38%). The global LVEF was compared with regional LVEF of the basal, middle and apical areas within septum, as calculated by multigated blood pool scintigraphy. There was no significant difference in global LVEF between the groups of positive and negative RD patients. However, regional LVEF of the basal and middle areas was significantly larger in the group of positive RD than the group of negative RD. Collaterals were significantly observed in the group of positive RD, as compared with the group of negative RD (53% vs 25%). It was more frequent in cases of higher degree of stenosis. In the group of negative RD, none of the patients had collaterals when coronary stenosis was 90% or less. Redistribution may reflect myocardial viability. Myocardial viability within the infarct area had favorable influences on the regional left ventricular function. Therefore, not only global but also regional left ventricular function is necessary for better understanding of pathophysiology of myocardial infarction.(N.K.)

  11. Developmental dyscalculia: compensatory mechanisms in left intraparietal regions in response to nonsymbolic magnitudes

    Directory of Open Access Journals (Sweden)

    Starke Marc

    2009-08-01

    Full Text Available Abstract Background Functional magnetic resonance imaging (fMRI studies investigating the neural mechanisms underlying developmental dyscalculia are scarce and results are thus far inconclusive. Main aim of the present study is to investigate the neural correlates of nonsymbolic number magnitude processing in children with and without dyscalculia. Methods 18 children (9 with dyscalculia were asked to solve a non-symbolic number magnitude comparison task (finger patterns during brain scanning. For the spatial control task identical stimuli were employed, instructions varying only (judgment of palm rotation. This design enabled us to present identical stimuli with identical visual processing requirements in the experimental and the control task. Moreover, because numerical and spatial processing relies on parietal brain regions, task-specific contrasts are expected to reveal true number-specific activations. Results Behavioral results during scanning reveal that despite comparable (almost at ceiling performance levels, task-specific activations were stronger in dyscalculic children in inferior parietal cortices bilaterally (intraparietal sulcus, supramarginal gyrus, extending to left angular gyrus. Interestingly, fMRI signal strengths reflected a group × task interaction: relative to baseline, controls produced significant deactivations in (intraparietal regions bilaterally in response to number but not spatial processing, while the opposite pattern emerged in dyscalculics. Moreover, beta weights in response to number processing differed significantly between groups in left – but not right – (intraparietal regions (becoming even positive in dyscalculic children. Conclusion Overall, findings are suggestive of (a less consistent neural activity in right (intraparietal regions upon processing nonsymbolic number magnitudes; and (b compensatory neural activity in left (intraparietal regions in developmental dyscalculia.

  12. Developmental dyscalculia: compensatory mechanisms in left intraparietal regions in response to nonsymbolic magnitudes.

    Science.gov (United States)

    Kaufmann, Liane; Vogel, Stephan E; Starke, Marc; Kremser, Christian; Schocke, Michael; Wood, Guilherme

    2009-08-05

    Functional magnetic resonance imaging (fMRI) studies investigating the neural mechanisms underlying developmental dyscalculia are scarce and results are thus far inconclusive. Main aim of the present study is to investigate the neural correlates of nonsymbolic number magnitude processing in children with and without dyscalculia. 18 children (9 with dyscalculia) were asked to solve a non-symbolic number magnitude comparison task (finger patterns) during brain scanning. For the spatial control task identical stimuli were employed, instructions varying only (judgment of palm rotation). This design enabled us to present identical stimuli with identical visual processing requirements in the experimental and the control task. Moreover, because numerical and spatial processing relies on parietal brain regions, task-specific contrasts are expected to reveal true number-specific activations. Behavioral results during scanning reveal that despite comparable (almost at ceiling) performance levels, task-specific activations were stronger in dyscalculic children in inferior parietal cortices bilaterally (intraparietal sulcus, supramarginal gyrus, extending to left angular gyrus). Interestingly, fMRI signal strengths reflected a group x task interaction: relative to baseline, controls produced significant deactivations in (intra)parietal regions bilaterally in response to number but not spatial processing, while the opposite pattern emerged in dyscalculics. Moreover, beta weights in response to number processing differed significantly between groups in left - but not right - (intra)parietal regions (becoming even positive in dyscalculic children). Overall, findings are suggestive of (a) less consistent neural activity in right (intra)parietal regions upon processing nonsymbolic number magnitudes; and (b) compensatory neural activity in left (intra)parietal regions in developmental dyscalculia.

  13. Inferior Frontal Gyrus Activity Triggers Anterior Insula Response to Emotional Facial Expressions

    NARCIS (Netherlands)

    Jabbi, Mbemba; Keysers, Christian

    2008-01-01

    The observation of movies of facial expressions of others has been shown to recruit similar areas involved in experiencing one's own emotions: the inferior frontal gyrus (IFG). the anterior insula and adjacent frontal operculum (IFO). The Causal link bet between activity in these 2 regions,

  14. Regional homogeneity, resting-state functional connectivity and amplitude of low frequency fluctuation associated with creativity measured by divergent thinking in a sex-specific manner.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Yokoyama, Ryoichi; Kotozaki, Yuka; Nakagawa, Seishu; Sekiguchi, Atsushi; Iizuka, Kunio; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Makoto Miyauchi, Carlos; Shinada, Takamitsu; Sakaki, Kohei; Nozawa, Takayuki; Ikeda, Shigeyuki; Yokota, Susumu; Daniele, Magistro; Sassa, Yuko; Kawashima, Ryuta

    2017-05-15

    Brain connectivity is traditionally thought to be important for creativity. Here we investigated the associations of creativity measured by divergent thinking (CMDT) with resting-state functional magnetic imaging (fMRI) measures and their sex differences. We examined these relationships in the brains of 1277 healthy young adults. Whole-brain analyses revealed a significant interaction between verbal CMDT and sex on (a) regional homogeneity within an area from the left anterior temporal lobe (b) on the resting state functional connectivity (RSFC) between the mPFC and the left inferior frontal gyrus and (c) on fractional amplitude of low frequency fluctuations (fALFF) in several distinct areas, including the precuneus and middle cingulate gyrus, left middle temporal gyrus, right middle frontal gyrus, and cerebellum. These interactions were mediated by positive correlations in females and negative correlations in males. These findings suggest that greater CMDT in females is reflected by (a) regional coherence (regional homogeneity) of brain areas responsible for representing and combining concepts as well as (b) the efficient functional connection (RSFC) between the key areas for the default state of cognitive activity and speech production, and (c) greater spontaneous neural activity (fALFF) during the resting of brain areas involved in frontal lobe functions, default cognitive activities, and language functions. Furthermore, these findings suggest that the associations between creativity and resting state brain connectivity patterns are different between males and females. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Regional homogeneity of the resting-state brain activity correlates with individual intelligence.

    Science.gov (United States)

    Wang, Leiqiong; Song, Ming; Jiang, Tianzi; Zhang, Yunting; Yu, Chunshui

    2011-01-25

    Resting-state functional magnetic resonance imaging has confirmed that the strengths of the long distance functional connectivity between different brain areas are correlated with individual differences in intelligence. However, the association between the local connectivity within a specific brain region and intelligence during rest remains largely unknown. The aim of this study is to investigate the relationship between local connectivity and intelligence. Fifty-nine right-handed healthy adults participated in the study. The regional homogeneity (ReHo) was used to assess the strength of local connectivity. The associations between ReHo and full-scale intelligence quotient (FSIQ) scores were studied in a voxel-wise manner using partial correlation analysis controlling for age and sex. We found that the FSIQ scores were positively correlated with the ReHo values of the bilateral inferior parietal lobules, middle frontal, parahippocampal and inferior temporal gyri, the right thalamus, superior frontal and fusiform gyri, and the left superior parietal lobule. The main findings are consistent with the parieto-frontal integration theory (P-FIT) of intelligence, supporting the view that general intelligence involves multiple brain regions throughout the brain. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Errors on the Trail Making Test Are Associated with Right Hemispheric Frontal Lobe Damage in Stroke Patients

    Directory of Open Access Journals (Sweden)

    Bruno Kopp

    2015-01-01

    Full Text Available Measures of performance on the Trail Making Test (TMT are among the most popular neuropsychological assessment techniques. Completion time on TMT-A is considered to provide a measure of processing speed, whereas completion time on TMT-B is considered to constitute a behavioral measure of the ability to shift between cognitive sets (cognitive flexibility, commonly attributed to the frontal lobes. However, empirical evidence linking performance on the TMT-B to localized frontal lesions is mostly lacking. Here, we examined the association of frontal lesions following stroke with TMT-B performance measures (i.e., completion time and completion accuracy measures using voxel-based lesion-behavior mapping, with a focus on right hemispheric frontal lobe lesions. Our results suggest that the number of errors, but not completion time on the TMT-B, is associated with right hemispheric frontal lesions. This finding contradicts common clinical practice—the use of completion time on the TMT-B to measure cognitive flexibility, and it underscores the need for additional research on the association between cognitive flexibility and the frontal lobes. Further work in a larger sample, including left frontal lobe damage and with more power to detect effects of right posterior brain injury, is necessary to determine whether our observation is specific for right frontal lesions.

  17. Dissociable Changes of Frontal and Parietal Cortices in Inherent Functional Flexibility across the Human Life Span.

    Science.gov (United States)

    Yin, Dazhi; Liu, Wenjing; Zeljic, Kristina; Wang, Zhiwei; Lv, Qian; Fan, Mingxia; Cheng, Wenhong; Wang, Zheng

    2016-09-28

    Extensive evidence suggests that frontoparietal regions can dynamically update their pattern of functional connectivity, supporting cognitive control and adaptive implementation of task demands. However, it is largely unknown whether this flexibly functional reconfiguration is intrinsic and occurs even in the absence of overt tasks. Based on recent advances in dynamics of resting-state functional resonance imaging (fMRI), we propose a probabilistic framework in which dynamic reconfiguration of intrinsic functional connectivity between each brain region and others can be represented as a probability distribution. A complexity measurement (i.e., entropy) was used to quantify functional flexibility, which characterizes heterogeneous connectivity between a particular region and others over time. Following this framework, we identified both functionally flexible and specialized regions over the human life span (112 healthy subjects from 13 to 76 years old). Across brainwide regions, we found regions showing high flexibility mainly in the higher-order association cortex, such as the lateral prefrontal cortex (LPFC), lateral parietal cortex, and lateral temporal lobules. In contrast, visual, auditory, and sensory areas exhibited low flexibility. Furthermore, we observed that flexibility of the right LPFC improved during maturation and reduced due to normal aging, with the opposite occurring for the left lateral parietal cortex. Our findings reveal dissociable changes of frontal and parietal cortices over the life span in terms of inherent functional flexibility. This study not only provides a new framework to quantify the spatiotemporal behavior of spontaneous brain activity, but also sheds light on the organizational principle behind changes in brain function across the human life span. Recent neuroscientific research has demonstrated that the human capability of adaptive task control is primarily the result of the flexible operation of frontal brain networks. However

  18. Patients with poor response to antipsychotics have a more severe pattern of frontal atrophy: a voxel-based morphometry study of treatment resistance in schizophrenia.

    Science.gov (United States)

    Quarantelli, Mario; Palladino, Olga; Prinster, Anna; Schiavone, Vittorio; Carotenuto, Barbara; Brunetti, Arturo; Marsili, Angela; Casiello, Margherita; Muscettola, Giovanni; Salvatore, Marco; de Bartolomeis, Andrea

    2014-01-01

    Approximately 30% of schizophrenia patients do not respond adequately to the therapy. Previous MRI studies have suggested that drug treatment resistance is associated with brain morphological abnormalities, although region-of-interest analysis of MR studies from nonresponder and responder patients failed to demonstrate a statistically significant difference between these two schizophrenia subgroups. We have used a voxel-based analysis of segmented MR studies to assess structural cerebral differences in 20 nonresponder and 15 responder patients and 16 age-matched normal volunteers. Differences between the three groups emerged bilaterally mainly at the level of the superior and middle frontal gyri, primarily due to reduced grey matter volumes in nonresponders, as compared to both normal volunteers and responder patients. Post hoc direct comparison between the two schizophrenia subgroups demonstrated significantly reduced grey matter volumes in middle frontal gyrus bilaterally, in the dorsolateral aspects of left superior frontal gyrus extending into postcentral gyrus and in the right medial temporal cortex. Our results extend and integrate previous findings suggesting a more severe atrophy in nonresponder schizophrenia patients, compared to responder patients, mainly at the level of the superior and middle frontal gyri. Longitudinal studies in drug-naïve patients are needed to assess the role of these associations.

  19. Gender differences in age-related decline in regional cerebral glucose metabolism

    International Nuclear Information System (INIS)

    Bang, Seong Ae; Cho, Sang Soo; Yoon, Eun Jin; Park, Hyun Soo; Lee, Eun Ju; Kim, Yu Kyeong; Kim, Sang Sun

    2007-01-01

    In this study, we investigated gender differences in age-related declines in regional cerebral glucose metabolism using FDG-PET in a large population sample with a broad age range. 230 healthy subjects (90 male; age: 34-80 y, 140 females; age: 33-82 y) participated. Correlation maps showing age related declines in glucose uptake were created separately for each gender in SPM2. Using population-based probabilistic volume of interests (VOIs), VOIs were defined for the regions showing significant decline with aging. Age related declines were separately assessed within each age range using analysis of covariate in SPSS 13.0. In the total population without gender effect, age-related negative correlation of glucose metabolism was found in the bilateral inferior frontal gyri, bilateral caudate, bilateral thalamus, left insula, left superior frontal gyrus, left uncus, right superior temporal gyrus, right medial frontal gyrus, right parahippocampal gyrus, right anterior cingulate gyrus (P < 0.001 corrected, extent threshold k = 100). 14 VOIs values of brain regions were calculated based on this negative correlation results. The rate of decline across all defined VOIs assessed in the age category of 'more than 70' referenced to the category of '30- 39years' were 7.85% in the entire sample; 7.62% in male and 8.09% in female. Detailed analyses of declines in each age range showed separable patterns of declines across gender. In males, greater decline was observed after the age 60 (20.45%) than the ages of 30 and 50(7.98%). Whereas in females, greater declines were found in age 60s (20.15%) compared to 50s, and in 40(14.84%) compared to 30s. Age-related decline in cerebral glucose metabolism was found in both genders. We further observed that males show a relatively constant pattern of decline across a life span; whereas, females show a pattern of steep changes aging to 60s and to 40s, which may be related to changes in sex hormone levels after menopause

  20. Gender differences in age-related decline in regional cerebral glucose metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Seong Ae; Cho, Sang Soo; Yoon, Eun Jin; Park, Hyun Soo; Lee, Eun Ju; Kim, Yu Kyeong; Kim, Sang Sun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    In this study, we investigated gender differences in age-related declines in regional cerebral glucose metabolism using FDG-PET in a large population sample with a broad age range. 230 healthy subjects (90 male; age: 34-80 y, 140 females; age: 33-82 y) participated. Correlation maps showing age related declines in glucose uptake were created separately for each gender in SPM2. Using population-based probabilistic volume of interests (VOIs), VOIs were defined for the regions showing significant decline with aging. Age related declines were separately assessed within each age range using analysis of covariate in SPSS 13.0. In the total population without gender effect, age-related negative correlation of glucose metabolism was found in the bilateral inferior frontal gyri, bilateral caudate, bilateral thalamus, left insula, left superior frontal gyrus, left uncus, right superior temporal gyrus, right medial frontal gyrus, right parahippocampal gyrus, right anterior cingulate gyrus (P < 0.001 corrected, extent threshold k = 100). 14 VOIs values of brain regions were calculated based on this negative correlation results. The rate of decline across all defined VOIs assessed in the age category of 'more than 70' referenced to the category of '30- 39years' were 7.85% in the entire sample; 7.62% in male and 8.09% in female. Detailed analyses of declines in each age range showed separable patterns of declines across gender. In males, greater decline was observed after the age 60 (20.45%) than the ages of 30 and 50(7.98%). Whereas in females, greater declines were found in age 60s (20.15%) compared to 50s, and in 40(14.84%) compared to 30s. Age-related decline in cerebral glucose metabolism was found in both genders. We further observed that males show a relatively constant pattern of decline across a life span; whereas, females show a pattern of steep changes aging to 60s and to 40s, which may be related to changes in sex hormone levels after menopause.

  1. Frontal Lobe Contusion in Mice Chronically Impairs Prefrontal-Dependent Behavior.

    Directory of Open Access Journals (Sweden)

    Austin Chou

    Full Text Available Traumatic brain injury (TBI is a major cause of chronic disability in the world. Moderate to severe TBI often results in damage to the frontal lobe region and leads to cognitive, emotional, and social behavioral sequelae that negatively affect quality of life. More specifically, TBI patients often develop persistent deficits in social behavior, anxiety, and executive functions such as attention, mental flexibility, and task switching. These deficits are intrinsically associated with prefrontal cortex (PFC functionality. Currently, there is a lack of analogous, behaviorally characterized TBI models for investigating frontal lobe injuries despite the prevalence of focal contusions to the frontal lobe in TBI patients. We used the controlled cortical impact (CCI model in mice to generate a frontal lobe contusion and studied behavioral changes associated with PFC function. We found that unilateral frontal lobe contusion in mice produced long-term impairments to social recognition and reversal learning while having only a minor effect on anxiety and completely sparing rule shifting and hippocampal-dependent behavior.

  2. Statistical parametric mapping analysis of the relationship between regional cerebral blood flow and symptom clusters of the depressive mood in patients with pre-dialytic chronic kidney disease

    International Nuclear Information System (INIS)

    Kim, Seong-Jang; Song, Sang Heon; Kim, Ji Hoon; Kwak, Ihm Soo

    2008-01-01

    The aim of this study is to investigate the relationship between regional cerebral blood flow (rCBF) and symptom clusters of depressive mood in pre-dialytic chronic kidney disease (CKD). Twenty-seven patients with stage 4-5 CKD were subjected to statistical parametric mapping analysis of brain single-photon emission computed tomography. Correlation analyses between separate symptom clusters of depressive mood and rCBF were done. The first factor (depressive mood) was negatively correlated with rCBF in the right insula, posterior cingulate gyrus, and left superior temporal gyrus, and positively correlated with rCBF in the left fusiform gyrus. The second factor (insomnia) was negatively correlated with rCBF in the right middle frontal gyrus, bilateral cingulate gyri, right insula, right putamen, and right inferior parietal lobule, and positively correlated with rCBF in left fusiform gyrus and bilateral cerebellar tonsils. The third factor (anxiety and psychomotor aspects) was negatively correlated with rCBF in the left inferior frontal gyms, right superior frontal gyms, right middle temporal gyrus, right superior temporal gyrus, and left superior frontal gyrus, and positively correlated with rCBF in the right ligual gyrus and right parahippocampal gyrus. In this study, the separate symptom clusters were correlated with specific rCBF patterns similar to those in major depressive disorder patients without CKD. However, some areas with discordant rCBF patterns were also noted when compared with major depressive disorder patients. Further larger scale investigations are needed. (author)

  3. [Left lateral gaze paresis due to subcortical hematoma in the right precentral gyrus].

    Science.gov (United States)

    Sato, K; Takamori, M

    1998-03-01

    We report a case of transient left lateral gaze paresis due to a hemorrhagic lesion restricted in the right precentral gyrus. A 74-year-old female experienced a sudden clumsiness of the left upper extremity. A neurological examination revealed a left central facial paresis, distal dominant muscle weakness in the left upper limb and left lateral gaze paresis. There were no other focal neurological signs. Laboratory data were all normal. Brain CTs and MRIs demonstrated a subcortical hematoma in the right precentral gyrus. The neurological symptoms and signs disappeared over seven days. A recent physiological study suggested that the human frontal eye field (FEF) is located in the posterior part of the middle frontal gyrus (Brodmann's area 8) and the precentral gyrus around the precentral sulcus. More recent studies stressed the role of the precentral sulcus and the precentral gyrus. Our case supports those physiological findings. The hematoma affected both the FEF and its underlying white matter in our case. We assume the lateral gaze paresis is attributable to the disruption of the fibers from the FEF. It is likely that fibers for motor control of the face, upper extremity, and lateral gaze lie adjacently in the subcortical area.

  4. Task-based and resting-state fMRI reveal compensatory network changes following damage to left inferior frontal gyrus.

    Science.gov (United States)

    Hallam, Glyn P; Thompson, Hannah E; Hymers, Mark; Millman, Rebecca E; Rodd, Jennifer M; Lambon Ralph, Matthew A; Smallwood, Jonathan; Jefferies, Elizabeth

    2018-02-01

    Damage to left inferior prefrontal cortex in stroke aphasia is associated with semantic deficits reflecting poor control over conceptual retrieval, as opposed to loss of knowledge. However, little is known about how functional recruitment within the semantic network changes in patients with executive-semantic deficits. The current study acquired functional magnetic resonance imaging (fMRI) data from 14 patients with semantic aphasia, who had difficulty with flexible semantic retrieval following left prefrontal damage, and 16 healthy age-matched controls, allowing us to examine activation and connectivity in the semantic network. We examined neural activity while participants listened to spoken sentences that varied in their levels of lexical ambiguity and during rest. We found group differences in two regions thought to be good candidates for functional compensation: ventral anterior temporal lobe (vATL), which is strongly implicated in comprehension, and posterior middle temporal gyrus (pMTG), which is hypothesized to work together with left inferior prefrontal cortex to support controlled aspects of semantic retrieval. The patients recruited both of these sites more than controls in response to meaningful sentences. Subsequent analysis identified that, in control participants, the recruitment of pMTG to ambiguous sentences was inversely related to functional coupling between pMTG and anterior superior temporal gyrus (aSTG) at rest, while the patients showed the opposite pattern. Moreover, stronger connectivity between pMTG and aSTG in patients was associated with better performance on a test of verbal semantic association, suggesting that this temporal lobe connection supports comprehension in the face of damage to left inferior prefrontal cortex. These results characterize network changes in patients with executive-semantic deficits and converge with studies of healthy participants in providing evidence for a distributed system underpinning semantic control that

  5. A robust automated left ventricle region of interest localization technique using a cardiac cine MRI atlas

    Science.gov (United States)

    Ben-Zikri, Yehuda Kfir; Linte, Cristian A.

    2016-03-01

    Region of interest detection is a precursor to many medical image processing and analysis applications, including segmentation, registration and other image manipulation techniques. The optimal region of interest is often selected manually, based on empirical knowledge and features of the image dataset. However, if inconsistently identified, the selected region of interest may greatly affect the subsequent image analysis or interpretation steps, in turn leading to incomplete assessment during computer-aided diagnosis or incomplete visualization or identification of the surgical targets, if employed in the context of pre-procedural planning or image-guided interventions. Therefore, the need for robust, accurate and computationally efficient region of interest localization techniques is prevalent in many modern computer-assisted diagnosis and therapy applications. Here we propose a fully automated, robust, a priori learning-based approach that provides reliable estimates of the left and right ventricle features from cine cardiac MR images. The proposed approach leverages the temporal frame-to-frame motion extracted across a range of short axis left ventricle slice images with small training set generated from les than 10% of the population. This approach is based on histogram of oriented gradients features weighted by local intensities to first identify an initial region of interest depicting the left and right ventricles that exhibits the greatest extent of cardiac motion. This region is correlated with the homologous region that belongs to the training dataset that best matches the test image using feature vector correlation techniques. Lastly, the optimal left ventricle region of interest of the test image is identified based on the correlation of known ground truth segmentations associated with the training dataset deemed closest to the test image. The proposed approach was tested on a population of 100 patient datasets and was validated against the ground truth

  6. Abnormal regional homogeneity in Parkinson's disease: a resting state fMRI study

    International Nuclear Information System (INIS)

    Li, Y.; Liang, P.; Jia, X.; Li, K.

    2016-01-01

    Aim: To examine the functional brain alterations in Parkinson's disease (PD) by measuring blood oxygenation level dependent (BOLD) functional MRI (fMRI) signals at rest while controlling for the structural atrophy. Materials and methods: Twenty-three PD patients and 20 age, gender, and education level matched normal controls (NC) were included in this study. Resting state fMRI and structural MRI data were acquired. The resting state brain activity was measured by the regional homogeneity (ReHo) method and the grey matter (GM) volume was attained by the voxel-based morphology (VBM) analysis. Two-sample t-test was then performed to detect the group differences with structural atrophy as a covariate. Results: VBM analysis showed GM volume reductions in the left superior frontal gyrus, left paracentral lobule, and left middle frontal gyrus in PD patients as compared to NC. There were widespread ReHo differences between NC and PD patients. Compared to NC, PD patients showed significant alterations in the motor network, including decreased ReHo in the right primary sensory cortex (S1), while increased ReHo in the left premotor area (PMA) and left dorsolateral prefrontal cortex (DLPFC). In addition, a cluster in the left superior occipital gyrus (SOG) also showed increased ReHo in PD patients. Conclusion: The current findings indicate that significant changes of ReHo in the motor and non-motor cortices have been detected in PD patients, independent of age, gender, education level, and structural atrophy. The present study thus suggests ReHo abnormalities as a potential biomarker for the diagnosis of PD and further provides insights into the biological mechanism of the disease. - Highlights: • Functional changes were found in PD patients independent of structural atrophy. • Both increased and decreased ReHo were observed in motor network regions in PD. • Increased ReHo was detected in visual association cortex for PD patients.

  7. The Right Posterior Inferior Frontal Gyrus Contributes to Phonological Word Decisions in the Healthy Brain: Evidence from Dual-Site TMS

    Science.gov (United States)

    Hartwigsen, Gesa; Price, Cathy J.; Baumgaertner, Annette; Geiss, Gesine; Koehnke, Maria; Ulmer, Stephan; Siebner, Hartwig R.

    2010-01-01

    There is consensus that the left hemisphere plays a dominant role in language processing, but functional imaging studies have shown that the right as well as the left posterior inferior frontal gyri (pIFG) are activated when healthy right-handed individuals make phonological word decisions. Here we used online transcranial magnetic stimulation…

  8. Regional cerebral blood flow of the patients with schizophrenia. A study using 99mTc-ECD SPECT at rest and activation

    International Nuclear Information System (INIS)

    Hu Ping; Wu Kening; Zeng Shiquan; Lin Zengtao; Yu Jinlong

    1996-01-01

    Regional cerebral blood flow (rCBF) changes of the patients with schizophrenia were observed. 99m Tc-ECD SPECT was performed on 22 patients with schizophrenia and 10 healthy volunteers at rest and activation with a cognitive task: a modified Wisconsin Card Sorting Test. At rest state, only 4 patients have abnormal rCBF pattern: left hemisphere over-perfusion relative to the right. A significant relative activation deficit in the left inferior prefrontal region was revealed in the patients during activation. The patients with schizophrenia may have frontal lobe dysfunction

  9. Frontal fibrosing alopecia treatment options.

    Science.gov (United States)

    Fertig, Raymond; Tosti, Antonella

    2016-11-01

    Frontal fibrosing alopecia (FFA) is a rare dermatologic disease that causes scarring and hair loss and is increasing in prevalence worldwide. FFA patients typically present with hair loss in the frontal scalp region and eyebrows which may be associated with sensations of itching or burning. FFA is a clinically distinct variant of lichen planopilaris (LPP) that affects predominantly postmenopausal women, although men and premenopausal women may also be affected. Early diagnosis and prompt treatment are necessary to prevent definitive scarring and permanent hair loss. Data from retrospective studies indicate that 5-alpha-reductase inhibitors (5aRIs) are effective in stabilizing the disease. In our clinical experience, we have seen optimal results treating FFA patients with oral finasteride in conjunction with hydroxychloroquine, topical calcineurin inhibitors (tacrolimus) and excimer laser in patients with signs of active inflammation.

  10. Global left ventricular function in cardiac CT. Evaluation of an automated 3D region-growing segmentation algorithm

    International Nuclear Information System (INIS)

    Muehlenbruch, Georg; Das, Marco; Hohl, Christian; Wildberger, Joachim E.; Guenther, Rolf W.; Mahnken, Andreas H.; Rinck, Daniel; Flohr, Thomas G.; Koos, Ralf; Knackstedt, Christian

    2006-01-01

    The purpose was to evaluate a new semi-automated 3D region-growing segmentation algorithm for functional analysis of the left ventricle in multislice CT (MSCT) of the heart. Twenty patients underwent contrast-enhanced MSCT of the heart (collimation 16 x 0.75 mm; 120 kV; 550 mAseff). Multiphase image reconstructions with 1-mm axial slices and 8-mm short-axis slices were performed. Left ventricular volume measurements (end-diastolic volume, end-systolic volume, ejection fraction and stroke volume) from manually drawn endocardial contours in the short axis slices were compared to semi-automated region-growing segmentation of the left ventricle from the 1-mm axial slices. The post-processing-time for both methods was recorded. Applying the new region-growing algorithm in 13/20 patients (65%), proper segmentation of the left ventricle was feasible. In these patients, the signal-to-noise ratio was higher than in the remaining patients (3.2±1.0 vs. 2.6±0.6). Volume measurements of both segmentation algorithms showed an excellent correlation (all P≤0.0001); the limits of agreement for the ejection fraction were 2.3±8.3 ml. In the patients with proper segmentation the mean post-processing time using the region-growing algorithm was diminished by 44.2%. On the basis of a good contrast-enhanced data set, a left ventricular volume analysis using the new semi-automated region-growing segmentation algorithm is technically feasible, accurate and more time-effective. (orig.)

  11. Are personality traits of juvenile myoclonic epilepsy related to frontal lobe dysfunctions? A proton MRS study.

    Science.gov (United States)

    de Araújo Filho, Gerardo Maria; Lin, Katia; Lin, Jaime; Peruchi, Mirella M; Caboclo, Luís Otávio S F; Guaranha, Mirian S B; Guilhoto, Laura M F F; Carrete, Henrique; Yacubian, Elza Márcia T

    2009-05-01

    Personality traits characterized by emotional instability and immaturity, unsteadiness, lack of discipline, hedonism, frequent and rapid mood changes, and indifference toward one's disease have been associated with patients who have juvenile myoclonic epilepsy (JME). Literature data demonstrate worse seizure control and more psychosocial dysfunctions among patients with JME who have those traits. In this controlled study we performed a correlation analysis of psychiatric scores with magnetic resonance spectroscopy (MRS) values across JME patients, aiming to verify the existence of a possible relation between frontal lobe dysfunction and the prevalence of personality disorders (PDs) in JME. Sixteen JME patients with cluster B PDs, 41 JME patients without any psychiatric disorder, and 30 healthy controls were submitted to a psychiatric evaluation and to a quantitative multivoxel MRS of thalamus; insula; cingulate gyrus; striatum; and frontal, parietal, and occipital lobes. Groups were homogeneous according to age, gender, and manual dominance. Psychiatric evaluation was performed through the Scheduled Clinical Interview for DSM-IV, Axis I and II (SCID I and II, respectively). A significant reduction of N-acetyl-aspartate over creatinine (NAA/Cr) ratio was observed mainly in the left frontal lobe in the JME and PD group. In addition, a significant increase in the glutamate-glutamine over creatinine GLX/Cr ratio was also observed in this referred region in the same group. These data support the hypothesis that PDs in JME could represent neuronal dysfunction and possibly a more severe form of this epileptic syndrome.

  12. Effects of positive emotion, extraversion, and dopamine on cognitive stability-flexibility and frontal EEG asymmetry.

    Science.gov (United States)

    Wacker, Jan

    2018-01-01

    The influence of positive emotions on the balance between cognitive stability and flexibility has been suggested to (a) differ among various positive emotional/motivational states (e.g., of varying approach motivation intensity), and (b) be mediated by brain dopamine (DA). Frontal EEG alpha asymmetry (ASY) is considered an indicator of approach motivational states and may be modulated by DA. The personality trait of extraversion is strongly linked to positive emotions and is now thought to reflect DA-based individual differences in incentive/approach motivation. The present study independently manipulated positive emotion (high approach wanting-expectancy [WE] vs. low approach warmth-liking [WL]) and dopamine (placebo vs. DA D2 blocker sulpiride) to examine their effects on both cognitive stability-flexibility and emotion-related ASY changes. The results showed numerically lower stability-flexibility in WE versus WL under placebo and a complete reversal of this effect under the D2 blocker, no differentiation between WE and WL groups in terms of emotion-related ASY change, but an association between self-reported WE and WL and ASY changes toward left and right frontal cortical activity, respectively. Finally, extraversion was positively associated with both stability-flexibility and ASY changes toward left frontal cortical activity under placebo, and these associations were completely reversed under the D2 blocker. The results (a) support a dopaminergic basis for frontal EEG asymmetry, extraversion, and the modulating effect of positive emotions on stability-flexibility, and (b) extend previous reports of cognitive differences between introverts and extraverts. © 2017 Society for Psychophysiological Research.

  13. An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Jared A Nielsen

    Full Text Available Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction and language regions (e.g., Broca Area and Wernicke Area, whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields. Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right

  14. Frontal-posterior coherence and cognitive function in older adults.

    Science.gov (United States)

    Fleck, Jessica I; Kuti, Julia; Brown, Jessica; Mahon, Jessica R; Gayda-Chelder, Christine

    2016-12-01

    The reliable measurement of brain health and cognitive function is essential in mitigating the negative effects associated with cognitive decline through early and accurate diagnosis of change. The present research explored the relationship between EEG coherence for electrodes within frontal and posterior regions, as well as coherence between frontal and posterior electrodes and performance on standard neuropsychological measures of memory and executive function. EEG coherence for eyes-closed resting-state EEG activity was calculated for delta, theta, alpha, beta, and gamma frequency bands. Participants (N=66; mean age=67.15years) had their resting-state EEGs recorded and completed a neuropsychological battery that assessed memory and executive function, two cognitive domains that are significantly affected during aging. A positive relationship was observed between coherence within the frontal region and performance on measures of memory and executive function for delta and beta frequency bands. In addition, an inverse relationship was observed for coherence between frontal and posterior electrode pairs, particularly within the theta frequency band, and performance on Digit Span Sequencing, a measure of working memory. The present research supports a more substantial link between EEG coherence, rather than spectral power, and cognitive function. Continued study in this area may enable EEG to be applied broadly as a diagnostic measure of cognitive ability. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Clinical-physiologic correlates of Alzheimer's disease and frontal lobe dementia

    International Nuclear Information System (INIS)

    Jagust, W.J.; Reed, B.R.; Seab, J.P.; Kramer, J.H.; Budinger, T.F.

    1989-01-01

    Thirty patients with degenerative dementia underwent clinical evaluation, neuropsychological testing, and single photon emission computed tomography (SPECT) with the blood flow tracer [ 123 I]-N-isopropyl-p-iodoamphetamine. Five of these patients were clinically and psychologically different from the others, demonstrating predominant behavioral disturbances with relative preservation of memory function. These five patients, who were felt to have a frontal lobe dementia (FLD), showed SPECT perfusion patterns which differed from the remaining 25 patients, who were diagnosed as having Alzheimer's disease (AD), and from 16 healthy control subjects. The FLD patients showed diminished perfusion in orbitofrontal, dorsolateral frontal, and temporal cortex relative to controls, while the AD patients showed lower perfusion in temporal and parietal cortex than controls. The FLD patients also showed hypoperfusion in both frontal cortical regions relative to AD patients. The pattern of performance on neuropsychological testing paralleled these differences in regional perfusion. These results suggest that clinical evaluation and physiological imaging may enable the differentiation of groups of degenerative dementia patients during life

  16. Use of Frontal Sinus and Nasal Septum Pattern as an Aid in Personal Identification and Determination of Gender: A Radiographic Study.

    Science.gov (United States)

    Verma, Kavita; Nahar, Prashant; Singh, Mohit Pal; Mathur, Hemant; Bhuvaneshwari, S

    2017-01-01

    Personal identification and gender determination of unknown person has a vital importance in forensic investigation. Human skull radiography is a useful tool in human identification in natural disaster, in any accidents such as fire accident and road traffic accident where body remains become degraded or severely destroyed. Present study was performed to evaluate the measurement of frontal sinus, uniqueness of various pattern of nasal septum when combined with frontal sinus observed on posterio anterior cephalogram for sex determination as well as personal identification. A total of 80 individuals, 40 males and 40 females, between the age ranges of 18-30 years were selected. The selected individuals had their Posterio Anterior (PA) cephalogram performed after taking their informed consent. Right and left areas and the maximum height and width of the frontal sinus were determined and septum patterns were evaluated and both patterns were also combined and compared. The radiographs were taken on Xtropan 2000 OPG X-ray machine with cephalography attachment and KODAK CR 7400 digital radiography system. Mean and SD values of the greatest height and width of frontal sinus in male and female patients were thus evaluated. The mean values of the frontal sinus were greater in males and the left area was larger than the right area, based on student's t-test at the 5% level of significance. The combination of Frontal Sinus Patterns and Nasal Septum Patterns (FP+NSP) were assessed and found that there were nine classifiable patterns in 26 (32.5%) individuals (12 males and 14 females), each of which had common representations in more than one individual. Besides these patterns, there were unique unclassifiable patterns in 54 (67.5%) individuals. The present study supports the use of radiographic evaluation of frontal sinus dimensions, frontal sinus patterns, nasal septum deviations and the combination FP+NSP patterns for personal identification and gender determination in

  17. Frontal brain activation in young children during picture book reading with their mothers.

    Science.gov (United States)

    Ohgi, S; Loo, K K; Mizuike, C

    2010-02-01

    This study was to measure changes in frontal brain activation in young children during picture book reading with their mothers. The cross-sectional sample consisted of 15 young Japanese children (eight girls and seven boys, mean age 23.1 +/- 3.4). Two experimental tasks were presented as follows: Task 1 (picture book reading with their mothers); Task 2 (viewing of book-on-video). Duration of task stimulus was 180-sec and the 60-sec interval was filled. Brain activation was measured using an optical topography system. Significant increases in oxy-Hb were observed in both right and left frontal areas in response to Task 1 compared with Task 2. There were significant correlations between child's brain activity and mothers' and children's verbal-nonverbal behaviours. There was greater frontal lobe activation in children when they were engaged in a picture book reading task with their mothers, as opposed to passive viewing of a videotape in which the story was read to them. Social and verbal engagement of the mother in reading picture books with her young child may mediate frontal brain activity in the child.

  18. Regional wall movement of the left ventricle in coronary heat diseases

    International Nuclear Information System (INIS)

    Schad, N.

    1979-01-01

    The regional wall movement of the left ventriculus is a substantial criterion for the treatment of coronary heart diseases. The non-invasive and riskless intravenous injections of a bolus of Technetium 99m-Pertechnetat and the recording of the first passage through the heart allow to present the regional wall movement of the left ventriculus and, in addition, to make a statement on the haemodynamic feed back effects on lungs and the right heart. The congruency with the wall movement determined invasively, in the contrast substance angiocardiogram, is high both for the normokinesis and for hypo-, A - and dyskinesis (90-92%). The examination proved good in following groups of patients and makes the decision on the further proceding easier: 1) After myocardial infarction. 2) In ishaemia-ECG or persistent ST-elevation. 3) In unstable progressive angina pectoris. 4) In unclear breast aches and negative ECG on exertion. 5) For course control after conservative and surgial therapy. The myocardial reserve can be shown using a after nitroglycerin administration. An investigation on exertion can find out affected vessel territories in the circulation. (orig.) [de

  19. Inferior frontal gyrus links visual and motor cortices during a visuomotor precision grip force task.

    Science.gov (United States)

    Papadelis, Christos; Arfeller, Carola; Erla, Silvia; Nollo, Giandomenico; Cattaneo, Luigi; Braun, Christoph

    2016-11-01

    Coordination between vision and action relies on a fronto-parietal network that receives visual and proprioceptive sensory input in order to compute motor control signals. Here, we investigated with magnetoencephalography (MEG) which cortical areas are functionally coupled on the basis of synchronization during visuomotor integration. MEG signals were recorded from twelve healthy adults while performing a unimanual visuomotor (VM) task and control conditions. The VM task required the integration of pinch motor commands with visual sensory feedback. By using a beamformer, we localized the neural activity in the frequency range of 1-30Hz during the VM compared to rest. Virtual sensors were estimated at the active locations. A multivariate autoregressive model was used to estimate the power and coherence of estimated activity at the virtual sensors. Event-related desynchronisation (ERD) during VM was observed in early visual areas, the rostral part of the left inferior frontal gyrus (IFG), the right IFG, the superior parietal lobules, and the left hand motor cortex (M1). Functional coupling in the alpha frequency band bridged the regional activities observed in motor and visual cortices (the start and the end points in the visuomotor loop) through the left or right IFG. Coherence between the left IFG and left M1 correlated inversely with the task performance. Our results indicate that an occipital-prefrontal-motor functional network facilitates the modulation of instructed motor responses to visual cues. This network may supplement the mechanism for guiding actions that is fully incorporated into the dorsal visual stream. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Short-Term Memory for Space and Time Flexibly Recruit Complementary Sensory-Biased Frontal Lobe Attention Networks.

    Science.gov (United States)

    Michalka, Samantha W; Kong, Lingqiang; Rosen, Maya L; Shinn-Cunningham, Barbara G; Somers, David C

    2015-08-19

    The frontal lobes control wide-ranging cognitive functions; however, functional subdivisions of human frontal cortex are only coarsely mapped. Here, functional magnetic resonance imaging reveals two distinct visual-biased attention regions in lateral frontal cortex, superior precentral sulcus (sPCS) and inferior precentral sulcus (iPCS), anatomically interdigitated with two auditory-biased attention regions, transverse gyrus intersecting precentral sulcus (tgPCS) and caudal inferior frontal sulcus (cIFS). Intrinsic functional connectivity analysis demonstrates that sPCS and iPCS fall within a broad visual-attention network, while tgPCS and cIFS fall within a broad auditory-attention network. Interestingly, we observe that spatial and temporal short-term memory (STM), respectively, recruit visual and auditory attention networks in the frontal lobe, independent of sensory modality. These findings not only demonstrate that both sensory modality and information domain influence frontal lobe functional organization, they also demonstrate that spatial processing co-localizes with visual processing and that temporal processing co-localizes with auditory processing in lateral frontal cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Short-term memory for space and time flexibly recruit complementary sensory-biased frontal lobe attention networks

    Science.gov (United States)

    Michalka, Samantha W.; Kong, Lingqiang; Rosen, Maya L.; Shinn-Cunningham, Barbara G.; Somers, David C.

    2015-01-01

    Summary The frontal lobes control wide-ranging cognitive functions; however, functional subdivisions of human frontal cortex are only coarsely mapped. Here, functional magnetic resonance imaging reveals two distinct visual-biased attention regions in lateral frontal cortex, superior precentral sulcus (sPCS) and inferior precentral sulcus (iPCS), anatomically interdigitated with two auditory-biased attention regions, transverse gyrus intersecting precentral sulcus (tgPCS) and caudal inferior frontal sulcus (cIFS). Intrinsic functional connectivity analysis demonstrates that sPCS and iPCS fall within a broad visual-attention network, while tgPCS and cIFS fall within a broad auditory-attention network. Interestingly, we observe that spatial and temporal short-term memory (STM), respectively, recruit visual and auditory attention networks in the frontal lobe, independent of sensory modality. These findings not only demonstrate that both sensory modality and information domain influence frontal lobe functional organization, they also demonstrate that spatial processing co-localizes with visual processing and that temporal processing co-localizes with auditory processing in lateral frontal cortex. PMID:26291168

  2. Altered regional homogeneity with short-term simulated microgravity and its relationship with changed performance in mental transformation.

    Directory of Open Access Journals (Sweden)

    Yang Liao

    Full Text Available In order to further the insight into the explanation of changed performance in mental transformation under microgravity, we discuss the change of performance in mental transformation and its relationship with altered regional homogeneity (ReHo in resting-state brain by using simulated weightlessness model. Twelve male subjects with age between 24 and 31 received resting-state fMRI scan and mental transformation test both in normal condition and immediately after 72 hours -6° head down tilt (HDT. A paired sample t-test was used to test the difference of behavior performance and brain activity between these two conditions. Compare with normal condition, subjects showed a changed performance in mental transformation with short term simulated microgravity and appeared to be falling. Meanwhile, decreased ReHo were found in right inferior frontal gyrus (IFG and left inferior parietal lobule (IPL after 72 hours -6° HDT, while increased ReHo were found in bilateral medial frontal gyrus (MFG and left superior frontal gyrus (SFG (P<0.05, corrected. Particularly, there was a significant correlation between ReHo values in left IPL and velocity index of mental transformation. Our findings indicate that gravity change may disrupt the function of right IFG and left IPL in the resting-state, among of which functional change in left IPL may contribute to changed abilities of mental transformation. In addition, the enhanced activity of the bilateral MFG and decreased activity of right IFG found in the current study maybe reflect a complementation effect on inhibitory control process.

  3. Functional substrate for memory function differences between patients with left and right mesial temporal lobe epilepsy associated with hippocampal sclerosis.

    Science.gov (United States)

    Jin, Seung-Hyun; Chung, Chun Kee

    2015-10-01

    Little is known about the functional substrate for memory function differences in patients with left or right mesial temporal lobe epilepsy (mTLE) associated with hippocampal sclerosis (HS) from an electrophysiological perspective. To characterize these differences, we hypothesized that hippocampal theta connectivity in the resting-state might be different between patients with left and right mTLE with HS and be correlated with memory performance. Resting-state hippocampal theta connectivity, identified via whole-brain magnetoencephalography, was evaluated. Connectivity and memory function in 41 patients with mTLE with HS (left mTLE=22; right mTLE=19) were compared with those in 46 age-matched healthy controls and 28 patients with focal cortical dysplasia (FCD) but without HS. Connectivity between the right hippocampus and the left middle frontal gyrus was significantly stronger in patients with right mTLE than in patients with left mTLE. Moreover, this connectivity was positively correlated with delayed verbal recall and recognition scores in patients with mTLE. Patients with left mTLE had greater delayed recall impairment than patients with right mTLE and FCD. Similarly, delayed recognition performance was worse in patients with left mTLE than in patients with right mTLE and FCD. No significant differences in memory function between patients with right mTLE and FCD were detected. Patients with right mTLE showed significantly stronger hippocampal theta connectivity between the right hippocampus and left middle frontal gyrus than patients with FCD and left mTLE. Our results suggest that right hippocampal-left middle frontal theta connectivity could be a functional substrate that can account for differences in memory function between patients with left and right mTLE. This functional substrate might be related to different compensatory mechanisms against the structural hippocampal lesions in left and right mTLE groups. Given the positive correlation between

  4. Reorganization of Language Areas in Patient with a Frontal Lobe Low Grade Glioma – fMRI Case Study

    International Nuclear Information System (INIS)

    Kośla, Katarzyna; Bryszewski, Bartosz; Jaskólski, Dariusz; Błasiak-Kołacińska, Nina; Stefańczyk, Ludomir; Majos, Agata

    2015-01-01

    Functional magnetic resonance (fMRI) studies results in case of an adult patient with low grade glioma (LGG) in dominant hemisphere suggest brain plasticity process with acquisition of language functions by the non-dominant hemisphere speech regions. A 36-years old right-handed woman was admitted to the Department of Neurosurgery for surgical treatment of brain tumor. An MRI examination revealed a pathological mass in the left frontal lobe, in close topographical relationship to the Broca’s area. A left fronto-parietal craniotomy was performed, with an intraoperative awake language mapping procedure. A total resection of the pathological mass was achieved. The tumor was examined histologically as LGG. In the follow-up MRI exam 32 months after the operation a tumor recurrence was suggested. The fMRI exams performed preoperative and 3, 32 and 41 months after the operation showed changes in language regions activation patterns, with a progressive right-sided activation of Broca’s and Wernicke’s areas. Pre- and postoperative cognitive evaluation by a neuropsychologist did not detect any language impairment. We present a running process of reorganization of language areas in a patient after brain tumor resection, from strong left-sided to symmetrical lateralization. 1. FMRI results in comparison with the psychological status of the patient proved contribution of functional reorganization to the preservation of language performance. 2. A slow growing LGG as well as the recurrence of the tumor near the left Broca’s area might be the factors leading to reorganization of language-related areas by recruiting the right hemisphe

  5. Frontal ataxia in childhood.

    OpenAIRE

    Erasmus, C.E.; Beems, T.; Rotteveel, J.J.

    2004-01-01

    Frontal ataxia may be the result of a unilateral frontal lesion. In this report three cases are presented with ataxia due to right frontal lesions. One case concerns a boy presenting with an unsteady gait and titubation of the trunk, mimicking developmental disequilibrium and with complex partial seizures. It proved to be caused by a small right-sided cavernoma in the middle frontal gyrus. After surgical intervention the symptoms and the seizures disappeared. Two subsequent cases concern teen...

  6. The effects of the serotonin transporter polymorphism and age on frontal white matter integrity in healthy adult women.

    Directory of Open Access Journals (Sweden)

    Rune eJonassen

    2012-02-01

    Full Text Available Studies of populations at genetic risk have the potential to explore the underlying structural and functional mechanisms in the development of psychological disorders. The polymorphic region (5-HTTLPR in the serotonin transporter gene (SLC6A4 has been associated with major depression (Caspi et al., 2003. In healthy women, variation in the human brain white matter microstructure integrity in the uncinate fascicule (UF has been suggested as an endophenotypes in the development of major depression (MDD. Pacheco et al. (2009 found a unique effect of age and 5-HTTLPR within the left frontal UF. The present study examined whether these associations persist along the adult life span. Thirty-seven right-handed healthy women between 21 and 61 years of age were invited for a diffusion MRI study. The functional polymorphism 5-HTTLPR located in the promoter region of the SLC6A4 gene was genotyped using polymerase chain reaction (PCR. Fractional anisotropy (FA was generated for the UF based on Tract-Based Spatial Statistics (TBSS. Models of emotion regulation circuitry suggest that working memory is important in conscious emotion regulation (Price and Drevets, 2010. To explore if 5-HTTLPR is related to this aspects of emotion processing, a working memory pathway, the superior longitudinal fascicule (SLF was included. The results demonstrate that age may explain the hypothesized association between 5-HTTLPR and frontal uncinate fascicule white matter integrity in healthy adult women. Both white matter changes associated with the aging process and those associated with growth and development may explain why the earlier reported unique effects of genotype in frontal UF FA do not persist into adulthood.

  7. [Correlation of abnormal topological properties of the white matter fibers connecting the left amygdale with psychogenic erectile dysfunction].

    Science.gov (United States)

    Chen, Jian-Huai; Chen, Guo-Tao; Chen, Yun; Yao, Zhi-Jian; Lu, Qing; Dai, Yu-Tian

    2017-04-01

    To explore the topological properties of the degree and strength of nodes in the binary and weighted brain white matter networks of the patients with psychogenic erectile dysfunction (pED) and analyze the changes of myelin integrity, number and length of the white matter fibers in the topological space. Diffusion tensor imaging data were obtained from 21 patients with pED and 24 healthy controls matched in sex, age, and years of education and subjected to preprocessing. The whole cerebral cortex was divided into 90 regions, followed by fiber tracking, construction of the binary and weighted white matter networks, and calculation of the node degrees and connectivity strengths in different brain regions. The property values were compared between the two groups using the two-sample t-test, the results were corrected by multiple testing correction, and the correlation of the property values with the erectile function of the patients was subjected to Pearson's correlation analysis. Compared with the healthy controls, the pED patients showed significantly decreased node degree of the left triangular part of inferior frontal gyrus (IFG) (7.54±1.44 vs 5.95±1.28, t = -3.88, corrected P = 0.02), medial orbital part of superior frontal gyrus (SFG) (10.08±3.60 vs 6.29±3.30, t = -3.67, corrected P = 0.02), and amygdala (6.50±2.11 vs 4.29±1.31, t = -4.16, corrected P = 0.01) in the binary networks, as well as the connectivity strength of the left triangular part of IFG (2.50±0.68 vs 1.72±0.50, t = -4.35, corrected P = 0.01), medial orbital part of SFG (3.17±0.97 vs 2.08±1.10, t = -3.53, corrected P = 0.03), and amygdala (1.80±0.69 vs 1.11±0.39, t = -4.03, corrected P = 0.01) in the fractional anisotropy (FA) weighted networks. The node degree of the left amygdala was negatively correlated with the total score (r = -0.47,P = 0.04), second item score (r = -0.46, P = 0.03), and third item score of IIEF-5 (r = -0.45, P = 0.04) in the pED patients. The

  8. Electrophysiological and behavioral effects of frontal transcranial direct current stimulation on cognitive fatigue in multiple sclerosis.

    Science.gov (United States)

    Fiene, Marina; Rufener, Katharina S; Kuehne, Maria; Matzke, Mike; Heinze, Hans-Jochen; Zaehle, Tino

    2018-03-01

    Fatigue is one of the most common and debilitating symptoms affecting patients with multiple sclerosis (MS). Sustained cognitive effort induces cognitive fatigue, operationalized as subjective exhaustion and fatigue-related objective alertness decrements with time-on-task. During prolonged cognitive testing, MS patients show increased simple reaction times (RT) accompanied by lower amplitudes and prolonged latencies of the P300 event-related potential. Previous studies suggested a major role of structural and functional abnormalities in the frontal cortex including a frontal hypo-activation in fatigue pathogenesis. In the present study we investigated the neuromodulatory effect of transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) on objective measures of fatigue-related decrements in cognitive performance in MS patients. P300 during an auditory oddball task and simple reaction times in an alertness test were recorded at baseline, during and after stimulation. Compared to sham, anodal tDCS caused an increase in P300 amplitude that persisted after the end of stimulation and eliminated the fatigue-related increase in RT over the course of a testing session. Our findings demonstrate that anodal tDCS over the left DLPFC can counteract performance decrements associated with fatigue thereby leading to an improvement in the patient's ability to cope with sustained cognitive demands. This provides causal evidence for the functional relevance of the left DLPFC in fatigue pathophysiology. The results indicate that tDCS-induced modulations of frontal activity can be an effective therapeutic option for the treatment of fatigue-related declines in cognitive performance in MS patients.

  9. Investigating the effects of nitrous oxide sedation on frontal-parietal interactions.

    Science.gov (United States)

    Ryu, Ji-Ho; Kim, Pil-Jong; Kim, Hong-Gee; Koo, Yong-Seo; Shin, Teo Jeon

    2017-06-09

    Although functional connectivity has received considerable attention in the study of consciousness, few studies have investigated functional connectivity limited to the sedated state where consciousness is maintained but impaired. The aim of the present study was to investigate changes in functional connectivity of the parietal-frontal network resulting from nitrous oxide-induced sedation, and to determine the neural correlates of cognitive impairment during consciousness transition states. Electroencephalography was acquired from healthy adult patients who underwent nitrous oxide inhalation to induce cognitive impairment, and was analyzed using Granger causality (GC). Periods of awake, sedation and recovery for GC between frontal and parietal areas in the delta, theta, alpha, beta, gamma and total frequency bands were obtained. The Friedman test with post-hoc analysis was conducted for GC values of each period for comparison. As a sedated state was induced by nitrous oxide inhalation, power in the low frequency band showed increased activity in frontal regions that was reversed with discontinuation of nitrous oxide. Feedback and feedforward connections analyzed in spectral GC were changed differently in accordance with EEG frequency bands in the sedated state by nitrous oxide administration. Calculated spectral GC of the theta, alpha, and beta frequency regions in the parietal-to-frontal direction was significantly decreased in the sedated state while spectral GC in the reverse direction did not show significant change. Frontal-parietal functional connectivity is significantly affected by nitrous oxide inhalation. Significantly decreased parietal-to-frontal interaction may induce a sedated state. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Reduced frontal and occipital lobe asymmetry on the CT-scans of schizophrenic patients. Its specificity and clinical significance

    International Nuclear Information System (INIS)

    Falkai, P.; Schneider, T.; Greve, B.; Klieser, E.; Bogerts, B.

    1995-01-01

    Frontal and occipital lobe widths were determined in the computed tomographic (CT) scans of 135 schizophrenic patients, 158 neuro psychiatrically healthy and 102 psychiatric control subjects, including patients with affective psychosis, neurosis and schizoaffective psychosis. Most healthy right-handed subjects demonstrate a relative enlargement of the right frontal as well as left occipital lobe compared to the opposite hemisphere. These normal frontal and occipital lobe asymmetries were selectively reduced in schizophrenics (f.: 5%, p < .0005; o.: 3%, p < .05), irrespective of the pathophysiological subgroup. Schizophrenic neuroleptic non-responders revealed a significant reduction of frontal lobe asymmetry (3%, p < .05), while no correlation between BPRS-sub scores and disturbed cerebral laterality could be detected. In sum the present study demonstrates the disturbed cerebral lateralisation in schizophrenic patients supporting the hypothesis of interrupted early brain development in schizophrenia. (author)

  11. Localised mixing and heterogeneity in the plankton food web in a frontal region of the Sargasso Sea

    DEFF Research Database (Denmark)

    Richardson, Katherine; Bendtsen, Joøgen; Christensen, Jens Tang

    2014-01-01

    the diatom communities at 10 m and > 100 m (in the deep chlorophyll maximum, DCM) than in other parts of the frontal region. Thorpe displacements supported the hypothesis of elevated mixing intensities around these stations, as did vertical mixing rates inferred from stratification and vertical current shear...... with the stratification (Brunt-V is l frequency), with the greatest fractions found below 75 m at the most weakly stratified stations. While this study cannot directly link these observations to eel larvae ecology, Munk et al. (2010; Proc R Soc B 277: 3593-3599) reported that eel larvae were most abundant at locations...

  12. Frontal alpha asymmetry and aerobic exercise: are changes due to cardiovascular demand or bilateral rhythmic movement?

    Science.gov (United States)

    Hicks, Robert A; Hall, Peter A; Staines, William R; McIlroy, William E

    2018-02-01

    The left and right prefrontal cortices are linked to networks that control approach and withdrawal motivation, respectively. The relationship between activity in the left and right prefrontal activity is used to assess brain states and specifically their link to motivational behaviours and tendencies. The most common measure used in this context is called the frontal alpha asymmetry (FAA), which compares alpha (8-13Hz) power at each region. Interestingly, research shows that FAA is influenced by aerobic exercise by increasing relative left prefrontal cortex activity. In turn this effect may be beneficial for individuals with mood disorders that are associated with abnormal motivational tendencies. However, it is unknown whether changes in FAA after exercise are due to cardiovascular demands of activity or simply the movement required for the exercise. Therefore, this study aimed to investigate the influence of aerobic exercise and 'no intensity' bilateral movement cycling on FAA in young healthy adults. Results showed aerobic exercise caused a significant increase in FAA scores 22-38min after exercise. However, movement did not lead to a significant change in FAA. This suggests there is an intensity required for physical activity to evoke a change in FAA. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The relationships between the amount of spared tissue, percent signal change, and accuracy in semantic processing in aphasia.

    Science.gov (United States)

    Sims, Jordyn A; Kapse, Kushal; Glynn, Peter; Sandberg, Chaleece; Tripodis, Yorghos; Kiran, Swathi

    2016-04-01

    Recovery from aphasia, loss of language following a cerebrovascular incident (stroke), is a complex process involving both left and right hemispheric regions. In our study, we analyzed the relationships between semantic processing behavioral data, lesion size and location, and percent signal change from functional magnetic resonance imaging (fMRI) data. This study included 14 persons with aphasia in the chronic stage of recovery (six or more months post stroke), along with normal controls, who performed semantic processing tasks of determining whether a written semantic feature matched a picture or whether two written words were related. Using region of interest (ROI) analysis, we found that left inferior frontal gyrus pars opercularis and pars triangularis, despite significant damage, were the only regions to correlate with behavioral accuracy. Additionally, bilateral frontal regions including superior frontal gyrus, middle frontal gyrus, and anterior cingulate appear to serve as an assistive network in the case of damage to traditional language regions that include inferior frontal gyrus, middle temporal gyrus, supramarginal gyrus, and angular gyrus. Right hemisphere posterior regions including right middle temporal gyrus, right supramarginal gyrus, and right angular gyrus are engaged in the case of extensive damage to left hemisphere language regions. Additionally, right inferior frontal gyrus pars orbitalis is presumed to serve a monitoring function. These results reinforce the importance of the left hemisphere in language processing in aphasia, and provide a framework for the relative importance of left and right language regions in the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Frontal ataxia in childhood.

    NARCIS (Netherlands)

    Erasmus, C.E.; Beems, T.; Rotteveel, J.J.

    2004-01-01

    Frontal ataxia may be the result of a unilateral frontal lesion. In this report three cases are presented with ataxia due to right frontal lesions. One case concerns a boy presenting with an unsteady gait and titubation of the trunk, mimicking developmental disequilibrium and with complex partial

  15. Enhancing motor network activity using real-time functional MRI neurofeedback of left premotor cortex

    Directory of Open Access Journals (Sweden)

    Theo Ferreira Marins

    2015-12-01

    Full Text Available Neurofeedback by functional Magnetic Resonance Imaging (fMRI is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC, important for motor recovery after brain injury. We investigated (i whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI task while receiving continuous fMRI-neurofeedback, and (ii whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and motor imagery, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke.

  16. Frontal and parietal cortical interactions with distributed visual representations during selective attention and action selection.

    Science.gov (United States)

    Nelissen, Natalie; Stokes, Mark; Nobre, Anna C; Rushworth, Matthew F S

    2013-10-16

    Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity.

  17. Frontal and Parietal Cortical Interactions with Distributed Visual Representations during Selective Attention and Action Selection

    Science.gov (United States)

    Stokes, Mark; Nobre, Anna C.; Rushworth, Matthew F. S.

    2013-01-01

    Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity. PMID:24133250

  18. Multimodality language mapping in patients with left-hemispheric language dominance on Wada test.

    Science.gov (United States)

    Kojima, Katsuaki; Brown, Erik C; Rothermel, Robert; Carlson, Alanna; Matsuzaki, Naoyuki; Shah, Aashit; Atkinson, Marie; Mittal, Sandeep; Fuerst, Darren; Sood, Sandeep; Asano, Eishi

    2012-10-01

    We determined the utility of electrocorticography (ECoG) and stimulation for detecting language-related sites in patients with left-hemispheric language-dominance on Wada test. We studied 13 epileptic patients who underwent language mapping using event-related gamma-oscillations on ECoG and stimulation via subdural electrodes. Sites showing significant gamma-augmentation during an auditory-naming task were defined as language-related ECoG sites. Sites at which stimulation resulted in auditory perceptual changes, failure to verbalize a correct answer, or sensorimotor symptoms involving the mouth were defined as language-related stimulation sites. We determined how frequently these methods revealed language-related sites in the superior-temporal, inferior-frontal, dorsolateral-premotor, and inferior-Rolandic regions. Language-related sites in the superior-temporal and inferior-frontal gyri were detected by ECoG more frequently than stimulation (p hemispheric language-dominance. Measurement of language-related gamma-oscillations is warranted in presurgical evaluation of epileptic patients. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Regional cerebral blood flow in schizophrenics. Tests using the xenon Xe 133 inhalation method

    International Nuclear Information System (INIS)

    Ariel, R.N.; Golden, C.J.; Berg, R.A.; Quaife, M.A.; Dirksen, J.W.; Forsell, T.; Wilson, J.; Graber, B.

    1983-01-01

    Measurements of intrahemispheric and bilateral regional cerebral blood flow (CBF) for gray and white matter were compared in 29 schizophrenic patients and 22 normal controls, using the xenon Xe 133 inhalation method. Results showed significantly lower CBF values for all brain regions in the schizophrenic group, and post hoc comparisons showed relatively greater reduced gray-matter CBF values in the anterior areas of the brain. There was also a left-hemisphere frontal loss similar to that reported previously, although it was in the context of a generalized loss in anterior functioning. Interhemispheric comparison within both groups showed no differences between homologous regions for gray matter, and greater white-matter CBF values in the right hemisphere than in the left hemisphere. The findings support a hypothesis of a bilateral anterior deficit in schizophrenia

  20. A Preliminary fMRI Study of a Novel Self-Paced Written Fluency Task: Observation of Left-Hemispheric Activation, and Increased Frontal Activation in Late vs. Early Task Phases

    Directory of Open Access Journals (Sweden)

    Laleh eGolestanirad

    2015-03-01

    Full Text Available Neuropsychological tests of verbal fluency are very widely used to characterize impaired cognitive function. For clinical neuroscience studies and potential medical applications, measuring the brain activity that underlies such tests with functional magnetic resonance imaging (fMRI is of significant interest - but a challenging proposition because overt speech can cause signal artifacts, which tend to worsen as the duration of speech tasks becomes longer. In a novel approach, we present the group brain activity of 12 subjects who performed a self-paced written version of phonemic fluency using fMRI-compatible tablet technology that recorded responses and provided task-related feedback on a projection screen display, over long-duration task blocks (60 s. As predicted, we observed robust activation in the left anterior inferior and medial frontal gyri, consisting with previously reported results of verbal fluency tasks which established the role of these areas in strategic word retrieval. In addition, the number of words produced in the late phase (last 30 s of written phonemic fluency was significantly less (p < 0.05 than the number produced in the early phase (first 30 s. Activation during the late phase vs. the early phase was also assessed from the first 20 s and last 20 s of task performance, which eliminated the possibility that the sluggish hemodynamic response from the early phase would affect the activation estimates of the late phase. The last 20 s produced greater activation maps covering extended areas in bilateral precuneus, cuneus, middle temporal gyrus, insula, middle frontal gyrus and cingulate gyrus. Among them, greater activation was observed in the bilateral middle frontal gyrus (Brodmann area BA 9 and cingulate gyrus (BA 24, 32 likely as part of the initiation, maintenance, and shifting of attentional resources.

  1. Frontal Lobe Seizures

    Science.gov (United States)

    ... cause of frontal lobe epilepsy remains unknown. Complications Status epilepticus. Frontal lobe seizures tend to occur in clusters and may provoke a dangerous condition called status epilepticus — in which seizure activity lasts much longer than ...

  2. Temporal Fourier transform of digital angiograms for left ventricular regional wall motion analysis

    International Nuclear Information System (INIS)

    Katayama, Kazuhiro; Guth, B.D.; Widmann, T.F.; Lee, Jong-Dae; Seitelberger, R.; Peterson, K.L.

    1988-01-01

    To determine whether or not the first harmonic of a temporal Fourier transform, applied pixel-by-pixel on time-intensity curves, can detect the subtle wall motion abnormalities due to ischemia, 6 dogs were instrumented with a micromanometer in the left ventricles, a hydraulic cuff occluder around the circumflex coronary artery, and sonomicrometers on the inferior (ischemic) and anterior (non-ischemic) walls. Left ventricular images, obtained after contrast injection via the pulmonary artery, were compared with dimension signals in control and 3 progressive levels of coronary stenosis (Stenosis I, II and III). Normalized, digital functional images (512 x 512 matrix, 256 shades of gray/pixel) were divided into anterior, apical, and inferior areas to acquire regional mean phase (degrees) and amplitude (intensity units) values. After inducing stenosis, phase in ischemic region significantly increased at all 3 levels of stenosis, whereas amplitude significantly decreased at Stenosis II and III. However, amplitude images showed clearly the topographic site of ischemia. There was a progressive increase in phase and decrease in amplitude in ischemic areas as the percent wall thickening (%WTh) fell (phase vs. %WTh: r = -0.55, p < 0.005; amplitude vs. %WTh: r = 0.71, p < 0.001). Heart rate and peak systolic pressure showed no significant changes during stenoses. We conclude that quantitative functional images, generated from a temporal Fourier transform, are sensitive to the detection of left ventricular regional wall motion abnormalities during mild, moderate, and severe degrees of ischemia. (author)

  3. Context-dependent lexical ambiguity resolution: MEG evidence for the time-course of activity in left inferior frontal gyrus and posterior middle temporal gyrus.

    Science.gov (United States)

    Mollo, Giovanna; Jefferies, Elizabeth; Cornelissen, Piers; Gennari, Silvia P

    An MEG study investigated the role of context in semantic interpretation by examining the comprehension of ambiguous words in contexts leading to different interpretations. We compared high-ambiguity words in minimally different contexts (to bowl, the bowl) to low-ambiguity counterparts (the tray, to flog). Whole brain beamforming revealed the engagement of left inferior frontal gyrus (LIFG) and posterior middle temporal gyrus (LPMTG). Points of interest analyses showed that both these sites showed a stronger response to verb-contexts by 200 ms post-stimulus and displayed overlapping ambiguity effects that were sustained from 300 ms onwards. The effect of context was stronger for high-ambiguity words than for low-ambiguity words at several different time points, including within the first 100 ms post-stimulus. Unlike LIFG, LPMTG also showed stronger responses to verb than noun contexts in low-ambiguity trials. We argue that different functional roles previously attributed to LIFG and LPMTG are in fact played out at different periods during processing. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  4. Reduced frontal cortex thickness and cortical volume associated with pathological narcissism.

    Science.gov (United States)

    Mao, Yu; Sang, Na; Wang, Yongchao; Hou, Xin; Huang, Hui; Wei, Dongtao; Zhang, Jinfu; Qiu, Jiang

    2016-07-22

    Pathological narcissism is often characterized by arrogant behavior, a lack of empathy, and willingness to exploit other individuals. Generally, individuals with high levels of narcissism are more likely to suffer mental disorders. However, the brain structural basis of individual pathological narcissism trait among healthy people has not yet been investigated with surface-based morphometry. Thus, in this study, we investigated the relationship between cortical thickness (CT), cortical volume (CV), and individual pathological narcissism in a large healthy sample of 176 college students. Multiple regression was used to analyze the correlation between regional CT, CV, and the total Pathological Narcissism Inventory (PNI) score, adjusting for age, sex, and total intracranial volume. The results showed that the PNI score was significantly negatively associated with CT and CV in the right dorsolateral prefrontal cortex (DLPFC, key region of the central executive network, CEN), which might be associated with impaired emotion regulation processes. Furthermore, the PNI score showed significant negative associations with CV in the right postcentral gyrus, left medial prefrontal cortex (MPFC), and the CT in the right inferior frontal cortex (IFG, overlap with social brain network), which may be related to impairments in social cognition. Together, these findings suggest a unique structural basis for individual differences in pathological narcissism, distributed across different gray matter regions of the social brain network and CEN. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Frontal cortical asymmetry may partially mediate the influence of social power on anger expression

    Directory of Open Access Journals (Sweden)

    Dongdong eLi

    2016-02-01

    Full Text Available When irritated by other people, powerful people usually tend to express their anger explicitly and directly, whereas people in less powerful positions are more likely not to show their feelings freely. The neural mechanism behind power and its influence on expression tendency has been scarcely explored. This study recorded frontal EEG activity at rest and frontal EEG activation while participants were engaged in a writing task describing an anger-eliciting event, in which they were irritated by people with higher or lower social power. Participants’ anger levels and expression inclination levels were self-reported on nine-point visual analog Likert scales, and also rated by independent raters based on the essays they had written. The results showed that high social power was indeed associated with greater anger expression tendency and greater left frontal activation than low social power. This is in line with the approach-inhibition theory of power. The mid-frontal asymmetric activation served as a partial mediator between social power and expression inclination. This effect may relate to the functions of the prefrontal cortex, which is in charge of information integration and evaluation and the control of motivation direction, as reported by previous studies.

  6. The Sport Expert's Attention Superiority on Skill-related Scene Dynamic by the Activation of left Medial Frontal Gyrus: An ERP and LORETA Study.

    Science.gov (United States)

    He, Mengyang; Qi, Changzhu; Lu, Yang; Song, Amanda; Hayat, Saba Z; Xu, Xia

    2018-05-21

    Extensive studies have shown that a sports expert is superior to a sports novice in visually perceptual-cognitive processes of sports scene information, however the attentional and neural basis of it has not been thoroughly explored. The present study examined whether a sport expert has the attentional superiority on scene information relevant to his/her sport skill, and explored what factor drives this superiority. To address this problem, EEGs were recorded as participants passively viewed sport scenes (tennis vs. non-tennis) and negative emotional faces in the context of a visual attention task, where the pictures of sport scenes or of negative emotional faces randomly followed the pictures with overlapping sport scenes and negative emotional faces. ERP results showed that for experts, the evoked potential of attentional competition elicited by the overlap of tennis scene was significantly larger than that evoked by the overlap of non-tennis scene, while this effect was absent for novices. The LORETA showed that the experts' left medial frontal gyrus (MFG) cortex was significantly more active as compared to the right MFG when processing the overlap of tennis scene, but the lateralization effect was not significant in novices. Those results indicate that experts have attentional superiority on skill-related scene information, despite intruding the scene through negative emotional faces that are prone to cause negativity bias toward their visual field as a strong distractor. This superiority is actuated by the activation of left MFG cortex and probably due to self-reference. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Phytoplankton stimulation in frontal regions of Benguela upwelling filaments by internal factors

    Directory of Open Access Journals (Sweden)

    Norbert Wasmund

    2016-11-01

    Full Text Available Filaments are intrusions of upwelling water into the sea, separated from the surrounding water by fronts. Current knowledge explains the enhanced primary production and phytoplankton growth found in frontal areas by external factors like nutrient input. The question is whether this enhancement is also caused by intrinsic factors, i.e. simple mixing without external forcing. In order to study the direct effect of frontal mixing on organisms, disturbing external influx has to be excluded. Therefore mixing was simulated by joining waters originating from inside and outside the filament in mesocosms (tanks. These experiments were conducted during two cruises in the northern Benguela upwelling system in September 2013 and January 2014. The mixed waters reached a much higher net primary production and chlorophyll a (chla concentration than the original waters already 2-3 days after their merging. The peak in phytoplankton biomass stays longer than the chla peak. After their maxima, primary production rates decreased quickly due to depletion of the nutrients. The increase in colored dissolved organic matter (CDOM may indicate excretion and degradation. Zooplankton is not quickly reacting on the changed conditions. We conclude that already simple mixing of two water bodies, which occurs generally at fronts between upwelled and ambient water, leads to a short-term stimulation of the phytoplankton growth. However, after the exhaustion of the nutrient stock, external nutrient supply is necessary to maintain the enhanced phytoplankton growth in the frontal area. Based on these data, some generally important ecological factors are discussed as for example nutrient ratios and limitations, silicate requirements and growth rates.

  8. Deceptive but Not Honest Manipulative Actions Are Associated with Increased Interaction between Middle and Inferior Frontal gyri

    Directory of Open Access Journals (Sweden)

    Maxim Kireev

    2017-08-01

    Full Text Available The prefrontal cortex is believed to be responsible for execution of deceptive behavior and its involvement is associated with greater cognitive efforts. It is also generally assumed that deception is associated with the inhibition of default honest actions. However, the precise neurophysiological mechanisms underlying this process remain largely unknown. The present study was aimed to use functional magnetic resonance imaging to reveal the underlying functional integration within the prefrontal cortex during the task which requires that subjects to deliberately mislead an opponent through the sequential execution of deceptive and honest claims. To address this issue, we performed psychophysiological interaction (PPI analysis, which allows for statistical assessment of changes in functional relationships between active brain areas in changing psychological contexts. As a result the whole brain PPI-analysis established that both manipulative honest and deceptive claiming were associated with an increase in connectivity between the left middle frontal gyrus and right temporo-parietal junction (rTPJ. Taking into account the role played by rTPJ in processes associated with the theory of mind the revealed data can reflect possible influence of socio-cognitive context on the process of selecting manipulative claiming regardless their honest or deceptive nature. Direct comparison between deceptive and honest claims revealed pattern enhancement of coupling between the left middle frontal gyrus and the left inferior frontal gyrus. This finding provided evidence that the execution of deception relies to a greater extent on higher-order hierarchically-organized brain mechanisms of executive control required to select between two competing deceptive or honest task sets.

  9. In search of the functional neuroanatomy of sociality: MRI subdivisions of orbital frontal cortex and social cognition.

    Science.gov (United States)

    Nestor, Paul G; Nakamura, Motoaki; Niznikiewicz, Margaret; Thompson, Elizabeth; Levitt, James J; Choate, Victoria; Shenton, Martha E; McCarley, Robert W

    2013-04-01

    We examined social cognition in a sample of healthy participants who had prior magnetic resonance imaging (MRI) gray matter volume studies of the orbital frontal cortex (OFC) that was parcellated into three regions: gyrus rectus, middle orbital gyrus and lateral orbital gyrus. These subjects also completed a self-report measure of Machiavelli personality traits, along with psychometric tests of social comprehension and declarative episodic memory, all of which we used as proxy measures to examine various features of social cognition. The data pointed to distinct functional-anatomical relationships highlighted by strong correlations of left lateral orbital gyrus and Machiavellian scores and right middle orbital gyrus with social comprehension and declarative episodic memory. In addition, hierarchical regression analyses revealed statistical evidence of a double dissociation between Machiavellian scores and left lateral orbital gyrus on one hand, and social comprehension with right middle orbital gyrus, on the other hand. To our knowledge, these findings are the first to show evidence linking normal variation in OFC subregions and different aspects of social cognition.

  10. A region-specific quantitative profile of autonomic innervation of the canine left atrium and pulmonary veins.

    Science.gov (United States)

    Gao, Chong-han; Wang, Fei; Jiang, Rong; Zhang, Jin; Mou, Huamin; Yin, Yue-hui

    2011-07-05

    The aim of the present study was to determine and quantify the cardiac autonomic innervation of the canine atria and pulmonary vein. Tissue specimens were taken from the canine pulmonary veins (PVs), posterior left atrium (PLA), left atrial roof (LAR), anterior left atrium (ALA), interatrial septum (IAS), and left atrial appendage (LAA) respectively for immunohistochemical analysis and nerve density determination. Both sympathetic and parasympathetic nerve densities decreased in the order: PLA>PV>IAS>LAR>ALA>LAA. For sympathetic nerve, multiple comparisons between any two regions showed a significant difference (PIAS vs. LAR, and LAR vs. ALA; for parasympathetic nerve, all the differences between any pair of regions were statistically significant (PIAS vs. LAR, LAR vs. ALA, and ALA vs. LAA. For both nerve types, there was a decreasing gradient of nerve densities from the external to internal layer (P<0.001, for each comparisons). Nerve density at the ostia for either nerve type was significantly higher than at the distal segments of PVs (P<0.001). In summary, the LA and PVs are innervated by sympathetic and parasympathetic nerves in a regionally heterogeneous way, which may be important for the pathophysiological investigation and ablation therapy of atrial fibrillation (AF). Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Electrophysiological evidence for right frontal lobe dominance in spatial visuomotor learning.

    Science.gov (United States)

    Lang, W; Lang, M; Kornhuber, A; Kornhuber, H H

    1986-02-01

    Slow negative potential shifts were recorded together with the error made in motor performance when two different groups of 14 students tracked visual stimuli with their right hand. Various visuomotor tasks were compared. A tracking task (T) in which subjects had to track the stimulus directly, showed no decrease of error in motor performance during the experiment. In a distorted tracking task (DT) a continuous horizontal distortion of the visual feedback had to be compensated. The additional demands of this task required visuomotor learning. Another learning condition was a mirrored-tracking task (horizontally inverted tracking, hIT), i.e. an elementary function, such as the concept of changing left and right was interposed between perception and action. In addition, subjects performed a no-tracking control task (NT) in which they started the visual stimulus without tracking it. A slow negative potential shift was associated with the visuomotor performance (TP: tracking potential). In the learning tasks (DT and hIT) this negativity was significantly enhanced over the anterior midline and in hIT frontally and precentrally over both hemispheres. Comparing hIT and T for every subject, the enhancement of the tracking potential in hIT was correlated with the success in motor learning in frontomedial and bilaterally in frontolateral recordings (r = 0.81-0.88). However, comparing DT and T, such a correlation was only found in frontomedial and right frontolateral electrodes (r = 0.5-0.61), but not at the left frontolateral electrode. These experiments are consistent with previous findings and give further neurophysiological evidence for frontal lobe activity in visuomotor learning. The hemispherical asymmetry is discussed in respect to hemispherical specialization (right frontal lobe dominance in spatial visuomotor learning).

  12. [Autopsy case of Lissauer's general paresis with rapidly progressive left hemiparesis].

    Science.gov (United States)

    Kato, Hiroko; Yoshida, Mari; Ando, Tetsuo; Sugiura, Makoto; Hashizume, Yoshio

    2009-06-01

    A 48-years-old man presented with slowly progressive bradykinesia, personality change and rapidly progressive left hemiparesis. On admission, he presented dementia, poor judgment, left hemiparesis. MRI revealed a widespread high intensity area in right hemisphere and MRA was almost normal. Serological tests of serum and CSF demonstrated high titers of antibodies to Treponema pallidum. He was treated for syphilis with daily penicillin injections without improvement. He died of sepsis eight months after admission. At autopsy, the brain weighed 1,100 g and the right cerebral hemisphere was atrophic, especially in frontal base, temporal, parietal, angular, and posterior regions covered by thickened, fibrotic leptomeninges. Microscopically, chronic meningoencephalitis was observed. Severe neuronal loss with gliosis was seen in the right cerebral cortices. Scattered rod-shaped microglia and inflammatory cell infiltration were visible in the cerebral parenchyma. The dorsal column of the spinal cord was not involved and meningovascular syphilis was unclear. The distribution of the encephalitic lesions was well correlated with the clinical and neuroradiological findings. This was a rare autopsy case presenting Lissauer's general paresis, clinically manifesting as rapidly progressive stroke-like episode.

  13. Rhinogenic intracranial complication with postoperative frontal sinus pyocele and inverted papilloma in the nasal cavity: A case report and literature review

    Directory of Open Access Journals (Sweden)

    Michitsugu Kawada

    2016-02-01

    Full Text Available We report a patient who had rhinogenic intracranial complication with postoperative frontal sinus pyocele and inverted papilloma in the nasal cavity. A 72-year-old woman had undergone surgery for frontal sinusitis via external incision at another hospital 13 years previously. Left-sided hemiparesis appeared in the patient and gradually worsened. Five days later, she exhibited disorientation, abnormal behavior, poor articulation, and difficulty in standing. Therefore, she was taken to the neurosurgery department by ambulance. An extensive frontal sinus pyocele was suspected, and a cerebral abscess and edema of the frontal lobe were observed on magnetic resonance imaging. After antibiotics, steroid and glycerol were administered for a few weeks; disorientation and left hemiparesis improved. Next, craniotomy for complete removal of the brain abscess by neurosurgeons and endoscopic endonasal surgery by otolaryngologists were carried out at the same surgery. From the analysis of the pathological mucosa sample taken from the right ethomoidal sinus during surgery, an inverted papilloma was diagnosed. The patient completely recovered and is currently receiving follow-up examination. Regarding rhinogenic intracranial complications, ascertaining clinical condition in order to determine the need for either immediate radical surgery, or for curative surgery after waiting for improvement of the overall body condition by conservative management, is still needed.

  14. Rhinogenic intracranial complication with postoperative frontal sinus pyocele and inverted papilloma in the nasal cavity: A case report and literature review

    Science.gov (United States)

    Kawada, Michitsugu; Yokoi, Hidenori; Maruyama, Keisuke; Matsumoto, Yuma; Yamanaka, Hidetaka; Ikeda, Tetsuya; Shiokawa, Yoshiaki; Saito, Koichiro

    2016-01-01

    We report a patient who had rhinogenic intracranial complication with postoperative frontal sinus pyocele and inverted papilloma in the nasal cavity. A 72-year-old woman had undergone surgery for frontal sinusitis via external incision at another hospital 13 years previously. Left-sided hemiparesis appeared in the patient and gradually worsened. Five days later, she exhibited disorientation, abnormal behavior, poor articulation, and difficulty in standing. Therefore, she was taken to the neurosurgery department by ambulance. An extensive frontal sinus pyocele was suspected, and a cerebral abscess and edema of the frontal lobe were observed on magnetic resonance imaging. After antibiotics, steroid and glycerol were administered for a few weeks; disorientation and left hemiparesis improved. Next, craniotomy for complete removal of the brain abscess by neurosurgeons and endoscopic endonasal surgery by otolaryngologists were carried out at the same surgery. From the analysis of the pathological mucosa sample taken from the right ethomoidal sinus during surgery, an inverted papilloma was diagnosed. The patient completely recovered and is currently receiving follow-up examination. Regarding rhinogenic intracranial complications, ascertaining clinical condition in order to determine the need for either immediate radical surgery, or for curative surgery after waiting for improvement of the overall body condition by conservative management, is still needed. PMID:27489711

  15. On the nature of the frontal zone of the Choctawhatchee Bay plume in the Gulf of Mexico

    Science.gov (United States)

    Huguenard, K. D.; Bogucki, D. J.; Ortiz-Suslow, D. G.; Laxague, N. J. M.; MacMahan, J. H.; Özgökmen, T. M.; Haus, B. K.; Reniers, A. J. H. M.; Hargrove, J.; Soloviev, A. V.; Graber, H.

    2016-02-01

    River plumes often feature turbulent processes in the frontal zone and interfacial region at base of the plume, which ultimately impact spreading and mixing rates with the ambient coastal ocean. The degree to which these processes govern overall plume mixing is yet to be quantified with microstructure observations. A field campaign was conducted in a river plume in the northeast Gulf of Mexico in December 2013, in order to assess mixing processes that could potentially impact transport and dispersion of surface material near coastal regions. Current velocity, density, and Turbulent Kinetic Energy Values, ɛ, were obtained using an Acoustic Doppler Current Profiler (ADCP), a Conductivity Temperature Depth (CTD) profiler, a Vertical Microstructure Profiler (VMP), and two Acoustic Doppler Velocimeters (ADVs). The frontal region contained ɛ values on the order of 10-5 m2 s-3, which were markedly larger than in the ambient water beneath (O 10-9 m2 s-3). An energetic wake of moderate ɛ values (O 10-6 m2 s-3) was observed trailing the frontal edge. The interfacial region of an interior section of the plume featured opposing horizontal velocities and a ɛ value on the order of 10-6 m2 s-3. A simplified mixing budget was used under significant assumptions to compare contributions from wind, tides, and frontal regions of the plume. The results from this order of magnitude analysis indicated that frontal processes (59%) dominated in overall mixing. This emphasizes the importance of adequate parameterization of river plume frontal processes in coastal predictive models.

  16. Functional MRI approach for assessing hemispheric predominance of regions activated by a phonological and a semantic task

    Energy Technology Data Exchange (ETDEWEB)

    Cousin, Emilie; Peyrin, Carole; Pichat, Cedric [Laboratoire de Psychologie et Neurocognition, UMR CNRS 5105, Universite Pierre Mendes-France, BP 47, 38040 Grenoble Cedex 09 (France); Lamalle, Laurent; Le Bas, Jean-Francois [Unite IRM, IFR1, CHU Grenoble (France); Baciu, Monica [Laboratoire de Psychologie et Neurocognition, UMR CNRS 5105, Universite Pierre Mendes-France, BP 47, 38040 Grenoble Cedex 09 (France)], E-mail: mbaciu@upmf-grenoble.fr

    2007-08-15

    This fMRI study performed in healthy subjects aimed at using a statistical approach in order to determine significant functional differences between hemispheres and to assess specialized regions activated during a phonological and during a semantic task. This approach ('flip' method and subsequent statistical analyses of the parameter estimates extracted from regions of interest) allows identifying: (a) hemispheric specialized regions for each language task [semantic (living categorization) and phonological (rhyme detection)] and (b) condition-specific regions with respect to paradigm conditions (task and control). Our results showed that the rhyme-specific task regions were the inferior frontal (sub-region of BA 44, 45) and left inferior parietal (BA 40, 39) lobules. Furthermore, within the inferior parietal lobule, the angular gyrus was specific to target (rhyming) items (related to successfully grapho-phonemic processing). The categorization-specific task regions were the left inferior frontal (sub-region of BA 44, 45) and superior temporal (BA 22) cortices. Furthermore, the superior temporal gyrus was related to non-target (non-living) items (correlated to task difficulty). The relatively new approach used in this study has the advantage of providing: (a) statistical significance of the hemispheric specialized regions for a given language task and (b) supplementary information in terms of paradigm condition-specificity of the activated regions. The results (standard hemispheric specialized regions for a semantic and for a phonological task) obtained in healthy subjects may constitute a basement for mapping language and assessing hemispheric predominance in epileptic patients before surgery and avoiding post-surgical impairments of language.

  17. Functional MRI approach for assessing hemispheric predominance of regions activated by a phonological and a semantic task

    International Nuclear Information System (INIS)

    Cousin, Emilie; Peyrin, Carole; Pichat, Cedric; Lamalle, Laurent; Le Bas, Jean-Francois; Baciu, Monica

    2007-01-01

    This fMRI study performed in healthy subjects aimed at using a statistical approach in order to determine significant functional differences between hemispheres and to assess specialized regions activated during a phonological and during a semantic task. This approach ('flip' method and subsequent statistical analyses of the parameter estimates extracted from regions of interest) allows identifying: (a) hemispheric specialized regions for each language task [semantic (living categorization) and phonological (rhyme detection)] and (b) condition-specific regions with respect to paradigm conditions (task and control). Our results showed that the rhyme-specific task regions were the inferior frontal (sub-region of BA 44, 45) and left inferior parietal (BA 40, 39) lobules. Furthermore, within the inferior parietal lobule, the angular gyrus was specific to target (rhyming) items (related to successfully grapho-phonemic processing). The categorization-specific task regions were the left inferior frontal (sub-region of BA 44, 45) and superior temporal (BA 22) cortices. Furthermore, the superior temporal gyrus was related to non-target (non-living) items (correlated to task difficulty). The relatively new approach used in this study has the advantage of providing: (a) statistical significance of the hemispheric specialized regions for a given language task and (b) supplementary information in terms of paradigm condition-specificity of the activated regions. The results (standard hemispheric specialized regions for a semantic and for a phonological task) obtained in healthy subjects may constitute a basement for mapping language and assessing hemispheric predominance in epileptic patients before surgery and avoiding post-surgical impairments of language

  18. Dissociated repetition deficits in aphasia can reflect flexible interactions between left dorsal and ventral streams and gender-dimorphic architecture of the right dorsal stream.

    Science.gov (United States)

    Berthier, Marcelo L; Froudist Walsh, Seán; Dávila, Guadalupe; Nabrozidis, Alejandro; Juárez Y Ruiz de Mier, Rocío; Gutiérrez, Antonio; De-Torres, Irene; Ruiz-Cruces, Rafael; Alfaro, Francisco; García-Casares, Natalia

    2013-01-01

    Assessment of brain-damaged subjects presenting with dissociated repetition deficits after selective injury to either the left dorsal or ventral auditory pathways can provide further insight on their respective roles in verbal repetition. We evaluated repetition performance and its neural correlates using multimodal imaging (anatomical MRI, DTI, fMRI, and(18)FDG-PET) in a female patient with transcortical motor aphasia (TCMA) and in a male patient with conduction aphasia (CA) who had small contiguous but non-overlapping left perisylvian infarctions. Repetition in the TCMA patient was fully preserved except for a mild impairment in nonwords and digits, whereas the CA patient had impaired repetition of nonwords, digits and word triplet lists. Sentence repetition was impaired, but he repeated novel sentences significantly better than clichés. The TCMA patient had tissue damage and reduced metabolism in the left sensorimotor cortex and insula. DTI showed damage to the left temporo-frontal and parieto-frontal segments of the arcuate fasciculus (AF) and part of the left ventral stream together with well-developed right dorsal and ventral streams, as has been reported in more than one-third of females. The CA patient had tissue damage and reduced metabolic activity in the left temporoparietal cortex with additional metabolic decrements in the left frontal lobe. DTI showed damage to the left temporo-parietal and temporo-frontal segments of the AF, but the ventral stream was spared. The direct segment of the AF in the right hemisphere was also absent with only vestigial remains of the other dorsal subcomponents present, as is often found in males. fMRI during word and nonword repetition revealed bilateral perisylvian activation in the TCMA patient suggesting recruitment of spared segments of the left dorsal stream and right dorsal stream with propagation of signals to temporal lobe structures suggesting a compensatory reallocation of resources via the ventral streams. The

  19. Emotional reactions in patients after frontal lobe stroke

    Directory of Open Access Journals (Sweden)

    Stojanović Zlatan

    2015-01-01

    Full Text Available Background/Aim. Emotional reactions have been documented after tumor lesions and the other damages of the brain. The aim of this paper was to examine the correlation between frontal lobe lesions and emotional reactions in patients with stroke. Methods. The research included 118 patients after stroke. Lesion localization was defined on computed axial tomography records, whereas the area and perimeter of lesion were measured by AutoCAD 2004 software. Examinations by means of the Hamilton Rating Scale for Anxiety and Depression (HRSA and HRSD were carried out 11-40 days after stroke. Statistic data were processed by simple linear/nonlinear regression, Cox's and the generalized linear model. Results. A higher frequency of emotional reactions, i.e. anxiety, was determined in women after stroke (p = 0.024. A negative correlation between the lesion size and the intensity of anxiety manifestations was determined (Spearman’s r = -0.297; p = 0.001. Anxiety was more frequent in patients with frontal lobe lesions in the dominant hemisphere (interaction: frontal lesion * hand dominant hemisphere, p = 0.017. Also, HRSD score values showed the tendency for lesser decline in case of greater frontal lobe lesions in relation to lesions of other regions of prosencephalon (interaction: frontal lesion * lesion area, p = 0.001. Conclusion. The results of this study indicate the correlation between evolutionary younger structures of the central nervous system and emotional reactions of man. Therefore, it is necessary to undertake proper early psychopharmacotherapy in the vulnerable group of patients.

  20. Emotional reactions in patients after frontal lobe stroke.

    Science.gov (United States)

    Stojanović, Zlatan; Stojanović, Sanja Vukadinović

    2015-09-01

    Emotional reactions have been documented after tumor lesions and the other damages of the brain. The aim of this paper was to examine the correlation between frontal lobe lesions and emotional reactions in patients with stroke. The research included 118 patients after stroke. Lesion localization was defined on computed axial tomography records, whereas the area and perimeter of lesion were measured by AutoCAD 2004 software. Examinations by means of the Hamilton Rating Scale for Anxiety and Depression (HRSA and HRSD) were carried out 11-40 days after stroke. Statistic data were processed by simple linear/nonlinear regression, Cox's and the generalized linear model. A higher frequency of emotional reactions, i.e. anxiety, was determined in women after stroke (p = 0.024). A negative correlation between the lesion size and the intensity of anxiety manifestations was determined (Spearman's r = -0.297; p = 0.001). Anxiety was more frequent in patients with frontal lobe lesions in the dominant hemisphere (interaction: frontal lesion * hand dominant hemisphere, p = 0.017). Also, HRSD score values showed the tendency for lesser decline in case of greater frontal lobe lesions in relation to lesions of other regions of prosencephalon (interaction: frontal lesion * lesion area, p = 0.001). The results of this study indicate the correlation between evolutionary younger structures of the central nervous system and emotional reactions of man. Therefore, it is necessary to undertake proper early psychopharmacotherapy in the vulnerable group of patients.

  1. Analysis of the relationship between myocardial viability and regional left ventricular wall motion

    International Nuclear Information System (INIS)

    Furutani, Yuhji; Ozaki, Masaharu; Yamamoto, Takeshi; Sato, Shinichi; Saiki, Atsushi; Kusukawa, Reizo

    1993-01-01

    Myocardial viability was determined by using postsystolic shortening (PSS) as an index, as obtained by cardiac blood pool scintigraphy with Tc-99m HSA. The findings were compared with those of thallium-201 myocardial SPECT. The study population was comparised of 41 patients with single blood vessel disease in the left anterior descending artery (34 with old myocardial infarction and 7 with effort angina pectoris). Left ventricular area was divided into 6 segments, and global and regional left ventricular blood volume curves were obtained. Delayed end-systole was the most common in the apex (41%), followed by the upper septum (37%) and lower septum (10%). PSS resulting from delayed end-systole was seen in 36 areas. PSS/end-diastolic volume (EDV) and PSS/systolic volume (SV) were obtained by adjusting end-diastolic and stroke counts, respectively. Thallium-201 myocardial SPECT images were divided into 5 segments to obtain defect score (DS) for visual Tl uptake. Both PSS/EDV and PSS/SV were greater in association with more delayed end-systole, greater DS, and lower reginal ejection fraction. Areas showing greater PSS were associated with less myocardial viability, as observed on Tl myocardial SPECT images. Thus, PSS seemed to reflect the degree of myocardial necrosis within the region of interest. (N.K.)

  2. Unimodal and multimodal regions for logographic language processing in left ventral occipitotemporal cortex

    Directory of Open Access Journals (Sweden)

    Yuan eDeng

    2013-09-01

    Full Text Available The human neocortex appears to contain a dedicated visual word form area (VWFA and an adjacent multimodal (visual/auditory area. However, these conclusions are based on functional magnetic resonance imaging (fMRI of alphabetic language processing, languages that have clear grapheme-to-phoneme correspondence (GPC rules that make it difficult to disassociate visual-specific processing from form-to-sound mapping. In contrast, the Chinese language has no clear GPC rules. Therefore, the current study examined whether native Chinese readers also have the same VWFA and multimodal area. Two cross-modal tasks, phonological retrieval of visual words and orthographic retrieval of auditory words, were adopted. Different task requirements were also applied to explore how different levels of cognitive processing modulate activation of putative VWFA-like and multimodal-like regions. Results showed that the left occipitotemporal sulcus responded exclusively to visual inputs and an adjacent region, the left inferior temporal gyrus, showed comparable activation for both visual and auditory inputs. Surprisingly, processing levels did not significantly alter activation of these two regions. These findings indicated that there are both unimodal and multimodal word areas for non-alphabetic language reading, and that activity in these two word-specific regions are independent of task demands at the linguistic level.

  3. Relationship between regional brain glucose metabolism and temperament factor of personality

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Lee, Eun Ju; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    Temperament factor of personality has been considered to have correlation with activity in a specific central monoaminergic system. In an attempt to explore neuronal substrate of biogenetic personality traits, we examined the relationship between regional brain glucose metabolism and temperament factor of personality. Twenty right-handed healthy subjects (age, 24{+-}4 yr: 10 females and 10 males) were studied with FDG PET. Their temperaments were assessed using the Temperament and Character Inventory (TCI), which consisted of four temperament factors (harm avoidance (HA), novelty seeking (NS), reward dependence (RD), persistency) and three personality factors. The relationship between regional glucose metabolism and each temperament score was tested using SPM99 (P < 0.005, uncorrected). NS score was negatively correlated with glucose metabolism in the frontal areas, insula, and superior temporal gyrus mainly in the right hemisphere. Positive correlation between NS score and glucose metabolism was observed in the left superior temporal gyrus. HA score showed negative correlation with glucose metabolism in the middle and orbitofrontal gyri as well as in the parahippocampal gyrus. RD score was positively correlated with glucose metabolism in the left middle frontal gyrus and negative correlated in the posterior cingulate gyrus and caudate nucleus. We identified the relationship between regional brain glucose metabolism and temperamental personality trait. Each temperament factor had a relation with functions of specific brain areas. These results help understand biological background of personality and specific feedback circuits associated with each temperament factor.

  4. Relationship between regional brain glucose metabolism and temperament factor of personality

    International Nuclear Information System (INIS)

    Cho, Sang Soo; Lee, Eun Ju; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun

    2005-01-01

    Temperament factor of personality has been considered to have correlation with activity in a specific central monoaminergic system. In an attempt to explore neuronal substrate of biogenetic personality traits, we examined the relationship between regional brain glucose metabolism and temperament factor of personality. Twenty right-handed healthy subjects (age, 24±4 yr: 10 females and 10 males) were studied with FDG PET. Their temperaments were assessed using the Temperament and Character Inventory (TCI), which consisted of four temperament factors (harm avoidance (HA), novelty seeking (NS), reward dependence (RD), persistency) and three personality factors. The relationship between regional glucose metabolism and each temperament score was tested using SPM99 (P < 0.005, uncorrected). NS score was negatively correlated with glucose metabolism in the frontal areas, insula, and superior temporal gyrus mainly in the right hemisphere. Positive correlation between NS score and glucose metabolism was observed in the left superior temporal gyrus. HA score showed negative correlation with glucose metabolism in the middle and orbitofrontal gyri as well as in the parahippocampal gyrus. RD score was positively correlated with glucose metabolism in the left middle frontal gyrus and negative correlated in the posterior cingulate gyrus and caudate nucleus. We identified the relationship between regional brain glucose metabolism and temperamental personality trait. Each temperament factor had a relation with functions of specific brain areas. These results help understand biological background of personality and specific feedback circuits associated with each temperament factor

  5. The evaluation of regional cerebral blood flow in the chronic alcohol abuse patients

    International Nuclear Information System (INIS)

    Chung, Y. A.; Kim, D. J.; Oh, J. H.; Kim, C. H.; Kim, S. H.; Sohn, H. S.; Chung, S. K.

    2005-01-01

    The use of alcohol is increasingly prevalent in our country and remains associated with innumerable social and economic problems. In addition, brain abnormalities have been proved by means of neuroimaging techniques not only in the first days of withdrawal, but also months after the last use of the substance in the patients. The purpose of the present study was to investigate patterns of the regional cerebral blood flow (rCBF) in alcoholic dementia. Six patients (all men; 44-67 years, mean age = 57.5 years) who fulfilled DSM-IV criteria for alcoholic dementia were enrolled in the study. RCBF measurements of resting state using Tc-99m ethyl cysteinate dimmer (ECD) SPECT were performed. The SPECT image was obtained 40 minutes after intravenous injection of 1110 MBq of Tc-99m ECD using a dual-head gamma camera (ECAM plus; Siemens, Erlangen, Germany). The normalized SPECT data from the alcoholic dementia group were compared with those from 12 healthy subjects. Alcoholic dementia patients showed significant decrement of rCBF in the left thalamus, superior frontal gyrus of left frontal lobe, left insula, postcentral gyrus of left parietal lobe, parahippocapal gyrus of left limbic lobe, right caudate, and cingulate gyrus of right limbic lobe than age-matched healthy subjects. Despite the small number of patients examined, the study supports the belief that patients with alcohol induced cognitive dysfunction have the neuro pathophysiology as those with classical alcoholic dementia

  6. The evaluation of regional cerebral blood flow in the chronic alcohol abuse patients

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. A.; Kim, D. J.; Oh, J. H.; Kim, C. H.; Kim, S. H.; Sohn, H. S.; Chung, S. K. [The Catholic University of Korea, Seoul (Korea, Republic of)

    2005-07-01

    The use of alcohol is increasingly prevalent in our country and remains associated with innumerable social and economic problems. In addition, brain abnormalities have been proved by means of neuroimaging techniques not only in the first days of withdrawal, but also months after the last use of the substance in the patients. The purpose of the present study was to investigate patterns of the regional cerebral blood flow (rCBF) in alcoholic dementia. Six patients (all men; 44-67 years, mean age = 57.5 years) who fulfilled DSM-IV criteria for alcoholic dementia were enrolled in the study. RCBF measurements of resting state using Tc-99m ethyl cysteinate dimmer (ECD) SPECT were performed. The SPECT image was obtained 40 minutes after intravenous injection of 1110 MBq of Tc-99m ECD using a dual-head gamma camera (ECAM plus; Siemens, Erlangen, Germany). The normalized SPECT data from the alcoholic dementia group were compared with those from 12 healthy subjects. Alcoholic dementia patients showed significant decrement of rCBF in the left thalamus, superior frontal gyrus of left frontal lobe, left insula, postcentral gyrus of left parietal lobe, parahippocapal gyrus of left limbic lobe, right caudate, and cingulate gyrus of right limbic lobe than age-matched healthy subjects. Despite the small number of patients examined, the study supports the belief that patients with alcohol induced cognitive dysfunction have the neuro pathophysiology as those with classical alcoholic dementia.

  7. Fluid intelligence allows flexible recruitment of the parieto-frontal network in analogical reasoning.

    Science.gov (United States)

    Preusse, Franziska; van der Meer Elke; Deshpande, Gopikrishna; Krueger, Frank; Wartenburger, Isabell

    2011-01-01

    Fluid intelligence is the ability to think flexibly and to understand abstract relations. People with high fluid intelligence (hi-fluIQ) perform better in analogical reasoning tasks than people with average fluid intelligence (ave-fluIQ). Although previous neuroimaging studies reported involvement of parietal and frontal brain regions in geometric analogical reasoning (which is a prototypical task for fluid intelligence), however, neuroimaging findings on geometric analogical reasoning in hi-fluIQ are sparse. Furthermore, evidence on the relation between brain activation and intelligence while solving cognitive tasks is contradictory. The present study was designed to elucidate the cerebral correlates of geometric analogical reasoning in a sample of hi-fluIQ and ave-fluIQ high school students. We employed a geometric analogical reasoning task with graded levels of task difficulty and confirmed the involvement of the parieto-frontal network in solving this task. In addition to characterizing the brain regions involved in geometric analogical reasoning in hi-fluIQ and ave-fluIQ, we found that blood oxygenation level dependency (BOLD) signal changes were greater for hi-fluIQ than for ave-fluIQ in parietal brain regions. However, ave-fluIQ showed greater BOLD signal changes in the anterior cingulate cortex and medial frontal gyrus than hi-fluIQ. Thus, we showed that a similar network of brain regions is involved in geometric analogical reasoning in both groups. Interestingly, the relation between brain activation and intelligence is not mono-directional, but rather, it is specific for each brain region. The negative brain activation-intelligence relationship in frontal brain regions in hi-fluIQ goes along with a better behavioral performance and reflects a lower demand for executive monitoring compared to ave-fluIQ individuals. In conclusion, our data indicate that flexibly modulating the extent of regional cerebral activity is characteristic for fluid intelligence.

  8. Fluid intelligence allows flexible recruitment of the parieto-frontal network in analogical reasoning.

    Directory of Open Access Journals (Sweden)

    Franziska ePreusse

    2011-03-01

    Full Text Available Fluid intelligence is the ability to think flexibly and to understand abstract relations. People with high fluid intelligence (hi-fluIQ perform better in analogical reasoning tasks than people with average fluid intelligence (ave-fluIQ. Although previous neuroimaging studies reported involvement of parietal and frontal brain regions in geometric analogical reasoning (which is a prototypical task for fluid intelligence, however, neuroimaging findings on geometric analogical reasoning in hi-fluIQ are sparse. Furthermore, evidence on the relation between brain activation and intelligence while solving cognitive tasks is contradictory. The present study was designed to elucidate the cerebral correlates of geometric analogical reasoning in a sample of hi-fluIQ and ave-fluIQ high school students. We employed a geometric analogical reasoning task with graded levels of task difficulty and confirmed the involvement of the parieto-frontal network in solving this task. In addition to characterizing the brain regions involved in geometric analogical reasoning in hi-fluIQ and ave-fluIQ, we found that blood oxygenation level dependency (BOLD signal changes were greater for hi-fluIQ than for ave-fluIQ in parietal brain regions. However, ave-fluIQ showed greater BOLD signal changes in the anterior cingulate cortex and medial frontal gyrus than hi-fluIQ. Thus, we showed that a similar network of brain regions is involved in geometric analogical reasoning in both groups. Interestingly, the relation between brain activation and intelligence is not mono-directional, but rather, it is specific for each brain region. The negative brain activation–intelligence relationship in frontal brain regions in hi-fluIQ goes along with a better behavioral performance and reflects a lower demand for executive monitoring compared to ave-fluIQ individuals. In conclusion, our data indicate that flexibly modulating the extent of regional cerebral activity is characteristic for

  9. Tratamiento y complicaciones de las fracturas de seno frontal Frontal sinus fracture treatment and complications

    Directory of Open Access Journals (Sweden)

    S. Heredero Jung

    2007-06-01

    Full Text Available Introducción. Las fracturas de seno frontal se producen como resultado de impactos de alta energía. Un tratamiento inadecuado puede conducir a complicaciones serias incluso muchos años después del traumatismo. Objetivos. Evaluar los datos epidemiológicos y revisar las complicaciones asociadas. Estandarizar el protocolo de tratamiento. Materiales y métodos. Se revisaron 95 pacientes diagnosticados de fracturas de seno frontal pertenecientes al servicio de Cirugía Oral y Maxilofacial del Hospital Universitario 12 de Octubre de Madrid, entre enero de 1990 y diciembre de 2004. Resultados. La edad media de los pacientes revisados es de 34 años. La mayoría son hombres (78% y la causa más frecuente del traumatismo, los accidentes de tráfico. El patrón de fractura más común es el que afecta únicamente a la pared anterior del seno frontal. Las complicaciones descritas son: deformidad estética frontal, sinusitis frontal, mucocele frontal, celulitis fronto-orbitaria, intolerancia al material de osteosíntesis, complicaciones infecciosas del SNC y persistencia de fístula de líquido cefalorraquídeo. Conclusiones. El objetivo ha de estar encaminado a prevenir las complicaciones asociadas a los pacientes con fracturas de seno frontal. Hay que individualizar el protocolo de tratamiento en cada caso. Es recomendable un seguimiento a largo plazo para identificar precozmente las posibles complicaciones.Introduction. Frontal sinus fractures are caused by high velocity impacts. Inappropriate treatment can lead to serious complications, even many years after the trauma. Objectives. To evaluate epidemiological data and associated complications. To standardize the treatment protocol. Materials and methods. the clinical records of 95 patients with frontal sinus fractures treated between January 1990 and December 2004 at the Oral and Maxillofacial Surgery Department, "12 de Octubre" Hospital (Madrid, Spain, were reviewed. Results. The average age of

  10. The variability and forcing of currents within a frontal region off the northeast coast of England

    Science.gov (United States)

    Gmitrowicz, E. M.; Brown, J.

    1993-08-01

    During the summer of 1988 a collaborative experiment between the Ministry of Agriculture, Fisheries and Food (MAFF), the Proudman Oceanographic Laboratory (POL) and University College North Wales (UCNW) was undertaken to study the dynamics of a near-shore frontal region off the northeast coast of England. The experiment is one of the most intensive studies of the current structure of a shelf sea front undertaken. Currents were measured using an ocean surface current RADAR (OSCR), ship-borne ADCP, Lagrangian drifters and moored current meters. The current meter moorings held conventional meters at mid-depth and near the bed and S4 electromagnetic current meters near the surface. The mean, low frequency (Continental Shelf Research, 1, 191-207) with some deviations due to nearshore effects.

  11. Regional cerebral blood flow in vascular depression assessed by 123I-IMP SPECT

    International Nuclear Information System (INIS)

    Kimura, Mahito; Shimoda, Kengo; Mizumura, Sunao; Tateno, Amane; Fujito, Tatsuma; Mori, Takao; Endo, Shunkichi

    2003-01-01

    As the prevalence of white matter hyperintensities detected on T2 weighted MRI scans in patients with late-onset depression is higher than that in nondepressed patients, the concept of ''vascular depression'' (VDep) was introduced in 1997. However, the pathology of vascular depression has not been clarified. This study examined the differences in functional imaging between vascular and non-vascular depression (non-VDep). We utilized 123 I-IMP single photon emission computed tomography (SPECT) to compare regional cerebral blood flows (rCBF) between 9 patients with VDep (Krishnan criteria) and 11 age- and sex-matched patients with non-VDep in both depressed and remitted states. In both VDep and non-VDep patients, mean rCBF increased significantly as depression improved, partially aided by changes in left anterior temporal blood flow. In addition, compared to non-VDep patients, the left anterior frontal rCBF for VDep patients was significantly lower in both depressed and remitted states. Left anterior temporal rCBF therefore appears to represent a state marker that increases as symptoms associated with late-onset depression improve, regardless of vascular changes. Furthermore, in VDep patients, left anterior frontal rCBF was low in both states compared to non-VDep patients, and might not only represent a trait marker, but also correlated with the duration of disease and likelihood of recurrence and relapse. (author)

  12. Cranialization of the frontal sinus for secondary mucocele prevention following open surgery for benign frontal lesions.

    Directory of Open Access Journals (Sweden)

    Gilad Horowitz

    Full Text Available OBJECTIVE: To compare frontal sinus cranialization to obliteration for future prevention of secondary mucocele formation following open surgery for benign lesions of the frontal sinus. STUDY DESIGN: Retrospective case series. SETTING: Tertiary academic medical center. PATIENTS: Sixty-nine patients operated for benign frontal sinus pathology between 1994 and 2011. INTERVENTIONS: Open excision of benign frontal sinus pathology followed by either frontal obliteration (n = 41, 59% or frontal cranialization (n = 28, 41%. MAIN OUTCOME MEASURES: The prevalence of post-surgical complications and secondary mucocele formation were compiled. RESULTS: Pathologies included osteoma (n = 34, 49%, mucocele (n = 27, 39%, fibrous dysplasia (n = 6, 9%, and encephalocele (n = 2, 3%. Complications included skin infections (n = 6, postoperative cutaneous fistula (n = 1, telecanthus (n = 4, diplopia (n = 3, nasal deformity (n = 2 and epiphora (n = 1. None of the patients suffered from postoperative CSF leak, meningitis or pneumocephalus. Six patients, all of whom had previously undergone frontal sinus obliteration, required revision surgery due to secondary mucocele formation. Statistical analysis using non-inferiority test reveal that cranialization of the frontal sinus is non-inferior to obliteration for preventing secondary mucocele formation (P<0.0001. CONCLUSION: Cranialization of the frontal sinus appears to be a good option for prevention of secondary mucocele development after open excision of benign frontal sinus lesions.

  13. Frontal-subcortical volumetric deficits in single episode, medication-naïve depressed patients and the effects of 8 weeks fluoxetine treatment: a VBM-DARTEL study.

    Directory of Open Access Journals (Sweden)

    Lingtao Kong

    Full Text Available BACKGROUND: Convergent studies suggest that morphological abnormalities of frontal-subcortical circuits which involved with emotional and cognitive processing may contribute to the pathophysiology of major depressive disorder (MDD. Antidepressant treatment which has been reported to reverse the functional abnormalities of frontal-subcortical circuits in MDD may have treating effects to related brain morphological abnormalities. In this study, we used voxel-based morphometry method to investigate whole brain structural abnormalities in single episode, medication-naïve MDD patients. Furthermore, we investigated the effects of an 8 weeks pharmacotherapy with fluoxetine. METHODS: 28 single episode, medication-naïve MDD participants and 28 healthy controls (HC acquired the baseline high-resolution structural magnetic resonance imaging (sMRI scan. 24 MDD participants acquired a follow-up sMRI scan after 8 weeks antidepressant treatment. Gray matter volumetric (GMV difference between groups was examined. RESULTS: Medication-naïve MDD had significantly decreased GMV in the right dorsolateral prefrontal cortex and left middle frontal gyrus as well as increased GMV in the left thalamus and right insula compared to HC (P<0.05, corrected. Moreover, treated MDD had significantly increased GMV in the left middle frontal gyrus and right orbitofrontal cortex compared to HC (P<0.05, corrected. No difference on GMV was detected between medication-naïve MDD group and treated MDD group. CONCLUSIONS: This study of single episode, medication-naïve MDD subjects demonstrated structural abnormalities of frontal-subcortical circuitsin the early stage of MDD and the effects of 8 weeks successful antidepressant treatment, suggesting these abnormalities may play an important role in the neuropathophysiology of MDD at its onset.

  14. Frontal white matter anisotropy and antidepressant remission in late-life depression.

    Directory of Open Access Journals (Sweden)

    Warren D Taylor

    2008-09-01

    Full Text Available Neuroanatomic features associated with antidepressant treatment outcomes in older depressed individuals are not well established. This study used diffusion tensor imaging to examine frontal white matter structure in depressed subjects undergoing a 12-week trial of sertraline. We hypothesized that remission would be associated with higher frontal anisotropy measures, and failure to remit with lower anisotropy.74 subjects with Major Depressive Disorder and age 60 years or older were enrolled in a twelve-week open-label trial of sertraline and completed clinical assessments and 1.5T magnetic resonance brain imaging. The apparent diffusion coefficient (ADC and fractional anisotropy (FA were measured in regions of interest placed in the white matter of the dorsolateral prefrontal cortex, anterior cingulate cortex, and corpus callosum. Differences in ADC and FA values between subjects who did and did not remit to treatment over the study period were assessed using generalized estimating equations, controlling for age, sex, medical comorbidity and baseline depression severity.Subjects who did not remit to sertraline exhibited higher FA values in the superior frontal gyri and anterior cingulate cortices bilaterally. There were no statistically significant associations between ADC measures and remission.Failure to remit to sertraline is associated with higher frontal FA values. Functional imaging studies demonstrate that depression is characterized by functional disconnection between frontal and limbic regions. Those individuals where this disconnection is related to structural changes as detected by DTI may be more likely to respond to antidepressants.ClinicalTrials.gov NCT00339066.

  15. Bilateral frontal activation associated with cutaneous stimulation of elixir field: an FMRI study.

    Science.gov (United States)

    Chan, Agnes S; Cheung, Mei-Chun; Chan, Yu Leung; Yeung, David K W; Lam, Wan

    2006-01-01

    Elixir Field, or Dan Tian, is the area where energy is stored and nourished in the body according to traditional Chinese medicine (TCM). Although Dan Tian stimulation is a major concept in Qigong healing and has been practiced for thousands of years, and while there are some recent empirical evidence of its effect, its neurophysiological basis remains unknown. We used functional magnetic resonance imaging (fMRI) to study brain activations associated with external stimulation of the lower Elixir Field in ten normal subjects, and compared the results with the stimulation of their right hands. While right-hand stimulation resulted in left postcentral gyrus activation, stimulation of the lower Elixir Field resulted in bilateral activations including the medial and superior frontal gyrus, middle and superior temporal gyrus, thalamus, insula, and cingulate gyrus. These findings suggest that stimulation of the Elixir Field is not only associated with activation of the sensory motor cortex but also with cortical regions that mediate planning, attention, and memory.

  16. Clinical use of regional Tc-99m-HMPAO uptake in dementia of the Alzheimer type (DAT)

    International Nuclear Information System (INIS)

    Gebhardt, U.; Schmauss, F.; Wagner-Manslau, C.; Buttermann, G.; Zimmer, R.

    1993-01-01

    In 46 patients with dementia of the Alzheimer type (DAT) regional cerebral blood flow (rCBF) was compared with cognitive performance (MMSE, CAMCOG). The cortico-cerebellar ratio (CCR), determined by 99m Tc-HMPAO-SPECT was used as a rCBF-equivalent. In the mild demented group we found a bilateral CCR-reduction parietal posterior, in moderate DAT bilateral temporoparietal and leftsided frontolateral defects were seen. Severe DAT showed an additional perfusion decrease mid frontal. With increasing severity of DAT an asymmetric perfusion occurred in 17/46 patients with accentuated CCR-reduction on the left side (temporal>parietal). High correlations between CCR and MMSE (r≥0.70) existed frontolateral, temporal and parietal in the left hemisphere. Significant associations between CCR and CAMCOG were obtained for language in the left temporal posterior region (r=0.64), for memory task left temporal anterior (r=0.59) and for praxis left parietal posterior (r=0.55). In detecting rCBF abnormalities the sensitivity for all 46 DAT patients was 91% and 70% in the mild cases. (orig.) [de

  17. Motivated malleability: Frontal cortical asymmetry predicts the susceptibility to social influence.

    Science.gov (United States)

    Schnuerch, Robert; Pfattheicher, Stefan

    2017-07-16

    Humans, just as many other animals, regulate their behavior in terms of approaching stimuli associated with pleasure and avoiding stimuli linked to harm. A person's current and chronic motivational direction - that is, approach versus avoidance orientation - is reliably reflected in the asymmetry of frontal cortical low-frequency oscillations. Using resting electroencephalography (EEG), we show that frontal asymmetry is predictive of the tendency to yield to social influence: Stronger right- than left-side frontolateral activation during a resting-state session prior to the experiment was robustly associated with a stronger inclination to adopt a peer group's judgments during perceptual decision-making (Study 1). We posit that this reflects the role of a person's chronic avoidance orientation in socially adjusted behavior. This claim was strongly supported by additional survey investigations (Studies 2a, 2b, 2c), all of which consistently revealed that trait avoidance was positively linked to the susceptibility to social influence. The present contribution thus stresses the relevance of chronic avoidance orientation in social conformity, refining (yet not contradicting) the longstanding view that socially influenced behavior is motivated by approach-related goals. Moreover, our findings valuably underscore and extend our knowledge on the association between frontal cortical asymmetry and a variety of psychological variables.

  18. The effects of gender and age on forensic personal identification from frontal sinus in a Turkish population.

    Science.gov (United States)

    Tatlisumak, Ertugrul; Asirdizer, Mahmut; Bora, Aydin; Hekimoglu, Yavuz; Etli, Yasin; Gumus, Orhan; Keskin, Siddik

    2017-01-01

    To define the dimensions of the frontal sinus in groups standardized for age and gender and to discuss the reasons and the effects of the variations. Methods: Frontal sinus measurements were obtained from paranasal CTscans of 180 males and 180 females in the Radiology Department of Dursun Odabas Medical Center of Yuzuncu Yil University, Van, which is located in Eastern Turkey, between February and March 2016. The width and height of sinuses were measured on a coronal plane, and the anteroposterior length was measured on an axial plane. Volumes were calculated using the Hospital Information Management Systems and Image Archiving and Management Systemprogram. The Statistical Package of the Social Science version 13 was used for statistical analyses.  Results: We determined differences in the frontal sinus measurements of different age groups in a Turkish adult population. Frontal sinus dimensions were usually higher in females and lower in males after 40-49 years of age than their younger counterparts, but the measurements were lower in females and higher in males in 70≤ years of age group than 60-69 years of age. Left frontal sinus was dominant in young age groups but right frontal sinus was dominant in groups 40-49 years of age or older.  Conclusion: We observed crossing of the measurements between the different age groups, which we could not find clear explanations. The results of such studies may affect forensic identification from frontal sinus measurements.

  19. Three- and four-dimensional mapping of speech and language in patients with epilepsy

    Science.gov (United States)

    Nakai, Yasuo; Jeong, Jeong-won; Brown, Erik C.; Rothermel, Robert; Kojima, Katsuaki; Kambara, Toshimune; Shah, Aashit; Mittal, Sandeep; Sood, Sandeep

    2017-01-01

    We have provided 3-D and 4D mapping of speech and language function based upon the results of direct cortical stimulation and event-related modulation of electrocorticography signals. Patients estimated to have right-hemispheric language dominance were excluded. Thus, 100 patients who underwent two-stage epilepsy surgery with chronic electrocorticography recording were studied. An older group consisted of 84 patients at least 10 years of age (7367 artefact-free non-epileptic electrodes), whereas a younger group included 16 children younger than age 10 (1438 electrodes). The probability of symptoms transiently induced by electrical stimulation was delineated on a 3D average surface image. The electrocorticography amplitude changes of high-gamma (70–110 Hz) and beta (15–30 Hz) activities during an auditory-naming task were animated on the average surface image in a 4D manner. Thereby, high-gamma augmentation and beta attenuation were treated as summary measures of cortical activation. Stimulation data indicated the causal relationship between (i) superior-temporal gyrus of either hemisphere and auditory hallucination; (ii) left superior-/middle-temporal gyri and receptive aphasia; (iii) widespread temporal/frontal lobe regions of the left hemisphere and expressive aphasia; and (iv) bilateral precentral/left posterior superior-frontal regions and speech arrest. On electrocorticography analysis, high-gamma augmentation involved the bilateral superior-temporal and precentral gyri immediately following question onset; at the same time, high-gamma activity was attenuated in the left orbitofrontal gyrus. High-gamma activity was augmented in the left temporal/frontal lobe regions, as well as left inferior-parietal and cingulate regions, maximally around question offset, with high-gamma augmentation in the left pars orbitalis inferior-frontal, middle-frontal, and inferior-parietal regions preceded by high-gamma attenuation in the contralateral homotopic regions

  20. Posterior paralimbic and frontal metabolite impairments in asymptomatic hypertension with different treatment outcomes

    International Nuclear Information System (INIS)

    Garcia Santos, J.M.; Fuentes, L.J.; Vidal, J.B.

    2010-01-01

    Hypertension is associated with cognitive decline in elderly persons. We studied asymptomatic hypertensive subjects using brain magnetic resonance (MR) spectroscopy to evaluate metabolite impairments before the appearance of symptoms in patients with different treatment outcomes. In all, 14 healthy controls and 37 asymptomatic hypertensive patients (17 controlled and 20 resistant) underwent brain structural MR and MR spectroscopy of the posterior paralimbic (PPL) area and left frontal white matter. Ischemic burden (IB), global cortical atrophy and microbleeds were analyzed with visual scales. Metabolite ratios involving N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho) and myoinositol (ml) were computed. Ultrasound measurements, including intima-media thickness, plaques and hemodynamic ratios, were obtained. Intergroup differences in IB, atrophy and metabolite ratios, and the atrophy and IB relationship were assessed with parametric and nonparametric statistical tests. In addition, the impacts of demographic, analytic and clinical factors, ischemia and atrophy, and ultrasound measurements on metabolite ratios were assessed. The significance level was set at P≤0.05. Higher atrophy scores presented with higher total or frontal IB (P<0.05). However, there was no intergroup difference in atrophy and IB. PPL ml/Cr was increased in resistant hypertension (P<0.021), whereas frontal NAA/Cr (P<0.007) showed opposite trends between controlled (increased ratios) and resistant (decreased ratios) hypertension. Unlike PPL ml/Cr, frontal NAA/Cr showed significant correlations with the lipid profile and ultrasound measurements. PPL ml/Cr increases in resistant hypertension, and frontal NAA/Cr diverges between controlled and resistant hypertension before physical and neuropsychological symptoms appear. (author)

  1. Reading front to back: MEG evidence for early feedback effects during word recognition.

    Science.gov (United States)

    Woodhead, Z V J; Barnes, G R; Penny, W; Moran, R; Teki, S; Price, C J; Leff, A P

    2014-03-01

    Magnetoencephalography studies in humans have shown word-selective activity in the left inferior frontal gyrus (IFG) approximately 130 ms after word presentation ( Pammer et al. 2004; Cornelissen et al. 2009; Wheat et al. 2010). The role of this early frontal response is currently not known. We tested the hypothesis that the IFG provides top-down constraints on word recognition using dynamic causal modeling of magnetoencephalography data collected, while subjects viewed written words and false font stimuli. Subject-specific dipoles in left and right occipital, ventral occipitotemporal and frontal cortices were identified using Variational Bayesian Equivalent Current Dipole source reconstruction. A connectivity analysis tested how words and false font stimuli differentially modulated activity between these regions within the first 300 ms after stimulus presentation. We found that left inferior frontal activity showed stronger sensitivity to words than false font and a stronger feedback connection onto the left ventral occipitotemporal cortex (vOT) in the first 200 ms. Subsequently, the effect of words relative to false font was observed on feedforward connections from left occipital to ventral occipitotemporal and frontal regions. These findings demonstrate that left inferior frontal activity modulates vOT in the early stages of word processing and provides a mechanistic account of top-down effects during word recognition.

  2. Alterations in regional homogeneity of resting-state brain activity in internet gaming addicts

    Directory of Open Access Journals (Sweden)

    Dong Guangheng

    2012-08-01

    Full Text Available Abstract Backgrounds Internet gaming addiction (IGA, as a subtype of internet addiction disorder, is rapidly becoming a prevalent mental health concern around the world. The neurobiological underpinnings of IGA should be studied to unravel the potential heterogeneity of IGA. This study investigated the brain functions in IGA patients with resting-state fMRI. Methods Fifteen IGA subjects and fourteen healthy controls participated in this study. Regional homogeneity (ReHo measures were used to detect the abnormal functional integrations. Results Comparing to the healthy controls, IGA subjects show enhanced ReHo in brainstem, inferior parietal lobule, left posterior cerebellum, and left middle frontal gyrus. All of these regions are thought related with sensory-motor coordination. In addition, IGA subjects show decreased ReHo in temporal, occipital and parietal brain regions. These regions are thought responsible for visual and auditory functions. Conclusions Our results suggest that long-time online game playing enhanced the brain synchronization in sensory-motor coordination related brain regions and decreased the excitability in visual and auditory related brain regions.

  3. Interrelations between motivational stance, cortical excitability, and the frontal electroencephalogram asymmetry of emotion: A Transcranial magnetic stimulation study

    NARCIS (Netherlands)

    Schutter, D.J.L.G.; Weijer, A.D. de; Meuwese, J.D.I.; Morgan, B.E.; Honk, E.J. van

    2008-01-01

    everal electrophysiological studies have provided evidence for the frontal asymmetry of emotion. In this model the motivation to approach is lateralized to the left, whereas the motivation to avoidance is lateralized to the right hemisphere. The aim of the present experiment was to seek evidence for

  4. Influence of trait behavioral inhibition and behavioral approach motivation systems on the LPP and frontal asymmetry to anger pictures.

    Science.gov (United States)

    Gable, Philip A; Poole, Bryan D

    2014-02-01

    Behavioral approach and avoidance are fundamental to the experience of emotion and motivation, but the motivational system associated with anger is not well established. Some theories posit that approach motivational processes underlie anger, whereas others posit that avoidance motivational processes underlie anger. The current experiment sought to address whether traits related to behavioral approach or avoidance influence responses to anger stimuli using multiple measures: ERP, electroencephalographic (EEG) α-asymmetry and self-report. After completing the behavioral inhibition system/behavioral approach system (BIS/BAS) scales, participants viewed anger pictures and neutral pictures. BAS predicted larger late positive potentials (LPPs) to anger pictures, but not to neutral pictures. In addition, BAS predicted greater left-frontal asymmetry to anger pictures. Moreover, larger LPPs to anger pictures related to greater left-frontal EEG asymmetry during anger pictures. These results suggest that trait approach motivation relates to neurophysiological responses of anger.

  5. Cine MR imaging assessment of regional left ventricular systolic wall thickening in patients with remote myocardial infarction

    International Nuclear Information System (INIS)

    Pfugfelder, P.; White, R.D.; Sechtem, U.; Gould, R.G.; Higgins, C.B.

    1986-01-01

    Cine MR imaging, a new rapid imaging technique, was used to acquire transverse images of the heart at a rate of 16-30 frames per cardiac cycle. Left ventricular wall thickness was measured at end diastole and end systole in six regions in the midventricular section of 13 healthy subjects and seven patients with previously documented myocardial infarction. Mean percent systolic wall thickening (%SWT) was 51% +- 26% in healthy subjects. In patients, %SWT was -8% +- 22% in the infarct zone and 42% +- 22% in the normal myocardium. In addition to the qualitative information derived from the cinematic display, determination of regional %SWT by cine-MR imaging may be useful for quantifying regional left ventricular dysfunction

  6. Increased frontal and paralimbic activation following ayahuasca, the pan-Amazonian inebriant.

    Science.gov (United States)

    Riba, Jordi; Romero, Sergio; Grasa, Eva; Mena, Esther; Carrió, Ignasi; Barbanoj, Manel J

    2006-05-01

    Ayahuasca is a South American psychoactive plant tea which contains the serotonergic psychedelic N,N-dimethyltryptamine (DMT) and monoamine-oxidase inhibitors that render DMT orally active. Previous investigations with ayahuasca have highlighted a psychotropic effect profile characterized by enhanced introspective attention, with individuals reporting altered somatic perceptions and intense emotional modifications, frequently accompanied by visual imagery. Despite recent advances in the study of ayahuasca pharmacology, the neural correlates of acute ayahuasca intoxication remain largely unknown. To investigate the effects of ayahuasca administration on regional cerebral blood flow. Fifteen male volunteers with prior experience in the use of psychedelics received a single oral dose of encapsulated freeze-dried ayahuasca equivalent to 1.0 mg DMT/kg body weight and a placebo in a randomized double-blind clinical trial. Regional cerebral blood flow was measured 100-110 min after drug administration by means of single photon emission tomography (SPECT). Ayahuasca administration led to significant activation of frontal and paralimbic brain regions. Increased blood perfusion was observed bilaterally in the anterior insula, with greater intensity in the right hemisphere, and in the anterior cingulate/frontomedial cortex of the right hemisphere, areas previously implicated in somatic awareness, subjective feeling states, and emotional arousal. Additional increases were observed in the left amygdala/parahippocampal gyrus, a structure also involved in emotional arousal. The present results suggest that ayahuasca interacts with neural systems that are central to interoception and emotional processing and point to a modulatory role of serotonergic neurotransmission in these processes.

  7. Focal frontal epileptiform discharges in a patient with eyelid myoclonia and absence seizures

    Directory of Open Access Journals (Sweden)

    Satoru Takahashi

    2015-01-01

    Full Text Available Eyelid myoclonia with absences is classified as a unique type of generalized seizure. Its pathogenesis is proposed to involve the functional abnormalities in cortical–subcortical networks. Here, we describe the case of a 7-year-old boy who had eyelid myoclonia with absences, along with focal motor seizures. Video-EEG monitoring demonstrated eyelid myoclonia associated with 4- to 5-Hz generalized polyspike–waves preceded by focal frontal discharges. Interictal EEG showed focal epileptiform discharges over the frontal regions. Our case suggests an important role of the frontal lobe in the generation of eyelid myoclonia with absences.

  8. Functional connectivity density mapping of depressive symptoms and loneliness in non-demented elderly male

    Directory of Open Access Journals (Sweden)

    Chen-Chia eLan

    2016-01-01

    Full Text Available Background: Depression and loneliness are prevalent and highly correlated phenomena among the elderly and influence both physical and mental health. Brain functional connectivity changes associated with depressive symptoms and loneliness are not fully understood.Methods: A cross-sectional functional MRI study was conducted among 85 non-demented male elders. Geriatric depression scale-short form and loneliness scale were used to evaluate the severity of depressive symptoms and loneliness, respectively. Whole brain voxel-wise resting-state functional connectivity density (FCD mapping was performed to delineate short-range FCD (SFCD and long-range FCD (LFCD. Regional correlations between depressive symptoms or loneliness and SFCD or LFCD were examined using general linear model, with age incorporated as a covariate and depressive symptoms and loneliness as predictors.Results: Positive correlations between depressive symptoms and LFCD were observed in left rectal gyrus, left superior frontal gyrus, right supraorbital gyrus, and left inferior temporal gyrus. Positive correlations between depressive symptoms and SFCD were observed in left middle frontal gyrus, left superior frontal gyrus, bilateral superior medial frontal gyrus, left inferior temporal gyrus, and left middle occipital region. Positive correlations between SFCD and loneliness were centered over bilateral lingual gyrus.Conclusion: Depressive symptoms are associated with FCD changes over frontal and temporal regions, which may involve the cognitive control, affective regulation, and default mode networks. Loneliness is associated with FCD changes in bilateral lingual gyri that are known to be important in social cognition. Depressive symptoms and loneliness may be associated with different brain regions in non-demented elderly male.

  9. Study on the development of frontal sinuses by morphometric analysis of the skull - doi: 10.4025/actascibiolsci.v35i2.13334

    Directory of Open Access Journals (Sweden)

    Carolina Peixoto Magalhães

    2013-05-01

    Full Text Available The frontal sinuses are cranial areas of clinical, forensic and pathology importance whose development mechanisms are still poorly defined. Nasal airflow and brain development are two of the main theories. Current analysis debates whether they are the real determinants of frontal sinuses growth, which may be proved by the skull’s morphometric analysis. Four groups of measures related to the external cranial architecture, the pyriform aperture, orbital cavities and frontal sinuses were defined. Thirty-three skulls of individuals, mean age 68 years, from the Laboratory of Anatomy of the Academic Centre of Victoria – UFPE – Brazil, were used. Statistical analysis showed total agenesis of the frontal sinus in 18.2% of the skulls. There was significant correlation between the development of the right frontal sinus and the pyriform aperture, and between the left frontal sinus and two cranial measurements (p ≤ 0.05. Significant differences between mean of pyriform aperture areas of the skulls with or without sinuses were also reported (p ≤ 0.01. Results supported the fact that there was a modulation activity by nasal aeration and brain formation in the development of frontal sinuses.

  10. Reduced Inferior and Orbital Frontal Thickness in Adolescent Bulimia Nervosa Persists Over Two-Year Follow-Up.

    Science.gov (United States)

    Cyr, Marilyn; Kopala-Sibley, Daniel C; Lee, Seonjoo; Chen, Chen; Stefan, Mihaela; Fontaine, Martine; Terranova, Kate; Berner, Laura A; Marsh, Rachel

    2017-10-01

    Cross-sectional data suggest functional and anatomical disturbances in inferior and orbital frontal regions in bulimia nervosa (BN). Using longitudinal data, we investigated whether reduced cortical thickness (CT) in these regions arises early and persists over adolescence in BN, independent of symptom remission, and whether CT reductions are markers of BN symptoms. A total of 33 adolescent females with BN symptoms (BN or other specified feeding or eating disorder) and 28 healthy adolescents participated in this study. Anatomical magnetic resonance imaging and clinical data were acquired at 3 time points within 2-year intervals over adolescence, with 31% average attrition between assessments. Using a region-of-interest approach, we assessed group differences in CT at baseline and over time, and tested whether between- and within-subject variations in CT were associated with the frequency of BN symptoms. Reduced CT in the right inferior frontal gyrus persisted over adolescence in BN compared to healthy adolescents, even in those who achieved full or partial remission. Within the BN group, between-subject variations in CT in the inferior and orbital frontal regions were inversely associated with specific BN symptoms, suggesting, on average over time, greater CT reductions in individuals with more frequent BN symptoms. Reduced CT in inferior frontal regions may contribute to illness persistence into adulthood. Reductions in the thickness of the inferior and orbital frontal regions may be markers of specific BN symptoms. Because our sample size precluded correcting for multiple comparisons, these findings should be replicated in a larger sample. Future study of functional changes in associated fronto-striatal circuits could identify potential circuit-based intervention targets. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Frontal lobe damage impairs process and content in semantic memory: evidence from category-specific effects in progressive non-fluent aphasia.

    Science.gov (United States)

    Reilly, Jamie; Rodriguez, Amy D; Peelle, Jonathan E; Grossman, Murray

    2011-06-01

    Portions of left inferior frontal cortex have been linked to semantic memory both in terms of the content of conceptual representation (e.g., motor aspects in an embodied semantics framework) and the cognitive processes used to access these representations (e.g., response selection). Progressive non-fluent aphasia (PNFA) is a neurodegenerative condition characterized by progressive atrophy of left inferior frontal cortex. PNFA can, therefore, provide a lesion model for examining the impact of frontal lobe damage on semantic processing and content. In the current study we examined picture naming in a cohort of PNFA patients across a variety of semantic categories. An embodied approach to semantic memory holds that sensorimotor features such as self-initiated action may assume differential importance for the representation of manufactured artifacts (e.g., naming hand tools). Embodiment theories might therefore predict that patients with frontal damage would be differentially impaired on manufactured artifacts relative to natural kinds, and this prediction was borne out. We also examined patterns of naming errors across a wide range of semantic categories and found that naming error distributions were heterogeneous. Although PNFA patients performed worse overall on naming manufactured artifacts, there was no reliable relationship between anomia and manipulability across semantic categories. These results add to a growing body of research arguing against a purely sensorimotor account of semantic memory, suggesting instead a more nuanced balance of process and content in how the brain represents conceptual knowledge. Copyright © 2010 Elsevier Srl. All rights reserved.

  12. Regional homogeneity changes in prelingually deafened patients: a resting-state fMRI study

    Science.gov (United States)

    Li, Wenjing; He, Huiguang; Xian, Junfang; Lv, Bin; Li, Meng; Li, Yong; Liu, Zhaohui; Wang, Zhenchang

    2010-03-01

    Resting-state functional magnetic resonance imaging (fMRI) is a technique that measures the intrinsic function of brain and has some advantages over task-induced fMRI. Regional homogeneity (ReHo) assesses the similarity of the time series of a given voxel with its nearest neighbors on a voxel-by-voxel basis, which reflects the temporal homogeneity of the regional BOLD signal. In the present study, we used the resting state fMRI data to investigate the ReHo changes of the whole brain in the prelingually deafened patients relative to normal controls. 18 deaf patients and 22 healthy subjects were scanned. Kendall's coefficient of concordance (KCC) was calculated to measure the degree of regional coherence of fMRI time courses. We found that regional coherence significantly decreased in the left frontal lobe, bilateral temporal lobes and right thalamus, and increased in the postcentral gyrus, cingulate gyrus, left temporal lobe, left thalamus and cerebellum in deaf patients compared with controls. These results show that the prelingually deafened patients have higher degree of regional coherence in the paleocortex, and lower degree in neocortex. Since neocortex plays an important role in the development of auditory, these evidences may suggest that the deaf persons reorganize the paleocortex to offset the loss of auditory.

  13. Task-dependent modulation of regions in the left temporal cortex during auditory sentence comprehension.

    Science.gov (United States)

    Zhang, Linjun; Yue, Qiuhai; Zhang, Yang; Shu, Hua; Li, Ping

    2015-01-01

    Numerous studies have revealed the essential role of the left lateral temporal cortex in auditory sentence comprehension along with evidence of the functional specialization of the anterior and posterior temporal sub-areas. However, it is unclear whether task demands (e.g., active vs. passive listening) modulate the functional specificity of these sub-areas. In the present functional magnetic resonance imaging (fMRI) study, we addressed this issue by applying both independent component analysis (ICA) and general linear model (GLM) methods. Consistent with previous studies, intelligible sentences elicited greater activity in the left lateral temporal cortex relative to unintelligible sentences. Moreover, responses to intelligibility in the sub-regions were differentially modulated by task demands. While the overall activation patterns of the anterior and posterior superior temporal sulcus and middle temporal gyrus (STS/MTG) were equivalent during both passive and active tasks, a middle portion of the STS/MTG was found to be selectively activated only during the active task under a refined analysis of sub-regional contributions. Our results not only confirm the critical role of the left lateral temporal cortex in auditory sentence comprehension but further demonstrate that task demands modulate functional specialization of the anterior-middle-posterior temporal sub-areas. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Functional dissociation between anterior temporal lobe and inferior frontal gyrus in the processing of dynamic body expressions: Insights from behavioral variant frontotemporal dementia.

    Science.gov (United States)

    Jastorff, Jan; De Winter, Francois-Laurent; Van den Stock, Jan; Vandenberghe, Rik; Giese, Martin A; Vandenbulcke, Mathieu

    2016-12-01

    Several brain regions are involved in the processing of emotional stimuli, however, the contribution of specific regions to emotion perception is still under debate. To investigate this issue, we combined behavioral testing, structural and resting state imaging in patients diagnosed with behavioral variant frontotemporal dementia (bvFTD) and age matched controls, with task-based functional imaging in young, healthy volunteers. As expected, bvFTD patients were impaired in emotion detection as well as emotion categorization tasks, testing dynamic emotional body expressions as stimuli. Interestingly, their performance in the two tasks correlated with gray matter volume in two distinct brain regions, the left anterior temporal lobe for emotion detection and the left inferior frontal gyrus (IFG) for emotion categorization. Confirming this observation, multivoxel pattern analysis in healthy volunteers demonstrated that both ROIs contained information for emotion detection, but that emotion categorization was only possible from the pattern in the IFG. Furthermore, functional connectivity analysis showed reduced connectivity between the two regions in bvFTD patients. Our results illustrate that the mentalizing network and the action observation network perform distinct tasks during emotion processing. In bvFTD, communication between the networks is reduced, indicating one possible cause underlying the behavioral symptoms. Hum Brain Mapp 37:4472-4486, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. DETERMINATION OF CLINICALLY RELEVANT DIFFERENCES IN FRONTAL PLANE HOP TESTS IN WOMEN'S COLLEGIATE BASKETBALL AND SOCCER PLAYERS

    Science.gov (United States)

    Hardesty, Kelly; Hegedus, Eric J.; Ford, Kevin R.; Nguyen, Anh‐Dung

    2017-01-01

    Background ACL injury prevention programs are less successful in female basketball players than in soccer players. Previous authors have identified anthropometric and biomechanical differences between the athletes and different sport‐specific demands, including a higher frequency of frontal plane activities in basketball. Current injury risk screening and preventive training practices do not place a strong emphasis on frontal plane activities. The medial and lateral triple hop for distance tests may be beneficial for use in the basketball population. Hypothesis/Purpose To 1) establish normative values for the medial and lateral triple hop tests in healthy female collegiate athletes, and 2) analyze differences in test scores between female basketball and soccer players. It was hypothesized that due to the frequent frontal plane demands of their sport, basketball players would exhibit greater performance during these frontal plane performance tests. Study Design Cross‐sectional. Methods Thirty‐two NCAA Division‐1 female athletes (20 soccer, 12 basketball) performed three trials each of a medial and lateral triple hop for distance test. Distances were normalized to height and mass in order to account for anthropometric differences. Repeated measures ANOVAs were performed to identify statistically significant main effects of sport (basketball vs. soccer), and side (right vs. left), and sport x side interactions. Results After accounting for anthropometric differences, soccer players exhibited significantly better performance than basketball players in the medial and lateral triple hop tests (p jumped farther on their left (400.3 ± 41.5 cm) than right (387.9 ± 43.4 cm) limbs, but no side differences were identified in the lateral triple hop. No significant side x sport interactions were identified. Conclusions Women's basketball players exhibit decreased performance of frontal plane hop tests when compared to women's soccer players. Additionally

  16. The right posterior inferior frontal gyrus contributes to phonological word decisions in the healthy brain

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Price, Cathy J; Baumgaertner, Annette

    2010-01-01

    There is consensus that the left hemisphere plays a dominant role in language processing, but functional imaging studies have shown that the right as well as the left posterior inferior frontal gyri (pIFG) are activated when healthy right-handed individuals make phonological word decisions. Here we...... used online transcranial magnetic stimulation (TMS) to examine the functional relevance of the right pIFG for auditory and visual phonological decisions. Healthy right-handed individuals made phonological or semantic word judgements on the same set of auditorily and visually presented words while......IFG impaired reaction times and accuracy of phonological but not semantic decisions for visually and auditorily presented words. TMS over left, right or bilateral pIFG disrupted phonological processing to a similar degree. In a follow-up experiment, the intensity threshold for delaying phonological judgements...

  17. 47-year-old man with left leg numbness.

    Science.gov (United States)

    Mahta, Ali; Kim, Ryan Y; Saad, Ali G; Kesari, Santosh

    2013-03-01

    A 47-year-old white male with a history of uveitis, hypercalcemia and nephrolithiasis presented with acute onset partial seizure. On exam he had decreased sensation to light touch on his left lower extremity. A Brain MRI revealed a right frontal mass, which was initially thought to be a metastatic lesion or a primary brain tumor. However, biopsy of the lesion revealed it to be a non-caseating granulomatous lesion consistent with neurosarcoidosis.

  18. Regional Distribution of Cerebral Blood Flow in childhood Measured by '99mTc-HMPAO SPECT: Reference Values of Semiquantitative Indices and Effect of Age

    International Nuclear Information System (INIS)

    Kim, Sang Eun; Lee, Dong Soo; Chung, June Key

    1991-01-01

    Regional cerebral blood flow (rCBF) was evaluated in 12 children ranging in age from 2.7 to 10.0 yr using 99m Tc-HMPAO SPECT. For quantitative analysis, 13 pairs of homologous regions of interest (ROIs) were created on three attenuation-corrected 18,8 mm thick transverse slices matching the cerebral cortical regions, deep gray matter, cerebellar hemisphere, and vascular territories, and the semiquantitative indices including 'right to left ratio [(mean count/voxel of homologous right ROI) /(mean count/voxel of homologous left ROI)] and regional index '(RI) [(mean count/voxel of a ROI)/(mean count/voxel of all ROIs of each hemisphere)] were calculated. Mean values of right to left ratios of homologous regions ranged from 0.984 to 1.028 in children under 5 yr (group 1) and from 0.982 to 1.012 in children between 5 and 10 yr (group 2), and the mean value ±2 S.D. for each region did not exceed 11%. and 12% in group 1 and group 2, respective]y. There were no statistically significant differences between the RIs of the homologous right and left regions. Significant differences of RIs were found both between vascular regions (p<0,0005 for group 1, and p=0,0001 for group 2) and between regions of cerebral cortices (p<0,0005 for group 1, and p<0,005 for group 2) with a relatively high value in the occipital cortex and the lower values in the cerebellum and deep gray matter among the regions of cerebral cortices in both groups. There were no significant differences between the Rls of corresponding regions of group 1 and group 2, except a significantly higher value of right deep gray matter in group 2 than in group 1 (p=0.0301). The RIs of the superior frontal cortex and deep gray matter showed to be positively correlated with age (superior frontal cortex; right: rs=0.5254, p=0.0814, left: rs=0.5919, p=0.0496/deep gray matter; right: rs=0.8246, p=0.0062, left: rs=0.6266, p=0,0377). The results suggest that the rCBF pattern of children approaches that of adults in an occipito

  19. Frontal fibrosing alopecia and lichen planus pigmentosus: diagnosis and therapeutic challenge.

    Science.gov (United States)

    Mulinari-Brenner, Fabiane Andrade; Guilherme, Marina Riedi; Peretti, Murilo Calvo; Werner, Betina

    2017-01-01

    Frontal fibrosing alopecia is a variant of lichen planopilaris with marginal progressive hair loss on the scalp, eyebrows and axillae. We report a case of frontal fibrosing alopecia and lichen planus pigmentosus in a postmenopausal woman, that started with alopecia on the eyebrows and then on the frontoparietal region, with periocular and cervical hyperpigmentation of difficult management. The condition was controlled with systemic corticosteroid therapy and finasteride. Lichen planus pigmentosus is an uncommon variant of lichen planus frequently associated with frontal fibrosing alopecia in darker phototipes. It should be considered in patients affected by scarring alopecia with a pattern of lichen planopilaris and areas of skin hyperpigmentation revealing perifollicular hyperpigmentation refractory to multiple treatments. This case illustrates diagnostic and therapeutic challenge in face of scarring alopecia and perifollicular hyperpigmentation.

  20. Retinopathy after low dose irradiation for an intracranial tumor of the frontal lobe

    International Nuclear Information System (INIS)

    Elsaas, T.; Thorud, E.; Jetne, V.; Conradi, I.S.

    1988-01-01

    A 32-year-old man underwent an operation for an oligodendroglioma of the left frontal lobe. Postoperatively he was irradiated to a target dose of 54 Gy. One year later hedeveloped bilateral retinopathy quite similar to diabetic retinopathy. There were no clinical or biochemical signs of diabetes or hematological disease. The calcultated maximum dose to the retina was 11 Gy. This is to our knowledge the lowest retinal dose of ionizing radiation reported to produce retinopathy. (author)

  1. Frontal sinus revision rate after nasal polyposis surgery including frontal recess clearance and middle turbinectomy: A long-term analysis.

    Science.gov (United States)

    Benkhatar, Hakim; Khettab, Idir; Sultanik, Philippe; Laccourreye, Ollivier; Bonfils, Pierre

    2018-08-01

    To determine the frontal sinus revision rate after nasal polyposis (NP) surgery including frontal recess clearance (FRC) and middle turbinectomy (MT), to search for predictive factors and to analyse surgical management. Longitudinal analysis of 153 patients who consecutively underwent bilateral sphenoethmoidectomy with FRC and MT for NP with a minimum follow-up of 7 years. Decision of revision surgery was made in case of medically refractory chronic frontal sinusitis or frontal mucocele. Univariate and multivariate analysis incorporating clinical and radiological variables were performed. The frontal sinus revision rate was 6.5% (10/153). The mean time between the initial procedure and revision surgery was 3 years, 10 months. Osteitis around the frontal sinus outflow tract (FSOT) was associated with a higher risk of frontal sinus revision surgery (p=0.01). Asthma and aspirin intolerance did not increase the risk, as well as frontal sinus ostium diameter or residual frontoethmoid cells. Among revised patients, 60% required multiple procedures and 70% required frontal sinus ostium enlargement. Our long-term study reports that NP surgery including FRC and MT is associated with a low frontal sinus revision rate (6.5%). Patients developing osteitis around the FSOT have a higher risk of frontal sinus revision surgery. As mucosal damage can lead to osteitis, FSOT mucosa should be preserved during initial NP surgery. However, as multiple procedures are common among NP patients requiring frontal sinus revision, frontal sinus ostium enlargement should be considered during first revision in the hope of reducing the need of further revisions. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Preservation of Frontal Sinus Anatomy and Outflow Tract Following Frontal Trauma with Dural Defect

    Directory of Open Access Journals (Sweden)

    James Wei Ming Kwek, MBBS, MRCS

    2015-02-01

    Full Text Available Summary: Our case report describes a young male mechanic who was hit in his face by a spring while repairing a car, resulting in traumatic injury to the frontal sinus, with fractures of both the anterior and the posterior tables with dural defect and cerebrospinal fluid leak. Current guidelines recommend that comminuted and/or displaced fractures of the posterior table of the frontal sinus with dural defects should be either cranialized or obliterated. In this patient, instead of cranializing or obliterating the frontal sinus, we managed to preserve the frontal sinus anatomy and its outflow tract using a combined open bicoronal and nasoendoscopic approach. This avoids the long-term complications associated with cranialization or obliteration including mucocele formation and frontocutaneous fistula.

  3. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.

    Science.gov (United States)

    Cohen, Michael X; Ridderinkhof, K Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz), followed by a later alpha-band (8-12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.

  4. Lower limb and associated injuries in frontal-impact road traffic collisions.

    Science.gov (United States)

    Ammori, Mohannad B; Eid, Hani O; Abu-Zidan, Fikri M

    2016-03-01

    To study the relationship between severity of injury of the lower limb and severity of injury of the head, thoracic, and abdominal regions in frontal-impact road traffic collisions. Consecutive hospitalised trauma patients who were involved in a frontal road traffic collision were prospectively studied over 18 months. Patients with at least one Abbreviated Injury Scale (AIS) ≥3 or AIS 2 injuries within two AIS body regions were included. Patients were divided into two groups depending on the severity of injury to the head, chest or abdomen. Low severity group had an AIS chest or abdominal injuries. Eighty-five patients were studied. The backward likelihood logistic regression model defining independent factors affecting severity of head injuries was highly significant (p =0.01, nagelkerke r square = 0.1) severity of lower limb injuries was the only significant factor (p=0.013) having a negative correlation with head injury (Odds ratio of 0.64 (95% CI: 0.45-0.91). Occupants who sustain a greater severity of injury to the lower limb in a frontal-impact collision are likely to be spared from a greater severity of head injury.

  5. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.

    Directory of Open Access Journals (Sweden)

    Michael X Cohen

    Full Text Available Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz, followed by a later alpha-band (8-12 Hz conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz, alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.

  6. EEG Source Reconstruction Reveals Frontal-Parietal Dynamics of Spatial Conflict Processing

    Science.gov (United States)

    Cohen, Michael X; Ridderinkhof, K. Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30–50 Hz), followed by a later alpha-band (8–12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4–8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions. PMID:23451201

  7. Brain metabolic impairment of OSAS: evidence from MRS

    International Nuclear Information System (INIS)

    Shen Jie; Long Miaomiao; Shen Wen; Qi Ji

    2011-01-01

    Objective: To evaluate the impact of obstructive sleep apnea syndrome (OSAS) on human cerebral metabolism by using magnetic resonance spectroscopy (MRS). Materials and methods: Twenty-one severe OSAS patients, 14 mild-moderate OSAS patients, and 15 healthy control subjects were included. All subjects underwent MRS using the point-resolved echo spin spectroscopy (PRESS). Proton volumes of interest were placed in the bilateral frontal lobes and left temporal -parietal-occipital cortex, and left hippocampus. Results: 1. Compared to the controls, the NAA/Cr ratio was significantly decreased in the left frontal lobe in the severe OSAS group (P=0.004), and in the right frontal lobe in the severe (P=0.002) and mild-moderate (P=0.007) OSAS patients. The NAA/Cr ratio trended to be decreased in the left hippocampus in the OSAS patients compared to controls. 2. A significant increase in the ml/Cr ratio was detected in the right frontal regions in the severe (P=0.008) and mild-moderate (P<0.001) OSAS groups. 3. Clx/Cr ratio values were significantly smaller than controls in the left (P=0.006) and right (P=0.027) frontal regions. Conclusion: Bilateral frontal lobes are the vulnerable location in patients with OSAS. MRS can be used to screen the brain metabolic impairment. (authors)

  8. Age and gender effects on normal regional cerebral blood flow studied using two different voxel-based statistical analyses

    International Nuclear Information System (INIS)

    Pirson, A.S.; George, J.; Krug, B.; Vander Borght, T.; Van Laere, K.; Jamart, J.; D'Asseler, Y.; Minoshima, S.

    2009-01-01

    Fully automated analysis programs have been applied more and more to aid for the reading of regional cerebral blood flow SPECT study. They are increasingly based on the comparison of the patient study with a normal database. In this study, we evaluate the ability of Three-Dimensional Stereotactic Surface Projection (3 D-S.S.P.) to isolate effects of age and gender in a previously studied normal population. The results were also compared with those obtained using Statistical Parametric Mapping (S.P.M.99). Methods Eighty-nine 99m Tc-E.C.D.-SPECT studies performed in carefully screened healthy volunteers (46 females, 43 males; age 20 - 81 years) were analysed using 3 D-S.S.P.. A multivariate analysis based on the general linear model was performed with regions as intra-subject factor, gender as inter-subject factor and age as co-variate. Results Both age and gender had a significant interaction effect with regional tracer uptake. An age-related decline (p < 0.001) was found in the anterior cingulate gyrus, left frontal association cortex and left insula. Bilateral occipital association and left primary visual cortical uptake showed a significant relative increase with age (p < 0.001). Concerning the gender effect, women showed higher uptake (p < 0.01) in the parietal and right sensorimotor cortices. An age by gender interaction (p < 0.01) was only found in the left medial frontal cortex. The results were consistent with those obtained with S.P.M.99. Conclusion 3 D-S.S.P. analysis of normal r.C.B.F. variability is consistent with the literature and other automated voxel-based techniques, which highlight the effects of both age and gender. (authors)

  9. Consideration of the method of image diagnosis with respect to frontal lobe atrophy

    Science.gov (United States)

    Sato, K.; Sugawara, K.; Narita, Y.; Namura, I.

    1996-12-01

    Proposes a segmentation method for a quantitative image diagnosis as a means of realizing an objective diagnosis of the frontal lobe atrophy. From the data obtained on the grade of membership, the fractal dimensions of the cerebral tissue [cerebral spinal fluid (CSF), gray matter, and white matter] and the contours are estimated. The mutual relationship between the degree of atrophy and the fractal dimension has been analyzed based on the estimated fractal dimensions. Using a sample of 42 male and female cases, ranging In age from 50's to 70's, it has been concluded that the frontal lobe atrophy can be quantified by regarding it as an expansion of CSF region on the magnetic resonance imaging (MRI) of the brain. Furthermore, when the process of frontal lobe atrophy is separated into early and advanced stages, the volumetric change of CSF and white matter in frontal lobe displays meaningful differences between the two stages, demonstrating that the fractal dimension of CSF rises with the progress of atrophy. Moreover, an interpolation method for three-dimensional (3-D) shape reconstruction of the region of diagnostic interest is proposed and 3-D shape visualization, with respect to the degree and form of atrophy, is performed on the basis of the estimated fractal dimension of the segmented cerebral tissue.

  10. Right Inferior Frontal Gyrus Activation as a Neural Marker of Successful Lying

    Directory of Open Access Journals (Sweden)

    Oshin eVartanian

    2013-10-01

    Full Text Available There is evidence to suggest that successful lying necessitates cognitive effort. We tested this hypothesis by instructing participants to lie or tell the truth under conditions of high and low working memory (WM load. The task required participants to register a response on 80 trials of identical structure within a 2 (WM Load: high, low × 2 (Instruction: truth or lie repeated-measures design. Participants were less accurate and responded more slowly when WM load was high, and also when they lied. High WM load activated the fronto-parietal WM network including dorsolateral prefrontal cortex (PFC, middle frontal gyrus, precuneus, and intraparietal cortex. Lying activated areas previously shown to underlie deception, including middle and superior frontal gyrus and precuneus. Critically, successful lying in the high vs. low WM load condition was associated with longer response latency, and it activated the right inferior frontal gyrus—a key brain region regulating inhibition. The same pattern of activation in the inferior frontal gyrus was absent when participants told the truth. These findings demonstrate that lying under high cognitive load places a burden on inhibition, and that the right inferior frontal gyrus may provide a neural marker for successful lying.

  11. Right inferior frontal gyrus activation as a neural marker of successful lying.

    Science.gov (United States)

    Vartanian, Oshin; Kwantes, Peter J; Mandel, David R; Bouak, Fethi; Nakashima, Ann; Smith, Ingrid; Lam, Quan

    2013-01-01

    There is evidence to suggest that successful lying necessitates cognitive effort. We tested this hypothesis by instructing participants to lie or tell the truth under conditions of high and low working memory (WM) load. The task required participants to register a response on 80 trials of identical structure within a 2 (WM Load: high, low) × 2 (Instruction: truth or lie) repeated-measures design. Participants were less accurate and responded more slowly when WM load was high, and also when they lied. High WM load activated the fronto-parietal WM network including dorsolateral prefrontal cortex (PFC), middle frontal gyrus, precuneus, and intraparietal cortex. Lying activated areas previously shown to underlie deception, including middle and superior frontal gyrus and precuneus. Critically, successful lying in the high vs. low WM load condition was associated with longer response latency, and it activated the right inferior frontal gyrus-a key brain region regulating inhibition. The same pattern of activation in the inferior frontal gyrus was absent when participants told the truth. These findings demonstrate that lying under high cognitive load places a burden on inhibition, and that the right inferior frontal gyrus may provide a neural marker for successful lying.

  12. Abnormal functional connectivity of the medial cortex in euthymic bipolar II disorder.

    Science.gov (United States)

    Marchand, William R; Lee, James N; Johnson, Susanna; Gale, Phillip; Thatcher, John

    2014-06-03

    This project utilized functional MRI (fMRI) and a motor activation paradigm to investigate neural circuitry in euthymic bipolar II disorder. We hypothesized that circuitry involving the cortical midline structures (CMS) would demonstrate abnormal functional connectivity. Nineteen subjects with recurrent bipolar disorder and 18 controls were studied using fMRI and a motor activation paradigm. We used functional connectivity analyses to identify circuits with aberrant connectivity. We found increased functional connectivity among bipolar subjects compared to healthy controls in two CMS circuits. One circuit included the medial aspect of the left superior frontal gyrus and the dorsolateral region of the left superior frontal gyrus. The other included the medial aspect of the right superior frontal gyrus, the dorsolateral region of the left superior frontal gyrus and the right medial frontal gyrus and surrounding region. Our results indicate that CMS circuit dysfunction persists in the euthymic state and thus may represent trait pathology. Future studies should address whether these circuits contribute to relapse of illness. Our results also suggest the possibility that aberrations of superior frontal circuitry may impact default mode network and cognitive processes. Published by Elsevier Inc.

  13. Frontal cortex gray matter volume alterations in pathological gambling occur independently from substance use disorder.

    Science.gov (United States)

    Zois, Evangelos; Kiefer, Falk; Lemenager, Tagrid; Vollstädt-Klein, Sabine; Mann, Karl; Fauth-Bühler, Mira

    2017-05-01

    Neuroimaging in pathological gambling (PG) allows studying brain structure independent of pharmacological/neurotoxic effects occurring in substance addiction. Because of high comorbidity of PG with substance use disorder (SUD), first results on structural deficits in PG are controversial. The current investigation is the first to examine gray matter (GM) volume alterations in PG controlling for the impact of SUD by comparing non-comorbid (PG PURE ) and two comorbid (PG ALCOHOL and PG POLY ) groups. Two hundred and five individuals were included in the analysis: 107 patients diagnosed with PG and 98 healthy controls (HCs). We employed voxel-based morphometry to look for GM volume differences between the groups controlling for age, smoking and depression. GM decreases in the superior medial and orbital frontal cortex occur independently of substance use in PG PURE compared with HCs. The frontal pattern of GM decrease was comparable with PG ALCOHOL group where additionally GM volume was decreased in the anterior cingulate but increased in the amygdala. Moreover, regions in PG ALCOHOL + POLY with reduced GM volume were the medial frontal, anterior cingulate and occipital lobe regions. PG ALCOHOL + POLY not only exhibited structural deficits in comparison with HCs but also relative to PG PURE in the precuneus and post-central gyrus. We demonstrated specific frontal cortex GM deficits in PG without SUD comorbidities. Whereas some target regions reported in earlier studies might result from comorbid substance abuse, there seems to be a core set of frontal alterations associated with addicted gambling behaviour independent of toxic substance effects. © 2016 Society for the Study of Addiction.

  14. Frontal negativity: An electrophysiological index of interpersonal guilt.

    Science.gov (United States)

    Leng, Bingbing; Wang, Xiangling; Cao, Bihua; Li, Fuhong

    2017-12-01

    The present study aimed to reveal the temporal course and electrophysiological correlates of interpersonal guilt. Human participants were asked to perform multiple rounds of a dot-estimation task with their partners, while event-related potential being recorded. The paired participants were informed that they would win money if both responded correctly; otherwise, both of them would lose money. The feeling of guilt in Self-Wrong condition (SW) was significantly higher than that in Both-Wrong and Partner-Wrong conditions. At approximately 350 ms after the onset of feedback presentation, greater negativities were observed in the frontal regions in the guilt condition (i.e., SW) than those in the non-guilt condition. The guilt-modulated frontal negativity might reflect the interactions of self-reflection, condemnation, and negative emotion.

  15. Regional cerebral glucose metabolism in systemic lupus erythematosus patients with major depressive disorder.

    Science.gov (United States)

    Saito, Tomoyuki; Tamura, Maasa; Chiba, Yuhei; Katsuse, Omi; Suda, Akira; Kamada, Ayuko; Ikura, Takahiro; Abe, Kie; Ogawa, Matsuyoshi; Minegishi, Kaoru; Yoshimi, Ryusuke; Kirino, Yohei; Ihata, Atsushi; Hirayasu, Yoshio

    2017-08-15

    Depression is frequently observed in patients with systemic lupus erythematosus (SLE). Neuropsychiatric SLE (NPSLE) patients often exhibit cerebral hypometabolism, but the association between cerebral metabolism and depression remains unclear. To elucidate the features of cerebral metabolism in SLE patients with depression, we performed brain 18F-fluoro-d-glucose positron emission tomography (FDG-PET) on SLE patients with and without major depressive disorder. We performed brain FDG-PET on 20 SLE subjects (5 male, 15 female). The subjects were divided into two groups: subjects with major depressive disorder (DSLE) and subjects without major depressive disorder (non-DSLE). Cerebral glucose metabolism was analyzed using the three-dimensional stereotactic surface projection (3D-SSP) program. Regional metabolism was evaluated by stereotactic extraction estimation (SEE), in which the whole brain was divided into segments. Every SLE subject exhibited cerebral hypometabolism, in contrast to the normal healthy subjects. Regional analysis revealed a significantly lower ER in the left medial frontal gyrus (p=0.0055) and the right medial frontal gyrus (p=0.0022) in the DSLE group than in the non-DSLE group. Hypometabolism in the medial frontal gyrus may be related to major depressive disorder in SLE. Larger studies are needed to clarify this relationship. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The left fusiform gyrus is a critical region contributing to the core behavioral profile of semantic dementia

    Directory of Open Access Journals (Sweden)

    Junhua eDing

    2016-05-01

    Full Text Available Given that extensive cerebral regions are co-atrophic in semantic dementia (SD, it is not yet known which critical regions (SD-semantic-critical regions are really responsible for the semantic deficits of SD. To identify the SD-semantic-critical regions, we explored the relationship between the degree of cerebral atrophy in the whole brain and the severity of semantic deficits in 19 individuals with SD. We found that the gray matter volumes of two regions [left fusiform gyrus (lFFG and left parahippocampal gyrus (lPHG] significantly correlated with the semantic scores of patients with SD. Importantly, the effects of the lFFG remained significant after controlling for the gray matter volumes of the lPHG. Moreover, the effects of the region could not be accounted for by the total gray matter volume, general cognitive ability, laterality of brain atrophy, or control task performance. We further observed that each atrophic portion of the lFFG along the anterior-posterior axis might dedicate to the loss of semantic functions in SD. These results reveal that the lFFG could be a critical region contributing to the semantic deficits of SD.

  17. The role of domain-general frontal systems in language comprehension: evidence from dual-task interference and semantic ambiguity.

    Science.gov (United States)

    Rodd, Jennifer M; Johnsrude, Ingrid S; Davis, Matthew H

    2010-12-01

    Neuroimaging studies have shown that the left inferior frontal gyrus (LIFG) plays a critical role in semantic and syntactic aspects of speech comprehension. It appears to be recruited when listeners are required to select the appropriate meaning or syntactic role for words within a sentence. However, this region is also recruited during tasks not involving sentence materials, suggesting that the systems involved in processing ambiguous words within sentences are also recruited for more domain-general tasks that involve the selection of task-relevant information. We use a novel dual-task methodology to assess whether the cognitive system(s) that are engaged in selecting word meanings are also involved in non-sentential tasks. In Experiment 1, listeners were slower to decide whether a visually presented letter is in upper or lower case when the sentence that they are simultaneously listening to contains words with multiple meanings (homophones), compared to closely matched sentences without homophones. Experiment 2 indicates that this interference effect is not tied to the occurrence of the homophone itself, but rather occurs when listeners must reinterpret a sentence that was initially misparsed. These results suggest some overlap between the cognitive system involved in semantic disambiguation and the domain-general process of response selection required for the case-judgement task. This cognitive overlap may reflect neural overlap in the networks supporting these processes, and is consistent with the proposal that domain-general selection processes in inferior frontal regions are critical for language comprehension. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. DOES THE INFERIOR FRONTAL SULCUS PLAY A FUNCTIONAL ROLE IN DECEPTION? A NEURONAVIGATED THETA-BURST TRANSCRANIAL MAGNETIC STIMULATION STUDY

    Directory of Open Access Journals (Sweden)

    Bruno eVerschuere

    2012-10-01

    Full Text Available Background. By definition, lying involves withholding the truth. Response inhibition may therefore be the cognitive function at the heart of deception. Neuroimaging research has shown that the same brain region that is activated during response inhibition tasks, namely the inferior frontal region, is also activated during deception paradigms. This led to the hypothesis that the inferior frontal region is the neural substrate critically involved in withholding the truth. Objective. We critically examine the functional necessity of the inferior frontal region in withholding the truth during deception. Method. We experimentally manipulated the neural activity level in right inferior frontal sulcus (IFS by means of neuronavigated continuous theta burst stimulation (cTBS. Individual structural magnetic resonance brain images (MRI were used to allow precise stimulation in each participant. Twenty-six participants answered autobiographical questions truthfully or deceptively before and after sham and real cTBS. Results. Deception was reliably associated with more errors, longer and more variable response times than truth telling. Despite the potential role of IFS in deception as suggested by neuroimaging data, the cTBS-induced disruption of right IFS did not affect response times or error rates, when compared to sham stimulation. Conclusions. The present findings do not support the hypothesis that the right inferior frontal sulcus is critically involved in deception.

  19. Changes in frontal lobe function before and after surgery in patients with unruptured intracranial aneurysm

    International Nuclear Information System (INIS)

    Ozaki, Saya; Kumon, Yoshiaki; Igase, Keiji; Watanabe, Hideaki; Ohnishi, Takanori

    2008-01-01

    We evaluated neuropsychological function in 18 patients with unruptured cerebral aneurysm who showed good postoperative outcomes. We paid particular attention to frontal lobe function. We also investigated relationships between cerebral blood flow (CBF) and frontal lobe function. Patients were examined using digit span, word fluency (WF), Stroop and trail-making tests to clarify frontal lobe function before and 1-2 months after surgery. We also used the mini-mental state examination (MMSE), Raven's colored progressive matrices (RCPM) and revised Wechsler adult intelligence scale (WAIS-R) to examine cognitive function. CBF was measured using 133 Xe-single photon emission computed tomography (SPECT) before and 1-2 months after surgery. Tests revealed that the patients' postoperative neuropsychological status was improved compared to the preoperative status for MMSE, RCPM and WAIS-R. Among the tests of frontal lobe function, WF results had deteriorated significantly after surgery. Resting CBF in the frontal lobe was significantly decreased. Regional CBF in the frontal lobe was decreased significantly in comparison with values in the parietal and temporal lobes in patients showing deterioration of WF. Deterioration of WF correlated with CBF changes in the frontal lobe. These results suggest that surgery for unruptured cerebral aneurysm exerts detrimental effects on frontal lobe function that may be related to CBF changes. (author)

  20. Hemichorea and dystonia due to frontal lobe meningioma

    Directory of Open Access Journals (Sweden)

    Abdul Qayyum Rana

    2014-01-01

    Full Text Available Tumors originating from the meninges, also known as meningiomas, have rarely been known to cause parkinsonian symptoms and other movement disorders. Although some cases of AV malformations causing movement disorders have been described in the literature, not much has been reported about meningiomas in this regard. The aim of this case report is to further highlight the importance of brain imaging in patients with movement disorders for even a benign tumor; and also emphasize the need for a careful movement disorder examination because more than one phenomenology of movement disorders may result from the mechanical pressure caused by a tumor. We present a case report of a patient with a heavily calcified right frontal lobe meningioma. Our patient had irregular, involuntary, brief, fleeting and unpredictable movements of her left upper and lower extremities, consistent with chorea. The patient also had abnormal dystonic posturing of her left arm while walking. This case report highlights the importance of brain imaging as well as careful neurological examinations of patients with benign meningiomas. Moreover, it illustrates the remarkable specificity yet clinical diversity of meningiomas in presentation through movement disorders.

  1. Tell it to a child! A brain stimulation study of the role of left inferior frontal gyrus in emotion regulation during storytelling.

    Science.gov (United States)

    Urgesi, Cosimo; Mattiassi, Alan D A; Buiatti, Tania; Marini, Andrea

    2016-08-01

    In everyday life we need to continuously regulate our emotional responses according to their social context. Strategies of emotion regulation allow individuals to control time, intensity, nature and expression of emotional responses to environmental stimuli. The left inferior frontal gyrus (LIFG) is involved in the cognitive control of the selection of semantic content. We hypothesized that it might also be involved in the regulation of emotional feelings and expressions. We applied continuous theta burst stimulation (cTBS) over LIFG or a control site before a newly-developed ecological regulation task that required participants to produce storytelling of pictures with negative or neutral valence to either a peer (unregulated condition) or a child (regulated condition). Linguistic, expressive, and physiological responses were analyzed in order to assess the effects of LIFG-cTBS on emotion regulation. Results showed that the emotion regulation context modulated the emotional content of narrative productions, but not the physiologic orienting response or the early expressive behavior to negative stimuli. Furthermore, LIFG-cTBS disrupted the text-level structuring of negative picture storytelling and the early cardiac and muscular response to negative pictures; however, it did not affect the contextual emotional regulation of storytelling. These results may suggest that LIFG is involved in the initial detection of the affective arousal of emotional stimuli. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Results of a pilot study on the involvement of bilateral inferior frontal gyri in emotional prosody perception: an rTMS study

    NARCIS (Netherlands)

    Hoekert, Marjolijn; Vingerhoets, Guy; Aleman, Andre

    2010-01-01

    Background: The right hemisphere may play an important role in paralinguistic features such as the emotional melody in speech. The extent of this involvement however is unclear. Imaging studies have shown involvement of both left and right inferior frontal gyri in emotional prosody perception. The

  3. TMS interferes with lexical-semantic retrieval in left inferior frontal gyrus and posterior middle temporal gyrus: Evidence from cyclical picture naming.

    Science.gov (United States)

    Krieger-Redwood, Katya; Jefferies, Elizabeth

    2014-11-01

    We used TMS to investigate the contribution of left inferior frontal gyrus (LIFG) and posterior middle temporal gyrus (pMTG) to lexical/semantic selection and retrieval processes using a cyclical naming paradigm. Participants named pictures that were presented repeatedly across six cycles, either in semantically related or unrelated sets. Previous research has suggested that selection demands are higher for related sets, especially after repetition, since participants experience competition from the activation of semantic neighbours. In contrast, retrieval demands are greater for unrelated sets in the absence of semantic priming, particularly on the first cycle when the target names have not been previously activated. Therefore, this paradigm can reveal independent effects of (i) retrieval demands (i.e., the ease of accessing picture names from visual input) and (ii) selection/competition. We found that rTMS to LIFG and pMTG produced similar behavioural effects: stimulation of both sites disrupted picture naming performance on early cycles (when participants were less practised at producing the picture names) and for semantically-related sets (when there was the potential for increased competition and yet also facilitation from semantic neighbours). There were no effects of TMS when either retrieval or selection requirements were maximal on their own. The data therefore support the view that both LIFG and pMTG contribute to picture name retrieval, with both sites playing a critical role in mediating the semantic facilitation of naming when retrieval demands are high. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Common brain regions underlying different arithmetic operations as revealed by conjunct fMRI-BOLD activation.

    Science.gov (United States)

    Fehr, Thorsten; Code, Chris; Herrmann, Manfred

    2007-10-03

    The issue of how and where arithmetic operations are represented in the brain has been addressed in numerous studies. Lesion studies suggest that a network of different brain areas are involved in mental calculation. Neuroimaging studies have reported inferior parietal and lateral frontal activations during mental arithmetic using tasks of different complexities and using different operators (addition, subtraction, etc.). Indeed, it has been difficult to compare brain activation across studies because of the variety of different operators and different presentation modalities used. The present experiment examined fMRI-BOLD activity in participants during calculation tasks entailing different arithmetic operations -- addition, subtraction, multiplication and division -- of different complexities. Functional imaging data revealed a common activation pattern comprising right precuneus, left and right middle and superior frontal regions during all arithmetic operations. All other regional activations were operation specific and distributed in prominently frontal, parietal and central regions when contrasting complex and simple calculation tasks. The present results largely confirm former studies suggesting that activation patterns due to mental arithmetic appear to reflect a basic anatomical substrate of working memory, numerical knowledge and processing based on finger counting, and derived from a network originally related to finger movement. We emphasize that in mental arithmetic research different arithmetic operations should always be examined and discussed independently of each other in order to avoid invalid generalizations on arithmetics and involved brain areas.

  5. Effects of sex and normal aging on regional brain activation during verbal memory performance

    Science.gov (United States)

    Hazlett, Erin A.; Byne, William; Brickman, Adam M.; Mitsis, Effie M.; Newmark, Randall; Haznedar, M. Mehmet; Knatz, Danielle T.; Chen, Amy D.; Buchsbaum, Monte S.

    2010-01-01

    This study examined the main and interactive effects of age and sex on relative glucose metabolic rate (rGMR) within gray matter of 39 cortical Brodmann areas (BAs) and the cingulate gyrus using 18FDG-PET during a verbal memory task in 70 healthy normal adults, aged 20–87 years. Women showed significantly greater age-related rGMR decline in left cingulate gyrus than men (BAs 25, 24, 23, 31, 29). Both groups showed a decline in the anterior cingulate—a neuroanatomical structure that mediates effective cognitive-emotional interactions (BAs 32, 24, 25), while the other frontal regions did not show substantial decline. No sex differences in rGMR were identified within temporal, parietal and occipital lobes. Sex differences were observed for rGMR within subcomponents of the cingulate gyrus with men higher in BA25 and BA29, but lower in BA24 and BA 23 compared to women. For men, better memory performance was associated with greater rGMR in BA24, whereas in women better performance was associated with orbitofrontal-BA12. These results suggest that both age-related metabolic decline and sex differences within frontal regions are more marked in medial frontal and cingulate areas, consistent with some age-related patterns of affective and cognitive change. PMID:19027195

  6. The relationship between clinical findings and therapeutic approach in the treatment of fractured frontal sinus walls

    Directory of Open Access Journals (Sweden)

    Pešić Zoran

    2007-01-01

    Full Text Available Introduction The incidence of fractured frontal sinus walls vary from 6% to 12% of all craniofacial injuries. Objective Estimated relation between clinical findings and performed therapeutic procedures in treating fractured frontal sinus walls. To estimate success in performed therapeutic procedures, according to the incidence of postoperative complications and the integrity of injured regions from the functional and esthetical aspect. Method We analyzed, by retrospective clinical investigation, 19 patients with fractured frontal sinus walls and dislocated fragments, treated at the Department for Maxillofacial Surgery, Clinic of Dentistry in Niš, in the period March 1995 - March 2006. The success of therapy was estimated based on the incidence and type of complications and esthetical results in relation to preoperative findings. Results Predominant etiological factor in fractures of frontal sinus walls is trauma sustained in traffic accidents, which occurred in 52.6% of patients in our investigation. In clinical findings, the impression was the predominant sign, present in 16 patients. In 6 cases soft tissue access through already present lacerations or their extensions was employed, in 4 cases it was done by supraciliary access and in 9 by bicoronal access. As a therapeutic measure, drainage was performed in 5 cases, cranialisation in one, ostheoneogenetic access in 11 cases and a simple reposition of fragments in 2 patients with fractured frontal sinus walls. Infection as a complication was absent. All patients were satisfied with postoperative esthetical appearance of the injured region. Conclusion The infection, the lacerations and the direction of fractured lines are dominant factors in the determination of therapeutic procedures used to treat fractured frontal sinus walls. This will result in the low incidence of infection as a postoperative complication and in patient’s satisfaction with postoperative esthetical result of the injured

  7. Global and Regional Left Ventricular Contractile Impairment In Patients With Wolff-Parkinson-White Syndrome

    Directory of Open Access Journals (Sweden)

    Sony Jacob

    2009-07-01

    Full Text Available Background: To assess regional systolic function and global contractile function in patients with WPW Syndrome.Method: Eleven cases with manifest Wolff-Parkinson-White (WPW syndrome in sinus rhythm were compared to 11 age matched controls. 2D strain analysis was performed and peak segmental radial strain (pRS values obtained from basal ventricular parasternal short-axis images (70 ± 5 frames/sec using a dedicated software package. Heterogeneity of radial strain pattern in six circumferential basal left ventricular segments was measured in terms of standard deviations of peak RS (SDpRS or range (difference between maximum and minimum peak RS i.e. RangepRS. Spectral Doppler (continuous wave measurements were acquired through the left ventricular outflow tract to determine Pre Ejection Period (PEP, Left Ventricular Ejection Time (LVET and measures of left ventricular systolic performance. Results: LV segmental radial strain was profoundly heterogeneous in WPW cases in contrast to fairly homogenous strain pattern in normal subjects. Wide SDpRS values 17.5 ± 8.9 vs 3.3 ± 1.4, p<0.001 and RangepRS 42.7 ± 20.8 vs.8.5 ± 3.6 , p<0.001 were observed among WPW and healthy subjects respectively. PEP (132.4 ± 14.7 vs 4.7 ± 0.5ms, p<0.001 and corrected PEP (76.1 ± 8.0 vs 2.7 ± 0.4ms, p<0.001 were significantly longer in WPW patients compared to controls. The PEP/LVET ratio was also significantly greater in WPW cohort (0.49 ± 0.04 vs. 0.28 ± 0.05, p <0.001 suggesting global systolic dysfunction. Conclusion: Patients with manifest preexcitation (predominantly those with right-sided pathways have regional and global contractile dysfunction resulting from aberrant impulse propagation inherent to the preexcited state.

  8. The association between aerobic fitness and cognitive function in older men mediated by frontal lateralization.

    Science.gov (United States)

    Hyodo, Kazuki; Dan, Ippeita; Kyutoku, Yasushi; Suwabe, Kazuya; Byun, Kyeongho; Ochi, Genta; Kato, Morimasa; Soya, Hideaki

    2016-01-15

    Previous studies have shown that higher aerobic fitness is related to higher cognitive function and higher task-related prefrontal activation in older adults. However, a holistic picture of these factors has yet to be presented. As a typical age-related change of brain activation, less lateralized activity in the prefrontal cortex during cognitive tasks has been observed in various neuroimaging studies. Thus, this study aimed to reveal the relationship between aerobic fitness, cognitive function, and frontal lateralization. Sixty male older adults each performed a submaximal incremental exercise test to determine their oxygen intake (V·O2) at ventilatory threshold (VT) in order to index their aerobic fitness. They performed a color-word Stroop task while prefrontal activation was monitored using functional near infrared spectroscopy. As an index of cognitive function, Stroop interference time was analyzed. Partial correlation analyses revealed significant correlations among higher VT, shorter Stroop interference time and greater left-lateralized dorsolateral prefrontal cortex (DLPFC) activation when adjusting for education. Moreover, mediation analyses showed that left-lateralized DLPFC activation significantly mediated the association between VT and Stroop interference time. These results suggest that higher aerobic fitness is associated with cognitive function via lateralized frontal activation in older adults. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Better without (lateral) frontal cortex? Insight problems solved by frontal patients.

    Science.gov (United States)

    Reverberi, Carlo; Toraldo, Alessio; D'Agostini, Serena; Skrap, Miran

    2005-12-01

    A recently proposed theory on frontal lobe functions claims that the prefrontal cortex, particularly its dorso-lateral aspect, is crucial in defining a set of responses suitable for a particular task, and biasing these for selection. This activity is carried out for virtually any kind of non-routine tasks, without distinction of content. The aim of this study is to test the prediction of Frith's 'sculpting the response space' hypothesis by means of an 'insight' problem-solving task, namely the matchstick arithmetic task. Starting from Knoblich et al.'s interpretation for the failure of healthy controls to solve the matchstick problem, and Frith's theory on the role of dorsolateral frontal cortex, we derived the counterintuitive prediction that patients with focal damage to the lateral frontal cortex should perform better than a group of healthy participants on this rather difficult task. We administered the matchstick task to 35 patients (aged 26-65 years) with a single focal brain lesion as determined by a CT or an MRI scan, and to 23 healthy participants (aged 34-62 years). The findings seemed in line with theoretical predictions. While only 43% of healthy participants could solve the most difficult matchstick problems ('type C'), 82% of lateral frontal patients did so (Fisher's exact test, P < 0.05). In conclusion, the combination of Frith's and Knoblich et al.'s theories was corroborated.

  10. Common variants at 1p36 are associated with superior frontal gyrus volume.

    Science.gov (United States)

    Hashimoto, R; Ikeda, M; Yamashita, F; Ohi, K; Yamamori, H; Yasuda, Y; Fujimoto, M; Fukunaga, M; Nemoto, K; Takahashi, T; Tochigi, M; Onitsuka, T; Yamasue, H; Matsuo, K; Iidaka, T; Iwata, N; Suzuki, M; Takeda, M; Kasai, K; Ozaki, N

    2014-10-21

    The superior frontal gyrus (SFG), an area of the brain frequently found to have reduced gray matter in patients with schizophrenia, is involved in self-awareness and emotion, which are impaired in schizophrenia. However, no genome-wide association studies of SFG volume have investigated in patients with schizophrenia. To identify single-nucleotide polymorphisms (SNPs) associated with SFG volumes, we demonstrated a genome-wide association study (GWAS) of gray matter volumes in the right or left SFG of 158 patients with schizophrenia and 378 healthy subjects. We attempted to bioinformatically ascertain the potential effects of the top hit polymorphism on the expression levels of genes at the genome-wide region. We found associations between five variants on 1p36.12 and the right SFG volume at a widely used benchmark for genome-wide significance (P5.0 × 10(-8)); however, the rs4654899 polymorphism was identified as the locus with the second strongest association with the volume of the left SFG (P=1.5 × 10(-6)). In silico analyses revealed a proxy SNP of rs4654899 had effect on gene expression of two genes, HP1BP3 lying 3' to EIF4G3 (P=7.8 × 10(-6)) and CAPN14 at 2p (P=6.3 × 10(-6)), which are expressed in moderate-to-high levels throughout the adult human SFG. These results contribute to understand genetic architecture of a brain structure possibly linked to the pathophysiology of schizophrenia.

  11. Lexical factors and cerebral regions influencing verbal fluency performance in MCI.

    Science.gov (United States)

    Clark, D G; Wadley, V G; Kapur, P; DeRamus, T P; Singletary, B; Nicholas, A P; Blanton, P D; Lokken, K; Deshpande, H; Marson, D; Deutsch, G

    2014-02-01

    nouns score in the left inferior frontal gyrus, but for letter A, letter S, and a composite FAS score in the right inferior frontal gyrus. These regressions also revealed a lateralized association of the left subcortical nuclei with all letter fluency scores and fruits and vegetables fluency, and an association of the right lower temporal ROI with letter A, FAS, and verb fluency. Gray matter volume in several bihemispheric ROIs (left dorsal frontal, right lower temporal, right occipital, and bilateral mesial temporal) mediated the relationship between cognitive impairment and fluency for fruits and vegetables. Gray matter volume in the right lower temporal ROI mediated the relationship between cognitive impairment and five fluency raw scores (animals, fruits and vegetables, tools, verbs, and the composite nouns score). Semantic memory exerts the strongest influence on word adjacency in letter fluency as well as semantic verbal fluency tasks. Orthography is a stronger influence than pronunciation. All types of fluency task raw scores (letter, noun, and verb) correlate with cerebral regions known to support verbal or nonverbal semantic memory. The findings emphasize the contribution of right hemisphere regions to fluency task performance, particularly for verb and letter fluency. The relationship between diagnosis and semantic fluency performance is mediated by semantic similarity of words and by gray matter volume in the right lower temporal region. Published by Elsevier Ltd.

  12. Increased frontal sleep slow wave activity in adolescents with major depression

    Directory of Open Access Journals (Sweden)

    Noemi Tesler

    2016-01-01

    Full Text Available Sleep slow wave activity (SWA, the major electrophysiological characteristic of deep sleep, mirrors both cortical restructuring and functioning. The incidence of Major Depressive Disorder (MDD substantially rises during the vulnerable developmental phase of adolescence, where essential cortical restructuring is taking place. The goal of this study was to assess characteristics of SWA topography in adolescents with MDD, in order to assess abnormalities in both cortical restructuring and functioning on a local level. All night high-density EEG was recorded in 15 patients meeting DSM-5 criteria for MDD and 15 sex- and age-matched healthy controls. The actual symptom severity was assessed using the Children's Depression Rating Scale—Revised (CDRS-R. Topographical power maps were calculated based on the average SWA of the first non-rapid eye movement (NREM sleep episode. Depressed adolescents exhibited significantly more SWA in a cluster of frontal electrodes compared to controls. SWA over frontal brain regions correlated positively with the CDRS-R subscore “morbid thoughts”. Self-reported sleep latency was significantly higher in depressed adolescents compared to controls whereas sleep architecture did not differ between the groups. Higher frontal SWA in depressed adolescents may represent a promising biomarker tracing cortical regions of intense use and/or restructuring.

  13. Unleashing creativity: The role of left temporoparietal regions in evaluating and inhibiting the generation of creative ideas.

    Science.gov (United States)

    Mayseless, Naama; Aharon-Peretz, Judith; Shamay-Tsoory, Simone

    2014-11-01

    Human creativity is thought to entail two processes. One is idea generation, whereby ideas emerge in an associative manner, and the other is idea evaluation, whereby generated ideas are evaluated and screened. Thus far, neuroimaging studies have identified several brain regions as being involved in creativity, yet only a handful of studies have examined the neural basis underlying these two processes. We found that an individual with left temporoparietal hemorrhage who had no previous experience as an artist developed remarkable artistic creativity, which diminished as the hemorrhage receded. We thus hypothesized that damage to the evaluation network of creativity during the initial hematoma had a releasing effect on creativity by "freeing" the idea generation system. In line with this hypothesis, we conducted a subsequent fMRI study showing that decreased left temporal and parietal activations among healthy individuals as they evaluated creative ideas selectively predicted higher creativity. The current studies provide converging multi-method evidence suggesting that the left temporoparietal area is part of a neural network involved in evaluating creativity, and that as such may act as inhibitors of creativity. We propose an explanatory model of creativity centered upon the key role of the left temporoparietal regions in evaluating and inhibiting creativity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Changes in Functional Connectivity Associated with Direct Training and Generalization Effects of a Theory-Based Generative Naming Treatment

    Directory of Open Access Journals (Sweden)

    Swathi Kiran

    2014-04-01

    Nine PWA improved on the trained abstract words; seven PWA also showed generalization to concrete words in the same context-category. The region with the highest node degree in the trained abstract network across PWA was left inferior frontal gyrus pars triangularis (L IFGtri; while the highest node degree in the generalized concrete network was left precentral gyrus. Regions that showed increased connectivity for both training and generalization included L IFGtri, right middle frontal gyrus (MFG, and bilateral angular gyrus. Regions that showed increased connectivity regardless of whether or not treatment was given and whether or not treatment was successful included left MFG and bilateral superior frontal gyrus. Additionally, PWA who generalized showed more left than right hemisphere changes in both abstract and concrete networks; while PWA who improved on the trained abstract words, but did not generalize to concrete words showed more left than right hemisphere changes for the abstract network, but more right than left hemisphere changes for the concrete network. These results suggest that (a direct training and generalization are tapping into similar neural mechanisms, and (b changes in the left hemisphere coincide with better treatment outcomes.

  15. Regional cerebral blood flow (rCBF) in schizophrenia during verbal memory activation: a 99mTc-HMPAO single photon emission tomography (SPET) study.

    Science.gov (United States)

    Busatto, G F; Costa, D C; Ell, P J; Pilowsky, L S; David, A S; Kerwin, R W

    1994-05-01

    Regional cerebral blood flow (rCBF) was investigated in a group of medicated DSM-III-R schizophrenic patients and age, sex and handedness matched normal volunteers using a split-dose 99mTc-HMPAO Single Photon Emission Tomography (SPET) protocol. Measures were taken during the performance of a verbal memory task aimed at activating the left medial temporal lobe, a region repeatedly suggested to be structurally abnormal in schizophrenia. In normal subjects, the performance of the task was associated with significant rCBF increases in the left medial temporal, left inferior frontal and anterior cingulate cortices, and right cerebellum. Despite their significantly poorer performance on the memory task, the degree of medial temporal activation measured in the schizophrenic patients was not significantly different from that found in the control group. This finding suggests that memory deficits in schizophrenia do not necessarily imply failure to activate the left medial temporal lobe as assessed by 99mTc-HMPAO SPET.

  16. Disruption of structural covariance networks for language in autism is modulated by verbal ability.

    Science.gov (United States)

    Sharda, Megha; Khundrakpam, Budhachandra S; Evans, Alan C; Singh, Nandini C

    2016-03-01

    The presence of widespread speech and language deficits is a core feature of autism spectrum disorders (ASD). These impairments have often been attributed to altered connections between brain regions. Recent developments in anatomical correlation-based approaches to map structural covariance offer an effective way of studying such connections in vivo. In this study, we employed such a structural covariance network (SCN)-based approach to investigate the integrity of anatomical networks in fronto-temporal brain regions of twenty children with ASD compared to an age and gender-matched control group of twenty-two children. Our findings reflected large-scale disruption of inter and intrahemispheric covariance in left frontal SCNs in the ASD group compared to controls, but no differences in right fronto-temporal SCNs. Interhemispheric covariance in left-seeded networks was further found to be modulated by verbal ability of the participants irrespective of autism diagnosis, suggesting that language function might be related to the strength of interhemispheric structural covariance between frontal regions. Additionally, regional cortical thickening was observed in right frontal and left posterior regions, which was predicted by decreasing symptom severity and increasing verbal ability in ASD. These findings unify reports of regional differences in cortical morphology in ASD. They also suggest that reduced left hemisphere asymmetry and increased frontal growth may not only reflect neurodevelopmental aberrations but also compensatory mechanisms.

  17. Ventajas del colgajo frontal expandido para la reconstrucción nasal Advantages of the expanded frontal flap for nasal reconstruction

    Directory of Open Access Journals (Sweden)

    Julio César Gálvez Chávez

    2010-12-01

    Full Text Available INTRODUCCIÓN. Desde 1957 la expansión tisular se ha convertido en una técnica muy utilizada en cirugía reconstructiva, pues permite obtener gran cantidad de tejido blando para corregir defectos cutáneos. En Cuba se ha publicado muy poco sobre la utilización de expansores cutáneos de la región frontal para la reconstrucción nasal. El objetivo de este trabajo fue caracterizar la utilidad del colgajo frontal expandido, para la reconstrucción de defectos nasales distales de espesor total en pacientes con frente corta. MÉTODOS. Se realizó un estudio descriptivo, prospectivo, con pacientes con defectos nasales secundarios a cirugía oncológica, traumatismos y otras causas, a los que se les practicó una reconstrucción nasal con colgajo frontal expandido en el Instituto Nacional de Oncología y Radiobiología y el Hospital «Hermanos Ameijeiras», entre junio de 1999 y mayo de 2007. RESULTADOS. Hubo una ganancia promedio de 1,0 cm en longitud del colgajo frontal expandido con respecto al diseño oblicuo sin expansión. Se logró la reconstrucción de la cubierta cutánea en todos los casos, incluso en los defectos más distales, como los del ala nasal. El cierre de la zona donante siempre fue de forma directa. CONCLUSIONES. Se pudo caracterizar la utilidad del colgajo frontal expandido en la muestra estudiada y se encontró entre sus ventajas fundamentales la ganancia en longitud con respecto a la distancia vertical de la frente. Concordamos con la mayoría de los autores en cuanto a su utilidad, siempre que esté indicado y disponible, y en que es un recurso alternativo cuando existe poco tejido disponible para la reconstrucción de los defectos nasales.INTRODUCTION. From 1957, the tissues expansion has becomes a very used technique in reconstructive surgery, since allows to obtain abundant soft tissue to correct cutaneous defects. In Cuba there aren't much publications on the use of cutaneous expanders of frontal region to nasal

  18. Examining Brain-Cognition Effects of Ginkgo Biloba Extract: Brain Activation in the Left Temporal and Left Prefrontal Cortex in an Object Working Memory Task

    Directory of Open Access Journals (Sweden)

    R. B. Silberstein

    2011-01-01

    Full Text Available Ginkgo Biloba extract (GBE is increasingly used to alleviate symptoms of age related cognitive impairment, with preclinical evidence pointing to a pro-cholinergic effect. While a number of behavioral studies have reported improvements to working memory (WM associated with GBE, electrophysiological studies of GBE have typically been limited to recordings during a resting state. The current study investigated the chronic effects of GBE on steady state visually evoked potential (SSVEP topography in nineteen healthy middle-aged (50-61 year old male participants whilst completing an object WM task. A randomized double-blind crossover design was employed in which participants were allocated to receive 14 days GBE and 14 days placebo in random order. For both groups, SSVEP was recorded from 64 scalp electrode sites during the completion of an object WM task both pre- and 14 days post-treatment. GBE was found to improve behavioural performance on the WM task. GBE was also found to increase the SSVEP amplitude at occipital and frontal sites and increase SSVEP latency at left temporal and left frontal sites during the hold component of the WM task. These SSVEP changes associated with GBE may represent more efficient processing during WM task completion.

  19. GRIN2B Gene and Associated Brain Cortical White Matter Changes in Bipolar Disorder: A Preliminary Combined Platform Investigation

    Directory of Open Access Journals (Sweden)

    Carissa Nadia Kuswanto

    2013-01-01

    Full Text Available Abnormalities in glutamate signaling and glutamate toxicity are thought to be important in the pathophysiology of bipolar disorder (BD. Whilst previous studies have found brain white matter changes in BD, there is paucity of data about how glutamatergic genes affect brain white matter integrity in BD. Based on extant neuroimaging data, we hypothesized that GRIN2B risk allele is associated with reductions of brain white matter integrity in the frontal, parietal, temporal, and occipital regions and cingulate gyrus in BD. Fourteen patients with BD and 22 healthy controls matched in terms of age, gender and handedness were genotyped using blood samples and underwent diffusion tensor imaging. Compared to G allele, brain FA values were significantly lower in BD patients with risk T allele in left frontal region (P=0.001, right frontal region (P=0.002, left parietal region (P=0.001, left occipital region (P=0.001, right occipital region (P<0.001, and left cingulate gyrus (P=0.001. Further elucidation of the interactions between different glutamate genes and their relationships with such structural, functional brain substrates will enhance our understanding of the link between dysregulated glutamatergic neurotransmission and neuroimaging endophenotypes in BD.

  20. Frontal lobe activation during object permanence: data from near-infrared spectroscopy.

    Science.gov (United States)

    Baird, Abigail A; Kagan, Jerome; Gaudette, Thomas; Walz, Kathryn A; Hershlag, Natalie; Boas, David A

    2002-08-01

    The ability to create and hold a mental schema of an object is one of the milestones in cognitive development. Developmental scientists have named the behavioral manifestation of this competence object permanence. Convergent evidence indicates that frontal lobe maturation plays a critical role in the display of object permanence, but methodological and ethical constrains have made it difficult to collect neurophysiological evidence from awake, behaving infants. Near-infrared spectroscopy provides a noninvasive assessment of changes in oxy- and deoxyhemoglobin and total hemoglobin concentration within a prescribed region. The evidence described in this report reveals that the emergence of object permanence is related to an increase in hemoglobin concentration in frontal cortex.

  1. Altered Regional Brain Cortical Thickness in Pediatric Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Paul M. Macey

    2018-01-01

    Full Text Available RationaleObstructive sleep apnea (OSA affects 2–5% of all children and is associated with cognitive and behavioral deficits, resulting in poor school performance. These psychological deficits may arise from brain injury, as seen in preliminary findings of lower gray matter volume among pediatric OSA patients. However, the psychological deficits in OSA are closely related to functions in the cortex, and such brain areas have not been specifically assessed. The objective was to determine whether cortical thickness, a marker of possible brain injury, is altered in children with OSA.MethodsWe examined regional brain cortical thicknesses using high-resolution T1-weighted magnetic resonance images in 16 pediatric OSA patients (8 males; mean age ± SD = 8.4 ± 1.2 years; mean apnea/hypopnea index ± SD = 11 ± 6 events/h and 138 controls (8.3 ± 1.1 years; 62 male; 138 subjects from the NIH Pediatric MRI database to identify cortical thickness differences in pediatric OSA subjects.ResultsCortical thinning occurred in multiple regions including the superior frontal, ventral medial prefrontal, and superior parietal cortices. The left side showed greater thinning in the superior frontal cortex. Cortical thickening was observed in bilateral precentral gyrus, mid-to-posterior insular cortices, and left central gyrus, as well as right anterior insula cortex.ConclusionChanges in cortical thickness are present in children with OSA and likely indicate disruption to neural developmental processes, including maturational patterns of cortical volume increases and synaptic pruning. Regions with thicker cortices may reflect inflammation or astrocyte activation. Both the thinning and thickening associated with OSA in children may contribute to the cognitive and behavioral dysfunction frequently found in the condition.

  2. Frontal parenchymal atrophy measures in multiple sclerosis.

    Science.gov (United States)

    Locatelli, Laura; Zivadinov, Robert; Grop, Attilio; Zorzon, Marino

    2004-10-01

    The aim of this study was to establish whether, in a cross-sectional study, the normalized measures of whole and regional brain atrophy correlate better with tests assessing the cognitive function than the absolute brain atrophy measures. The neuropsychological performances and disability have been assessed in 39 patients with relapsing-remitting multiple sclerosis (MS). T1- and T2-lesion load (LL) of total brain and frontal lobes (FLs) were measured using a reproducible semiautomated technique. The whole brain volume and the regional brain parenchymal volume (RBPV) of FLs were obtained using a computerized interactive program, which incorporates semiautomated and automated segmentation processes. Normalized measures of brain atrophy, i.e., brain parenchymal fraction (BPF) and regional brain parenchymal fraction (RBPF) of FLs, were calculated. The scan-rescan, inter- and intrarater coefficient of variation (COV) and intraclass correlation coefficient (ICC) have been estimated. The RBPF of FLs showed an acceptable level of reproducibility which ranged from 1.7% for intrarater variability to 3.2% for scan-rescan variability. The mean ICC was 0.88 (CI 0.82-0.93). The RBPF of FLs demonstrated stronger magnitudes of correlation with neuropsychological functioning, disability and quantitative MRI lesion measures than RBPV. These differences were statistically significant: PColor Word Interference test, Pcognitive functions, whereas BPAV did not. The correlation analysis results were supported by the results of multiple regression analysis which showed that only the normalized brain atrophy measures were associated with tests exploring the cognitive functions. These data suggest that RBPF is a reproducible and sensitive method for measuring frontal parenchymal atrophy. The normalized measures of whole and regional brain parenchymal atrophy should be preferred to absolute measures in future studies that correlate neuropsychological performances and brain atrophy measures

  3. Regional gray matter abnormalities in patients with schizophrenia determined with optimized voxel-based morphometry

    Science.gov (United States)

    Guo, XiaoJuan; Yao, Li; Jin, Zhen; Chen, Kewei

    2006-03-01

    This study examined regional gray matter abnormalities across the whole brain in 19 patients with schizophrenia (12 males and 7 females), comparing with 11 normal volunteers (7 males and 4 females). The customized brain templates were created in order to improve spatial normalization and segmentation. Then automated preprocessing of magnetic resonance imaging (MRI) data was conducted using optimized voxel-based morphometry (VBM). The statistical voxel based analysis was implemented in terms of two-sample t-test model. Compared with normal controls, regional gray matter concentration in patients with schizophrenia was significantly reduced in the bilateral superior temporal gyrus, bilateral middle frontal and inferior frontal gyrus, right insula, precentral and parahippocampal areas, left thalamus and hypothalamus as well as, however, significant increases in gray matter concentration were not observed across the whole brain in the patients. This study confirms and extends some earlier findings on gray matter abnormalities in schizophrenic patients. Previous behavior and fMRI researches on schizophrenia have suggested that cognitive capacity decreased and self-conscious weakened in schizophrenic patients. These regional gray matter abnormalities determined through structural MRI with optimized VBM may be potential anatomic underpinnings of schizophrenia.

  4. Plagiocefalia frontal sinostósica: Resultados del tratamiento quirúrgico

    Directory of Open Access Journals (Sweden)

    Ricardo Hodelín Tablada

    1996-12-01

    Full Text Available Se estudiaron de forma retrospectiva 10 niños con craneosinostosis tipo plagiocefalia frontal sinostósica, operados en el Servicio de Neurocirugía Infantil del Instituto de Neurología y Neurocirugía. Como técnica quirúrgica se empleó la craniectomía lineal en el sitio de la hemisura coronal sinostosada, ampliada hasta la región del pterión. La totalidad de los infantes evolucionaron con hipoplasia orbitaria y abombamiento frontal y a más de la mitad se les realizó operación en los primeros 6 meses de la vida. Hubo importante variación del índice cefálico, así como mejoría estética comparativamente, antes de la operación y después de éstaA retrospective study of 10 children with frontal synostotic plagiocephaly like craniosynostosis operated on at the Children's Neurosurgery Department of the Institute of Neurology and Neurosurgery was carried out. It was used the surgical technique of linear craniectomy in the site of the coronal synostotic fissure extended to the pterion region. All children evoluted with orbital hypoplasia and frontal convexity. More than a half underwent surgery during the first six months of life. There was an important cephalic index variation, as well as anaesthetic improvement after the operation

  5. Diagnostic electrocardiographic dyad criteria of emphysema in left ventricular hypertrophy.

    Science.gov (United States)

    Lanjewar, Swapnil S; Chhabra, Lovely; Chaubey, Vinod K; Joshi, Saurabh; Kulkarni, Ganesh; Kothagundla, Chandrasekhar; Kaul, Sudesh; Spodick, David H

    2013-01-01

    The electrocardiographic diagnostic dyad of emphysema, namely a combination of the frontal vertical P-vector and a narrow QRS duration, can serve as a quasidiagnostic marker for emphysema, with specificity close to 100%. We postulated that the presence of left ventricular hypertrophy in emphysema may affect the sensitivity of this electrocardiographic criterion given that left ventricular hypertrophy generates prominent left ventricular forces and may increase the QRS duration. We reviewed the electrocardiograms and echocardiograms for 73 patients with emphysema. The patients were divided into two groups based on the presence or absence of echocardiographic evidence of left ventricular hypertrophy. The P-vector, QRS duration, and forced expiratory volume in one second (FEV1) were computed and compared between the two subgroups. There was no statistically significant difference in qualitative lung function (FEV1) between the subgroups. There was no statistically significant difference in mean P-vector between the subgroups. The mean QRS duration was significantly longer in patients with left ventricular hypertrophy as compared with those without left ventricular hypertrophy. The presence of left ventricular hypertrophy may not affect the sensitivity of the P-vector verticalization when used as a lone criterion for diagnosing emphysema. However, the presence of left ventricular hypertrophy may significantly reduce the sensitivity of the electrocardiographic diagnostic dyad in emphysema, as it causes a widening of the QRS duration.

  6. Lightning Evolution In Two North Central Florida Summer Multicell Storms and Three Winter/Spring Frontal Storms

    Science.gov (United States)

    Caicedo, J. A.; Uman, M. A.; Pilkey, J. T.

    2018-01-01

    We present the first lightning evolution studies, via the Lightning Mapping Array (LMA) and radar, performed in North Central Florida. Parts of three winter/spring frontal storms (cold season) and two complete summer (warm season) multicell storms are studied. Storm parameters measured are as follows: total number of flashes, flash-type classification, first flashes, flash initiation altitude, flash initiation power, flash rate (flashes per minute), charge structure, altitude and temperature ranges of the inferred charge regions, atmospheric isotherm altitude, radar base reflectivity (dBZ), and radar echo tops (EET). Several differences were found between summer multicell and winter/spring frontal storms in North Central Florida: (1) in winter/spring storms, the range of altitudes that all charge regions occupy is up to 1 km lower in altitude than in summer storms, as are the 0°C, -10°C, and -20°C isotherms; (2) lightning activity in summer storms is highly correlated with changes in radar signatures, in particular, echo tops; and (3) the LMA average initiation power of all flash types in winter/frontal storms is about an order of magnitude larger than that for summer storms. In relation to storms in other geographical locations, North Central Florida seasonal storms were found to have similarities in most parameters studied with a few differences, examples in Florida being (1) colder initiation altitudes for intracloud flashes, (2) charge regions occupying larger ranges of atmospheric temperatures, and (3) winter/spring frontal storms not having much lightning activity in the stratiform region.

  7. Selective attention to phonology dynamically modulates initial encoding of auditory words within the left hemisphere.

    Science.gov (United States)

    Yoncheva, Yuliya; Maurer, Urs; Zevin, Jason D; McCandliss, Bruce D

    2014-08-15

    Selective attention to phonology, i.e., the ability to attend to sub-syllabic units within spoken words, is a critical precursor to literacy acquisition. Recent functional magnetic resonance imaging evidence has demonstrated that a left-lateralized network of frontal, temporal, and posterior language regions, including the visual word form area, supports this skill. The current event-related potential (ERP) study investigated the temporal dynamics of selective attention to phonology during spoken word perception. We tested the hypothesis that selective attention to phonology dynamically modulates stimulus encoding by recruiting left-lateralized processes specifically while the information critical for performance is unfolding. Selective attention to phonology was captured by manipulating listening goals: skilled adult readers attended to either rhyme or melody within auditory stimulus pairs. Each pair superimposed rhyming and melodic information ensuring identical sensory stimulation. Selective attention to phonology produced distinct early and late topographic ERP effects during stimulus encoding. Data-driven source localization analyses revealed that selective attention to phonology led to significantly greater recruitment of left-lateralized posterior and extensive temporal regions, which was notably concurrent with the rhyme-relevant information within the word. Furthermore, selective attention effects were specific to auditory stimulus encoding and not observed in response to cues, arguing against the notion that they reflect sustained task setting. Collectively, these results demonstrate that selective attention to phonology dynamically engages a left-lateralized network during the critical time-period of perception for achieving phonological analysis goals. These findings suggest a key role for selective attention in on-line phonological computations. Furthermore, these findings motivate future research on the role that neural mechanisms of attention may

  8. Selective attention to phonology dynamically modulates initial encoding of auditory words within the left hemisphere

    Science.gov (United States)

    Yoncheva; Maurer, Urs; Zevin, Jason; McCandliss, Bruce

    2015-01-01

    Selective attention to phonology, i.e., the ability to attend to sub-syllabic units within spoken words, is a critical precursor to literacy acquisition. Recent functional magnetic resonance imaging evidence has demonstrated that a left-lateralized network of frontal, temporal, and posterior language regions, including the visual word form area, supports this skill. The current event-related potential (ERP) study investigated the temporal dynamics of selective attention to phonology during spoken word perception. We tested the hypothesis that selective atten tion to phonology dynamically modulates stimulus encoding by recruiting left-lateralized processes specifically while the information critical for performance is unfolding. Selective attention to phonology was captured by ma nipulating listening goals: skilled adult readers attended to either rhyme or melody within auditory stimulus pairs. Each pair superimposed rhyming and melodic information ensuring identical sensory stimulation. Selective attention to phonology produced distinct early and late topographic ERP effects during stimulus encoding. Data- driven source localization analyses revealed that selective attention to phonology led to significantly greater re cruitment of left-lateralized posterior and extensive temporal regions, which was notably concurrent with the rhyme-relevant information within the word. Furthermore, selective attention effects were specific to auditory stimulus encoding and not observed in response to cues, arguing against the notion that they reflect sustained task setting. Collectively, these results demonstrate that selective attention to phonology dynamically engages a left-lateralized network during the critical time-period of perception for achieving phonological analysis goals. These findings support the key role of selective attention to phonology in the development of literacy and motivate future research on the neural bases of the interaction between phonological

  9. Regional cerebral blood flow and P300 in neurosurgical disorders

    International Nuclear Information System (INIS)

    Funahashi, Kazuyoshi; Hyoutani, Genhachi; Maeshima, Shinichirou; Miyamoto, Kazuki; Kuwata, Toshikazu; Terada, Tomoaki; Komai, Norihiko

    1990-01-01

    Changes in regional cerebral blood flow (rCBF), P300 and higher brain function were studied in neurosurgical patients with localized lesions on computed tomography (CT). Twenty-five patients ranging in age from 30 to 81 were studied. Nineteen of these suffered from cerebrovascular disease and six had tumors. Using the oddball paradigm, P300 components were elicited by rate tones (2 KHz) and recorded at Cz and Pz referred to linked ear-lobe electorodes. The P300 latencies of the patients were statistically compared with those of 27 normal subjects. Higher brain function was evaluated with the following psychological tests: a rating scale for psychological function (Sano and Tanemura), Mini-Mental State (MMS), Hasegawa's Dementia Scale (HDS) and the 'Kanahiroi' test. Regional CBF was measured in the bilateral cerebral cortices (the frontal, temporal and occipital lobes), thalamus and basal ganglia by means of a cold xenon CT method. The laterality indices of rCBF (Rt. rCBF/Lt. rCBF) in the bilateral symmetrical areas of the patients were compared to those of 8 normal subjects. Of the 25 patients, 12 revealed prolongation of P300 latency. Ten (86%) of the 12 with prolonged P300 latency showed reduction of rCBF in the right cerebral hemisphere (rt. frontal lobe, rt. thalamus and rt. basal ganglia). Significant correlations (P<0.025) were recognized between the P300 latencies and the laterality indices of rCBF in the frontal lobe and thalamus. There was a significant correlation (P<0.05) between the scores of MMS and HDS and the laterality indicies of rCBF in the frontal lobe only. In the 13 patients with normal P300 latency, 6 (46%) displayed no reduction in rCBF. The remaining 7 patients with normal P300 showed reduction of rCBF in the left hemisphere. Both right frontal lobe and right thalamus have an important role affecting the prolongation of P300 latency and disturbance of cognitive functions. (author)

  10. Longitudinal changes in cortical thickness in autism and typical development.

    Science.gov (United States)

    Zielinski, Brandon A; Prigge, Molly B D; Nielsen, Jared A; Froehlich, Alyson L; Abildskov, Tracy J; Anderson, Jeffrey S; Fletcher, P Thomas; Zygmunt, Kristen M; Travers, Brittany G; Lange, Nicholas; Alexander, Andrew L; Bigler, Erin D; Lainhart, Janet E

    2014-06-01

    The natural history of brain growth in autism spectrum disorders remains unclear. Cross-sectional studies have identified regional abnormalities in brain volume and cortical thickness in autism, although substantial discrepancies have been reported. Preliminary longitudinal studies using two time points and small samples have identified specific regional differences in cortical thickness in the disorder. To clarify age-related trajectories of cortical development, we examined longitudinal changes in cortical thickness within a large mixed cross-sectional and longitudinal sample of autistic subjects and age- and gender-matched typically developing controls. Three hundred and forty-five magnetic resonance imaging scans were examined from 97 males with autism (mean age = 16.8 years; range 3-36 years) and 60 males with typical development (mean age = 18 years; range 4-39 years), with an average interscan interval of 2.6 years. FreeSurfer image analysis software was used to parcellate the cortex into 34 regions of interest per hemisphere and to calculate mean cortical thickness for each region. Longitudinal linear mixed effects models were used to further characterize these findings and identify regions with between-group differences in longitudinal age-related trajectories. Using mean age at time of first scan as a reference (15 years), differences were observed in bilateral inferior frontal gyrus, pars opercularis and pars triangularis, right caudal middle frontal and left rostral middle frontal regions, and left frontal pole. However, group differences in cortical thickness varied by developmental stage, and were influenced by IQ. Differences in age-related trajectories emerged in bilateral parietal and occipital regions (postcentral gyrus, cuneus, lingual gyrus, pericalcarine cortex), left frontal regions (pars opercularis, rostral middle frontal and frontal pole), left supramarginal gyrus, and right transverse temporal gyrus, superior parietal lobule, and

  11. Alternation learning in pathological gamblers: an fMRI Study.

    Science.gov (United States)

    Dannon, Pinhas N; Kushnir, Tammar; Aizer, Anat; Gross-Isseroff, Ruth; Kotler, Moshe; Manor, David

    2011-03-01

    We have previously reported that pathological gamblers have impaired performance on the Stroop color word naming task, go-no-go task and speed accuracy tradeoff performance, tasks used to assess executive function and interference control. The aim of the present neuroimaging study was to explore the relationship between frontal cortex function and gambling severity in pathological gamblers. Functional MRI (fMRI) was used to estimate brain activity of ten male medication-free pathological gamblers during performance of an alternation learning task. Performance of this task has been shown to depend on the function of regions in the frontal cortex. The executive functions needed to perform the alternation learning task were expressed as brain activation in lateral and medial frontal as well as parietal and occipital regions. By correlating the level of local brain activation to task performance, parietal regions and lateral frontal and orbitofrontal regions were demonstrated. A higher score in SOGS was associated with intrusion on the task-specific activation in the left hemisphere, to some extant in parietal regions and even more pronouncedly in left frontal and orbitofrontal regions. Our preliminary data suggests that pathological gambling may be characterized by specific neuro-cognitive changes related to the frontal cortex.

  12. Two different trichoscopic patterns of mid-frontal scalp in patients with frontal fibrosing alopecia and clinical features of androgenetic alopecia

    Directory of Open Access Journals (Sweden)

    Adriana Rakowska

    2017-03-01

    Full Text Available Introduction . Frontal fibrosing alopecia is a primary lymphocytic cicatricial alopecia with progressive frontotemporal hairline recession. In some cases, hair loss in the mid-frontal scalp, similar to female pattern hair loss, may be observed. Objective. Assessment of the trichoscopic pattern of mid-frontal scalp hair loss in patients diagnosed with frontal fibrosing alopecia. Material and methods. The retrospective analysis included 31 women diagnosed with frontal fibrosing alopecia and hair loss in the mid-frontal scalp and 36 women diagnosed with female pattern hair loss. Results . In patients with frontal fibrosing alopecia two different trichoscopic patterns in the mid-frontal scalp were identified. In 68% of patients (21/31 we observed a diffuse fibrotic pattern. It was characterized by irregular arrangement of follicular units with small areas with loss of follicular units, an increased percentage of follicular units with one hair and a decreased percentage of follicular units with three hairs, normal hair shaft thickness and presence of mild perifollicular scaling. The androgenetic alopecia pattern was present in 32% of patients (10/31. It was characterized by hair shaft thickness diversity (20% or more, a percentage of vellus hairs higher than 10%, presence of yellow dots, an increased percentage of follicular units with one hair and a decreased percentage of follicular units with three hairs. Conclusions. In patients with frontal fibrosing alopecia and coexisting mid-frontal scalp hair loss, we identified two different patterns of this area in trichoscopy: the diffuse fibrotic pattern (more common and the androgenetic alopecia pattern. This observation may have therapeutic and prognostic implications.

  13. Anorexia Nervosa during Adolescence Is Associated with Decreased Gray Matter Volume in the Inferior Frontal Gyrus.

    Directory of Open Access Journals (Sweden)

    Takashi X Fujisawa

    Full Text Available Anorexia nervosa (AN is an eating disorder characterized by the relentless pursuit to lose weight, mostly through self-starvation, and a distorted body image. AN tends to begin during adolescence among women. However, the underlying neural mechanisms related to AN remain unclear. Using voxel-based morphometry based on magnetic resonance imaging scans, we investigated whether the presence of AN was associated with discernible changes in brain morphology. Participants were 20 un-medicated, right-handed patients with early-onset AN and 14 healthy control subjects. Group differences in gray matter volume (GMV were assessed using high-resolution, T1-weighted, volumetric magnetic resonance imaging datasets (3T Trio scanner; Siemens AG and analyzed after controlling for age and total GMV, which was decreased in the bilateral inferior frontal gyrus (IFG (left IFG: FWE corrected, p < 0.05; right IFG: uncorrected, p < 0.05 of patients with AN. The GMV in the bilateral IFG correlated significantly with current age (left IFG: r = -.481, p < .05; right IFG: r = -.601, p < .01 and was limited to the AN group. We speculate that decreased IFG volume might lead to deficits in executive functioning or inhibitory control within neural reward systems. Precocious or unbalanced neurological trimming within this particular region might be an important factor for the pathogenesis of AN onset.

  14. White matter integrity in kleptomania: A pilot study

    Science.gov (United States)

    Grant, Jon E.; Correia, Stephen; Brennan-Krohn, Thea

    2007-01-01

    This study's goal was to examine microstructural organization of frontal white matter in kleptomania. Ten females with DSM-IV kleptomania and 10 female controls underwent diffusion tensor imaging. Inferior frontal white matter was the a priori region of interest. Trace and fractional anisotropy (FA) were also calculated for frontal and posterior cortical regions in both subject groups. Kleptomania subjects had significantly higher mean frontal Trace, and significantly lower mean frontal FA than control subjects. Group differences remained significant when right and left frontal Trace and FA were analyzed. Groups did not differ significantly in posterior Trace or FA. Kleptomania may be associated with decreased white matter microstructural integrity in inferior frontal brain regions. PMID:16956753

  15. Visual and SPM analysis of regional cerebral perfusion with Tc-99m ECD brain SPECT in patients with developmental language disorder

    International Nuclear Information System (INIS)

    Yoon, Joon Kee; Lee, Myung Hoon; Joh, Chul Woo; Yoon, Seok Nam; Oh, Eun Young

    2003-01-01

    Developmental language disorder (DLD) refers to inadequate language acquisition at the expected age in children with otherwise normal development. However, language delay can be observed in patients with other developmental disoder (ODD). We, therefore, evaluated regional cerebral perfusion pattern in patients with DLD and ODD by means of visual and SPM analysis. Twelve patients, who underwent Tc-99m ECD brain SPECT within 3 weeks of their first visit, were included in the study. Psychological and language tests classified the patients into 2 groups ; 6 with DLD (3-7 yr, 5 male and I female) and 6 with ODD (2-6 yr, 6 male). Visual analysis for regional cerebral perfusion was done in each patient. SPM with 7 controls (age=7) was performed to evaluate difference between 2 groups using t-test. P value of less than 0.005 was considered to be significant. All patients had significant language delay for their age (9 month 3.5 yr). Among 6 patients with ODD, 4 had pervasive developmental disorder, 1 mental retardation and 1 attachment disorder. Visual analysis revealed significant perfusion decrease in only 1 patient with DLD and 2 with ODD ; the regions were left parieto-temporal cortex, both frontal and cerebellar cortices, and right temporal cortex respectively. Nine of 12 patients showed normal perfusion. SPM demonstrated perfusion decrease in left inferior frontal cortex and left superior parietal cortex (Wernicke's area) in patients with DLD, while, in patients with ODD, perfusion decrease was mostly located in the right hemisphere (lateral frontoorbital gyrus, occipitotemporal gyrus, cuneus and cerebellum). Corpus callosum showed no significant perfusion abnormality in both groups. Regional cerebral perfusion of patients with DLD, which was mainly located in the speech area, is quite different from that of ODD-patients with language delay. While SPM successfully revealed this difference in perfusion pattern, visual analysis had limited value

  16. Visual and SPM analysis of regional cerebral perfusion with Tc-99m ECD brain SPECT in patients with developmental language disorder

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Joon Kee; Lee, Myung Hoon; Joh, Chul Woo; Yoon, Seok Nam; Oh, Eun Young [College of Medicine, Univ. of Ajou, Suwon (Korea, Republic of)

    2003-07-01

    Developmental language disorder (DLD) refers to inadequate language acquisition at the expected age in children with otherwise normal development. However, language delay can be observed in patients with other developmental disoder (ODD). We, therefore, evaluated regional cerebral perfusion pattern in patients with DLD and ODD by means of visual and SPM analysis. Twelve patients, who underwent Tc-99m ECD brain SPECT within 3 weeks of their first visit, were included in the study. Psychological and language tests classified the patients into 2 groups ; 6 with DLD (3-7 yr, 5 male and I female) and 6 with ODD (2-6 yr, 6 male). Visual analysis for regional cerebral perfusion was done in each patient. SPM with 7 controls (age=7) was performed to evaluate difference between 2 groups using t-test. P value of less than 0.005 was considered to be significant. All patients had significant language delay for their age (9 month 3.5 yr). Among 6 patients with ODD, 4 had pervasive developmental disorder, 1 mental retardation and 1 attachment disorder. Visual analysis revealed significant perfusion decrease in only 1 patient with DLD and 2 with ODD ; the regions were left parieto-temporal cortex, both frontal and cerebellar cortices, and right temporal cortex respectively. Nine of 12 patients showed normal perfusion. SPM demonstrated perfusion decrease in left inferior frontal cortex and left superior parietal cortex (Wernicke's area) in patients with DLD, while, in patients with ODD, perfusion decrease was mostly located in the right hemisphere (lateral frontoorbital gyrus, occipitotemporal gyrus, cuneus and cerebellum). Corpus callosum showed no significant perfusion abnormality in both groups. Regional cerebral perfusion of patients with DLD, which was mainly located in the speech area, is quite different from that of ODD-patients with language delay. While SPM successfully revealed this difference in perfusion pattern, visual analysis had limited value.

  17. Structural covariance of neostriatal and limbic regions in patients with obsessive-compulsive disorder.

    Science.gov (United States)

    Subirà, Marta; Cano, Marta; de Wit, Stella J; Alonso, Pino; Cardoner, Narcís; Hoexter, Marcelo Q; Kwon, Jun Soo; Nakamae, Takashi; Lochner, Christine; Sato, João R; Jung, Wi Hoon; Narumoto, Jin; Stein, Dan J; Pujol, Jesus; Mataix-Cols, David; Veltman, Dick J; Menchón, José M; van den Heuvel, Odile A; Soriano-Mas, Carles

    2016-03-01

    Frontostriatal and frontoamygdalar connectivity alterations in patients with obsessive-compulsive disorder (OCD) have been typically described in functional neuroimaging studies. However, structural covariance, or volumetric correlations across distant brain regions, also provides network-level information. Altered structural covariance has been described in patients with different psychiatric disorders, including OCD, but to our knowledge, alterations within frontostriatal and frontoamygdalar circuits have not been explored. We performed a mega-analysis pooling structural MRI scans from the Obsessive-compulsive Brain Imaging Consortium and assessed whole-brain voxel-wise structural covariance of 4 striatal regions (dorsal and ventral caudate nucleus, and dorsal-caudal and ventral-rostral putamen) and 2 amygdalar nuclei (basolateral and centromedial-superficial). Images were preprocessed with the standard pipeline of voxel-based morphometry studies using Statistical Parametric Mapping software. Our analyses involved 329 patients with OCD and 316 healthy controls. Patients showed increased structural covariance between the left ventral-rostral putamen and the left inferior frontal gyrus/frontal operculum region. This finding had a significant interaction with age; the association held only in the subgroup of older participants. Patients with OCD also showed increased structural covariance between the right centromedial-superficial amygdala and the ventromedial prefrontal cortex. This was a cross-sectional study. Because this is a multisite data set analysis, participant recruitment and image acquisition were performed in different centres. Most patients were taking medication, and treatment protocols differed across centres. Our results provide evidence for structural network-level alterations in patients with OCD involving 2 frontosubcortical circuits of relevance for the disorder and indicate that structural covariance contributes to fully characterizing brain

  18. Aphasia following left thalamic hemorrhage

    International Nuclear Information System (INIS)

    Makishita, Hideo; Miyasaka, Motomaro; Tanizaki, Yoshio; Yanagisawa, Nobuo; Sugishita, Morihiro.

    1984-01-01

    We reported 7 patients with left thalamic hemorrhage in the chronic stage (from 1.5 months to 4.5 months), and described language disorders examined by Western Aphasia Battery (WAB) and measured cerebral blood flow by single photon emission CT. Examination of language by WAB revealed 4 aphasics out of 7 cases, and 3 patients had no language deficit. The patient with Wernicke's aphasia showed low density area only in the left posterior thalamus in X-ray CT, and revealed severe low blood flow area extending to left temporal lobe in emission CT. In the case with transcortical sensory aphasia, although X-ray CT showed no obvious low density area, emission CT revealed moderate low flow area in watershed area that involved the territory between posterior cerebral and middle cerebral arteries in the left temporooccipital region in addition to low blood flow at the left thalamus. In one of the two patients classified as anomic aphasia, whose score of repetition (8.4) was higher than that of comprehension (7.4), emission CT showed slight low flow area at the temporo-occipital region similarly as the case with transcortical sensory aphasia. In another case with anomic aphasia, scored 9 on both fluensy and comprehension subtests and 10 on repetition, there was wide low density area all over the left thalamus and midline shift to the right in X-ray CT, and emission CT showed severe low blood flow in the same region spreading widely toward the cerebral surface. On the other hand, in all of the 3 patients without aphasia, emission CT showed low flow region restricted to the left thalamus. (J.P.N.)

  19. Reversal alterations of amplitude of low-frequency fluctuations in early and late onset, first-episode, drug-naive depression.

    Science.gov (United States)

    Guo, Wen-bin; Liu, Feng; Xun, Guang-lei; Hu, Mao-rong; Guo, Xiao-feng; Xiao, Chang-qing; Chen, Hua-fu; Wooderson, Sarah C; Chen, Jin-dong; Zhao, Jing-ping

    2013-01-10

    It is unclear how patients with early onset depression (EOD) and late onset depression (LOD) differ at the neural level. Using amplitude of low-frequency fluctuations (ALFF) approach, we are to test the hypothesis of the different abnormal neural activities between patients with EOD and LOD. Fifteen patients with EOD, 15 patients with LOD, 15 young healthy subjects (HS) and 15 old HS were enrolled in the study. ALFF approach was employed to analyze the images. ANOVA analysis revealed widespread differences in ALFF values among the four groups throughout frontal, parietal, temporal, occipital cortex, cerebellum and limbic regions. Compared to LOD group, EOD group had higher ALFF in bilateral precuneus, superior medial frontal gyrus and superior frontal gyrus, and lower ALFF in left brainstem and left superior temporal gyrus. Compared to young HS, lower ALFF in left superior/inferior temporal gyrus, left lingual gyrus and right middle occipital gyrus and higher ALFF in left medial frontal gyrus and bilateral superior frontal gyrus were seen in the EOD group; in contrast, in the LOD group, lower ALFF in bilateral superior frontal gyrus and higher ALFF in left superior temporal gyrus were observed. Further ROC analysis suggested that the mean ALFF values in the bilateral superior frontal gyrus and left superior temporal gyrus could serve as markers to separate patients with EOD from individuals with LOD. Patients with EOD and LOD exhibit reversal pattern of abnormal ALFF in bilateral superior frontal gyrus and left superior temporal gyrus. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. "It's Not What You Say, But How You Say it": A Reciprocal Temporo-frontal Network for Affective Prosody.

    Science.gov (United States)

    Leitman, David I; Wolf, Daniel H; Ragland, J Daniel; Laukka, Petri; Loughead, James; Valdez, Jeffrey N; Javitt, Daniel C; Turetsky, Bruce I; Gur, Ruben C

    2010-01-01

    Humans communicate emotion vocally by modulating acoustic cues such as pitch, intensity and voice quality. Research has documented how the relative presence or absence of such cues alters the likelihood of perceiving an emotion, but the neural underpinnings of acoustic cue-dependent emotion perception remain obscure. Using functional magnetic resonance imaging in 20 subjects we examined a reciprocal circuit consisting of superior temporal cortex, amygdala and inferior frontal gyrus that may underlie affective prosodic comprehension. Results showed that increased saliency of emotion-specific acoustic cues was associated with increased activation in superior temporal cortex [planum temporale (PT), posterior superior temporal gyrus (pSTG), and posterior superior middle gyrus (pMTG)] and amygdala, whereas decreased saliency of acoustic cues was associated with increased inferior frontal activity and temporo-frontal connectivity. These results suggest that sensory-integrative processing is facilitated when the acoustic signal is rich in affective information, yielding increased activation in temporal cortex and amygdala. Conversely, when the acoustic signal is ambiguous, greater evaluative processes are recruited, increasing activation in inferior frontal gyrus (IFG) and IFG STG connectivity. Auditory regions may thus integrate acoustic information with amygdala input to form emotion-specific representations, which are evaluated within inferior frontal regions.

  1. Correlation of individual differences in schizotypal personality traits with amphetamine-induced dopamine release in striatal and extrastriatal brain regions.

    Science.gov (United States)

    Woodward, Neil D; Cowan, Ronald L; Park, Sohee; Ansari, M Sib; Baldwin, Ronald M; Li, Rui; Doop, Mikisha; Kessler, Robert M; Zald, David H

    2011-04-01

    Schizotypal personality traits are associated with schizophrenia spectrum disorders, and individuals with schizophrenia spectrum disorders demonstrate increased dopamine transmission in the striatum. The authors sought to determine whether individual differences in normal variation in schizotypal traits are correlated with dopamine transmission in the striatum and in extrastriatal brain regions. Sixty-three healthy volunteers with no history of psychiatric illness completed the Schizotypal Personality Questionnaire and underwent positron emission tomography imaging with [(18)F]fallypride at baseline and after administration of oral d-amphetamine (0.43 mg/kg). Dopamine release, quantified by subtracting each participant's d-amphetamine scan from his or her baseline scan, was correlated with Schizotypal Personality Questionnaire total and factor scores using region-of-interest and voxel-wise analyses. Dopamine release in the striatum was positively correlated with overall schizotypal traits. The association was especially robust in the associative subdivision of the striatum. Voxel-wise analyses identified additional correlations between dopamine release and schizotypal traits in the left middle frontal gyrus and left supramarginal gyrus. Exploratory analyses of Schizotypal Personality Questionnaire factor scores revealed correlations between dopamine release and disorganized schizotypal traits in the striatum, thalamus, medial prefrontal cortex, temporal lobe, insula, and inferior frontal cortex. The association between dopamine signaling and psychosis phenotypes extends to individual differences in normal variation in schizotypal traits and involves dopamine transmission in both striatal and extrastriatal brain regions. Amphetamine-induced dopamine release may be a useful endophenotype for investigating the genetic basis of schizophrenia spectrum disorders.

  2. Social modeling of eating mediated by mirror neuron activity: A causal model moderated by frontal asymmetry and BMI.

    Science.gov (United States)

    McGeown, Laura; Davis, Ron

    2018-02-15

    The social modeling of eating effect refers to the consistently demonstrated phenomenon that individuals tend to match their quantity of food intake to their eating companion. The current study sought to explore whether activity within the mirror neuron system (MNS) mediates the social modeling of eating effect as a function of EEG frontal asymmetry and body mass index (BMI). Under the guise of rating empathy, 93 female undergraduates viewed a female video confederate "incidentally" consume either a low or high intake of chips while electroencephalogram (EEG) activity was recorded. Subsequent ad libitum chip consumption was quantified. A first- and second-stage dual moderation model revealed that frontal asymmetry and BMI moderated an indirect effect of model consumption on participants' food consumption as mediated by MNS activity at electrode site C3, a 3 b 3 =-0.718, SE=0.365, 95% CI [-1.632, -0.161]. Left frontal asymmetry was associated with greater mu activity and a positive association between model and participant chip consumption, while right frontal asymmetry was associated with less mu activity and a negative association between model and participant consumption. Across all levels of frontal asymmetry, the effect was only significant among those with a BMI at the 50th percentile or lower. Thus, among leaner individuals, the MNS was demonstrated to mediate social modeling of eating, as moderated by frontal asymmetry. These findings are integrated within the normative account of social modeling of eating. It is proposed that the normative framework may benefit from consideration of both conscious and unconscious operation of intake norms. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Magnetic resonance imaging of functional connectivity in Parkinson disease in the resting brain

    International Nuclear Information System (INIS)

    Liu Xian; Liu Bo; Luo Xiaodong; Li Ningna; Chen Zhiguang; Chen Jun

    2009-01-01

    Objective: To investigate functional connectivity changes in Parkinson disease in the resting brain using functional magnetic resonance imaging. Methods: Nine patients with Parkinson disease and eight age-matched healthy volunteers were entered into the study. The bilateral globus pallidus were chosen as seed points, the functional MR data acquired in the resting state were processed to investigate functional connectivity in PD patients and the results were compared with those of the controls. Results: In age-matched healthy controls, there are regions which had functional connectivity with bilateral globus pallidus, including bilateral temporal poles, bilateral hippocampus, bilateral thalami, posterior cingulate cortex, right middle occipital gyms and right superior parietal gyms. In PD patients, brain regions including bilateral cerebellum, left hippocampus, bilateral superior temporal gyri, left inferior frontal gyrus, left middle frontal gyrus, left precentral gyrus, left inferior parietal gyrus and left superior parietal gyrus, had functional connectivity with bilateral globus pallidus. Compared to healthy controls, increased functional connectivity in bilateral cerebellum, bilateral temporal lobes, left frontal lobe and left parietal lobe, and decreased functional connectivity in bilateral thalami were observed in PD patients. Conclusion: Abnormal changes of brain functional connectivity exists in Parkinson's disease in the resting state. (authors)

  4. Frontal EEG delta/alpha ratio and screening for post-stroke cognitive deficits: the power of four electrodes.

    Science.gov (United States)

    Schleiger, Emma; Sheikh, Nabeel; Rowland, Tennille; Wong, Andrew; Read, Stephen; Finnigan, Simon

    2014-10-01

    This study analysed correlations between post-stroke, quantitative electroencephalographic (QEEG) indices, and cognition-specific, functional outcome measures. Results were compared between QEEG indices calculated from the standard 19 versus 4 frontal (or 4 posterior) electrodes to assess the feasibility and efficacy of employing a reduced electrode montage. Resting-state EEG was recorded at the bedside within 62-101 h after onset of symptoms of middle cerebral artery, ischaemic stroke (confirmed radiologically). Relative power for delta, theta, alpha and beta, delta/alpha ratio (DAR) and pairwise-derived brain symmetry index (pdBSI) were averaged; over all electrodes (global), over F3, F4, F7, F8 (frontal) and P3, P4, T5, T6 (posterior). The functional independence measure and functional assessment measure (FIM-FAM) was administered at mean 105 days post-stroke. Total (30 items) and cognition-specific (5 items) FIM-FAM scores were correlated with QEEG indices using Spearman's coefficient, with a Bonferroni correction. Twenty-five patients were recruited, 4 died within 3 months and 1 was lost to follow-up. Hence 20 cases (10 female; 9 left hemisphere; mean age 68 years, range 38-84) were analysed. Two QEEG indices demonstrated highly-significant correlations with cognitive outcomes: frontal DAR (ρ = -0.664, p ≤ 0.001) and global, relative alpha power (ρ = 0.67, p ≤ 0.001). After correction there were no other significant correlations. Alpha activity - particularly frontally - may index post-stroke attentional capacity, which appears to be a key determinant of functional and cognitive outcomes. Likewise frontal delta pathophysiology influences such outcomes. Pending further studies, DAR from 4 frontal electrodes may inform early screening for post-MCA stroke cognitive deficits, and thereby, clinical decisions. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Neural correlates of cognitive dysfunction in Lewy body diseases and tauopathies: combined assessment with FDG-PET and the CERAD test battery.

    Science.gov (United States)

    Hellwig, Sabine; Frings, Lars; Bormann, Tobias; Kreft, Annabelle; Amtage, Florian; Spehl, Timo S; Weiller, Cornelius; Tüscher, Oliver; Meyer, Philipp T

    2013-11-01

    We investigated disease-specific cognitive profiles and their neural correlates in Lewy-body diseases (LBD) and tauopathies by CERAD assessment and FDG-PET. Analyses revealed a significant interaction between reduced semantic fluency in tauopathies and impaired verbal learning in LBD. Semantic fluency discriminated between groups with high accuracy (83%). Compared to LBD, tauopathy patients showed bilateral hypometabolism of midbrain, thalamus, middle cingulate gyrus and supplementary motor/premotor cortex. In the reverse contrast, LBD patients exhibited bilateral hypometabolism in posterior parietal cortex, precuneus and inferior temporal gyrus extending into occipital and frontal cortices. In diagnosis-independent voxel-based analyses, verbal learning/memory correlated with left temporal and right parietal metabolism, while fluency was coupled to bilateral striatal and frontal metabolism. Naming correlated with left frontal metabolism and drawing with metabolism in bilateral temporal and left frontal regions. In line with disease-specific patterns of regional glucose metabolism, tauopathies and LBD show distinct cognitive profiles, which may assist clinical differentiation. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Confabulation and memory impairments following frontal lobe lesions

    OpenAIRE

    Turner, Martha

    2005-01-01

    Neuroimaging studies have provided considerable evidence for frontal lobe involvement in memory processing. Memory impairments arc also frequently reported in patients with frontal lobe lesions. However detailed anatomical localisation is rare, making integration of lesion and imaging findings difficult. An investigation of the functional and anatomical contributions of the frontal lobes to memory was conducted in 42 patients with frontal lobe lesions, examining memory processes identified in...

  7. The brain plasticity in patients with brachial plexus root avulsion after contralateral C7 nerve-root transfer: a FDG-PET study

    International Nuclear Information System (INIS)

    Zuo, C.T.; Guan, Y.H.; Xu, W.D.; Zhao, J.; Sun, G.X.; Lin, X.T.

    2002-01-01

    Objectives: To study FDG-PET for imaging the brain plasticity in patients with brachial plexus root avulsion after contralateral C7 nerve-root transfer. Methods: One male patient with left brachial plexus root avulsion underwent a two-stage procedure (first phase: C7 root → ulnar nerve; second phase: ulnar nerve → recipient nerve) 4 years ago; Another with right brachial plexus root avulsion also underwent a two-stage procedure 3 years ago. First two patients underwent basic FDG-PET imaging, the next day FDG-PET scans were performed after initiative or passive limb movement. Using ROI and MPI tools to evaluate the images. The ratios of sensorimotor frontal cingulated Thalami to white matter were used as the semiquantitive index. Results: Whether brain plasticity had occurred was determined by whether the affected limb can perform initiative movement. The increases in glucose metabolism of left sensorimotor frontal cingulated Thalami in patient with left brachial plexus root avulsion were 40.1%, 37.9%, 48.3%, 31.9% after initiative movement, the right corresponding brain regions were 39.4%, 34.3%, 48.5%,35.4% respectively. However, the increases in glucose metabolism of left sensorimotor frontal cingulated Thalami in patient with right brachial plexus root avulsion were increased by 12.6%, 9.6%, 10.7%, 5.3% after passive movement, the right corresponding brain regions were respectively 17.9%, 12.9%, 15.4%, 10.1%. It was founded that the metabolism of bilateral sensorimotor frontal cingulated Thalami increased after initiative movement, while the metabolism of right sensorimotor frontal cingulated Thalami increased more obviously than that of the left brain regions when using MPI tool to substract the images before and after the affected limb movement. Conclusions: Sensorimotor frontal cingulated Thalami were necessary to the initiative movement. After being activated by movement, the metabolisms of plasticised brain regions increased obviously. However, the

  8. Mesopelagic fish assemblages across oceanic fronts: A comparison of three frontal systems in the southern California Current Ecosystem

    Science.gov (United States)

    Netburn, Amanda N.; Koslow, J. Anthony

    2018-04-01

    With strong horizontal gradients in physical properties, oceanic frontal regions can lead to disproportionately high biological productivity. We examined cross-frontal changes in mesopelagic fish assemblages at three separate frontal systems in the southern California Current Ecosystem (CCE) as part of the CCE Long Term Ecological Research program: the A-Front sampled in October 2008, the C-Front in June/July 2011, and the E-Front in July/August 2012. We analyzed the differential effects of front-associated regions on density and species composition of adult migratory and non-migratory fishes and larvae, and the larval to adult ratio (as a possible index of a population growth potential) for migratory and non-migratory species. The fronts did not have a strong effect on densities of any subset of the mesopelagic fish assemblage. The species composition of the vertical migratory fishes (and their larvae) was typically altered across fronts, with different assemblages present on either side of each front. The migratory assemblages at the fronts themselves were indistinguishable from those at the more productive side of the frontal system. In contrast, the assemblage composition of the non-migratory fishes was indistinguishable between regions across all three of the fronts. The differences between the Northern and Southern assemblages at the A-Front were primarily based on biogeographic provinces, while the assemblages at the E-Front were largely distinguishable by their oceanic or coastal-upwelling zone associations. These results generally confirm those of previous studies on frontal systems in the California Current Ecosystem and elsewhere. The ratio of larvae to adults, a potential index of population growth potential, was altered across two of the fronts for migratory species, elevated on the colder side of the A-Front and the warmer side of the E-Front. This finding suggests that fronts may be regions of enhanced reproduction. The larvae to adult ratio was

  9. Functional network-based statistics in depression: Theory of mind subnetwork and importance of parietal region.

    Science.gov (United States)

    Lai, Chien-Han; Wu, Yu-Te; Hou, Yuh-Ming

    2017-08-01

    The functional network analysis of whole brain is an emerging field for research in depression. We initiated this study to investigate which subnetwork is significantly altered within the functional connectome in major depressive disorder (MDD). The study enrolled 52 first-episode medication-naïve patients with MDD and 40 controls for functional network analysis. All participants received the resting-state functional imaging using a 3-Tesla magnetic resonance scanner. After preprocessing, we calculated the connectivity matrix of functional connectivity in whole brain for each subject. The network-based statistics of connectome was used to perform group comparisons between patients and controls. The correlations between functional connectivity and clinical parameters were also performed. MDD patients had significant alterations in the network involving "theory of mind" regions, such as the left precentral gyrus, left angular gyrus, bilateral rolandic operculums and left inferior frontal gyrus. The center node of significant network was the left angular gyrus. No significant correlations of functional connectivity within the subnetwork and clinical parameters were noted. Functional connectivity of "theory of mind" subnetwork may be the core issue for pathophysiology in MDD. In addition, the center role of parietal region should be emphasized in future study. Copyright © 2017. Published by Elsevier B.V.

  10. Correlation of regional cerebral blood flow and positive/negative symptoms in schizophrenic patients: covariate SPM analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ki Chun; Kim, J. S.; Kim, C. Y.; Lee, H. K.; Moon, D. H. [Ulsan University, Seoul (Korea, Republic of)

    2002-07-01

    We investigated the relations between rCBF and psychopathology in schizophrenic patients using a SPM99. Thirty-two patients(M/F:22/10, 25{+-}5,6yr) with active symptoms of schizophrenia and 15 age matched normal controls underwent Tc-99m ECD brain perfusion SPECT. Psychopathology of all patients were also assessed according to PANSS (positive and negative syndrome scale in schizophrenia). By covariate SPM analysis, specific areas where rCBF correlated with sum scores of positive/negative synptoms were identified. Regional CBF of schizophrenics was different in several cortical regions from normal controls. Sum scores of positive symptoms were positively correlated with rCBF of both rectal and inferior frontal gyri and right transverse temporal gyrus, and negatively correlated with rCBF of left lingual and right middle temporal gyri (p<0.01). Sum scores of negative symptoms were positively correlated with rCBF of both middle temporal gyri and negatively correlated with rCBF of right superior parietal lobule and medial frontal gyrus (p<0.01). Positive and negative symptoms of schizophrenia were correlated with rCBF change in different regions of cerebral association cortex.

  11. Correlation of regional cerebral blood flow and positive/negative symptoms in schizophrenic patients: covariate SPM analysis

    International Nuclear Information System (INIS)

    Lim, Ki Chun; Kim, J. S.; Kim, C. Y.; Lee, H. K.; Moon, D. H.

    2002-01-01

    We investigated the relations between rCBF and psychopathology in schizophrenic patients using a SPM99. Thirty-two patients(M/F:22/10, 25±5,6yr) with active symptoms of schizophrenia and 15 age matched normal controls underwent Tc-99m ECD brain perfusion SPECT. Psychopathology of all patients were also assessed according to PANSS (positive and negative syndrome scale in schizophrenia). By covariate SPM analysis, specific areas where rCBF correlated with sum scores of positive/negative synptoms were identified. Regional CBF of schizophrenics was different in several cortical regions from normal controls. Sum scores of positive symptoms were positively correlated with rCBF of both rectal and inferior frontal gyri and right transverse temporal gyrus, and negatively correlated with rCBF of left lingual and right middle temporal gyri (p<0.01). Sum scores of negative symptoms were positively correlated with rCBF of both middle temporal gyri and negatively correlated with rCBF of right superior parietal lobule and medial frontal gyrus (p<0.01). Positive and negative symptoms of schizophrenia were correlated with rCBF change in different regions of cerebral association cortex

  12. Assessment of changes in regional cerebral blood flow in patients with major depression using the 99mTc-HMPAO single photon emission tomography method

    International Nuclear Information System (INIS)

    Yazici, K.; Kapucu, Oe.; Erbas, B.; Varoglu, E.; Guelec, C.; Bekdik, C.F.; Hacettepe Univ., Ankara

    1992-01-01

    Regional cerebral blood flow was investigated in 14 patients with major depression diagnosed according to the DSM-III-R criteria (six patients with single and eight patients with recurrent episodes) and in ten healthy volunteers. The mean ages of the patients and the controls were 33.5±2.7 and 31.6±2.6 years, respectively. The severity of the depression was assessed using the 17-item Hamiltonian Depression Scale (mean: 23.2±1.5). None of the patients was under medication. After administration of 500 MBq technetium-99m hexamethylpropylene amine oxime, a single photon emission tomography study was performed and then transaxial, sagittal and coronal slices were obtained. For the semiquantitative analysis of the data, the ratios of the mean counts/pixel to the whole slice were calculated for 24 regions on three consecutive transaxial slices in the orbitomeatal plane. Additionally, left/right and frontal/occipital ratios were calculated. Both sides of the temporal region had a significantly decreased cerebral blood flow (CBF) when compared to the controls. The left/right ratio of the prefrontal region was also significantly lower in the patients than in the controls. The Hamilton score had a negative correlation with blood flow in the anterofrontal and left prefrontal regions. According to our results, regional CBF seems to be decreased in the left prefrontal and in both temporal regions in major depression. The severity of depression is correlated with the reduction in CBF in the regions of the anterofrontal and left prefrontal cortex. (orig.)

  13. Regional cerebral blood flow and its correlation with clinical assessment in senile dementia of Alzheimer type and multi-infarct dementia

    International Nuclear Information System (INIS)

    Shinohara, Masao; Kawakatsu, Shinobu; Morinobu, Shigeru; Oiji, Arata; Sagawa, Katsuo; Yazaki, Mitsuyasu; Totsuka, Shirou; Komatani, Akio; Yamaguchi, Koichi

    1989-01-01

    Twenty-one patients with senile dementia of Alzheimer type (SDAT), 11 patients with multi-infarct dementia (MID), and 6 healthy volunteers were examined by SPECT using Xe-inhalation method. These patients also underwent an intelligence test according to the Gottfries-Brane-Steen (GBS) scale. Patients with mild SDAT did not have a significantly decreased regional cerebral blood flow (rCBF). In moderate or severe cases, however, a significantly decreased rCBF was bilaterally observed in all regions, except for the basal ganglia. This was marked in the temporoparietal region. A group of moderate or severe MID patients had a significantly decreased rCBF especially in the basal ganglia. It was also observed in the temporoparietal region, but not in the frontal region. Among the SDAT patients, there was a good correlation between rCBF and GBS scale in all the regions, except for the basal ganglia. In the case of MID patients, correlations were observed both between rCBF in the left side of the brain and clinical findings according to the method of Hasegawa and between rCBF in the right side of the frontal region and the motor function on the GBS scale. These findings may have implications for the different pathophysiology between SDAT and MID. (N.K.)

  14. Effective Connectivity Hierarchically Links Temporoparietal and Frontal Areas of the Auditory Dorsal Stream with the Motor Cortex Lip Area during Speech Perception

    Science.gov (United States)

    Murakami, Takenobu; Restle, Julia; Ziemann, Ulf

    2012-01-01

    A left-hemispheric cortico-cortical network involving areas of the temporoparietal junction (Tpj) and the posterior inferior frontal gyrus (pIFG) is thought to support sensorimotor integration of speech perception into articulatory motor activation, but how this network links with the lip area of the primary motor cortex (M1) during speech…

  15. Correlations of cerebral blood flow with language function in aphasic patients following cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Eriko; Nagata, Ken; Uemura, Kazuo [Research Inst. for Brain and Blood Vessels, Akita (Japan)

    1997-04-01

    To elucidate the participation of the brain regions in language function, cerebral blood flow (CBF) which were measured with positron emission tomography (PET) were compared with the language scores based on the standard language test for aphasics in 97 right-handed patients with aphasia due to cerebral infarction. PET studies were performed on 71.4{+-}107.3 days after onset. By the linear regression analysis, the aphasic scores were correlated with the regional CBF from 55 brain regions. CBF from the left frontal, left temporal, and left parietal lobes significantly correlated with language scores of auditory comprehension, speaking, reading, writing, calculation, and repetition. Highly significant correlation was obtained from the left posterior inferior frontal, superior temporal, supramarginal and angular gyri. CBF from the right inferior frontal, right superior temporal, right parahippocampal and right anterior cingulate gyri also correlated with the auditory comprehension, speaking and reading. Accordingly, in addition to the classical language areas which play an essential roles in language function, the extensive areas in the left hemisphere and some part of the right hemisphere may be related to the language processing and recovery from aphasia. (author)

  16. Correlations of cerebral blood flow with language function in aphasic patients following cerebral infarction

    International Nuclear Information System (INIS)

    Yokoyama, Eriko; Nagata, Ken; Uemura, Kazuo

    1997-01-01

    To elucidate the participation of the brain regions in language function, cerebral blood flow (CBF) which were measured with positron emission tomography (PET) were compared with the language scores based on the standard language test for aphasics in 97 right-handed patients with aphasia due to cerebral infarction. PET studies were performed on 71.4±107.3 days after onset. By the linear regression analysis, the aphasic scores were correlated with the regional CBF from 55 brain regions. CBF from the left frontal, left temporal, and left parietal lobes significantly correlated with language scores of auditory comprehension, speaking, reading, writing, calculation, and repetition. Highly significant correlation was obtained from the left posterior inferior frontal, superior temporal, supramarginal and angular gyri. CBF from the right inferior frontal, right superior temporal, right parahippocampal and right anterior cingulate gyri also correlated with the auditory comprehension, speaking and reading. Accordingly, in addition to the classical language areas which play an essential roles in language function, the extensive areas in the left hemisphere and some part of the right hemisphere may be related to the language processing and recovery from aphasia. (author)

  17. Domain-General Brain Regions Do Not Track Linguistic Input as Closely as Language-Selective Regions.

    Science.gov (United States)

    Blank, Idan A; Fedorenko, Evelina

    2017-10-11

    Language comprehension engages a cortical network of left frontal and temporal regions. Activity in this network is language-selective, showing virtually no modulation by nonlinguistic tasks. In addition, language comprehension engages a second network consisting of bilateral frontal, parietal, cingulate, and insular regions. Activity in this "multiple demand" (MD) network scales with comprehension difficulty, but also with cognitive effort across a wide range of nonlinguistic tasks in a domain-general fashion. Given the functional dissociation between the language and MD networks, their respective contributions to comprehension are likely distinct, yet such differences remain elusive. Prior neuroimaging studies have suggested that activity in each network covaries with some linguistic features that, behaviorally, influence on-line processing and comprehension. This sensitivity of the language and MD networks to local input characteristics has often been interpreted, implicitly or explicitly, as evidence that both networks track linguistic input closely, and in a manner consistent across individuals. Here, we used fMRI to directly test this assumption by comparing the BOLD signal time courses in each network across different people ( n = 45, men and women) listening to the same story. Language network activity showed fewer individual differences, indicative of closer input tracking, whereas MD network activity was more idiosyncratic and, moreover, showed lower reliability within an individual across repetitions of a story. These findings constrain cognitive models of language comprehension by suggesting a novel distinction between the processes implemented in the language and MD networks. SIGNIFICANCE STATEMENT Language comprehension recruits both language-specific mechanisms and domain-general mechanisms that are engaged in many cognitive processes. In the human cortex, language-selective mechanisms are implemented in the left-lateralized "core language network

  18. Frontal alpha asymmetry as a pathway to behavioural withdrawal in depression: Research findings and issues.

    Science.gov (United States)

    Jesulola, Emmanuel; Sharpley, Christopher F; Bitsika, Vicki; Agnew, Linda L; Wilson, Peter

    2015-10-01

    Depression has been described as a process of behavioural withdrawal from overwhelming aversive stressors, and which manifests itself in the diagnostic symptomatology for Major Depressive Disorder (MDD). The underlying neurobiological pathways to that behavioural withdrawal are suggested to include greater activation in the right vs the left frontal lobes, described as frontal EEG asymmetry. However, despite a previous meta-analysis that provided overall support for this EEG asymmetry hypothesis, inconsistencies and several methodological confounds exist. The current review examines the literature on this issue, identifies inconsistencies in findings and discusses several key research issues that require addressing for this field to move towards a defensible theoretical model of depression and EEG asymmetry. In particular, the position of EEG asymmetry in the brain, measurement of severity and symptoms profiles of depression, and the effects of gender are considered as potential avenues to more accurately define the specific nature of the depression-EEG asymmetry association. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Bilingualism yields language-specific plasticity in left hemisphere's circuitry for learning to read in young children.

    Science.gov (United States)

    Jasińska, K K; Berens, M S; Kovelman, I; Petitto, L A

    2017-04-01

    How does bilingual exposure impact children's neural circuitry for learning to read? Theories of bilingualism suggests that exposure to two languages may yield a functional and neuroanatomical adaptation to support the learning of two languages (Klein et al., 2014). To test the hypothesis that this neural adaptation may vary as a function of structural and orthographic characteristics of bilinguals' two languages, we compared Spanish-English and French-English bilingual children, and English monolingual children, using functional Near Infrared Spectroscopy neuroimaging (fNIRS, ages 6-10, N =26). Spanish offers consistent sound-to-print correspondences ("phonologically transparent" or "shallow"); such correspondences are more opaque in French and even more opaque in English (which has both transparent and "phonologically opaque" or "deep" correspondences). Consistent with our hypothesis, both French- and Spanish-English bilinguals showed hyperactivation in left posterior temporal regions associated with direct sound-to-print phonological analyses and hypoactivation in left frontal regions associated with assembled phonology analyses. Spanish, but not French, bilinguals showed a similar effect when reading Irregular words. The findings inform theories of bilingual and cross-linguistic literacy acquisition by suggesting that structural characteristics of bilinguals' two languages and their orthographies have a significant impact on children's neuro-cognitive architecture for learning to read. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Quantification of left ventricular regional functions using ECG-gated myocardial perfusion SPECT. Validation of left ventricular systolic functions

    International Nuclear Information System (INIS)

    Yamamoto, Akira; Takahashi, Naoto; Iwahara, Shin-ichiro; Munakata, Kazuo; Hosoya, Tetsuo

    2006-01-01

    We have developed a program to quantify regional left ventricular (LV) function and wall motion synchrony using electrocardiogram (ECG)-gated myocardial perfusion SPECT (MPS). This preliminary study was undertaken to validate the use of this program for estimating regional LV systolic function. Patients were subjected to MPS by 99m Tc-sestamibi at rest. The study included 20 patients who were confirmed to have a low probability of coronary artery disease (LPG; low probability group), 19 heart disease patients who were examined by MPS and equilibrium radionuclide angiography (ERNA) (ERG; ERNA group), and 24 patients who were examined by MPS and 2-dimensional echocardiography (2DE) (2DEG; 2DE group). The values of the ejection fraction (EF) and peak ejection rate (PER) were estimated. The global functions evaluated by this program were compared with those obtained by ERNA in the ERG. For regional assessment, the reference values of the functional indices were obtained for 17 LV segments in LPG. The Z score, (reference average value of the segment-patient's value of the segment)/reference standard deviation of the segment, was used for the evaluation of regional functions; a score equal to or greater than 2 was defined as abnormal. Semiquantitative visual interpretation of 2DE was used as the standard to assess wall motion. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of these criteria and the relationship between 2DE grading and Z scoring were validated in 2DEG. The values of the global EF and PER evaluated by this program correlated with those determined by ERNA (r=0.76 and 0.58, respectively; p -10 ). The potential of this program to quantify the regional systolic function was validated. (author)

  1. AN INVESTIGATION OF IMPLICIT MEMORY THROUGH LEFT TEMPORAL LOBECTOMY FOR EPILEPSY

    Science.gov (United States)

    Tracy, Joseph I.; Osipowicz, Karol; Godofsky, Samuel; Shah, Atif; Khan, Waseem; Sharan, Ashwini; Sperling, Michael R.

    2012-01-01

    Temporal lobe epilepsy patients have demonstrated a relative preservation in the integrity of implicit memory procedures. We examined performance in a verbal implicit and explicit memory task in left anterior temporal lobectomy patients (LATL) and healthy normal controls (NC) while undergoing fMRI. We hypothesized that despite the relative integrity of implicit memory in both the LATL patients and normal controls, the two groups would show distinct functional neuroanatomic profiles during implicit memory. LATLs and NCs performed Jacoby’s Process Dissociation Process (PDP) procedure during fMRI, requiring completion of word stems based on the previously studied words or new/unseen words. Measures of automaticity and recollection provided uncontaminated indices of implicit and explicit memory, respectively. The behavioral data showed that in the face of temporal lobe pathology implicit memory can be carried out, suggesting implicit verbal memory retrieval is non-mesial temporal in nature. Compared to NCs, the LATL patients showed reliable activation, not deactivation, during implicit (automatic) responding. The regions mediating this response were cortical (left medial frontal and precuneus) and striatal. The active regions in LATL patients have the capacity to implement associative, conditioned responses that might otherwise be carried out by a healthy temporal lobe, suggesting this represented a compensatory activity. Because the precuneus has also been implicated in explicit memory, the data suggests this structure may have a highly flexible functionality, capable of supporting implementation of either explicit memory, or automatic processes such as implicit memory retrieval. Our data suggest that a healthy mesial/anterior temporal lobe may be needed for generating the posterior deactivation perceptual priming response seen in normals. PMID:22981890

  2. Frontal cephalometrics: practical applications, part 2.

    Science.gov (United States)

    Grummons, Duane; Ricketts, Robert M

    2004-01-01

    To (1) demonstrate the needs and benefits of three-dimensional diagnostic and treatment applications; (2) illustrate practical clinical applications of anteroposterior images and frontal analysis; and (3) enhance utilization of the Ricketts and Grummons frontal analyses. Frontal analysis methods and applications are specified and integrated into facial, smile, jaw, and occlusal therapies. Asymmetry conditions must be differentially diagnosed and effectively treated. Frontal and related image analysis and tracing steps are detailed. Asymmetry of facial parts is the rule, rather than the exception. Dental and facial midlines, occlusal plane, chin location, and smile esthetics are primarily emphasized. Beautiful facial proportions and smile harmony can be developed despite initial facial dysmorphosis and disproportions. Patients view themselves from the frontal perspective, so this carries priority when assessing problems. It is important to know the etiology of asymmetry to assist others with genetic counseling. Facial harmony and smile beauty are optimal when facial and maxillary dental midlines are aligned. The maxillary dentition width should be sufficiently wide to be in harmony with the individual patient facial morphology. The occlusal plane should be level and the chin centered as much as possible. Best facial development and proportionality exist when the skeletal and dental components are optimized transversely and are symmetric.

  3. Regional cerebral blood flow changes in chronic polidrug abusers

    International Nuclear Information System (INIS)

    Quintana, J.C.; Olea, E.; Seijas, D.; Haydn, V.

    2002-01-01

    Chronic exposure to cocaine and other drugs are in clear association with a variety of medical complications, involving many organ systems. The Central Nervous System (CNS) is particularly sensitive to such exposures: permanent behavioral, psychiatric and neurological complications are common in this group of patients. Regional cerebral blood perfusion (rCBF) analysis has been used to study these conditions with PET and SPECT for a long time. According to the literature, it is clear that drug exposure (particularly cocaine) does produce significant changes over rCBF, nevertheless the vast majority of SPECT and some PET studies are difficult to reproduce because they were analyzed using subjective (visual) and/or ROI's to address the changes. Aim: To study the pattern of rCBF change of chronic cocaine and other drugs (polidrug) users/abusers population using brain SPECT and SPM (Statistical Parametric Mapping). Material and Methods: From a population of 163 addicted patients, 55 chronic cocaine and other drugs users/abuser were selected. A pre-treatment brain SPECT under basal conditions was performed in all of them. 99mTc-ECD was used as rCBF tracer and SPM (Statistical Parametric Mapping) as a framework to address statistically significant rCBF variations of change. The whole group was compared with a population of normal patients (both sexes, aged between 20 and 40 y.o., no history of trauma, drug exposure, neurological or psychiatric disorders). Results: Significant areas of reduced (hypoperfusion) and increased (hyperperfusion) rCBF were identified in the patients group. The hypoperfusion areas involve mainly the left insula region and the surrounding frontal and temporal lobe and a smaller area in the anterior and inferior portion of the right frontal lobe. The increased perfusion areas were identified at the left thalamus and the right fronto-parietal cortical region. Conclusion: Our results suggest that chronic cocaine exposure produce activation/damage to

  4. Evaluating the roles of the inferior frontal gyrus and superior parietal lobule in deductive reasoning: an rTMS study.

    Science.gov (United States)

    Tsujii, Takeo; Sakatani, Kaoru; Masuda, Sayako; Akiyama, Takekazu; Watanabe, Shigeru

    2011-09-15

    This study used off-line repetitive transcranial magnetic stimulation (rTMS) to examine the roles of the superior parietal lobule (SPL) and inferior frontal gyrus (IFG) in a deductive reasoning task. Subjects performed a categorical syllogistic reasoning task involving congruent, incongruent, and abstract trials. Twenty four subjects received magnetic stimulation to the SPL region prior to the task. In the other 24 subjects, TMS was administered to the IFG region before the task. Stimulation lasted for 10min, with an inter-pulse frequency of 1Hz. We found that bilateral SPL (Brodmann area (BA) 7) stimulation disrupted performance on abstract and incongruent reasoning. Left IFG (BA 45) stimulation impaired congruent reasoning performance while paradoxically facilitating incongruent reasoning performance. This resulted in the elimination of the belief-bias. In contrast, right IFG stimulation only impaired incongruent reasoning performance, thus enhancing the belief-bias effect. These findings are largely consistent with the dual-process theory of reasoning, which proposes the existence of two different human reasoning systems: a belief-based heuristic system; and a logic-based analytic system. The present findings suggest that the left language-related IFG (BA 45) may correspond to the heuristic system, while bilateral SPL may underlie the analytic system. The right IFG may play a role in blocking the belief-based heuristic system for solving incongruent reasoning trials. This study could offer an insight about functional roles of distributed brain systems in human deductive reasoning by utilizing the rTMS approach. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. A comparison of brain activity associated with language production in brain tumor patients with left and right sided language laterality.

    Science.gov (United States)

    Jansma, J M; Ramsey, N; Rutten, G J

    2015-12-01

    Language dominance is an important factor for clinical decision making in brain tumor surgery. Functional MRI can provide detailed information about the organization of language in the brain. One often used measure derived from fMRI data is the laterality index (LI). The LI is typically based on the ratio between left and right brain activity in a specific region associated with language. Nearly all fMRI language studies show language-related activity in both hemispheres, and as a result the LI shows a large range of values. The clinical significance of the variation in language laterality as measured with the LI is still under debate. In this study, we tested two hypotheses in relation to the LI, measured in Broca's region, and it's right hemisphere homologue: 1: the level of activity in Broca's and it's right hemisphere homologue is mirrored for subjects with an equal but opposite LI; 2: the whole brain language activation pattern differs between subjects with an equal but opposite LI. One hundred sixty-three glioma and meningioma patients performed a verb generation task as part of a standard clinical protocol. We calculated the LI in the pars orbitalis, pars triangularis and pars opercularis of the left inferior frontal gyrus, referred to as Broca's region from here on. In our database, 21 patients showed right lateralized activity, with a moderate average level (-0.32). A second group of 21 patients was selected from the remaining group, for equal but opposite LI (0.32). We compared the level and distribution of activity associated with language production in the left and right hemisphere in these two groups. Patients with left sided laterality showed a significantly higher level of activity in Broca's region than the patients with right sided laterality. However, both groups showed no difference in level of activity in Broca's homologue region in the right hemisphere. Also, we did not see any difference in the pattern of activity between patients with left

  6. Switching Language Modes: Complementary Brain Patterns for Formulaic and Propositional Language.

    Science.gov (United States)

    Sidtis, John J; Van Lancker Sidtis, Diana; Dhawan, Vijay; Eidelberg, David

    2018-04-01

    Language has been modeled as a rule governed behavior for generating an unlimited number of novel utterances using phonological, syntactic, and lexical processes. This view of language as essentially propositional is expanding as a contributory role of formulaic expressions (e.g., you know, have a nice day, how are you?) is increasingly recognized. The basic features of the functional anatomy of this language system have been described by studies of brain damage: left lateralization for propositional language and greater right lateralization and basal ganglia involvement for formulaic expressions. Positron emission tomography (PET) studies of cerebral blood flow (CBF) have established a cortical-subcortical pattern of brain activity predictive of syllable rate during phonological/lexical repetition. The same analytic approach was applied to analyzing brain images obtained during spontaneous monologues. Sixteen normal, right-handed, native English speakers underwent PET scanning during several language tasks. Speech rate for the repetition of phonological/lexical items was predicted by increased CBF in the left inferior frontal region and decreased CBF in the head of the right caudate nucleus, replicating previous results. A complementary cortical-subcortical pattern (CBF increased in the right inferior frontal region and decreased in the left caudate) was predictive of the use of speech formulas during monologue speech. The use of propositional language during the monologues was associated with strong left lateralization (increased CBF at the left inferior frontal region and decreased CBF at the right inferior frontal region). Normal communication involves the integration of two language modes, formulaic and novel, that have different neural substrates.

  7. Increased frontal functional networks in adult survivors of childhood brain tumors

    Directory of Open Access Journals (Sweden)

    Hongbo Chen

    2016-01-01

    Full Text Available Childhood brain tumors and associated treatment have been shown to affect brain development and cognitive outcomes. Understanding the functional connectivity of brain many years after diagnosis and treatment may inform the development of interventions to improve the long-term outcomes of adult survivors of childhood brain tumors. This work investigated the frontal region functional connectivity of 16 adult survivors of childhood cerebellar tumors after an average of 14.9 years from diagnosis and 16 demographically-matched controls using resting state functional MRI (rs-fMRI. Independent component analysis (ICA was applied to identify the resting state activity from rs-fMRI data and to select the specific regions associated with executive functions, followed by the secondary analysis of the functional networks connecting these regions. It was found that survivors exhibited differences in the functional connectivity in executive control network (ECN, default mode network (DMN and salience network (SN compared to demographically-matched controls. More specifically, the number of functional connectivity observed in the survivors is higher than that in the controls, and with increased strength, or stronger correlation coefficient between paired seeds, in survivors compared to the controls. Observed hyperconnectivity in the selected frontal functional network thus is consistent with findings in patients with other neurological injuries and diseases.

  8. Structural abnormalities and altered regional brain activity in multiple sclerosis with simple spinal cord involvement.

    Science.gov (United States)

    Yin, Ping; Liu, Yi; Xiong, Hua; Han, Yongliang; Sah, Shambhu Kumar; Zeng, Chun; Wang, Jingjie; Li, Yongmei

    2018-02-01

    To assess the changes of the structural and functional abnormalities in multiple sclerosis with simple spinal cord involvement (MS-SSCI) by using resting-state functional MRI (RS-fMRI), voxel based morphology (VBM) and diffusion tensor tractography. The amplitude of low-frequency fluctuation (ALFF) of 22 patients with MS-SSCI and 22 healthy controls (HCs) matched for age, gender and education were compared by using RS-fMRI. We also compared the volume, fractional anisotropy (FA) and apparent diffusion coefficient of the brain regions in baseline brain activity by using VBM and diffusion tensor imaging. The relationships between the expanded disability states scale (EDSS) scores, changed parameters of structure and function were further explored. (1) Compared with HCs, the ALFF of the bilateral hippocampus and right middle temporal gyrus in MS-SSCI decreased significantly. However, patients exhibited increased ALFF in the left middle frontal gyrus, left posterior cingulate gyrus and right middle occipital gyrus ( two-sample t-test, after AlphaSim correction, p 40). The volume of right middle frontal gyrus reduced significantly (p right hippocampus, the FA of left hippocampus and right middle temporal gyrus were significantly different. (2) A significant correlation between EDSS scores and ALFF was noted only in the left posterior cingulate gyrus. Our results detected structural and functional abnormalities in MS-SSCI and functional parameters were associated with clinical abnormalities. Multimodal imaging plays an important role in detecting structural and functional abnormalities in MS-SSCI. Advances in knowledge: This is the first time to apply RS-fMRI, VBM and diffusion tensor tractography to study the structural and functional abnormalities in MS-SSCI, and to explore its correlation with EDSS score.

  9. Is the frontal dysexecutive syndrome due to a working memory deficit? Evidence from patients with stroke.

    Science.gov (United States)

    Roussel, Martine; Dujardin, Kathy; Hénon, Hilde; Godefroy, Olivier

    2012-07-01

    Although frontal dysexecutive disorders are frequently considered to be due to working memory deficit, this has not been systematically examined and very little evidence is available for impairment of working memory in frontal damage. The objective of this study was to examine the components of working memory, their anatomy and the relations with executive functions in patients with stroke involving the frontal or posterior cortex. The study population consisted of 29 patients (frontal: n=17; posterior: n=12) and 29 matched controls. Phonological loop (letter and word spans, phonological store; rehearsal process), visuospatial sketchpad (visuospatial span) and the central executive (working memory span, dual task and updating process) were examined. The group comparison analysis showed impairment in the frontal group of: (i) verbal spans (Pdeficit of the rehearsal process (P=0.006); (iii) visuospatial span (P=0.04); (iv) working memory span (P=0.001) that disappeared after controlling for verbal span and (v) running memory (P=0.05) unrelated to updating conditions. The clinical anatomical correlation study showed that impairment of the central executive depended on frontal and posterior lesion. Cognitive dysexecutive disorders were observed in 11/20 patients with central executive deficit and an inverse dissociation was observed in two patients. Receiver operating characteristic curve analysis indicated that cognitive dysexecutive disorders had the highest ability to discriminate frontal lesions (area under curve=0.844, 95% confidence interval: 0.74-0.95; P=0.0001; central executive impairment: area under curve=0.732, 95% confidence interval: 0.57-0.82; P=0.006). This study reveals that frontal lesions induce mild impairment of short-term memory associated with a deficit of the rehearsal process supporting the role of the frontal lobe in this process; the central executive depends on lesions in the frontal lobe and posterior regions accounting for its low frequency

  10. Left hemisphere regions are critical for language in the face of early left focal brain injury

    OpenAIRE

    Raja Beharelle, Anjali; Dick, Anthony Steven; Josse, Goulven; Solodkin, Ana; Huttenlocher, Peter R.; Levine, Susan C.; Small, Steven L.

    2010-01-01

    A predominant theory regarding early stroke and its effect on language development, is that early left hemisphere lesions trigger compensatory processes that allow the right hemisphere to assume dominant language functions, and this is thought to underlie the near normal language development observed after early stroke. To test this theory, we used functional magnetic resonance imaging to examine brain activity during category fluency in participants who had sustained pre- or perinatal left h...

  11. A Postmortem Study of Frontal and Temporal Gyri Thickness and Cell Number in Human Obesity.

    Science.gov (United States)

    Gómez-Apo, Erick; García-Sierra, Adrián; Silva-Pereyra, Juan; Soto-Abraham, Virgilia; Mondragón-Maya, Alejandra; Velasco-Vales, Verónica; Pescatello, Linda S

    2018-01-01

    This study aimed to compare cortex thickness and neuronal cell density in postmortem brain tissue from people with overweight or obesity and normal weight. The cortex thickness and neuron density of eight donors with overweight or obesity (mean = 31.6 kg/m 2 ; SD = 4.35; n = 8; 6 male) and eight donors with normal weight (mean = 21.8 kg/m 2 ; SD = 1.5; n = 8; 5 male) were compared. All participants were Mexican and lived in Mexico City. Randomly selected thickness measures of different cortex areas from the frontal and temporal lobes were analyzed based on high-resolution real-size photographs. A histological analysis of systematic-random fields was used to quantify the number of neurons in postmortem left and right of the first, second, and third gyri of frontal and temporal lobe brain samples. No statistical difference was found in cortical thickness between donors with overweight or obesity and individuals with normal weight. A smaller number of neurons was found among the donors with overweight or obesity than the donors with normal weight at different frontal and temporal areas. A lower density of neurons is associated with overweight or obesity. The morphological basis for structural brain changes in obesity requires further investigation. © 2017 The Obesity Society.

  12. Application of SPECT to psychiatry

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi

    1999-01-01

    Brain perfusion SPECT using 99m Tc-ethyl-cysteinate dimer ( 99m Tc-ECD) was applied to psychiatric diseases with aid of statistical parametric mapping (SPM) for analysis of data. To evaluate influence of aging on brain perfusion, noninvasive measurements of cerebral blood flow using 99m Tc-ECD were performed in 53 normal volunteers, age 18 to 87 years old. Mean cerebral blood flow (mCBF) was 43.9±5.0 ml/100 g/min and showed weak negative correlation with aging (r=0.451). Perisylvian cerebral cortices and medial frontal areas including anterior cingulate gyri showed greater negative correlation than other areas. These findings suggest the necessity of age-matched control regional CBF (rCBF) data to investigate rCBF abnormality in patients. Four drug-naive schizophrenic patients showed flow decrease in bilateral frontal and superior temporal areas and a left infero-posterior temporal area. Haloperidol administration induced flow decrease in bilateral frontal and left parietal areas, while flow increase in bilateral striatal and right hippocampal areas. Ten aged depressive patients showed flow decrease in bilateral frontal and left temporo-parietal areas. Even after remission patients showed flow decrease in the left frontal area as compared with normal subjects. Remission induced flow increase in the right frontal, right parietal, and right orbitofrontal areas compared with depression. These results suggest that CBF measurements using 99m Tc-ECD were useful for objective evaluation of regional abnormality in brain function in psychiatric diseases. (author)

  13. Neuroticism is linked to microstructural left-right asymmetry of fronto-limbic fibre tracts in adolescents with opposite effects in boys and girls.

    Science.gov (United States)

    Madsen, Kathrine Skak; Jernigan, Terry L; Vestergaard, Martin; Mortensen, Erik Lykke; Baaré, William F C

    2018-06-01

    Neuroticism is a fundamental personality trait that reflects a tendency to experience heightened negative affect and susceptibility to stress. Negative emotionality has been associated with fronto-limbic brain structures and connecting fibre tracts. The major fibre tracts connecting the frontal and limbic brain regions are the cingulum bundle and uncinate fasciculus. We previously found that healthy adults with higher neuroticism scores had decreased left relative to right fractional anisotropy (FA) of the cingulum. Both cingulum and uncinate fasciculus FA increases throughout childhood and into early adulthood. Since adolescence is associated with an increased incidence of anxiety and mood disorders, for which neuroticism is a known risk factor, the question arises whether the association between neuroticism and fronto-limbic white matter microstructure asymmetry is already present in children and adolescents or whether such relationship emerges during this age period. To address this question, we assessed 72 typically-developing 10-to-15 year-olds with diffusion-weighted imaging on a 3 T magnetic resonance scanner. Neuroticism was assessed with the Junior Eysenck Personality Questionnaire. FA and parallel and perpendicular diffusivity measures were extracted for cingulum, uncinate fasciculus as well as the white matter underlying the ventromedial prefrontal cortex. Higher neuroticism scores were associated with decreased left relative to right cingulum FA in boys, while in girls, higher neuroticism scores were associated with increased left relative to right cingulum and ventromedial prefrontal white matter FA, indicating that there are sex differences in the neural correlates of neuroticism. Our findings suggest that the link between neuroticism and frontal-limbic white matter microstructure asymmetry likely predates early adolescence. Future studies need to elucidate the significance of the observed sex differences in the neural correlates of neuroticism

  14. Determination of hemisphere dominance for language: comparison of frontal and temporal fMRI activation with intracarotid amytal testing

    International Nuclear Information System (INIS)

    Spreer, J.; Arnold, S.; Ziyeh, S.; Klisch, J.; Schumacher, M.; Quiske, A.; Altenmueller, D.; Schulze-Bonhage, A.; Wohlfarth, R.; Steinhoff, B.J.; Herpers, M.; Kassubek, J.; Honegger, J.

    2002-01-01

    The reliability of frontal and temporal fMRI activations for the determination of hemisphere language dominance was evaluated in comparison with intracarotid amytal testing (IAT). Twenty-two patients were studied by IAT (bilateral in 13, unilateral in 9 patients) and fMRI using a paradigm requiring semantic decisions. Global and regional (frontal and temporoparietal) lateralisation indices (LI) were calculated from the number of activated (r>0.4) voxels in both hemispheres. Frontolateral activations associated with the language task were seen in all patients, temporoparietal activations in 20 of 22. Regional LI corresponded better with IAT results than global LI. Frontolateral LI were consistent with IAT in all patients with bilateral IAT (including three patients with right dominant and one patient with bilateral language representation) and were not conflicting in any of the patients with unilateral IAT. Temporoparietal LI were discordant with IAT in two patients with atypical language representation. In the determination of hemisphere dominance for language, regional analysis of fMRI activation is superior to global analysis. In cases with clear-cut fMRI lateralisation, i.e. consistent lateralised activation of frontal and temporoparietal language zones, IAT may be unnecessary. FMRI should be performed prior to IAT in all patients going to be operated in brain regions potentially involved in language. (orig.)

  15. Structural characteristics around the frontal thrust along the Nankai Trough revealed by bathymetric and seismic reflection survey

    Science.gov (United States)

    Yamashita, M.; Nakanishi, A.; Moore, G. F.; Kodaira, S.; Nakamura, Y.; Miura, S.; Kaneda, Y.

    2016-12-01

    Great earthquakes with tsunamis with recurrence intervals of 100-200 years have occurred along the Nankai Trough near central Japan where the Shikoku Basin is subducting with thick sediments on the Philippine Sea plate. To predict the exact height of the tsunami on the coast region generated by these large ruptures, it is important to estimate the vertical deformation that occurs on the seaward end of the rupture area. Recent drilling results have also yielded evidence not only of splay faults that generate tsunamigenic rupture, but also new evidence of tsunamigenic rupture along the frontal thrust at the trench axis in the Nankai Trough. In order to understand the deformation around the frontal thrust at the trench axis, we conducted a dense high-resolution seismic reflection survey with 10-20 km spacing over 1500 km of line length during 2013 and 2014. Clear seismic reflection images of frontal thrusts in the accretionary prism and subducting Shikoku Basin, image deformation along the trench axis between off Muroto Cape and off Ashizuri Cape. The cumulative displacement along the frontal thrust and second thrust are measured from picked distinct reflectors in depth-converted profiles. The average value of cumulative displacement of the frontal thrust is more than 100 m within 2 km depth beneath the seafloor. The location of highest displacement of 300 m displacement agree with the seaward end of slip distribution of the 1946 Nankai event calculated by numerical simulations. We also evaluate the seaward structure for understanding the future rupture distribution. The protothrust zone (PTZ) consisting of many incipient thrusts is identifiable in the portion of trough-fill sediments seaward of the frontal thrust. In order to emphasize the characteristics of frontal thrust and PTZ, we construct the detailed relief image for focusing on the lineated slope of the PTZ at the trough axis. Although our surveys covered a part of Nankai seismogenic zone, it is important to

  16. Upper motor neuron predominant degeneration with frontal and temporal lobe atrophy.

    Science.gov (United States)

    Konagaya, M; Sakai, M; Matsuoka, Y; Konagaya, Y; Hashizume, Y

    1998-11-01

    The autopsy findings of a 78-year-old man mimicking primary lateral sclerosis (PLS) are reported. He showed slowly progressive spasticity, pseudobulbar palsy and character change, and died 32 months after the onset of symptoms. Autopsy revealed severe atrophy of the frontal and temporal lobes, remarkable neuronal loss and gliosis in the precentral gyrus, left temporal lobe pole and amygdala, mild degeneration of the Ammon's horn, degeneration of the corticospinal tract, and very mild involvement of the lower motor neurons. The anterior horn cells only occasionally demonstrated Bunina body by cystatin-C staining, and skein-like inclusions by ubiquitin staining. This is a peculiar case with concomitant involvement in the motor cortex and temporal lobe in motor neuron disease predominantly affecting the upper motor neuron.

  17. Time organization of frontal-motor cortex interneuron interactions in the cat neocortex in conditions of different levels of food motivation.

    Science.gov (United States)

    Merzhanova, G Kh; Dolbakyan, E E

    1997-01-01

    Studies were carried out in conscious cats with recording of multicellular activity in moderate hunger and after 24-h food deprivation. Cross-correlation analysis was used to assess statistical interneuron interactions between closely-located neurons in the frontal and sensorimotor regions of the neocortex (local networks), and between the cells of these regions (distributed networks). One-day food deprivation increased the number of interactions formed within both local and distributed neuron networks. Increases in intercortical connections between the frontal and motor regions was seen at all time intervals studied (0-100 msec), though the most significant changes occurred at time intervals of up to 30 msec.

  18. Association between left ventricular regional sympathetic denervation and mechanical dyssynchrony in phase analysis: a cardiac CZT study

    Energy Technology Data Exchange (ETDEWEB)

    Gimelli, Alessia; Genovesi, Dario; Giorgetti, Assuero; Kusch, Annette [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Liga, Riccardo [Scuola Superiore Sant' Anna, Pisa (Italy); Marzullo, Paolo [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); CNR, Institute of Clinical Physiology, Pisa (Italy)

    2014-05-15

    To evaluate the relationships among myocardial sympathetic innervation, perfusion and mechanical synchronicity assessed with cardiac cadmium-zinc-telluride (CZT) scintigraphy. A group of 29 patients underwent an evaluation of myocardial perfusion with {sup 99m}Tc-tetrofosmin CZT scintigraphy and adrenergic innervation with {sup 123}I-metaiodobenzylguanidine (MIBG) CZT scintigraphy. The summed rest score (SRS), motion score (SMS) and thickening score (STS), as well as the summed {sup 123}I-MIBG defect score (SS-MIBG), were determined. Regional tracer uptake for both {sup 99m}Tc-tetrofosmin and {sup 123}I-MIBG was also calculated. Finally, the presence of significant myocardial mechanical dyssynchrony was evaluated in phase analysis on gated CZT images and the region of latest mechanical activation identified. Significant mechanical dyssynchrony was present in 17 patients (59 %) and associated with higher SRS (P = 0.030), SMS (P < 0.001), STS (P = 0.003) and early SS-MIBG (P = 0.037) as well as greater impairments in left ventricular ejection fraction (P < 0.001) and end-diastolic volume (P < 0.001). In multivariate analysis a higher end-diastolic volume remained the only predictor of mechanical dyssynchrony (P = 0.047). Interestingly, while in the whole population regional myocardial perfusion and adrenergic activity were strongly correlated (R = 0.68), in patients with mechanical dyssynchrony the region of latest mechanical activation was predicted only by greater impairment in regional {sup 123}I-MIBG uptake (P = 0.012) that overwhelmed the effect of depressed regional perfusion. Left ventricular mechanical dyssynchrony is associated with greater depression in contractile function and greater impairments in regional myocardial perfusion and sympathetic activity. In patients with dyssynchrony, the region of latest mechanical activation is characterized by a significantly altered adrenergic tone. (orig.)

  19. Stopping, goal-conflict, trait anxiety and frontal rhythmic power in the stop-signal task.

    Science.gov (United States)

    Neo, Phoebe S-H; Thurlow, Jane K; McNaughton, Neil

    2011-12-01

    The medial right frontal cortex is implicated in fast stopping of an initiated motor action in the stop-signal task (SST). To assess whether this region is also involved in the slower behavioural inhibition induced by goal conflict, we tested for effects of goal conflict (when stop and go tendencies are balanced) on low-frequency rhythms in the SST. Stop trials were divided, according to the delays at which the stop signal occurred, into short-, intermediate-, and long-delay trials. Consistent with goal-conflict processing, intermediate-delay trials were associated with greater 7-8 Hz EEG power than short- or long-delay trials at medial right frontal sites (Fz, F4, and F8). At F8, 7-8 Hz power was linked to high trait anxiety and neuroticism. A separate 4-7 Hz power increase was also seen in stop, relative to go, trials, but this was independent of delay, was maximal at the central midline site Cz, and predicted faster stopping. Together with previous data on the SST, these results suggest that the right frontal region could be involved in multiple inhibition mechanisms. We propose a hierarchical model of the control of stopping that integrates the literature on the neural control of fast motor stopping with that on slower, motive-directed behavioural inhibition.

  20. Resting-State Connectivity of the Left Frontal Cortex to the Default Mode and Dorsal Attention Network Supports Reserve in Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Nicolai Franzmeier

    2017-08-01

    Full Text Available Reserve refers to the phenomenon of relatively preserved cognition in disproportion to the extent of neuropathology, e.g., in Alzheimer’s disease. A putative functional neural substrate underlying reserve is global functional connectivity of the left lateral frontal cortex (LFC, Brodmann Area 6/44. Resting-state fMRI-assessed global LFC-connectivity is associated with protective factors (education and better maintenance of memory in mild cognitive impairment (MCI. Since the LFC is a hub of the fronto-parietal control network that regulates the activity of other networks, the question arises whether LFC-connectivity to specific networks rather than the whole-brain may underlie reserve. We assessed resting-state fMRI in 24 MCI and 16 healthy controls (HC and in an independent validation sample (23 MCI/32 HC. Seed-based LFC-connectivity to seven major resting-state networks (i.e., fronto-parietal, limbic, dorsal-attention, somatomotor, default-mode, ventral-attention, visual was computed, reserve was quantified as residualized memory performance after accounting for age and hippocampal atrophy. In both samples of MCI, LFC-activity was anti-correlated with the default-mode network (DMN, but positively correlated with the dorsal-attention network (DAN. Greater education predicted stronger LFC-DMN-connectivity (anti-correlation and LFC-DAN-connectivity. Stronger LFC-DMN and LFC-DAN-connectivity each predicted higher reserve, consistently in both MCI samples. No associations were detected for LFC-connectivity to other networks. These novel results extend our previous findings on global functional connectivity of the LFC, showing that LFC-connectivity specifically to the DAN and DMN, two core memory networks, enhances reserve in the memory domain in MCI.

  1. Language-invariant verb processing regions in Spanish-English bilinguals.

    Science.gov (United States)

    Willms, Joanna L; Shapiro, Kevin A; Peelen, Marius V; Pajtas, Petra E; Costa, Albert; Moo, Lauren R; Caramazza, Alfonso

    2011-07-01

    Nouns and verbs are fundamental grammatical building blocks of all languages. Studies of brain-damaged patients and healthy individuals have demonstrated that verb processing can be dissociated from noun processing at a neuroanatomical level. In cases where bilingual patients have a noun or verb deficit, the deficit has been observed in both languages. This suggests that the noun-verb distinction may be based on neural components that are common across languages. Here we investigated the cortical organization of grammatical categories in healthy, early Spanish-English bilinguals using functional magnetic resonance imaging (fMRI) in a morphophonological alternation task. Four regions showed greater activity for verbs than for nouns in both languages: left posterior middle temporal gyrus (LMTG), left middle frontal gyrus (LMFG), pre-supplementary motor area (pre-SMA), and right middle occipital gyrus (RMOG); no regions showed greater activation for nouns. Multi-voxel pattern analysis within verb-specific regions showed indistinguishable activity patterns for English and Spanish, indicating language-invariant bilingual processing. In LMTG and LMFG, patterns were more similar within than across grammatical category, both within and across languages, indicating language-invariant grammatical class information. These results suggest that the neural substrates underlying verb-specific processing are largely independent of language in bilinguals, both at the macroscopic neuroanatomical level and at the level of voxel activity patterns. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Electrical stimulation over the left inferior frontal gyrus (IFG) determines long-term effects in the recovery of speech apraxia in three chronic aphasics.

    Science.gov (United States)

    Marangolo, P; Marinelli, C V; Bonifazi, S; Fiori, V; Ceravolo, M G; Provinciali, L; Tomaiuolo, F

    2011-12-01

    A number of studies have shown that modulating cortical activity by means of transcranial direct current stimulation (tDCS) affects the performance of both healthy and brain-damaged subjects. In this study, we investigated the potential of tDCS for the recovery of apraxia of speech in 3 patients with stroke-induced aphasia. Over 2 weeks, three aphasic subjects participated in a randomized double-blinded experiment involving intensive language training for their articulatory difficulties in two tDCS conditions. Each subject participated in five consecutive daily sessions of anodic tDCS (20 min, 1 mA) and sham stimulation over the left inferior frontal gyrus (referred to as Broca's area) while they performed a repetition task. By the end of each week, a significant improvement was found in both conditions. However, all three subjects showed greater response accuracy in the anodic than in the sham condition. Moreover, results for transfer of treatment effects, although different across subjects, indicate a generalization of the recovery at the language test. Subjects 2 and 3 showed a significant improvement in oral production tasks, such as word repetition and reading, while Subjects 1 and 2 had an unexpected significant recovery in written naming and word writing under dictation tasks. At three follow-ups (1 week, 1 and 2 months after the end of treatment), response accuracy was still significantly better in the anodic than in sham condition, suggesting a long-term effect on the recovery of their articulatory gestures. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Frontal theta and beta synchronizations for monetary reward increase visual working memory capacity.

    Science.gov (United States)

    Kawasaki, Masahiro; Yamaguchi, Yoko

    2013-06-01

    Visual working memory (VWM) capacity is affected by motivational influences; however, little is known about how reward-related brain activities facilitate the VWM systems. To investigate the dynamic relationship between VWM- and reward-related brain activities, we conducted time-frequency analyses using electroencephalograph (EEG) data obtained during a monetary-incentive delayed-response task that required participants to memorize the position of colored disks. In case of a correct answer, participants received a monetary reward (0, 10 or 50 Japanese yen) announced at the beginning of each trial. Behavioral results showed that VWM capacity under high-reward condition significantly increased compared with that under low- or no-reward condition. EEG results showed that frontal theta (6 Hz) amplitudes enhanced during delay periods and positively correlated with VWM capacity, indicating involvement of theta local synchronizations in VWM. Moreover, frontal beta activities (24 Hz) were identified as reward-related activities, because delay-period amplitudes correlated with increases in VWM capacity between high-reward and no-reward conditions. Interestingly, cross-frequency couplings between frontal theta and beta phases were observed only under high-reward conditions. These findings suggest that the functional dynamic linking between VWM-related theta and reward-related beta activities on the frontal regions plays an integral role in facilitating increases in VWM capacity.

  4. Theta-alpha EEG phase distributions in the frontal area for dissociation of visual and auditory working memory.

    Science.gov (United States)

    Akiyama, Masakazu; Tero, Atsushi; Kawasaki, Masahiro; Nishiura, Yasumasa; Yamaguchi, Yoko

    2017-03-07

    Working memory (WM) is known to be associated with synchronization of the theta and alpha bands observed in electroencephalograms (EEGs). Although frontal-posterior global theta synchronization appears in modality-specific WM, local theta synchronization in frontal regions has been found in modality-independent WM. How frontal theta oscillations separately synchronize with task-relevant sensory brain areas remains an open question. Here, we focused on theta-alpha phase relationships in frontal areas using EEG, and then verified their functional roles with mathematical models. EEG data showed that the relationship between theta (6 Hz) and alpha (12 Hz) phases in the frontal areas was about 1:2 during both auditory and visual WM, and that the phase distributions between auditory and visual WM were different. Next, we used the differences in phase distributions to construct FitzHugh-Nagumo type mathematical models. The results replicated the modality-specific branching by orthogonally of the trigonometric functions for theta and alpha oscillations. Furthermore, mathematical and experimental results were consistent with regards to the phase relationships and amplitudes observed in frontal and sensory areas. These results indicate the important role that different phase distributions of theta and alpha oscillations have in modality-specific dissociation in the brain.

  5. Is a lone right hemisphere enough? Neurolinguistic architecture in a case with a very early left hemispherectomy.

    Science.gov (United States)

    Danelli, Laura; Cossu, Giuseppe; Berlingeri, Manuela; Bottini, Gabriella; Sberna, Maurizio; Paulesu, Eraldo

    2013-01-01

    We studied the linguistic profile and neurolinguistic organization of a 14-year-old adolescent (EB) who underwent a left hemispherectomy at the age of 2.5 years. After initial aphasia, his language skills recovered within 2 years, with the exception of some word finding problems. Over the years, the neuropsychological assessments showed that EB's language was near-to-normal, with the exception of lexical competence, which lagged slightly behind for both auditory and written language. Moreover, EB's accuracy and speed in both reading and writing words and non-words were within the normal range, whereas difficulties emerged in reading loan words and in tasks with homophones. EB's functional magnetic resonance imaging (fMRI) patterns for several linguistic and metalinguistic tasks were similar to those observed in the dominant hemisphere of controls, suggesting that his language network conforms to a left-like linguistic neural blueprint. However, a stronger frontal recruitment suggests that linguistic tasks are more demanding for him. Finally, no specific reading activation was found in EB's occipitotemporal region, a finding consistent with the surface dyslexia-like behavioral pattern of the patient. While a lone right hemisphere may not be sufficient to guarantee full blown linguistic competences after early hemispherectomy, EB's behavioral and fMRI patterns suggest that his lone right hemisphere followed a left-like blueprint of the linguistic network.

  6. Obsessive-compulsive disorder and ventromedial frontal lesions

    DEFF Research Database (Denmark)

    Irle, E; Exner, C; Thielen, K

    1998-01-01

    subjects who had undergone ventromedial frontal leukotomy were evaluated clinically and neuropsychologically and compared to seven well comparison OCD subjects without leukotomy. The 16 leukotomized subjects were divided into three groups according to the main lesion sites as determined by current magnetic...... on the Wisconsin Card Sorting Test. Subjects with lesions of the dorsolateral frontal convexity also showed memory problems, attentional slowing, and lower performance IQ. CONCLUSIONS: Restricted ventromedial frontal leukotomy should be discussed as a last-resort treatment for severe and refractory OCD...

  7. Reduced Language Connectivity in Pediatric Epilepsy

    Science.gov (United States)

    Leigh N., Sepeta; Louise J., Croft; Lauren A., Zimmaro; Elizabeth S., Duke; Virginia K., Terwilliger; Benjamin E., Yerys; Xiaozhen., You; Chandan J., Vaidya; William D., Gaillard; Madison M., Berl

    2014-01-01

    Objective Functional connectivity (FC) among language regions is decreased in adults with epilepsy compared to controls, but less is known about FC in children with epilepsy. We sought to determine if language FC is reduced in pediatric epilepsy, and examined clinical factors that associate with language FC in this population. Methods We assessed FC during an age-adjusted language task in children with left-hemisphere focal epilepsy (n=19) compared to controls (n=19). Time series data were extracted for three left ROIs and their right homologues: inferior frontal gyrus (IFG), middle frontal gyrus (MFG), and Wernicke's area (WA) using SPM8. Associations between FC and factors such as cognitive performance, language dominance, and epilepsy duration were assessed. Results Children with epilepsy showed decreased interhemispheric connectivity compared to controls, particularly between core left language regions (IFG, WA) and their right hemisphere homologues, as well as decreased intrahemispheric right frontal FC. Increased intrahemispheric FC between left IFG and left WA was a positive predictor of language skills overall, and naming ability in particular. FC of language areas was not affected by language dominance, as the effects remained when only examining study participants with left language dominance. Overall FC did not differ according to duration of epilepsy or age of onset. Significance FC during a language task is reduced in children, similar to findings in adults. In specific, children with left focal epilepsy demonstrated decreased interhemispheric FC in temporal and frontal language connections and decreased intrahemispheric right frontal FC. These differences were present near the onset of epilepsy. Greater FC between left language centers is related to better language ability. Our results highlight that connectivity of language areas has a developmental pattern and is related to cognitive ability. PMID:25516399

  8. No inherent left and right side in human 'mental number line': evidence from right brain damage.

    Science.gov (United States)

    Aiello, Marilena; Jacquin-Courtois, Sophie; Merola, Sheila; Ottaviani, Teresa; Tomaiuolo, Francesco; Bueti, Domenica; Rossetti, Yves; Doricchi, Fabrizio

    2012-08-01

    Spatial reasoning has a relevant role in mathematics and helps daily computational activities. It is widely assumed that in cultures with left-to-right reading, numbers are organized along the mental equivalent of a ruler, the mental number line, with small magnitudes located to the left of larger ones. Patients with right brain damage can disregard smaller numbers while mentally setting the midpoint of number intervals. This has been interpreted as a sign of spatial neglect for numbers on the left side of the mental number line and taken as a strong argument for the intrinsic left-to-right organization of the mental number line. Here, we put forward the understanding of this cognitive disability by discovering that patients with right brain damage disregard smaller numbers both when these are mapped on the left side of the mental number line and on the right side of an imagined clock face. This shows that the right hemisphere supports the representation of small numerical magnitudes independently from their mapping on the left or the right side of a spatial-mental layout. In addition, the study of the anatomical correlates through voxel-based lesion-symptom mapping and the mapping of lesion peaks on the diffusion tensor imaging-based reconstruction of white matter pathways showed that the rightward bias in the imagined clock-face was correlated with lesions of high-level middle temporal visual areas that code stimuli in object-centred spatial coordinates, i.e. stimuli that, like a clock face, have an inherent left and right side. In contrast, bias towards higher numbers on the mental number line was linked to white matter damage in the frontal component of the parietal-frontal number network. These anatomical findings show that the human brain does not represent the mental number line as an object with an inherent left and right side. We conclude that the bias towards higher numbers in the mental bisection of number intervals does not depend on left side spatial

  9. Technetium-99m hexamethylpropylene amine oxime single-photon emission tomography of regional cerebral blood flow in insulin-dependent diabetes

    International Nuclear Information System (INIS)

    Keymeulen, B.; Metz, K. de; Cluydts, R.; Bossuyt, A.; Somers, G.

    1996-01-01

    The study was performed to investigate subclinical abnormalities in regional cerebral blood flow (rCBF) in patients with insulin-dependent diabetes mellitus (IDDM) and to correlate them with patients' characteristics. After intravenous injection of technetium-99m hexamethylpropylene amine oxime (HMPAO), tracer uptake of the prefrontal, frontal and parieto-occipital zones was measured with a triple-head single-photon emission tomography (SPET) camera system in 35 IDDM patients outside an episode of hypolycaemia. Tracer uptake values in 16 age- and sex-matched healthy volunteers served as reference values. Compared with healthy subjects, increased tracer uptake of both prefrontal regions and the left frontal region could be shown in diabetes. Tracer uptake was negatively correlated with the duration of diabetes in all investigated regions. In diabetic patients with a disease duration of more than 5 years (n=26), stepwise regression analysis revealed a significant positive correlation between their HbA1c levels and tracer uptake. Long-term diabetic patients with reduced (pre)frontal tracer uptake (n=8) had lower HbA1c levels than those without (8.4%±0.2% vs 9.3%±0.3%, P<0.05) and tended to have more frequently a history of hypoglycaemic coma (6/8 v 6/18, P=0.06). It can be concluded that duration of diabetes contributes to subclinical changes in basal rCBF in IDDM as detected with HMPAO SPET of the brain. The positive correlation between the presence of regional hypoperfusion and lower HbA1c levels in long-term diabetic patients may be interpreted in the light of presumed higher incidence of hypoglycaemia as metabolic control improves. (orig.)

  10. Technetium-99m hexamethylpropylene amine oxime single-photon emission tomography of regional cerebral blood flow in insulin-dependent diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Keymeulen, B. [Dept. of Internal Medicine, Academic Hospital VUB, Brussels (Belgium); Metz, K. de [Dept. of Nuclear Medicine, Academic Hospital VUB, Brussels (Belgium); Cluydts, R. [Dept. of Psychology, Academic Hospital VUB, Brussels (Belgium); Bossuyt, A. [Dept. of Nuclear Medicine, Academic Hospital VUB, Brussels (Belgium); Somers, G.

    1996-02-01

    The study was performed to investigate subclinical abnormalities in regional cerebral blood flow (rCBF) in patients with insulin-dependent diabetes mellitus (IDDM) and to correlate them with patients` characteristics. After intravenous injection of technetium-99m hexamethylpropylene amine oxime (HMPAO), tracer uptake of the prefrontal, frontal and parieto-occipital zones was measured with a triple-head single-photon emission tomography (SPET) camera system in 35 IDDM patients outside an episode of hypolycaemia. Tracer uptake values in 16 age- and sex-matched healthy volunteers served as reference values. Compared with healthy subjects, increased tracer uptake of both prefrontal regions and the left frontal region could be shown in diabetes. Tracer uptake was negatively correlated with the duration of diabetes in all investigated regions. In diabetic patients with a disease duration of more than 5 years (n=26), stepwise regression analysis revealed a significant positive correlation between their HbA1c levels and tracer uptake. Long-term diabetic patients with reduced (pre)frontal tracer uptake (n=8) had lower HbA1c levels than those without (8.4%{+-}0.2% vs 9.3%{+-}0.3%, P<0.05) and tended to have more frequently a history of hypoglycaemic coma (6/8 v 6/18, P=0.06). It can be concluded that duration of diabetes contributes to subclinical changes in basal rCBF in IDDM as detected with HMPAO SPET of the brain. The positive correlation between the presence of regional hypoperfusion and lower HbA1c levels in long-term diabetic patients may be interpreted in the light of presumed higher incidence of hypoglycaemia as metabolic control improves. (orig.)

  11. Impaired social cognition in patients with interictal epileptiform discharges in the frontal lobe.

    Science.gov (United States)

    Hu, Ying; Jiang, Yubao; Hu, Panpan; Ma, Huijuan; Wang, Kai

    2016-04-01

    Patients with epilepsy frequently experience cognitive impairments, including impairments in social cognition. However, there is a lack of direct examinations of the affective and cognitive aspects of social cognition in such patients. The neural correlates remain to be identified. The present study was designed to examine the degree of impairments in different aspects of social cognition including empathy, emotion recognition, and Theory of Mind (ToM) in patients with epilepsy. In addition, we further explored factors related to the impairments, highlighting the specific importance of the frontal region. After 24-hour EEG monitoring, 53 patients with epilepsy were administered a neuropsychological battery of tests for basic intelligence assessment and then were tested with the Interpersonal Reactive Index, the "Yoni" task, the Emotion Recognition Test, the Reading the Mind in the Eyes test, and other neuropsychological tests. The clinical variables potentially affecting the ability to accomplish these tests were taken into account. We divided the patients into those having frontal lobe interictal epileptiform discharges (group with frontal IEDs) and those with seizures originating outside the frontal or temporal lobes (group with extrafrontal IEDs). Sixty healthy individuals served as controls. The group with frontal IEDs achieved the most severe deficits in emotion recognition, ToM, and cognitive empathy, while affective empathy was intact. Moreover, the performance scores of empathy in the group with frontal IEDs were selectively correlated with their executive function scores, which are believed to be associated with orbitofrontal functioning. In contrast, patients with epilepsies not originating from the frontal or temporal lobes may also be at risk of impairments in social cognition, albeit to a lesser extent. The preliminary findings suggest that patients with epilepsy, especially those having frontal lobe interictal epileptiform discharges, have associated

  12. The cerebral functional location in normal subjects when they listened to a story in unfamiliar Japanese

    International Nuclear Information System (INIS)

    Sun Da; Xu Wei; Zhang Hongwei; Liu Hongbiao; Liu Qichang

    2004-01-01

    Purpose: To detect the cerebral functional location when normal subjects listened to a story in unfamiliar Japanese. Methods: 7 normal young students of the medical collage of Zhejiang University, 22-24 years old, 4 male and 3 female. The first they underwent a 99mTc-ECD brain imaging at rest using a dual-head gamma camera with fan beam collimators. After 2-4 days they were asked to listen a story in unfamiliar Japanese carefully on a tap for 20 minters. 99mTc-ECD was administered in the first 3 minutes during they listened the story. The brain imaging was performed in 30-60 minutes after the tracer was administered. Results: To compare the rest state, during listen to the story in unfamiliar Japanese the right superior temporal in 5 cases, left superior temporal in 2 cases, right inferior temporal in 2 cases, and left inferior temporal in 1 case were activated. Among them, dual temporal were activated in 2 cases, only right temporal in 4 cases and left temporal in 1 case. Although they were no asked to remember the plot of the story, the frontal lobes were activated lightly in all 9 subjects. Among them dual inferior frontal and/or medial frontal lobes (3 cases), right inferior frontal and/or medial frontal lobes (2 cases), left inferior frontal (5 cases), right inferior frontal (1 case), right superior frontal (3 cases) were activated. The were activated in 6 subjects, and dual occipital in 5 cases, left occipital in 1 case. Other regions that were activated included parietal lobes (right in 2 cases and left in 1 case), and left occipital lobes (in 1 case) were activated. Conclusion: During listened to the story in unfamiliar Japanese the auditory association cortex in the superior temporal and some right midtemporal (it is more in right than in left) were activated. The frontal lobes were activated widely too, and mainly in left inferior frontal lobes (Broca's area), and in the frontal eye fields and the superolateral prefrontal cortex. It is consistent with the

  13. Clinical use of regional Tc-99m-HMPAO uptake in dementia of the Alzheimer type (DAT). Klinische Wertigkeit des regionalen [sup 99m]Tc-HMPAO Uptake bei der Demenz vom Alzheimer-Typ (DAT)

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, U [Nuklearmedizinische Klinik und Poliklinik, TU Muenchen (Germany); Schmauss, F [Nuklearmedizinische Klinik und Poliklinik, TU Muenchen (Germany); Wagner-Manslau, C [Nuklearmedizinische Klinik und Poliklinik, TU Muenchen (Germany); Buttermann, G [Nuklearmedizinische Klinik und Poliklinik, TU Muenchen (Germany); Zimmer, R [Psychiatrische Klinik, TU Muenchen (Germany)

    1993-12-01

    In 46 patients with dementia of the Alzheimer type (DAT) regional cerebral blood flow (rCBF) was compared with cognitive performance (MMSE, CAMCOG). The cortico-cerebellar ratio (CCR), determined by [sup 99m]Tc-HMPAO-SPECT was used as a rCBF-equivalent. In the mild demented group we found a bilateral CCR-reduction parietal posterior, in moderate DAT bilateral temporoparietal and leftsided frontolateral defects were seen. Severe DAT showed an additional perfusion decrease mid frontal. With increasing severity of DAT an asymmetric perfusion occurred in 17/46 patients with accentuated CCR-reduction on the left side (temporal>parietal). High correlations between CCR and MMSE (r[>=]0.70) existed frontolateral, temporal and parietal in the left hemisphere. Significant associations between CCR and CAMCOG were obtained for language in the left temporal posterior region (r=0.64), for memory task left temporal anterior (r=0.59) and for praxis left parietal posterior (r=0.55). In detecting rCBF abnormalities the sensitivity for all 46 DAT patients was 91% and 70% in the mild cases. (orig.)

  14. BESST (Bochum Emotional Stimulus Set)--a pilot validation study of a stimulus set containing emotional bodies and faces from frontal and averted views.

    Science.gov (United States)

    Thoma, Patrizia; Soria Bauser, Denise; Suchan, Boris

    2013-08-30

    This article introduces the freely available Bochum Emotional Stimulus Set (BESST), which contains pictures of bodies and faces depicting either a neutral expression or one of the six basic emotions (happiness, sadness, fear, anger, disgust, and surprise), presented from two different perspectives (0° frontal view vs. camera averted by 45° to the left). The set comprises 565 frontal view and 564 averted view pictures of real-life bodies with masked facial expressions and 560 frontal and 560 averted view faces which were synthetically created using the FaceGen 3.5 Modeller. All stimuli were validated in terms of categorization accuracy and the perceived naturalness of the expression. Additionally, each facial stimulus was morphed into three age versions (20/40/60 years). The results show high recognition of the intended facial expressions, even under speeded forced-choice conditions, as corresponds to common experimental settings. The average naturalness ratings for the stimuli range between medium and high. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Neural correlates of successful and unsuccessful syntactic processing in primary progressive aphasia

    Directory of Open Access Journals (Sweden)

    Stephen M Wilson

    2015-04-01

    Our findings suggest that some of the regions modulated by a syntactic processing task reflect task-related functions such as working memory, attention, and executive function, specifically the anterior insula bilaterally, the supplementary motor cortex bilaterally, and left dorsal premotor cortex. In contrast, other regions were modulated only in individuals with relatively intact syntactic processing, namely the left inferior frontal junction, left posterior superior temporal sulcus, and left intraparietal sulcus, suggesting that these regions are important for syntactic processing.

  16. Tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus reflect secondary compensatory mechanisms.

    Science.gov (United States)

    Müller-Vahl, Kirsten R; Grosskreutz, Julian; Prell, Tino; Kaufmann, Jörn; Bodammer, Nils; Peschel, Thomas

    2014-01-07

    Despite strong evidence that the pathophysiology of Tourette syndrome (TS) involves structural and functional disturbances of the basal ganglia and cortical frontal areas, findings from in vivo imaging studies have provided conflicting results. In this study we used whole brain diffusion tensor imaging (DTI) to investigate the microstructural integrity of white matter pathways and brain tissue in 19 unmedicated, adult, male patients with TS "only" (without comorbid psychiatric disorders) and 20 age- and sex-matched control subjects. Compared to normal controls, TS patients showed a decrease in the fractional anisotropy index (FA) bilaterally in the medial frontal gyrus, the pars opercularis of the left inferior frontal gyrus, the middle occipital gyrus, the right cingulate gyrus, and the medial premotor cortex. Increased apparent diffusion coefficient (ADC) maps were detected in the left cingulate gyrus, prefrontal areas, left precentral gyrus, and left putamen. There was a negative correlation between tic severity and FA values in the left superior frontal gyrus, medial frontal gyrus bilaterally, cingulate gyrus bilaterally, and ventral posterior lateral nucleus of the right thalamus, and a positive correlation in the body of the corpus callosum, left thalamus, right superior temporal gyrus, and left parahippocampal gyrus. There was also a positive correlation between regional ADC values and tic severity in the left cingulate gyrus, putamen bilaterally, medial frontal gyrus bilaterally, left precentral gyrus, and ventral anterior nucleus of the left thalamus. Our results confirm prior studies suggesting that tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus seem to reflect secondary compensatory mechanisms. Due to the study design, influences from comorbidities, gender, medication and age can be excluded.

  17. Temporoparietal cortex in aphasia. Evidence from positron emission tomography

    International Nuclear Information System (INIS)

    Metter, E.J.; Hanson, W.R.; Jackson, C.A.; Kempler, D.; van Lancker, D.; Mazziotta, J.C.; Phelps, M.E.

    1990-01-01

    Forty-four aphasic patients were examined with (F18)-fluorodeoxyglucose positron emission tomography in a resting state to determine whether consistent glucose metabolic abnormalities were present. Ninety-seven percent of subjects showed metabolic abnormalities in the angular gyrus, 89% in the supramarginal gyrus, and 87% in the lateral and transverse superior temporal gyrus. Pearson product moment correlations were calculated between regional metabolic measures and performance on the Western Aphasia Battery. No significant correlations were found between the Western Aphasia Battery scores and right hemisphere metabolic measures. Most left hemisphere regions correlated with more than one score from the Western Aphasia Battery. Temporal but not frontal regions had significant correlations to the comprehension score. The left temporoparietal region was consistently affected in these subjects, suggesting that common features in the aphasias were caused by left temporoparietal dysfunction, while behavioral differences resulted from (1) the extent of temporoparietal changes, and (2) dysfunction elsewhere in the brain, particularly the left frontal and subcortical areas

  18. Temporoparietal cortex in aphasia. Evidence from positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Metter, E.J.; Hanson, W.R.; Jackson, C.A.; Kempler, D.; van Lancker, D.; Mazziotta, J.C.; Phelps, M.E. (National Institute of Aging, Baltimore, MD (USA))

    1990-11-01

    Forty-four aphasic patients were examined with (F18)-fluorodeoxyglucose positron emission tomography in a resting state to determine whether consistent glucose metabolic abnormalities were present. Ninety-seven percent of subjects showed metabolic abnormalities in the angular gyrus, 89% in the supramarginal gyrus, and 87% in the lateral and transverse superior temporal gyrus. Pearson product moment correlations were calculated between regional metabolic measures and performance on the Western Aphasia Battery. No significant correlations were found between the Western Aphasia Battery scores and right hemisphere metabolic measures. Most left hemisphere regions correlated with more than one score from the Western Aphasia Battery. Temporal but not frontal regions had significant correlations to the comprehension score. The left temporoparietal region was consistently affected in these subjects, suggesting that common features in the aphasias were caused by left temporoparietal dysfunction, while behavioral differences resulted from (1) the extent of temporoparietal changes, and (2) dysfunction elsewhere in the brain, particularly the left frontal and subcortical areas.

  19. Acute effect of Ethanol and Taurine on frontal cortex absolute beta power before and after exercise

    Science.gov (United States)

    Cagy, Mauricio; Velasques, Bruna; Ribeiro, Pedro; Gongora, Mariana; Alvarenga, Renato; Alonso, Luciano; Pompeu, Fernando A. M. S.

    2018-01-01

    Ethanol (ET) is a substance that modulates the Central Nervous System (CNS). Frequently, ET intake occurs combined with energy drinks, which contain taurine (TA), an important amino acid found in the body (i.e brain and muscles). Although TA administration has been used in the improvement of physical performance, the impact of TA, ET and exercise remains unknown. This study aimed to analyze the acute effect of 6g of Taurine (TA), 0.6 mL∙kg-1 of Ethanol (ET), and Taurine combined with Ethanol (TA+ET) ingestion on the electrocortical activity before and after a moderate intensity exercise in 9 subjects, 5 women (counterbalanced experimental design). In each of the 4 treatments (Placebo—PL, TA, ET and TA+ET), electroencephalography (EEG) tests were conducted in order to analyze changes in absolute beta power (ABP) in the frontal lobe in 3 moments: baseline (before ingestion), peak (before exercise) and post-exercise. In the PL treatment, the frontal areas showed decrease in ABP after exercise. However, in the ET+TA treatment, ABP values were greater after exercise, except for Fp1. The ET treatment had no effect on the Superior Frontal Gyrus area (F3, Fz and F4) and ABP decreased after exercise in Fp1 and Fp2. In the TA treatment, ABP increased after exercise, while it decreased at the peak moment in most of the frontal regions, except for Fp1, F3 and Fz. We concluded that after a moderate intensity exercise, a decrease in cortical activity occurs in placebo treatment. Moreover, we found a inhibitory effect of TA on cortical activity before exercise and a increased in cortical activity after exercise. A small ET dose is not enough to alter ABP in all regions of the frontal cortex and, in combination with TA, it showed an increase in the frontal cortex activity at the post-exercise moment. PMID:29538445

  20. Cerebral asymmetry in a selected Chinese population

    International Nuclear Information System (INIS)

    Wang, Y.X.; He, G.X.; Tong, G.H.; Wang, D.B.; Xu, K.Y.

    1999-01-01

    Previous studies have demonstrated anatomical differences between the two cerebral hemispheres and ethnic differences in cerebral asymmetry. This study examined asymmetry of Chinese living in Shanghai. Measurements were taken across the frontal, mid-cerebral and occipital regions from normal head computed tomography (CT) scans of 200 Chinese Shanghai residents (100 male and 100 female, aged 6-73 years, average 48.7 years). The results were compared with reported data in the literature. The following results were found: (i) In the frontal region the right side was larger than the left in 57.5% of cases, equal in 10.5% and smaller in 32% of cases; in the mid-cerebral region the right side was larger than the left in 65.5% of cases, equal in 12.5% and smaller in 22% of cases; in the occipital regions the right side was larger than the left in 34.5% of cases, equal in 8.5% and smaller in 57% of cases. The average right-left differences between the frontal, mid-cerebral and occipital regions were 0.43 mm, 0.9 mm and 0.4 mm respectively. No difference in cerebral asymmetry existed between males and females. The occipital lobes showed the greatest individual asymmetry. The distribution of cerebral asymmetry of Chinese in Shanghai showed similarity to North American Whites rather than North American Blacks, but the average right-left differences were smaller than those of Whites. Copyright (1999) Blackwell Science Pty Ltd