WorldWideScience

Sample records for left brain vascular

  1. Brain abscesses associated with right-to-left shunts in adults.

    Science.gov (United States)

    Memon, Kashif A; Cleveland, Kerry O; Gelfand, Michael S

    2012-04-01

    Although brain abscesses are frequently cryptogenic in origin, bacteria must reach the brain either by direct or hematogenous spread. Right-to-left shunts, caused either by intrapulmonary vascular malformations or congenital heart defects, may allow microorganisms to evade the normal host defenses in the lungs and lead to development of brain abscesses. Two patients recently presented with brain abscesses and were found to have conditions associated with right-to-left shunts. The diagnosis of brain abscess should prompt the clinician to consider right-to-left shunts as a possible predisposing condition for brain abscess.

  2. Left-right subtraction of brain CT

    International Nuclear Information System (INIS)

    Ishiguchi, Tsuneo; Sakuma, Sadayuki

    1986-01-01

    A new image-processing method to obtain a left-right subtraction image of CT was designed for the automated detection of abnormalities in brain CT. An original CT image was divided in two by a centerline. Then the right half of the image was subtracted from the left half by calculating the absorption value of the pixels on the symmetrical positions against the centerline. The mean and the standard deviation of the absorption value of the pixels in the subtraction image were used as parameters for analysis, and the detectability of abnormal CT findings was evaluated in 100 cases - 50 cases each with normal and abnormal CT. The presence of abnormalities could be diagnosed with a sensitivity of 86 %, a specificity of 90 %, and an overall accuracy of 88 % when the borderline of these parameters between normal and abnormal CT was set at the mean + 2SD in the normal group. As a further analysis, the CT image was subdivided into several areas from a functional or anatomical viewpoint, such as cerebral vascular territories, and the left-right subtraction image of each area was obtained. The possibilities of diagnosing the location of an abnormality and of detecting smaller lesions with this method were shown. Left-right subtraction was considered to be a useful method for the detection of asymmetric abnormalities in the automated diagnosis of brain CT. (author)

  3. A Right Brain/Left Brain Model of Acting.

    Science.gov (United States)

    Bowlen, Clark

    Using current right brain/left brain research, this paper develops a model that explains acting's underlying quality--the actor is both himself and the character. Part 1 presents (1) the background of the right brain/left brain theory, (2) studies showing that propositional communication is a left hemisphere function while affective communication…

  4. Vascular Cognitive Impairment Linked to Brain Endothelium Inflammation in Early Stages of Heart Failure in Mice.

    Science.gov (United States)

    Adamski, Mateusz G; Sternak, Magdalena; Mohaissen, Tasnim; Kaczor, Dawid; Wierońska, Joanna M; Malinowska, Monika; Czaban, Iwona; Byk, Katarzyna; Lyngsø, Kristina S; Przyborowski, Kamil; Hansen, Pernille B L; Wilczyński, Grzegorz; Chlopicki, Stefan

    2018-03-26

    Although advanced heart failure (HF) is a clinically documented risk factor for vascular cognitive impairment, the occurrence and pathomechanisms of vascular cognitive impairment in early stages of HF are equivocal. Here, we characterize vascular cognitive impairment in the early stages of HF development and assess whether cerebral hypoperfusion or prothrombotic conditions are involved. Tgαq*44 mice with slowly developing isolated HF triggered by cardiomyocyte-specific overexpression of G-αq*44 protein were studied before the end-stage HF, at the ages of 3, 6, and 10 months: before left ventricle dysfunction; at the stage of early left ventricle diastolic dysfunction (with preserved ejection fraction); and left ventricle diastolic/systolic dysfunction, respectively. In 6- to 10-month-old but not in 3-month-old Tgαq*44 mice, behavioral and cognitive impairment was identified with compromised blood-brain barrier permeability, most significantly in brain cortex, that was associated with myelin sheet loss and changes in astrocytes and microglia. Brain endothelial cells displayed increased E-selectin immunoreactivity, which was accompanied by increased amyloid-β 1-42 accumulation in piriform cortex and increased cortical oxidative stress (8-OHdG immunoreactivity). Resting cerebral blood flow measured by magnetic resonance imaging in vivo was preserved, but ex vivo NO-dependent cortical arteriole flow regulation was impaired. Platelet hyperreactivity was present in 3- to 10-month-old Tgαq*44 mice, but it was not associated with increased platelet-dependent thrombogenicity. We report for the first time that vascular cognitive impairment is already present in the early stage of HF development, even before left ventricle systolic dysfunction. The underlying pathomechanism, independent of brain hypoperfusion, involves preceding platelet hyperreactivity and brain endothelium inflammatory activation. © 2018 The Authors. Published on behalf of the American Heart

  5. Right-Brained Kids in Left-Brained Schools

    Science.gov (United States)

    Hunter, Madeline

    1976-01-01

    Students who learn well through left hemisphere brain input (oral and written) have minimal practice in using the right hemisphere, while those who are more proficient in right hemisphere (visual) input processing are handicapped by having to use primarily their left brains. (MB)

  6. Left brain, right brain: facts and fantasies.

    Directory of Open Access Journals (Sweden)

    Michael C Corballis

    2014-01-01

    Full Text Available Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the "norm" of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal.

  7. Left brain, right brain: facts and fantasies.

    Science.gov (United States)

    Corballis, Michael C

    2014-01-01

    Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the "norm" of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal.

  8. Neglect severity after left and right brain damage.

    Science.gov (United States)

    Suchan, Julia; Rorden, Chris; Karnath, Hans-Otto

    2012-05-01

    While unilateral spatial neglect after left brain damage is undoubtedly less common than spatial neglect after a right hemisphere lesion, it is also assumed to be less severe. Here we directly test this latter hypothesis using a continuous measure of neglect severity: the so-called Center of Cancellation (CoC). Rorden and Karnath (2010) recently validated this index for right brain damaged neglect patients. A first aim of the present study was to evaluate this new measure for spatial neglect after left brain damage. In a group of 48 left-sided stroke patients with and without neglect, a score greater than -0.086 on the Bells Test and greater than -0.024 on the Letter Cancellation Task turned out to indicate neglect behavior for acute left brain damaged patients. A second aim was to directly compare the severity of spatial neglect after left versus right brain injury by using the new CoC measure. While neglect is less frequent following left than right hemisphere injury, we found that when this symptom occurs it is of similar severity in acute left brain injury as in patients after acute right brain injury. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. The vascular basement membrane in the healthy and pathological brain.

    Science.gov (United States)

    Thomsen, Maj S; Routhe, Lisa J; Moos, Torben

    2017-10-01

    The vascular basement membrane contributes to the integrity of the blood-brain barrier (BBB), which is formed by brain capillary endothelial cells (BCECs). The BCECs receive support from pericytes embedded in the vascular basement membrane and from astrocyte endfeet. The vascular basement membrane forms a three-dimensional protein network predominantly composed of laminin, collagen IV, nidogen, and heparan sulfate proteoglycans that mutually support interactions between BCECs, pericytes, and astrocytes. Major changes in the molecular composition of the vascular basement membrane are observed in acute and chronic neuropathological settings. In the present review, we cover the significance of the vascular basement membrane in the healthy and pathological brain. In stroke, loss of BBB integrity is accompanied by upregulation of proteolytic enzymes and degradation of vascular basement membrane proteins. There is yet no causal relationship between expression or activity of matrix proteases and the degradation of vascular matrix proteins in vivo. In Alzheimer's disease, changes in the vascular basement membrane include accumulation of Aβ, composite changes, and thickening. The physical properties of the vascular basement membrane carry the potential of obstructing drug delivery to the brain, e.g. thickening of the basement membrane can affect drug delivery to the brain, especially the delivery of nanoparticles.

  10. Left Brain/Right Brain Learning for Adult Education.

    Science.gov (United States)

    Garvin, Barbara

    1986-01-01

    Contrasts and compares the theory and practice of adult education as it relates to the issue of right brain/left brain learning. The author stresses the need for a whole-brain approach to teaching and suggests that adult educators, given their philosophical directions, are the perfect potential users of this integrated system. (Editor/CT)

  11. Teaching Creativity for Right Brain and Left Brain Thinkers.

    Science.gov (United States)

    Geske, Joel

    Right brain and left brain dominant people process information differently and need different techniques to learn how to become more creative. Various exercises can help students take advantage of both sides of their brains. Students must feel comfortable and unthreatened to reach maximal creativity, and a positive personal relationship with…

  12. Brain Arterial Diameters as a Risk Factor for Vascular Events.

    Science.gov (United States)

    Gutierrez, Jose; Cheung, Ken; Bagci, Ahmet; Rundek, Tatjana; Alperin, Noam; Sacco, Ralph L; Wright, Clinton B; Elkind, Mitchell S V

    2015-08-06

    Arterial luminal diameters are routinely used to assess for vascular disease. Although small diameters are typically considered pathological, arterial dilatation has also been associated with disease. We hypothesize that extreme arterial diameters are biomarkers of the risk of vascular events. Participants in the Northern Manhattan Study who had a time-of-flight magnetic resonance angiography were included in this analysis (N=1034). A global arterial Z-score, called the brain arterial remodeling (BAR) score, was obtained by averaging the measured diameters within each individual. Individuals with a BAR score -2 and 2 SDs had the largest diameters. All vascular events were recorded prospectively after the brain magnetic resonance imaging. Spline curves and incidence rates were used to test our hypothesis. The association of the BAR score with death (P=0.001), vascular death (P=0.02), any vascular event (P=0.05), and myocardial infarction (P=0.10) was U-shaped except for ischemic stroke (P=0.74). Consequently, incidence rates for death, vascular death, myocardial infarction, and any vascular event were higher in individuals with the largest diameters, whereas individuals with the smallest diameters had a higher incidence of death, vascular death, any vascular event, and ischemic stroke compared with individuals with average diameters. The risk of death, vascular death, and any vascular event increased at both extremes of brain arterial diameters. The pathophysiology linking brain arterial remodeling to systemic vascular events needs further research. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  13. Left Brain to Right Brain: Notes from the Human Laboratory.

    Science.gov (United States)

    Baumli, Francis

    1982-01-01

    Examines the implications of the left brain-right brain theory on communications styles in male-female relationships. The author contends that women tend to use the vagueness of their emotional responses manipulatively. Men need to apply rational approaches to increase clarity in communication. (AM)

  14. The vascular basement membrane as "soil" in brain metastasis.

    Directory of Open Access Journals (Sweden)

    W Shawn Carbonell

    2009-06-01

    Full Text Available Brain-specific homing and direct interactions with the neural substance are prominent hypotheses for brain metastasis formation and a modern manifestation of Paget's "seed and soil" concept. However, there is little direct evidence for this "neurotropic" growth in vivo. In contrast, many experimental studies have anecdotally noted the propensity of metastatic cells to grow along the exterior of pre-existing vessels of the CNS, a process termed vascular cooption. These observations suggest the "soil" for malignant cells in the CNS may well be vascular, rather than neuronal. We used in vivo experimental models of brain metastasis and analysis of human clinical specimens to test this hypothesis. Indeed, over 95% of early micrometastases examined demonstrated vascular cooption with little evidence for isolated neurotropic growth. This vessel interaction was adhesive in nature implicating the vascular basement membrane (VBM as the active substrate for tumor cell growth in the brain. Accordingly, VBM promoted adhesion and invasion of malignant cells and was sufficient for tumor growth prior to any evidence of angiogenesis. Blockade or loss of the beta1 integrin subunit in tumor cells prevented adhesion to VBM and attenuated metastasis establishment and growth in vivo. Our data establishes a new understanding of CNS metastasis formation and identifies the neurovasculature as the critical partner for such growth. Further, we have elucidated the mechanism of vascular cooption for the first time. These findings may help inform the design of effective molecular therapies for patients with fatal CNS malignancies.

  15. Right Brain/Left Brain President Barack Obama's Uncommon Leadership Ability and How We Can Each Develop It

    CERN Document Server

    Decosterd, Mary Lou

    2010-01-01

    Right Brain/Left Brain President: Barack Obama's Uncommon Leadership Ability and How We Can Each Develop It is an inspirational guide to leadership as it should be practiced, conveyed through an up-close look at the man who sets the new leadership bar. Author Mary Lou D'costerd uses her Right Brain/Left Brain Leadership Model to frame Barack Obama's leadership skill sets. Her book shows that Obama's unique brand of leadership is the result of his extraordinary ability to leverage full-brain potential in the ways he thinks, decides, and acts. ||Right Brain/Left Brain President examines Obama's

  16. Left Brain/Right Brain: Research and Learning. Focused Access to Selected Topics (FAST) Bibliography No. 12.

    Science.gov (United States)

    Eppele, Ruth

    This 27-item bibliography represents the variety of articles added to the ERIC database from 1983 through 1988 on left-brain/right-brain research, theory, and application as it relates to classroom incorporation. Included are conflicting opinions as to the usefulness of left-brain/right-brain studies and their application in the learning…

  17. Indian-ink perfusion based method for reconstructing continuous vascular networks in whole mouse brain.

    Directory of Open Access Journals (Sweden)

    Songchao Xue

    Full Text Available The topology of the cerebral vasculature, which is the energy transport corridor of the brain, can be used to study cerebral circulatory pathways. Limited by the restrictions of the vascular markers and imaging methods, studies on cerebral vascular structure now mainly focus on either observation of the macro vessels in a whole brain or imaging of the micro vessels in a small region. Simultaneous vascular studies of arteries, veins and capillaries have not been achieved in the whole brain of mammals. Here, we have combined the improved gelatin-Indian ink vessel perfusion process with Micro-Optical Sectioning Tomography for imaging the vessel network of an entire mouse brain. With 17 days of work, an integral dataset for the entire cerebral vessels was acquired. The voxel resolution is 0.35×0.4×2.0 µm(3 for the whole brain. Besides the observations of fine and complex vascular networks in the reconstructed slices and entire brain views, a representative continuous vascular tracking has been demonstrated in the deep thalamus. This study provided an effective method for studying the entire macro and micro vascular networks of mouse brain simultaneously.

  18. Dysglycemia, brain volume and vascular lesions on MRI in a memory clinic population

    NARCIS (Netherlands)

    Exalto, L.G.; van der Flier, W.M.; Scheltens, P.; Vrenken, H.; Biessels, G.J.

    2014-01-01

    Objective It is unclear, if the association between abnormalities in glucose metabolism (dysglycemia) and impaired cognitive functioning is primarily driven by degenerative or vascular brain damage. We therefore examined the relation between dysglycemia and brain volume and vascular lesions on MRI

  19. Scintigraphic assessment of vascularity and blood-tissue barrier of human brain tumours

    International Nuclear Information System (INIS)

    Front, D.

    1978-01-01

    Assessment of vascularity and blood-tissue barrier was performed by sequential scintigraphy in 43 patients with brain tumours. The blood-tumour barrier was evaluated by use of sup(99m)Tc-pertechnetate, and vascularity using sup(99m)Tc-labelled red blood cells. Three groups of tumours were found: tumours with low vascularity and permeable barrier, tumours with high vascularity and permeable barrier, and tumours with low vascularity and relatively impermeable barrier. The first group indicates that when vessels are permeable, there may be a rapid penetration of large amounts of pertechnetate into the tumour even when vascularity is not increased. In the other two groups penetration of pertechnetate into the tumour is affected by vascularity, as it determines the total area where passage of the radiopharmaceutical takes place. It is suggested that the permeability of the blood-tumour barrier and the amount of vascularity may have an effect on the success of chemotherapy in brain tumours. (author)

  20. Is the Brain Stuff Still the Right (or Left) Stuff?

    Science.gov (United States)

    Lynch, Dudley

    1986-01-01

    The author presents evidence that supports the argument for the validity of right brain-left brain theories. Discusses the brain's "sense of the future," what the brain does with new information, and altering the brain's ability to process change. A bibliography of further readings is included. (CT)

  1. [Right-side aortic arch with aberrant left subclavian artery and Kommerell's diverticulum. A cause of vascular ring].

    Science.gov (United States)

    Tamayo-Espinosa, Tania; Erdmenger-Orellana, Julio; Becerra-Becerra, Rosario; Balderrabano-Saucedo, Norma; Segura-Standford, Begoña

    The right-side aortic arch may be associated with aberrant left subclavian artery, in some cases this artery originates from an aneurismal dilation of the aorta called Kommerell's diverticulum. A report is presented on 2 cases of vascular ring formed by a right-side aortic arch, anomalous left subclavian artery, Kommerell's diverticulum and left patent ductus arteriosus. A review the literature was also performed as regards the embryological development and the imaging methods used to help in the diagnosis of this rare vascular anomaly. Copyright © 2017 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.

  2. An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging.

    Science.gov (United States)

    Nielsen, Jared A; Zielinski, Brandon A; Ferguson, Michael A; Lainhart, Janet E; Anderson, Jeffrey S

    2013-01-01

    Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right-brained" network strength

  3. Brain MRI signal abnormalities and right-to-left shunting in asymptomatic military divers.

    Science.gov (United States)

    Gempp, Emmanuel; Sbardella, Fabrice; Stephant, Eric; Constantin, Pascal; De Maistre, Sebastien; Louge, Pierre; Blatteau, Jean-Eric

    2010-11-01

    We conducted a controlled study to assess the prevalence of brain MRI hyperintense signals and their correlation with right-to-left shunting (RLS) in military divers. We prospectively enrolled 32 asymptomatic military divers under 41 yr of age and 32 non-diving healthy subjects matched with respect to age and vascular disease risk factors. We examined both groups with a 3-Tesla brain MRI; RLS was detected using transcranial pulsed Doppler in divers only. Hyperintense spots were observed in 43.7% of the divers and 21.8% of the control subjects. In particular, divers with significant shunting exhibited a higher prevalence of hyperintensities compared to those with slight or no RLS (75% vs. 25%, respectively). Linear trend analysis also revealed a positive correlation between focal white matter changes, determined using a validated visual rating scale and the RLS grade. Healthy military divers with a hemodynamically relevant RLS have an increased likelihood of cerebral hyperintense spots compared to age-matched normal subjects. The clinical relevance of these MRI signal abnormalities and their causal relationship with diving remain unclear.

  4. Primo Vascular System in the Subarachnoid Space of a Mouse Brain

    Directory of Open Access Journals (Sweden)

    Sang-Ho Moon

    2013-01-01

    Full Text Available Objective. Recently, a novel circulatory system, the primo vascular system (PVS, was found in the brain ventricles and in the central canal of the spinal cord of a rat. The aim of the current work is to detect the PVS along the transverse sinuses between the cerebrum and the cerebellum of a mouse brain. Materials and Methods. The PVS in the subarachnoid space was analyzed after staining with 4',6-diamidino-2-phenylindole (DAPI and phalloidin in order to identify the PVS. With confocal microscopy and polarization microscopy, the primo vessel underneath the sagittal sinus was examined. The primo nodes under the transversal sinuses were observed after peeling off the dura and pia maters of the brain. Results. The primo vessel underneath the superior sagittal sinus was observed and showed linear optical polarization, similarly to the rabbit and the rat cases. The primo nodes were observed under the left and the right transverse sinuses at distances of 3,763 μm and 5,967 μm. The average size was 155 μm × 248 μm. Conclusion. The observation of primo vessels was consistent with previous observations in rabbits and rats, and primo nodes under the transverse sinuses were observed for the first time in this work.

  5. Multi-detector row computed tomographic evaluation of a rare type of complete vascular ring: Double aortic arch with atretic left arch distal to the origin of left subclavian artery

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Ying Ying; Fu, Ching Yun; Wei, Hao Ji; Tsai, I Chen; Chen, Clayton Chi Chang [Taichung Veterans General Hospital, Taichung (China)

    2013-10-15

    Double aortic arch with an atretic left arch distal to the origin of left subclavian artery was diagnosed with multi-detector row computed tomography (MDCT) in two children with dysphagia. This rare type of complete vascular ring is clinically important because it may be confused with right aortic arch in mirror imaging. Anatomic details of this rare type of complete vascular ring demonstrated on MDCT facilitated appropriate surgical treatment.

  6. Functional Magnetic Resonance Imaging in the Presurgical Evaluation of Brain Vascular Malformations

    International Nuclear Information System (INIS)

    Montes, Natalia; Herrera, Diego A; Vargas Sergio A

    2010-01-01

    Objective: To describe our experience in presurgical evaluation of intracranial vascular malformations by means of functional magnetic resonance (fMRI). Method: To evaluate eight patients with cerebral vascular malformations (seven arterio-venous malformation [AVM ] and one cavernous malformation) to send to the eloquent cortex with RMf pre-surgical mapping is assessed. Used a technique that is dependent on the level of oxygen (BOLD) to locate these areas in the cerebral vascular malformation, by applying different paradigms. Results: We found one AVM at the right temporal lobe with activation of the parahipocampal gyrus at the contralateral side using a memory paradigm; another patient with an AVM at the right mesotemporal lobe showed activation of visual and spatial memory of the contralateral hippocampus and parahippocampus. One patient with an AVM at the left parietal lobe without compromise of sensorial and motor cortex; a cavernous malformation at the left angular gyrus with hemispheric language dominance in that side; one right thalamic AVM, one periventricular AVM bilateral language dominance; one left occipital AVM with decreased activation in visual association cortex; one temporoccipital AVM with left language dominance and neurovascular uncoupling. Conclusion: fMRI can delineate anatomically the relationship between the lesion and eloquent cortex, providing useful information for presurgical planning and allowing risk estimation of intervention.

  7. Building Creativity Training: Drawing with Left Hand to Stimulate Left Brain in Children Age 5-7 Years Old

    Science.gov (United States)

    Saputra, Yanty Hardi; Sabana, Setiawan

    2016-01-01

    Researcher and professionals that started researching about brains since 1930 believe that left brain is a rational brain, which is tightly related with the IO, rational thinking, arithmetic thinking, verbal, segmental, focus, serial (linear), finding the differences, and time management, Meanwhile right brain is the part of brain that controlled…

  8. An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Jared A Nielsen

    Full Text Available Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction and language regions (e.g., Broca Area and Wernicke Area, whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields. Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right-brained

  9. Usage of fMRI for pre-surgical planning in brain tumor and vascular lesion patients: Task and statistical threshold effects on language lateralization☆☆☆

    Science.gov (United States)

    Nadkarni, Tanvi N.; Andreoli, Matthew J.; Nair, Veena A.; Yin, Peng; Young, Brittany M.; Kundu, Bornali; Pankratz, Joshua; Radtke, Andrew; Holdsworth, Ryan; Kuo, John S.; Field, Aaron S.; Baskaya, Mustafa K.; Moritz, Chad H.; Meyerand, M. Elizabeth; Prabhakaran, Vivek

    2014-01-01

    Background and purpose Functional magnetic resonance imaging (fMRI) is a non-invasive pre-surgical tool used to assess localization and lateralization of language function in brain tumor and vascular lesion patients in order to guide neurosurgeons as they devise a surgical approach to treat these lesions. We investigated the effect of varying the statistical thresholds as well as the type of language tasks on functional activation patterns and language lateralization. We hypothesized that language lateralization indices (LIs) would be threshold- and task-dependent. Materials and methods Imaging data were collected from brain tumor patients (n = 67, average age 48 years) and vascular lesion patients (n = 25, average age 43 years) who received pre-operative fMRI scanning. Both patient groups performed expressive (antonym and/or letter-word generation) and receptive (tumor patients performed text-reading; vascular lesion patients performed text-listening) language tasks. A control group (n = 25, average age 45 years) performed the letter-word generation task. Results Brain tumor patients showed left-lateralization during the antonym-word generation and text-reading tasks at high threshold values and bilateral activation during the letter-word generation task, irrespective of the threshold values. Vascular lesion patients showed left-lateralization during the antonym and letter-word generation, and text-listening tasks at high threshold values. Conclusion Our results suggest that the type of task and the applied statistical threshold influence LI and that the threshold effects on LI may be task-specific. Thus identifying critical functional regions and computing LIs should be conducted on an individual subject basis, using a continuum of threshold values with different tasks to provide the most accurate information for surgical planning to minimize post-operative language deficits. PMID:25685705

  10. Late vascular effects in irradiated mice brain

    International Nuclear Information System (INIS)

    Yoshii, Yoshihiko; Maki, Yutaka; Phillips, T.L.

    1982-01-01

    The whole brains of mice were irradiated with 250 kVp X-ray at 120 rad min -1 (1.6 mm Cu HVL, TSD 50 cm) and a histological study was done. The dose range of X-irradiation was from 1300 to 2500 rads. i.e., 1300, 1500, 1750, 2000, and 2500 rads. In the microscopic examination, the mice were killed at the regular postirradiation intervals of between 15 and 20, 31 and 40, 41 and 50, 51 and 60, 61 and 70, 71 and 80, 81 and 90, 139 and 177 weeks. A histological examination was performed by a morphometric estimation of vascular lesion in which the degree of the damage to the arterial system was scored through whole serial brain sections. Necrosis (encephalomalacia), atrophy, cell infiltration, and telangiectatic vascular change of the brain, caused as a result of the fibrinoid necrosis of the large artery were observed. Incidence of the fibrinoid necrosis increased dose dependently between 41 and 87 weeks after irradiation. Mean score of fibrinoid necrosis increased dose dependently approximately 60 weeks after irradiation. It is suggested that scores of large vessel damage do relate to dose at 41 - 87 weeks and can be used to quantify the vessel injury and a fibrinoid necrosis of the large vessels may relate to the incidence of radionecrosis. (author)

  11. An Evaluation of the Left-Brain vs. Right-Brain Hypothesis with Resting State Functional Connectivity Magnetic Resonance Imaging

    OpenAIRE

    Nielsen, Jared A.; Zielinski, Brandon A.; Ferguson, Michael A.; Lainhart, Janet E.; Anderson, Jeffrey S.

    2013-01-01

    Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from...

  12. Left and right brain-oriented hemisity subjects show opposite behavioral preferences.

    Science.gov (United States)

    Morton, Bruce E

    2012-01-01

    Recently, three independent, intercorrelated biophysical measures have provided the first quantitative measures of a binary form of behavioral laterality called "Hemisity," a term referring to inherent opposite right or left brain-oriented differences in thinking and behavioral styles. Crucially, the right or left brain-orientation of individuals assessed by these methods was later found to be essentially congruent with the thicker side of their ventral gyrus of the anterior cingulate cortex (vgACC) as revealed by a 3 min MRI procedure. Laterality of this putative executive structural element has thus become the primary standard defining individual hemisity. Here, the behavior of 150 subjects, whose hemisity had been calibrated by MRI, was assessed using five MRI-calibrated preference questionnaires, two of which were new. Right and left brain-oriented subjects selected opposite answers (p > 0.05) for 47 of the 107 "either-or," forced choice type preference questionnaire items. The resulting 30 hemisity subtype preference differences were present in several areas. These were: (1) in logical orientation, (2) in type of consciousness, (3) in fear level and sensitivity, (4) in social-professional orientation, and (5) in pair bonding-spousal dominance style. The right and left brain-oriented hemisity subtype subjects, sorted on the anatomical basis of upon which brain side their vgACC was thickest, showed 30 significant differences in their "either-or" type of behavioral preferences.

  13. Left and right brain-oriented hemisity subjects show opposite behavioral preferences

    Directory of Open Access Journals (Sweden)

    Bruce Eldine Morton

    2012-11-01

    Full Text Available Introduction: Recently, three independent, intercorrelated biophysical measures have provided the first quantitative measures of a binary form of behavioral laterality called Hemisity, a term referring to inherent opposite right or left brain-oriented differences in thinking and behavioral styles. Crucially, the right or left brain-orientation of individuals assessed by these methods was later found to be essentially congruent with the thicker side of their ventral gyrus of the anterior cingulate cortex (vgACC as revealed by a 3 minute MRI procedure. Laterality of this putative executive structural element has thus become the primary standard defining individual hemisity. Methods: Here, the behavior of 150 subjects, whose hemisity had been calibrated by MRI, was assessed using five MRI-calibrated preference questionnaires, two of which were new.Results: Right and left brain-oriented subjects selected opposite answers (p > 0.05 for 47 of the 107 either-or, forced choice type preference questionnaire items. Hemisity subtype preference differences were present in several areas. They were in: a. logical orientation, b. type of consciousness, c. fear level and sensitivity, d. social-professional orientation, and e. pair bonding-spousal dominance style.Conclusions: The right and left brain-oriented hemisity subtype subjects, sorted on the anatomical basis of upon which brain side their vgACC was thickest, showed numerous significant differences in their either-or type of behavioral preferences.

  14. Effects of heavy-ion radiation on the brain vascular system

    International Nuclear Information System (INIS)

    Yang, T.C.; Craise, L.M.; Tobias, C.A.

    1985-01-01

    In the laboratory, the authors have been studying the effects of heavy-ion radiation on the vascular system, using neonatal rats as a model system. They investigated the response of the brain vascular system to ionizing radiation and found that distinct petechial hemorrhages developed in the cerebral cortex within a few hours after irradiation, reached a maximum after about 13 to 24 hours, and then decreased exponentially with time. No brain hemorrhage was found in neonatal rats 12 days after irradiation. Heavy ions induce more hemorrhages than x rays for a given dose, and the RBE for 670-MeV/u neon particles ranges from about 2.0 for low doses to about 1.4 for high doses

  15. Game Utilization as a Media to Train the Balance of Left and Right Brain

    Directory of Open Access Journals (Sweden)

    Evan Wijaya

    2017-10-01

    Full Text Available Human have two brain hemispheres, left hemisphere and right hemisphere. Left hemisphere is used for processing language, words, numbers, equations, etc. Right hemisphere is used for processing creativity, imagination, music, color, etc. Every human should have balance between left and right hemisphere. One method that could be used for balancing brain hemispheres is to use left and right hands for using tools, writing, or typing. “Typing Rhythm” is a game for PC platform, the purpose of this game is for brain balancing exercise by typing lyric of a song while the song is played.

  16. Association between right-to-left shunts and brain lesions in sport divers.

    Science.gov (United States)

    Gerriets, Tibo; Tetzlaff, Kay; Hutzelmann, Alfred; Liceni, Thomas; Kopiske, Gerrit; Struck, Niklas; Reuter, Michael; Kaps, Manfred

    2003-10-01

    Recent studies suggest that healthy sport divers may develop clinically silent brain damage, based on the association between a finding of multiple brain lesions on MRI and the presence of right-to-left shunt, a pathway for venous gas bubbles to enter the arterial system. We performed echocontrast transcranial Doppler sonography in 42 sport divers to determine the presence of a right-to-left shunt. Cranial MRI was carried out using a 1.5 T magnet. A lesion was counted if it was hyperintense on both T2-weighted and T2-weighted fluid attenuated inversion recovery sequences. To test the hypothesis that the occurrence of postdive arterial gas emboli is related to brain lesions on MRI, we measured postdive intravascular bubbles in a subset of 15 divers 30 min after open water scuba dives. Echocontrast transcranial Doppler sonography revealed a right-to-left shunt in 16 of the divers (38%). Only one hyperintensive lesion of the central white matter was found and that was in a diver with no evidence of a right-to-left shunt. Postdive arterial gas emboli were detected in 3 out of 15 divers; they had a right-to-left shunt, but no pathologic findings on cranial magnetic resonance imaging. Our data support the theory that right-to-left shunts can serve as a pathway for venous gas bubbles into the arterial circulation. However, we could not confirm an association between brain lesions and the presence of a right-to-left shunt in sport divers.

  17. Simulations of magnetic capturing of drug carriers in the brain vascular system

    Energy Technology Data Exchange (ETDEWEB)

    Kenjeres, S., E-mail: S.Kenjeres@tudelft.nl [Department of Multi-Scale Physics, Faculty of Applied Sciences, J.M. Burgerscentre for Fluid Dynamics, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft (Netherlands); Righolt, B.W. [Department of Multi-Scale Physics, Faculty of Applied Sciences, J.M. Burgerscentre for Fluid Dynamics, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft (Netherlands)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Blood flow and magnetic particles distributions in the brain vascular system simulated. Black-Right-Pointing-Pointer Numerical mesh generated from raw MRI images. Black-Right-Pointing-Pointer Significant increase in local capturing of magnetic particles obtained. Black-Right-Pointing-Pointer Promising technique for localised non-invasive treatment of brain tumours. - Abstract: The present paper reports on numerical simulations of blood flow and magnetic drug carrier distributions in a complex brain vascular system. The blood is represented as a non-Newtonian fluid by the generalised power law. The Lagrangian tracking of the double-layer spherical particles is performed to estimate particle deposition under influence of imposed magnetic field gradients across arterial walls. Two situations are considered: neutral (magnetic field off) and active control (magnetic field on) case. The double-layer spherical particles that mimic a real medical drug are characterised by two characteristic diameters - the outer one and the inner one of the magnetic core. A numerical mesh of the brain vascular system consisting of multi-branching arteries is generated from raw MRI scan images of a patient. The blood is supplied through four main inlet arteries and the entire vascular system includes more than 30 outlets, which are modelled by Murray's law. The no-slip boundary condition is applied for velocity components along the smooth and rigid arterial walls. Numerical simulations revealed detailed insights into blood flow patterns, wall-shear-stress and local particle deposition efficiency along arterial walls. It is demonstrated that magnetically targeted drug delivery significantly increased the particle capturing efficiency in the pre-defined regions. This feature can be potentially useful for localised, non-invasive treatment of brain tumours.

  18. On the Relationship between Right- brain and Left- brain Dominance and Reading Comprehension Test Performance of Iranian EFL Learners

    Directory of Open Access Journals (Sweden)

    Hassan Soleimani

    2012-05-01

    Full Text Available A tremendous amount of works have been conducted by psycholinguistics to identify hemisphere processing during second/ foreign language learning, or in other words to investigate the role of the brain hemisphere dominance in language performance of learners. Most of these researches have focused on single words and word pairs (e.g., Anaki et al., 1998; Arzouan et. al., 2007; Faust & Mahal, 2007 or simple sentences (Rapp et al., 2007; Kacinik & Chiarello, 2007, and it has been discovered that there is an advantage of right hemisphere for metaphors and an
    advantage of left hemisphere for literal text. But the present research was designed to study Iranian EFL learners' performance in different reading tasks, so there could be differences between the consequences of the former research and the results of the present study due to the context. Here left-brain and right-brain dominance was investigated in 60 individuals (20 right-handed and 10 left-handed male, 20 right-handed and 10 left-handed female via the Edinburg Handedness Questionnaire (EHQ. The research results suggested that the right-handed learners who are supposed to be left-brain outperformed the left-handed ones; and regarding participant's gender, male learners outperformed female learners on reading comprehension test tasks.

  19. The Association of Long-Functioning Hemodialysis Vascular Access with Prevalence of Left Ventricular Hypertrophy in Kidney Transplant Recipients

    Directory of Open Access Journals (Sweden)

    Aureliusz Kolonko

    2014-01-01

    Full Text Available Left ventricular hypertrophy (LVH is frequently observed in chronic dialysis patients and is also highly prevalent in kidney transplant recipients. This study evaluates the impact of long-functioning hemodialysis vascular access on LVH in single center cohort of kidney transplant recipients. 162 patients at 8.7 ± 1.8 years after kidney transplantation were enrolled. Echocardiography, carotid ultrasound, and assessment of pulse wave velocity were performed. LVH was defined based on left ventricular mass (LVM indexed for body surface area (BSA and height2.7. There were 67 patients with and 95 without patent vascular access. Both study groups were comparable with respect to gender, age, duration of dialysis therapy, and time after transplantation, kidney graft function, and cardiovascular comorbidities. Patients with patent vascular access were characterized by significantly elevated LVM and significantly greater percentage of LVH, based on LVMI/BSA (66.7 versus 48.4%, P=0.02. OR for LVH in patients with patent vascular access was 2.39 (1.19–4.76, P=0.01. Regression analyses confirmed an independent contribution of patent vascular access to higher LVM and increased prevalence of LVH. We concluded that long-lasting patent hemodialysis vascular access after kidney transplantation is associated with the increased prevalence of LVH in kidney transplant recipients.

  20. Differences in Brain Adaptive Functional Reorganization in Right and Left Total Brachial Plexus Injury Patients.

    Science.gov (United States)

    Feng, Jun-Tao; Liu, Han-Qiu; Xu, Jian-Guang; Gu, Yu-Dong; Shen, Yun-Dong

    2015-09-01

    Total brachial plexus avulsion injury (BPAI) results in the total functional loss of the affected limb and induces extensive brain functional reorganization. However, because the dominant hand is responsible for more cognitive-related tasks, injuries on this side induce more adaptive changes in brain function. In this article, we explored the differences in brain functional reorganization after injuries in unilateral BPAI patients. We applied resting-state functional magnetic resonance imaging scanning to 10 left and 10 right BPAI patients and 20 healthy control subjects. The amplitude of low-frequency fluctuation (ALFF), which is a resting-state index, was calculated for all patients as an indication of the functional activity level of the brain. Two-sample t-tests were performed between left BPAI patients and controls, right BPAI patients and controls, and between left and right BPAI patients. Two-sample t-tests of the ALFF values revealed that right BPAIs induced larger scale brain reorganization than did left BPAIs. Both left and right BPAIs elicited a decreased ALFF value in the right precuneus (P right BPAI patients exhibited increased ALFF values in a greater number of brain regions than left BPAI patients, including the inferior temporal gyrus, lingual gyrus, calcarine sulcus, and fusiform gyrus. Our results revealed that right BPAIs induced greater extents of brain functional reorganization than left BPAIs, which reflected the relatively more extensive adaptive process that followed injuries of the dominant hand. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The value of brain scanning in cerebro-vascular disease by CT

    International Nuclear Information System (INIS)

    Huber, G.; Emde, H.

    1980-01-01

    Brain scanning by scintigraphy and CT studies of the brain are complementary methods. The precise demonstration of the anatomy and the pathology of the brain by CT is supplemented by brain scintigraphy due to the latter's value to assess the hemodynamic properties of a lesion and thus provide important clues to its site and sometimes even its histology. This is especially true in vascular brain disease thus either dispensing the need for an invasive procedure such as angiography or providing information for a specific approach. (orig.) 891 MG/orig. 892 MKO [de

  2. Brain Vascular Malformation Consortium: Overview, Progress and Future Directions.

    Science.gov (United States)

    Akers, Amy L; Ball, Karen L; Clancy, Marianne; Comi, Anne M; Faughnan, Marie E; Gopal-Srivastava, Rashmi; Jacobs, Thomas P; Kim, Helen; Krischer, Jeffrey; Marchuk, Douglas A; McCulloch, Charles E; Morrison, Leslie; Moses, Marsha; Moy, Claudia S; Pawlikowska, Ludmilla; Young, William L

    2013-04-01

    Brain vascular malformations are resource-intensive to manage effectively, are associated with serious neurological morbidity, lack specific medical therapies, and have no validated biomarkers for disease severity and progression. Investigators have tended to work in "research silos" with suboptimal cross-communication. We present here a paradigm for interdisciplinary collaboration to facilitate rare disease research. The Brain Vascular Malformation Consortium (BVMC) is a multidisciplinary, inter-institutional group of investigators, one of 17 consortia in the Office of Rare Disease Research Rare Disease Clinical Research Network (RDCRN). The diseases under study are: familial Cerebral Cavernous Malformations type 1, common Hispanic mutation (CCM1-CHM); Sturge-Weber Syndrome (SWS); and brain arteriovenous malformation in hereditary hemorrhagic telangiectasia (HHT). Each project is developing biomarkers for disease progression and severity, and has established scalable, relational databases for observational and longitudinal studies that are stored centrally by the RDCRN Data Management and Coordinating Center. Patient Support Organizations (PSOs) are a key RDCRN component in the recruitment and support of participants. The BVMC PSOs include Angioma Alliance, Sturge Weber Foundation , and HHT Foundation International . Our networks of clinical centers of excellence in SWS and HHT, as well as our PSOs, have enhanced BVMC patient recruitment. The BVMC provides unique and valuable resources to the clinical neurovascular community, and recently reported findings are reviewed. Future planned studies will apply successful approaches and insights across the three projects to leverage the combined resources of the BVMC and RDCRN in advancing new biomarkers and treatment strategies for patients with vascular malformations.

  3. Leptomeningeal angiomatosis of the left occipital surface detected by CT scan

    International Nuclear Information System (INIS)

    Niiro, Masaki; Mihara, Tadahiro; Maeda, Yoshiki; Awa, Hiroshi; Kadota, Koki; Asakura, Tetsuhiko

    1982-01-01

    A case of left occipital leptomeningeal angiomatosis was reported. The patient was a 12-year-old boy who had episodes of severe vascular type headache accompanied by transient right homonymous hemianopsia. CT scan showed localized superficial high density area in the left occipital pole. Remarkable enhancement of the lower and inner surface of the left occipital lobe was demonstrated. Angiography showed poor filling of the distal portion of the left posterior cerebral artery. Skull tomograms showed linear calcifications in the left occipital region. Brain scan showed increased RI uptake in the left occipital region. During operation, the surface of the left occipital lobe was covered by excessive, fine, vascular networks which extended over the arachnoid membrane. The abnormal vessels were cauterized by a CO 2 laser as throughly as possible. The occipital pole, felt gritty. Histologically, the abnormal vessels had spread into the subarachnoid space and were predominantly veins with thin and enlarged walls. The abnormal vessels followed the leptomeninges in the sulci of the cerebral cortex. Underneath the abnormal vessels, in the external layers of the cerebral cortex, calcium deposits were scattered and gliosis and degeneration of the ganglion cells were observed. The lesion was comparable with leptomeningeal angiomatosis. Though the pathological findings of the specimen, CT findings, and brain scan findings were extremely similar to those of Sturge-Weber disease, in this case, the typical clinical and roentgenographic findings of Sturge-Weber disease were all absent. (author)

  4. Vascular brain lesions, brain atrophy, and cognitive decline. The Second Manifestations of ARTerial diseased-Magnetic Resonance (SMART-MR) study

    NARCIS (Netherlands)

    Kooistra, M.; Geerlings, M.I.; van der Graaf, Y.; Mali, W.P.T.M.; Vincken, K.L.; Kappelle, L.J.; Muller, M.; Biessels, G.J.

    2014-01-01

    We examined the association between brain atrophy and vascular brain lesions (i.e., white matter lesions [WMLs] or brain infarcts), alone or in combination, with decline in memory and executive functioning over 4 years of follow-up in 448 patients (57 ± 9.5 years) with symptomatic atherosclerotic

  5. [Brain Perfusion, Cognitive Functions, and Vascular Age in Middle Aged Patients With Essential Arterial Hypertension].

    Science.gov (United States)

    Parfenov, V A; Ostroumova, T M; Pеrepelova, E M; Perepelov, V A; Kochetkov, A I; Ostroumova, O D

    2018-05-01

    This study aimed to assess the cognitive functions and cerebral blood flow measured with arterial spin labeling (ASL) and their possible correlations with vascular age in untreated middle-aged patients with grade 1-2 essential arterial hypertension (EAH). We examined 73 subjects aged 40-59 years (33 with EAH and 40 healthy volunteers [controls]). Neuropsychological assessment included Montreal Cognitive Assessment (MoCA), Trail Making test (part A and part B), Stroop Color and Word Test, verbal fluency test (phonemic verbal fluency and semantic verbal fluency), 10‑item word list learning task. All subjects underwent brain MRI. MRI protocol included ASL. Vascular age was calculated by two techniques - using Framingham Heart Study risk tables and SCORE project scales. Patients with EAH had lower performance on phonemic verbal fluency test and lower mean MoCA score (29.2±1.4 vs. 28.1±1.7 points) compared to controls (13.4±3.2, р=0.002; 29.2±1.4, p=0.001, respectively). White matter hyperintensities (WMH) were present in 7.5 % controls and in 51.5 % EAH patients (р=0.0002). Cerebral blood flow (CBF) in EAH patients was lower in both right (39.1±5.6 vs. 45.8±3.2 ml / 100 g / min) and left frontal lobes of the brain (39.2±6.2 и 45.2±3.6 ml / 100 g / min, respectively) compared to controls (р.

  6. DSA - a helpful tool in diagnosis of aberrant left pulmonary artery (vascular sling) in adults

    International Nuclear Information System (INIS)

    Mooyaart, E.L.; Boomsma, J.H.B.; Postmus, P.E.; Formanek, G.A.

    1985-01-01

    Two new adult patients with aberrant origin of the left pulmonary artery from the right pulmonary artery - pulmonary artery sling - are described, totalling the published adult cases to eight. Differentiation from a mediastinal mass closely mimicking this vascular anomaly is discussed. For the definitive diagnosis, digital subtraction angiography was applied for the first time. The clearest demonstration of the anatomy is in 20-25 0 RPO and 20-25 0 sitting position. The aberrant left pulmonary artery in adults is asymptomatic.

  7. Comparative analysis of brain EEG signals generated from the right and left hand while writing

    Science.gov (United States)

    Sardesai, Neha; Jamali Mahabadi, S. E.; Meng, Qinglei; Choa, Fow-Sen

    2016-05-01

    This paper provides a comparative analysis of right handed people and left handed people when they write with both their hands. Two left handed and one right handed subject were asked to write their respective names on a paper using both, their left and right handed, and their brain signals were measured using EEG. Similarly, they were asked to perform simple mathematical calculations using both their hand. The data collected from the EEG from writing with both hands is compared. It is observed that though it is expected that the right brain only would contribute to left handed writing and vice versa, it is not so. When a right handed person writes with his/her left hand, the initial instinct is to go for writing with the right hand. Hence, both parts of the brain are active when a subject writes with the other hand. However, when the activity is repeated, the brain learns to expect to write with the other hand as the activity is repeated and then only the expected part of the brain is active.

  8. Disrupted topological organization of resting-state functional brain network in subcortical vascular mild cognitive impairment.

    Science.gov (United States)

    Yi, Li-Ye; Liang, Xia; Liu, Da-Ming; Sun, Bo; Ying, Sun; Yang, Dong-Bo; Li, Qing-Bin; Jiang, Chuan-Lu; Han, Ying

    2015-10-01

    Neuroimaging studies have demonstrated both structural and functional abnormalities in widespread brain regions in patients with subcortical vascular mild cognitive impairment (svMCI). However, whether and how these changes alter functional brain network organization remains largely unknown. We recruited 21 patients with svMCI and 26 healthy control (HC) subjects who underwent resting-state functional magnetic resonance imaging scans. Graph theory-based network analyses were used to investigate alterations in the topological organization of functional brain networks. Compared with the HC individuals, the patients with svMCI showed disrupted global network topology with significantly increased path length and modularity. Modular structure was also impaired in the svMCI patients with a notable rearrangement of the executive control module, where the parietal regions were split out and grouped as a separate module. The svMCI patients also revealed deficits in the intra- and/or intermodule connectivity of several brain regions. Specifically, the within-module degree was decreased in the middle cingulate gyrus while it was increased in the left anterior insula, medial prefrontal cortex and cuneus. Additionally, increased intermodule connectivity was observed in the inferior and superior parietal gyrus, which was associated with worse cognitive performance in the svMCI patients. Together, our results indicate that svMCI patients exhibit dysregulation of the topological organization of functional brain networks, which has important implications for understanding the pathophysiological mechanism of svMCI. © 2015 John Wiley & Sons Ltd.

  9. Mechanical injury induces brain endothelial-derived microvesicle release: Implications for cerebral vascular injury during traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Allison M. Andrews

    2016-02-01

    Full Text Available It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and mechanotransduction. However, our understanding of vascular remodeling following traumatic brain injury (TBI remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs, such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury. Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB, which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24 and 48 hrs. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 hrs post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing

  10. Mechanical Injury Induces Brain Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during Traumatic Brain Injury.

    Science.gov (United States)

    Andrews, Allison M; Lutton, Evan M; Merkel, Steven F; Razmpour, Roshanak; Ramirez, Servio H

    2016-01-01

    It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and strain. However, our understanding of vascular remodeling following traumatic brain injury (TBI) remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs), such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury). Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB), which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs) between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC) were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24, and 48 h. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 h post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing occludin following brain trauma

  11. Intelligent Automatic Right-Left Sign Lamp Based on Brain Signal Recognition System

    Science.gov (United States)

    Winda, A.; Sofyan; Sthevany; Vincent, R. S.

    2017-12-01

    Comfort as a part of the human factor, plays important roles in nowadays advanced automotive technology. Many of the current technologies go in the direction of automotive driver assistance features. However, many of the driver assistance features still require physical movement by human to enable the features. In this work, the proposed method is used in order to make certain feature to be functioning without any physical movement, instead human just need to think about it in their mind. In this work, brain signal is recorded and processed in order to be used as input to the recognition system. Right-Left sign lamp based on the brain signal recognition system can potentially replace the button or switch of the specific device in order to make the lamp work. The system then will decide whether the signal is ‘Right’ or ‘Left’. The decision of the Right-Left side of brain signal recognition will be sent to a processing board in order to activate the automotive relay, which will be used to activate the sign lamp. Furthermore, the intelligent system approach is used to develop authorized model based on the brain signal. Particularly Support Vector Machines (SVMs)-based classification system is used in the proposed system to recognize the Left-Right of the brain signal. Experimental results confirm the effectiveness of the proposed intelligent Automatic brain signal-based Right-Left sign lamp access control system. The signal is processed by Linear Prediction Coefficient (LPC) and Support Vector Machines (SVMs), and the resulting experiment shows the training and testing accuracy of 100% and 80%, respectively.

  12. Left hemisphere regions are critical for language in the face of early left focal brain injury

    OpenAIRE

    Raja Beharelle, Anjali; Dick, Anthony Steven; Josse, Goulven; Solodkin, Ana; Huttenlocher, Peter R.; Levine, Susan C.; Small, Steven L.

    2010-01-01

    A predominant theory regarding early stroke and its effect on language development, is that early left hemisphere lesions trigger compensatory processes that allow the right hemisphere to assume dominant language functions, and this is thought to underlie the near normal language development observed after early stroke. To test this theory, we used functional magnetic resonance imaging to examine brain activity during category fluency in participants who had sustained pre- or perinatal left h...

  13. LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β.

    Science.gov (United States)

    Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun

    2012-11-14

    Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer's disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in cerebrovasculature, in particular in vascular smooth muscle cells. Previous studies have indicated a role of LRP1 in endothelial cells in transcytosing Aβ out of the brain across the BBB; however, whether this represents a significant pathway for brain Aβ clearance remains controversial. Here, we demonstrate that Aβ can be cleared locally in the cerebrovasculature by an LRP1-dependent endocytic pathway in smooth muscle cells. The uptake and degradation of both endogenous and exogenous Aβ were significantly reduced in LRP1-suppressed human brain vascular smooth muscle cells. Conditional deletion of Lrp1 in vascular smooth muscle cell in amyloid model APP/PS1 mice accelerated brain Aβ accumulation and exacerbated Aβ deposition as amyloid plaques and CAA without affecting Aβ production. Our results demonstrate that LRP1 is a major Aβ clearance receptor in cerebral vascular smooth muscle cell and a disturbance of this pathway contributes to Aβ accumulation. These studies establish critical functions of the cerebrovasculature system in Aβ metabolism and identify a new pathway involved in the pathogenesis of both AD and CAA.

  14. Vascular Gene Expression in Nonneoplastic and Malignant Brain

    Science.gov (United States)

    Madden, Stephen L.; Cook, Brian P.; Nacht, Mariana; Weber, William D.; Callahan, Michelle R.; Jiang, Yide; Dufault, Michael R.; Zhang, Xiaoming; Zhang, Wen; Walter-Yohrling, Jennifer; Rouleau, Cecile; Akmaev, Viatcheslav R.; Wang, Clarence J.; Cao, Xiaohong; St. Martin, Thia B.; Roberts, Bruce L.; Teicher, Beverly A.; Klinger, Katherine W.; Stan, Radu-Virgil; Lucey, Brenden; Carson-Walter, Eleanor B.; Laterra, John; Walter, Kevin A.

    2004-01-01

    Malignant gliomas are uniformly lethal tumors whose morbidity is mediated in large part by the angiogenic response of the brain to the invading tumor. This profound angiogenic response leads to aggressive tumor invasion and destruction of surrounding brain tissue as well as blood-brain barrier breakdown and life-threatening cerebral edema. To investigate the molecular mechanisms governing the proliferation of abnormal microvasculature in malignant brain tumor patients, we have undertaken a cell-specific transcriptome analysis from surgically harvested nonneoplastic and tumor-associated endothelial cells. SAGE-derived endothelial cell gene expression patterns from glioma and nonneoplastic brain tissue reveal distinct gene expression patterns and consistent up-regulation of certain glioma endothelial marker genes across patient samples. We define the G-protein-coupled receptor RDC1 as a tumor endothelial marker whose expression is distinctly induced in tumor endothelial cells of both brain and peripheral vasculature. Further, we demonstrate that the glioma-induced gene, PV1, shows expression both restricted to endothelial cells and coincident with endothelial cell tube formation. As PV1 provides a framework for endothelial cell caveolar diaphragms, this protein may serve to enhance glioma-induced disruption of the blood-brain barrier and transendothelial exchange. Additional characterization of this extensive brain endothelial cell gene expression database will provide unique molecular insights into vascular gene expression. PMID:15277233

  15. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    Science.gov (United States)

    Tyler, Lorraine K; Wright, Paul; Randall, Billi; Marslen-Wilson, William D; Stamatakis, Emmanuel A

    2010-11-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to be strongly left-lateralized, combining measures of tissue integrity, neural activation and behavioural performance. In a functional neuroimaging study participants heard spoken sentences that differentially loaded on syntactic and semantic information. While healthy controls activated a left-hemisphere network of correlated activity including Brodmann areas 45/47 and posterior middle temporal gyrus during syntactic processing, patients activated Brodmann areas 45/47 bilaterally and right middle temporal gyrus. However, voxel-based morphometry analyses showed that only tissue integrity in left Brodmann areas 45/47 was correlated with activity and performance; poor tissue integrity in left Brodmann area 45 was associated with reduced functional activity and increased syntactic deficits. Activity in the right-hemisphere was not correlated with damage in the left-hemisphere or with performance. Reduced neural integrity in the left-hemisphere through brain damage or healthy ageing results in increased right-hemisphere activation in homologous regions to those left-hemisphere regions typically involved in the young. However, these regions do not support the same linguistic functions as those in the left-hemisphere and only indirectly contribute to preserved syntactic capacity. This establishes the unique role of the left hemisphere in syntax, a core component in human language.

  16. Differences in Information Mapping Strategies in Left and Right Brain Learners.

    Science.gov (United States)

    Hauck, LaVerne S., Jr.

    The Information Mapping technique was used to present a learning packet, and its usefulness in helping right-brain cerebrally dominant students to achieve the same level of subject mastery as their left-brain counterparts was examined. Reading level, grade point average, and gender were also analyzed. Torrance's "Your Style of Learning and…

  17. OCT imaging of acute vascular changes following mild traumatic brain injury in mice (Conference Presentation)

    Science.gov (United States)

    Chico-Calero, Isabel; Shishkov, Milen; Welt, Jonathan; Blatter, Cedric; Vakoc, Benjamin J.

    2016-03-01

    While most people recover completely from mild traumatic brain injuries (mTBIs) and concussions, a subset develop lasting neurological disorders. Understanding the complex pathophysiology of these injuries is critical to developing improved prognostic and therapeutic approaches. Multiple studies have shown that the structure and perfusion of brain vessels are altered after mTBI. It is possible that these vascular injuries contribute to or trigger neurodegeneration. Intravital microscopy and mouse models of TBI offer a powerful platform to study the vascular component of mTBI. Because optical coherence tomography based angiography is based on perfusion contrast and is not significantly degraded by vessel leakage or blood brain barrier disruption, it is uniquely suited to studies of brain perfusion in the setting of trauma. However, existing TBI imaging models require surgical exposure of the brain at the time of injury which conflates TBI-related vascular changes with those caused by surgery. In this work, we describe a modified cranial window preparation based on a flexible, transparent polyurethane membrane. Impact injuries were delivered directly through this membrane, and imaging was performed immediately after injury without the need for additional surgical procedures. Using this model, we demonstrate that mTBI induces a transient cessation of flow in the capillaries and smaller vessels near the injury point. Reperfusion is observed in all animals within 3 hours of injury. This work describes new insight into the transient vascular changes induced by mTBI, and demonstrates more broadly the utility of the OCT/polyurethane window model platform in preclinical studies of mTBI.

  18. Assessment of intracranial vessels in association with carotid atherosclerosis and brain vascular lesions in rheumatoid arthritis.

    Science.gov (United States)

    Oláh, Csaba; Kardos, Zsófia; Sepsi, Mariann; Sas, Attila; Kostyál, László; Bhattoa, Harjit Pal; Hodosi, Katalin; Kerekes, György; Tamási, László; Valikovics, Attila; Bereczki, Dániel; Szekanecz, Zoltán

    2017-09-26

    Stroke has been associated with rheumatoid arthritis (RA). We assessed patients with RA and healthy control subjects by transcranial Doppler (TCD), carotid ultrasonography and brain magnetic resonance imaging (MRI). Altogether, 41 female patients with RA undergoing methotrexate (MTX) or biologic treatment and 60 age-matched control subjects underwent TCD assessment of the middle cerebral artery (MCA) and basilar artery. Pulsatility index (PI), resistivity (resistance) index (RI) and circulatory reserve capacity (CRC) were determined at rest (r) and after apnoea (a) and hyperventilation (h). The presence of carotid plaques and carotid intima-media thickness (cIMT) were also determined. Intracerebral vascular lesions were investigated by brain MRI. MCA PI and RI values at rest and after apnoea were significantly increased in the total and MTX-treated RA populations vs control subjects. MCA CRC was also impaired, and basilar artery PI was higher in RA. More patients with RA had carotid plaques and increased cIMT. Linear regression analysis revealed that left PI(r) and RI(r) correlated with disease duration and that left PI(r), RI(r), PI(a), PI(h) and basilar PI correlated with disease activity. Right CRC inversely correlated with 28-joint Disease Activity Score. Disease activity was an independent determinant of left PI(a) and right CRC. Compared with long-term MTX treatment alone, the use of biologics in combination with MTX was associated with less impaired cerebral circulation. Impaired cerebral circulation was also associated with measures of carotid atherosclerosis. To our knowledge, this is the first study to show increased distal MCA and basilar artery occlusion in RA as determined by TCD. Patients with RA also had CRC defects. We also confirmed increased carotid plaque formation and increased cIMT. Biologics may beneficially influence some parameters in the intracranial vessels.

  19. Overdiagnosing Vascular Dementia using Structural Brain Imaging for Dementia Work-Up

    NARCIS (Netherlands)

    Niemantsverdriet, Ellis; Feyen, Bart F. E.; Le Bastard, Nathalie; Martin, Jean-Jacques; Goeman, Johan; De Deyn, Peter Paul; Engelborghs, Sebastiaan

    2015-01-01

    Hypothesizing that non-significant cerebrovascular lesions on structural brain imaging lead to overdiagnosis of a vascular etiology of dementia as compared to autopsy-confirmed diagnosis, we set up a study including 71 patients with autopsy-confirmed diagnoses. Forty-two patients in the population

  20. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    OpenAIRE

    Tyler, Lorraine K.; Wright, Paul; Randall, Billi; Marslen-Wilson, William D.; Stamatakis, Emmanuel A.

    2010-01-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to b...

  1. From the Left to the Right: How the Brain Compensates Progressive Loss of Language Function

    Science.gov (United States)

    Thiel, Alexander; Habedank, Birgit; Herholz, Karl; Kessler, Josef; Winhuisen, Lutz; Haupt, Walter F.; Heiss, Wolf-Dieter

    2006-01-01

    In normal right-handed subjects language production usually is a function of the left brain hemisphere. Patients with aphasia following brain damage to the left hemisphere have a considerable potential to compensate for the loss of this function. Sometimes, but not always, areas of the right hemisphere which are homologous to language areas of the…

  2. Assessment of ventriculo-vascular properties in repaired coarctation using cardiac magnetic resonance-derived aortic, left atrial and left ventricular strain

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Quanliang [University of Nebraska College of Medicine and Children' s Hospital and Medical Center, Division of Pediatric Cardiology, Omaha, NE (United States); Central South University, Department of Radiology, Second Xiangya Hospital, Changsha, Hunan Province (China); Sarikouch, Samir; Beerbaum, Philipp [Hannover Medical School, Hannover (Germany); Patel, Shivani; Danford, David A.; Kutty, Shelby [University of Nebraska College of Medicine and Children' s Hospital and Medical Center, Division of Pediatric Cardiology, Omaha, NE (United States); Schuster, Andreas [Department of Cardiology and Pneumonology, Georg-August-University and German Center for Cardiovascular Research (DZHK, Partner Site), Goettingen (Germany); Steinmetz, Michael [Department of Pediatric Cardiology, Georg-August-University and German Center for Cardiovascular Research (DZHK, Partner Site), Goettingen (Germany); Ou, Phalla [University Paris Diderot, Department of Radiology, Hospital Bichat, APHP, Paris (France)

    2017-01-15

    In patients with repaired coarctation of aorta (CoA), we assessed ventriculo-vascular characteristics using CMR-derived aortic area strain (AAS), left atrial (LA) and left ventricular (LV) longitudinal and circumferential strain (LS, CS). Seventy-five subjects including 50 with repaired CoA divided into hypertensive (n = 25), normotensive (n = 25) and 25 controls were studied. AAS was measured at 3 levels: ascending aorta, proximal descending and descending aorta. LA and LV LS were measured using CMR-feature tracking. LA and LV end-diastolic volumes, ejection fraction (EF) and mass were measured. Mean patient age was 19.7 ± 6.7 and controls 23 ± 15 (years). All strains (LA, LV, ascending and descending aortic) were lower in CoA subgroups compared to controls except the AAS at diaphragm, which was not different. Comparisons between hypertensive and normotensive CoA showed no differences in LV mass, LV volumetric indices, and LA and LV strain indices; however, ascending AAS was lower in hypertensive subgroup (p = 0.02). Ascending AAS was correlated with LV mass (r = -0.4, p = 0.005), LVEF (r = -0.4, p = 0.004), systolic blood pressure (r = -0.5, p = 0.0001) and LVLS (r = 0.5, p = 0.001). Ascending AAS correlated with LV mass, EF and LVLS. In hypertensive CoA, ascending AAS was reduced compared to normotensive CoA and controls, indicating vascular remodelling differences influenced by ongoing hypertension. (orig.)

  3. Lesion characteristics driving right-hemispheric language reorganization in congenital left-hemispheric brain damage.

    Science.gov (United States)

    Lidzba, Karen; de Haan, Bianca; Wilke, Marko; Krägeloh-Mann, Ingeborg; Staudt, Martin

    2017-10-01

    Pre- or perinatally acquired ("congenital") left-hemispheric brain lesions can be compensated for by reorganizing language into homotopic brain regions in the right hemisphere. Language comprehension may be hemispherically dissociated from language production. We investigated the lesion characteristics driving inter-hemispheric reorganization of language comprehension and language production in 19 patients (7-32years; eight females) with congenital left-hemispheric brain lesions (periventricular lesions [n=11] and middle cerebral artery infarctions [n=8]) by fMRI. 16/17 patients demonstrated reorganized language production, while 7/19 patients had reorganized language comprehension. Lesions to the insular cortex and the temporo-parietal junction (predominantly supramarginal gyrus) were significantly more common in patients in whom both, language production and comprehension were reorganized. These areas belong to the dorsal stream of the language network, participating in the auditory-motor integration of language. Our data suggest that the integrity of this stream might be crucial for a normal left-lateralized language development. Copyright © 2017. Published by Elsevier Inc.

  4. Management strategies for neoplastic and vascular brain lesions presenting during pregnancy: A series of 29 patients

    OpenAIRE

    Celestino Esteves Pereira; Jose Carlos Lynch

    2017-01-01

    Background: The occurrence of a brain tumor or intracranial vascular lesion during pregnancy is a rare event, but when it happens, it jeopardizes the lives of both the mother and infant. It also creates challenges of a neurosurgical, obstetric, and ethical nature. A multidisciplinary approach should be used for their care. Methods: Between 1986 and 2015, 12 pregnant women diagnosed with brain tumors and 17 women with intracranial vascular lesion underwent treatment at the Neurosurgery Departm...

  5. Brain vascular image segmentation based on fuzzy local information C-means clustering

    Science.gov (United States)

    Hu, Chaoen; Liu, Xia; Liang, Xiao; Hui, Hui; Yang, Xin; Tian, Jie

    2017-02-01

    Light sheet fluorescence microscopy (LSFM) is a powerful optical resolution fluorescence microscopy technique which enables to observe the mouse brain vascular network in cellular resolution. However, micro-vessel structures are intensity inhomogeneity in LSFM images, which make an inconvenience for extracting line structures. In this work, we developed a vascular image segmentation method by enhancing vessel details which should be useful for estimating statistics like micro-vessel density. Since the eigenvalues of hessian matrix and its sign describes different geometric structure in images, which enable to construct vascular similarity function and enhance line signals, the main idea of our method is to cluster the pixel values of the enhanced image. Our method contained three steps: 1) calculate the multiscale gradients and the differences between eigenvalues of Hessian matrix. 2) In order to generate the enhanced microvessels structures, a feed forward neural network was trained by 2.26 million pixels for dealing with the correlations between multi-scale gradients and the differences between eigenvalues. 3) The fuzzy local information c-means clustering (FLICM) was used to cluster the pixel values in enhance line signals. To verify the feasibility and effectiveness of this method, mouse brain vascular images have been acquired by a commercial light-sheet microscope in our lab. The experiment of the segmentation method showed that dice similarity coefficient can reach up to 85%. The results illustrated that our approach extracting line structures of blood vessels dramatically improves the vascular image and enable to accurately extract blood vessels in LSFM images.

  6. Brain Activation Associated with Practiced Left Hand Mirror Writing

    Science.gov (United States)

    Kushnir, T.; Arzouan, Y.; Karni, A.; Manor, D.

    2013-01-01

    Mirror writing occurs in healthy children, in various pathologies and occasionally in healthy adults. There are only scant experimental data on the underlying brain processes. Eight, right-handed, healthy young adults were scanned (BOLD-fMRI) before and after practicing left-hand mirror-writing (lh-MW) over seven sessions. They wrote dictated…

  7. Are left ventricular mass, geometry and function related to vascular changes and/or insulin resistance in long-standing hypertension? ICARUS: a LIFE substudy

    DEFF Research Database (Denmark)

    Olsen, M H; Hjerkinn, E; Wachtell, K

    2003-01-01

    Vascular hypertrophy and insulin resistance have been associated with abnormal left ventricular (LV) geometry in population studies. We wanted to investigate the influence of vascular hypertrophy and insulin resistance on LV hypertrophy and its function in patients with hypertension. In 89 patients...

  8. Comparison of vascular width and accuracy of subjective assessment of pulmonary flow X-ray films of children with left-right shunt

    International Nuclear Information System (INIS)

    Hegenbarth, R.; Toeroek, M.; Hannover Medizinische Hochschule

    1985-01-01

    The authors established a comparative relationship between accuracy of measurement of pulmonary flow and extent of vascular widening in 72 children with Left-Right shunt vitiae; this accuracy of pulmonary flow measurement had been subjectively estimated by 4 investigators without knowing the diagnosis and in comparison to the haemodynamic values (percentage of correct findings). The following procedure was adopted: In a control group of 143 healthy children, we first determined the vascular diameter of the right descending pulmonary artery, of the right upper lobal vein, and of the peripheral vessels in the upper and lower pulmonary fields, at an accurately defined distance from the point of the hilus, and compared with the vascular diameters of the children with left-right shunt, employing the method of discrimination analysis. Comparison of the judgement by the 4 investigators with the degree of increase of the vascular diameters showed an accuracy of 65-100% if the right descending pulmonary artery became wider by 2.6 mm, and an accuracy of 79-95% if the mean vascular width in the right upper field increased by 0.7 mm. The accuracy was 83-94% if the mean vascular width in the right lower field increased by 0.6 mm. Statistical studies also showed that the judgement of the 4 investigators was influenced by different vessels. (orig.) [de

  9. Management strategies for neoplastic and vascular brain lesions presenting during pregnancy: A series of 29 patients.

    Science.gov (United States)

    Pereira, Celestino Esteves; Lynch, Jose Carlos

    2017-01-01

    The occurrence of a brain tumor or intracranial vascular lesion during pregnancy is a rare event, but when it happens, it jeopardizes the lives of both the mother and infant. It also creates challenges of a neurosurgical, obstetric, and ethical nature. A multidisciplinary approach should be used for their care. Between 1986 and 2015, 12 pregnant women diagnosed with brain tumors and 17 women with intracranial vascular lesion underwent treatment at the Neurosurgery Department of the Servidores do Estado Hospital and Rede D'Or/São Luis. The Neurosurgery Department teamed up with Obstetrics Anesthesiology Departments in establishing the procedures. The patients' records, surgical descriptions, imaging studies, and histopathological material were reviewed. Among 12 patients presenting with brain tumors, there were neither operative mortality nor fetal deaths. Among the vascular lesions, aneurysm rupture was responsible for bleeding in 6 instances. Arteriovenous malformation was diagnosed in 7 patients. In this subgroup, the maternal and fetal mortality rates were 11.7% and 23.7%, respectively. We can assert that the association between a brain tumor and vascular lesions with pregnancy is a very unusual event, which jeopardizes both the lives of the mother and infant. It remains incompletely characterized due to the rare nature of these potentially devastating events. Knowing the exact mechanism responsible for the interaction of pregnancy and with these lesions will improve the treatment of these patients.

  10. Right brain, left brain in depressive disorders: Clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings.

    Science.gov (United States)

    Bruder, Gerard E; Stewart, Jonathan W; McGrath, Patrick J

    2017-07-01

    The right and left side of the brain are asymmetric in anatomy and function. We review electrophysiological (EEG and event-related potential), behavioral (dichotic and visual perceptual asymmetry), and neuroimaging (PET, MRI, NIRS) evidence of right-left asymmetry in depressive disorders. Recent electrophysiological and fMRI studies of emotional processing have provided new evidence of altered laterality in depressive disorders. EEG alpha asymmetry and neuroimaging findings at rest and during cognitive or emotional tasks are consistent with reduced left prefrontal activity in depressed patients, which may impair downregulation of amygdala response to negative emotional information. Dichotic listening and visual hemifield findings for non-verbal or emotional processing have revealed abnormal perceptual asymmetry in depressive disorders, and electrophysiological findings have shown reduced right-lateralized responsivity to emotional stimuli in occipitotemporal or parietotemporal cortex. We discuss models of neural networks underlying these alterations. Of clinical relevance, individual differences among depressed patients on measures of right-left brain function are related to diagnostic subtype of depression, comorbidity with anxiety disorders, and clinical response to antidepressants or cognitive behavioral therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Right-to-left shunt and subclinical ischemic brain lesions in Chinese migraineurs: a multicentre MRI study.

    Science.gov (United States)

    Jiang, Xiao-Han; Wang, Si-Bo; Tian, Qian; Zhong, Chi; Zhang, Guan-Ling; Li, Ya-Jie; Lin, Pan; You, Yong; Guo, Rong; Cui, Ying-Hua; Xing, Ying-Qi

    2018-02-14

    Migraine is considered as a risk factor for subclinical brain ischemic lesions, and right-to-left shunt (RLS) is more common among migraineurs. This cross-sectional study assessed the association of RLS with the increased prevalence of subclinical ischemic brain lesions in migraineurs. We enrolled 334 migraineurs from a multicentre study from June 2015 to August 2016. Participants were all evaluated using contrast-enhanced transcranial Doppler, magnetic resonance imaging (MRI), and completed a questionnaire covering demographics, the main risk factors of vascular disease, and migraine status. RLS was classified into four grades (Grade 0 = Negative; Grade I = 1 ≤ microbubbles (MBs) ≤ 10; Grade II = MBs > 10 and no curtain; Grade III = curtain). Silent brain ischemic infarctions (SBI) and white matter hyperintensities (WMHs) were evaluated on MRI. We found no significant differences between migraineurs with RLS and migraineurs without RLS in subclinical ischemic brain lesions.SBI and WMHs did not increase with the size of the RLS(p for trend for SBI = 0.066, p for trend for WMHs = 0.543). Furthermore, curtain RLS in migraineurs was a risk factor for the presence of SBI (p = 0.032, OR = 3.47; 95%CI: 1.12-10.76). There was no association between RLS and the presence of WMHs. Overall, RLS is not associated with increased SBI or WMHs in migraineurs. However, when RLS is present as a curtain pattern, it is likely to be a risk factor for SBIs in migraineurs. No. NCT02425696 ; registered on April 21, 2015.

  12. Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy.

    Science.gov (United States)

    de Campos, Brunno Machado; Coan, Ana Carolina; Lin Yasuda, Clarissa; Casseb, Raphael Fernandes; Cendes, Fernando

    2016-09-01

    Mesial temporal lobe epilepsy (MTLE) with hippocampus sclerosis (HS) is associated with functional and structural alterations extending beyond the temporal regions and abnormal pattern of brain resting state networks (RSNs) connectivity. We hypothesized that the interaction of large-scale RSNs is differently affected in patients with right- and left-MTLE with HS compared to controls. We aimed to determine and characterize these alterations through the analysis of 12 RSNs, functionally parceled in 70 regions of interest (ROIs), from resting-state functional-MRIs of 99 subjects (52 controls, 26 right- and 21 left-MTLE patients with HS). Image preprocessing and statistical analysis were performed using UF(2) C-toolbox, which provided ROI-wise results for intranetwork and internetwork connectivity. Intranetwork abnormalities were observed in the dorsal default mode network (DMN) in both groups of patients and in the posterior salience network in right-MTLE. Both groups showed abnormal correlation between the dorsal-DMN and the posterior salience, as well as between the dorsal-DMN and the executive-control network. Patients with left-MTLE also showed reduced correlation between the dorsal-DMN and visuospatial network and increased correlation between bilateral thalamus and the posterior salience network. The ipsilateral hippocampus stood out as a central area of abnormalities. Alterations on left-MTLE expressed a low cluster coefficient, whereas the altered connections on right-MTLE showed low cluster coefficient in the DMN but high in the posterior salience regions. Both right- and left-MTLE patients with HS have widespread abnormal interactions of large-scale brain networks; however, all parameters evaluated indicate that left-MTLE has a more intricate bihemispheric dysfunction compared to right-MTLE. Hum Brain Mapp 37:3137-3152, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by

  13. Late vascular effects of whole brain X-irradiation in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Y [Tsukuba Univ., Sakma, Ibaraki (Japan). Inst. of Clinical Medicine; Phillips, T L [California Univ., San Francisco (USA). Dept. of Radiation Oncology

    1982-01-01

    The whole brains of mice were irradiated with 250kVp X-rays at 120 rads min/sup -1/ (1.6 mm Cu HVL, TSD 50 cm), and a histological study was carried out. The dose range of X-irradiation was from 1,300 to 2,500 rads, i.e., 1,300, 1,500, 1,750, 2,000, and 2,500 rads. Eighty-six mice were used for histological examination. For microscopic examination, the mice were killed at regular postirradiation intervals between 15 and 20, 31 and 40, 41 and 50, 51 and 60, 61 and 70, 71 and 80, 81 and 90, 139 and 177 weeks. The brains were removed immediately thereafter, fixed in Bouin's solution, and embedded in paraffin. A histological examination was performed by a morphometric estimation of vascular lesions, in which the degree of the damage to the arterial system was scored in whole serial brain section. Necrosis (encephalomalacia), atrophy, cell infiltration, and telangiectactic vascular change of the brain, caused as a result of the fibrinoid necrosis of the large arteries, were observed. Dose-dependent incidence of the fibrinoid necrosis increased between 41 and 87 weeks after irradiation. Mean score of fibrinoid necrosis increased dose dependently approximately 60 weeks after irradiation. It is suggested that scores of large vessel damage do relate to dose at 41 to 87 weeks, and can be used to quantify the vessel injury, and that fibrinoid necrosis of the large vessels may relate to the incidence of radionecrosis.

  14. Late vascular effects of whole brain X-irradiation in the mouse

    International Nuclear Information System (INIS)

    Yoshii, Y.; Phillips, T.L.

    1982-01-01

    The whole brains of mice were irradiated with 250kVp X-rays at 120 rads min -1 (1.6 mm Cu HVL, TSD 50 cm), and a histological study was carried out. The dose range of X-irradiation was from 1,300 to 2,500 rads, i.e., 1,300, 1,500, 1,750, 2,000, and 2,500 rads. Eighty-six mice were used for histological examination. For microscopic examination, the mice were killed at regular postirradiation intervals between 15 and 20, 31 and 40, 41 and 50, 51 and 60, 61 and 70, 71 and 80, 81 and 90, 139 and 177 weeks. The brains were removed immediately thereafter, fixed in Bouin's solution, and embedded in paraffin. A histological examination was performed by a morphometric estimation of vascular lesions, in which the degree of the damage to the arterial system was scored in whole serial brain section. Necrosis (encephalomalacia), atrophy, cell infiltration, and telangiectactic vascular change of the brain, caused as a result of the fibrinoid necrosis of the large arteries, were observed. Dose-dependent incidence of the fibrinoid necrosis increased between 41 and 87 weeks after irradiation. Mean score of fibrinoid necrosis increased dose dependently approximately 60 weeks after irradiation. It is suggested that scores of large vessel damage do relate to dose at 41 to 87 weeks, and can be used to quantify the vessel injury, and that fibrinoid necrosis of the large vessels may relate to the incidence of radionecrosis. (Author)

  15. [Dextrals and sinistrals (right-handers and left-handers): specificity of interhemispheric brain asymmetry and EEG coherence parameters].

    Science.gov (United States)

    Zhavoronkova, L A

    2007-01-01

    Data of literature about morphological, functional and biochemical specificity of the brain interhemispheric asymmetry of healthy right-handers and left-handers and about peculiarity of dynamics of cerebral pathology in patients with different individual asymmetry profiles are presented at the present article. Results of our investigation by using coherence parameters of electroencephalogram (EEG) in healthy right-handers and left-handers in state of rest, during functional tests and sleeping and in patients with different forms of the brain organic damage were analyzed too. EEG coherence analysis revealed the reciprocal changing of alpha-beta and theta-delta spectral bands in right-handers whilein left-handers synchronous changing of all EEG spectral bands were observed. Data about regional-frequent specificity of EEG coherence, peculiarity of EEG asymmetry in right-handers and left-handers, aslo about specificity of EEG spectral band genesis and point of view about a role of the brain regulator systems in forming of interhemispheric asymmetry in different functional states allowed to propose the conception about principle of interhermispheric brain asymmetry formation in left-handers and left-handers. Following this conception in dextrals elements of concurrent (summary-reciprocal) cooperation are predominant at the character of interhemispheric and cortical-subcortical interaction while in sinistrals a principle of concordance (supplementary) is preferable. These peculiarities the brain organization determine, from the first side, the quicker revovery of functions damaged after cranio-cerebral trauma in left-handers in comparison right-handers and from the other side - they determine the forming of the more expressed pathology in the remote terms after exposure the low dose of radiation.

  16. Fluid Mechanics of the Vascular Basement Membrane in the Brain

    Science.gov (United States)

    Coloma, Mikhail; Hui, Jonathan; Chiarot, Paul; Huang, Peter; Carare, Roxana; McLeod, Kenneth; Schaffer, David

    2013-11-01

    Beta-amyloid is a normal product of brain metabolic function and is found within the interstitial fluid of the brain. Failure of the clearance of beta-amyloid from the aging brain leads to its accumulation within the walls of arteries and to Alzheimer's disease. The vascular basement membrane (VBM) within the walls of cerebral arteries surrounds the spirally arranged smooth muscle cells and represents an essential pathway for removal of beta-amyloid from the brain. This process fails with the stiffening of arterial walls associated with aging. In this study we hypothesize that the deformation of the VBM associated with arterial pulsations drives the interstitial fluid to drain in the direction opposite of the arterial blood flow. This hypothesis is theoretically investigated by modeling the VBM as a thin, coaxial, fluid-filled porous medium surrounding a periodically deforming cylindrical tube. Flow and boundary conditions required to achieve such a backward clearance are derived through a control volume analysis of mass, momentum, and energy.

  17. Vascular burden and brain aging in a senior volunteer cohort: A pilot study

    Directory of Open Access Journals (Sweden)

    Raymond Y Lo

    2017-01-01

    Full Text Available Objective: To test the feasibility of establishing a senior volunteer cohort and describe vascular risks, cognitive function, and brain aging indices in a pilot study. Materials and Methods: We enrolled 40 senior volunteers from the Tzu Chi Foundation and other organizations in Hualien in 2014–2015. We conducted in-person interviews to collect information on demographic features, physical fitness, dietary habits, comorbidities, and narratives of aging. Vascular risks including blood pressure, body mass index (BMI, serum glucose level, and lipid profile were examined. Each participant underwent a comprehensive battery of neuropsychological tests and structural brain magnetic resonance imaging (MRI. Descriptive statistics and tabulation were applied to characterize this pilot cohort. Results: There were more volunteers from the Tzu Chi Foundation (n = 25 than other organizations. The mean age was 66.7 years (standard deviation = 5.1 and there was a female predominance (M:F = 13:27. The mean number of comorbid chronic diseases was 2.1 and the mean BMI was 24.5. Most participants (77.5% engaged in outdoor walking activities every week. Nutrient intake in vegetarians (n = 18 did not differ from nonvegetarians except for lower Vitamin B12 levels (mean = 0.9 μg. All participants but one scored 26 or above in the Mini–Mental State Examination (mean = 28.4. Among the other cognitive tests, only one task related to inhibition and switching abilities was at the low average level. The mean values of vascular risk markers were within the normal ranges. The most common genotype of apolipoprotein E was μ3/μ3 (n = 32. The quality of MRI was sufficient for volumetric analysis. Conclusion: It is feasible to establish a volunteer-based cohort to study brain aging in Taiwan. The senior volunteers were physically active and cognitively healthy. Vascular risks were well distributed among these participants. Future longitudinal study will allow us to observe

  18. Vascular risk factors, cerebrovascular reactivity, and the default-mode brain network.

    Science.gov (United States)

    Haight, Thaddeus J; Bryan, R Nick; Erus, Guray; Davatzikos, Christos; Jacobs, David R; D'Esposito, Mark; Lewis, Cora E; Launer, Lenore J

    2015-07-15

    Cumulating evidence from epidemiologic studies implicates cardiovascular health and cerebrovascular function in several brain diseases in late life. We examined vascular risk factors with respect to a cerebrovascular measure of brain functioning in subjects in mid-life, which could represent a marker of brain changes in later life. Breath-hold functional MRI (fMRI) was performed in 541 women and men (mean age 50.4 years) from the Coronary Artery Risk Development in Young Adults (CARDIA) Brain MRI sub-study. Cerebrovascular reactivity (CVR) was quantified as percentage change in blood-oxygen level dependent (BOLD) signal in activated voxels, which was mapped to a common brain template and log-transformed. Mean CVR was calculated for anatomic regions underlying the default-mode network (DMN) - a network implicated in AD and other brain disorders - in addition to areas considered to be relatively spared in the disease (e.g. occipital lobe), which were utilized as reference regions. Mean CVR was significantly reduced in the posterior cingulate/precuneus (β=-0.063, 95% CI: -0.106, -0.020), anterior cingulate (β=-0.055, 95% CI: -0.101, -0.010), and medial frontal lobe (β=-0.050, 95% CI: -0.092, -0.008) relative to mean CVR in the occipital lobe, after adjustment for age, sex, race, education, and smoking status, in subjects with pre-hypertension/hypertension compared to normotensive subjects. By contrast, mean CVR was lower, but not significantly, in the inferior parietal lobe (β=-0.024, 95% CI: -0.062, 0.014) and the hippocampus (β=-0.006, 95% CI: -0.062, 0.050) relative to mean CVR in the occipital lobe. Similar results were observed in subjects with diabetes and dyslipidemia compared to those without these conditions, though the differences were non-significant. Reduced CVR may represent diminished vascular functionality for the DMN for individuals with prehypertension/hypertension in mid-life, and may serve as a preclinical marker for brain dysfunction in later

  19. The Use of N-Terminal Pro-Brain Natriuretic Peptide to Evaluate Vascular Disease in Elderly Patients with Mental Illness

    Directory of Open Access Journals (Sweden)

    Karin Nilsson

    2012-02-01

    Full Text Available Background: Serum N-terminal pro-brain natriuretic peptide (NT-proBNP is regarded as a sensitive marker of cardiovascular disease. Vascular disease plays an important role in cognitive impairment. Method: In 447 elderly patients with mental illness, serum NT-proBNP level and the presence or absence of vascular disease according to the medical record were used to categorize patients in different subgroups of vascular disease. Results and Conclusion: Patients with vascular disease and elevated serum NT-proBNP level had a lower cognition level, shorter survival time, lower renal function and a higher percentage of pathological brain imaging than patients with vascular disease and normal NT-proBNP level. Thus, elevated serum NT-proBNP level might be helpful to detect patients who have a more severe cardiovascular disease.

  20. Progressively Disrupted Brain Functional Connectivity Network in Subcortical Ischemic Vascular Cognitive Impairment Patients.

    Science.gov (United States)

    Sang, Linqiong; Chen, Lin; Wang, Li; Zhang, Jingna; Zhang, Ye; Li, Pengyue; Li, Chuanming; Qiu, Mingguo

    2018-01-01

    Cognitive impairment caused by subcortical ischemic vascular disease (SIVD) has been elucidated by many neuroimaging studies. However, little is known regarding the changes in brain functional connectivity networks in relation to the severity of cognitive impairment in SIVD. In the present study, 20 subcortical ischemic vascular cognitive impairment no dementia patients (SIVCIND) and 20 dementia patients (SIVaD) were enrolled; additionally, 19 normal controls were recruited. Each participant underwent a resting-state functional MRI scan. Whole-brain functional networks were analyzed with graph theory and network-based statistics (NBS) to study the functional organization of networks and find alterations in functional connectivity among brain regions. After adjustments for age, gender, and duration of formal education, there were significant group differences for two network functional organization indices, global efficiency and local efficiency, which decreased (NC > SIVCIND > SIVaD) as cognitive impairment worsened. Between-group differences in functional connectivity (NBS corrected, p  impairment worsened, with an increased number of decreased connections between brain regions. We also observed more reductions in nodal efficiency in the prefrontal and temporal cortices for SIVaD than for SIVCIND. These findings indicated a progressively disrupted pattern of the brain functional connectivity network with increased cognitive impairment and showed promise for the development of reliable biomarkers of network metric changes related to cognitive impairment caused by SIVD.

  1. Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons.

    Science.gov (United States)

    Kim, Ki Jung; Ramiro Diaz, Juan; Iddings, Jennifer A; Filosa, Jessica A

    2016-12-14

    Continuous cerebral blood flow is essential for neuronal survival, but whether vascular tone influences resting neuronal function is not known. Using a multidisciplinary approach in both rat and mice brain slices, we determined whether flow/pressure-evoked increases or decreases in parenchymal arteriole vascular tone, which result in arteriole constriction and dilation, respectively, altered resting cortical pyramidal neuron activity. We present evidence for intercellular communication in the brain involving a flow of information from vessel to astrocyte to neuron, a direction opposite to that of classic neurovascular coupling and referred to here as vasculo-neuronal coupling (VNC). Flow/pressure increases within parenchymal arterioles increased vascular tone and simultaneously decreased resting pyramidal neuron firing activity. On the other hand, flow/pressure decreases evoke parenchymal arteriole dilation and increased resting pyramidal neuron firing activity. In GLAST-CreERT2; R26-lsl-GCaMP3 mice, we demonstrate that increased parenchymal arteriole tone significantly increased intracellular calcium in perivascular astrocyte processes, the onset of astrocyte calcium changes preceded the inhibition of cortical pyramidal neuronal firing activity. During increases in parenchymal arteriole tone, the pyramidal neuron response was unaffected by blockers of nitric oxide, GABA A , glutamate, or ecto-ATPase. However, VNC was abrogated by TRPV4 channel, GABA B , as well as an adenosine A 1 receptor blocker. Differently to pyramidal neuron responses, increases in flow/pressure within parenchymal arterioles increased the firing activity of a subtype of interneuron. Together, these data suggest that VNC is a complex constitutive active process that enables neurons to efficiently adjust their resting activity according to brain perfusion levels, thus safeguarding cellular homeostasis by preventing mismatches between energy supply and demand. We present evidence for vessel

  2. FGF signaling is required for brain left-right asymmetry and brain midline formation.

    Science.gov (United States)

    Neugebauer, Judith M; Yost, H Joseph

    2014-02-01

    Early disruption of FGF signaling alters left-right (LR) asymmetry throughout the embryo. Here we uncover a role for FGF signaling that specifically disrupts brain asymmetry, independent of normal lateral plate mesoderm (LPM) asymmetry. When FGF signaling is inhibited during mid-somitogenesis, asymmetrically expressed LPM markers southpaw and lefty2 are not affected. However, asymmetrically expressed brain markers lefty1 and cyclops become bilateral. We show that FGF signaling controls expression of six3b and six7, two transcription factors required for repression of asymmetric lefty1 in the brain. We found that Z0-1, atypical PKC (aPKC) and β-catenin protein distribution revealed a midline structure in the forebrain that is dependent on a balance of FGF signaling. Ectopic activation of FGF signaling leads to overexpression of six3b, loss of organized midline adherins junctions and bilateral loss of lefty1 expression. Reducing FGF signaling leads to a reduction in six3b and six7 expression, an increase in cell boundary formation in the brain midline, and bilateral expression of lefty1. Together, these results suggest a novel role for FGF signaling in the brain to control LR asymmetry, six transcription factor expressions, and a midline barrier structure. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Vascular endothelial growth factor-A determines detectability of experimental melanoma brain metastasis in GD-DTPA-enhanced MRI.

    NARCIS (Netherlands)

    Leenders, W.P.J.; Kusters, B.; Pikkemaat, J.A.; Wesseling, P.; Ruiter, D.J.; Heerschap, A.; Barentsz, J.O.; Waal, R.M.W. de

    2003-01-01

    We have previously shown that the dense vascular network in mouse brain allows for growth of human melanoma xenografts (Mel57) by co-option of preexisting vessels. Overexpression of recombinant vascular endothelial growth factor-A (VEGF-A) by such xenografts induced functional and morphologic

  4. Large scale serial two-photon microscopy to investigate local vascular changes in whole rodent brain models of Alzheimer's disease

    Science.gov (United States)

    Delafontaine-Martel, P.; Lefebvre, J.; Damseh, R.; Castonguay, A.; Tardif, P.; Lesage, F.

    2018-02-01

    In this study, an automated serial two-photon microscope was used to image a fluorescent gelatin filled rodent's brain in 3D. A method to compute vascular density using automatic segmentation was combined with coregistration techniques to build group-level vasculature metrics. By studying the medial prefrontal cortex and the hippocampal formation of 3 age groups (2, 4.5 and 8 months old), we compared vascular density for both WT and an Alzheimer model transgenic brain (APP/PS1). We observe a loss of vascular density caused by the ageing process and we propose further analysis to confirm our results.

  5. Vascular targeting of LIGHT normalizes blood vessels in primary brain cancer and induces intratumoural high endothelial venules.

    Science.gov (United States)

    He, Bo; Jabouille, Arnaud; Steri, Veronica; Johansson-Percival, Anna; Michael, Iacovos P; Kotamraju, Venkata Ramana; Junckerstorff, Reimar; Nowak, Anna K; Hamzah, Juliana; Lee, Gabriel; Bergers, Gabriele; Ganss, Ruth

    2018-06-01

    High-grade brain cancer such as glioblastoma (GBM) remains an incurable disease. A common feature of GBM is the angiogenic vasculature, which can be targeted with selected peptides for payload delivery. We assessed the ability of micelle-tagged, vascular homing peptides RGR, CGKRK and NGR to specifically bind to blood vessels in syngeneic orthotopic GBM models. By using the peptide CGKRK to deliver the tumour necrosis factor (TNF) superfamily member LIGHT (also known as TNF superfamily member 14; TNFSF14) to angiogenic tumour vessels, we have generated a reagent that normalizes the brain cancer vasculature by inducing pericyte contractility and re-establishing endothelial barrier integrity. LIGHT-mediated vascular remodelling also activates endothelia and induces intratumoural high endothelial venules (HEVs), which are specialized blood vessels for lymphocyte infiltration. Combining CGKRK-LIGHT with anti-vascular endothelial growth factor and checkpoint blockade amplified HEV frequency and T-cell accumulation in GBM, which is often sparsely infiltrated by immune effector cells, and reduced tumour burden. Furthermore, CGKRK and RGR peptides strongly bound to blood vessels in freshly resected human GBM, demonstrating shared peptide-binding activities in mouse and human primary brain tumour vessels. Thus, peptide-mediated LIGHT targeting is a highly translatable approach in primary brain cancer to reduce vascular leakiness and enhance immunotherapy. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  6. Cerebral Vascular Injury in Traumatic Brain Injury.

    Science.gov (United States)

    Kenney, Kimbra; Amyot, Franck; Haber, Margalit; Pronger, Angela; Bogoslovsky, Tanya; Moore, Carol; Diaz-Arrastia, Ramon

    2016-01-01

    Traumatic cerebral vascular injury (TCVI) is a very frequent, if not universal, feature after traumatic brain injury (TBI). It is likely responsible, at least in part, for functional deficits and TBI-related chronic disability. Because there are multiple pharmacologic and non-pharmacologic therapies that promote vascular health, TCVI is an attractive target for therapeutic intervention after TBI. The cerebral microvasculature is a component of the neurovascular unit (NVU) coupling neuronal metabolism with local cerebral blood flow. The NVU participates in the pathogenesis of TBI, either directly from physical trauma or as part of the cascade of secondary injury that occurs after TBI. Pathologically, there is extensive cerebral microvascular injury in humans and experimental animal, identified with either conventional light microscopy or ultrastructural examination. It is seen in acute and chronic TBI, and even described in chronic traumatic encephalopathy (CTE). Non-invasive, physiologic measures of cerebral microvascular function show dysfunction after TBI in humans and experimental animal models of TBI. These include imaging sequences (MRI-ASL), Transcranial Doppler (TCD), and Near InfraRed Spectroscopy (NIRS). Understanding the pathophysiology of TCVI, a relatively under-studied component of TBI, has promise for the development of novel therapies for TBI. Published by Elsevier Inc.

  7. Imaging separation of neuronal from vascular effects of cocaine on rat cortical brain in vivo

    International Nuclear Information System (INIS)

    Yuan, Z.; Du, C.; Luo, Z.; Volkow, N.D.; Pan, Y.

    2011-01-01

    MRI techniques to study brain function assume coupling between neuronal activity, metabolism and flow. However, recent evidence of physiological uncoupling between neuronal and cerebrovascular events highlights the need for methods to simultaneously measure these three properties. We report a multimodality optical approach that integrates dual-wavelength laser speckle imaging (measures changes in blood flow, blood volume and hemoglobin oxygenation), digital-frequency-ramping optical coherence tomography (images quantitative 3D vascular network) and Rhod2 fluorescence (images intracellular calcium for measure of neuronal activity) at high spatiotemporal resolutions (30 (micro)m, 10 Hz) and over a large field of view (3 x 5 mm 2 ). We apply it to assess cocaine's effects in rat cortical brain and show an immediate decrease 3.5 ± 0.9 min, phase (1) in the oxygen content of hemoglobin and the cerebral blood flow followed by an overshoot 7.1 ± 0.2 min, phase (2) lasting over 20 min whereas Ca 2+ increased immediately (peaked at t = 4.1 ± 0.4 min) and remained elevated. This enabled us to identify a delay (2.9 ± 0.5 min) between peak neuronal and vascular responses in phase 2. The ability of this multimodality optical approach for simultaneous imaging at high spatiotemporal resolutions permits us to distinguish the vascular versus cellular changes of the brain, thus complimenting other neuroimaging modalities for brain functional studies (e. g., PET, fMRI).

  8. Imaging separation of neuronal from vascular effects of cocaine on rat cortical brain in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Z.; Du, C.; Yuan, Z.; Luo, Z.; Volkow, N.D.; Pan, Y.; Du, C.

    2010-09-08

    MRI techniques to study brain function assume coupling between neuronal activity, metabolism and flow. However, recent evidence of physiological uncoupling between neuronal and cerebrovascular events highlights the need for methods to simultaneously measure these three properties. We report a multimodality optical approach that integrates dual-wavelength laser speckle imaging (measures changes in blood flow, blood volume and hemoglobin oxygenation), digital-frequency-ramping optical coherence tomography (images quantitative 3D vascular network) and Rhod2 fluorescence (images intracellular calcium for measure of neuronal activity) at high spatiotemporal resolutions (30 {micro}m, 10 Hz) and over a large field of view (3 x 5 mm{sup 2}). We apply it to assess cocaine's effects in rat cortical brain and show an immediate decrease 3.5 {+-} 0.9 min, phase (1) in the oxygen content of hemoglobin and the cerebral blood flow followed by an overshoot 7.1 {+-} 0.2 min, phase (2) lasting over 20 min whereas Ca{sup 2+} increased immediately (peaked at t = 4.1 {+-} 0.4 min) and remained elevated. This enabled us to identify a delay (2.9 {+-} 0.5 min) between peak neuronal and vascular responses in phase 2. The ability of this multimodality optical approach for simultaneous imaging at high spatiotemporal resolutions permits us to distinguish the vascular versus cellular changes of the brain, thus complimenting other neuroimaging modalities for brain functional studies (e. g., PET, fMRI).

  9. Radiation brain dose to vascular surgeons during fluoroscopically guided interventions is not effectively reduced by wearing lead equivalent surgical caps.

    Science.gov (United States)

    Kirkwood, Melissa L; Arbique, Gary M; Guild, Jeffrey B; Zeng, Katie; Xi, Yin; Rectenwald, John; Anderson, Jon A; Timaran, Carlos

    2018-03-12

    Radiation to the interventionalist's brain during fluoroscopically guided interventions (FGIs) may increase the incidence of cerebral neoplasms. Lead equivalent surgical caps claim to reduce radiation brain doses by 50% to 95%. We sought to determine the efficacy of the RADPAD (Worldwide Innovations & Technologies, Lenexa, Kan) No Brainer surgical cap (0.06 mm lead equivalent at 90 kVp) in reducing radiation dose to the surgeon's and trainee's head during FGIs and to a phantom to determine relative brain dose reductions. Optically stimulated, luminescent nanoDot detectors (Landauer, Glenwood, Ill) inside and outside of the cap at the left temporal position were used to measure cap attenuation during FGIs. To check relative brain doses, nanoDot detectors were placed in 15 positions within an anthropomorphic head phantom (ATOM model 701; CIRS, Norfolk, Va). The phantom was positioned to represent a primary operator performing femoral access. Fluorography was performed on a plastic scatter phantom at 80 kVp for an exposure of 5 Gy reference air kerma with or without the hat. For each brain location, the percentage dose reduction with the hat was calculated. Means and standard errors were calculated using a pooled linear mixed model with repeated measurements. Anatomically similar locations were combined into five groups: upper brain, upper skull, midbrain, eyes, and left temporal position. This was a prospective, single-center study that included 29 endovascular aortic aneurysm procedures. The average procedure reference air kerma was 2.6 Gy. The hat attenuation at the temporal position for the attending physician and fellow was 60% ± 20% and 33% ± 36%, respectively. The equivalent phantom measurements demonstrated an attenuation of 71% ± 2.0% (P < .0001). In the interior phantom locations, attenuation was statistically significant for the skull (6% ± 1.4%) and upper brain (7.2% ± 1.0%; P < .0001) but not for the middle brain (1.4% ± 1.0%; P = .15

  10. A comparison of brain activity associated with language production in brain tumor patients with left and right sided language laterality.

    Science.gov (United States)

    Jansma, J M; Ramsey, N; Rutten, G J

    2015-12-01

    Language dominance is an important factor for clinical decision making in brain tumor surgery. Functional MRI can provide detailed information about the organization of language in the brain. One often used measure derived from fMRI data is the laterality index (LI). The LI is typically based on the ratio between left and right brain activity in a specific region associated with language. Nearly all fMRI language studies show language-related activity in both hemispheres, and as a result the LI shows a large range of values. The clinical significance of the variation in language laterality as measured with the LI is still under debate. In this study, we tested two hypotheses in relation to the LI, measured in Broca's region, and it's right hemisphere homologue: 1: the level of activity in Broca's and it's right hemisphere homologue is mirrored for subjects with an equal but opposite LI; 2: the whole brain language activation pattern differs between subjects with an equal but opposite LI. One hundred sixty-three glioma and meningioma patients performed a verb generation task as part of a standard clinical protocol. We calculated the LI in the pars orbitalis, pars triangularis and pars opercularis of the left inferior frontal gyrus, referred to as Broca's region from here on. In our database, 21 patients showed right lateralized activity, with a moderate average level (-0.32). A second group of 21 patients was selected from the remaining group, for equal but opposite LI (0.32). We compared the level and distribution of activity associated with language production in the left and right hemisphere in these two groups. Patients with left sided laterality showed a significantly higher level of activity in Broca's region than the patients with right sided laterality. However, both groups showed no difference in level of activity in Broca's homologue region in the right hemisphere. Also, we did not see any difference in the pattern of activity between patients with left

  11. Risk of brain injury during diagnostic coronary angiography: comparison between right and left radial approach.

    Science.gov (United States)

    Pacchioni, Andrea; Versaci, Francesco; Mugnolo, Antonio; Penzo, Carlo; Nikas, Dimitrios; Saccà, Salvatore; Favero, Luca; Agostoni, Pier Francesco; Garami, Zsolt; Prati, Francesco; Reimers, Bernhard

    2013-09-10

    To assess the incidence of silent cerebral embolization when using the transradial approach for diagnostic coronary angiography (DCA). Compared to other vascular access sites, the right transradial approach (RTA) could reduce the amount of brain emboli by avoiding mechanical trauma to the aortic wall caused by catheters and wire, whereas it increases manipulation of catheters in the ascending aorta and has a higher risk of direct embolization into the right common carotid artery. A recent study showed an increased incidence of microembolic signals (MES) in RTA compared to femoral. However, left transradial approach (LTA) has never been assessed. 40 patients with suspected coronary artery disease were randomized to DCA via RTA (n=20) or LTA (n=20) with contemporaneous bilateral transcranial Doppler monitoring. MES were detected in all patients, with a significantly higher rate in the RTA group (median 61, interquartile range (IQR) 47-105, vs 48, IQR 31-60, p=0.035). MES generated during procedures needing >2 catheters (n=8), are higher than those detected during procedures performed with 2 catheters (n=32, 102, IQR 70-108, vs 48, IQR 33-60, p=0.001). At multivariate analysis increasing number of catheters was the only independent predictor of high incidence of MES (OR 16.4, 95% CI 1.23-219.9, p=0.034, -2LL=26.7). LTA has a lower risk of brain embolization because of the lower number of catheter exchange maneuvers. Since the degree of brain embolism depends on the magnitude of mechanical manipulation, catheter changes should be minimized to reduce the risk of cerebral embolization. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Brain abscess: Current management

    Directory of Open Access Journals (Sweden)

    Hernando Alvis-Miranda

    2013-01-01

    Full Text Available Brain abscess (BA is defined as a focal infection within the brain parenchyma, which starts as a localized area of cerebritis, which is subsequently converted into a collection of pus within a well-vascularized capsule. BA must be differentiated from parameningeal infections, including epidural abscess and subdural empyema. The BA is a challenge for the neurosurgeon because it is needed good clinical, pharmacological, and surgical skills for providing good clinical outcomes and prognosis to BA patients. Considered an infrequent brain infection, BA could be a devastator entity that easily left the patient into dead. The aim of this work is to review the current concepts regarding epidemiology, pathophysiology, etiology, clinical presentation, diagnosis, and management of BA.

  13. Vascular endothelial growth factor and basic fibroblast growth factor expression positively correlates with angiogenesis and peritumoural brain oedema in astrocytoma

    International Nuclear Information System (INIS)

    Jang, F.F.; Wei, W.

    2008-01-01

    Astrocytoma is the most malignant intracranial neoplasm and is characterized by high neovascularization and peritumoural brain oedema. Angiogenesis is a complicated process in oncogenesis regulated by the balance between angiogenic and antiangiogenic factors. The expression of two angiogenic growth factors, vascular endothelial growth factor and basic fibroblast growth factor were investigated using immunohistochemistry for astrocytoma from 82 patients and 11 normal human tissues. The expression of vascular endothelial growth factor and basic fibroblast growth factor positively correlate with the pathological grade of astrocytoma, microvessel density numbers and brain oedema, which may be responsible for the increased tumour neovascularization and peritumoural brain oedema. The results support the idea that inhibiting vascular endothelial growth factor and basic fibroblast growth factor are useful for the treatment of human astrocytoma and to improve patient's clinical outcomes and prognosis. (author)

  14. The Use of N-Terminal Pro-Brain Natriuretic Peptide to Evaluate Vascular Disease in Elderly Patients with Mental Illness

    OpenAIRE

    Nilsson, Karin; Gustafson, Lars; Hultberg, Björn

    2012-01-01

    Background: Serum N-terminal pro-brain natriuretic peptide (NT-proBNP) is regarded as a sensitive marker of cardiovascular disease. Vascular disease plays an important role in cognitive impairment. Method: In 447 elderly patients with mental illness, serum NT-proBNP level and the presence or absence of vascular disease according to the medical record were used to categorize patients in different subgroups of vascular disease. Results and Conclusion: Patients with vascular disease and elevated...

  15. Late vascular effects in irradiated mice brain. In relation to experimental radionecrosis

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Y; Maki, Y [Tsukuba Univ., Sakura, Ibaraki (Japan); Phillips, T L

    1982-03-01

    The whole brains of mice were irradiated with 250 kVp X-ray at 120 rad min/sup -1/ (1.6 mm Cu HVL, TSD 50 cm) and a histological study was done. The dose range of X-irradiation was from 1300 to 2500 rads. i.e., 1300, 1500, 1750, 2000, and 2500 rads. In the microscopic examination, the mice were killed at the regular postirradiation intervals of between 15 and 20, 31 and 40, 41 and 50, 51 and 60, 61 and 70, 71 and 80, 81 and 90, 139 and 177 weeks. A histological examination was performed by a morphometric estimation of vascular lesion in which the degree of the damage to the arterial system was scored through whole serial brain sections. Necrosis (encephalomalacia), atrophy, cell infiltration, and telangiectatic vascular change of the brain, caused as a result of the fibrinoid necrosis of the large artery were observed. Incidence of the fibrinoid necrosis increased dose dependently between 41 and 87 weeks after irradiation. Mean score of fibrinoid necrosis increased dose dependently approximately 60 weeks after irradiation. It is suggested that scores of large vessel damage do relate to dose at 41 - 87 weeks and can be used to quantify the vessel injury and a fibrinoid necrosis of the large vessels may relate to the incidence of radionecrosis.

  16. Brain Perivascular Spaces as Biomarkers of Vascular Risk: Results from the Northern Manhattan Study.

    Science.gov (United States)

    Gutierrez, J; Elkind, M S V; Dong, C; Di Tullio, M; Rundek, T; Sacco, R L; Wright, C B

    2017-05-01

    Dilated perivascular spaces in the brain are associated with greater arterial pulsatility. We hypothesized that perivascular spaces identify individuals at higher risk for systemic and cerebral vascular events. Stroke-free participants in the population-based Northern Manhattan Study had brain MR imaging performed and were followed for myocardial infarction, any stroke, and death. Imaging analyses distinguished perivascular spaces from lesions presumably ischemic. Perivascular spaces were further subdivided into lesions with diameters of ≤3 mm (small perivascular spaces) and >3 mm (large perivascular spaces). We calculated relative rates of events with Poisson models and hazard ratios with Cox proportional models. The Northern Manhattan Study participants who had MR imaging data available for review ( n = 1228; 59% women, 65% Hispanic; mean age, 71 ± 9 years) were followed for an average of 9 ± 2 years. Participants in the highest tertile of the small perivascular space score had a higher relative rate of all deaths (relative rate, 1.38; 95% CI, 1.01-1.91), vascular death (relative rate, 1.87; 95% CI, 1.12-3.14), myocardial infarction (relative rate, 2.08; 95% CI, 1.01-4.31), any stroke (relative rate, 1.79; 95% CI, 1.03-3.11), and any vascular event (relative rate, 1.74; 95% CI, 1.18-2.56). After we adjusted for confounders, there was a higher risk of vascular death (hazard ratio, 1.06; 95% CI, 1.01-1.11), myocardial infarction (hazard ratio, 2.22; 95% CI, 1.12-4.42), and any vascular event (hazard ratio, 1.04; 95% CI, 1.01-1.08) with higher small perivascular space scores. In this multiethnic, population-based study, participants with a high burden of small perivascular spaces had increased risk of vascular events. By gaining pathophysiologic insight into the mechanism of perivascular space dilation, we may be able to propose novel therapies to better prevent vascular disorders in the population. © 2017 by American Journal of Neuroradiology.

  17. Left Brain. Right Brain. Whole Brain

    Science.gov (United States)

    Farmer, Lesley S. J.

    2004-01-01

    As the United States student population is becoming more diverse, library media specialists need to find ways to address these distinctive needs. However, some of these differences transcend culture, touching on variations in the brain itself. Most people have a dominant side of the brain, which can affect their personality and learning style.…

  18. Longitudinal Effects of Metabolic Syndrome on Alzheimer and Vascular Related Brain Pathology

    Directory of Open Access Journals (Sweden)

    Feng Lin

    2014-06-01

    Full Text Available Background/Aims: This study examines the longitudinal effect of metabolic syndrome (MetS on brain-aging indices among cognitively normal (CN and amnestic mild cognitive impairment (aMCI groups [single-domain aMCI (saMCI and multiple-domain aMCI (maMCI]. Methods: The study population included 739 participants (CN = 226, saMCI = 275, and maMCI = 238 from the Alzheimer's Disease Neuroimaging Initiative, a clinic-based, multi-center prospective cohort. Confirmatory factor analysis was employed to determine a MetS latent composite score using baseline data of vascular risk factors. We examined the changes of two Alzheimer's disease (AD biomarkers, namely [18F]fluorodeoxyglucose (FDG-positron emission tomography (PET regions of interest and medial temporal lobe volume over 5 years. A cerebrovascular aging index, cerebral white matter (cWM volume, was examined as a comparison. Results: The vascular risk was similar in all groups. Applying generalized estimating equation modeling, all brain-aging indices declined significantly over time. Higher MetS scores were associated with a faster decline of cWM in the CN and maMCI groups but with a slower decrement of regional glucose metabolism in FDG-PET in the saMCI and maMCI groups. Conclusion: At the very early stage of cognitive decline, the vascular burden such as MetS may be in parallel with or independent of AD pathology in contributing to cognitive impairment in terms of accelerating the disclosure of AD pathology.

  19. Left Ulnar Artery Pseudoaneurysm and Left Hand Swelling Simulated by Elephantiasis in a Patient with Neurofibromatosis Type 1

    Directory of Open Access Journals (Sweden)

    Ta-Pin Lee

    2017-06-01

    Full Text Available Elephantiasis is a condition featured by gross enlargement of body parts to massive proportions. Neurofibromatosis type 1 (NF1 is a multisystem genetic disorder. Vascular anomaly is one among the complications of NF1. We report a case of NF1 who had a left hand vascular pseudoaneurysm with left hand swelling mimicking elephantiasis. The characteristics of sonography make it an excellent imaging modality to investigate this sort of superficial vascular lesion.

  20. Line and word bisection in right-brain-damaged patients with left spatial neglect.

    Science.gov (United States)

    Veronelli, Laura; Vallar, Giuseppe; Marinelli, Chiara V; Primativo, Silvia; Arduino, Lisa S

    2014-01-01

    Right-brain-damaged patients with left unilateral spatial neglect typically set the mid-point of horizontal lines to the right of the objective center. By contrast, healthy participants exhibit a reversed bias (pseudoneglect). The same effect has been described also when bisecting orthographic strings. In particular, for this latter kind of stimulus, some recent studies have shown that visuo-perceptual characteristics, like stimulus length, may contribute to both the magnitude and the direction bias of the bisection performance (Arduino et al. in Neuropsychologia 48:2140-2146, 2010). Furthermore, word stress was shown to modulate reading performances in both healthy participants, and patients with left spatial neglect and neglect dyslexia (Cubelli and Beschin in Brain Lang 95:319-326, 2005; Rusconi et al. in Neuropsychology 18:135-140, 2004). In Experiment I, 22 right-brain-damaged patients (11 with left visuo-spatial neglect) and 11 matched neurologically unimpaired control participants were asked to set the subjective mid-point of word letter strings, and of lines of comparable length. Most patients exhibited an overall disproportionate rightward bias, sensitive to stimulus length, and similar for words and lines. Importantly, in individual patients, biases differed according to stimulus type (words vs. lines), indicating that at least partly different mechanisms may be involved. In Experiment II, the putative effects on the bisection bias of ortho-phonological information (i.e., word stress endings), arising from the non-neglected right hand side of the stimulus were investigated. The orthographic cue induced a rightward shift of the perceived mid-point in both patients and controls, with short words stressed on the antepenultimate final sequence inducing a smaller rightward deviation with respect to short words stressed on the penultimate final sequence. In conclusion, partly different mechanisms, including both visuo-spatial and lexical factors, may support

  1. Gastroschisis, destructive brain lesions, and placental infarction in the second trimester suggest a vascular pathogenesis.

    Science.gov (United States)

    Folkerth, Rebecca D; Habbe, Donald M; Boyd, Theonia K; McMillan, Kristin; Gromer, Jessica; Sens, Mary Ann; Elliott, Amy J

    2013-01-01

    The cause and pathogenesis of gastroschisis are uncertain. We report the autopsy and placental pathology of a stillbirth at 20 gestational weeks, in which gastroschisis was accompanied by destructive lesions in the cerebral cortex and brainstem, as well as cardiac calcification, consistent with ischemic injury during the 2nd trimester. An important potential underlying mechanism explaining the fetal abnormalities is the presence of infarcts in the placenta, indicative at this gestational age of maternal vascular underperfusion. The association of gastroschisis with ischemic lesions in the brain, heart, and placenta in this case supports the concept that gastroschisis, at least in some instances, may result from vascular event(s) causing disruption of the fetal abdominal wall and resulting in the extrusion of the abdominal organs, as well as hypoxic-ischemic brain and cardiac injury.

  2. Differences in trace element concentrations between the right and left hemispheres of human brain using INAA

    International Nuclear Information System (INIS)

    Panayi, A.E.; Surrey Univ.; Spyrou, N.M.; Akanle, O.A.; Ubertalli, L.C.; Part, P.

    2000-01-01

    Very few publications have quoted differences between the same regions in both the right and left hemispheres of the human brain. It may be possible that the two hemispheres have different trace elemental concentrations, since it is known that they both have different functions. In this study, three brain regions from both the right and left hemispheres of the cortex have been sampled from five elderly individuals (three 'normal' and two Alzheimer's disease) and their elemental concentrations have been determined by instrumental neutron activation analysis (INAA). (author)

  3. Brain Abscess Associated with Isolated Left Superior Vena Cava Draining into the Left Atrium in the Absence of Coronary Sinus and Atrial Septal Defect

    International Nuclear Information System (INIS)

    Erol, Ilknur; Cetin, I. Ilker; Alehan, Fuesun; Varan, Birguel; Ozkan, Sueleyman; Agildere, A. Muhtesem; Tokel, Kursad

    2006-01-01

    A previously healthy 12-year-old girl presented with severe headache for 2 weeks. On physical examination, there was finger clubbing without apparent cyanosis. Neurological examination revealed only papiledema without focal neurologic signs. Cerebral magnetic resonance imaging showed the characteristic features of brain abscess in the left frontal lobe. Cardiologic workup to exclude a right-to-left shunt showed an abnormality of the systemic venous drainage: presence of isolated left superior vena cava draining into the left atrium in the absence of coronary sinus and atrial septal defect. This anomaly is rare, because only a few other cases have been reported

  4. Local vascular CO2 reactivity in the infant brain assessed by functional MRI

    DEFF Research Database (Denmark)

    Toft, P.B.; Leth, H; Lou, H.C.

    1995-01-01

    of the brain slice investigated decreased by 1.2-2.6% per kPa change in PCO2 as a reflection of decreased cerebral blood flow during hyperventilation. Pixel-wise analysis revealed absence of vascular response in the basal ganglia, the thalamus or in the occipital region. In two adult controls, who...

  5. Moral judgement by the disconnected left and right cerebral hemispheres: a split-brain investigation.

    Science.gov (United States)

    Steckler, Conor M; Hamlin, J Kiley; Miller, Michael B; King, Danielle; Kingstone, Alan

    2017-07-01

    Owing to the hemispheric isolation resulting from a severed corpus callosum, research on split-brain patients can help elucidate the brain regions necessary and sufficient for moral judgement. Notably, typically developing adults heavily weight the intentions underlying others' moral actions, placing greater importance on valenced intentions versus outcomes when assigning praise and blame. Prioritization of intent in moral judgements may depend on neural activity in the right hemisphere's temporoparietal junction, an area implicated in reasoning about mental states. To date, split-brain research has found that the right hemisphere is necessary for intent-based moral judgement. When testing the left hemisphere using linguistically based moral vignettes, split-brain patients evaluate actions based on outcomes, not intentions. Because the right hemisphere has limited language ability relative to the left, and morality paradigms to date have involved significant linguistic demands, it is currently unknown whether the right hemisphere alone generates intent-based judgements. Here we use nonlinguistic morality plays with split-brain patient J.W. to examine the moral judgements of the disconnected right hemisphere, demonstrating a clear focus on intent. This finding indicates that the right hemisphere is not only necessary but also sufficient for intent-based moral judgement, advancing research into the neural systems supporting the moral sense.

  6. Brain structural network topological alterations of the left prefrontal and limbic cortex in psychogenic erectile dysfunction.

    Science.gov (United States)

    Chen, Jianhuai; Chen, Yun; Gao, Qingqiang; Chen, Guotao; Dai, Yutian; Yao, Zhijian; Lu, Qing

    2018-05-01

    Despite increasing understanding of the cerebral functional changes and structural abnormalities in erectile dysfunction, alterations in the topological organization of brain networks underlying psychogenic erectile dysfunction remain unclear. Here, based on the diffusion tensor image data of 25 patients and 26 healthy controls, we investigated the topological organization of brain structural networks and its correlations with the clinical variables using the graph theoretical analysis. Patients displayed a preserved overall small-world organization and exhibited a less connectivity strength in the left inferior frontal gyrus, amygdale and the right inferior temporal gyrus. Moreover, an abnormal hub pattern was observed in patients, which might disturb the information interactions of the remaining brain network. Additionally, the clustering coefficient of the left hippocampus was positively correlated with the duration of patients and the normalized betweenness centrality of the right anterior cingulate gyrus and the left calcarine fissure were negatively correlated with the sum scores of the 17-item Hamilton Depression Rating Scale. These findings suggested that the damaged white matter and the abnormal hub distribution of the left prefrontal and limbic cortex might contribute to the pathogenesis of psychogenic erectile dysfunction and provided new insights into the understanding of the pathophysiological mechanisms of psychogenic erectile dysfunction.

  7. Brain SPECT using dipyridamole for evaluation of vascular reserve

    International Nuclear Information System (INIS)

    Kim, Su Zy; Park, Chan Hee; Yoon, Soo Hwan; Pai, Moon Sun; Yoon, Suk Nam; Cho, Kyung Kee

    1997-01-01

    Baseline and stress brain SPECT studies using CO 2 inhalation, acetazolamide (Diamox R ) and adenosine administrations have been used in the evaluation of cerebral vascular reserve. Recently dipyridamole (Persantine R ) which is one of the pharmacologic myocardial perfusion SPECT agents as a potent vasodilator is suggested as another cerebral vasodilator. IV Diamox R is not available in Korea. Therefore, the purpose of our study was to evaluate dipyridamole in stress brain SPECT in patients with Moya Moya disease. Eight patients with angiographically proven Moya Moya disease were studied. Their ages ranged from 7 to 62 year old. There were 4 males and 4 females. Each patient had a baseline and persantine brain SPECT studies with 1 to 3 days' interval. Dipyridamole was given intravenously at a dose of 0.56 mg/kg over 4 minutes while watching vital signs such as blood pressure, heart rate, and electrocardiogram. Three minutes after the completion of the infusion, 99mTc-ECD (0.2 mCi/Ib body weight) was injected. Brain SPECT was performed 30 minutes later using a tripple head gamma camera equipped with LEHR collimators. A total of 128 projections with an acquisition time of 30 second per projection was obtained and reconstructed by filtered back projections without attenuation correction. The difference between the baseline and persantine studies was analysed by visual and semiquantitavely. During the infusion of persantine, heart rate, blood pressure and side effects such as headache, chest discomfort were similar to the persantine myocardial SPECT studies. Five of eight patients showed a significant decrease in rCBF on persantine brain SPECT in comparison to the baseline study. The remaining three revealed no significant change in rCBF. Our study suggests that the dipyridamole stress brain SPECT is feasible and useful in assessing cerebral blood flow reserve. However we need to evaluate more number of patients in the future

  8. Independent effects of both right and left ventricular function on plasma brain natriuretic peptide

    DEFF Research Database (Denmark)

    Vogelsang, Thomas Wiis; Jensen, Ruben J; Monrad, Astrid L

    2007-01-01

    BACKGROUND: Brain natriuretic peptide (BNP) is increased in heart failure; however, the relative contribution of the right and left ventricles is largely unknown. AIM: To investigate if right ventricular function has an independent influence on plasma BNP concentration. METHODS: Right (RVEF), left......, which is a strong prognostic marker in heart failure, independently depends on both left and right ventricular systolic function. This might, at least in part, explain why BNP holds stronger prognostic value than LVEF alone....... ventricular ejection fraction (LVEF), and left ventricular end-diastolic volume index (LVEDVI) were determined in 105 consecutive patients by first-pass radionuclide ventriculography (FP-RNV) and multiple ECG-gated equilibrium radionuclide ventriculography (ERNV), respectively. BNP was analyzed by immunoassay...

  9. Independent effects of both right and left ventricular function on plasma brain natriuretic peptide.

    Science.gov (United States)

    Vogelsang, Thomas Wiis; Jensen, Ruben J; Monrad, Astrid L; Russ, Kaspar; Olesen, Uffe H; Hesse, Birger; Kjaer, Andreas

    2007-09-01

    Brain natriuretic peptide (BNP) is increased in heart failure; however, the relative contribution of the right and left ventricles is largely unknown. To investigate if right ventricular function has an independent influence on plasma BNP concentration. Right (RVEF), left ventricular ejection fraction (LVEF), and left ventricular end-diastolic volume index (LVEDVI) were determined in 105 consecutive patients by first-pass radionuclide ventriculography (FP-RNV) and multiple ECG-gated equilibrium radionuclide ventriculography (ERNV), respectively. BNP was analyzed by immunoassay. Mean LVEF was 0.51 (range 0.10-0.83) with 36% having a reduced LVEF (left and right ventricular systolic function. This might, at least in part, explain why BNP holds stronger prognostic value than LVEF alone.

  10. Atypical temporal activation pattern and central-right brain compensation during semantic judgment task in children with early left brain damage.

    Science.gov (United States)

    Chang, Yi-Tzu; Lin, Shih-Che; Meng, Ling-Fu; Fan, Yang-Teng

    In this study we investigated the event-related potentials (ERPs) during the semantic judgment task (deciding if the two Chinese characters were semantically related or unrelated) to identify the timing of neural activation in children with early left brain damage (ELBD). The results demonstrated that compared with the controls, children with ELBD had (1) competitive accuracy and reaction time in the semantic judgment task, (2) weak operation of the N400, (3) stronger, earlier and later compensational positivities (referred to the enhanced P200, P250, and P600 amplitudes) in the central and right region of the brain to successfully engage in semantic judgment. Our preliminary findings indicate that temporally postlesional reorganization is in accordance with the proposed right-hemispheric organization of speech after early left-sided brain lesion. During semantic processing, the orthography has a greater effect on the children with ELBD, and a later semantic reanalysis (P600) is required due to the less efficient N400 at the former stage for semantic integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Disrupted topological properties of brain white matter networks in left temporal lobe epilepsy: a diffusion tensor imaging study.

    Science.gov (United States)

    Xu, Y; Qiu, S; Wang, J; Liu, Z; Zhang, R; Li, S; Cheng, L; Liu, Z; Wang, W; Huang, R

    2014-10-24

    Mesial temporal lobe epilepsy (mTLE) is the most common drug-refractory focal epilepsy in adults. Although previous functional and morphological studies have revealed abnormalities in the brain networks of mTLE, the topological organization of the brain white matter (WM) networks in mTLE patients is still ambiguous. In this study, we constructed brain WM networks for 14 left mTLE patients and 22 age- and gender-matched normal controls using diffusion tensor tractography and estimated the alterations of network properties in the mTLE brain networks using graph theoretical analysis. We found that networks for both the mTLE patients and the controls exhibited prominent small-world properties, suggesting a balanced topology of integration and segregation. However, the brain WM networks of mTLE patients showed a significant increased characteristic path length but significant decreased global efficiency, which indicate a disruption in the organization of the brain WM networks in mTLE patients. Moreover, we found significant between-group differences in the nodal properties in several brain regions, such as the left superior temporal gyrus, left hippocampus, the right occipital and right temporal cortices. The robustness analysis showed that the results were likely to be consistent for the networks constructed with different definitions of node and edge weight. Taken together, our findings may suggest an adverse effect of epileptic seizures on the organization of large-scale brain WM networks in mTLE patients. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Left and Right Hemisphere Brain Functions and Symbolic vs. Spontaneous Communication Processes.

    Science.gov (United States)

    Buck, Ross

    Recent findings on the communicative functions of the left versus the right hemisphere of the brain may suggest that there is a distinction between the intentional use of symbols for the sending of specific messages or propositions (language, signing, pantomime) and spontaneous expressive behaviors that signal their meaning through a natural…

  13. Age Drives Distortion of Brain Metabolic, Vascular and Cognitive Functions, and the Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Jared D. Hoffman

    2017-09-01

    Full Text Available Advancing age is the top risk factor for the development of neurodegenerative disorders, including Alzheimer’s disease (AD. However, the contribution of aging processes to AD etiology remains unclear. Emerging evidence shows that reduced brain metabolic and vascular functions occur decades before the onset of cognitive impairments, and these reductions are highly associated with low-grade, chronic inflammation developed in the brain over time. Interestingly, recent findings suggest that the gut microbiota may also play a critical role in modulating immune responses in the brain via the brain-gut axis. In this study, our goal was to identify associations between deleterious changes in brain metabolism, cerebral blood flow (CBF, gut microbiome and cognition in aging, and potential implications for AD development. We conducted our study with a group of young mice (5–6 months of age and compared those to old mice (18–20 months of age by utilizing metabolic profiling, neuroimaging, gut microbiome analysis, behavioral assessments and biochemical assays. We found that compared to young mice, old mice had significantly increased levels of numerous amino acids and fatty acids that are highly associated with inflammation and AD biomarkers. In the gut microbiome analyses, we found that old mice had increased Firmicutes/Bacteroidetes ratio and alpha diversity. We also found impaired blood-brain barrier (BBB function and reduced CBF as well as compromised learning and memory and increased anxiety, clinical symptoms often seen in AD patients, in old mice. Our study suggests that the aging process involves deleterious changes in brain metabolic, vascular and cognitive functions, and gut microbiome structure and diversity, all which may lead to inflammation and thus increase the risk for AD. Future studies conducting comprehensive and integrative characterization of brain aging, including crosstalk with peripheral systems and factors, will be necessary to

  14. Structural MRI markers of brain aging early after ischemic stroke.

    Science.gov (United States)

    Werden, Emilio; Cumming, Toby; Li, Qi; Bird, Laura; Veldsman, Michele; Pardoe, Heath R; Jackson, Graeme; Donnan, Geoffrey A; Brodtmann, Amy

    2017-07-11

    To examine associations between ischemic stroke, vascular risk factors, and MRI markers of brain aging. Eighty-one patients (mean age 67.5 ± 13.1 years, 31 left-sided, 61 men) with confirmed first-ever (n = 66) or recurrent (n = 15) ischemic stroke underwent 3T MRI scanning within 6 weeks of symptom onset (mean 26 ± 9 days). Age-matched controls (n = 40) completed identical testing. Multivariate regression analyses examined associations between group membership and MRI markers of brain aging (cortical thickness, total brain volume, white matter hyperintensity [WMH] volume, hippocampal volume), normalized against intracranial volume, and the effects of vascular risk factors on these relationships. First-ever stroke was associated with smaller hippocampal volume ( p = 0.025) and greater WMH volume ( p = 0.004) relative to controls. Recurrent stroke was in turn associated with smaller hippocampal volume relative to both first-ever stroke ( p = 0.017) and controls ( p = 0.001). These associations remained significant after adjustment for age, sex, education, and, in stroke patients, infarct volume. Total brain volume was not significantly smaller in first-ever stroke patients than in controls ( p = 0.056), but the association became significant after further adjustment for atrial fibrillation ( p = 0.036). Cortical thickness and brain volumes did not differ as a function of stroke type, infarct volume, or etiology. Brain structure is likely to be compromised before ischemic stroke by vascular risk factors. Smaller hippocampal and total brain volumes and increased WMH load represent proxies for underlying vascular brain injury. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  15. Measurement of vascular flow in the brain with the xenon/CT method

    International Nuclear Information System (INIS)

    Wist, A.O.; Cothran, A.; Fatouros, P.P.; Kishore, P.R.S.

    1988-01-01

    The authors are proposing a modification of the xenon/CT method that allows measurement of the flow in the different brain vessels. Based on an improved stable xenon/CT method, they developed several additional algorithms to differentiate the vessel flow from tissue flow and from artifacts and noise, which are based on the height, steepness, and other parameters of the detected flow values. The vessel flow maps, together with the tissue flow maps and new composite flow maps of recent patients, demonstrate that the stable xenon/CT technique can be extended to quantify vascular flow in the brain. The diagnostic capability of this method can be further improved by removing the vessel flow from the flow maps

  16. The differential effects of acute right- vs. left-sided vestibular failure on brain metabolism.

    Science.gov (United States)

    Becker-Bense, Sandra; Dieterich, Marianne; Buchholz, Hans-Georg; Bartenstein, Peter; Schreckenberger, Mathias; Brandt, Thomas

    2014-07-01

    The human vestibular system is represented in the brain bilaterally, but it has functional asymmetries, i.e., a dominance of ipsilateral pathways and of the right hemisphere in right-handers. To determine if acute right- or left-sided unilateral vestibular neuritis (VN) is associated with differential patterns of brain metabolism in areas representing the vestibular network and the visual-vestibular interaction, patients with acute VN (right n = 9; left n = 13) underwent resting state (18)F-FDG PET once in the acute phase and once 3 months later after central vestibular compensation. The contrast acute vs. chronic phase showed signal differences in contralateral vestibular areas and the inverse contrast in visual cortex areas, both more pronounced in VN right. In VN left additional regions were found in the cerebellar hemispheres and vermis bilaterally, accentuated in severe cases. In general, signal changes appeared more pronounced in patients with more severe vestibular deficits. Acute phase PET data of patients compared to that of age-matched healthy controls disclosed similarities to these patterns, thus permitting the interpretation that the signal changes in vestibular temporo-parietal areas reflect signal increases, and in visual areas, signal decreases. These data imply that brain activity in the acute phase of right- and left-sided VN exhibits different compensatory patterns, i.e., the dominant ascending input is shifted from the ipsilateral to the contralateral pathways, presumably due to the missing ipsilateral vestibular input. The visual-vestibular interaction patterns were preserved, but were of different prominence in each hemisphere and more pronounced in patients with right-sided failure and more severe vestibular deficits.

  17. Effects of Mild Blast Traumatic Brain Injury on Cerebral Vascular, Histopathological, and Behavioral Outcomes in Rats

    Science.gov (United States)

    Zeng, Yaping; Deyo, Donald; Parsley, Margaret A.; Hawkins, Bridget E.; Prough, Donald S.; DeWitt, Douglas S.

    2018-01-01

    Abstract To determine the effects of mild blast-induced traumatic brain injury (bTBI), several groups of rats were subjected to blast injury or sham injury in a compressed air-driven shock tube. The effects of bTBI on relative cerebral perfusion (laser Doppler flowmetry [LDF]), and mean arterial blood pressure (MAP) cerebral vascular resistance were measured for 2 h post-bTBI. Dilator responses to reduced intravascular pressure were measured in isolated middle cerebral arterial (MCA) segments, ex vivo, 30 and 60 min post-bTBI. Neuronal injury was assessed (Fluoro-Jade C [FJC]) 24 and 48 h post-bTBI. Neurological outcomes (beam balance and walking tests) and working memory (Morris water maze [MWM]) were assessed 2 weeks post-bTBI. Because impact TBI (i.e., non-blast TBI) is often associated with reduced cerebral perfusion and impaired cerebrovascular function in part because of the generation of reactive oxygen and nitrogen species such as peroxynitrite (ONOO−), the effects of the administration of the ONOO− scavenger, penicillamine methyl ester (PenME), on cerebral perfusion and cerebral vascular resistance were measured for 2 h post-bTBI. Mild bTBI resulted in reduced relative cerebral perfusion and MCA dilator responses to reduced intravascular pressure, increases in cerebral vascular resistance and in the numbers of FJC-positive cells in the brain, and significantly impaired working memory. PenME administration resulted in significant reductions in cerebral vascular resistance and a trend toward increased cerebral perfusion, suggesting that ONOO− may contribute to blast-induced cerebral vascular dysfunction. PMID:29160141

  18. No inherent left and right side in human 'mental number line': evidence from right brain damage.

    Science.gov (United States)

    Aiello, Marilena; Jacquin-Courtois, Sophie; Merola, Sheila; Ottaviani, Teresa; Tomaiuolo, Francesco; Bueti, Domenica; Rossetti, Yves; Doricchi, Fabrizio

    2012-08-01

    Spatial reasoning has a relevant role in mathematics and helps daily computational activities. It is widely assumed that in cultures with left-to-right reading, numbers are organized along the mental equivalent of a ruler, the mental number line, with small magnitudes located to the left of larger ones. Patients with right brain damage can disregard smaller numbers while mentally setting the midpoint of number intervals. This has been interpreted as a sign of spatial neglect for numbers on the left side of the mental number line and taken as a strong argument for the intrinsic left-to-right organization of the mental number line. Here, we put forward the understanding of this cognitive disability by discovering that patients with right brain damage disregard smaller numbers both when these are mapped on the left side of the mental number line and on the right side of an imagined clock face. This shows that the right hemisphere supports the representation of small numerical magnitudes independently from their mapping on the left or the right side of a spatial-mental layout. In addition, the study of the anatomical correlates through voxel-based lesion-symptom mapping and the mapping of lesion peaks on the diffusion tensor imaging-based reconstruction of white matter pathways showed that the rightward bias in the imagined clock-face was correlated with lesions of high-level middle temporal visual areas that code stimuli in object-centred spatial coordinates, i.e. stimuli that, like a clock face, have an inherent left and right side. In contrast, bias towards higher numbers on the mental number line was linked to white matter damage in the frontal component of the parietal-frontal number network. These anatomical findings show that the human brain does not represent the mental number line as an object with an inherent left and right side. We conclude that the bias towards higher numbers in the mental bisection of number intervals does not depend on left side spatial

  19. Magnetic resonance imaging and angiography of the brain in embolic left atrial myxoma

    International Nuclear Information System (INIS)

    Marazuela, M.; Yebra, M.; Diego, J.; Durantez, A.; Garcia-Merino, A.; Brasa, J.M.

    1989-01-01

    A case of left atrial myxoma presenting exclusively with neurological symptoms, studies with magnetic resonance imaging (MRI) combined with cerebral angiography and computed tomography (CT) is reported. Typical angiographic findings suggested the diagnosis of myxoma. MRI showed multiple ischemic lesions disseminated throughout the entire brain, some of which had been clinically asymptomatic. Because of its sensitivity in identifying small cerebral infarcts, MRI should prove in the future to be a first-choice technique in the evaluation of the presence of an extent of cerebral involvement in embolic left atrial myxoma. (orig.)

  20. Methods for the correction of vascular artifacts in PET O-15 water brain-mapping studies

    Science.gov (United States)

    Chen, Kewei; Reiman, E. M.; Lawson, M.; Yun, Lang-sheng; Bandy, D.; Palant, A.

    1996-12-01

    While positron emission tomographic (PET) measurements of regional cerebral blood flow (rCBF) can be used to map brain regions that are involved in normal and pathological human behaviors, measurements in the anteromedial temporal lobe can be confounded by the combined effects of radiotracer activity in neighboring arteries and partial-volume averaging. The authors now describe two simple methods to address this vascular artifact. One method utilizes the early frames of a dynamic PET study, while the other method utilizes a coregistered magnetic resonance image (MRI) to characterize the vascular region of interest (VROI). Both methods subsequently assign a common value to each pixel in the VROI for the control (baseline) scan and the activation scan. To study the vascular artifact and to demonstrate the ability of the proposed methods correcting the vascular artifact, four dynamic PET scans were performed in a single subject during the same behavioral state. For each of the four scans, a vascular scan containing vascular activity was computed as the summation of the images acquired 0-60 s after radiotracer administration, and a control scan containing minimal vascular activity was computed as the summation of the images acquired 20-80 s after radiotracer administration. t-score maps calculated from the four pairs of vascular and control scans were used to characterize regional blood flow differences related to vascular activity before and after the application of each vascular artifact correction method. Both methods eliminated the observed differences in vascular activity, as well as the vascular artifact observed in the anteromedial temporal lobes. Using PET data from a study of normal human emotion, these methods permitted the authors to identify rCBF increases in the anteromedial temporal lobe free from the potentially confounding, combined effects of vascular activity and partial-volume averaging.

  1. Methods for the correction of vascular artifacts in PET O-15 water brain-mapping studies

    International Nuclear Information System (INIS)

    Chen, K.; Reiman, E.M.; Good Samaritan Regional Medical Center, Phoenix, AZ; Lawson, M.; Yun, L.S.; Bandy, D.

    1996-01-01

    While positron emission tomographic (PET) measurements of regional cerebral blood flow (rCBF) can be used to map brain regions that are involved in normal and pathological human behaviors, measurements in the anteromedial temporal lobe can be confounded by the combined effects of radiotracer activity in neighboring arteries and partial-volume averaging. The authors now describe two simple methods to address this vascular artifact. One method utilizes the early frames of a dynamic PET study, while the other method utilizes a coregistered magnetic resonance image (MRI) to characterize the vascular region of interest (VROI). Both methods subsequently assign a common value to each pixel in the VROI for the control scan and the activation scan. To study the vascular artifact and to demonstrate the ability of the proposed methods correcting the vascular artifact, four dynamic PET scans were performed in a single subject during the same behavioral state. For each of the four scans, a vascular scan containing vascular activity was computed as the summation of the images acquired 0--60 s after radiotracer administrations, and a control scan containing minimal vascular activity was computed as the summation of the images acquired 20--80 s after radiotracer administration. t-score maps calculated from the four pairs of vascular and control scans were used to characterize regional blood flow differences related to vascular activity before and after the applications of each vascular artifact correction method. Both methods eliminated the observed differences in vascular activity, as well as the vascular artifact observed in the anteromedial temporal lobes. Using PET data from a study of normal human emotion, these methods permitted us to identify rCBF increases in the anteromedial temporal lobe free from the potentially confounding, combined effects of vascular activity and partial-volume averaging

  2. Vascular endothelial growth factor is upregulated by l-dopa in the parkinsonian brain: implications for the development of dyskinesia

    Science.gov (United States)

    Francardo, Veronica; Lindgren, Hanna S.; Sillivan, Stephanie E.; O’Sullivan, Sean S.; Luksik, Andrew S.; Vassoler, Fair M.; Lees, Andrew J.; Konradi, Christine

    2011-01-01

    Angiogenesis and increased permeability of the blood–brain barrier have been reported to occur in animal models of Parkinson’s disease and l-dopa-induced dyskinesia, but the significance of these phenomena has remained unclear. Using a validated rat model of l-dopa-induced dyskinesia, this study demonstrates that chronic treatment with l-dopa dose dependently induces the expression of vascular endothelial growth factor in the basal ganglia nuclei. Vascular endothelial growth factor was abundantly expressed in astrocytes and astrocytic processes in the proximity of blood vessels. When co-administered with l-dopa, a small molecule inhibitor of vascular endothelial growth factor signalling significantly attenuated the development of dyskinesia and completely blocked the angiogenic response and associated increase in blood–brain barrier permeability induced by the treatment. The occurrence of angiogenesis and vascular endothelial growth factor upregulation was verified in post-mortem basal ganglia tissue from patients with Parkinson’s disease with a history of dyskinesia, who exhibited increased microvascular density, microvascular nestin expression and an upregulation of vascular endothelial growth factor messenger ribonucleic acid. These congruent findings in the rat model and human patients indicate that vascular endothelial growth factor is implicated in the pathophysiology of l-dopa-induced dyskinesia and emphasize an involvement of the microvascular compartment in the adverse effects of l-dopa pharmacotherapy in Parkinson’s disease. PMID:21771855

  3. Auditory middle latency responses differ in right- and left-handed subjects: an evaluation through topographic brain mapping.

    Science.gov (United States)

    Mohebbi, Mehrnaz; Mahmoudian, Saeid; Alborzi, Marzieh Sharifian; Najafi-Koopaie, Mojtaba; Farahani, Ehsan Darestani; Farhadi, Mohammad

    2014-09-01

    To investigate the association of handedness with auditory middle latency responses (AMLRs) using topographic brain mapping by comparing amplitudes and latencies in frontocentral and hemispheric regions of interest (ROIs). The study included 44 healthy subjects with normal hearing (22 left handed and 22 right handed). AMLRs were recorded from 29 scalp electrodes in response to binaural 4-kHz tone bursts. Frontocentral ROI comparisons revealed that Pa and Pb amplitudes were significantly larger in the left-handed than the right-handed group. Topographic brain maps showed different distributions in AMLR components between the two groups. In hemispheric comparisons, Pa amplitude differed significantly across groups. A left-hemisphere emphasis of Pa was found in the right-handed group but not in the left-handed group. This study provides evidence that handedness is associated with AMLR components in frontocentral and hemispheric ROI. Handedness should be considered an essential factor in the clinical or experimental use of AMLRs.

  4. Improved differentiation between MS and vascular brain lesions using FLAIR* at 7 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Kilsdonk, Iris D.; Wattjes, Mike P.; Lopez-Soriano, Alexandra; Jong, Marcus C. de; Graaf, Wolter L. de; Conijn, Mandy M.A.; Barkhof, Frederik [VU University Medical Center, Department of Radiology, De Boelelaan 1118, HZ, Amsterdam (Netherlands); Kuijer, Joost P.A. [VU University Medical Center, Department of Physics and Medical Technology, Amsterdam (Netherlands); Polman, Chris H. [VU University Medical Center, Department of Neurology, Amsterdam (Netherlands); Luijten, Peter R. [University Medical Center, Department of Radiology, Utrecht (Netherlands); Geurts, Jeroen J.G. [VU University, Department of Anatomy and Neurosciences, Amsterdam (Netherlands); Geerlings, Mirjam I. [University Medical Center, Julius Center for Health Sciences and Primary Care, Utrecht (Netherlands)

    2014-04-15

    To investigate whether a new magnetic resonance image (MRI) technique called T2*-weighted fluid attenuation inversion recovery (FLAIR*) can differentiate between multiple sclerosis (MS) and vascular brain lesions, at 7 Tesla (T). We examined 16 MS patients and 16 age-matched patients with (risk factors for) vascular disease. 3D-FLAIR and T2*-weighted images were combined into FLAIR* images. Lesion type and intensity, perivascular orientation and presence of a hypointense rim were analysed. In total, 433 cerebral lesions were detected in MS patients versus 86 lesions in vascular patients. Lesions in MS patients were significantly more often orientated in a perivascular manner: 74 % vs. 47 % (P < 0.001). Ten MS lesions (2.3 %) were surrounded by a hypointense rim on FLAIR*, and 24 MS lesions (5.5 %) were hypointense on T2*. No lesions in vascular patients showed any rim or hypointensity. Specificity of differentiating MS from vascular lesions on 7-T FLAIR* increased when the presence of a central vessel was taken into account (from 63 % to 88 %), most obviously for deep white matter lesions (from 69 % to 94 %). High sensitivity remained (81 %). 7-T FLAIR* improves differentiation between MS and vascular lesions based on lesion location, perivascular orientation and presence of hypointense (rims around) lesions. circle A new MRI technique T2*-weighted fluid attenuation inversion recovery (FLAIR*) was investigated. circle FLAIR* at 7-T MRI combines FLAIR and T2* images into a single image. circle FLAIR* at 7 T does not require enhancement with contrast agents. (orig.)

  5. Vascular basement membranes as pathways for the passage of fluid into and out of the brain.

    Science.gov (United States)

    Morris, Alan W J; Sharp, Matthew MacGregor; Albargothy, Nazira J; Fernandes, Rute; Hawkes, Cheryl A; Verma, Ajay; Weller, Roy O; Carare, Roxana O

    2016-05-01

    In the absence of conventional lymphatics, drainage of interstitial fluid and solutes from the brain parenchyma to cervical lymph nodes is along basement membranes in the walls of cerebral capillaries and tunica media of arteries. Perivascular pathways are also involved in the entry of CSF into the brain by the convective influx/glymphatic system. The objective of this study is to differentiate the cerebral vascular basement membrane pathways by which fluid passes out of the brain from the pathway by which CSF enters the brain. Experiment 1: 0.5 µl of soluble biotinylated or fluorescent Aβ, or 1 µl 15 nm gold nanoparticles was injected into the mouse hippocampus and their distributions determined at 5 min by transmission electron microscopy. Aβ was distributed within the extracellular spaces of the hippocampus and within basement membranes of capillaries and tunica media of arteries. Nanoparticles did not enter capillary basement membranes from the extracellular spaces. Experiment 2: 2 µl of 15 nm nanoparticles were injected into mouse CSF. Within 5 min, groups of nanoparticles were present in the pial-glial basement membrane on the outer aspect of cortical arteries between the investing layer of pia mater and the glia limitans. The results of this study and previous research suggest that cerebral vascular basement membranes form the pathways by which fluid passes into and out of the brain but that different basement membrane layers are involved. The significance of these findings for neuroimmunology, Alzheimer's disease, drug delivery to the brain and the concept of the Virchow-Robin space are discussed.

  6. A noninvasive multimodal technique to monitor brain tumor vascularization

    Science.gov (United States)

    Saxena, Vishal; Gonzalez-Gomez, Ignacio; Laug, Walter E.

    2007-09-01

    Determination of tumor oxygenation at the microvascular level will provide important insight into tumor growth, angiogenesis, necrosis and therapeutic response and will facilitate to develop protocols for studying tumor behavior. The non-ionizing near infrared spectroscopy (NIRS) technique has the potential to differentiate lesion and hemoglobin dynamics; however, it has a limited spatial resolution. On the other hand, magnetic resonance imaging (MRI) has achieved high spatial resolution with excellent tissue discrimination but is more susceptible to limited ability to monitor the hemoglobin dynamics. In the present work, the vascular status and the pathophysiological changes that occur during tumor vascularization are studied in an orthotopic brain tumor model. A noninvasive multimodal approach based on the NIRS technique, namely steady state diffuse optical spectroscopy (SSDOS) along with MRI, is applied for monitoring the concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor region. The concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor vasculature are extracted at 15 discrete wavelengths in a spectral window of 675-780 nm. We found a direct correlation between tumor size, intratumoral microvessel density and tumor oxygenation. The relative decrease in tumor oxygenation with growth indicates that though blood vessels infiltrate and proliferate the tumor region, a hypoxic trend is clearly present.

  7. A noninvasive multimodal technique to monitor brain tumor vascularization

    International Nuclear Information System (INIS)

    Saxena, Vishal; Gonzalez-Gomez, Ignacio; Laug, Walter E

    2007-01-01

    Determination of tumor oxygenation at the microvascular level will provide important insight into tumor growth, angiogenesis, necrosis and therapeutic response and will facilitate to develop protocols for studying tumor behavior. The non-ionizing near infrared spectroscopy (NIRS) technique has the potential to differentiate lesion and hemoglobin dynamics; however, it has a limited spatial resolution. On the other hand, magnetic resonance imaging (MRI) has achieved high spatial resolution with excellent tissue discrimination but is more susceptible to limited ability to monitor the hemoglobin dynamics. In the present work, the vascular status and the pathophysiological changes that occur during tumor vascularization are studied in an orthotopic brain tumor model. A noninvasive multimodal approach based on the NIRS technique, namely steady state diffuse optical spectroscopy (SSDOS) along with MRI, is applied for monitoring the concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor region. The concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor vasculature are extracted at 15 discrete wavelengths in a spectral window of 675-780 nm. We found a direct correlation between tumor size, intratumoral microvessel density and tumor oxygenation. The relative decrease in tumor oxygenation with growth indicates that though blood vessels infiltrate and proliferate the tumor region, a hypoxic trend is clearly present

  8. Sodium thiosulfate protects brain in rat model of adenine induced vascular calcification.

    Science.gov (United States)

    Subhash, N; Sriram, R; Kurian, Gino A

    2015-11-01

    Vascular bed calcification is a common feature of ends stage renal disease that may lead to a complication in cardiovascular and cerebrovascular beds, which is a promoting cause of myocardial infarction, stroke, dementia and aneurysms. Sodium thiosulfate (STS) due to its multiple properties such as antioxidant and calcium chelation has been reported to prevent vascular calcification in uremic rats, without mentioning its impact on cerebral function. Moreover, the previous studies have not explored the effect of STS on the mitochondrial dysfunction, one of the main pathophysiological features associated with the disease and the main site for STS metabolism. The present study addresses this limitation by using a rat model where 0.75% adenine was administered to induce vascular calcification and 400 mg/kg b wt. of STS was given as preventive and curative agent. The blood and urine chemistries along with histopathology of aorta confirms the renal protective effect of STS in two modes of administration. The brain oxidative stress assessment was made through TBARS level, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, found to be in the near normal level. STS administration not only reduced the mitochondrial oxidative stress (measured by TBARS, SOD, GPx and CAT) but also preserved the mitochondrial respiratory enzyme activities (NADH dehydrogenase, Succinate dehydrogenase and Malate dehydrogenase) and its physiology (measured by P/O ratio and RCR). In fact, the protective effect of STS was prominent, when it was administered as a curative agent, where low H2S and high thiosulfate level was observed along with low cystathionine β synthase activity, confirms thiosulfate mediated renal protection. In conclusion, STS when given after induction of calcification is protective to the brain by preserving its mitochondria, compared to the treatment given concomitantly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Brain infarcts due to scorpion stings in children: MRI

    International Nuclear Information System (INIS)

    Fernandez-Bouzas, A.; Ballesteros-Maresma, A.; Morales-Resendiz, M.L.; Llamas-Ibarra, F.; Martinez-Lopez, M.

    2000-01-01

    We report two children with severe neurological complications after having been stung by a scorpion. Clinical and MRI findings suggested brain infarcts. The lesions seen were in pons in one child and the right hemisphere in the other. The latter also showed possible hyperemia in the infarcted area. No vascular occlusions were observed and we therefore think the brain infarcts were a consequence of the scorpion sting. The cause of the infarct may be hypotension, shock or depressed left ventricular function, all of which are frequent in severe poisoning by scorpion sting. (orig.)

  10. The Neural Correlates of Abstract and Concrete Words: Evidence from Brain-Damaged Patients

    OpenAIRE

    Papagno, Costanza; Martello, Giorgia; Mattavelli, Giulia

    2013-01-01

    Neuropsychological and activation studies on the neural correlates of abstract and concrete words have produced contrasting results. The present study explores the anatomical substrates of abstract/concrete words in 22 brain-damaged patients with a single vascular lesion either in the right or left hemisphere. One hundred and twenty (60 concrete and 60 abstract) noun triplets were used for a semantic similarity judgment task. We found a significant interaction in word type × group since left ...

  11. Correlation of emmprin expression in vascular endothelial cells with blood-brain-barrier function: a study using magnetic resonance imaging enhanced by Gd-DTPA and immunohistochemistry in brain tumors.

    Science.gov (United States)

    Sameshima, Tetsuro; Nabeshima, Kazuki; Toole, Bryan P; Inoue, Teruhiko; Yokogami, Kiyotaka; Nakano, Shinichi; Ohi, Takekazu; Wakisaka, Shinichiro

    2003-06-01

    In a previous study, we demonstrated that the expression levels in tumor cells of emmprin (CD147) correlated with the grade of astrocytic tumors. Also, we found that emmprin was expressed in vascular endothelial cells of the non-neoplastic brain and hypothesized that emmprin expression could be associated with normal blood-brain-barrier (BBB) function of vascular endothelial cells. In this study, this possibility was examined in non-neoplastic brain, glioma and metastatic carcinoma tissues by comparing emmprin immunohistochemistry with gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) enhancement of magnetic resonance imaging (MRI), which is a clinical indicator of the BBB function. This study included 10 cases of non-neoplastic brain tissues, 7 of metastatic carcinoma, 7 of diffuse astrocytoma, 4 of anaplastic astrocytoma and 13 of glioblastoma multiforme. In all the cases, MRI with administration of Gd-DTPA was performed. The lesions were resected using the microdissection method with the help of ultrasonography and a neuronavigator. The tissues from Gd-DTPA-enhanced or non-enhanced areas were processed into frozen sections and subjected to immunohistochemistry with anti-emmprin antibody. The expression of emmprin in brain vascular endothelial cells inversely correlated with Gd-DTPA-enhancement of MRI: emmprin was positive in tissues not enhanced by Gd-DTPA and was negative in DTPA-enhanced tissues. Since BBB function presumably remains unimpaired in regions in which MR images are not Gd-DTPA-enhanced, emmprin expression appears to be associated with unimpaired BBB function. This is the first report to demonstrate a possible correlation between emmprin expression and BBB function in humans.

  12. Beyond Hemispheric Dominance: Brain Regions Underlying the Joint Lateralization of Language and Arithmetic to the Left Hemisphere

    Science.gov (United States)

    Pinel, Philippe; Dehaene, Stanislas

    2010-01-01

    Language and arithmetic are both lateralized to the left hemisphere in the majority of right-handed adults. Yet, does this similar lateralization reflect a single overall constraint of brain organization, such an overall "dominance" of the left hemisphere for all linguistic and symbolic operations? Is it related to the lateralization of specific…

  13. Vascular hemichorea: case report and review

    Directory of Open Access Journals (Sweden)

    Bárbara Martínez Alfonzo

    2014-04-01

    Full Text Available Chorea rarely complicates ischemic or hemorrhagic cerebral vascular lesions. Clinical symptoms usually involve one side of the body while the injury is situated on the contralateral cerebral hemisphere. Spontaneous remission is the norm, but sometimes symptomatic treatment is required. A 58-year-old male patient who suffers from untreated high blood pressure, type II obesity, smokes 6 packs of cigarettes per year and has a moderate intake of alcohol is presented. The patient’s recent history began three days before he appeared at the Emergency Department. His symptoms were ceaseless, involuntary movements in his left arm and foot during day and night with no restriction of voluntary movements. Physical examination and laboratory tests revealed no other findings. Magnetic resonance imaging of the brain showed hyperintensity in the right posterolateral thalamic region consistent with ischemic cerebrovascular disease. Symptomatic therapy was indicated and his underlying conditions were addressed. The importance of this case lies on the low prevalence as well as the scarcity of publications regarding vascular causes of hemichorea, including diagnosis, therapy and prognosis.

  14. White-matter microstructure and language lateralization in left-handers: a whole-brain MRI analysis.

    Science.gov (United States)

    Perlaki, Gabor; Horvath, Reka; Orsi, Gergely; Aradi, Mihaly; Auer, Tibor; Varga, Eszter; Kantor, Gyongyi; Altbäcker, Anna; John, Flora; Doczi, Tamas; Komoly, Samuel; Kovacs, Norbert; Schwarcz, Attila; Janszky, Jozsef

    2013-08-01

    Most people are left-hemisphere dominant for language. However the neuroanatomy of language lateralization is not fully understood. By combining functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), we studied whether language lateralization is associated with cerebral white-matter (WM) microstructure. Sixteen healthy, left-handed women aged 20-25 were included in the study. Left-handers were targeted in order to increase the chances of involving subjects with atypical language lateralization. Language lateralization was determined by fMRI using a verbal fluency paradigm. Tract-based spatial statistics analysis of DTI data was applied to test for WM microstructural correlates of language lateralization across the whole brain. Fractional anisotropy and mean diffusivity were used as indicators of WM microstructural organization. Right-hemispheric language dominance was associated with reduced microstructural integrity of the left superior longitudinal fasciculus and left-sided parietal lobe WM. In left-handed women, reduced integrity of the left-sided language related tracts may be closely linked to the development of right hemispheric language dominance. Our results may offer new insights into language lateralization and structure-function relationships in human language system. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. [Processes of logical thought in a case of cerebral vascular lesion].

    Science.gov (United States)

    Blanco Men ndez, R; Aguado Balsas, A M

    Reasoning and logical thought processes have traditionally been attributed to frontal lobe function or,on the other hand, have been considered as diffuse functions of the brain. However, there is today evidence enough about the possibility to find dissociations in thought processes, depending on logical structure of the experimental tasks and referring to different areas of the brain, frontal and post rolandic ones. To study possible dissociations between thought structures corresponding to categorical and relational logic, on one hand, and propositional logic on the other hand. The case of a brain injured patient with vascular etiology, localized in left frontal parietal cortex, is presented. A specific battery of reasoning tests has been administered. . A differential performance at some reasoning experimental tasks has been found depending on such logical conceptual structures. The possibility of establishing dissociations among certain logical thought and intelectual functions depending on localization of possible brain lesion (frontal versus temporal) is discussed.

  16. Increasing Left and Right Brain Communication to Improve Learning for Tenth Grade Students in a Public School

    Science.gov (United States)

    Richardson, Jennifer J.

    2011-01-01

    The purpose of this exploratory correlation research study was to determine if students who engaged in exercises designed to increase left and right brain hemisphere connections would score higher on identical tests than those who did not perform the exercises. Because the 2001 No Child Left Behind Act requires students to reach benchmarks of…

  17. POLYMORPHISM OF THE SYNDROME OF HYPERACTIVE URINARY BLADDER IN PATIENTS WITH ACUTE AND CHRONIC VASCULAR DISEASES OF THE BRAIN

    Directory of Open Access Journals (Sweden)

    P. G. Shvarts

    2016-01-01

    Full Text Available Abstract. The paper discusses the main etiological, phenomenological and pathogenetic mechanisms of forming the syndrome of overactive bladder (OAB in patients with acute and chronic cerebrovascular diseases. Describes the role of melatonin, arginine vasopressin (AVP and corticotropin-releasing factor hormone (CRFH in maintaining the rhythms of urination, urine formation and retention of urine in norm and abnormalities in these systems in acute and chronic vascular pathology of the brain. Described phenomenology OAB syndrome in vascular diseases of the brain. Shows a differentiated approach to pharmacological correction in patients with different clinical variants of urinary disorders and urine formation in the framework of the OAB syndrome with the use of neurotransmitter therapy and hormonesensitive.

  18. Infection and upregulation of proinflammatory cytokines in human brain vascular pericytes by human cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Alcendor Donald J

    2012-05-01

    Full Text Available Abstract Background Congenital human cytomegalovirus (HCMV infections can result in CNS abnormalities in newborn babies including vision loss, mental retardation, motor deficits, seizures, and hearing loss. Brain pericytes play an essential role in the development and function of the blood–brain barrier yet their unique role in HCMV dissemination and neuropathlogy has not been reported. Methods Primary human brain vascular pericytes were exposed to a primary clinical isolate of HCMV designated ‘SBCMV’. Infectivity was analyzed by microscopy, immunofluorescence, Western blot, and qRT-PCR. Microarrays were performed to identify proinflammatory cytokines upregulated after SBCMV exposure, and the results validated by real-time quantitative polymerase chain reaction (qPCR methodology. In situ cytokine expression of pericytes after exposure to HCMV was examined by ELISA and in vivo evidence of HCMV infection of brain pericytes was shown by dual-labeled immunohistochemistry. Results HCMV-infected human brain vascular pericytes as evidenced by several markers. Using a clinical isolate of HCMV (SBCMV, microscopy of infected pericytes showed virion production and typical cytomegalic cytopathology. This finding was confirmed by the expression of major immediate early and late virion proteins and by the presence of HCMV mRNA. Brain pericytes were fully permissive for CMV lytic replication after 72 to 96 hours in culture compared to human astrocytes or human brain microvascular endothelial cells (BMVEC. However, temporal transcriptional expression of pp65 virion protein after SBCMV infection was lower than that seen with the HCMV Towne laboratory strain. Using RT-PCR and dual-labeled immunofluorescence, proinflammatory cytokines CXCL8/IL-8, CXCL11/ITAC, and CCL5/Rantes were upregulated in SBCMV-infected cells, as were tumor necrosis factor-alpha (TNF-alpha, interleukin-1 beta (IL-1beta, and interleukin-6 (IL-6. Pericytes exposed to SBCMV elicited

  19. Left temporal and temporoparietal brain activity depends on depth of word encoding: a magnetoencephalographic study in healthy young subjects.

    Science.gov (United States)

    Walla, P; Hufnagl, B; Lindinger, G; Imhof, H; Deecke, L; Lang, W

    2001-03-01

    Using a 143-channel whole-head magnetoencephalograph (MEG) we recorded the temporal changes of brain activity from 26 healthy young subjects (14 females) related to shallow perceptual and deep semantic word encoding. During subsequent recognition tests, the subjects had to recognize the previously encoded words which were interspersed with new words. The resulting mean memory performances across all subjects clearly mirrored the different levels of encoding. The grand averaged event-related fields (ERFs) associated with perceptual and semantic word encoding differed significantly between 200 and 550 ms after stimulus onset mainly over left superior temporal and left superior parietal sensors. Semantic encoding elicited higher brain activity than perceptual encoding. Source localization procedures revealed that neural populations of the left temporal and temporoparietal brain areas showed different activity strengths across the whole group of subjects depending on depth of word encoding. We suggest that the higher brain activity associated with deep encoding as compared to shallow encoding was due to the involvement of more neural systems during the processing of visually presented words. Deep encoding required more energy than shallow encoding but for all that led to a better memory performance. Copyright 2001 Academic Press.

  20. Neuro-Glio-Vascular Complexes of the Brain After Acute Ischemia

    Directory of Open Access Journals (Sweden)

    A. S. Stepanov

    2017-01-01

    Full Text Available The purpose of the study is to compare the structural and functional state of neuro-glio-vascular microstructural complexes of the somatosensory cortex (SSC, CA1 of the hippocampus and amygdala of the brain of white rats under normal conditions and after acute ischemia caused by a 20-minute occlusion of common carotid arteries.Materials and methods. In this experiment, neurons, astrocytes, endotheliocytes, pericytes, basal membrane of the microvessels were studied in the normal (n=5 and the reperfusion period (1, 3, 7, 14, 21 and 30 days, n=30 using electron and fluorescence microscopy (DAPI staining. The morphometric analysis was carried out using the ImageJ 1.46 software.Results. During the recovery period after ischemia was noted reactive (edema-swelling, tinctorial properties of cells and compensatory-restoration (hyperplasia, hypertrophy, proliferation, increased transcytosis changes in neuro-glia-vascular complexes. After ischemia, the number of neurons decreased (by 8.7%—55,3%, and the glial cell count 2—3 fold increased. Increasing neuroglial index (NGI was accompanied by: 1 the emergence of microvessels with numerous branched processes of pericytes, 2 the complication of the spatial organization of basal membranes, and 3 the structural features of activation of transcytosis processes (large number of caveolae, smooth and clathrin vesicles, large vesicles in pericytes and endothelial cells.Conclusion.These findings indicate the compensatory-restoration changes in the components of neuro-gliovascular complexes SSC, CA1 of the hippocampus and amygdala of white rat’s brain after a 20-minute occlusion of the common carotid arteries. The most complete implementation of mechanisms for the protection and repair of damaged neurons occurs in the SSC and amygdala exhibiting high NGI values.

  1. Noninvasive brain stimulation for treatment of right- and left-handed poststroke aphasics.

    Science.gov (United States)

    Heiss, Wolf-Dieter; Hartmann, Alexander; Rubi-Fessen, Ilona; Anglade, Carole; Kracht, Lutz; Kessler, Josef; Weiduschat, Nora; Rommel, Thomas; Thiel, Alexander

    2013-01-01

    Accumulating evidence from single case studies, small case series and randomized controlled trials seems to suggest that inhibitory noninvasive brain stimulation (NIBS) over the contralesional inferior frontal gyrus (IFG) of right-handers in conjunction with speech and language therapy (SLT) improves recovery from poststroke aphasia. Application of inhibitory NIBS to improve recovery in left-handed patients has not yet been reported. A total of 29 right-handed subacute poststroke aphasics were randomized to receive either 10 sessions of SLT following 20 min of inhibitory repetitive transcranial magnetic stimulation (rTMS) over the contralesional IFG or 10 sessions of SLT following sham stimulation; 2 left-handers were treated according to the same protocol with real rTMS. Language activation patterns were assessed with positron emission tomography prior to and after the treatment; 95% confidence intervals for changes in language performance scores and the activated brain volumes in both hemispheres were derived from TMS- and sham-treated right-handed patients and compared to the same parameters in left-handers. Right-handed patients treated with rTMS showed better recovery of language function in global aphasia test scores (t test, p right-handers. In treated right-handers, a shift of activation to the ipsilesional hemisphere was observed, while sham-treated patients consolidated network activity in the contralesional hemisphere (repeated-measures ANOVA, p = 0.009). Both left-handed patients also improved, with 1 patient within the confidence limits of TMS-treated right-handers (23 points, 15.9-28.9) and the other patient within the limits of sham-treated subjects (8 points, 2.8-14.5). Both patients exhibited only a very small interhemispheric shift, much less than expected in TMS-treated right-handers, and more or less consolidated initially active networks in both hemispheres. Inhibitory rTMS over the nondominant IFG appears to be a safe and effective treatment

  2. Supplementation with complex milk lipids during brain development promotes neuroplasticity without altering myelination or vascular density

    Directory of Open Access Journals (Sweden)

    Rosamond B. Guillermo

    2015-03-01

    Full Text Available Background: Supplementation with complex milk lipids (CML during postnatal brain development has been shown to improve spatial reference learning in rats. Objective: The current study examined histo-biological changes in the brain following CML supplementation and their relationship to the observed improvements in memory. Design: The study used the brain tissues from the rats (male Wistar, 80 days of age after supplementing with either CML or vehicle during postnatal day 10–80. Immunohistochemical staining of synaptophysin, glutamate receptor-1, myelin basic protein, isolectin B-4, and glial fibrillary acidic protein was performed. The average area and the density of the staining and the numbers of astrocytes and capillaries were assessed and analysed. Results: Compared with control rats, CML supplementation increased the average area of synaptophysin staining and the number of GFAP astrocytes in the CA3 sub-region of the hippocampus (p<0.01, but not in the CA4 sub-region. The supplementation also led to an increase in dopamine output in the striatum that was related to nigral dopamine expression (p<0.05, but did not alter glutamate receptors, myelination or vascular density. Conclusion: CML supplementation may enhance neuroplasticity in the CA3 sub-regions of the hippocampus. The brain regions-specific increase of astrocyte may indicate a supporting role for GFAP in synaptic plasticity. CML supplementation did not associate with postnatal white matter development or vascular remodelling.

  3. Longitudinal MRI evaluation of intracranial development and vascular characteristics of breast cancer brain metastases in a mouse model.

    Directory of Open Access Journals (Sweden)

    Heling Zhou

    Full Text Available Longitudinal MRI was applied to monitor intracranial initiation and development of brain metastases and assess tumor vascular volume and permeability in a mouse model of breast cancer brain metastases. Using a 9.4T system, high resolution anatomic MRI and dynamic susceptibility contrast (DSC perfusion MRI were acquired at different time points after an intracardiac injection of brain-tropic breast cancer MDA-MB231BR-EGFP cells. Three weeks post injection, multifocal brain metastases were first observed with hyperintensity on T2-weighted images, but isointensity on T1-weighted post contrast images, indicating that blood-tumor-barrier (BTB at early stage of brain metastases was impermeable. Follow-up MRI revealed intracranial tumor growth and increased number of metastases that distributed throughout the whole brain. At the last scan on week 5, T1-weighted post contrast images detected BTB disruption in 160 (34% of a total of 464 brain metastases. Enhancement in some of the metastases was only seen in partial regions of the tumor, suggesting intratumoral heterogeneity of BTB disruption. DSC MRI measurements of relative cerebral blood volume (rCBV showed that rCBV of brain metastases was significantly lower (mean= 0.89±0.03 than that of contralateral normal brain (mean= 1.00±0.03; p<0.005. Intriguingly, longitudinal measurements revealed that rCBV of individual metastases at early stage was similar to, but became significantly lower than that of contralateral normal brain with tumor growth (p<0.05. The rCBV data were concordant with histological analysis of microvascular density (MVD. Moreover, comprehensive analysis suggested no significant correlation among tumor size, rCBV and BTB permeability. In conclusion, longitudinal MRI provides non-invasive in vivo assessments of spatial and temporal development of brain metastases and their vascular volume and permeability. The characteristic rCBV of brain metastases may have a diagnostic value.

  4. "Happy Days Are Here Again": A Left and Right Brain 4MAT Approach to Teaching Depression-Era Presidential Elections.

    Science.gov (United States)

    Cantu, D. Antonio

    2001-01-01

    Provides a lesson plan that focuses on the 1932, 1936, and 1940 presidential election campaigns. Illustrates the use of the left and right brain 4MAT teaching model that considers individual learning styles associated with right and left hemisphere dominance. Includes a bibliography and eight handouts. (CMK)

  5. Altered brain network topology in left-behind children: A resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Zhao, Youjin; Du, Meimei; Gao, Xin; Xiao, Yuan; Shah, Chandan; Sun, Huaiqiang; Chen, Fuqin; Yang, Lili; Yan, Zhihan; Fu, Yuchuan; Lui, Su

    2016-12-01

    Whether a lack of direct parental care affects brain function in children is an important question, particularly in developing countries where hundreds of millions of children are left behind when their parents migrate for economic or political reasons. In this study, we investigated changes in the topological architectures of brain functional networks in left-behind children (LBC). Resting-state functional magnetic resonance imaging data were obtained from 26 LBC and 21 children living within their nuclear family (non-LBC). LBC showed a significant increase in the normalized characteristic path length (λ), suggesting a decrease in efficiency in information access, and altered nodal centralities in the fronto-limbic regions and motor and sensory systems. Moreover, a decreased nodal degree and the nodal betweenness of the right rectus gyrus were positively correlated with annual family income. The present study provides the first empirical evidence that suggests that a lack of direct parental care could affect brain functional development in children, particularly involving emotional networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Neuroprotective effect of selective DPP-4 inhibitor in experimental vascular dementia.

    Science.gov (United States)

    Jain, Swati; Sharma, Bhupesh

    2015-12-01

    Vascular risk factors are associated with a higher incidence of dementia. Diabetes mellitus is considered as a main risk factor for Alzheimer's disease and vascular dementia. Both forms of dementia are posing greater risk to the world population and are increasing at a faster rate. In the past we have reported the induction of vascular dementia by experimental diabetes. This study investigates the role of vildagliptin, a dipeptidyl peptidase-4 inhibitor in the pharmacological interdiction of pancreatectomy diabetes induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. Pancreatectomy diabetes rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with increase in brain inflammation, oxidative stress and calcium. Administration of vildagliptin has significantly attenuated pancreatectomy induced impairment of learning, memory, endothelial function, blood brain barrier permeability and biochemical parameters. It may be concluded that vildagliptin, a dipeptidyl peptidase-4 inhibitor may be considered as potential pharmacological agents for the management of pancreatectomy induced endothelial dysfunction and subsequent vascular dementia. The selective modulators of dipeptidyl peptidase-4 may further be explored for their possible benefits in vascular dementia. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Disturbed oscillatory brain dynamics in subcortical ischemic vascular dementia

    Directory of Open Access Journals (Sweden)

    van Straaten Elisabeth CW

    2012-07-01

    Full Text Available Abstract Background White matter hyperintensities (WMH can lead to dementia but the underlying physiological mechanisms are unclear. We compared relative oscillatory power from electroencephalographic studies (EEGs of 17 patients with subcortical ischemic vascular dementia, based on extensive white matter hyperintensities (SIVD-WMH with 17 controls to investigate physiological changes underlying this diagnosis. Results Differences between the groups were large, with a decrease of relative power of fast activity in patients (alpha power 0.25 ± 0.12 versus 0.38 ± 0.13, p = 0.01; beta power 0.08 ± 0.04 versus 0.19 ± 0.07; p Conclusions This pattern of disturbance in oscillatory brain activity indicate loss of connections between neurons, providing a first step in the understanding of cognitive dysfunction in SIVD-WMH.

  8. Left mainstem bronchial narrowing: a vascular compression syndrome? Evaluation by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hungate, R.G.; Newman, B.; Meza, M.P.

    1998-01-01

    Background and objective. Vascular compression of the left mainstem bronchus (LMSB) between the descending aorta (DA) and pulmonary artery (PA) has been suggested as a cause for LMSB narrowing in children. These anatomic relationships have not been compared with those in children with a normal LMSB. Materials and methods. We undertook a retrospective review of the medical and radiologic records of 10 symptomatic young children (1-19 months, 5 boys, 5 girls) with MR demonstration of LMSB narrowing and compared them to 40 young children without great vessel or bronchial abnormality on MR (1 week-19 months, 28 boys, 12 girls). Chest MR evaluation included assessment of airway and great vessel anatomy with specific attention to the course of the LMSB and its relationship to the adjacent DA and PA. The position of the DA in relation to the spine was carefully evaluated. Results. Five children had focal and five had diffuse LMSB narrowing. DA position at the level of the crossing LMSB: in 40 % of symptomatic children the DA was located in front of the adjacent vertebral body; in 40 %, 1 / 2 - 3 / 4 and in 20 % 1 / 4 - 1 / 2 of the circumference of the DA was located anterior to the spine. In the control group, the DA was prespinal in 10 %, with a trend toward a more paraspinal location of the DA. The trend toward a difference in position of the DA between symptomatic and control patients was statistically significant (P < 0.05). DA position was not related to age (up to 19 months). At the level where the LMSB crossed the DA, a segment of the PA was located anterior to the LMSB, more often the right PA (RPA) or pulmonary bifurcation in symptomatic children and the left PA (LPA) in controls. No correlation was apparent between length of LMSB narrowing and DA or PA position. Chest radiographic abnormalities, when present, were subtle. Excellent MR/bronchoscopic correlation of LMSB narrowing was found in nine of the ten symptomatic children. One child underwent posterior

  9. A two-stage model for in vivo assessment of brain tumor perfusion and abnormal vascular structure using arterial spin labeling.

    Directory of Open Access Journals (Sweden)

    Patrick W Hales

    Full Text Available The ability to assess brain tumor perfusion and abnormalities in the vascular structure in vivo could provide significant benefits in terms of lesion diagnosis and assessment of treatment response. Arterial spin labeling (ASL has emerged as an increasingly viable methodology for non-invasive assessment of perfusion. Although kinetic models have been developed to describe perfusion in healthy tissue, the dynamic behaviour of the ASL signal in the brain tumor environment has not been extensively studied. We show here that dynamic ASL data acquired in brain tumors displays an increased level of 'biphasic' behaviour, compared to that seen in healthy tissue. A new two-stage model is presented which more accurately describes this behaviour, and provides measurements of perfusion, pre-capillary blood volume fraction and transit time, and capillary bolus arrival time. These biomarkers offer a novel contrast in the tumor and surrounding tissue, and provide a means for measuring tumor perfusion and vascular structural abnormalities in a fully non-invasive manner.

  10. Diagnosis and treatment of vascular damage in dementia

    NARCIS (Netherlands)

    Biessels, GJ

    2016-01-01

    This paper provides an overview of cognitive impairment due to vascular brain damage, which is referred to as vascular cognitive impairment (VCI). Over the past decades, we have seen marked progress in detecting VCI, both through maturation of diagnostic concepts and through advances in brain

  11. Vascular endothelial growth factors enhance the permeability of the mouse blood-brain barrier.

    Directory of Open Access Journals (Sweden)

    Shize Jiang

    Full Text Available The blood-brain barrier (BBB impedes entry of many drugs into the brain, limiting clinical efficacy. A safe and efficient method for reversibly increasing BBB permeability would greatly facilitate central nervous system (CNS drug delivery and expand the range of possible therapeutics to include water soluble compounds, proteins, nucleotides, and other large molecules. We examined the effect of vascular endothelial growth factor (VEGF on BBB permeability in Kunming (KM mice. Human VEGF165 was administered to treatment groups at two concentrations (1.6 or 3.0 µg/mouse, while controls received equal-volume saline. Changes in BBB permeability were measured by parenchymal accumulation of the contrast agent Gd-DTPA as assessed by 7 T magnetic resonance imaging (MRI. Mice were then injected with Evans blue, sacrificed 0.5 h later, and perfused transcardially. Brains were removed, fixed, and sectioned for histological study. Both VEGF groups exhibited a significantly greater signal intensity from the cerebral cortex and basal ganglia than controls (P<0.001. Evans blue fluorescence intensity was higher in the parenchyma and lower in the cerebrovasculature of VEGF-treated animals compared to controls. No significant brain edema was observed by diffusion weighted MRI (DWI or histological staining. Exogenous application of VEGF can increase the permeability of the BBB without causing brain edema. Pretreatment with VEGF may be a feasible method to facilitate drug delivery into the CNS.

  12. Functional asymmetry between the left and right human fusiform gyrus explored through electrical brain stimulation.

    Science.gov (United States)

    Rangarajan, Vinitha; Parvizi, Josef

    2016-03-01

    The ventral temporal cortex (VTC) contains several areas with selective responses to words, numbers, faces, and objects as demonstrated by numerous human and primate imaging and electrophysiological studies. Our recent work using electrocorticography (ECoG) confirmed the presence of face-selective neuronal populations in the human fusiform gyrus (FG) in patients implanted with intracranial electrodes in either the left or right hemisphere. Electrical brain stimulation (EBS) disrupted the conscious perception of faces only when it was delivered in the right, but not left, FG. In contrast to our previous findings, here we report both negative and positive EBS effects in right and left FG, respectively. The presence of right hemisphere language dominance in the first, and strong left-handedness and poor language processing performance in the second case, provide indirect clues about the functional architecture of the human VTC in relation to hemispheric asymmetries in language processing and handedness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Incidental retroaortic left innominate vein in adult patient

    Directory of Open Access Journals (Sweden)

    Alexandre Semionov, MD, PhD

    2017-09-01

    Full Text Available Retro-aortic left innominate vein is a rare vascular abnormality, usually associated with congenital heart disease. Here we report a case of isolated retro-aortic left innominate vein in an adult female.

  14. Differential effects of vascular endothelial growth factor A isoforms in a mouse brain metastasis model of human melanoma.

    NARCIS (Netherlands)

    Kusters, B.; Waal, R.M.W. de; Wesseling, P.; Verrijp, K.; Maass, C.N.; Heerschap, A.; Barentsz, J.O.; Sweep, C.G.J.; Ruiter, D.J.; Leenders, W.P.J.

    2003-01-01

    We reported previously that vascular endothelial growth factor isoform A (VEGF-A) expression by Mel57 human melanoma cells led to tumor progression in a murine brain metastasis model in an angiogenesis-independent fashion by dilation of co-opted, pre-existing vessels and concomitant enhanced blood

  15. A Radiation-Induced Hippocampal Vascular Injury Surrogate Marker Predicts Late Neurocognitive Dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Farjam, Reza [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Pramanik, Priyanka; Aryal, Madhava P. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Srinivasan, Ashok [Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Chapman, Christopher H. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Tsien, Christina I. [Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri (United States); Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Cao, Yue, E-mail: yuecao@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan (United States)

    2015-11-15

    Purpose: We aimed to develop a hippocampal vascular injury surrogate marker for early prediction of late neurocognitive dysfunction in patients receiving brain radiation therapy (RT). Methods and Materials: Twenty-seven patients (17 males and 10 females, 31-80 years of age) were enrolled in an institutional review board-approved prospective longitudinal study. Patients received diagnoses of low-grade glioma or benign tumor and were treated by (3D) conformal or intensity-modulated RT with a median dose of 54 Gy (50.4-59.4 Gy in 1.8-Gy fractions). Six dynamic-contrast enhanced MRI scans were performed from pre-RT to 18-month post-RT, and quantified for vascular parameters related to blood-brain barrier permeability, K{sup trans}, and the fraction of blood plasma volume, V{sub p}. The temporal changes in the means of hippocampal transfer constant K{sup trans} and V{sub p} after starting RT were modeled by integrating the dose effects with age, sex, hippocampal laterality, and presence of tumor or edema near a hippocampus. Finally, the early vascular dose response in hippocampi was correlated with neurocognitive dysfunction at 6 and 18 months post-RT. Results: The mean K{sup trans} Increased significantly from pre-RT to 1-month post-RT (P<.0004), which significantly depended on sex (P<.0007) and age (P<.00004), with the dose response more pronounced in older females. Also, the vascular dose response in the left hippocampus of females correlated significantly with changes in memory function at 6 (r=−0.95, P<.0006) and 18-months (r=−0.88, P<.02) post-RT. Conclusions: The early hippocampal vascular dose response could be a predictor of late neurocognitive dysfunction. A personalized hippocampus sparing strategy may be considered in the future.

  16. A Radiation-Induced Hippocampal Vascular Injury Surrogate Marker Predicts Late Neurocognitive Dysfunction

    International Nuclear Information System (INIS)

    Farjam, Reza; Pramanik, Priyanka; Aryal, Madhava P.; Srinivasan, Ashok; Chapman, Christopher H.; Tsien, Christina I.; Lawrence, Theodore S.; Cao, Yue

    2015-01-01

    Purpose: We aimed to develop a hippocampal vascular injury surrogate marker for early prediction of late neurocognitive dysfunction in patients receiving brain radiation therapy (RT). Methods and Materials: Twenty-seven patients (17 males and 10 females, 31-80 years of age) were enrolled in an institutional review board-approved prospective longitudinal study. Patients received diagnoses of low-grade glioma or benign tumor and were treated by (3D) conformal or intensity-modulated RT with a median dose of 54 Gy (50.4-59.4 Gy in 1.8-Gy fractions). Six dynamic-contrast enhanced MRI scans were performed from pre-RT to 18-month post-RT, and quantified for vascular parameters related to blood-brain barrier permeability, K"t"r"a"n"s, and the fraction of blood plasma volume, V_p. The temporal changes in the means of hippocampal transfer constant K"t"r"a"n"s and V_p after starting RT were modeled by integrating the dose effects with age, sex, hippocampal laterality, and presence of tumor or edema near a hippocampus. Finally, the early vascular dose response in hippocampi was correlated with neurocognitive dysfunction at 6 and 18 months post-RT. Results: The mean K"t"r"a"n"s Increased significantly from pre-RT to 1-month post-RT (P<.0004), which significantly depended on sex (P<.0007) and age (P<.00004), with the dose response more pronounced in older females. Also, the vascular dose response in the left hippocampus of females correlated significantly with changes in memory function at 6 (r=−0.95, P<.0006) and 18-months (r=−0.88, P<.02) post-RT. Conclusions: The early hippocampal vascular dose response could be a predictor of late neurocognitive dysfunction. A personalized hippocampus sparing strategy may be considered in the future.

  17. Selective vulnerability in brain hypoxia

    DEFF Research Database (Denmark)

    Cervos-Navarro, J.; Diemer, Nils Henrik

    1991-01-01

    Neuropathology, selective vulnerability, brain hypoxia, vascular factors, excitotoxicity, ion homeostasis......Neuropathology, selective vulnerability, brain hypoxia, vascular factors, excitotoxicity, ion homeostasis...

  18. Equivalent brain SPECT perfusion changes underlying therapeutic efficiency in pharmacoresistant depression using either high-frequency left or low-frequency right prefrontal rTMS.

    Science.gov (United States)

    Richieri, Raphaëlle; Boyer, Laurent; Padovani, Romain; Adida, Marc; Colavolpe, Cécile; Mundler, Olivier; Lançon, Christophe; Guedj, Eric

    2012-12-03

    Functional neuroimaging studies have suggested similar mechanisms underlying antidepressant effects of distinct therapeutics. This study aimed to determine and compare functional brain patterns underlying the antidepressant response of 2 distinct protocols of repetitive transcranial magnetic stimulation (rTMS). 99mTc-ECD SPECT was performed before and after rTMS of dorsolateral prefrontal cortex in 61 drug-resistant right-handed patients with major depression, using high frequency (10Hz) left-side stimulation in 33 patients, and low frequency (1Hz) right-side stimulation in 28 patients. Efficiency of rTMS response was defined as at least 50% reduction of the baseline Beck Depression Inventory score. We compared the whole-brain voxel-based brain SPECT changes in perfusion after rTMS, between responders and non-responders in the whole sample (pleft- and right-stimulation. Before rTMS, the left- and right-prefrontal stimulation groups did not differ from clinical data and brain SPECT perfusion. rTMS efficiency (evaluated on % of responders) was statistically equivalent in the two groups of patients. In the whole-group of responder patients, a perfusion decrease was found after rTMS, in comparison to non-responders, within the left perirhinal cortex (BA35, BA36). This result was secondarily confirmed separately in the two subgroups, i.e. after either left stimulation (p=0.017) or right stimulation (pbrain functional changes associated to antidepressive efficiency, consisting to a remote brain limbic activity decrease within the left perirhinal cortex. However, these results will have to be confirmed in a double-blind randomized trial using a sham control group. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Targeting Phosphatidylserine for Radioimmunotherapy of Breast Cancer Brain Metastasis

    Science.gov (United States)

    2015-12-01

    response. e. Correlate imaging findings with histological studies of vascular damage, tumor cell and endothelial cell apoptosis or necrosis and vascular ...phosphatidylserine (PS) is exposed exclusively on tumor vascular endothelium of brain metastases in mouse models. A novel PS-targeting antibody, PGN635... vascular endothelial cells in multi-focal brain metastases throughout the whole mouse brain. Vascular endothelium in normal brain tissues is negative

  20. The Neural Correlates of Abstract and Concrete Words: Evidence from Brain-Damaged Patients

    Directory of Open Access Journals (Sweden)

    Giorgia Martello

    2013-08-01

    Full Text Available Neuropsychological and activation studies on the neural correlates of abstract and concrete words have produced contrasting results. The present study explores the anatomical substrates of abstract/concrete words in 22 brain-damaged patients with a single vascular lesion either in the right or left hemisphere. One hundred and twenty (60 concrete and 60 abstract noun triplets were used for a semantic similarity judgment task. We found a significant interaction in word type × group since left temporal brain-damaged patients performed significantly better with concrete than abstract words. Lesion mapping of patients with predominant temporal damage showed that the left superior and middle temporal gyri and the insula were the areas of major overlapping, while the anterior portion of the left temporal lobe was generally spared. Errors on abstract words mainly concerned (although at a non-significant level semantically associate targets, while in the case of concrete words, coordinate targets were significantly more impaired than associate ones. Our results suggest that the left superior and middle temporal gyri and the insula are crucial regions in processing abstract words. They also confirm the hypothesis of a semantic similarity vs. associative organization of concrete and abstract concepts.

  1. Vascular complications of prosthetic inter-vertebral discs.

    Science.gov (United States)

    Daly, Kevin J; Ross, E Raymond S; Norris, Heather; McCollum, Charles N

    2006-10-01

    Five consecutive cases of prosthetic inter-vertebral disc displacement with severe vascular complications on revisional surgery are described. The objective of this case report is to warn spinal surgeons that major vascular complications are likely with anterior displacement of inter-vertebral discs. We have not been able to find a previous report on vascular complications associated with anterior displacement of prosthetic inter-vertebral discs. In all five patients the prosthetic disc had eroded into the bifurcation of the inferior vena cava and the left common iliac vein. In three cases the aortic bifurcation was also involved. The fibrosis was so severe that dissecting out the arteries and veins to provide access to the relevant disc proved impossible. Formal division of the left common iliac vein and artery with subsequent repair was our solution. Anterior inter-vertebral disc displacement was associated with severe vascular injury. Preventing anterior disc displacement is essential in disc design. In the event of anterior displacement, disc removal should be planned with a Vascular Surgeon.

  2. The Creative Brain.

    Science.gov (United States)

    Herrmann, Ned

    1982-01-01

    Outlines the differences between left-brain and right-brain functioning and between left-brain and right-brain dominant individuals, and concludes that creativity uses both halves of the brain. Discusses how both students and curriculum can become more "whole-brained." (Author/JM)

  3. [Importance of hypertensive left ventricular hypertrophy in patients with ischemic events of the heart or brain].

    Science.gov (United States)

    Castilla-Guerra, L; Fernández-Moreno, M C; Aguilera-Saborido, A; Solanella-Soler, J

    2016-01-01

    Hypertensive left ventricular hypertrophy (H-LVH) is a potentially modifiable vascular risk factor (VRF) often overlooked in clinical practice. We aimed to evaluate the frequency of H-LVH in patients with coronary heart disease (CHD) or ischemic stroke (IS). We retrospectively assessed all the echocardiography studies of patients admitted with the diagnosis CHD or IS over a 4-year period. We studied 533 patients, 330 with CHD and 203 with IS. Mean age was 69 (±11) years, 61.5% males. Hypertension was the most common RF: 362 patients (67.9%) (CHD vs. IS: 70 vs. 64.5%; P=NS). H-LVH was seen in 234 patients (43.9%) (CHD vs. IS: 44.8 vs. 42.3%; P=NS). Patients with H-LVH were older and received a greater number of antihypertensive drugs at discharge. Half of patients with hypertension presented H-LVH (184 patients; 50.8%), with similar frequency in both groups (CHD vs. IS: 50.6 vs. 51.1%; P=NS). Neither patients' characteristics nor VRF with the exception of hypertension (P=.0001) were associated with H-LVH. H-LVH is a major VRF in patients with ischemic events in the heart and brain. Nearly half the patients present H-LVH, with a similar frequency in both groups. It is important to identify H-LVH in these patients to optimize treatment and improve long-term prognosis. Copyright © 2015 SEHLELHA. Published by Elsevier España, S.L.U. All rights reserved.

  4. Injuries to the vascular endothelium: vascular wall and endothelial dysfunction.

    Science.gov (United States)

    Fisher, Mark

    2008-01-01

    Vascular endothelial injury has multiple elements, and this article focuses on ischemia-related processes that have particular relevance to ischemic stroke. Distinctions between necrotic and apoptotic cell death provide a basic science context in which to better understand the significance of classical core and penumbra concepts of acute stroke, with apoptotic processes particularly prominent in the penumbra. The mitochondria are understood to serve as a reservoir of proteins that mediate apoptosis. Oxidative stress pathways generating reactive oxygen species (ROS) are prominent in endothelial injury, both ischemic and nonischemic, with prominent roles of enzyme- and nonenzymemediated pathways; mitochondria once again have a critical role, particularly in the nonenzymatic pathways generating ROS. Inflammation also contributes to vascular endothelial injury, and endothelial cells have the capacity to rapidly increase expression of inflammatory mediators following ischemic challenge; this leads to enhanced leukocyte-endothelial interactions mediated by selectins and adhesion molecules. Preconditioning consists of a minor version of an injurious event, which in turn may protect vascular endothelium from injury following a more substantial event. Presence of the blood-brain barrier creates unique responses to endothelial injury, with permeability changes due to impairment of endothelial-matrix interactions compounding altered vasomotor tone and tissue perfusion mediated by nitric oxide. Pharmacological protection against vascular endothelial injury can be provided by several of the phosphodiesterases (cilostazol and dipyridamole), along with statins. Optimal clinical responses for protection of brain vascular endothelium may use preconditioning as a model, and will likely require combined protection against apoptosis, ROS, and inflammation.

  5. Multichannel optical brain imaging to separate cerebral vascular, tissue metabolic, and neuronal effects of cocaine

    Science.gov (United States)

    Ren, Hugang; Luo, Zhongchi; Yuan, Zhijia; Pan, Yingtian; Du, Congwu

    2012-02-01

    Characterization of cerebral hemodynamic and oxygenation metabolic changes, as well neuronal function is of great importance to study of brain functions and the relevant brain disorders such as drug addiction. Compared with other neuroimaging modalities, optical imaging techniques have the potential for high spatiotemporal resolution and dissection of the changes in cerebral blood flow (CBF), blood volume (CBV), and hemoglobing oxygenation and intracellular Ca ([Ca2+]i), which serves as markers of vascular function, tissue metabolism and neuronal activity, respectively. Recently, we developed a multiwavelength imaging system and integrated it into a surgical microscope. Three LEDs of λ1=530nm, λ2=570nm and λ3=630nm were used for exciting [Ca2+]i fluorescence labeled by Rhod2 (AM) and sensitizing total hemoglobin (i.e., CBV), and deoxygenated-hemoglobin, whereas one LD of λ1=830nm was used for laser speckle imaging to form a CBF mapping of the brain. These light sources were time-sharing for illumination on the brain and synchronized with the exposure of CCD camera for multichannel images of the brain. Our animal studies indicated that this optical approach enabled simultaneous mapping of cocaine-induced changes in CBF, CBV and oxygenated- and deoxygenated hemoglobin as well as [Ca2+]i in the cortical brain. Its high spatiotemporal resolution (30μm, 10Hz) and large field of view (4x5 mm2) are advanced as a neuroimaging tool for brain functional study.

  6. Vascular cognitive impairment

    Directory of Open Access Journals (Sweden)

    N.V. Vakhnina

    2014-01-01

    Full Text Available Vascular pathology of the brain is the second most common cause of cognitive impairment after Alzheimer's disease. The article describes the modern concepts of etiology, pathogenetic mechanisms, clinical features and approaches to diagnosis and therapy of vascular cognitive impairment (VCI. Cerebrovascular accident, chronic cerebral circulatory insufficiency and their combination, sometimes in combination with a concomitant neurodegenerative process, are shown to be the major types of brain lesions leading to VCI. The clinical presentation of VCI is characterized by the neuropsychological status dominated by impairment of the executive frontal functions (planning, control, attention in combination with focal neurological symptoms. The diagnosis is based on comparing of the revealed neuropsychological and neurological features with neuroimaging data. Neurometabolic, acetylcholinergic, glutamatergic, and other vasoactive drugs and non-pharmacological methods are widely used to treat VCI. 

  7. Delusional misidentifications and duplications: right brain lesions, left brain delusions.

    Science.gov (United States)

    Devinsky, Orrin

    2009-01-06

    When the delusional misidentification syndromes reduplicative paramnesia and Capgras syndromes result from neurologic disease, lesions are usually bifrontal and/or right hemispheric. The related disorders of confabulation and anosognosis share overlapping mechanisms and anatomic pathology. A dual mechanism is postulated for the delusional misidentification syndromes: negative effects from right hemisphere and frontal lobe dysfunction as well as positive effects from release (i.e., overactivity) of preserved left hemisphere areas. Negative effects of right hemisphere injury impair self-monitoring, ego boundaries, and attaching emotional valence and familiarity to stimuli. The unchecked left hemisphere unleashes a creative narrator from the monitoring of self, memory, and reality by the frontal and right hemisphere areas, leading to excessive and false explanations. Further, the left hemisphere's cognitive style of categorization, often into dual categories, leads it to invent a duplicate or impostor to resolve conflicting information. Delusions result from right hemisphere lesions. But it is the left hemisphere that is deluded.

  8. Affinity cytochemistry of vascular endothelia in brain tumors by biotinylated Ulex europaeus type I lectin (UEA I).

    Science.gov (United States)

    Weber, T; Seitz, R J; Liebert, U G; Gallasch, E; Wechsler, W

    1985-01-01

    The vascularization of 50 tumors of the central nervous system (CNS) including 17 meningiomas, 25 neuroectodermal tumors, i.e., astrocytomas, oligodendrogliomas, mixed gliomas, glioblastomas, medulloblastomas, seven metastatic carcinomas, and one malignant hemangioendothelioma were investigated using biotinylated Ulex europaeus type I lectin (UEA I) in an indirect avidinbiotin-peroxidase procedure. The cytochemical staining pattern of UEA I on paraffin sections was compared with that of biotinylated Dolichos biflorus lectin (DBA), and with the immunocytochemical staining of factor VIII related antigen (F VIII/RAG) by polyclonal antisera using the PAP technique. UEA I visualized the endothelia of blood vessels with equal intensity, sensitivity, and reliability in normal brain and in tumor tissue with neovascularization. While large, medium, and small vessels were equally well demonstrated by UEA I and antibodies against FVIII/RAG, capillaries and endothelial sprouts were stained more consistently and intensely by UEA I. No reliable cytochemical staining could be obtained by DBA regardless of tissue or cell type investigated. It is concluded that UEA I is a highly useful cytochemical marker for the identification of vascular endothelia in paraffin sections of human brain tumors.

  9. Immunohistochemical study of N-epsilon-carboxymethyl lysine (CML in human brain: relation to vascular dementia

    Directory of Open Access Journals (Sweden)

    Williams Jonathan

    2007-10-01

    Full Text Available Abstract Background Advanced glycation end-products (AGEs and their receptor (RAGE occur in dementia of the Alzheimer's type and diabetic microvascular disease. Accumulation of AGEs relates to risk factors for vascular dementia with ageing, including hypertension and diabetes. Cognitive dysfunction in vascular dementia may relate to microvascular disease resembling that in diabetes. We tested if, among people with cerebrovascular disease, (1 those with dementia have higher levels of neuronal and vascular AGEs and (2 if cognitive dysfunction depends on neuronal and/or vascular AGE levels. Methods Brain Sections from 25 cases of the OPTIMA (Oxford Project to Investigate Memory and Ageing cohort, with varying degrees of cerebrovascular pathology and cognitive dysfunction (but only minimal Alzheimer type pathology were immunostained for Nε-(carboxymethyl-lysine (CML, the most abundant AGE. The level of staining in vessels and neurons in the cortex, white matter and basal ganglia was compared to neuropsychological and other clinical measures. Results The probability of cortical neurons staining positive for CML was higher in cases with worse cognition (p = 0.01 or a history of hypertension (p = 0.028. Additionally, vascular CML staining related to cognitive impairment (p = 0.02 and a history of diabetes (p = 0.007. Neuronal CML staining in the basal ganglia related to a history of hypertension (p = 0.002. Conclusion CML staining in cortical neurons and cerebral vessels is related to the severity of cognitive impairment in people with cerebrovascular disease and only minimal Alzheimer pathology. These findings support the possibility that cerebral accumulation of AGEs may contribute to dementia in people with cerebrovascular disease.

  10. Neuropsychology and its correlation with cerebral blood flow in patients with Alzheimer's disease, vascular dementia and normal seniors

    International Nuclear Information System (INIS)

    Ang Qiuqing; Jiang Kaida; Huang Yanyan; Zhang Mingyuan; Zhao Jinghua; Lin Xiangtong; He Fengfeng; Gu Niufan

    1999-01-01

    Objective: To study the psychological, functional imaging findings and the relationship between them in patients with Alzheimer's disease (AD), vascular dementia (VD) and normal seniors (NS). Methods: Psychological evaluation with rating scales and functional imaging examination with single photon emission computed tomography were conducted to AD, VD (both met the DSM-IV diagnostic criteria) and NS. Results: In psychological examination, AD and VD showed significantly lower scores in every scale than NS, and in Fuld goods memory test (FOM), AD appeared even worse than VD. In functional imaging examination, at most brain areas, radioactive ratio (RAR) in AD and VD were obviously lower than that in NS. While in right parietal lobe and bilateral frontal lobes, RAR in AD showed significantly lower than in VD. FOM score of NS was correlated with RAR in several brain areas. RARs of right parietal lobe in AD and of left parietal lobe in VD showed correlation with scores of most rating scales. Conclusions: Hypoperfusion in right parietal lobe of AD and in left parietal lobe of VD contributes mainly to their cognitive deficiency, this may further suggest the different right or left hemisphere mechanism in AD and VD

  11. Breaking symmetry: the zebrafish as a model for understanding left-right asymmetry in the developing brain.

    Science.gov (United States)

    Roussigne, Myriam; Blader, Patrick; Wilson, Stephen W

    2012-03-01

    How does left-right asymmetry develop in the brain and how does the resultant asymmetric circuitry impact on brain function and lateralized behaviors? By enabling scientists to address these questions at the levels of genes, neurons, circuitry and behavior,the zebrafish model system provides a route to resolve the complexity of brain lateralization. In this review, we present the progress made towards characterizing the nature of the gene networks and the sequence of morphogenetic events involved in the asymmetric development of zebrafish epithalamus. In an attempt to integrate the recent extensive knowledge into a working model and to identify the future challenges,we discuss how insights gained at a cellular/developmental level can be linked to the data obtained at a molecular/genetic level. Finally, we present some evolutionary thoughts and discuss how significant discoveries made in zebrafish should provide entry points to better understand the evolutionary origins of brain lateralization.

  12. Autoradiographic observations of the induced vascular injuries by arachidonic acid in rabbit's brain and lung using 111In-oxine labeled platelets

    International Nuclear Information System (INIS)

    Fujimoto, Tsukasa; Fukushima, Yoshiharu; Suzuki, Hidenori; Kuroiwa, Kyoko; Tanoue, Kenjiro; Yamazaki, Hiroh.

    1985-01-01

    Autoradiography using 111 In-oxine labeled autologous platelets was performed to observe the behavior of platelets in induced vascular injury by activated platelets in rabbit's brain and lung. Cerebrovascular injuries were induced by injection of arachidonic acid (AA) (0.7 mg/kg) into right internal carotid artery. Fourteen animals were pretreated with antiplatelet drug, ticlopidine (200 mg/kg) and 10 were controls. Before the AA injection, 111 In-oxine (300 μCi) labeled platelets were injected intravenously. Evans blue was given as a marker of disturbances of blood brain barrier. Sixty min after the AA injection, brains were removed and autoradiographic and electron microscopic studies were done. In the nontreated animals and some of the treated animals whose platelet aggregability was not suppressed, blue staining were seen in the cerebral hemisphere of injection side and hot radioactivity in autoradiogram were revealed in corresponding area. In the treated animals whose platelet aggregability was remarkably suppressed, no or slight blue staining or radioactivity were recognized. Only in hot radioactive area, platelet thrombi and vascular injuries were seen. Vascular injuries of lung were produced by decompression after keeping animals under hyperbalic condition (6 atomosphere absolute for 40 min). Before this procedure, 111 In-oxine labeled platelets were injected. Lungs of both 4 control and 4 decompression sickness animals were removed and autoradiographic and lightmicroscopic observations were performed. In lungs of decompression sickness animals remarkable spotty high radioactivity and prominent platelet aggregates in the vessels were seen. These findings were not seen in control animals. Our results suggested important roles of platelets in induced vascular injuries. And this autoradiographic approach seemed to be quite useful for observation of platelet's behavior in injured vessels and evaluation of antiplatelet drugs. (author)

  13. [Features of adaptive responses in right-handers and left-handers, and their relationship to the functional activity of the brain].

    Science.gov (United States)

    Barkar, A A; Markina, L D

    2014-01-01

    In the article there is considered the relationship between adaptation state of the organism and features of bioelectric activity of the brain in right-handers and left-handers. Practically healthy persons of both genders, 23-45 years of age, with the chronic stress disorder were examined. Adaptation status was evaluated with a computer software "Anti-stress", features of bioelectric brain activity were detected by means of spectral and coherent EEG analysis, also the character of motor and sensory asymmetries was determined. The obtained data showed that the response of the organism to excitators of varying strength is a system one and manifested at different levels; adaptation status and bioelectrical activity in right-handers and left-handers have features.

  14. Placental growth factor deficiency is associated with impaired cerebral vascular development in mice.

    Science.gov (United States)

    Luna, Rayana Leal; Kay, Vanessa R; Rätsep, Matthew T; Khalaj, Kasra; Bidarimath, Mallikarjun; Peterson, Nichole; Carmeliet, Peter; Jin, Albert; Croy, B Anne

    2016-02-01

    Placental growth factor (PGF) is expressed in the developing mouse brain and contributes to vascularization and vessel patterning. PGF is dynamically expressed in fetal mouse brain, particularly forebrain, and is essential for normal cerebrovascular development. PGF rises in maternal plasma over normal human and mouse pregnancy but is low in many women with the acute onset hypertensive syndrome, pre-eclampsia (PE). Little is known about the expression of PGF in the fetus during PE. Pgf  (-/-) mice appear normal but recently cerebral vascular defects were documented in adult Pgf  (-/-) mice. Here, temporal-spatial expression of PGF is mapped in normal fetal mouse brains and cerebral vasculature development is compared between normal and congenic Pgf  (-/-) fetuses to assess the actions of PGF during cerebrovascular development. Pgf/PGF, Vegfa/VEGF, Vegf receptor (Vegfr)1 and Vegfr2 expression were examined in the brains of embryonic day (E)12.5, 14.5, 16.5 and 18.5 C57BL/6 (B6) mice using quantitative PCR and immunohistochemistry. The cerebral vasculature was compared between Pgf  (-/-) and B6 embryonic and adult brains using whole mount techniques. Vulnerability to cerebral ischemia was investigated using a left common carotid ligation assay. Pgf/PGF and Vegfr1 are highly expressed in E12.5-14.5 forebrain relative to VEGF and Vegfr2. Vegfa/VEGF is relatively more abundant in hindbrain (HB). PGF and VEGF expression were similar in midbrain. Delayed HB vascularization was seen at E10.5 and 11.5 in Pgf  (-/-) brains. At E14.5, Pgf  (-/-) circle of Willis showed unilateral hypoplasia and fewer collateral vessels, defects that persisted post-natally. Functionally, adult Pgf  (-/-) mice experienced cerebral ischemia after left common carotid arterial occlusion while B6 mice did not. Since Pgf  (-/-) mice were used, consequences of complete absence of maternal and fetal PGF were defined. Therefore, the effects of maternal versus fetal PGF

  15. Mortality and preoperative cardiac function in vascular amputees : an N-terminal pro-brain natriuretic peptide (NT-proBNP) pilot study

    NARCIS (Netherlands)

    Riemersma, Marcel; Dijkstra, Pieter U.; van Veldhuisen, Dirk Jan; Muskiet, Frits A. J.; van den Dungen, Jan A. M. M.; Geertzen, Jan H. B.

    Objective: To determine preoperative ventricular function in vascular amputees by measuring N-terminal pro-brain natriuretic peptide (NT-proBNP) and to analyse the relationship between NT-proBNP levels and 30-day postoperative mortality. Design: Prospective pilot study. Subjects and methods: In 19

  16. Co-speech hand movements during narrations: What is the impact of right vs. left hemisphere brain damage?

    Science.gov (United States)

    Hogrefe, Katharina; Rein, Robert; Skomroch, Harald; Lausberg, Hedda

    2016-12-01

    Persons with brain damage show deviant patterns of co-speech hand movement behaviour in comparison to healthy speakers. It has been claimed by several authors that gesture and speech rely on a single production mechanism that depends on the same neurological substrate while others claim that both modalities are closely related but separate production channels. Thus, findings so far are contradictory and there is a lack of studies that systematically analyse the full range of hand movements that accompany speech in the condition of brain damage. In the present study, we aimed to fill this gap by comparing hand movement behaviour in persons with unilateral brain damage to the left and the right hemisphere and a matched control group of healthy persons. For hand movement coding, we applied Module I of NEUROGES, an objective and reliable analysis system that enables to analyse the full repertoire of hand movements independent of speech, which makes it specifically suited for the examination of persons with aphasia. The main results of our study show a decreased use of communicative conceptual gestures in persons with damage to the right hemisphere and an increased use of these gestures in persons with left brain damage and aphasia. These results not only suggest that the production of gesture and speech do not rely on the same neurological substrate but also underline the important role of right hemisphere functioning for gesture production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Suppression of the endoplasmic reticulum calcium pump during zebrafish gastrulation affects left-right asymmetry of the heart and brain.

    Science.gov (United States)

    Kreiling, Jill A; Balantac, Zaneta L; Crawford, Andrew R; Ren, Yuexin; Toure, Jamal; Zchut, Sigalit; Kochilas, Lazaros; Creton, Robbert

    2008-01-01

    Vertebrate embryos generate striking Ca(2+) patterns, which are unique regulators of dynamic developmental events. In the present study, we used zebrafish embryos as a model system to examine the developmental roles of Ca(2+) during gastrulation. We found that gastrula stage embryos maintain a distinct pattern of cytosolic Ca(2+) along the dorsal-ventral axis, with higher Ca(2+) concentrations in the ventral margin and lower Ca(2+) concentrations in the dorsal margin and dorsal forerunner cells. Suppression of the endoplasmic reticulum Ca(2+) pump with 0.5 microM thapsigargin elevates cytosolic Ca(2+) in all embryonic regions and induces a randomization of laterality in the heart and brain. Affected hearts, visualized in living embryos by a subtractive imaging technique, displayed either a reversal or loss of left-right asymmetry. Brain defects include a left-right reversal of pitx2 expression in the dorsal diencephalon and a left-right reversal of the prominent habenular nucleus in the brain. Embryos are sensitive to inhibition of the endoplasmic reticulum Ca(2+) pump during early and mid gastrulation and lose their sensitivity during late gastrulation and early segmentation. Suppression of the endoplasmic reticulum Ca(2+) pump during gastrulation inhibits expression of no tail (ntl) and left-right dynein related (lrdr) in the dorsal forerunner cells and affects development of Kupffer's vesicle, a ciliated organ that generates a counter-clockwise flow of fluid. Previous studies have shown that Ca(2+) plays a role in Kupffer's vesicle function, influencing ciliary motility and translating the vesicle's counter-clockwise flow into asymmetric patterns of gene expression. The present results suggest that Ca(2+) plays an additional role in the formation of Kupffer's vesicle.

  18. Selected Gray Matter Volumes and Gender but Not Basal Ganglia nor Cerebellum Gyri Discriminate Left Versus Right Cerebral Hemispheres: Multivariate Analyses in human Brains at 3T.

    Science.gov (United States)

    Roldan-Valadez, Ernesto; Suarez-May, Marcela A; Favila, Rafael; Aguilar-Castañeda, Erika; Rios, Camilo

    2015-07-01

    Interest in the lateralization of the human brain is evident through a multidisciplinary number of scientific studies. Understanding volumetric brain asymmetries allows the distinction between normal development stages and behavior, as well as brain diseases. We aimed to evaluate volumetric asymmetries in order to select the best gyri able to classify right- versus left cerebral hemispheres. A cross-sectional study performed in 47 right-handed young-adults healthy volunteers. SPM-based software performed brain segmentation, automatic labeling and volumetric analyses for 54 regions involving the cerebral lobes, basal ganglia and cerebellum from each cerebral hemisphere. Multivariate discriminant analysis (DA) allowed the assembling of a predictive model. DA revealed one discriminant function that significantly differentiated left vs. right cerebral hemispheres: Wilks' λ = 0.008, χ(2) (9) = 238.837, P brain gyri are able to accurately classify left vs. right cerebral hemispheres by using a multivariate approach; the selected regions correspond to key brain areas involved in attention, internal thought, vision and language; our findings favored the concept that lateralization has been evolutionary favored by mental processes increasing cognitive efficiency and brain capacity. © 2015 Wiley Periodicals, Inc.

  19. Left-Deviating Prism Adaptation in Left Neglect Patient: Reflexions on a Negative Result

    Directory of Open Access Journals (Sweden)

    Jacques Luauté

    2012-01-01

    Full Text Available Adaptation to right-deviating prisms is a promising intervention for the rehabilitation of patients with left spatial neglect. In order to test the lateral specificity of prism adaptation on left neglect, the present study evaluated the effect of left-deviating prism on straight-ahead pointing movements and on several classical neuropsychological tests in a group of five right brain-damaged patients with left spatial neglect. A group of healthy subjects was also included for comparison purposes. After a single session of exposing simple manual pointing to left-deviating prisms, contrary to healthy controls, none of the patients showed a reliable change of the straight-ahead pointing movement in the dark. No significant modification of attentional paper-and-pencil tasks was either observed immediately or 2 hours after prism adaptation. These results suggest that the therapeutic effect of prism adaptation on left spatial neglect relies on a specific lateralized mechanism. Evidence for a directional effect for prism adaptation both in terms of the side of the visuomanual adaptation and therefore possibly in terms of the side of brain affected by the stimulation is discussed.

  20. Anatomical and spatial matching in imitation: Evidence from left and right brain-damaged patients.

    Science.gov (United States)

    Mengotti, Paola; Ripamonti, Enrico; Pesavento, Valentina; Rumiati, Raffaella Ida

    2015-12-01

    Imitation is a sensorimotor process whereby the visual information present in the model's movement has to be coupled with the activation of the motor system in the observer. This also implies that greater the similarity between the seen and the produced movement, the easier it will be to execute the movement, a process also known as ideomotor compatibility. Two components can influence the degree of similarity between two movements: the anatomical and the spatial component. The anatomical component is present when the model and imitator move the same body part (e.g., the right hand) while the spatial component is present when the movement of the model and that of the imitator occur at the same spatial position. Imitation can be achieved by relying on both components, but typically the model's and imitator's movements are matched either anatomically or spatially. The aim of this study was to ascertain the contribution of the left and right hemisphere to the imitation accomplished either with anatomical or spatial matching (or with both). Patients with unilateral left and right brain damage performed an ideomotor task and a gesture imitation task. Lesions in the left and right hemispheres gave rise to different performance deficits. Patients with lesions in the left hemisphere showed impaired imitation when anatomical matching was required, and patients with lesions in the right hemisphere showed impaired imitation when spatial matching was required. Lesion analysis further revealed a differential involvement of left and right hemispheric regions, such as the parietal opercula, in supporting imitation in the ideomotor task. Similarly, gesture imitation seemed to rely on different regions in the left and right hemisphere, such as parietal regions in the left hemisphere and premotor, somatosensory and subcortical regions in the right hemisphere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Neonatal brain hemorrhage (NBH) of prematurity: translational mechanisms of the vascular-neural network.

    Science.gov (United States)

    Lekic, Tim; Klebe, Damon; Poblete, Roy; Krafft, Paul R; Rolland, William B; Tang, Jiping; Zhang, John H

    2015-01-01

    Neonatal brain hemorrhage (NBH) of prematurity is an unfortunate consequence of preterm birth. Complications result in shunt dependence and long-term structural changes such as posthemorrhagic hydrocephalus, periventricular leukomalacia, gliosis, and neurological dysfunction. Several animal models are available to study this condition, and many basic mechanisms, etiological factors, and outcome consequences, are becoming understood. NBH is an important clinical condition, of which treatment may potentially circumvent shunt complication, and improve functional recovery (cerebral palsy, and cognitive impairments). This review highlights key pathophysiological findings of the neonatal vascular-neural network in the context of molecular mechanisms targeting the posthemorrhagic hydrocephalus affecting this vulnerable infant population.

  2. Neonatal Brain Hemorrhage (NBH) of Prematurity: Translational Mechanisms of the Vascular-Neural Network

    Science.gov (United States)

    Lekic, Tim; Klebe, Damon; Poblete, Roy; Krafft, Paul R.; Rolland, William B.; Tang, Jiping; Zhang, John H.

    2015-01-01

    Neonatal brain hemorrhage (NBH) of prematurity is an unfortunate consequence of preterm birth. Complications result in shunt dependence and long-term structural changes such as post-hemorrhagic hydrocephalus, periventricular leukomalacia, gliosis, and neurological dysfunction. Several animal models are available to study this condition, and many basic mechanisms, etiological factors, and outcome consequences, are becoming understood. NBH is an important clinical condition, of which treatment may potentially circumvent shunt complication, and improve functional recovery (cerebral palsy, and cognitive impairments). This review highlights key pathophysiological findings of the neonatal vascular-neural network in the context of molecular mechanisms targeting the post-hemorrhagic hydrocephalus affecting this vulnerable infant population. PMID:25620100

  3. Post-stroke acquired amusia: A comparison between right- and left-brain hemispheric damages.

    Science.gov (United States)

    Jafari, Zahra; Esmaili, Mahdiye; Delbari, Ahmad; Mehrpour, Masoud; Mohajerani, Majid H

    2017-01-01

    Although extensive research has been published about the emotional consequences of stroke, most studies have focused on emotional words, speech prosody, voices, or facial expressions. The emotional processing of musical excerpts following stroke has been relatively unexplored. The present study was conducted to investigate the effects of chronic stroke on the recognition of basic emotions in music. Seventy persons, including 25 normal controls (NC), 25 persons with right brain damage (RBD) from stroke, and 20 persons with left brain damage (LBD) from stroke between the ages of 31-71 years were studied. The Musical Emotional Bursts (MEB) test, which consists of a set of short musical pieces expressing basic emotional states (happiness, sadness, and fear) and neutrality, was used to test musical emotional perception. Both stroke groups were significantly poorer than normal controls for the MEB total score and its subtests (p right hemisphere dominance in processing negative emotions.

  4. Apraxia in left-handers.

    Science.gov (United States)

    Goldenberg, Georg

    2013-08-01

    In typical right-handed patients both apraxia and aphasia are caused by damage to the left hemisphere, which also controls the dominant right hand. In left-handed subjects the lateralities of language and of control of the dominant hand can dissociate. This permits disentangling the association of apraxia with aphasia from that with handedness. Pantomime of tool use, actual tool use and imitation of meaningless hand and finger postures were examined in 50 consecutive left-handed subjects with unilateral hemisphere lesions. There were three aphasic patients with pervasive apraxia caused by left-sided lesions. As the dominant hand is controlled by the right hemisphere, they constitute dissociations of apraxia from handedness. Conversely there were also three patients with pervasive apraxia caused by right brain lesions without aphasia. They constitute dissociations of apraxia from aphasia. Across the whole group of patients dissociations from handedness and from aphasia were observed for all manifestations of apraxia, but their frequency depended on the type of apraxia. Defective pantomime and defective tool use occurred rarely without aphasia, whereas defective imitation of hand, but not finger, postures was more frequent after right than left brain damage. The higher incidence of defective imitation of hand postures in right brain damage was mainly due to patients who had also hemi-neglect. This interaction alerts to the possibility that the association of right hemisphere damage with apraxia has to do with spatial aptitudes of the right hemisphere rather than with its control of the dominant left hand. Comparison with data from right-handed patients showed no differences between the severity of apraxia for imitation of hand or finger postures, but impairment on pantomime of tool use was milder in apraxic left-handers than in apraxic right-handers. This alleviation of the severity of apraxia corresponded with a similar alleviation of the severity of aphasia as

  5. Brain ischemia as initial sign of a left atrial myxoma Report of one case

    International Nuclear Information System (INIS)

    Osio, Luis F; Velasquez, Jorge E; Tobon, Gabriel J; Posada, Gloria; Contreras, Eduardo; Sanchez, Jairo; Gutierrez, Javier

    2008-01-01

    Primary heart tumors are rare; 75% of them are benign and almost half of the benign ones are myxomas that in most cases are located in the left cavities. Clinical manifestations of myxomas depend on its localization site. Nevertheless, it is accepted that brain ischemia is the initial clinical manifestation in a third of atrial myxomas. The case of a 65 years ald male patient in whom the first clinical manifestation of an atrial myxoma was an ischemic cerebrovascular event, is presented

  6. Imaging findings of pulmonary vascular disorders in portal hypertension

    International Nuclear Information System (INIS)

    Nagasawa, Kenichi; Takahashi, Koji; Furuse, Makoto

    2004-01-01

    The purpose of this study was to demonstrate and compare the imaging findings of hepatopulmonary syndrome and portopulmonary hypertension. We retrospectively reviewed the imaging findings of five patients with hepatopulmonary syndrome and four patients with portopulmonary hypertension. We evaluated chest radiographs, chest and abdominal computed tomography (CT) scans, 99m Tc-macroaggregated albumin (MAA) lung perfusion scans, and pulmonary angiograms. In patients with hepatopulmonary syndrome, the presence of peripheral pulmonary vascular dilatation was detected by chest radiograph, chest CT scan, and pulmonary angiogram, especially the basilar segment. 99m Tc-MAA lung perfusion scan showed extrapulmonary tracer distribution (brain, thyroid, and kidney), which revealed pulmonary right-left shunting. In patients with portopulmonary hypertension, chest radiographs and chest CT scans showed the classic findings of primary pulmonary hypertension. In patients with both disorders, extrahepatic features of portal hypertension including ascites, splenomegaly, and portosystemic collateral vessels were seen on abdominal CT. In conclusion, chest radiographs and CT in hepatopulmonary syndrome usually showed peripheral pulmonary vascular dilatation, whereas those in portopulmonary hypertension showed central pulmonary artery dilatation. The extrahepatic features of portal hypertension might be helpful for the diagnosis of both disorders. (author)

  7. Alteration of Interictal Brain Activity in Patients with Temporal Lobe Epilepsy in the Left Dominant Hemisphere: A Resting-State MEG Study

    Directory of Open Access Journals (Sweden)

    Haitao Zhu

    2014-01-01

    Full Text Available Resting MEG activities were compared between patients with left temporal lobe epilepsy (LTLE and normal controls. Using SAMg2, the activities of MEG data were reconstructed and normalized. Significantly elevated SAMg2 signals were found in LTLE patients in the left temporal lobe and medial structures. Marked decreases of SAMg2 signals were found in the wide extratemporal lobe regions, such as the bilateral visual cortex. The study also demonstrated a positive correlation between the seizure frequency and brain activities of the abnormal regions after the multiple linear regression analysis. These results suggested that the aberrant brain activities not only were related to the epileptogenic zones, but also existed in other extratemporal regions in patients with LTLE. The activities of the aberrant regions could be further damaged with the increase of the seizure frequency. Our findings indicated that LTLE could be a multifocal disease, including complex epileptic networks and brain dysfunction networks.

  8. Electroencephalographic (eeg coherence between visual and motor areas of the left and the right brain hemisphere while performing visuomotor task with the right and the left hand

    Directory of Open Access Journals (Sweden)

    Simon Brežan

    2007-09-01

    Full Text Available Background: Unilateral limb movements are based on the activation of contralateral primary motor cortex and the bilateral activation of premotor cortices. Performance of a visuomotor task requires a visuomotor integration between motor and visual cortical areas. The functional integration (»binding« of different brain areas, is probably mediated by the synchronous neuronal oscillatory activity, which can be determined by electroencephalographic (EEG coherence analysis. We introduced a new method of coherence analysis and compared coherence and power spectra in the left and right hemisphere for the right vs. left hand visuomotor task, hypothesizing that the increase in coherence and decrease in power spectra while performing the task would be greater in the contralateral hemisphere.Methods: We analyzed 6 healthy subjects and recorded their electroencephalogram during visuomotor task with the right or the left hand. For data analysis, a special Matlab computer programme was designed. The results were statistically analysed by a two-way analysis of variance, one-way analysis of variance and post-hoc t-tests with Bonferroni correction.Results: We demonstrated a significant increase in coherence (p < 0.05 for the visuomotor task compared to control tasks in alpha (8–13 Hz in beta 1 (13–20 Hz frequency bands between visual and motor electrodes. There were no significant differences in coherence nor power spectra depending on the hand used. The changes of coherence and power spectra between both hemispheres were symmetrical.Conclusions: In previous studies, a specific increase of coherence and decrease of power spectra for the visuomotor task was found, but we found no conclusive asymmetries when performing the task with right vs. left hand. This could be explained in a way that increases in coherence and decreases of power spectra reflect symmetrical activation and cooperation between more complex visual and motor brain areas.

  9. A new method of lectin histochemistry for the study of brain angiogenesis. Lectin angiography.

    Science.gov (United States)

    Minamikawa, T; Miyake, T; Takamatsu, T; Fujita, S

    1987-01-01

    In an attempt to analyse the kinetics of angiogenesis in the brain, we developed a new lectin-histochemical staining technique for identifying the vasculature. Three horseradish-peroxidase-conjugated lectins, i.e., Griffonia simplicifolia agglutinin 1 (GS1), Ricinus communis agglutinin 1 (RCA1) and soybean agglutinin (SBA), selectively stained vascular walls in brain-tissue sections. When these lectins were injected into the circulation of ether-anesthetized animals via the pulsating left ventricle, they bound specifically to the inner surface of endothelial cells and revealed the three-dimensional architecture of the vascular network within thick tissue preparations. When this technique, referred to a lectin angiography, was combined with 5-bromo-2-deoxyuridine (BudR) immunohistochemistry, proliferating capillary cells could be easily identified in three-dimensional structures of the developing vasculature. Because of its simplicity and wide applicability, lectin angiography should be useful for analysing the kinetics of angiogenesis in developmental, regenerative, and pathological conditions in various tissues and organs.

  10. Tetralogy of Fallot with origin of left pulmonary artery from the ascending aorta

    Energy Technology Data Exchange (ETDEWEB)

    Robida, A.; Fettich, D.

    1985-09-01

    Anomalous origin of the left pulmonary artery in tetralogy of Fallot was diagnosed in a 4-year-old boy by cardiac catheterization. Corrective surgery was performed. The child died immediately following the surgical procedure. Postmortem examination revealed obstructive pulmonary vascular disease of the left lung and normal histology of right lung vessels. Early recognition and surgical correction of the anomaly is important with the view to preventing obstructive pulmonary vascular disease.

  11. Arterial vascularization patterns of the splenium: An anatomical study.

    Science.gov (United States)

    Kahilogullari, G; Comert, A; Ozdemir, M; Brohi, R A; Ozgural, O; Esmer, A F; Egemen, N; Karahan, S T

    2013-09-01

    The aim of this study was to provide detailed information about the arterial vascularization of the splenium of the corpus callosum (CC). The splenium is unique in that it is part of the largest commissural tract in the brain and a region in which pathologies are seen frequently. An exact description of the arterial vascularization of this part of the CC remains under debate. Thirty adult human brains (60 hemispheres) were obtained from routine autopsies. Cerebral arteries were separately cannulated and injected with colored latex. Then, the brains were fixed in formaldehyde, and dissections were performed using a surgical microscope. The diameter of the arterial branches supplying the splenium of the CC at their origin was investigated, and the vascularization patterns of these branches were observed. Vascular supply to the splenium was provided by the anterior pericallosal artery (40%) from the anterior circulation and by the posterior pericallosal artery (88%) and posterior accessory pericallosal artery (50%) from the posterior circulation. The vascularization pattern of the splenium differs in each hemisphere and is usually supplied by multiple branches. The arterial vascularization of the splenium of the CC was studied comprehensively considering the ongoing debate and the inadequacy of the studies on this issue currently available in the literature. This anatomical knowledge is essential during the treatment of pathologies in this region and especially for splenial arteriovenous malformations.

  12. Deleted in Malignant Brain Tumors 1 is Present in the Vascular Extracellular Matrix and Promotes Angiogenesis

    DEFF Research Database (Denmark)

    Müller-Enbergs, Helmut; Hu, Jiong; Popp, Rüdiger

    2012-01-01

    OBJECTIVE: Deleted in malignant brain tumors 1 (DMBT1) belongs to the scavenger receptor cysteine-rich superfamily of proteins and is implicated in innate immunity, cell polarity, and differentiation. Here we studied the role of DMBT1 in endothelial cells. METHODS AND RESULTS: DMBT1 was secreted ...... and promote adhesion, migration, proliferation, and angiogenesis as well as vascular repair. Mechanistically, DMBT1 interacts with galectin-3 and modulates the Notch signaling pathway as well as the differential expression of ephrin-B2 and EphB4....

  13. [Changes of brain function and cognitive function after carotid artery stenting].

    Science.gov (United States)

    Lu, Z X; Deng, G; Wei, H L; Zhao, G F; Wen, L Z; Chen, X

    2017-10-24

    Objective: To investigate the effect of carotid artery stenting(CAS) on cognitive function and brain function based on changes of a battery of neuropsychological tests and magnetic resonance imaging. Methods: Thirty-three patients were included with 17 in the stent-placement group and 16 in the control group (receiving medical treatment), among whom, the unilateral or bilateral severe internal carotid artery stenosis was confirmed by cerebral vascular angiography in the department of Interventional Radiology and Vascular Surgery of Zhongda Hospital Southeast University from June 2015 to September 2016.Neuropsychological tests and rest-state blood oxygenation level dependent fMRI were performed at the baseline and six months follow-up.The baseline characteristics and follow-up changes were compared in each group. Results: The overall cognitive function of the stent-placement group was statistically significantly improved ( P function, memory, attention and other aspects.The value of amplitude of low-frequency fluctuation(ALFF) showed statistically significant increase ( P left prefrontal cortex ( t =5.861 3, P left superior parietal lobe( t =5.601 2, P left retrosplenial cingulate cortex( t =-5.590 4, P left insular cortex ( t =-6.340 8, P right insular cortex ( t =-8.129 9, P left dorsal anterior cingulate cortex ( t =-5.584 8, P 0.05, Alphasim correction)between baseline and follow-up results in control group.Besides, the ALFF changes of the left insular cortex ( r =-0.591, P =0.033) and bilateral motor cortical area ( r =-0.659, P =0.014) were negatively correlated with auditory verb learning test (AVLT) score changes.The ALFF change of bilateral motor cortical area was negatively correlated with the AVLT-delay score change ( r =-0.588, P =0.034). And the ALFF change on right insular cortex and the frontal assessment battery (FAB) score change was positively correlated ( r =0.638, P =0.025). Conclusions: The overall cognitive function of patients with carotid

  14. A pilot study to determine the timing and effect of bevacizumab on vascular normalization of metastatic brain tumors in breast cancer

    International Nuclear Information System (INIS)

    Chen, Bang-Bin; Lu, Yen-Shen; Lin, Ching-Hung; Chen, Wei-Wu; Wu, Pei-Fang; Hsu, Chao-Yu; Yu, Chih-Wei; Wei, Shwu-Yuan; Cheng, Ann-Lii; Shih, Tiffany Ting-Fang

    2016-01-01

    To determine the appropriate time of concomitant chemotherapy administration after antiangiogenic treatment, we investigated the timing and effect of bevacizumab administration on vascular normalization of metastatic brain tumors in breast cancer patients. Eight patients who participated in a phase II trial for breast cancer-induced refractory brain metastases were enrolled and subjected to 4 dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) examinations that evaluated Peak, Slope, iAUC 60 , and Ktrans before and after treatment. The treatment comprised bevacizumab on Day 1, etoposide on Days 2–4, and cisplatin on Day 2 in a 21-day cycle for a maximum of 6 cycles. DCE-MRI was performed before treatment and at 1 h, 24 h, and 21 days after bevacizumab administration. Values of the 4 DCE-MRI parameters reduced after bevacizumab administration. Compared with baseline values, the mean reductions at 1 and 24 h were −12.8 and −24.7 % for Peak, −46.6 and −65.8 % for Slope, −27.9 and −55.5 % for iAUC 60 , and −46.6 and −63.9 % for Ktrans, respectively (all P < .05). The differences in the 1 and 24 h mean reductions were significant (all P < .05) for all the parameters. The generalized estimating equation linear regression analyses of the 4 DCE-MRI parameters revealed that vascular normalization peaked 24 h after bevacizumab administration. Bevacizumab induced vascular normalization of brain metastases in humans at 1 and 24 h after administration, and the effect was significantly higher at 24 h than at 1 h. ClinicalTrials.gov, identifier NCT01281696, registered prospectively on December 24, 2010

  15. Brain abscess associated with ethmoidal sinus osteoma: A case report

    Directory of Open Access Journals (Sweden)

    Hiroaki Nagashima

    2014-12-01

    Full Text Available Osteoma of the paranasal sinus is uncommon, and the occurrence of brain abscess associated with ethmoidal osteoma is particularly rare. We report here a case of a brain abscess complicating an ethmoidal osteoma in a 68-year-old man who presented with high-grade fever and disturbance in the level of consciousness. Computed tomography scanning and magnetic resonance imaging revealed a ring-enhancing mass in the left frontal lobe with surrounding edema and a bony mass in the ethmoidal sinus. We scheduled a two-stage operation. First, emergency aspiration and drainage of the abscess via the forehead were performed to reduce the abscess volume. These were followed by a left frontal craniotomy to totally remove both the brain abscess and the bony mass. The bony mass had breached the dura mater. After removing the bony mass, we repaired the anterior skull base using a pericranial flap. Pathological findings of the bony tumor were consistent with osteoma. The postoperative course was uneventful. In the case of a huge brain abscess associated with an ethmoidal osteoma, volume reduction by drainage followed by surgical removal of both lesions may help to control infection and achieve a cure. Use of a vascularized pericranial flap is important to prevent direct communication between the paranasal sinuses and the cranial cavity.

  16. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving.

    Directory of Open Access Journals (Sweden)

    Noriyuki Oka

    Full Text Available In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves, but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS.The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task. Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections.Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05, but cerebral oxygen exchange increased significantly more during left curves (p < 0.05 in the right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p < 0.05 only in the right frontal eye field.Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions.

  17. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving

    Science.gov (United States)

    Oka, Noriyuki; Yoshino, Kayoko; Yamamoto, Kouji; Takahashi, Hideki; Li, Shuguang; Sugimachi, Toshiyuki; Nakano, Kimihiko; Suda, Yoshihiro; Kato, Toshinori

    2015-01-01

    Objectives In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves), but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS). Research Design and Methods The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task). Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections. Results Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05), but cerebral oxygen exchange increased significantly more during left curves (p right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p right frontal eye field. Conclusions Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions

  18. Neuroprotection, learning and memory improvement of a standardized extract from Renshen Shouwu against neuronal injury and vascular dementia in rats with brain ischemia.

    Science.gov (United States)

    Wan, Li; Cheng, Yufang; Luo, Zhanyuan; Guo, Haibiao; Zhao, Wenjing; Gu, Quanlin; Yang, Xu; Xu, Jiangping; Bei, Weijian; Guo, Jiao

    2015-05-13

    The Renshen Shouwu capsule (RSSW) is a patented Traditional Chinese Medicine (TCM), that has been proven to improve memory and is widely used in China to apoplexy syndrome and memory deficits. To investigate the neuroprotective and therapeutic effect of the Renshen Shouwu standardized extract (RSSW) on ischemic brain neuronal injury and impairment of learning and memory related to Vascular Dementia (VD) induced by a focal and global cerebral ischemia-reperfusion injury in rats. Using in vivo rat models of both focal ischemia/reperfusion (I/R) injuries induced by a middle cerebral artery occlusion (MCAO), and VD with transient global brain I/R neuronal injuries induced by a four-vessel occlusion (4-VO) in Sprague-Dawley (SD) rats, RSSW (50,100, and 200 mg kg(-1) body weights) and Egb761® (80 mg kg(-1)) were administered orally for 20 days (preventively 6 days+therapeutically 14 days) in 4-VO rats, and for 7 days (3 days preventively+4 days therapeutically) in MCAO rats. Learning and memory behavioral performance was assayed using a Morris water maze test including a place navigation trial and a spatial probe trial. Brain histochemical morphology and hippocampal neuron survival was quantified using microscope assay of a puffin brain/hippocampus slice with cresyl violet staining. MCAO ischemia/reperfusion caused infarct damage in rat brain tissue. 4-VO ischemia/reperfusion caused a hippocampal neuronal lesion and learning and memory deficits in rats. Administration of RSSW (50, 100, and 200mg/kg) or EGb761 significantly reduced the size of the insulted brain hemisphere lesion and improved the neurological behavior of MCAO rats. In addition, RSSW markedly reduced an increase in the brain infarct volume from an I/R-induced MCAO and reduced the cerebral water content in a dose-dependent way. Administration of RSSW also increased the pyramidal neuronal density in the hippocampus of surviving rats after transient global brain ischemia and improved the learning and memory

  19. Regional cerebral blood flow in vascular depression assessed by 123I-IMP SPECT

    International Nuclear Information System (INIS)

    Kimura, Mahito; Shimoda, Kengo; Mizumura, Sunao; Tateno, Amane; Fujito, Tatsuma; Mori, Takao; Endo, Shunkichi

    2003-01-01

    As the prevalence of white matter hyperintensities detected on T2 weighted MRI scans in patients with late-onset depression is higher than that in nondepressed patients, the concept of ''vascular depression'' (VDep) was introduced in 1997. However, the pathology of vascular depression has not been clarified. This study examined the differences in functional imaging between vascular and non-vascular depression (non-VDep). We utilized 123 I-IMP single photon emission computed tomography (SPECT) to compare regional cerebral blood flows (rCBF) between 9 patients with VDep (Krishnan criteria) and 11 age- and sex-matched patients with non-VDep in both depressed and remitted states. In both VDep and non-VDep patients, mean rCBF increased significantly as depression improved, partially aided by changes in left anterior temporal blood flow. In addition, compared to non-VDep patients, the left anterior frontal rCBF for VDep patients was significantly lower in both depressed and remitted states. Left anterior temporal rCBF therefore appears to represent a state marker that increases as symptoms associated with late-onset depression improve, regardless of vascular changes. Furthermore, in VDep patients, left anterior frontal rCBF was low in both states compared to non-VDep patients, and might not only represent a trait marker, but also correlated with the duration of disease and likelihood of recurrence and relapse. (author)

  20. Association of left subclavian artery coverage without revascularization and spinal cord ischemia in patients undergoing thoracic endovascular aortic repair: A Vascular Quality Initiative® analysis.

    Science.gov (United States)

    Teixeira, Pedro Gr; Woo, Karen; Beck, Adam W; Scali, Salvatore T; Weaver, Fred A

    2017-12-01

    Objectives Investigate the impact of left subclavian artery coverage without revascularization on spinal cord ischemia development in patients undergoing thoracic endovascular aortic repair. Methods The Vascular Quality Initiative thoracic endovascular aortic repair module (April 2011-July 2014) was analyzed. Patients undergoing left subclavian artery coverage were divided into two groups according to revascularization status. The association between left subclavian artery revascularization with the primary outcome of spinal cord ischemia and the secondary outcome of stroke was assessed with multivariable analysis adjusting for between-group baseline differences. Results The left subclavian artery was covered in 508 (24.6%) of the 2063 thoracic endovascular aortic repairs performed. Among patients with left subclavian artery coverage, 58.9% underwent revascularization. Spinal cord ischemia incidence was 12.1% in the group without revascularization compared to 8.5% in the group undergoing left subclavian artery revascularization (odds ratio (95%CI): 1.48(0.82-2.68), P = 0.189). Multivariable analysis adjustment identified an independent association between left subclavian artery coverage without revascularization and the incidence of spinal cord ischemia (adjusted odds ratio (95%CI): 2.29(1.03-5.14), P = 0.043). Although the incidence of stroke was also higher for the group with a covered and nonrevascularized left subclavian artery (12.1% versus 8.5%), this difference was not statistically significant after multivariable analysis (adjusted odds ratio (95%CI): 1.55(0.74-3.26), P = 0.244). Conclusion For patients undergoing left subclavian artery coverage during thoracic endovascular aortic repair, the addition of a revascularization procedure was associated with a significantly lower incidence of spinal cord ischemia.

  1. Tetralogy of Fallot with origin of left pulmonary artery from the ascending aorta

    International Nuclear Information System (INIS)

    Robida, A.; Fettich, D.

    1985-01-01

    Anomalous origin of the left pulmonary artery in tetralogy of Fallot was diagnosed in a 4-year-old boy by cardiac catheterization. Corrective surgery was performed. The child died immediately following the surgical procedure. Postmortem examination revealed obstructive pulmonary vascular disease of the left lung and normal histology of right lung vessels. Early recognition and surgical correction of the anomaly is important with the view to preventing obstructive pulmonary vascular disease. (orig.)

  2. Percutaneous coronary intervention with ABSORB biodegradable vascular scaffold in patients with left anterior descending artery disease

    Directory of Open Access Journals (Sweden)

    К. М. Ваккосов

    2017-04-01

    Full Text Available Aim. The article evaluates 30-day results of percutaneous coronary intervention (PCI with ABSORB biodegradable vascular scaffold (BVS implanted in the case of stenosis of the left anterior descending (LAD coronary artery in patients with stable angina.Methods. 64 patients with significant (≥ 70% LAD disease were included in the study. At 30 days, scaffold thrombosis and major adverse cardiovascular events (all-cause mortality, myocardial infarction, stroke, target vessel revascularization were evaluated. The indicator of successful percutaneous coronary intervention (residual stenosis ≤20% in the presence of counterpulsation corresponding to TIMI 3rd Grade and in the absence of significant in-patient clinical complications and successful intervention assessed by clinical criteria (successful percutaneous coronary intervention alongside with a decrease in objective and subjective symptoms of myocardial ischemia, or their complete disappearance were also analyzed. Results. Mean age of patients was 61.6±8.5 years, with males accounting for 64%; 33% had earlier MI, 14% – diabetes mellitus. Mean left ventricular ejection fraction was 61.3±6.8%. Left anterior descending artery disease was presented in 89% of patients with SYNTAX Score 6.6±2.2. Mean number of implanted stents was 1.2±0.4, with mean length of the stented segment equal to18.7±1.8 mm and mean diameter 3.2±0.3 mm. At 30-day follow-up, the success of intervention assessed by clinical criteria amounted to 96.9% (n=62; that of myocardial infarction 3.1% (n=2; stent thrombosis 1.56% (n=1; repeated revascularization 1.56% (n=1; major adverse cardiovascular events (MACE 3.1%.Conclusion. The implantation of everolimus-eluting BVS for LAD stenosis demonstrates satisfactory results at 30-day follow-up.Received 16 January 2017. Accepted 21 March 2017.Financing: The study did not have sponsorship.Conflict of interest: The authors declare no conflict of interest.

  3. Pathophysiology of white matter perfusion in Alzheimer's disease and vascular dementia.

    Science.gov (United States)

    Barker, Rachel; Ashby, Emma L; Wellington, Dannielle; Barrow, Vivienne M; Palmer, Jennifer C; Kehoe, Patrick G; Esiri, Margaret M; Love, Seth

    2014-05-01

    Little is known about the contributors and physiological responses to white matter hypoperfusion in the human brain. We previously showed the ratio of myelin-associated glycoprotein to proteolipid protein 1 in post-mortem human brain tissue correlates with the degree of ante-mortem ischaemia. In age-matched post-mortem cohorts of Alzheimer's disease (n = 49), vascular dementia (n = 17) and control brains (n = 33) from the South West Dementia Brain Bank (Bristol), we have now examined the relationship between the ratio of myelin-associated glycoprotein to proteolipid protein 1 and several other proteins involved in regulating white matter vascularity and blood flow. Across the three cohorts, white matter perfusion, indicated by the ratio of myelin-associated glycoprotein to proteolipid protein 1, correlated positively with the concentration of the vasoconstrictor, endothelin 1 (P = 0.0005), and negatively with the concentration of the pro-angiogenic protein, vascular endothelial growth factor (P = 0.0015). The activity of angiotensin-converting enzyme, which catalyses production of the vasoconstrictor angiotensin II was not altered. In samples of frontal white matter from an independent (Oxford, UK) cohort of post-mortem brains (n = 74), we confirmed the significant correlations between the ratio of myelin-associated glycoprotein to proteolipid protein 1 and both endothelin 1 and vascular endothelial growth factor. We also assessed microvessel density in the Bristol (UK) samples, by measurement of factor VIII-related antigen, which we showed to correlate with immunohistochemical measurements of vessel density, and found factor VIII-related antigen levels to correlate with the level of vascular endothelial growth factor (P = 0.0487), suggesting that upregulation of vascular endothelial growth factor tends to increase vessel density in the white matter. We propose that downregulation of endothelin 1 and upregulation of vascular endothelial growth factor in the context

  4. Intrahepatic Left to Right Portoportal Venous Collateral Vascular Formation in Patients Undergoing Right Portal Vein Ligation

    Energy Technology Data Exchange (ETDEWEB)

    Lienden, K. P. van, E-mail: k.p.vanlienden@amc.uva.nl [Academic Medical Center, University of Amsterdam, Department of Interventional Radiology (Netherlands); Hoekstra, L. T. [Academic Medical Center, University of Amsterdam, Department of Surgery (Netherlands); Bennink, R. J. [Academic Medical Center, University of Amsterdam, Department of Nuclear Medicine (Netherlands); Gulik, T. M. van [Academic Medical Center, University of Amsterdam, Department of Surgery (Netherlands)

    2013-12-15

    Purpose: We investigated intrahepatic vascular changes in patients undergoing right portal vein ligation (PVL) or portal vein embolization (PVE) in conjunction with the ensuing hypertrophic response and function of the left liver lobe. Methods: Between December 2008 and October 2011, 7 patients underwent right PVL and 14 patients PVE. Computed tomographic (CT) volumetry to assess future remnant liver (FRL) and functional hepatobiliary scintigraphy were performed in all patients before and 3 weeks after portal vein occlusion. In 18 patients an intraoperative portography was performed to assess perfusion through the occluded portal branches. Results: In all patients after initially successful PVL, reperfused portal veins were observed on CT scan 3 weeks after portal occlusion. This was confirmed in all cases during intraoperative portography. Intrahepatic portoportal collaterals were identified in all patients in the PVL group and in one patient in the PVE group. In all other PVE patients, complete occlusion of the embolized portal branches was observed on CT scan and on intraoperative portography. The median increase of FRL volume after PVE was 41.6 % (range 10-305 %), and after PVL was only 8.1 % (range 0-102 %) (p = 0.179). There were no differences in FRL function between both groups. Conclusion: Preoperative PVE and PVL are both methods to induce hypertrophy of the FRL in anticipation of major liver resection. Compared to PVE, PVL seems less efficient in inducing hypertrophy of the nonoccluded left lobe. This could be caused by the formation of intrahepatic portoportal neocollateral vessels, through which the ligated portal branches are reperfused within 3 weeks.

  5. Insights into Intrinsic Brain Networks based on Graph Theory and PET in right- compared to left-sided Temporal Lobe Epilepsy

    OpenAIRE

    Thomas Vanicek; Andreas Hahn; Tatjana Traub-Weidinger; Eva Hilger; Marie Spies; Wolfgang Wadsak; Rupert Lanzenberger; Ekaterina Pataraia; Susanne Asenbaum-Nan

    2016-01-01

    The human brain exhibits marked hemispheric differences, though it is not fully understood to what extent lateralization of the epileptic focus is relevant. Preoperative [18F]FDG-PET depicts lateralization of seizure focus in patients with temporal lobe epilepsy and reveals dysfunctional metabolic brain connectivity. The aim of the present study was to compare metabolic connectivity, inferred from inter-regional [18F]FDG PET uptake correlations, in right-sided (RTLE; n?=?30) and left-sided TL...

  6. Characterization of normal feline renal vascular anatomy with dual-phase CT angiography.

    Science.gov (United States)

    Cáceres, Ana V; Zwingenberger, Allison L; Aronson, Lillian R; Mai, Wilfried

    2008-01-01

    Helical computed tomography angiography was used to evaluate the renal vascular anatomy of potential feline renal donors. One hundred and fourteen computed tomography angiograms were reviewed. The vessels were characterized as single without bifurcation, single with bifurcation, double, or triple. Multiplicity was most commonly seen for the right renal vein (45/114 vs. 3/114 multiple left renal veins, 0/114 multiple right renal arteries, and 8/114 multiple left renal arteries). The right kidney was 13.3 times more likely than the left to have multiple renal veins. Additional vascular variants included double caudal vena cava and an accessory renal artery. For the left kidney, surgery and computed tomography angiography findings were in agreement in 92% of 74 cats. For the right kidney, surgery and computed tomography angiography findings were in agreement in 6/6 cats. Our findings of renal vascular anatomy variations in cats were similar to previous reports in humans. Identifying and recognizing the pattern of distribution of these vessels is important when performing renal transplantation.

  7. Heart-rate sensitive optical coherence angiography for measuring vascular changes due to posttraumatic brain injury in mice

    Science.gov (United States)

    Tremoleda, Jordi L.; Alvarez, Karl; Aden, Abdirahman; Donnan, Robert; Michael-Titus, Adina T.; Tomlins, Peter H.

    2017-12-01

    Traumatic brain injury (TBI) results in direct vascular disruption, triggering edema, and reduction in cerebral blood flow. Therefore, understanding the pathophysiology of brain microcirculation following TBI is important for the development of effective therapies. Optical coherence angiography (OCA) is a promising tool for evaluating TBI in rodent models. We develop an approach to OCA that uses the heart-rate frequency to discriminate between static tissue and vasculature. This method operates on intensity data and is therefore not phase sensitive. Furthermore, it does not require spatial overlap of voxels and thus can be applied to pre-existing datasets for which oversampling may not have been explicitly considered. Heart-rate sensitive OCA was developed for dynamic assessment of mouse microvasculature post-TBI. Results show changes occurring at 5-min intervals within the first 50 min of injury.

  8. Radiation-induced brain damage in children

    International Nuclear Information System (INIS)

    Oi, Shizuo; Kokunai, Takashi; Ijichi, Akihiro; Matsumoto, Satoshi; Raimondi, A.J.

    1990-01-01

    The nature and sequence of the radiation-induced changes in the brain were studied postmortem in 34 children with glioma, 22 of whom underwent central nervous system radiation therapy. Twenty received whole-brain or whole-neuroaxis radiation at a total mean dosage of 4063 cGy. Brain tissue alternations were analyzed histologically by means of various staining methods, including immunohistochemical techniques. The histological features of irradiated brains were compared with those of non-irradiated brains. Microscopic findings included demyelination (seven cases), focal necrosis (six cases), cortical atrophy (four cases), endothelial proliferation (four cases), and telangiectatic vascular proliferation with vascular thickening and oozing of a thick fluid (one case). Such findings were rare in non-irradiated patients. Demyelination was observed earliest in a patient who died 5 months after radiation therapy and was more common after 9 months. Focal necrosis was first observed 9 months post-irradiation but was more advanced and extensive after 1 year. Calcified foci were found only after 60 months. Various vascular changes such as vascular thickening and thrombosis suggested ischemic insult to the brain as a late effect of radiation injury. The results of this study suggest that the immature brain may be more sensitive to radiation than is the adult brain, and that the manifestations of radiation-induced injury depend on the time elapsed after irradiation. (author)

  9. Brain hemorrhage after electrical burn injury: Case report and probable mechanism.

    Science.gov (United States)

    Axayacalt, Gutierrez Aceves Guillermo; Alejandro, Ceja Espinosa; Marcos, Rios Alanis; Inocencio, Ruiz Flores Milton; Alfredo, Herrera Gonzalez Jose

    2016-01-01

    High-voltage electric injury may induce lesion in different organs. In addition to the local tissue damage, electrical injuries may lead to neurological deficits, musculoskeletal damage, and cardiovascular injury. Severe vascular damage may occur making the blood vessels involved prone to thrombosis and spontaneous rupture. Here, we present the case of a 39-year-old male who suffered an electrical burn with high tension wire causing intracranial bleeding. He presented with an electrical burn in the parietal area (entry zone) and the left forearm (exit zone). The head tomography scan revealed an intraparenchimatous bleeding in the left parietal area. In this case, the electric way was the scalp, cranial bone, blood vessels and brain, upper limb muscle, and skin. The damage was different according to the dielectric property in each tissue. The injury was in the scalp, cerebral blood vessel, skeletal muscle, and upper limb skin. The main damage was in brain's blood vessels because of the dielectric and geometric features that lead to bleeding, high temperature, and gas delivering. This is a report of a patient with an electric brain injury that can be useful to elucidate the behavior of the high voltage electrical current flow into the nervous system.

  10. [Vascular depression in the elderly. Does inflammation play a role?].

    Science.gov (United States)

    Viscogliosi, Giovanni; Andreozzi, Paola; Chiriac, Iulia Maria; Ettorre, Evaristo; Vulcano, Achiropita; Servello, Adriana; Marigliano, Benedetta; Marigliano, Vincenzo

    2011-06-01

    Vascular depression in the elderly. Does inflammation play a role?Depression is the most common comorbidity in the elderly, and it is a major determinant of disability. The late-onset depression in highly associated to cardiovascular disease. Depressive symptoms may follow vascular brain damage, especially when mood regulating areas are affected. However depression is strongly associated to vascular disease even when there is no manifest brain damage. Recently great attention has been given to chronic inflammation, both related to depression and vascular disease. Both experimental and clinical evidence shows that a rise in the concentrations of proinflammatory cytokines and glucocorticoids in depressed patients is associated with defect in serotonergic function. Chronic inflammation may underlie many forms of depression associated with vascular disease and metabolic syndrome. The importance of the inflammation hypothesis of depression lies is that psychotropic drugs may have central anti-inflammatory action, and that new generation of central anti-inflammatory drugs may be useful in depression treatment.

  11. Subliminal and Supraliminal Processing of Facial Expression of Emotions: Brain Oscillation in the Left/Right Frontal Area

    OpenAIRE

    Balconi, Michela; Ferrari, Chiara

    2012-01-01

    The unconscious effects of an emotional stimulus have been highlighted by a vast amount of research, whereover it remains questionable whether it is possible to assign a specific function to cortical brain oscillations in the unconscious perception of facial expressions of emotions. Alpha band variation was monitored within the right- and left-cortical side when subjects consciously (supraliminal stimulation) or unconsciously (subliminal stimulation) processed facial patterns. Twenty subjects...

  12. Neurovascular Regulation in the Ischemic Brain

    OpenAIRE

    Jackman, Katherine; Iadecola, Costantino

    2015-01-01

    Significance: The brain has high energetic requirements and is therefore highly dependent on adequate cerebral blood supply. To compensate for dangerous fluctuations in cerebral perfusion, the circulation of the brain has evolved intrinsic safeguarding measures. Recent Advances and Critical Issues: The vascular network of the brain incorporates a high degree of redundancy, allowing the redirection and redistribution of blood flow in the event of vascular occlusion. Furthermore, active respons...

  13. Effects of heavy ion radiation on the brain vascular system and embryonic development

    Science.gov (United States)

    Yang, T. C.; Tobias, C. A.

    Using neonatal rats as a model system, we investigated the response of the brain vascular system to ionizing radiation and found that distinct petechial hemorrages developed in the cerebral cortex within a few hours after irradiation, reached a maximum about 13 to 24 hours, and decreased exponentially with time. No brain hemorrhage was found in neonatal rats 12 days after irradiation. Our experimental results indicate that a dose of a few hundred rad of X rays can induce a significant number of hemorrhages in the brain, and the number of lesions increases exponentially with dose. Heavy ions induce more hemorrhages than X rays for a given dose, and the RBE for 670 MeV/u neon particles ranges from about 2.0 for low doses to about 1.4 for high doses. A histological study on the hemorrhages indicates that a large number of red blood cells leak from the blood vessels. The radiation-induced hemorrhages may be a result of some capillary membrane damages or reproductive death of some blood vessel epithelial cells. The fast onset of hemorrhage after irradiation suggests that some membrane damage may be involved. The effect of heavy-ion radiation on the embryonic development was studied with energetic iron particles. Pregnant mice were whole-body irradiated with 600 MeV/u iron particles on day 6 of gestation and were sacrificed 12 days after irradiation. Various physical abnormalities were observed, and embryos irradiated with 1 rad iron particles showed retardation of body development.

  14. Separating neural and vascular effects of caffeine using simultaneous EEG–FMRI: Differential effects of caffeine on cognitive and sensorimotor brain responses

    Science.gov (United States)

    Diukova, Ana; Ware, Jennifer; Smith, Jessica E.; Evans, C. John; Murphy, Kevin; Rogers, Peter J.; Wise, Richard G.

    2012-01-01

    The effects of caffeine are mediated through its non-selective antagonistic effects on adenosine A1 and A2A adenosine receptors resulting in increased neuronal activity but also vasoconstriction in the brain. Caffeine, therefore, can modify BOLD FMRI signal responses through both its neural and its vascular effects depending on receptor distributions in different brain regions. In this study we aim to distinguish neural and vascular influences of a single dose of caffeine in measurements of task-related brain activity using simultaneous EEG–FMRI. We chose to compare low-level visual and motor (paced finger tapping) tasks with a cognitive (auditory oddball) task, with the expectation that caffeine would differentially affect brain responses in relation to these tasks. To avoid the influence of chronic caffeine intake, we examined the effect of 250 mg of oral caffeine on 14 non and infrequent caffeine consumers in a double-blind placebo-controlled cross-over study. Our results show that the task-related BOLD signal change in visual and primary motor cortex was significantly reduced by caffeine, while the amplitude and latency of visual evoked potentials over occipital cortex remained unaltered. However, during the auditory oddball task (target versus non-target stimuli) caffeine significantly increased the BOLD signal in frontal cortex. Correspondingly, there was also a significant effect of caffeine in reducing the target evoked response potential (P300) latency in the oddball task and this was associated with a positive potential over frontal cortex. Behavioural data showed that caffeine also improved performance in the oddball task with a significantly reduced number of missed responses. Our results are consistent with earlier studies demonstrating altered flow-metabolism coupling after caffeine administration in the context of our observation of a generalised caffeine-induced reduction in cerebral blood flow demonstrated by arterial spin labelling (19

  15. Left neglect dyslexia: Perseveration and reading error types.

    Science.gov (United States)

    Ronchi, Roberta; Algeri, Lorella; Chiapella, Laura; Gallucci, Marcello; Spada, Maria Simonetta; Vallar, Giuseppe

    2016-08-01

    Right-brain-damaged patients may show a reading disorder termed neglect dyslexia. Patients with left neglect dyslexia omit letters on the left-hand-side (the beginning, when reading left-to-right) part of the letter string, substitute them with other letters, and add letters to the left of the string. The aim of this study was to investigate the pattern of association, if any, between error types in patients with left neglect dyslexia and recurrent perseveration (a productive visuo-motor deficit characterized by addition of marks) in target cancellation. Specifically, we aimed at assessing whether different productive symptoms (relative to the reading and the visuo-motor domains) could be associated in patients with left spatial neglect. Fifty-four right-brain-damaged patients took part in the study: 50 out of the 54 patients showed left spatial neglect, with 27 of them also exhibiting left neglect dyslexia. Neglect dyslexic patients who showed perseveration produced mainly substitution neglect errors in reading. Conversely, omissions were the prevailing reading error pattern in neglect dyslexic patients without perseveration. Addition reading errors were much infrequent. Different functional pathological mechanisms may underlie omission and substitution reading errors committed by right-brain-damaged patients with left neglect dyslexia. One such mechanism, involving the defective stopping of inappropriate responses, may contribute to both recurrent perseveration in target cancellation, and substitution errors in reading. Productive pathological phenomena, together with deficits of spatial attention to events taking place on the left-hand-side of space, shape the manifestations of neglect dyslexia, and, more generally, of spatial neglect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Right cervical aortic arch with aberrant left subclavian artery.

    Science.gov (United States)

    Tjang, Yanto S; Aramendi, José I; Crespo, Alejandro; Hamzeh, Gadah; Voces, Roberto; Rodríguez, Miguel A

    2008-08-01

    The combination of right cervical aortic arch, aberrant retroesophageal left subclavian artery originating from a Kommerell's diverticulum, and a ligamentum arteriosum, constitutes a rare form of vascular ring. Two patients aged 21 days and 54 years, who were diagnosed by multislice 3-dimensional computed tomography and magnetic resonance imaging, underwent surgical division of a vascular ring. The adult required resection of a Kommerell's aneurysm and subclavian artery reimplantation.

  17. Increased expression of vascular endothelial growth factor attenuates contusion necrosis without influencing contusion edema after traumatic brain injury in rats.

    Science.gov (United States)

    Tado, Masahiro; Mori, Tatsuro; Fukushima, Masamichi; Oshima, Hideki; Maeda, Takeshi; Yoshino, Atsuo; Aizawa, Shin; Katayama, Yoichi

    2014-04-01

    To clarify the role of vascular endothelial growth factor (VEGF) in the formation of contusion edema and necrosis after traumatic brain injury, we examined the time course of changes in the VEGF expression (enzyme-linked immunosorbent assay), cerebrovascular permeability (extravasation of Evans blue), and water content (dry-wet weight method) of the contused brain tissue in a cortical impact injury model using rats. In addition, we tested the effects of administration of bevacizumab (VEGF monoclonal antibody) on changes in the cerebrovascular permeability and water content of the contused brain tissue, as well as the neurological deficits (rota rod test) and volume of contusion necrosis. Increased VEGF expression was maximal at 72 h after injury (pnecrosis at 21 days (pnecrosis. This is probably because of an increased angiogenesis and improved microcirculation in the areas surrounding the core of contusion.

  18. Dyke-Davidoff-Masson syndrome: case report of fetal unilateral ventriculomegaly and hypoplastic left middle cerebral artery.

    Science.gov (United States)

    Piro, Ettore; Piccione, Maria; Marrone, Gianluca; Giuffrè, Mario; Corsello, Giovanni

    2013-05-14

    Prenatal ultrasonographic detection of unilateral cerebral ventriculomegaly arises suspicion of pathological condition related to cerebrospinal fluid flow obstruction or cerebral parenchimal pathology. Dyke-Davidoff-Masson syndrome is a rare condition characterized by cerebral hemiatrophy, calvarial thickening, skull and facial asymmetry, contralateral hemiparesis, cognitive impairment and seizures. Congenital and acquired types are recognized and have been described, mainly in late childhood, adolescence and adult ages. We describe a female infant with prenatal diagnosis of unilateral left ventriculomegaly in which early brain MRI and contrast enhanced-MRI angiography, showed cerebral left hemiatrophy associated with reduced caliber of the left middle cerebral artery revealing the characteristic findings of the Dyke-Davidoff-Masson syndrome. Prenatal imaging, cerebral vascular anomaly responsible for the cerebral hemiatrophy and the early clinical evolution have never been described before in such a young child and complete the acquired clinical descriptions in older children. Differential diagnosis, genetic investigations, neurophysiologic assessments, short term clinical and developmental follow up are described. Dyke-Davidoff-Masson syndrome must be ruled out in differential diagnosis of fetal unilateral ventriculomegaly. Early clinical assessment, differential diagnosis and cerebral imaging including cerebral MRI angiography allow the clinicians to diagnose also in early infancy this rare condition.

  19. Predisposing factors in posterior circulation infarcts: a vascular morphological assessment

    Energy Technology Data Exchange (ETDEWEB)

    Coban, Goekcen; Cifci, Egemen; Yildirim, Erkan; Agildere, Ahmet Muhtesem [Baskent University Faculty of Medicine, Department of Radiology, Konya (Turkey)

    2015-05-01

    The aim of the study is to assess the effect of shape, diameter, elongation and deviation criteria of basilar artery (BA), convergence angle and diameter variations of vertebral arteries, and concurrent chronic diseases on posterior circulation infarcts. Between January 2010 and May 2013, 186 patients who underwent brain and diffusion magnetic resonance imaging (MRI) with suspected cerebrovascular accident and were diagnosed with posterior circulation infarct and 120 infarct negative control subjects were included in this case-control retrospective study. Vertebral artery (VA) and BA diameter, right (R) and left (L) VA angles at the level of bifurcation, and BA elongation-deviation, and shape of BA were assessed in a total of 306 subjects. Ischemic lesions in the posterior circulation were classified according to their anatomical location and vascular perfusion areas. No significant difference was noted between the control and patient groups with respect to BA diameter (p = 0.676). The most effective risk factors for posterior circulation infarcts were as follows: BA elongation of 2 or 3, BA transverse location of 2 or 3, increase in left VA angle, and history of hypertension, hypercholesterolemia, and diabetes mellitus. Our results suggest that prominent elongation and deviation, C and J shape of BA, and increased L VA angle may be the predictors of at-risk patients in posterior circulation infarcts. Reporting marked morphological BA and VA variations detected at routine brain MRI will aid in selection of patients. Timely detection and treatment of at-risk patients may be life-saving. (orig.)

  20. Predisposing factors in posterior circulation infarcts: a vascular morphological assessment

    International Nuclear Information System (INIS)

    Coban, Goekcen; Cifci, Egemen; Yildirim, Erkan; Agildere, Ahmet Muhtesem

    2015-01-01

    The aim of the study is to assess the effect of shape, diameter, elongation and deviation criteria of basilar artery (BA), convergence angle and diameter variations of vertebral arteries, and concurrent chronic diseases on posterior circulation infarcts. Between January 2010 and May 2013, 186 patients who underwent brain and diffusion magnetic resonance imaging (MRI) with suspected cerebrovascular accident and were diagnosed with posterior circulation infarct and 120 infarct negative control subjects were included in this case-control retrospective study. Vertebral artery (VA) and BA diameter, right (R) and left (L) VA angles at the level of bifurcation, and BA elongation-deviation, and shape of BA were assessed in a total of 306 subjects. Ischemic lesions in the posterior circulation were classified according to their anatomical location and vascular perfusion areas. No significant difference was noted between the control and patient groups with respect to BA diameter (p = 0.676). The most effective risk factors for posterior circulation infarcts were as follows: BA elongation of 2 or 3, BA transverse location of 2 or 3, increase in left VA angle, and history of hypertension, hypercholesterolemia, and diabetes mellitus. Our results suggest that prominent elongation and deviation, C and J shape of BA, and increased L VA angle may be the predictors of at-risk patients in posterior circulation infarcts. Reporting marked morphological BA and VA variations detected at routine brain MRI will aid in selection of patients. Timely detection and treatment of at-risk patients may be life-saving. (orig.)

  1. Predisposing factors in posterior circulation infarcts: a vascular morphological assessment.

    Science.gov (United States)

    Çoban, Gökçen; Çifçi, Egemen; Yildirim, Erkan; Ağıldere, Ahmet Muhteşem

    2015-05-01

    The aim of the study is to assess the effect of shape, diameter, elongation and deviation criteria of basilar artery (BA), convergence angle and diameter variations of vertebral arteries, and concurrent chronic diseases on posterior circulation infarcts. Between January 2010 and May 2013, 186 patients who underwent brain and diffusion magnetic resonance imaging (MRI) with suspected cerebrovascular accident and were diagnosed with posterior circulation infarct and 120 infarct negative control subjects were included in this case-control retrospective study. Vertebral artery (VA) and BA diameter, right (R) and left (L) VA angles at the level of bifurcation, and BA elongation-deviation, and shape of BA were assessed in a total of 306 subjects. Ischemic lesions in the posterior circulation were classified according to their anatomical location and vascular perfusion areas. No significant difference was noted between the control and patient groups with respect to BA diameter (p = 0.676). The most effective risk factors for posterior circulation infarcts were as follows: BA elongation of 2 or 3, BA transverse location of 2 or 3, increase in left VA angle, and history of hypertension, hypercholesterolemia, and diabetes mellitus. Our results suggest that prominent elongation and deviation, C and J shape of BA, and increased L VA angle may be the predictors of at-risk patients in posterior circulation infarcts. Reporting marked morphological BA and VA variations detected at routine brain MRI will aid in selection of patients. Timely detection and treatment of at-risk patients may be life-saving.

  2. Platelet Endothelial Cell Adhesion Molecule-1, a Putative Receptor for the Adhesion of Streptococcus pneumoniae to the Vascular Endothelium of the Blood-Brain Barrier

    NARCIS (Netherlands)

    Iovino, Federico; Molema, Grietje; Bijlsma, Jetta J. E.

    The Gram-positive bacterium Streptococcus pneumoniae is the main causative agent of bacterial meningitis. S. pneumoniae is thought to invade the central nervous system via the bloodstream by crossing the vascular endothelium of the blood-brain barrier. The exact mechanism by which pneumococci cross

  3. Brain Microstructural Abnormalities Are Related to Physiological Alterations in End-Stage Renal Disease.

    Directory of Open Access Journals (Sweden)

    Zhigang Bai

    Full Text Available To study whole-brain microstructural alterations in patients with end-stage renal disease (ESRD and examine the relationship between brain microstructure and physiological indictors in the disease.Diffusion tensor imaging data were collected from 35 patients with ESRD (28 men, 18-61 years and 40 age- and gender-matched healthy controls (HCs, 32 men, 22-58 years. A voxel-wise analysis was then used to identify microstructural alterations over the whole brain in the ESRD patients compared with the HCs. Multiple biochemical measures of renal metabolin, vascular risk factors, general cognitive ability and dialysis duration were correlated with microstructural integrity for the patients.Compared to the HCs, the ESRD patients exhibited disrupted microstructural integrity in not only white matter (WM but also gray matter (GM regions, as characterized by decreased fractional anisotropy (FA and increased mean diffusivity (MD, axial diffusivity (AD and radial diffusivity (RD. Further correlation analyses revealed that the in MD, AD and RD values showed significantly positive correlations with the blood urea nitrogen in the left superior temporal gyrus and significantly negative correlations with the calcium levels in the left superior frontal gyrus (orbital part in the patients.Our findings suggest that ESRD is associated with widespread diffusion abnormalities in both WM and GM regions in the brain, and microstructural integrity of several GM regions are related to biochemical alterations in the disease.

  4. Whole-brain vascular reactivity measured by fMRI using hyperventilation and breath-holding tasks: efficacy of 3D prospective acquisition correction (3D-PACE) for head motion

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Koshikawa, Tokiko; Fukatsu, Hiroshi; Ishigaki, Takeo; Maruyama, Katsuya; Takizawa, Osamu

    2004-01-01

    Functional MR imaging (fMRI) study using hyperventilation and breath-holding task has been reported to be one of the non-invasive methods to examine whole-brain vascular reactivity. The purpose of this study was to evaluate the efficacy of a method for 3D prospective detection and correction of head motion (3D-PACE) in a study of whole-brain vascular reactivity using hyperventilation and breath-holding tasks. Eight healthy volunteers were scanned using an fMRI protocol of hyperventilation and breath-holding task blocks at 3 T in separate runs with and without 3D-PACE. In two subjects, two more runs with and without 3D-PACE were repeated. The mean total number of activated voxels ± standard deviation was 26,405.3±1,822.2 in the run with 3D-PACE and 17,329.9±2,766.3 in the run without 3D-PACE (P<0.05), although there is some intersubject variation regarding the effect of 3D-PACE. In the two subjects whose performed two more runs, the number of activated voxels were smaller in the run without 3D-PACE than even in the run with 3D-PACE performed later. We conclude that 3D-PACE is beneficial for fMRI studies of whole-brain vascular reactivity induced by hyperventilation and breath-holding. (orig.)

  5. Vascular provisions for a local utero-ovarian cross-over pathway in new world camelids.

    Science.gov (United States)

    Del Campo, M R; Del Campo, C H; Ginther, O J

    1996-10-15

    The right uterine horn of alpacas causes luteolysis in the right ovary, whereas the left horn causes luteolysis in both ovaries. Female reproductive tracts were studied in 32 adult llamas, 12 adult alpacas, and 21 mid-gestation female fetuses to determine if there is a dichotomy in the vascular anatomy between the 2 sides. Adult tracts were studied by either injection of colored latex into the veins and arteries followed by tissue clearing or by injection of colored fluids during transillumination. Fetal uteri were studied by transillumination. The angioarchitecture of the ovarian vascular pedicle was similar to that reported for ewes. There was no vessel comparable to the middle uterine artery, which is the largest uterine artery in the other farm species. A striking difference from the uterine vascular of other farm species was the presence of a major branch of the right uterine artery that crossed the cranial intercornual area to supply much of the left uterine horn. A corresponding major vein originated from the left horn, crossed the mid-line, and terminated as a branch of the right uterine vein. Thus, the vascular anatomy indicated that much venous blood from the left horn drained to the right side. This was confirmed by injection of colored fluid into a small venous branch at the tip of the left horn. The prominent cross-over vessels were observed in the fetal uteri, and the diameter of the left uterine fetal horn (6.7 +/- 0.6 mm) was greater (P blood from the left horn into an artery supplying the right ovary was not defined in this study. However, the results provide an anatomical basis for functional testing of the cross-over hypothesis and defining the area of venoarterial transfer in camelids.

  6. Vascular Structure Identification in Intraoperative 3D Contrast-Enhanced Ultrasound Data

    Directory of Open Access Journals (Sweden)

    Elisee Ilunga-Mbuyamba

    2016-04-01

    Full Text Available In this paper, a method of vascular structure identification in intraoperative 3D Contrast-Enhanced Ultrasound (CEUS data is presented. Ultrasound imaging is commonly used in brain tumor surgery to investigate in real time the current status of cerebral structures. The use of an ultrasound contrast agent enables to highlight tumor tissue, but also surrounding blood vessels. However, these structures can be used as landmarks to estimate and correct the brain shift. This work proposes an alternative method for extracting small vascular segments close to the tumor as landmark. The patient image dataset involved in brain tumor operations includes preoperative contrast T1MR (cT1MR data and 3D intraoperative contrast enhanced ultrasound data acquired before (3D-iCEUS s t a r t and after (3D-iCEUS e n d tumor resection. Based on rigid registration techniques, a preselected vascular segment in cT1MR is searched in 3D-iCEUS s t a r t and 3D-iCEUS e n d data. The method was validated by using three similarity measures (Normalized Gradient Field, Normalized Mutual Information and Normalized Cross Correlation. Tests were performed on data obtained from ten patients overcoming a brain tumor operation and it succeeded in nine cases. Despite the small size of the vascular structures, the artifacts in the ultrasound images and the brain tissue deformations, blood vessels were successfully identified.

  7. Alzheimer and vascular dementia in the elderly patients.

    Science.gov (United States)

    Seetlani, Naresh Kumar; Kumar, Narindar; Imran, Khalid; Ali, Asif; Shams, Nadia; Sheikh, Taha

    2016-01-01

    To find out the frequency of Alzheimer's and Vascular dementia in the elderly patients. This cross sectional descriptive study was conducted in Department of Medicine, Ziauddin Hospital Karachi from 1 st October 2013 to 31 st March 2014. Patients with symptoms of dementia for more than 6 months duration, and Mini Mental State Examination score dementia were assessed for duration of symptoms. Patients underwent CT scan of brain. Patients with generalized atrophy of brain on CT scanning of brain were labeled as Alzheimer's dementia, while patients with ischemic or hemorrhagic stroke on CT scan of brain were labeled as vascular dementia. Four hundred twenty two patients were included in this study. There were 232 (54.98 %) male and 190 (45.02 %) were female. The mean age ± SD of the patients was 72.58±5.34 years (95% CI: 72.07 to 73.09), similarly average duration of symptoms was 10.14±2.85 months. About 18.96% of patients were illiterate, 32.23% were matric, 28.44% were intermediate and 20.33% were graduate and post graduate. Hypertension and diabetes were the commonest co-morbid i.e. 81.3% and 73.7%, hyperlipedimia and smoking were 38.2% and 45% respectively. Frequency of Alzheimer's disease and vascular dementia in the elderly was observed in 3.79% (16/422) and 2.61% (11/422) cases. A good number of patients, 27 out of 422, in this hospital based study were suffering from Alzheimer's disease and vascular dementia. Early detection and prompt treatment can reduce the burden of the disease in our population.

  8. Herpes simplex encephalitis: increased retention of Tc-99m HMPAO on acetazolamide enhanced brain perfusion SPECT

    International Nuclear Information System (INIS)

    Choi, Yun Young; Kim, Kwon Hyung; Kim, Seung Hyun; Cho, Suk Shin

    1998-01-01

    We present an interesting case of herpes simplex encephalitis, which showed increased upta unilateral temporal cortex on brain perfusion SPECT using Tc-99m HMPAO, but in bilateral tem cortex after acetazolamide administration. A 42-year-old man was admitted via emergency room, due to rapidly progressing hea disorientation and mental changes. On neurologic examination, neck stiffness and Kernig sign noted. CSF examination showed pleocytosis with lymphcyte predominance. MRI showed swelling bilateral temporal lobe with left predominance, suggestive of herpes simplex encephalitis. Baseline/ Acetazolamide brain perfusion SPECT were acquired consecutively at the same position IV administration of 740MBq and additional 1480 MBq of Tc-99m HMPAO respectively. The temporal and inferior frontal cortex showed markedly increased perfusion on the baseline acetazolamide-enhanced SPECT images. The right temporal cortex showed normal uptake on the b SPECT images, and markedly increased uptake after acetazolamide administration, which seemed to the abundant vascularity at the acute inflammation site without marked brain damage. The fo brain perfusion SPECT after 6 months showed perfusion defect in left temporal cortex but norm perfusion in right temporal cortex. Therefore, we can conclude that baseline SPECT is helpful for the prediction of the prognosis acetazolamide SPECT for the evaluation of the extent of herpes simples encephalitis

  9. Diffusion tensor imaging differentiates vascular parkinsonism from parkinsonian syndromes of degenerative origin in elderly subjects

    Energy Technology Data Exchange (ETDEWEB)

    Deverdun, Jérémy [Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, Montpellier (France); Laboratoire Charles Coulomb, CNRS UMR 5221 - Université Montpellier II, Montpellier (France); I2FH, Institut d’Imagerie Fonctionnelle Humaine, Hôpital Gui de Chauliac, CHRU de, Montpellier (France); Menjot de Champfleur, Sophie [Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, Montpellier (France); Clinique du Parc, Castelnau-le-Lez (France); Cabello-Aguilar, Simon [Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, Montpellier (France); I2FH, Institut d’Imagerie Fonctionnelle Humaine, Hôpital Gui de Chauliac, CHRU de, Montpellier (France); Maury, Florence [Department of Neurology, Montpellier University Hospital Center, Gui de Chauliac Hospital, Montpellier (France); Molino, François [Laboratoire Charles Coulomb, CNRS UMR 5221 - Université Montpellier II, Montpellier (France); Institut de Génomique Fonctionnelle, UMR 5203 - INSERM U661 - Université Montpellier II - Université, Montpellier I (France); Charif, Mahmoud [Department of Neurology, Montpellier University Hospital Center, Gui de Chauliac Hospital, Montpellier (France); Leboucq, Nicolas [Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, Montpellier (France); Ayrignac, Xavier; Labauge, Pierre [Department of Neurology, Montpellier University Hospital Center, Gui de Chauliac Hospital, Montpellier (France); and others

    2014-11-15

    Background and Purpose: The etiologic diagnosis of parkinsonian syndromes is of particular importance when considering syndromes of vascular or degenerative origin. The purpose of this study is to find differences in the white-matter architecture between those two groups in elderly patients. Materials and Methods: Thirty-five patients were prospectively included (multiple-system atrophy, n = 5; Parkinson's disease, n = 15; progressive supranuclear palsy, n = 9; vascular parkinsonism, n = 6), with a mean age of 76 years. Patients with multiple-system atrophy, progressive supranuclear palsy and Parkinson's disease were grouped as having parkinsonian syndromes of degenerative origin. Brain MRIs included diffusion tensor imaging. Fractional anisotropy and mean-diffusivity maps were spatially normalized, and group analyses between parkinsonian syndromes of degenerative origin and vascular parkinsonism were performed using a voxel-based approach. Results: Statistical parametric-mapping analysis of diffusion tensor imaging data showed decreased fractional anisotropy value in internal capsules bilaterally in patients with vascular parkinsonism compared to parkinsonian syndromes of degenerative origin (p = 0.001) and showed a lower mean diffusivity in the white matter of the left superior parietal lobule (p = 0.01). Fractional anisotropy values were found decreased in the middle cerebellar peduncles in multiple-system atrophy compared to Parkinson's disease and progressive supranuclear palsy. The mean diffusivity was increased in those regions for these subgroups. Conclusion: Clinically defined vascular parkinsonism was associated with decreased fractional anisotropy in the deep white matter (internal capsules) compared to parkinsonian syndromes of degenerative origin. These findings are consistent with previously published neuropathological data.

  10. Diffusion tensor imaging differentiates vascular parkinsonism from parkinsonian syndromes of degenerative origin in elderly subjects

    International Nuclear Information System (INIS)

    Deverdun, Jérémy; Menjot de Champfleur, Sophie; Cabello-Aguilar, Simon; Maury, Florence; Molino, François; Charif, Mahmoud; Leboucq, Nicolas; Ayrignac, Xavier; Labauge, Pierre

    2014-01-01

    Background and Purpose: The etiologic diagnosis of parkinsonian syndromes is of particular importance when considering syndromes of vascular or degenerative origin. The purpose of this study is to find differences in the white-matter architecture between those two groups in elderly patients. Materials and Methods: Thirty-five patients were prospectively included (multiple-system atrophy, n = 5; Parkinson's disease, n = 15; progressive supranuclear palsy, n = 9; vascular parkinsonism, n = 6), with a mean age of 76 years. Patients with multiple-system atrophy, progressive supranuclear palsy and Parkinson's disease were grouped as having parkinsonian syndromes of degenerative origin. Brain MRIs included diffusion tensor imaging. Fractional anisotropy and mean-diffusivity maps were spatially normalized, and group analyses between parkinsonian syndromes of degenerative origin and vascular parkinsonism were performed using a voxel-based approach. Results: Statistical parametric-mapping analysis of diffusion tensor imaging data showed decreased fractional anisotropy value in internal capsules bilaterally in patients with vascular parkinsonism compared to parkinsonian syndromes of degenerative origin (p = 0.001) and showed a lower mean diffusivity in the white matter of the left superior parietal lobule (p = 0.01). Fractional anisotropy values were found decreased in the middle cerebellar peduncles in multiple-system atrophy compared to Parkinson's disease and progressive supranuclear palsy. The mean diffusivity was increased in those regions for these subgroups. Conclusion: Clinically defined vascular parkinsonism was associated with decreased fractional anisotropy in the deep white matter (internal capsules) compared to parkinsonian syndromes of degenerative origin. These findings are consistent with previously published neuropathological data

  11. Left insular cortex and left SFG underlie prismatic adaptation effects on time perception: evidence from fMRI.

    Science.gov (United States)

    Magnani, Barbara; Frassinetti, Francesca; Ditye, Thomas; Oliveri, Massimiliano; Costantini, Marcello; Walsh, Vincent

    2014-05-15

    Prismatic adaptation (PA) has been shown to affect left-to-right spatial representations of temporal durations. A leftward aftereffect usually distorts time representation toward an underestimation, while rightward aftereffect usually results in an overestimation of temporal durations. Here, we used functional magnetic resonance imaging (fMRI) to study the neural mechanisms that underlie PA effects on time perception. Additionally, we investigated whether the effect of PA on time is transient or stable and, in the case of stability, which cortical areas are responsible of its maintenance. Functional brain images were acquired while participants (n=17) performed a time reproduction task and a control-task before, immediately after and 30 min after PA inducing a leftward aftereffect, administered outside the scanner. The leftward aftereffect induced an underestimation of time intervals that lasted for at least 30 min. The left anterior insula and the left superior frontal gyrus showed increased functional activation immediately after versus before PA in the time versus the control-task, suggesting these brain areas to be involved in the executive spatial manipulation of the representation of time. The left middle frontal gyrus showed an increase of activation after 30 min with respect to before PA. This suggests that this brain region may play a key role in the maintenance of the PA effect over time. Copyright © 2014. Published by Elsevier Inc.

  12. Lower limb vascular dysfunction in cyclists

    Directory of Open Access Journals (Sweden)

    Thiago Ayala Melo Di Alencar

    2013-06-01

    Full Text Available Sports-related vascular insufficiency affecting the lower limbs is uncommon, and early signs and symptoms can be confused with musculoskeletal injuries. This is also the case among professional cyclists, who are always at the threshold between endurance and excess training. The aim of this review was to analyze the occurrence of vascular disorders in the lower limbs of cyclists and to discuss possible etiologies. Eighty-five texts, including papers and books, published from 1950 to 2012, were used. According to the literature reviewed, some cyclists receive a late diagnosis of vascular dysfunction due to a lack of familiarity of the medical team with this type of dysfunction. Data revealed that a reduced blood flow in the external iliac artery, especially on the left, is much more common than in the femoral and popliteal arteries, and that vascular impairment is responsible for the occurrence of early fatigue and reduced performance in cycling.

  13. Global Aphasia As A Predictor Of Mortality In The Acute Phase Of A First Stroke [afasia Global Prediz Mortalidade Na Fase Aguda De Um Primeiro Acidente Vascular Cerebral Isquêmico

    OpenAIRE

    de Oliveira F.F.; Damasceno B.P.

    2011-01-01

    OBJECTIVE: To establish whether vascular aphasic syndromes can predict stroke outcomes. METHOD: Thirty-seven adults were evaluated for speech and language within 72 hours after a single first-ever ischemic brain lesion, in blind association to CT and/or MR. RESULTS: Speech or language disabilities were found in seven (87.5%) of the eight deceased patients and twenty-six (89.7%) of the twenty-nine survivors. Global aphasia was identified in eleven patients, all with left hemisphere lesions (ni...

  14. Mortality and preoperative cardiac function in vascular amputees: an N-terminal pro-brain natriuretic peptide (NT-proBNP) pilot study

    OpenAIRE

    Riemersma, Marcel; Dijkstra, Pieter U.; van Veldhuisen, Dirk Jan; Muskiet, Frits A. J.; van den Dungen, Jan A. M. M.; Geertzen, Jan H. B.

    2008-01-01

    Objective: To determine preoperative ventricular function in vascular amputees by measuring N-terminal pro-brain natriuretic peptide (NT-proBNP) and to analyse the relationship between NT-proBNP levels and 30-day postoperative mortality. Design: Prospective pilot study. Subjects and methods: In 19 patients planned for a lower limb amputation for nonreconstructable peripheral arterial disease NT-proBNP was measured the day before amputation. Results: Four amputees died within 30 days after the...

  15. Role of platelets in maintenance of pulmonary vascular permeability to protein

    International Nuclear Information System (INIS)

    Lo, S.K.; Burhop, K.E.; Kaplan, J.E.; Malik, A.B.

    1988-01-01

    The authors examined the role of platelets in maintenance of pulmonary vascular integrity by inducing thrombocytopenia in sheep using antiplatelet serum (APS). A causal relationship between thrombocytopenia and increase in pulmonary vascular permeability was established by platelet repletion using platelet-rich plasma (PRP). Sheep were chronically instrumented and lung lymph fistulas prepared to monitor pulmonary lymph flow (Q lym ). A balloon catheter was positioned in the left atrium to assess pulmonary vascular permeability to protein after raising the left atrial pressure (P la ). Thrombocytopenia was maintained for 3 days by daily intramuscular APS injections. In studies using cultured bovine pulmonary artery endothelial monolayers, transendothelia permeability of 125 I-labeled albumin was reduced 50 and 95%, respectively, when 2.5 x 10 7 or 5 x 10 7 platelets were added onto endothelial monolayers. However, addition of 5 x 10 6 platelets or 5 x 10 7 red blood cells did not reduce endothelial monolayer albumin permeability. Results indicate that platelets are required for the maintenance of pulmonary vascular permeability. Reduction in permeability appears to involve an interaction of platelets with the endothelium

  16. Preferential cephalic redistribution of left ventricular cardiac output during therapeutic hypothermia for perinatal hypoxic-ischemic encephalopathy.

    Science.gov (United States)

    Hochwald, Ori; Jabr, Mohammad; Osiovich, Horacio; Miller, Steven P; McNamara, Patrick J; Lavoie, Pascal M

    2014-05-01

    To determine the relationship between left ventricular cardiac output (LVCO), superior vena cava (SVC) flow, and brain injury during whole-body therapeutic hypothermia. Sixteen newborns with moderate or severe hypoxic-ischemic encephalopathy were studied using echocardiography during and immediately after therapeutic hypothermia. Measures were also compared with 12 healthy newborns of similar postnatal age. Newborns undergoing therapeutic hypothermia also had cerebral magnetic resonance imaging as part of routine clinical care on postnatal day 3-4. LVCO was markedly reduced (mean ± SD 126 ± 38 mL/kg/min) during therapeutic hypothermia, whereas SVC flow was maintained within expected normal values (88 ± 27 mL/kg/min) such that SVC flow represented 70% of the LVCO. The reduction in LVCO during therapeutic hypothermia was mainly accounted by a reduction in heart rate (99 ± 13 vs 123 ± 17 beats/min; P newborns without brain injury (P = .013). Newborns with perinatal hypoxic-ischemic encephalopathy showed a preferential systemic-to-cerebral redistribution of cardiac blood flow during whole-body therapeutic hypothermia, which may reflect a lack of cerebral vascular adaptation in newborns with more severe brain injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Language development at 2 years is correlated to brain microstructure in the left superior temporal gyrus at term equivalent age: a diffusion tensor imaging study.

    Science.gov (United States)

    Aeby, Alec; De Tiège, Xavier; Creuzil, Marylise; David, Philippe; Balériaux, Danielle; Van Overmeire, Bart; Metens, Thierry; Van Bogaert, Patrick

    2013-09-01

    This study aims at testing the hypothesis that neurodevelopmental abilities at age 2 years are related with local brain microstructure of preterm infants at term equivalent age. Forty-one preterm infants underwent brain MRI with diffusion tensor imaging sequences to measure mean diffusivity (MD), fractional anisotropy (FA), longitudinal and transverse diffusivity (λ// and λ[perpendicular]) at term equivalent age. Neurodevelopment was assessed at 2 years corrected age using the Bayley III scale. A voxel-based analysis approach, statistical parametric mapping (SPM8), was used to correlate changes of the Bayley III scores with the regional distribution of MD, FA, λ// and λ[perpendicular]. We found that language abilities are negatively correlated to MD, λ// and λ[perpendicular] in the left superior temporal gyrus in preterm infants. These findings suggest that higher MD, λ// and λ[perpendicular] values at term-equivalent age in the left superior temporal gyrus are associated with poorer language scores in later childhood. Consequently, it highlights the key role of the left superior temporal gyrus for the development of language abilities in children. Further studies are needed to assess on an individual basis and on the long term the prognostic value of brain DTI at term equivalent age for the development of language. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Effects of telmisartan combined with nifedipine controlled release tablet on inflammatory factors, vascular endothelial function and left ventricular function in patients with coronary heart disease with mild to moderate hypertension

    Directory of Open Access Journals (Sweden)

    Feng Guo

    2017-10-01

    Full Text Available Objective: To investigate the effect of telmisartan combined with Nifedipine Controlled Release Tablet on inflammatory factors, vascular endothelial function and left ventricular function in patients with coronary heart disease with mild to moderate hypertension. Methods: A total of 92 cases of patients with coronary heart disease with mild to moderate hypertension were selected as the object of observation, according to the random data table, they were divided into the control group (n=46 and observation group (n=46, and patients in the control group were treated with Nifedipine Controlled Release Table therapy, on this basis, the observation group patients were given telmisartan treatment, two groups were treated for 6 months. The levels of the blood pressure, inflammatory factors, vascular endothelial function and left ventricular function compared between the two groups before and after treatment. Results: There were no significant differences in the levels of SBP, DBP, hs-CRP, TNF-α, NO, ET-1, LVEF, LVEDD and LVESD in the two groups before treatment. After treatment, two groups of SBP, DBP, hs-CRP, TNF-α, ET-1, LVEDD and LVESD levels were significantly lower than those in the same group before treatment, and after treatment, the levels of SBP, DBP, hs-CRP, TNF-α, ET-1 and LVESD in the observation group were significantly lower than those in the control group, while there were no significant difference in the level of LVEDD between the two groups after treatment; Compared with level in the group before treatment, the levels of NO and LVEF in the two groups were significantly increased, and the observation group [(82.13±19.01 µmol/L, (52.83±7.45%] was significantly higher than the control group [(67.37±13.08 µmol/L, (49.47±6.96%]. Conclusion: Telmisartan combined with Nifedipine Controlled Release Table in treating coronary heart disease with mild to moderate hypertension, can effectively control blood pressure, reduce the

  19. The use of gammophos to prevent the delayed radiation injury to brain

    International Nuclear Information System (INIS)

    Shaposhnikova, V.V.; Levitman, M.Kh.; Plotnikova, E.D.; Ehjdus, L.Kh.

    1987-01-01

    The influence of a radioprotector, gammaphos, on the development of delayed vascular changes and necrosis in rat brain following local brain irradiation with 25 Gy was investigated. The radioprotective effect was manifested by both the morphometric parameters of vessels and the survival rate and relative number of animals with gross vascular abnormalities and brain necrosis. There was a causative relationship between the development of gross vascular abnormalities and the occurrence of brain necrosis after exposure to moderate radiation doses

  20. [Trauma induced left maxillary sinus dislocation of eyeball--a case report].

    Science.gov (United States)

    Chen, Yu; Liu, Cuiping; Cui, Liping

    2013-01-01

    Patient male, 27 year old. Left facial and head trauma for 6 hours, due to motor vehicle accident. Patient state of mind was clear at arrival to hospital. Body temperature: 36C; Pulse: 80 Time/Minute; Breath: 20 Time/Minute; Blood pressure: 120/80 mm Hg. An irregular, horizontal laceration at arch of left eyebrow, approximately 8-10 cm. A laceration on left wing of nose skin, approximately 1 cm. A laceration also under lower eyelid skin of right eye, approximately 2 cm. Left blepharedema and enophthalmos. Orbital and nasal sinuses CT indications:contusion and laceration of the left frontal lobe of brain; fracture of the left orbital frontal, ethmoid, sphenoid bone, left nasal, maxillary sinus and zygoma with soft tissue contusion and laceration; the left eyeball and optic nerve sunk into the maxillary sinus (See figure 1). (1) Multiple orbital fractures; (2) Left maxillary sinus dislocation of eyeball; (3) The left frontal lobe contusion and laceration of brain.

  1. Vascular pathology: Cause or effect in Alzheimer disease?

    Science.gov (United States)

    Rius-Pérez, S; Tormos, A M; Pérez, S; Taléns-Visconti, R

    2018-03-01

    Alzheimer disease (AD) is the main cortical neurodegenerative disease. The incidence of this disease increases with age, causing significant medical, social and economic problems, especially in countries with ageing populations. This review aims to highlight existing evidence of how vascular dysfunction may contribute to cognitive impairment in AD, as well as the therapeutic possibilities that might arise from this evidence. The vascular hypothesis emerged as an alternative to the amyloid cascade hypothesis as an explanation for the pathophysiology of AD. This hypothesis locates blood vessels as the origin for a variety of pathogenic pathways that lead to neuronal damage and dementia. Destruction of the organisation of the blood brain barrier, decreased cerebral blood flow, and the establishment of an inflammatory context would thus be responsible for any subsequent neuronal damage since these factors promote aggregation of β-amyloid peptide in the brain. The link between neurodegeneration and vascular dysfunction pathways has provided new drug targets and therapeutic approaches that will add to the treatments for AD. It is difficult to determine whether the vascular component in AD is the cause or the effect of the disease, but there is no doubt that vascular pathology has an important relationship with AD. Vascular dysfunction is likely to act synergistically with neurodegenerative changes in a cycle that exacerbates the cognitive impairment found in AD. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Headache, migraine, and structural brain lesions and function: population based Epidemiology of Vascular Ageing-MRI study

    International Nuclear Information System (INIS)

    Kurth, T.; Mohamed, S.; Zhu, Y.C.; Dufouil, C.; Tzourio, Ch.; Kurth, T.; Zhu, Y.C.; Dufouil, C.; Tzourio, Ch.; Kurth, T.; Maillard, P.; Mazoyer, B.; Zhu, Y.C.; Chabriat, H.; Bousser, M.G.; Tzourio, Ch.; Zhu, Y.C.; Chabriat, H.; Bousser, M.G.; Mazoyer, B.

    2011-01-01

    Objective: To evaluate the association of overall and specific headaches with volume of white matter hyper-intensities, brain infarcts, and cognition. Design: Population based, cross sectional study. Setting: Epidemiology of Vascular Ageing study, Nantes, France. Participants: 780 participants (mean age 69, 58.5% women) with detailed headache assessment. Main outcome measures: Brain scans were evaluated for volume of white matter hyper-intensities (by fully automated imaging processing) and for classification of infarcts (by visual reading with a standardised assessment grid). Cognitive function was assessed by a battery of tests including the mini-mental state examination. Results: 163 (20.9%) participants reported a history of severe headache and 116 had migraine, of whom 17 (14.7%) reported aura symptoms. An association was found between any history of severe headache and increasing volume of white matter hyper-intensities. The adjusted odds ratio of being in the highest third for total volume of white matter hyper-intensities was 2.0 (95% confidence interval 1.3 to 3.1, P for trend 0.002) for participants with any history of severe headache when compared with participants without severe headache being in the lowest third. The association pattern was similar for all headache types. Migraine with aura was the only headache type strongly associated with volume of deep white matter hyper-intensities (highest third odds ratio 12.4, 1.6 to 99.4, P for trend 0.005) and with brain infarcts (3.4, 1.2 to 9.3). The location of infarcts was predominantly outside the cerebellum and brain stem. Evidence was lacking for cognitive impairment for any headache type with or without brain lesions. Conclusions: In this population based study, any history of severe headache was associated with an increased volume of white matter hyper-intensities. Migraine with aura was the only headache type associated with brain infarcts. Evidence that headache of any type by itself or in

  3. Right-sided representational neglect after left brain damage in a case without visuospatial working memory deficits.

    Science.gov (United States)

    van Dijck, Jean-Philippe; Gevers, Wim; Lafosse, Christophe; Fias, Wim

    2013-10-01

    Brain damaged patients suffering from representational neglect (RN) fail to report, orient to, or verbally describe contra-lesional elements of imagined environments or objects. So far this disorder has only been reported after right brain damage, leading to the idea that only the right hemisphere is involved in this deficit. A widely accepted account attributes RN to a lateralized impairment in the visuospatial component of working memory. So far, however, this hypothesis has not been tested in detail. In the present paper, we describe, for the first time, the case of a left brain damaged patient suffering from right-sided RN while imagining both known and new environments and objects. An in-depth evaluation of her visuospatial working memory abilities, with special focus on the presence of a lateralized deficit, did not reveal any abnormality. In sharp contrast, her ability to memorize visual information was severely compromised. The implications of these results are discussed in the light of recent insights in the neglect syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Majewski osteodysplastic primordial dwarfism type II (MOPD II) complicated by stroke: clinical report and review of cerebral vascular anomalies.

    Science.gov (United States)

    Brancati, Francesco; Castori, Marco; Mingarelli, Rita; Dallapiccola, Bruno

    2005-12-15

    We report on a 2 9/12-year-old boy with disproportionate short stature, microcephaly, subtle craniofacial dysmorphisms, and generalized skeletal dysplasia, who developed a left hemiparesis. Brain neuroimaging disclosed a complex cerebral vascular anomaly (CVA) with stenosis of the right anterior cerebral artery and telangiectatic collateral vessels supplying the cerebral cortex, consistent with moyamoya disease. Based on clinical and skeletal features, a diagnosis of Majewski osteodysplastic primordial dwarfism type II (MOPD II) was established. Review of 16 published patients with CVA affected by either Seckel syndrome or MOPD II suggested that CVA is preferentially associated to the latter subtype affecting about 1/4 of the patients. 2005 Wiley-Liss, Inc.

  5. Effects of fisetin on hyperhomocysteinemia-induced experimental endothelial dysfunction and vascular dementia.

    Science.gov (United States)

    Hemanth Kumar, Boyina; Arun Reddy, Ravula; Mahesh Kumar, Jerald; Dinesh Kumar, B; Diwan, Prakash V

    2017-01-01

    This study was designed to investigate the effects of fisetin (FST) on hyperhomocysteinemia (HHcy)-induced experimental endothelial dysfunction (ED) and vascular dementia (VaD) in rats. Wistar rats were randomly divided into 8 groups: control, vehicle control, l-methionine, FST (5, 10, and 25 mg/kg, p.o.), FST-per se (25 mg/kg, p.o.), and donepezil (0.1 mg/kg, p.o.). l-Methionine administration (1.7 g/kg, p.o.) for 32 days induced HHcy. ED and VaD induced by HHcy were determined by vascular reactivity measurements, behavioral analysis using Morris water maze and Y-maze, along with a biochemical and histological evaluation of thoracic aorta and brain tissues. Administration of l-methionine developed behavioral deficits; triggered brain lipid peroxidation (LPO); compromised brain acetylcholinesterase activity (AChE); and reduced the levels of brain superoxide dismutase (SOD), brain catalase (CAT), brain reduced glutathione (GSH), and serum nitrite; and increased serum homocysteine and cholesterol levels. These effects were accompanied by decreased vascular NO bioavailability, marked intimal thickening of the aorta, and multiple necrotic foci in brain cortex. HHcy-induced alterations in the activities of SOD, CAT, GSH, AChE, LPO, behavioral deficits, ED, and histological aberrations were significantly attenuated by treatment with fisetin in a dose-dependent manner. Collectively, our results indicate that fisetin exerts endothelial and neuroprotective effects against HHcy-induced ED and VaD.

  6. Different brain activation under left and right ventricular stimulation: an fMRI study in anesthetized rats.

    Science.gov (United States)

    Suzuki, Hideaki; Sumiyoshi, Akira; Kawashima, Ryuta; Shimokawa, Hiroaki

    2013-01-01

    Myocardial ischemia in the anterior wall of the left ventricule (LV) and in the inferior wall and/or right ventricle (RV) shows different manifestations that can be explained by the different innervations of cardiac afferent nerves. However, it remains unclear whether information from different areas of the heart, such as the LV and RV, are differently processed in the brain. In this study, we investigated the brain regions that process information from the LV or RV using cardiac electrical stimulation and functional magnetic resonance imaging (fMRI) in anesthetized rats because the combination of these two approaches cannot be used in humans. An electrical stimulation catheter was inserted into the LV or RV (n = 12 each). Brain fMRI scans were recorded during LV or RV stimulation (9 Hz and 0.3 ms width) over 10 blocks consisting of alternating periods of 2 mA for 30 sec followed by 0.2 mA for 60 sec. The validity of fMRI signals was confirmed by first and second-level analyses and temporal profiles. Increases in fMRI signals were observed in the anterior cingulate cortex and the right somatosensory cortex under LV stimulation. In contrast, RV stimulation activated the right somatosensory cortex, which was identified more anteriorly compared with LV stimulation but did not activate the anterior cingulate cortex. This study provides the first evidence for differences in brain activation under LV and RV stimulation. These different brain processes may be associated with different clinical manifestations between anterior wall and inferoposterior wall and/or RV myocardial ischemia.

  7. Measurement of the perfusion fraction in brain tumors with intravoxel incoherent motion MR imaging: validation with histopathological vascular density in meningiomas.

    Science.gov (United States)

    Togao, Osamu; Hiwatashi, Akio; Yamashita, Koji; Kikuchi, Kazufumi; Momosaka, Daichi; Yoshimoto, Koji; Kuga, Daisuke; Mizoguchi, Masahiro; Suzuki, Satoshi O; Iwaki, Toru; Van Cauteren, Marc; Iihara, Koji; Honda, Hiroshi

    2018-05-01

    To evaluate the quantification performance of the perfusion fraction (f) measured with intravoxel incoherent motion (IVIM) MR imaging in a comparison with the histological vascular density in meningiomas. 29 consecutive patients with meningioma (59.0 ± 16.8 years old, 8 males and 21 females) who underwent a subsequent surgical resection were examined with both IVIM imaging and a histopathological analysis. IVIM imaging was conducted using a single-shot SE-EPI sequence with 13 b-factors (0, 10, 20, 30, 50, 80, 100, 200, 300, 400, 600, 800, 1000 s mm - 2 ) at 3T. The perfusion fraction (f) was calculated by fitting the IVIM bi-exponential model. The 90-percentile f-value in the tumor region-of-interest (ROI) was defined as the maximum f-value (f-max). Histopathological vascular density (%Vessel) was measured on CD31-immunostainted histopathological specimens. The correlation and agreement between the f-values and %Vessel was assessed. The f-max (15.5 ± 5.5%) showed excellent agreement [intraclass correlation coefficient (ICC) = 0.754] and a significant correlation (r = 0.69, p < 0.0001) with the %Vessel (12.9 ± 9.4%) of the tumors. The Bland-Altman plot analysis showed excellent agreement between the f-max and %Vessel (bias, -2.6%; 95% limits of agreement, from -16.0 to 10.8%). The f-max was not significantly different among the histological subtypes of meningioma. An excellent agreement and a significant correlation were observed between the f-values and %Vessel. The f-value can be used as a noninvasive quantitative imaging measure to directly assess the vascular volume fraction in brain tumors. Advances in knowledge: The f-value measured by IVIM imaging showed a significant correlation and an excellent agreement with the histological vascular density in the meningiomas. The f-value can be used as a noninvasive and quantitative imaging measure to directly assess the volume fraction of capillaries in brain tumors.

  8. Correlation between language function and the left arcuate fasciculus detected by diffusion tensor imaging tractography after brain tumor surgery.

    Science.gov (United States)

    Hayashi, Yutaka; Kinoshita, Masashi; Nakada, Mitsutoshi; Hamada, Jun-ichiro

    2012-11-01

    Disturbance of the arcuate fasciculus in the dominant hemisphere is thought to be associated with language-processing disorders, including conduction aphasia. Although the arcuate fasciculus can be visualized in vivo with diffusion tensor imaging (DTI) tractography, its involvement in functional processes associated with language has not been shown dynamically using DTI tractography. In the present study, to clarify the participation of the arcuate fasciculus in language functions, postoperative changes in the arcuate fasciculus detected by DTI tractography were evaluated chronologically in relation to postoperative changes in language function after brain tumor surgery. Preoperative and postoperative arcuate fasciculus area and language function were examined in 7 right-handed patients with a brain tumor in the left hemisphere located in proximity to part of the arcuate fasciculus. The arcuate fasciculus was depicted, and its area was calculated using DTI tractography. Language functions were measured using the Western Aphasia Battery (WAB). After tumor resection, visualization of the arcuate fasciculus was increased in 5 of the 7 patients, and the total WAB score improved in 6 of the 7 patients. The relative ratio of postoperative visualized area of the arcuate fasciculus to preoperative visualized area of the arcuate fasciculus was increased in association with an improvement in postoperative language function (p = 0.0039). The role of the left arcuate fasciculus in language functions can be evaluated chronologically in vivo by DTI tractography after brain tumor surgery. Because increased postoperative visualization of the fasciculus was significantly associated with postoperative improvement in language functions, the arcuate fasciculus may play an important role in language function, as previously thought. In addition, postoperative changes in the arcuate fasciculus detected by DTI tractography could represent a predicting factor for postoperative language

  9. Brain abscess mimicking brain metastasis in breast cancer

    International Nuclear Information System (INIS)

    Khullar, P.; Datta, N.R.; Wahi, I.K.; Kataria, S.

    2016-01-01

    61 year old female presented with chief complaints of headache for 30 days, fever for 10 days, altered behavior for 10 days and convulsion for 2 days. She was diagnosed and treated as a case of carcinoma of left breast 5 years ago. MRI brain showed a lobulated lesion in the left frontal lobe. She came to our hospital for whole brain radiation as a diagnosed case of carcinoma of breast with brain metastasis. Review of MRI brain scan, revealed metastasis or query infective pathology. MR spectroscopy of the lesion revealed choline: creatinine and choline: NAA (N-Acety- laspartate) ratios of 1.6 and 1.5 respectively with the presence of lactate within the lesion suggestive of infective pathology. She underwent left fronto temporal craniotomy and evacuation of abscess and subdural empyema. Gram stain showed gram positive cocci. After 1 month of evacuation and treatment she was fine. This case suggested a note of caution in every case of a rapidly evolving space-occupying lesion independent of the patient’s previous history

  10. Diagnosis and treatment of vascular damage in dementia.

    Science.gov (United States)

    Biessels, Geert Jan

    2016-05-01

    This paper provides an overview of cognitive impairment due to vascular brain damage, which is referred to as vascular cognitive impairment (VCI). Over the past decades, we have seen marked progress in detecting VCI, both through maturation of diagnostic concepts and through advances in brain imaging, especially MRI. Yet in daily practice, it is often challenging to establish the diagnosis, particularly in patients where there is no evident temporal relation between a cerebrovascular event and cognitive dysfunction. Because vascular damage is such a common cause of cognitive dysfunction, it provides an obvious target for treatment. In patients whose cognitive dysfunction follows directly after a stroke, the etiological classification of this stroke will direct treatment. In many patients however, VCI develops due to so-called "silent vascular damage," without evident cerebrovascular events. In these patients, small vessel diseases (SVDs) are the most common cause. Yet no SVD-specific treatments currently exist, which is due to incomplete understanding of the pathophysiology. This review addresses developments in this field. It offers a framework to translate diagnostic criteria to daily practice, addresses treatment, and highlights some future perspectives. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia, edited by M. Paul Murphy, Roderick A. Corriveau, and Donna M. Wilcock. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The pathology and pathophysiology of vascular dementia.

    Science.gov (United States)

    Kalaria, Raj N

    2017-12-19

    Vascular dementia (VaD) is widely recognised as the second most common type of dementia. Consensus and accurate diagnosis of clinically suspected VaD relies on wide-ranging clinical, neuropsychological and neuroimaging measures in life but more importantly pathological confirmation. Factors defining subtypes of VaD include the nature and extent of vascular pathologies, degree of involvement of extra and intracranial vessels and the anatomical location of tissue changes as well as time after the initial vascular event. Atherosclerotic and cardioembolic diseases combined appear the most common subtypes of vascular brain injury. In recent years, cerebral small vessel disease (SVD) has gained prominence worldwide as an important substrate of cognitive impairment. SVD is characterised by arteriolosclerosis, lacunar infarcts and cortical and subcortical microinfarcts and diffuse white matter changes, which involve myelin loss and axonal abnormalities. Global brain atrophy and focal degeneration of the cerebrum including medial temporal lobe atrophy are also features of VaD similar to Alzheimer's disease. Hereditary arteriopathies have provided insights into the mechanisms of dementia particularly how arteriolosclerosis, a major contributor of SVD promotes cognitive impairment. Recently developed and validated neuropathology guidelines indicated that the best predictors of vascular cognitive impairment were small or lacunar infarcts, microinfarcts, perivascular space dilation, myelin loss, arteriolosclerosis and leptomeningeal cerebral amyloid angiopathy. While these substrates do not suggest high specificity, VaD is likely defined by key neuronal and dendro-synaptic changes resulting in executive dysfunction and related cognitive deficits. Greater understanding of the molecular pathology is needed to clearly define microvascular disease and vascular substrates of dementia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Factors of Formation of Various Types of Left Ventricular Diastolic Filling in Adolescents with Myocardium Pathology

    Directory of Open Access Journals (Sweden)

    L.F. Bogmat

    2016-08-01

    Full Text Available Objective: to study the main components of the formation of impaired left ventricular diastolic filling in adolescents with myocardial pathology. Materials and methods. The study involved 110 adolescents with myocardial pathology aged 13–18 years, of which 40 — with heart rhythm disorder, 40 — with dysplastic cardiomyopathy, 30 — with primary hypertension. Morphological and functional parameters of the heart were studied using ultrasound according to standard procedure. Left ventricular diastolic function has been studied in the pulsed wave Doppler mode with transmitral flow mapping from the apical access of four-chambered heart. For an adequate assessment of left ventricular diastolic function and detection of its earliest disorders, adolescents underwent tests with isometric exercise. Based on these results, adolescents were divided in terms of the E/A ratio. In order to identify common latent factors that explain the correlation between indicators, we have used the factor analysis, namely, the principal component analysis. All statistical procedures were performed using application packages Statgraphics Centurion. Results. On the initial stages of formation of diastolic dysfunction of the left ventricular myocardium in adolescents, a significant role is played by a number of factors, which can be conditionally defined as the geometric, functional and neurohumoral factors consistently included in the pathological process. Thus, during the formation of left ventricular diastolic dysfunction type 1, the number one is neurohumoral factor, namely, the activation of the sympathoadrenal system, then peripheral vascular tone is being involved in the pathological process, and, consequently, a geometric factor — changing the sizes of the left atrium. In the formation of left ventricular diastolic dysfunction type 2, the process consistently involves the renin-angiotensin system, namely, renin, a functional factor is presented by the indices

  13. Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders

    Science.gov (United States)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon

    2013-07-01

    This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.

  14. The perception of peripersonal space in right and left brain damage hemiplegic patients

    Directory of Open Access Journals (Sweden)

    Angela eBartolo

    2014-01-01

    Full Text Available Peripersonal space, as opposed to extrapersonal space, is the space that contains reachable objects and in which multisensory and sensorimotor integration is enhanced. Thus, the perception of peripersonal space requires combining information on the spatial properties of the environment with information on the current capacity to act. In support of this, recent studies have provided converging evidences that perceiving objects in peripersonal space activates a neural network overlapping with that subtending voluntary motor action and motor imagery. Other studies have also underlined the dominant role of the right hemisphere in motor planning and of the left hemisphere in on-line motor guiding, respectively. In the present study, we investigated the effect of a right or left hemiplegia in the perception of peripersonal space. 16 hemiplegic patients with brain damage to the left (LH or right (RH hemisphere and 8 matched healthy controls (HC performed a colour discrimination, a motor imagery and a reachability judgment task. Analyses of response times and accuracy revealed no variation among the three groups in the colour discrimination task, suggesting the absence of any specific perceptual or decisional deficits in the patient groups. In contrast, the patient groups revealed longer response times in the motor imagery task when performed in reference to the hemiplegic arm (RH and LH or to the healthy arm (RH. Moreover, RH group showed longer response times in the reachability judgement task, but only for stimuli located at the boundary of peripersonal space, which was furthermore significantly reduced in size. Considered together, these results confirm the crucial role of the motor system in motor imagery task and the perception of peripersonal space. They also revealed that right hemisphere damage has a more detrimental effect on reachability estimates, suggesting that motor planning processes contribute specifically to the perception of

  15. Correlation of right atrial appendage velocity with left atrial appendage velocity and brain natriuretic Peptide.

    Science.gov (United States)

    Kim, Bu-Kyung; Heo, Jung-Ho; Lee, Jae-Woo; Kim, Hyun-Soo; Choi, Byung-Joo; Cha, Tae-Joon

    2012-03-01

    Left atrial appendage (LAA) anatomy and function have been well characterized both in healthy and diseased people, whereas relatively little attention has been focused on the right atrial appendage (RAA). We sought to evaluate RAA flow velocity and to compare these parameters with LAA indices and with a study of biomarkers, such as brain natriuretic peptide, among patients with sinus rhythm (SR) and atrial fibrillation (AF). In a series of 79 consecutive patients referred for transesophageal echocardiography, 43 patients (23 with AF and 20 controls) were evaluated. AF was associated with a decrease in flow velocity for both LAA and RAA [LAA velocity-SR vs. AF: 61 ± 22 vs. 29 ± 18 m/sec (p vs. AF: 46 ± 20 vs. 19 ± 8 m/sec (p brain natriuretic peptide (BNP). AF was associated with decreased RAA and LAA flow velocities. RAA velocity was found to be positively correlated with LAA velocity and negatively correlated with BNP. The plasma BNP concentration may serve as a determinant of LAA and RAA functions.

  16. Vascular Endothelial Growth Factor Receptor 1 Contributes to Escherichia coli K1 Invasion of Human Brain Microvascular Endothelial Cells through the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway▿ †

    OpenAIRE

    Zhao, Wei-Dong; Liu, Wei; Fang, Wen-Gang; Kim, Kwang Sik; Chen, Yu-Hua

    2010-01-01

    Escherichia coli is the most common Gram-negative organism causing neonatal meningitis. Previous studies demonstrated that E. coli K1 invasion of brain microvascular endothelial cells (BMEC) is required for penetration into the central nervous system, but the microbe-host interactions that are involved in this process remain incompletely understood. Here we report the involvement of vascular endothelial growth factor receptor 1 (VEGFR1) expressed on human brain microvascular endothelial cells...

  17. Hemodynamic correlates of vascular risk factors in patients with Alzheimer's disease

    International Nuclear Information System (INIS)

    Yamazaki, Takashi

    2008-01-01

    Mounting evidence from a variety of research fields has drawn attention to the participation of vascular factors in the underlying pathophysiology of Alzheimer's disease (AD). To clarify the influence of vascular and genetic risk factors, we investigated the relationships between cerebral blood flow images provided by single photon emission CT (SPECT) and blood pressure, brain natriuretic peptide (BNP), and ApoE4 phenotyping in AD patients. The present study was based on 197 patients with probable AD. All patients underwent biochemistry tests, neuropsychological evaluation, magnetic resonance imaging (MRI), and 99m Tc ethyl cysteinate dimer (ECD) SPECT. The mini mental state examination (MMSE) score was correlated with the diastolic blood pressure positively, and with BNP negatively. Statistical parametric mapping (SPM) revealed significant hypoperfusion in the posterior cingulate gyri, precuneus, and parieto-temporal region in those patients having ApoE4 as compared to those without ApoE4. When compared to those patients without white matter hyperintensity (WMH) on MRI, those with mild WHM demonstrated significant hypoperfusion in the anterior cingulate gyri, right superior, middle and inferior temporal gyri, and left inferior frontal gyrus, and those with marked WMH demonstrated more expansive hypoperfusion areas on SPM. Those with greater BNP levels showed significant hypoperfusion in the anterior cingulate gyri and superior frontal gyri as compared to those with smaller BNP levels. Posterior hypoperfusion as related to the presence of ApoE4 may imply a degenerative process in AD, whereas anterior hypoperfusion as related to increased BNP levels may indicate the participation of vascular factors in AD. (author)

  18. Congenital anomalous/aberrant systemic artery to pulmonary venous fistula: Closure with vascular plugs & coil embolization

    Directory of Open Access Journals (Sweden)

    Pankaj Jariwala

    2014-01-01

    Full Text Available A 7-month-old girl with failure to thrive, who, on clinical and diagnostic evaluation [echocardiography & CT angiography] to rule out congenital heart disease, revealed a rare vascular anomaly called systemic artery to pulmonary venous fistula. In our case, there was dual abnormal supply to the entire left lung as1 anomalous supply by normal systemic artery [internal mammary artery]2 and an aberrant feeder vessel from the abdominal aorta. Left Lung had normal bronchial connections and normal pulmonary vasculature. The fistula drained through the pulmonary veins to the left atrium leading to ‘left–left shunt’. Percutaneous intervention in two stages was performed using Amplatzer vascular plugs and coil embolization to close them successfully. The patient gained significant weight in follow up with other normal developmental and mental milestones.

  19. Importance of a persisting left vena cava superior in pacemaker therapy

    International Nuclear Information System (INIS)

    Marosi, G.; Sagi, J.; Pokorny, L.; Simon, Z.; Orvostudomangi Egyetem, Szeged

    1982-01-01

    Basing on the description of a specific case and a review of literature, the article discusses the relationship between persisting left vena cava superior and pacemaker therapy. The article covers the technical problems caused by the vascular anomaly, the complications which can be expected, the possibilities in respect of recognising the vascular anomaly, as well as the methods for coping with the special situation prevailing in a particular case. (orig.) [de

  20. False memories to emotional stimuli are not equally affected in right- and left-brain-damaged stroke patients.

    Science.gov (United States)

    Buratto, Luciano Grüdtner; Zimmermann, Nicolle; Ferré, Perrine; Joanette, Yves; Fonseca, Rochele Paz; Stein, Lilian Milnitsky

    2014-10-01

    Previous research has attributed to the right hemisphere (RH) a key role in eliciting false memories to visual emotional stimuli. These results have been explained in terms of two right-hemisphere properties: (i) that emotional stimuli are preferentially processed in the RH and (ii) that visual stimuli are represented more coarsely in the RH. According to this account, false emotional memories are preferentially produced in the RH because emotional stimuli are both more strongly and more diffusely activated during encoding, leaving a memory trace that can be erroneously reactivated by similar but unstudied emotional items at test. If this right-hemisphere hypothesis is correct, then RH damage should result in a reduction in false memories to emotional stimuli relative to left-hemisphere lesions. To investigate this possibility, groups of right-brain-damaged (RBD, N=15), left-brain-damaged (LBD, N=15) and healthy (HC, N=30) participants took part in a recognition memory experiment with emotional (negative and positive) and non-emotional pictures. False memories were operationalized as incorrect responses to unstudied pictures that were similar to studied ones. Both RBD and LBD participants showed similar reductions in false memories for negative pictures relative to controls. For positive pictures, however, false memories were reduced only in RBD patients. The results provide only partial support for the right-hemisphere hypothesis and suggest that inter-hemispheric cooperation models may be necessary to fully account for false emotional memories. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Language learning and brain reorganization in a 3.5-year-old child with left perinatal stroke revealed using structural and functional connectivity.

    Science.gov (United States)

    François, Clément; Ripollés, Pablo; Bosch, Laura; Garcia-Alix, Alfredo; Muchart, Jordi; Sierpowska, Joanna; Fons, Carme; Solé, Jorgina; Rebollo, Monica; Gaitán, Helena; Rodriguez-Fornells, Antoni

    2016-04-01

    Brain imaging methods have contributed to shed light on the possible mechanisms of recovery and cortical reorganization after early brain insult. The idea that a functional left hemisphere is crucial for achieving a normalized pattern of language development after left perinatal stroke is still under debate. We report the case of a 3.5-year-old boy born at term with a perinatal ischemic stroke of the left middle cerebral artery, affecting mainly the supramarginal gyrus, superior parietal and insular cortex extending to the precentral and postcentral gyri. Neurocognitive development was assessed at 25 and 42 months of age. Language outcomes were more extensively evaluated at the latter age with measures on receptive vocabulary, phonological whole-word production and linguistic complexity in spontaneous speech. Word learning abilities were assessed using a fast-mapping task to assess immediate and delayed recall of newly mapped words. Functional and structural imaging data as well as a measure of intrinsic connectivity were also acquired. While cognitive, motor and language levels from the Bayley Scales fell within the average range at 25 months, language scores were below at 42 months. Receptive vocabulary fell within normal limits but whole word production was delayed and the child had limited spontaneous speech. Critically, the child showed clear difficulties in both the immediate and delayed recall of the novel words, significantly differing from an age-matched control group. Neuroimaging data revealed spared classical cortical language areas but an affected left dorsal white-matter pathway together with right lateralized functional activations. In the framework of the model for Social Communication and Language Development, these data confirm the important role of the left arcuate fasciculus in understanding and producing morpho-syntactic elements in sentences beyond two word combinations and, most importantly, in learning novel word-referent associations, a

  2. Brain Arterial Diameters as a Risk Factor for Vascular Events

    OpenAIRE

    Gutierrez, Jose; Cheung, Ken; Bagci, Ahmet; Rundek, Tatjana; Alperin, Noam; Sacco, Ralph L; Wright, Clinton B; Elkind, Mitchell S V

    2015-01-01

    Background Arterial luminal diameters are routinely used to assess for vascular disease. Although small diameters are typically considered pathological, arterial dilatation has also been associated with disease. We hypothesize that extreme arterial diameters are biomarkers of the risk of vascular events. Methods and Results Participants in the Northern Manhattan Study who had a time-of-flight magnetic resonance angiography were included in this analysis (N=1034). A global arterial Z-score, ca...

  3. Mixed vascular nevus syndrome: a report of four new cases and a literature review.

    Science.gov (United States)

    Ruggieri, Martino; Polizzi, Agata; Strano, Serena; Schepis, Carmelo; Morano, Massimiliano; Belfiore, Giuseppe; Palmucci, Stefano; Foti, Pietro Valerio; Pirrone, Concetta; Sofia, Vito; David, Emanuele; Salpietro, Vincenzo; Mankad, Kshitij; Milone, Pietro

    2016-10-01

    Mixed vascular nevus (or nevus vascularis mixtus) represents an admixture of cutaneous vascular malformations of the telangiectatic type and angiospastic spots of nevus anemicus. It can occur as an purely cutaneous trait or as a hallmark of a neurocutaneous phenotype (mixed vascular nevus syndrome) characterised by the combination of: (I) paired vascular (telangiectatic and anemic) twin nevi and brain abnormalities of the Dyke-Davidoff-Masson type (i.e., crossed cerebral/cerebellar hemiatrophy with hypoplasia of the ipsilateral cerebral vessels and homolateral hypertrophy of the skull and sinuses (hyperpneumatisation) with contralateral hemispheric hypertrophy); or (II) paired vascular twin nevi and brain malformations of the Dyke-Davidoff-Masson type in association with systemic abnormalities consisting in facial asymmetry, skeletal anomalies (i.e., Legg-Calvé-Perthes-like disease) and disorders of autoimmunity (i.e., diabetes, thyroiditis). In 2014, Happle proposed to name the syndrome with the eponym Ruggieri-Leech syndrome. Review of the existing literature on nevus vascularis mixtus and information on our personal experience on new cases and follow-up of previously reported cases by some of us. The existing literature revealed 4 previous studies including 33 cases with an inferred purely cutaneous trait and 3 cases with a combination of paired vascular twin nevi and brain malformation of the Dyke-Davidoff-Masson type. Our personal experience includes 4 unpublished patients (1 female and 3 males; currently aged 2 to 34 years) seen and followed-up at our Institutions in Italy who had: paired vascular nevi involving either the face (n=2) or the face and parts of the body (n=2); facial asymmetry (n=4); mild to moderate facial dysmorphic features (n=2); developmental delay (n=3); seizures/stroke-like episodes and associated hemiplegia (n=4); muscular hypotrophy (n=2); mild to moderate hemispheric atrophy (n=4); skull osseous hypertrophy (n=4); hyperpneumatisation

  4. Cortical Cerebral Microinfarcts on 3 Tesla MRI in Patients with Vascular Cognitive Impairment.

    Science.gov (United States)

    Ferro, Doeschka A; van Veluw, Susanne J; Koek, Huiberdina L; Exalto, Lieza G; Biessels, Geert Jan

    2017-01-01

    Cerebral microinfarcts (CMIs) are small ischemic lesions that are a common neuropathological finding in patients with stroke or dementia. CMIs in the cortex can now be detected in vivo on 3 Tesla MRI. To determine the occurrence of CMIs and associated clinical features in patients with possible vascular cognitive impairment (VCI). 182 memory-clinic patients (mean age 71.4±10.6, 55% male) with vascular injury on brain MRI (i.e., possible VCI) underwent a standardized work-up including 3 Tesla MRI and cognitive assessment. A control group consisted of 70 cognitively normal subjects (mean age 70.6±4.7, 60% male). Cortical CMIs and other neuroimaging markers of vascular brain injury were rated according to established criteria. Occurrence of CMIs was higher (20%) in patients compared to controls (10%). Among patients, the presence of CMIs was associated with male sex, history of stroke, infarcts, and white matter hyperintensities. CMI presence was also associated with a diagnosis of vascular dementia and reduced performance in multiple cognitive domains. CMIs on 3 Tesla MRI are common in patients with possible VCI and co-occur with imaging markers of small and large vessel disease, likely reflecting a heterogeneous etiology. CMIs are associated with worse cognitive performance, independent of other markers of vascular brain injury.

  5. Nitric oxide synthase (NOS) in the trigeminal vascular system and other brain structures related to pain in rats

    DEFF Research Database (Denmark)

    Ramachandran, Roshni; Ploug, Kenneth Beri; Hay-Schmidt, Anders

    2010-01-01

    to measure the respective levels of mRNA and protein for nNOS and eNOS in peripheral and central tissues involved in migraine pain: dura mater, pial arteries, trigeminal ganglion (TG) trigeminal nucleus caudalis (TNC), periaqueductal grey (PAG), thalamus, hypothalamus, cortex, pituitary gland, hippocampus...... and cerebellum. iNOS was excluded from the present study because it was not induced. In the trigeminal vascular system we found the highest expression of nNOS mRNA in pial arteries. However, protein expression of nNOS was maximum in TNC. Among other brain structures, nNOS mRNA and protein expression...... was remarkably higher in the cerebellum than in any other tissues. Regarding eNOS in the trigeminovascular system, the highest mRNA expression was found in pial arteries. In the other brain structures, eNOS mRNA expression was similar but with lowest mRNA concentration in the pituitary gland and the highest...

  6. Vascular disease in cocaine addiction.

    Science.gov (United States)

    Bachi, Keren; Mani, Venkatesh; Jeyachandran, Devi; Fayad, Zahi A; Goldstein, Rita Z; Alia-Klein, Nelly

    2017-07-01

    Cocaine, a powerful vasoconstrictor, induces immune responses including cytokine elevations. Chronic cocaine use is associated with functional brain impairments potentially mediated by vascular pathology. Although the Crack-Cocaine epidemic has declined, its vascular consequences are increasingly becoming evident among individuals with cocaine use disorder of that period, now aging. Paradoxically, during the period when prevention efforts could make a difference, this population receives psychosocial treatment at best. We review major postmortem and in vitro studies documenting cocaine-induced vascular toxicity. PubMed and Academic Search Complete were used with relevant terms. Findings consist of the major mechanisms of cocaine-induced vasoconstriction, endothelial dysfunction, and accelerated atherosclerosis, emphasizing acute, chronic, and secondary effects of cocaine. The etiology underlying cocaine's acute and chronic vascular effects is multifactorial, spanning hypertension, impaired homeostasis and platelet function, thrombosis, thromboembolism, and alterations in blood flow. Early detection of vascular disease in cocaine addiction by multimodality imaging is discussed. Treatment may be similar to indications in patients with traditional risk-factors, with few exceptions such as enhanced supportive care and use of benzodiazepines and phentolamine for sedation, and avoiding β-blockers. Given the vascular toxicity cocaine induces, further compounded by smoking and alcohol comorbidity, and interacting with aging of the crack generation, there is a public health imperative to identify pre-symptomatic markers of vascular impairments in cocaine addiction and employ preventive treatment to reduce silent disease progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Subliminal and supraliminal processing of facial expression of emotions: brain oscillation in the left/right frontal area.

    Science.gov (United States)

    Balconi, Michela; Ferrari, Chiara

    2012-03-26

    The unconscious effects of an emotional stimulus have been highlighted by a vast amount of research, whereover it remains questionable whether it is possible to assign a specific function to cortical brain oscillations in the unconscious perception of facial expressions of emotions. Alpha band variation was monitored within the right- and left-cortical side when subjects consciously (supraliminal stimulation) or unconsciously (subliminal stimulation) processed facial patterns. Twenty subjects looked at six facial expressions of emotions (anger, fear, surprise, disgust, happiness, sadness, and neutral) under two different conditions: supraliminal (200 ms) vs. subliminal (30 ms) stimulation (140 target-mask pairs for each condition). The results showed that conscious/unconscious processing and the significance of the stimulus can modulate the alpha power. Moreover, it was found that there was an increased right frontal activity for negative emotions vs. an increased left response for positive emotion. The significance of facial expressions was adduced to elucidate cortical different responses to emotional types.

  8. Subliminal and Supraliminal Processing of Facial Expression of Emotions: Brain Oscillation in the Left/Right Frontal Area

    Directory of Open Access Journals (Sweden)

    Michela Balconi

    2012-03-01

    Full Text Available The unconscious effects of an emotional stimulus have been highlighted by a vast amount of research, whereover it remains questionable whether it is possible to assign a specific function to cortical brain oscillations in the unconscious perception of facial expressions of emotions. Alpha band variation was monitored within the right- and left-cortical side when subjects consciously (supraliminal stimulation or unconsciously (subliminal stimulation processed facial patterns. Twenty subjects looked at six facial expressions of emotions (anger, fear, surprise, disgust, happiness, sadness, and neutral under two different conditions: supraliminal (200 ms vs. subliminal (30 ms stimulation (140 target-mask pairs for each condition. The results showed that conscious/unconscious processing and the significance of the stimulus can modulate the alpha power. Moreover, it was found that there was an increased right frontal activity for negative emotions vs. an increased left response for positive emotion. The significance of facial expressions was adduced to elucidate cortical different responses to emotional types.

  9. Brain abscess mimicking brain metastasis in breast cancer.

    Science.gov (United States)

    Khullar, Pooja; Datta, Niloy R; Wahi, Inderjeet Kaur; Kataria, Sabeena

    2016-03-01

    61 year old female presented with chief complaints of headache for 30 days, fever for 10 days, altered behavior for 10 days and convulsion for 2 days. She was diagnosed and treated as a case of carcinoma of left breast 5 years ago. MRI brain showed a lobulated lesion in the left frontal lobe. She came to our hospital for whole brain radiation as a diagnosed case of carcinoma of breast with brain metastasis. Review of MRI brain scan, revealed metastasis or query infective pathology. MR spectroscopy of the lesion revealed choline: creatinine and choline: NAA (N-Acetylaspartate) ratios of ∼1.6 and 1.5 respectively with the presence of lactate within the lesion suggestive of infective pathology. She underwent left fronto temporal craniotomy and evacuation of abscess and subdural empyema. Gram stain showed gram positive cocci. After 1 month of evacuation and treatment she was fine. This case suggested a note of caution in every case of a rapidly evolving space-occupying lesion independent of the patient's previous history. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  10. An Attempt to Determine the Construct Validity of Measures Hypothesized to Represent an Orientation to Right, Left, or Integrated Hemispheric Brain Function for a Sample of Primary School Children.

    Science.gov (United States)

    Dumbrower, Jule; And Others

    1981-01-01

    This study attempts to obtain evidence of the construct validity of pupil ability tests hypothesized to represent orientation to right, left, or integrated hemispheric function, and of teacher observation subscales intended to reveal behaviors in school setting that were hypothesized to portray preference for right or left brain function. (Author)

  11. Evaluation of 99mTc-HM-PAO thigh accumulation in patients with cerebro-vascular disease

    International Nuclear Information System (INIS)

    Nishigaki, Hiroshi; Adachi, Itaru; Komori, Tsuyoshi; Tatsu, Yoshimitsu; Hisada, Youichi; Sueyoshi, Kouzou; Narabayashi, Isamu

    1993-01-01

    Technetium-99m d,l-hexamethyl-propyleneamine oxime ( 99m Tc-HM-PAO) cerebral SPECT and whole body scintigraphy (WBS) were performed in 5 patients without cerebro-vascular disease (CVD) (Group 1), 31 patients with CVD but not hemiparesis (Group 2) and 18 patients with CVD and hemiparesis (Group 3). Four ROIs were drawn manually around the whole body (WB), brain (Br), right and left thigh (Th). We calculated some ratios: the total counts in the brain over the total counts in the whole body (Br/WB), the total counts in the thigh over the total counts in the whole body (Th/WB) and the mean counts in the thigh over the mean counts in the brain (Th/Br). The Br/WB was 6.9±1.8%, rt-Th/WB was 4.9±2.1%, lt-Th/WB was 5.1±1.3% and Th/Br was 0.46±0.17 in group 1. Whole body scintigraphies in group 1 revealed clear and similar images between right and left thigh. The Br/WB was 6.7±1.4%, Th/WB of paretic side was 4.6±1.0%, Th/WB of non-paretic side was 5.8±1.2% and Th/Br was 0.47±0.18 in group 3. The Th/WB in non paretic side was significantly higher than that in paretic side (p 99m Tc-HM-PAO. It was possible that we evaluated not only cerebral perfusion but also muscle atrophy and/or perfusion in patients with CVD using 99m Tc-HM-PAO. (author)

  12. The findings of Tc-99m ECD brain perfusion SPECT in the patients with left anterior thalamic infarction

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y. A.; Kim, S. H.; Sohn, H. S.; Jeong, S. G. [The Catholic University of Korea, Seoul (Korea, Republic of)

    2005-07-01

    The thalamus has multiple connections with areas of the cerebral cortex involved in arousal and cognition. Thalamic damage has been reported to be associated with variable neuropsychological dysfunctions and dementia. This study evaluates the changes of regional cerebral blood flow (rCBF) by using SPM analysis of brain perfusion SPECT and examining the neuropsychological abnormalities of 4 patients with anterior thalamic infarctions. Four patients with left anterior thalamic infarctions and eleven normal controls were evaluated. K-MMSE and the Seoul Neuropsychological Screening Battery were performed within 2 days after stroke. The normalized SPECT data of 4 patients were compared to those of 11 controls for the detection of areas with decreased rCBF by SPM analysis. All 4 patients showed anterograde amnesia in their verbal memory, which was not improved by recognition. Dysexecutive features were occasionally present, such as decreased word fluency and impaired Stroop test results. SPM analysis revealed decreased rCBF in the left supra marginal gyrus, the superior temporal gyrus, the middle and inferior frontal gyrus, the medial dorsal and anterior nucleus of the left thalamus. The changes of rCBF in patients with left anterior thalamic infarctions may be due to the remote suppression on metabolism by the interruption of the cortico-subcortical circuit, which connects the anterior thalamic nucleus and various cortical areas. The executive dysfunction and dysnomia may be caused by the left dorsolateral frontal dysfunction of the thalamo-cortical circuit. Anterograde amnesia with storage deficit may be caused by the disruption of mamillothalamic tract.

  13. The findings of Tc-99m ECD brain perfusion SPECT in the patients with left anterior thalamic infarction

    International Nuclear Information System (INIS)

    Jeong, Y. A.; Kim, S. H.; Sohn, H. S.; Jeong, S. G.

    2005-01-01

    The thalamus has multiple connections with areas of the cerebral cortex involved in arousal and cognition. Thalamic damage has been reported to be associated with variable neuropsychological dysfunctions and dementia. This study evaluates the changes of regional cerebral blood flow (rCBF) by using SPM analysis of brain perfusion SPECT and examining the neuropsychological abnormalities of 4 patients with anterior thalamic infarctions. Four patients with left anterior thalamic infarctions and eleven normal controls were evaluated. K-MMSE and the Seoul Neuropsychological Screening Battery were performed within 2 days after stroke. The normalized SPECT data of 4 patients were compared to those of 11 controls for the detection of areas with decreased rCBF by SPM analysis. All 4 patients showed anterograde amnesia in their verbal memory, which was not improved by recognition. Dysexecutive features were occasionally present, such as decreased word fluency and impaired Stroop test results. SPM analysis revealed decreased rCBF in the left supra marginal gyrus, the superior temporal gyrus, the middle and inferior frontal gyrus, the medial dorsal and anterior nucleus of the left thalamus. The changes of rCBF in patients with left anterior thalamic infarctions may be due to the remote suppression on metabolism by the interruption of the cortico-subcortical circuit, which connects the anterior thalamic nucleus and various cortical areas. The executive dysfunction and dysnomia may be caused by the left dorsolateral frontal dysfunction of the thalamo-cortical circuit. Anterograde amnesia with storage deficit may be caused by the disruption of mamillothalamic tract

  14. Carotid ultrasonographic and brain computerized tomographic findings in patients with vascular ocular syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Toshihiko; Matsushima, Chikage; Shimizu, Souichirou; Takasaki, Masaru; Iwasaki, Takuya; Usui, Masahiko [Tokyo Medical Coll. (Japan)

    2002-02-01

    To clarify the characteristics of cerebrovascular lesions in subtypes of vascular ocular syndrome, including amaurosis fugax (AF), retinal artery occlusion (RAO), and retinal vein occlusion (RVO), 93 patients with vascular ocular syndrome were studied by means of carotid ultrasonography (US) and brain computerized tomography (CT). The subjects comprised 21 patients with AF, 37 with RAO, and 35 with RVO who were sequentially given these diagnoses by the department of ophthalmology. On the basis of US findings, carotid lesions were defined as the presence of plaque or stenotic changes. CT findings were assessed for the presence and distribution of low-density areas (LDAs). Mean age was similar in each group, ranging from 64.5 to 67.4 years. The RAO group had high rates of men, hypertension, and smokers. US showed that the prevalence of carotid lesions ipsilateral to the affected eye was high in the RAO group and that severe stenosis and ulcerated plaque were present in 28.6% of the AF group and 45.9% of the RAO group. On CT examination, cerebral infarctions appeared as LDAs in about 10% of the patients in each group, and the incidence and distribution of LDAs were similar. Of 13 patients with cerebral infarction, only 2 were presumably due to carotid lesions; the others had a variety of causes. The discrepancy between US and CT findings was attributed to the small number of patients with cerebral infarction, since most patients had visual defects as an initial symptom. Our results suggest that extracranial carotid lesions, considered to be a major risk factor for stroke, should be carefully assessed in patients with AF or RAO to prevent further stroke. (author)

  15. mTOR drives cerebral blood flow and memory deficits in LDLR-/- mice modeling atherosclerosis and vascular cognitive impairment.

    Science.gov (United States)

    Jahrling, Jordan B; Lin, Ai-Ling; DeRosa, Nicholas; Hussong, Stacy A; Van Skike, Candice E; Girotti, Milena; Javors, Martin; Zhao, Qingwei; Maslin, Leigh Ann; Asmis, Reto; Galvan, Veronica

    2018-01-01

    We recently showed that mTOR attenuation blocks progression and abrogates established cognitive deficits in Alzheimer's disease (AD) mouse models. These outcomes were associated with the restoration of cerebral blood flow (CBF) and brain vascular density (BVD) resulting from relief of mTOR inhibition of NO release. Recent reports suggested a role of mTOR in atherosclerosis. Because mTOR drives aging and vascular dysfunction is a universal feature of aging, we hypothesized that mTOR may contribute to brain vascular and cognitive dysfunction associated with atherosclerosis. We measured CBF, BVD, cognitive function, markers of inflammation, and parameters of cardiovascular disease in LDLR -/- mice fed maintenance or high-fat diet ± rapamycin. Cardiovascular pathologies were proportional to severity of brain vascular dysfunction. Aortic atheromas were reduced, CBF and BVD were restored, and cognitive dysfunction was attenuated potentially through reduction in systemic and brain inflammation following chronic mTOR attenuation. Our studies suggest that mTOR regulates vascular integrity and function and that mTOR attenuation may restore neurovascular function and cardiovascular health. Together with our previous studies in AD models, our data suggest mTOR-driven vascular damage may be a mechanism shared by age-associated neurological diseases. Therefore, mTOR attenuation may have promise for treatment of cognitive impairment in atherosclerosis.

  16. Vascular endothelial growth factor A protein level and gene expression in intracranial meningiomas with brain edema

    DEFF Research Database (Denmark)

    Nassehi, Damoun; Dyrbye, Henrik; Andresen, Morten

    2011-01-01

    Meningiomas are the second most common primary intracranial tumors in adults. Although meningiomas are mostly benign, more than 50% of patients with meningioma develop peritumoral brain edema (PTBE), which may be fatal because of increased intracranial pressure. Vascular endothelial growth factor....... Forty-three patients had primary, solitary, supratentorial meningiomas with PTBE. In these, correlations in PTBE, edema index, VEGF-A protein, VEGF gene expression, capillary length, and tumor water content were investigated. DNA-branched hybridization was used for measuring VEGF gene expression...... in tissue homogenates prepared from frozen tissue samples. The method for VEGF-A analysis resembled an ELISA assay, but was based on chemiluminescence. The edema index was positively correlated to VEGF-A protein (p = 0.014) and VEGF gene expression (p

  17. The evolutionary psychology of left and right: costs and benefits of lateralization.

    Science.gov (United States)

    Vallortigara, Giorgio

    2006-09-01

    Why do the left and right sides of the vertebrate brain play different functions? Having a lateralized brain, in which each hemisphere carries out different functions, is ubiquitous among vertebrates. The different specialization of the left and right side of the brain may increase brain efficiency--and some evidence for that is reported here. However, lateral biases due to brain lateralization (such as preferences in the use of a limb or, in animals with laterally placed eyes, of a visual hemifield) usually occur at the population level, with most individuals showing similar direction of bias. Individual brain efficiency does not require the alignment of lateralization in the population. Why then are not left--and right-type individuals equally common? Not only humans, but most vertebrates show a similar pattern. For instance, in the paper I report evidence that most toads, chickens, and fish react faster when a predator approaches from the left. I argue that invoking individual brain efficiency (lateralization may increase fitness), evolutionary chance or direct genetic mechanisms cannot explain this widespread pattern. Instead, using concepts from mathematical theory of games, I show that alignment of lateralization at the population level may arise as an "evolutionarily stable strategy" when individually asymmetrical organisms must coordinate their behavior with that of other asymmetrical organisms. Thus, the population structure of lateralization may result from genes specifying the direction of asymmetries which have been selected under "social" pressures.

  18. Dual origin of the left vertebral artery: extracranial MRA and CTA findings.

    LENUS (Irish Health Repository)

    Tobin, W Oliver

    2012-02-01

    A 48-year-old man presented with a posterior circulation stroke secondary to left lateral medullary infarction. Contrast-enhanced magnetic resonance angiography (CEMRA) revealed 40-45% intracranial left vertebral artery stenosis, likely atherosclerotic in nature. CEMRA and subsequent computed tomography angiography also identified a duplicate origin of the left vertebral artery. The importance of recognition of this rare anatomical variant, its potential contribution to stroke aetiology, and the advantage of non-invasive vascular imaging prior to catheter angiography is emphasised.

  19. Clinicopathological correlation of psychosis and brain vascular changes in Alzheimer's disease.

    Science.gov (United States)

    Ting, Simon Kang Seng; Hao, Ying; Chia, Pei Shi; Tan, Eng-King; Hameed, Shahul

    2016-02-12

    Psychosis is common in Alzheimer's disease (AD). However, studies on neuropathology in vascular etiology contributing to psychosis in AD is lacking to date. The aim of this study was to investigate neuropathological vascular related changes in Alzheimer's disease with psychosis. Data of patients with AD from the National Alzheimer's Coordinating Center between 2005 to September 2013 was accessed and reviewed. Presence of psychosis was determined based on Neuropsychiatric Inventory Questionnaire taken from the last visit within one year prior to death, and patients were divided into psychosis positive and negative group. Comparison of clinical details and neuropathological vascular changes between the groups was performed using Wilcoxon rank sum test and Chi-square/ Fisher's exact test. Significant variables were further included in a multivariate logistic model. Overall, 145 patients was included. Of these, 50 patients were psychosis positive. Presence of one or more cortical microinfarcts and moderate to severe arteriosclerosis was found to be positively associated with psychosis. Our results suggest vascular changes correlate with psychosis in Alzheimer's disease.

  20. Delayed radiation necrosis of the brain simulating a brain tumor

    International Nuclear Information System (INIS)

    Ikeda, Hiroya; Kanai, Nobuhiro; Kamikawa, Kiyoo

    1976-01-01

    Two cases of delayed radiation necrosis of the brain are reported. Case 1 was a 50-year-old man who had right hemiparesis and disorientation 26 months after Linac irradiation (5,000 rad), preceded by an operation for right maxillar carcinoma. A left carotid angiogram demonstrated a left temporal mass lesion, extending to the frontal lobe. Case 2 was a 41-year-old man who had previously had an operation for right intraorbital plasmocytoma, followed by two Co irradiations (6,400 rad, and 5,000 rad). He had the signs and symptoms of intracranial hypertension 36 months after his last irradiation. A left carotid angiogram demonstrated a left temporal mass lesion. Both cases were treated by administration of steroid hormone (which alleviated the signs and symptoms) and by temporal lobectomy. Microscopic examinations showed necrosis of the brain tissues associated with hyaline degeneration of blood vessel walls and perivascular cell infiltration. The signs and symptoms of intracranial hypertension subsided postoperatively. Thirteen other cases the same as ours were collected from literature. They showed the signs and symptoms simulating a brain tumor (like a metastatic brain tumor) after irradiation to extracranial malignant tumors. Diagnosis of radiation necrosis was made by operation or autopsy. A follow-up for a long time is necessary, because the pathological changes in the brain may be progressive and extending in some cases, although decompressive operations for mass lesions give excellent results. (auth.)

  1. Change of cerebral blood flow distribution and vascular reserver according to age in Koreans measured by Tc-99m HMPAO brain SPECT

    International Nuclear Information System (INIS)

    Song, Ho Cheon; Bom, Hee Seung; Sohn, Hye Kyung; Jeong, Hwan Jeong; Min, Jung Jun; Kim, Ji Yeol; Lee Jae Tae; Moon, Dae Hyuk; Lee, Hee Kyung

    1999-01-01

    The aim of this study was to evaluate the normal values of regional cerebral blood flow (rCBF) and cerebrovascular reserve (CVR) in normal children to aged volunteers using Tc-99m HMPAO. Thirty four right-handed normal volunteers (20 males, 14 females, mean age 40.3±24.9 years, range 4 to 82 years) were underwent rest/acetazolamide (ACZ) brain SPECT using Tc-99m HMPAO and the sequential injection and subtraction method. rCBF was estimated on the basis of a semiquantitative approach by means of right/left ratio, region/cerebellum and region to whole brain ratios in frontal, parietal, temporal, and occipital lobes, basal ganglia, thalami, and cerebellum. CVR was measured by means of % perfusion increase calculated as % mean count change compared to rest rCBF in each regions. Mean values of right to left ratios range from 1.004 to 1.018. rCBF was highest in cerebellum and lowest in basal ganglia and thalami. Frontal and temporal rCBF decreased while occipital and thalamic rCBF increased according to age. No sexual difference of rCBF was noted. Mean CVR was 29.9±12.9%. Mean CVR significantly increased to late teens, and declined thereafter. After 6th decade, CVR in both frontal lobes, left parietal lobe and right basal ganglia decreased significantly with advancing age. There was no sexual difference of CVR. Quantitative assessment of CVR was possible by ACZ Tc-99m MHPAO brain SPECT. It revealed that rCBF and CVR changed according to age in normal Korean volunteers. There was no sexual difference

  2. That's Using Your Brain!

    Science.gov (United States)

    Visser, Dana R.

    1996-01-01

    Discusses new adult learning theories, including those of Roger Sperry (left brain/right brain), Paul McLean (triune brain), and Howard Gardner (multiple intelligences). Relates adult learning theory to training. (JOW)

  3. Anatomical specificity of vascular endothelial growth factor expression in glioblastomas: a voxel-based mapping analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xing [Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing (China); Wang, Yinyan [Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing (China); Capital Medical University, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing (China); Wang, Kai; Ma, Jun; Li, Shaowu [Capital Medical University, Department of Neuroradiology, Beijing Tiantan Hospital, Beijing (China); Liu, Shuai [Chinese Academy of Medical Sciences and Peking Union Medical College, Departments of Neurosurgery, Peking Union Medical College Hospital, Beijing (China); Liu, Yong [Chinese Academy of Sciences, Brainnetome Center, Institute of Automation, Beijing (China); Jiang, Tao [Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing (China); Beijing Academy of Critical Illness in Brain, Department of Clinical Oncology, Beijing (China)

    2016-01-15

    The expression of vascular endothelial growth factor (VEGF) is a common genetic alteration in malignant gliomas and contributes to the angiogenesis of tumors. This study aimed to investigate the anatomical specificity of VEGF expression levels in glioblastomas using voxel-based neuroimaging analysis. Clinical information, MR scans, and immunohistochemistry stains of 209 patients with glioblastomas were reviewed. All tumor lesions were segmented manually and subsequently registered to standard brain space. Voxel-based regression analysis was performed to correlate the brain regions of tumor involvement with the level of VEGF expression. Brain regions identified as significantly associated with high or low VEGF expression were preserved following permutation correction. High VEGF expression was detected in 123 (58.9 %) of the 209 patients. Voxel-based statistical analysis demonstrated that high VEGF expression was more likely in tumors located in the left frontal lobe and the right caudate and low VEGF expression was more likely in tumors that occurred in the posterior region of the right lateral ventricle. Voxel-based neuroimaging analysis revealed the anatomic specificity of VEGF expression in glioblastoma, which may further our understanding of genetic heterogeneity during tumor origination. This finding provides primary theoretical support for potential future application of customized antiangiogenic therapy. (orig.)

  4. Anatomical specificity of vascular endothelial growth factor expression in glioblastomas: a voxel-based mapping analysis

    International Nuclear Information System (INIS)

    Fan, Xing; Wang, Yinyan; Wang, Kai; Ma, Jun; Li, Shaowu; Liu, Shuai; Liu, Yong; Jiang, Tao

    2016-01-01

    The expression of vascular endothelial growth factor (VEGF) is a common genetic alteration in malignant gliomas and contributes to the angiogenesis of tumors. This study aimed to investigate the anatomical specificity of VEGF expression levels in glioblastomas using voxel-based neuroimaging analysis. Clinical information, MR scans, and immunohistochemistry stains of 209 patients with glioblastomas were reviewed. All tumor lesions were segmented manually and subsequently registered to standard brain space. Voxel-based regression analysis was performed to correlate the brain regions of tumor involvement with the level of VEGF expression. Brain regions identified as significantly associated with high or low VEGF expression were preserved following permutation correction. High VEGF expression was detected in 123 (58.9 %) of the 209 patients. Voxel-based statistical analysis demonstrated that high VEGF expression was more likely in tumors located in the left frontal lobe and the right caudate and low VEGF expression was more likely in tumors that occurred in the posterior region of the right lateral ventricle. Voxel-based neuroimaging analysis revealed the anatomic specificity of VEGF expression in glioblastoma, which may further our understanding of genetic heterogeneity during tumor origination. This finding provides primary theoretical support for potential future application of customized antiangiogenic therapy. (orig.)

  5. Seeing left- or right-asymmetric tail wagging produces different emotional responses in dogs.

    Science.gov (United States)

    Siniscalchi, Marcello; Lusito, Rita; Vallortigara, Giorgio; Quaranta, Angelo

    2013-11-18

    Left-right asymmetries in behavior associated with asymmetries in the brain are widespread in the animal kingdom, and the hypothesis has been put forward that they may be linked to animals' social behavior. Dogs show asymmetric tail-wagging responses to different emotive stimuli-the outcome of different activation of left and right brain structures controlling tail movements to the right and left side of the body. A crucial question, however, is whether or not dogs detect this asymmetry. Here we report that dogs looking at moving video images of conspecifics exhibiting prevalent left- or right-asymmetric tail wagging showed higher cardiac activity and higher scores of anxious behavior when observing left- rather than right-biased tail wagging. The finding that dogs are sensitive to the asymmetric tail expressions of other dogs supports the hypothesis of a link between brain asymmetry and social behavior and may prove useful to canine animal welfare theory and practice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Are orchids left and dandelions right? Frontal brain activation asymmetry and its sensitivity to developmental context.

    Science.gov (United States)

    Fortier, Paz; Van Lieshout, Ryan J; Waxman, Jordana A; Boyle, Michael H; Saigal, Saroj; Schmidt, Louis A

    2014-08-01

    To clarify long-standing conceptual and empirical inconsistencies in models describing the relation between frontal brain asymmetry and emotion, we tested a theory of biological sensitivity to context. We examined whether asymmetry of alpha activation in frontal brain regions, as measured by resting electroencephalography, is sensitive to early developmental contexts. Specifically, we investigated whether frontal asymmetry moderates the association between birth weight and adult outcomes. Adults with left frontal asymmetry (LFA) who were born at extremely low birth weight exhibited high levels of attention problems and withdrawn behaviors in their 30s, whereas normal-birth-weight adults with LFA had low levels of these problem behaviors. Adults with right frontal asymmetry (RFA) displayed a relatively moderate amount of problem behavior regardless of birth weight. Our findings suggest that LFA is associated with sensitivity to developmental context and may help explain why LFA is associated with both positive and negative outcomes, whereas RFA seems to be associated with a more canalized process in some contexts. © The Author(s) 2014.

  7. O2 supplementation to secure the near-infrared spectroscopy determined brain and muscle oxygenation in vascular surgical patients

    DEFF Research Database (Denmark)

    Rokamp, Kim Z; Secher, Niels H; Eiberg, Jonas

    2014-01-01

    This study addresses three questions for securing tissue oxygenation in brain (rScO2) and muscle (SmO2) for 100 patients (age 71 ± 6 years; mean ± SD) undergoing vascular surgery: (i) Does preoxygenation (inhaling 100% oxygen before anesthesia) increase tissue oxygenation, (ii) Does inhalation...... of 70% oxygen during surgery prevent a critical reduction in rScO2 (patients and the intraoperative inspired oxygen fraction was set to 0.70 while tissue...... oxygenation was determined by INVOS 5100C. Preoxygenation increased rScO2 (from 65 ± 8 to 72 ± 9%; P patients. Following anesthesia and tracheal intubation an eventual change...

  8. Congenital vascular malformations in scintigraphic evaluation

    International Nuclear Information System (INIS)

    Pilecki, Stanisław; Gierach, Marcin; Gierach, Joanna; Świętaszczyk, Cyprian; Junik, Roman; Lasek, Władysław

    2014-01-01

    Congenital vascular malformations are tumour-like, non-neoplastic lesions caused by disorders of vascular tissue morphogenesis. They are characterised by a normal cell replacement cycle throughout all growth phases and do not undergo spontaneous involution. Here we present a scintigraphic image of familial congenital vascular malformations in two sisters. A 17-years-old young woman with a history of multiple hospitalisations for foci of vascular anomalies appearing progressively in the upper and lower right limbs, chest wall and spleen. A Parkes Weber syndrome was diagnosed based on the clinical picture. Due to the occurrence of new foci of malformations, a whole-body scintigraphic examination was performed. A 12-years-old girl reported a lump in the right lower limb present for approximately 2 years, which was clinically identified as a vascular lesion in the area of calcaneus and talus. Phleboscintigraphy visualized normal radiomarker outflow from the feet via the deep venous system, also observed in the superficial venous system once the tourniquets were released. In static and whole-body examinations vascular malformations were visualised in the area of the medial cuneiform, navicular and talus bones of the left foot, as well as in the projection of right calcaneus and above the right talocrural joint. People with undiagnosed disorders related to the presence of vascular malformations should undergo periodic follow-up to identify lesions that may be the cause of potentially serious complications and to assess the results of treatment. Presented scintigraphic methods may be used for both diagnosing and monitoring of disease progression

  9. Measurement of pulmonary vascular resistance of Fontan candidates with pulmonary arterial distortion by means of pulmonary perfusion imaging

    International Nuclear Information System (INIS)

    Park, In-Sam; Mizukami, Ayumi; Tomimatsu, Hirofumi; Kondou, Chisato; Nakanishi, Toshio; Nakazawa, Makoto; Momma, Kazuo

    1998-01-01

    We measured the distribution of blood flow to the right (R) and left lung (L) by means of pulmonary perfusion imaging and calculated pulmonary vascular resistance (Rp) in 13 patients, whose right and left pulmonary artery pressures were different by 2 to 9 mmHg due to pulmonary arterial distortion (5 interruption, 8 stenosis). The right lung/left lung blood flow ratio was determined and from the ratio and the total pulmonary blood flow, which was determined using the Fick's principle, the absolute values of right and left pulmonary blood flow were calculated. Using the right and left pulmonary blood flow and the right and left pulmonary arterial pressures, right and left pulmonary vascular resistance were calculated, separately. Vascular resistance of the whole lung (Rp) was then calculated using the following equation. 1/(Rp of total lung)=1/(Rp of right lung)+1/(Rp of left lung). Rp calculated from this equation was 1.8+/-0.8 U·m 2 and all values were less than 3 U·m 2 (range 0.3-2.8). Rp estimated from the conventional method using the total pulmonary blood flow and pulmonary arterial pressures, without using the right/left blood flow ratio, ranging from 0.4 to 3.8 U·m 2 and 5 of 13 patients showed Rp>3 U·m 2 . All patients underwent Fontan operation successfully. These data indicated that this method is useful to estimate Rp and to determine the indication of Fontan operation in patients with pulmonary arterial distortions. (author)

  10. Post-treatment vascular leakage and inflammatory responses around brain cysts in porcine neurocysticercosis.

    Directory of Open Access Journals (Sweden)

    Siddhartha Mahanty

    2015-03-01

    Full Text Available Cysticidal treatment of neurocysticercosis, an infection of humans and pig brains with Taenia solium, results in an early inflammatory response directed to cysts causing seizures and focal neurological manifestations. Treatment-induced pericystic inflammation and its association with blood brain barrier (BBB dysfunction, as determined by Evans blue (EB extravasation, was studied in infected untreated and anthelmintic-treated pigs. We compared the magnitude and extent of the pericystic inflammation, presence of EB-stained capsules, the level of damage to the parasite, expression of genes for proinflammatory and regulatory cytokines, chemokines, and tissue remodeling by quantitative PCR assays between treated and untreated infected pigs and between EB-stained (blue and non stained (clear cysts. Inflammatory scores were higher in pericystic tissues from EB-stained cysts compared to clear cysts from untreated pigs and also from anthelmintic-treated pigs 48 hr and 120 hr after treatment. The degree of inflammation correlated with the severity of cyst wall damage and both increased significantly at 120 hours. Expression levels of the proinflammatory genes for IL-6, IFN-γ, TNF-α were higher in EB-stained cysts compared to clear cysts and unaffected brain tissues, and were generally highest at 120 hr. Additionally, expression of some markers of immunoregulatory activity (IL-10, IL-2Rα were decreased in EB-stained capsules. An increase in other markers for regulatory T cells (CTLA4, FoxP3 was found, as well as significant increases in expression of two metalloproteases, MMP1 and MMP2 at 48 hr and 120 hr post-treatment. We conclude that the increase in severity of the inflammation caused by treatment is accompanied by both a proinflammatory and a complex regulatory response, largely limited to pericystic tissues with compromised vascular integrity. Because treatment induced inflammation occurs in porcine NCC similar to that in human cases, this model

  11. Brain and Behavioral Assessment of Executive Functions for Self-Regulating Levels of Language in Reading Brain.

    Science.gov (United States)

    Berninger, Virginia W; Richards, Todd L; Abbott, Robert D

    2017-11-01

    This brief research report examines brain-behavioral relationships specific to levels of language in the complex reading brain. The first specific aim was to examine prior findings for significant fMRI connectivity from four seeds (left precuneus, left occipital temporal, left supramarginal, left inferior frontal) for each of four levels of language-subword, word (word-specific spelling or affixed words), syntax (with and without homonym foils or affix foils), and multi-sentence text to identify significant fMRI connectivity (a) unique to the lower level of language when compared to the immediately higher adjacent level of language across subword-word, word-syntax, and syntax-text comparisons; and (b) involving a brain region associated with executive functions. The second specific aim was to correlate the magnitude of that connectivity with standard scores on tests of Focused Attention (D-K EFS Color Word Form Inhibition) and Switching Attention (Wolf & Denckla Rapid Automatic Switching). Seven correlations were significant. Focused Attention was significantly correlated with the word level (word-specific spellings of real words) fMRI task in left cingulum from left inferior frontal seed. Switching Attention was significantly correlated with the (a) subword level (grapheme-phoneme correspondence) fMRI task in left and right Cerebellum V from left supramarginal seed; (b) the word level (word-specific spelling) fMRI task in right Cerebellum V from left precuneus seed; (c) the syntax level (with and without homonym foils) fMRI task in right Cerebellum V from left precuneus seed and from left supramarginal seed; and (d) syntax level (with and without affix foils) fMRI task in right Cerebellum V from left precuneus seed. Results are discussed in reference to neuropsychological assessment of supervisory attention (focused and switching) for specific levels of language related to reading acquisition in students with and without language-related specific learning

  12. The Efficiency of Vascular Embolization Using Alginate Gel : An Experimental Study in Rabbit

    International Nuclear Information System (INIS)

    Lee, Woo Baek; Kang, Yeong Han; Kim, Jong Ki

    2009-01-01

    The purpose of this study was to investigate the applicability of poly-L-guluronic alginate (PGA) gel in vascular embolization with angiography simulation. To prepare a gel-forming PGA from no guluronate-rich Laminaria japonica, a new acid hydrolysis method was employed with a lower HCL concentration (0.03 M) and a shorter treatment time (5 min). The obtained PGAs were selected based on gel stability and viscosity. Glass aneurysm model was used to simulate gel embolization in vitro. Then, finally, the PGA was used to embolize the renal vascular system by using a rabbit model and angiography. Glass aneurysm model was made to simulate gel embolization procedure. PGA solution was injected from pump through 2-way catheter. Subsequent injection of CaCl 2 successfully formed gels inside aneurysm model that conforming to its inner contour. In rabbit model, first, renal artery and aorta leading to the right kidney were ligated to block blood flow, then conventional contrast agent was injected through aorta to check the arterial patency to the left kidney. In sequential artery injection method, PGA and CaCl 2 were injected through renal artery sequentially via a single catheter. Re-injection of contrast agent after removing ligated aorta showed blood flow to the right kidney but no flow in the left kidney. This result demonstrated a complete blocking of blood flow due to gel formation in vascular bed of the left kidney. Instillation of calcium alginate into aneurysm model and arterial system in vivo produced an embolization that better fills and conforms to the contour of aneurysms or blocking vascular bed completely. Therefore, PGA was effective endovascular occlusion materials and provide an efficiency of vascular angiography.

  13. Characterisation of cerebral blood flow via determining the vascular mean transit time

    International Nuclear Information System (INIS)

    Lindner, P.; Thelen, M.

    1987-01-01

    By using a recently developed algorithm it is possible to quantify the dynamic information of a DSA sequence of the brain. The theory of algorithm allows to calculate vascular mean transit from time density curves. The algorithm minimizes the problems of densitometry with regard to 'quantitative DSA'. There is a strong correlation between vascular mean transit times and cerebral blood flow values, and therefore the results for mean transit times also correspond to the results obtained for cerebral blood flow. By computerized postprocessing of DSA-images it is possible to generate functional images of the brain with a spatial resolution that had not been attainable so far. The images represent the distribution pattern of reverse vascular mean transit times. The results from 36 patients with proven stenoses of the cervical vessels are reported. (orig.) [de

  14. Brain cytoplasmic RNA 1 suppresses smooth muscle differentiation and vascular development in mice.

    Science.gov (United States)

    Wang, Yung-Chun; Chuang, Ya-Hui; Shao, Qiang; Chen, Jian-Fu; Chen, Shi-You

    2018-04-13

    The cardiovascular system develops during the early stages of embryogenesis, and differentiation of smooth muscle cells (SMCs) is essential for that process. SMC differentiation is critically regulated by transforming growth factor (TGF)-β/SMAD family member 3 (SMAD3) signaling, but other regulators may also play a role. For example, long noncoding RNAs (lncRNAs) regulate various cellular activities and events, such as proliferation, differentiation, and apoptosis. However, whether long noncoding RNAs also regulate SMC differentiation remains largely unknown. Here, using the murine cell line C3H10T1/2, we found that brain cytoplasmic RNA 1 (BC1) is an important regulator of SMC differentiation. BC1 overexpression suppressed, whereas BC1 knockdown promoted, TGF-β-induced SMC differentiation, as indicated by altered cell morphology and expression of multiple SMC markers, including smooth muscle α-actin (αSMA), calponin, and smooth muscle 22α (SM22α). BC1 appeared to block SMAD3 activity and inhibit SMC marker gene transcription. Mechanistically, BC1 bound to SMAD3 via RNA SMAD-binding elements (rSBEs) and thus impeded TGF-β-induced SMAD3 translocation to the nucleus. This prevented SMAD3 from binding to SBEs in SMC marker gene promoters, an essential event in SMC marker transcription. In vivo , BC1 overexpression in mouse embryos impaired vascular SMC differentiation, leading to structural defects in the artery wall, such as random breaks in the elastic lamina, abnormal collagen deposition on SM fibers, and disorganized extracellular matrix proteins in the media of the neonatal aorta. Our results suggest that BC1 is a suppressor of SMC differentiation during vascular development. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. BrainNetVis: analysis and visualization of brain functional networks.

    Science.gov (United States)

    Tsiaras, Vassilis; Andreou, Dimitris; Tollis, Ioannis G

    2009-01-01

    BrainNetVis is an application, written in Java, that displays and analyzes synchronization networks from brain signals. The program implements a number of network indices and visualization techniques. We demonstrate its use through a case study of left hand and foot motor imagery. The data sets were provided by the Berlin BCI group. Using this program we managed to find differences between the average left hand and foot synchronization networks by comparing them with the average idle state synchronization network.

  16. On the other hand: including left-handers in cognitive neuroscience and neurogenetics.

    Science.gov (United States)

    Willems, Roel M; Van der Haegen, Lise; Fisher, Simon E; Francks, Clyde

    2014-03-01

    Left-handers are often excluded from study cohorts in neuroscience and neurogenetics in order to reduce variance in the data. However, recent investigations have shown that the inclusion or targeted recruitment of left-handers can be informative in studies on a range of topics, such as cerebral lateralization and the genetic underpinning of asymmetrical brain development. Left-handed individuals represent a substantial portion of the human population and therefore left-handedness falls within the normal range of human diversity; thus, it is important to account for this variation in our understanding of brain functioning. We call for neuroscientists and neurogeneticists to recognize the potential of studying this often-discarded group of research subjects.

  17. Etiological aspect of left-handedness in adolescents.

    Science.gov (United States)

    Dragović, Milan; Milenković, Sanja; Kocijancić, Dusica; Zlatko, Sram

    2013-01-01

    Lateralization of brain functions such as language and manual dominance (hand preferences and fine motor control) are most likely under genetic control. However, this does not preclude the effect of various environmental factors on functional brain lateralization. A strong association of non-right-handedness (left- and mixed-handedness) with various neurodevelopmental conditions (e.g. schizophrenia, autism, Rett syndrome) implies that in some cases, non-right-handedness may be acquired rather than inherited (i.e., pathologically determined). The aim of the study was: (a) re-investigation of several known risk factors for left-handedness (age of mother and/or father, twin pregnancies, and birth order), and (b) examination of hitherto uninvestigated factors (type of birth, Apgar score, maternal smoking during pregnancy). Putative, causative environmental agents for this shift in manual distributions are explored in a sample of 1031 high school students (404 males and 627 females) from Belgrade. Both pre-existing (age of parents, twin pregnancy, and birth order) and new (Apgar score, maternal smoking, type of birth) putative agents are examined. We found that maternal smoking and low Apgar score (2-6) can significantly increase risk for left-handedness (p=0.046 and p=0.042, respectively).The remaining factors showed no significant association with left-handedness in adolescents. Our study clearly demonstrates that left-handedness may be related to maternal smoking during pregnancy and a low Apgar score on birth.

  18. Insulin and the Brain

    Directory of Open Access Journals (Sweden)

    Grosu Cristina

    2017-12-01

    Full Text Available The brain represents an important site for the action of insulin. Besides the traditionally known importance in glucoregulation, insulin has significant neurotrophic properties and influences the brain activity: insulin influences eating behavior, regulates the storage of energy and several aspects concerning memory and knowledge. Insulin resistance and hyperinsulinism could be associated with brain aging, vascular and metabolic pathologies. Elucidating the pathways and metabolism of brain insulin could have a major impact on future targeted therapies.

  19. [Right extremities pain caused by a malacia lesion in the left putamen:a resting functional magnetic resonance imaging of the marginal division of the human brain].

    Science.gov (United States)

    Chen, Zhi-Ye; Ma, Lin

    2014-04-01

    To explore the role of marginal division of the human brain in the pain modulation. Resting functional magnetic resonance imaging was applied in a patient with right extremities pain caused by a malacia lesion in the left putamen and in 8 healthy volunteers. Marginal division was defined using manual drawing on structure images, and was applied to the computation of fuctional connectivity maps. The functional connectivities in the left marginal division showed an evident decrease in the patient when compared with healthy controls. These connectivities were mainly located in the bilateral head of caudate nucleus, putamen, and left globus pallidus. The marginal division may be involved in the pain modulation.

  20. Left hemisphere lateralization for lexical and acoustic pitch processing in Cantonese speakers as revealed by mismatch negativity.

    Science.gov (United States)

    Gu, Feng; Zhang, Caicai; Hu, Axu; Zhao, Guoping

    2013-12-01

    For nontonal language speakers, speech processing is lateralized to the left hemisphere and musical processing is lateralized to the right hemisphere (i.e., function-dependent brain asymmetry). On the other hand, acoustic temporal processing is lateralized to the left hemisphere and spectral/pitch processing is lateralized to the right hemisphere (i.e., acoustic-dependent brain asymmetry). In this study, we examine whether the hemispheric lateralization of lexical pitch and acoustic pitch processing in tonal language speakers is consistent with the patterns of function- and acoustic-dependent brain asymmetry in nontonal language speakers. Pitch contrast in both speech stimuli (syllable /ji/ in Experiment 1) and nonspeech stimuli (harmonic tone in Experiment 1; pure tone in Experiment 2) was presented to native Cantonese speakers in passive oddball paradigms. We found that the mismatch negativity (MMN) elicited by lexical pitch contrast was lateralized to the left hemisphere, which is consistent with the pattern of function-dependent brain asymmetry (i.e., left hemisphere lateralization for speech processing) in nontonal language speakers. However, the MMN elicited by acoustic pitch contrast was also left hemisphere lateralized (harmonic tone in Experiment 1) or showed a tendency for left hemisphere lateralization (pure tone in Experiment 2), which is inconsistent with the pattern of acoustic-dependent brain asymmetry (i.e., right hemisphere lateralization for acoustic pitch processing) in nontonal language speakers. The consistent pattern of function-dependent brain asymmetry and the inconsistent pattern of acoustic-dependent brain asymmetry between tonal and nontonal language speakers can be explained by the hypothesis that the acoustic-dependent brain asymmetry is the consequence of a carryover effect from function-dependent brain asymmetry. Potential evolutionary implication of this hypothesis is discussed. © 2013.

  1. Warfarin accelerated vascular calcification and worsened cardiac dysfunction in remnant kidney mice

    Directory of Open Access Journals (Sweden)

    Ming-Tsun Tsai

    2018-04-01

    Full Text Available Background: Vascular calcification is highly prevalent in end-stage renal disease (ESRD and is a significant risk factor for future cardiovascular events and death. Warfarin use results in dysfunction of matrix Gla protein, an inhibitor of vascular calcification. However, the effect of warfarin on vascular calcification in patients with ESRD is still not well characterized. Thus we investigated whether arterial calcification can be accelerated by warfarin treatment both in vitro and in vivo using a mouse remnant kidney model. Methods: Human aortic smooth muscle cells (HASMC were cultured in medium supplemented with warfarin and phosphate to investigate the potential role of this drug in osteoblast transdifferentiation. For in vivo study, adult male C57BL/6 mice underwent 5/6 nephrectomy were treated with active vitamin D3 plus warfarin to determine the extent of vascular calcification and parameters of cardiovascular function. Results: We found that the expressions of Runx2 and osteocalcin in HASMC were markedly enhanced in the culture medium containing warfarin and high phosphate concentration. Warfarin induced calcification of cultured HASMC in the presence of high phosphate levels, and this effect is inhibited by vitamin K2. Severe aortic calcification and reduced left ventricular ejection fractions were also noted in 5/6 nephrectomy mice treated with warfarin and active vitamin D3. Conclusion: Warfarin treatment contributes to the accelerated vascular calcification in animal models of advanced chronic kidney disease. Clinicians should therefore be aware of the profound risk of warfarin use on vascular calcification and cardiac dysfunction in patients with ESRD and atrial fibrillation. Keywords: Left ventricular dysfunction, Uremia, Vascular calcification, Warfarin

  2. Proinflammatory Adhesion Molecules Facilitate Polychlorinated Biphenyl–Mediated Enhancement of Brain Metastasis Formation

    OpenAIRE

    Sipos, Eszter; Chen, Lei; András, Ibolya E.; Wrobel, Jagoda; Zhang, Bei; Pu, Hong; Park, Minseon; Eum, Sung Yong; Toborek, Michal

    2012-01-01

    Polychlorinated biphenyls (PCBs) are environmental toxicants that cause vascular inflammation and facilitate the development of brain metastases. The crucial event in metastasis formation is adhesion of blood-borne tumor cells to the vascular endothelium, followed by their transcapillary migration. The aim of the present study was to examine the mechanisms of PCB118-induced brain metastasis formation at the blood-brain barrier level with the focus on tumor cell adhesion to the brain endotheli...

  3. Diffuse corpus callosum infarction - Rare vascular entity with differing etiology.

    Science.gov (United States)

    Mahale, Rohan; Mehta, Anish; Buddaraju, Kiran; John, Aju Abraham; Javali, Mahendra; Srinivasa, Rangasetty

    2016-01-15

    Infarctions of the corpus callosum are rare vascular events. It is relatively immune to vascular insult because of its rich vascular supply from anterior and posterior circulations of brain. Report of 3 patients with largely diffuse acute corpus callosum infarction. 3 patients with largely diffuse acute corpus callosum infarction were studied and each of these 3 patients had 3 different aetiologies. The 3 different aetiologies of largely diffuse acute corpus callosum infarction were cardioembolism, tuberculous arteritis and takayasu arteritis. Diffuse corpus callosum infarcts are rare events. This case series narrates the three different aetiologies of diffuse acute corpus callosum infarction which is a rare vascular event. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Cardiovascular magnetic resonance imaging of hypoplastic left heart syndrome in children

    International Nuclear Information System (INIS)

    Dillman, Jonathan R.; Hernandez, Ramiro J.; Dorfman, Adam L.; Attili, Anil K.; Agarwal, Prachi P.; Mueller, Gisela C.; Bell, Aaron

    2010-01-01

    Cardiovascular magnetic resonance imaging (CMR) plays an important complementary role to echocardiography and conventional angiography in the evaluation of hypoplastic left heart syndrome. This imaging modality is particularly useful for assessing cardiovascular postsurgical changes, extracardiac vascular anatomy, ventricular and valvular function, and a variety of complications. The purpose of this article is to provide a contemporary review of the role of CMR in the management of untreated and surgically palliated hypoplastic left heart syndrome in children. (orig.)

  5. BOLD Granger causality reflects vascular anatomy.

    Directory of Open Access Journals (Sweden)

    J Taylor Webb

    Full Text Available A number of studies have tried to exploit subtle phase differences in BOLD time series to resolve the order of sequential activation of brain regions, or more generally the ability of signal in one region to predict subsequent signal in another region. More recently, such lag-based measures have been applied to investigate directed functional connectivity, although this application has been controversial. We attempted to use large publicly available datasets (FCON 1000, ADHD 200, Human Connectome Project to determine whether consistent spatial patterns of Granger Causality are observed in typical fMRI data. For BOLD datasets from 1,240 typically developing subjects ages 7-40, we measured Granger causality between time series for every pair of 7,266 spherical ROIs covering the gray matter and 264 seed ROIs at hubs of the brain's functional network architecture. Granger causality estimates were strongly reproducible for connections in a test and replication sample (n=620 subjects for each group, as well as in data from a single subject scanned repeatedly, both during resting and passive video viewing. The same effect was even stronger in high temporal resolution fMRI data from the Human Connectome Project, and was observed independently in data collected during performance of 7 task paradigms. The spatial distribution of Granger causality reflected vascular anatomy with a progression from Granger causality sources, in Circle of Willis arterial inflow distributions, to sinks, near large venous vascular structures such as dural venous sinuses and at the periphery of the brain. Attempts to resolve BOLD phase differences with Granger causality should consider the possibility of reproducible vascular confounds, a problem that is independent of the known regional variability of the hemodynamic response.

  6. Left-right asymmetry of maturation rates in human embryonic neural development

    OpenAIRE

    De Kovel, C.; Lisgo, S.; Karlebach, G.; Ju, J.; Cheng, G.; Fisher, S.; Francks, C.

    2017-01-01

    Background Left-right asymmetry is a fundamental organizing feature of the human brain, and neuro-psychiatric disorders such as schizophrenia sometimes involve alterations of brain asymmetry. As early as 8 weeks post conception, the majority of human fetuses move their right arms more than their left arms, but because nerve fibre tracts are still descending from the forebrain at this stage, spinal-muscular asymmetries are likely to play an important developmental role. Methods We used RNA seq...

  7. Prediction of tumor-brain adhesion in intracranial meningiomas by MR imaging and DSA

    International Nuclear Information System (INIS)

    Takeguchi, Takashi; Miki, Hitoshi; Shimizu, Teruhiko; Kikuchi, Keiichi; Mochizuki, Teruhito; Ohue, Shiro; Ohnishi, Takanori

    2003-01-01

    The purpose of this study was to evaluate the usefulness of MRI (magnetic resonance imaging) and DSA (digital subtraction angiography) by using preoperative MRI and DSA findings in the examination of meningiomas before excision. In particular, we focused on their usefulness in predicting tumor-brain adhesion during surgery. The subjects were 36 patients with intracranial meningioma who underwent tumor excision at which time neurosurgeons examined the tumor-brain adhesion. Two neurosurgeons evaluated the degree of tumor-brain adhesion from operation records and videotapes recorded during surgery. Two neuroradiologists retrospectively evaluated the preoperative MRI findings including tumor diameter, signal intensity of the tumor parenchyma obtained with T 2 -weighted imaging (T 2 WI), characteristics of the tumor-brain interface, and degree of peritumoral brain edema. The vascular supply was also evaluated from the preoperative DSA findings. The relationship between these MRI and DSA findings and the degree of tumor-brain adhesion during surgery as classified by the neurosurgeons was statistically analyzed. The degree of peritumoral brain edema and the shapes and characteristics of the tumor-brain interface, including the findings of FLAIR (fluid-attenuated inversion recovery) imaging and vascular supply observed by DSA, were significantly correlated with tumor-brain adhesion. In particular, the shapes and characteristics of the tumor-brain interface as observed by T 1 -weighted imaging (T 1 WI), T2WI, and FLAIR, respectively, as well as the vascular supply observed by DSA, were closely correlated with the degree of tumor-brain adhesion encountered during surgery. According to these results, we developed a method of predicting tumor-brain adhesion that considers the shape of the tumor-brain interface revealed by MRI and the vascular supply revealed by DSA. We retrospectively examined the findings of MRI and DSA performed before excision of meningioma and clarified

  8. The Efficiency of Vascular Embolization Using Alginate Gel : An Experimental Study in Rabbit

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woo Baek; Kang, Yeong Han [Dept. of Diagnostic Radiology, Daegu Catholic University Hospital, Daegu (Korea, Republic of); Kim, Jong Ki [Dept. of Biomedical Engineering, Daegu Catholic University, Daegu (Korea, Republic of)

    2009-03-15

    The purpose of this study was to investigate the applicability of poly-L-guluronic alginate (PGA) gel in vascular embolization with angiography simulation. To prepare a gel-forming PGA from no guluronate-rich Laminaria japonica, a new acid hydrolysis method was employed with a lower HCL concentration (0.03 M) and a shorter treatment time (5 min). The obtained PGAs were selected based on gel stability and viscosity. Glass aneurysm model was used to simulate gel embolization in vitro. Then, finally, the PGA was used to embolize the renal vascular system by using a rabbit model and angiography. Glass aneurysm model was made to simulate gel embolization procedure. PGA solution was injected from pump through 2-way catheter. Subsequent injection of CaCl{sub 2} successfully formed gels inside aneurysm model that conforming to its inner contour. In rabbit model, first, renal artery and aorta leading to the right kidney were ligated to block blood flow, then conventional contrast agent was injected through aorta to check the arterial patency to the left kidney. In sequential artery injection method, PGA and CaCl{sub 2} were injected through renal artery sequentially via a single catheter. Re-injection of contrast agent after removing ligated aorta showed blood flow to the right kidney but no flow in the left kidney. This result demonstrated a complete blocking of blood flow due to gel formation in vascular bed of the left kidney. Instillation of calcium alginate into aneurysm model and arterial system in vivo produced an embolization that better fills and conforms to the contour of aneurysms or blocking vascular bed completely. Therefore, PGA was effective endovascular occlusion materials and provide an efficiency of vascular angiography.

  9. Traumatic Brain Injury

    Science.gov (United States)

    ... brain injury Some traumatic brain injuries have lasting effects, and some do not. You may be left with disabilities. These can be physical, behavioral, communicative, and/or mental. Customized treatment helps you to have as full ...

  10. Severity and Co-occurrence of Oral and Verbal Apraxias in Left Brain Damaged Adults

    Directory of Open Access Journals (Sweden)

    Fariba Yadegari

    2012-04-01

    Full Text Available Objective: Oral and verbal apraxias represent motor programming deficits of nonverbal and verbal movements respectively. Studying their properties may shed light on speech motor control processes. This study was focused on identifying cases with oral or verbal apraxia, their co–occurrences and severities. Materials & Methods: In this non-experimental study, 55 left adult subjects with left brain lesion including 22 women and 33 men with age range of 23 to 84 years, were examined and videotaped using oral apraxia and verbal apraxia tasks. Three speech and language pathologists independently scored apraxia severities. Data were analyzed by independent t test, Pearson, Phi and Contingency coefficients using SPSS 12. Results: Mean score of oral and verbal apraxias in patients with and without oral and verbal apraxias were significantly different (P<0.001. Forty- two patients had simultaneous oral and verbal apraxias, with significant correlation between their oral and verbal apraxia scores (r=0.75, P<0.001. Six patients showed no oral or verbal apraxia and 7 had just one type of apraxia. Comparison of co-occurrence of two disorders (Phi=0.59 and different oral and verbal intensities (C=0.68 were relatively high (P<0.001. Conclusion: The present research revealed co-occurrence of oral and verbal apraxias to a great extent. It appears that speech motor control is influenced by a more general verbal and nonverbal motor control.

  11. Brain abscesses and hereditary hemorrhagic telangiectasia

    International Nuclear Information System (INIS)

    Vives, Daniel A.; Bauni, Carlos E.; Mendoza, Monica E.

    2003-01-01

    Rendu-Osler-Weber disease or Hereditary Hemorrhagic Telangiectasia (HHT) is a generalized familial angiodysplastic disorder. The neurological manifestations of this entity are due to Central Nervous System vascular lesions or to complications of other visceral lesions such as pulmonary arteriovenous fistulae. This report describes two patients (males, 40 and 61 years old), with brain abscesses associated with HHT. The CT, MRI and Angiographic findings as well as the therapeutic approach are analyzed. Patients with brain abscess of unknown origin must be evaluated for the presence of lung vascular malformation in association with HHT. (author)

  12. Theories of schizophrenia: a genetic-inflammatory-vascular synthesis

    Directory of Open Access Journals (Sweden)

    Gottesman Irving I

    2005-02-01

    Full Text Available Abstract Background Schizophrenia, a relatively common psychiatric syndrome, affects virtually all brain functions yet has eluded explanation for more than 100 years. Whether by developmental and/or degenerative processes, abnormalities of neurons and their synaptic connections have been the recent focus of attention. However, our inability to fathom the pathophysiology of schizophrenia forces us to challenge our theoretical models and beliefs. A search for a more satisfying model to explain aspects of schizophrenia uncovers clues pointing to genetically mediated CNS microvascular inflammatory disease. Discussion A vascular component to a theory of schizophrenia posits that the physiologic abnormalities leading to illness involve disruption of the exquisitely precise regulation of the delivery of energy and oxygen required for normal brain function. The theory further proposes that abnormalities of CNS metabolism arise because genetically modulated inflammatory reactions damage the microvascular system of the brain in reaction to environmental agents, including infections, hypoxia, and physical trauma. Damage may accumulate with repeated exposure to triggering agents resulting in exacerbation and deterioration, or healing with their removal. There are clear examples of genetic polymorphisms in inflammatory regulators leading to exaggerated inflammatory responses. There is also ample evidence that inflammatory vascular disease of the brain can lead to psychosis, often waxing and waning, and exhibiting a fluctuating course, as seen in schizophrenia. Disturbances of CNS blood flow have repeatedly been observed in people with schizophrenia using old and new technologies. To account for the myriad of behavioral and other curious findings in schizophrenia such as minor physical anomalies, or reported decreased rates of rheumatoid arthritis and highly visible nail fold capillaries, we would have to evoke a process that is systemic such as the vascular

  13. Improving left spatial neglect through music scale playing.

    Science.gov (United States)

    Bernardi, Nicolò Francesco; Cioffi, Maria Cristina; Ronchi, Roberta; Maravita, Angelo; Bricolo, Emanuela; Zigiotto, Luca; Perucca, Laura; Vallar, Giuseppe

    2017-03-01

    The study assessed whether the auditory reference provided by a music scale could improve spatial exploration of a standard musical instrument keyboard in right-brain-damaged patients with left spatial neglect. As performing music scales involves the production of predictable successive pitches, the expectation of the subsequent note may facilitate patients to explore a larger extension of space in the left affected side, during the production of music scales from right to left. Eleven right-brain-damaged stroke patients with left spatial neglect, 12 patients without neglect, and 12 age-matched healthy participants played descending scales on a music keyboard. In a counterbalanced design, the participants' exploratory performance was assessed while producing scales in three feedback conditions: With congruent sound, no-sound, or random sound feedback provided by the keyboard. The number of keys played and the timing of key press were recorded. Spatial exploration by patients with left neglect was superior with congruent sound feedback, compared to both Silence and Random sound conditions. Both the congruent and incongruent sound conditions were associated with a greater deceleration in all groups. The frame provided by the music scale improves exploration of the left side of space, contralateral to the right hemisphere, damaged in patients with left neglect. Performing a scale with congruent sounds may trigger at some extent preserved auditory and spatial multisensory representations of successive sounds, thus influencing the time course of space scanning, and ultimately resulting in a more extensive spatial exploration. These findings offer new perspectives also for the rehabilitation of the disorder. © 2015 The British Psychological Society.

  14. Axon-glial disruption: the link between vascular disease and Alzheimer's disease?

    Science.gov (United States)

    Horsburgh, Karen; Reimer, Michell M; Holland, Philip; Chen, Guiquan; Scullion, Gillian; Fowler, Jill H

    2011-08-01

    Vascular risk factors play a critical role in the development of cognitive decline and AD (Alzheimer's disease), during aging, and often result in chronic cerebral hypoperfusion. The neurobiological link between hypoperfusion and cognitive decline is not yet defined, but is proposed to involve damage to the brain's white matter. In a newly developed mouse model, hypoperfusion, in isolation, produces a slowly developing and diffuse damage to myelinated axons, which is widespread in the brain, and is associated with a selective impairment in working memory. Cerebral hypoperfusion, an early event in AD, has also been shown to be associated with white matter damage and notably an accumulation of amyloid. The present review highlights some of the published data linking white matter disruption to aging and AD as a result of vascular dysfunction. A model is proposed by which chronic cerebral hypoperfusion, as a result of vascular factors, results in both the generation and accumulation of amyloid and injury to white matter integrity, resulting in cognitive impairment. The generation of amyloid and accumulation in the vasculature may act to perpetuate further vascular dysfunction and accelerate white matter pathology, and as a consequence grey matter pathology and cognitive decline.

  15. Vascular and parenchymal amyloid pathology in an Alzheimer disease knock-in mouse model: interplay with cerebral blood flow.

    Science.gov (United States)

    Li, Hongmei; Guo, Qinxi; Inoue, Taeko; Polito, Vinicia A; Tabuchi, Katsuhiko; Hammer, Robert E; Pautler, Robia G; Taffet, George E; Zheng, Hui

    2014-08-09

    Accumulation and deposition of β-amyloid peptides (Aβ) in the brain is a central event in the pathogenesis of Alzheimer's disease (AD). Besides the parenchymal pathology, Aβ is known to undergo active transport across the blood-brain barrier and cerebral amyloid angiopathy (CAA) is a prominent feature in the majority of AD. Although impaired cerebral blood flow (CBF) has been implicated in faulty Aβ transport and clearance, and cerebral hypoperfusion can exist in the pre-clinical phase of Alzheimer's disease (AD), it is still unclear whether it is one of the causal factors for AD pathogenesis, or an early consequence of a multi-factor condition that would lead to AD at late stage. To study the potential interaction between faulty CBF and amyloid accumulation in clinical-relevant situation, we generated a new amyloid precursor protein (APP) knock-in allele that expresses humanized Aβ and a Dutch mutation in addition to Swedish/London mutations and compared this line with an equivalent knock-in line but in the absence of the Dutch mutation, both crossed onto the PS1M146V knock-in background. Introduction of the Dutch mutation results in robust CAA and parenchymal Aβ pathology, age-dependent reduction of spatial learning and memory deficits, and CBF reduction as detected by fMRI. Direct manipulation of CBF by transverse aortic constriction surgery on the left common carotid artery caused differential changes in CBF in the anterior and middle region of the cortex, where it is reduced on the left side and increased on the right side. However these perturbations in CBF resulted in the same effect: both significantly exacerbate CAA and amyloid pathology. Our study reveals a direct and positive link between vascular and parenchymal Aβ; both can be modulated by CBF. The new APP knock-in mouse model recapitulates many symptoms of AD including progressive vascular and parenchymal Aβ pathology and behavioral deficits in the absence of APP overexpression.

  16. Etiological aspect of left-handedness in adolescents

    Directory of Open Access Journals (Sweden)

    Dragović Milan

    2013-01-01

    Full Text Available Introduction. Lateralization of brain functions such as language and manual dominance (hand preferences and fine motor control are most likely under genetic control. However, this does not preclude the effect of various environmental factors on functional brain lateralization. A strong association of non-right-handedness (left- and mixed-handedness with various neurodevelopmental conditions (e.g. schizophrenia, autism, Rett syndrome implies that in some cases, non-right-handedness may be acquired rather than inherited (i.e., pathologically determined. Objective. The aim of the study was: (a re-investigation of several known risk factors for left-handedness (age of mother and/or father, twin pregnancies, and birth order, and (b examination of hitherto uninvestigated factors (type of birth, Apgar score, maternal smoking during pregnancy. Methods. Putative, causative environmental agents for this shift in manual distributions are explored in a sample of 1031 high school students (404 males and 627 females from Belgrade. Both pre-existing (age of parents, twin pregnancy, and birth order and new (Apgar score, maternal smoking, type of birth putative agents are examined. Results. We found that maternal smoking and low Apgar score (2-6 can significantly increase risk for left-handedness (p=0.046 and p=0.042, respectively. The remaining factors showed no significant association with left-handedness in adolescents. Conclusion. Our study clearly demonstrates that left-handedness may be related to maternal smoking during pregnancy and a low Apgar score on birth.

  17. Vascular Cognitive Impairment: risk factors and brain MRI correlates

    NARCIS (Netherlands)

    Reijmer, Y.D.

    2012-01-01

    Vascular disease plays an important role in the development of dementia, also in patients diagnosed with Alzheimer’s disease. Risk factors such as hypertension, obesity, and type 2 diabetes, are associated with a two-fold increased risk of cognitive dysfunction and dementia. The development of

  18. A Genetic-Based Feature Selection Approach in the Identification of Left/Right Hand Motor Imagery for a Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Charles Yaacoub

    2017-01-01

    Full Text Available Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method that improves left/right hand movement identification of a motor imagery brain-computer interface, based on genetic algorithms and artificial neural networks used as classifiers. Raw electroencephalography signals are first preprocessed using appropriate filtering. Feature extraction is carried out afterwards, based on spectral and temporal signal components, and thus a feature vector is constructed. As various features might be inaccurate and mislead the classifier, thus degrading the overall system performance, the proposed approach identifies a subset of features from a large feature space, such that the classifier error rate is reduced. Experimental results show that the proposed method is able to reduce the number of features to as low as 0.5% (i.e., the number of ignored features can reach 99.5% while improving the accuracy, sensitivity, specificity, and precision of the classifier.

  19. A Genetic-Based Feature Selection Approach in the Identification of Left/Right Hand Motor Imagery for a Brain-Computer Interface.

    Science.gov (United States)

    Yaacoub, Charles; Mhanna, Georges; Rihana, Sandy

    2017-01-23

    Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method that improves left/right hand movement identification of a motor imagery brain-computer interface, based on genetic algorithms and artificial neural networks used as classifiers. Raw electroencephalography signals are first preprocessed using appropriate filtering. Feature extraction is carried out afterwards, based on spectral and temporal signal components, and thus a feature vector is constructed. As various features might be inaccurate and mislead the classifier, thus degrading the overall system performance, the proposed approach identifies a subset of features from a large feature space, such that the classifier error rate is reduced. Experimental results show that the proposed method is able to reduce the number of features to as low as 0.5% (i.e., the number of ignored features can reach 99.5%) while improving the accuracy, sensitivity, specificity, and precision of the classifier.

  20. Evaluation of [sup 99m]Tc-HM-PAO thigh accumulation in patients with cerebro-vascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Nishigaki, Hiroshi; Adachi, Itaru; Komori, Tsuyoshi; Tatsu, Yoshimitsu; Hisada, Youichi; Sueyoshi, Kouzou; Narabayashi, Isamu (Osaka Medical College, Takatsuki (Japan))

    1993-06-01

    Technetium-99m d,l-hexamethyl-propyleneamine oxime ([sup 99m]Tc-HM-PAO) cerebral SPECT and whole body scintigraphy (WBS) were performed in 5 patients without cerebro-vascular disease (CVD) (Group 1), 31 patients with CVD but not hemiparesis (Group 2) and 18 patients with CVD and hemiparesis (Group 3). Four ROIs were drawn manually around the whole body (WB), brain (Br), right and left thigh (Th). We calculated some ratios: the total counts in the brain over the total counts in the whole body (Br/WB), the total counts in the thigh over the total counts in the whole body (Th/WB) and the mean counts in the thigh over the mean counts in the brain (Th/Br).The Br/WB was 6.9[+-]1.8%, rt-Th/WB was 4.9[+-]2.1%, lt-Th/WB was 5.1[+-]1.3% and Th/Br was 0.46[+-]0.17 in group 1. Whole body scintigraphies in group 1 revealed clear and similar images between right and left thigh. The Br/WB was 6.7[+-]1.4%, Th/WB of paretic side was 4.6[+-]1.0%, Th/WB of non-paretic side was 5.8[+-]1.2% and Th/Br was 0.47[+-]0.18 in group 3. The Th/WB in non paretic side was significantly higher than that in paretic side (p<0.01). The thigh images in group 3 revealed clear differences between paretic and non-paretic thighes. In conclusion we could acquire the clear thigh images with [sup 99m]Tc-HM-PAO. It was possible that we evaluated not only cerebral perfusion but also muscle atrophy and/or perfusion in patients with CVD using [sup 99m]Tc-HM-PAO. (author).

  1. Brain atrophy during aging

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju; Yamada, Kenji; Yamada, Susumu; Ono, Shuichi; Takeda, Shunpei; Hatazawa, Jun; Ito, Masatoshi; Kubota, Kazuo

    1985-01-01

    Age-related brain atrophy was investigated in thousands of persons with no neurologic disturbances using X-CT and NMR-CT. Brain atrophy was minimal in 34-35 years old in both sexes, increased exponentially to the increasing age after 34-35 years, and probably resulted in dementia, such as vascular or multi-infarct dementia. Brain atrophy was significantly greater in men than in women at all ages. Brain volumes were maximal in 34-35 years old in both sexes with minimal individual differences which increased proportionally to the increasing age. Remarkable individual differences in the extent of brain atrophy (20 - 30 %) existed among aged subjects. Progression of brain atrophy was closely related to loss of mental activities independently of their ages. Our longitudinal study has revealed that the most important factors promoting brain atrophy during aging was the decrease in the cerebral blood flow. We have classified brain atrophy into sulcal and cisternal enlargement type (type I), ventricular enlargement type (type II) and mixed type (type III) according to the clinical study using NMR-CT. Brain atrophy of type I progresses significantly in almost all of the geriatric disorders. This type of brain atrophy progresses significantly in heavy smokers and drinkers. Therefore this type of brain atrophy might be caused by the decline in the blood flow in anterior and middle cerebral arteries. Brain atrophy of type II was caused by the disturbance of cerebrospinal fluid circulation after cerebral bleeding and subarachnoid bleeding. Brain atrophy of type III was seen in vascular dementia or multi-infarct dementia which was caused by loss of brain matter after multiple infarction, and was seen also in dementia of Alzheimer type in which degeneration of nerve cells results in brain atrophy. NMR-CT can easily detect small infarction (lacunae) and edematous lesions resulting from ischemia and hypertensive encephalopathy. (J.P.N.)

  2. Systemic right-to-left shunts, ischemic brain lesions, and persistent migraine activity.

    Science.gov (United States)

    Koppen, Hille; Palm-Meinders, Inge H; Mess, Werner H; Keunen, Ruud W; Terwindt, Gisela M; Launer, Lenore J; van Buchem, Mark A; Kruit, Mark C; Ferrari, Michel D

    2016-05-03

    To assess whether migraine in the general population is associated with increased risk of systemic right-to-left shunts (RLS) and whether RLS are associated with increased prevalence of brain infarcts and persistent recurrence of migraine attacks at older age. Brain MRI and transcranial Doppler with air contrast in 166 unselected migraineurs (mean age ± SD 56 ± 7.7 years; 70% women; n = 96 migraine with aura) and 69 controls (mean age ± SD 55 ± 7.6 years; 65% women) from the general population. Participants with migraine with aura more frequently had Valsalva-induced RLS (60%), in particular large-sized, compared to controls (42%; odds ratio [OR] 2.1; 95% confidence interval [CI] 1.1-3.9; p = 0.02) and participants with migraine without aura (40%; OR 2.3; 95% CI 1.2-4.3; p = 0.01). They also more frequently had spontaneous RLS (35%) than participants with migraine without aura (17%; OR 2.6; 95% CI 1.3-5.6; p = 0.01) but not compared to controls (26%; OR 1.6; 95% CI 0.8-3.1; p = 0.2). Participants with migraine with aura and spontaneous RLS more frequently had persistent migraine activity (85%) than participants with migraine without spontaneous RLS (63%; OR 3.4; 95% CI 1.2-10.1; p = 0.03). Nine percent of participants with RLS had silent posterior circulation infarcts compared to 3% of participants without RLS (OR 2.8; 95% CI 0.9-9.3; p = 0.08), independent of migraine status. RLS were not associated with white matter lesions. RLS are more prevalent in migraineurs with aura but do not explain the increased prevalence of silent posterior circulation infarcts or white matter lesions in migraineurs. Spontaneous RLS are associated with persistent migraine. © 2016 American Academy of Neurology.

  3. Second-stage transsphenoidal approach (TSA) for highly vascular pituicytomas in children.

    Science.gov (United States)

    Kim, Young Gyu; Park, Young Seok

    2015-06-01

    A pituicytoma in the sellar area is extremely rare in children and, due to its highly vascularized nature, can be difficult to address using the transsphenoid approach (TSA) to surgery. Here, we report a rare case of a pituicytoma that was completely removed from a child through a staged operation using the TSA. A 13-year-old girl was admitted with a 1-year history of visual disturbance and amenorrhea. Visual field examination showed left total blindness and right temporal hemianopsia. Laboratory results revealed hormonal levels all within normal ranges. Brain magnetic resonance imaging (MRI) showed a homogeneous, highly enhancing sellar and suprasellar mass, typically suggestive of a pituitary adenoma. TSA surgery revealed the tumor had a rubbery-firm consistency, hypervascularity, and profuse bleeding. We removed the tumor partially and planned a second-stage operation. Gross total removal is the treatment of choice for this type of tumor. Attempted resection of these presumed adenomas or meningiomas using the TSA often results in unexpectedly heavy intraoperative bleeding due to the high vascularity of this rare tumor, making surgery challenging, especially in children where the tumor is within a relatively narrow corridor. While pituicytomas are a rare differential diagnosis for sellar or parasellar tumors in children, total removal by second-stage TSA surgery is indicated in the case of profuse bleeding or uncertainty of biopsy. Following first-stage TSA surgery and pathologic confirmation of pituicytoma, the strategy is typically gross total removal during second-stage TSA surgery. Although very rare in children, a pituicytoma should be included in the differential diagnosis of a mass in the sellar area if the tumor is highly enhancing or very vascular. Second-stage TSA surgery is another strategy when the pathology is not clear during the first-stage TSA surgery.

  4. Can vascular risk factors influence number and size of cerebral metastases? A 3D-MRI study in patients with different tumor entities.

    Science.gov (United States)

    Nagel, Sandra; Berk, Benjamin-Andreas; Kortmann, Rolf-Dieter; Hoffmann, Karl-Titus; Seidel, Clemens

    2018-02-01

    There is increasing evidence that cerebral microangiopathy reduces number of brain metastases. Aim of this study was to analyse if vascular risk factors (arterial hypertension, diabetes mellitus, smoking, and hypercholesterolemia) or the presence of peripheral arterial occlusive disease (PAOD) can have an impact on number or size of brain metastases. 200 patients with pre-therapeutic 3D-brain MRI and available clinical data were analyzed retrospectively. Mean number of metastases (NoM) and mean diameter of metastases (mDM) were compared between patients with/without vascular risk factors (vasRF). No general correlation of vascular risk factors with brain metastases was found in this monocentric analysis of a patient cohort with several tumor types. Arterial hypertension, diabetes mellitus, hypercholesterolemia and smoking did not show an effect in uni- and multivariate analysis. In patients with PAOD the number of BM was lower than without PAOD. This was the case independent from cerebral microangiopathy but did not persist in multivariate analysis. From this first screening approach vascular risk factors do not appear to strongly influence brain metastasation. However, larger prospective multi-centric studies with better characterized severity of vascular risk are needed to more accurately detect effects of individual factors. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Insights into Intrinsic Brain Networks based on Graph Theory and PET in right- compared to left-sided Temporal Lobe Epilepsy.

    Science.gov (United States)

    Vanicek, Thomas; Hahn, Andreas; Traub-Weidinger, Tatjana; Hilger, Eva; Spies, Marie; Wadsak, Wolfgang; Lanzenberger, Rupert; Pataraia, Ekaterina; Asenbaum-Nan, Susanne

    2016-06-28

    The human brain exhibits marked hemispheric differences, though it is not fully understood to what extent lateralization of the epileptic focus is relevant. Preoperative [(18)F]FDG-PET depicts lateralization of seizure focus in patients with temporal lobe epilepsy and reveals dysfunctional metabolic brain connectivity. The aim of the present study was to compare metabolic connectivity, inferred from inter-regional [(18)F]FDG PET uptake correlations, in right-sided (RTLE; n = 30) and left-sided TLE (LTLE; n = 32) with healthy controls (HC; n = 31) using graph theory based network analysis. Comparing LTLE and RTLE and patient groups separately to HC, we observed higher lobar connectivity weights in RTLE compared to LTLE for connections of the temporal and the parietal lobe of the contralateral hemisphere (CH). Moreover, especially in RTLE compared to LTLE higher local efficiency were found in the temporal cortices and other brain regions of the CH. The results of this investigation implicate altered metabolic networks in patients with TLE specific to the lateralization of seizure focus, and describe compensatory mechanisms especially in the CH of patients with RTLE. We propose that graph theoretical analysis of metabolic connectivity using [(18)F]FDG-PET offers an important additional modality to explore brain networks.

  6. When and Why Did Brains Break Symmetry?

    Directory of Open Access Journals (Sweden)

    Lesley J. Rogers

    2015-12-01

    Full Text Available Asymmetry of brain function is known to be widespread amongst vertebrates, and it seems to have appeared very early in their evolution. In fact, recent evidence of functional asymmetry in invertebrates suggests that even small brains benefit from the allocation of different functions to the left and right sides. This paper discusses the differing functions of the left and right sides of the brain, including the roles of the left and right antennae of bees (several species in both short- and long-term recall of olfactory memories and in social behaviour. It considers the likely advantages of functional asymmetry in small and large brains and whether functional asymmetry in vertebrates and invertebrates is analogous or homologous. Neural or cognitive capacity can be enhanced both by the evolution of a larger brain and by lateralization of brain function: a possible reason why both processes occur side-by-side is offered.

  7. Cerebral radiation necrosis: vascular and glial features

    Energy Technology Data Exchange (ETDEWEB)

    Husain, M M; Garcia, J H

    1976-12-21

    Glial and vascular abnormalities in brain, simulating intracranial neoplasia, are described in a patient who received radiation to the pituitary region for treatment of an adenoma, 13 months before death. In addition to the expected changes of cerebral radionecrosis, four interesting features are cited: (1) diffuse hyperplasia of capillaries in the cerebral cortex with marked endothelial hypertrophy; (2) abundant, large multipolar bizarre cells in the perivascular connective tissues; (3) focal astrocytic proliferation with many cells resembling either Alzheimer type I astrocytes or neoplastic cells, and (4) radiation changes in the non-irradiated brain.

  8. An Investigation of the Differences and Similarities between Generated Small-World Networks for Right- and Left-Hand Motor Imageries.

    Science.gov (United States)

    Zhang, Jiang; Li, Yuyao; Chen, Huafu; Ding, Jurong; Yuan, Zhen

    2016-11-04

    In this study, small-world network analysis was performed to identify the similarities and differences between functional brain networks for right- and left-hand motor imageries (MIs). First, Pearson correlation coefficients among the nodes within the functional brain networks from healthy subjects were calculated. Then, small-world network indicators, including the clustering coefficient, the average path length, the global efficiency, the local efficiency, the average node degree, and the small-world index, were generated for the functional brain networks during both right- and left-hand MIs. We identified large differences in the small-world network indicators between the functional networks during MI and in the random networks. More importantly, the functional brain networks underlying the right- and left-hand MIs exhibited similar small-world properties in terms of the clustering coefficient, the average path length, the global efficiency, and the local efficiency. By contrast, the right- and left-hand MI brain networks showed differences in small-world characteristics, including indicators such as the average node degree and the small-world index. Interestingly, our findings also suggested that the differences in the activity intensity and range, the average node degree, and the small-world index of brain networks between the right- and left-hand MIs were associated with the asymmetry of brain functions.

  9. Incidental ferumoxytol artifacts in clinical brain MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bowser, Bruce A.; Campeau, Norbert G.; Carr, Carrie M.; Diehn, Felix E.; McDonald, Jennifer S.; Miller, Gary M.; Kaufmann, Timothy J. [Mayo Clinic, Department of Radiology, Rochester, MN (United States)

    2016-11-15

    Ferumoxytol (Feraheme) is a parenteral therapy approved for treatment of iron deficiency anemia. The product insert for ferumoxytol states that it may affect the diagnostic ability of MRI for up to 3 months. However, the expected effects may not be commonly recognized among clinical neuroradiologists. Our purpose is to describe the artifacts we have seen at our institution during routine clinical practice. We reviewed the patients at our institution that had brain MRI performed within 90 days of receiving intravenous ferumoxytol. The imaging was reviewed for specific findings, including diffusion-weighted imaging vascular susceptibility artifact, gradient-echo echo-planar T2*-weighted vascular susceptibility artifact, SWI/SWAN vascular susceptibility artifact, hypointense vascular signal on T2-weighted images, pre-gadolinium contrast vascular enhancement on magnetization-prepared rapid acquisition gradient echo (MPRAGE) imaging, and effects on post-gadolinium contrast T1 imaging. Multiple artifacts were observed in patients having a brain MRI within 3 days of receiving intravenous ferumoxytol. These included susceptibility artifact on DWI, GRE, and SWAN/SWI imaging, pre-gadolinium contrast increased vascular signal on MPRAGE imaging, and decreased expected enhancement on post-gadolinium contrast T1-weighted imaging. Ferumoxytol can create imaging artifacts which complicate clinical interpretation when brain MRI is performed within 3 days of administration. Recognition of the constellation of artifacts produced by ferumoxytol is important in order to obviate additional unnecessary examinations and mitigate errors in interpretation. (orig.)

  10. Why did humans develop a large brain?

    OpenAIRE

    Muscat Baron, Yves

    2012-01-01

    "Of all animals, man has the largest brain in proportion to his size"- Aristotle. Dr Yves Muscat Baron shares his theory on how humans evolved large brains. The theory outlines how gravity could have helped humans develop a large brain- the author has named the theory 'The Gravitational Vascular Theory'. http://www.um.edu.mt/think/why-did-humans-develop-a-large-brain/

  11. In Search of...Brain-Based Education.

    Science.gov (United States)

    Bruer, John T.

    1999-01-01

    Debunks two ideas appearing in brain-based education articles: the educational significance of brain laterality (right brain versus left brain) and claims for a sensitive period of brain development in young children. Brain-based education literature provides a popular but misleading mix of fact, misinterpretation, and fantasy. (47 references (MLH)

  12. The Lateralizer: A Tool for Students to Explore the Divided Brain

    Science.gov (United States)

    Motz, Benjamin A.; James, Karin H.; Busey, Thomas A.

    2012-01-01

    Despite a profusion of popular misinformation about the left brain and right brain, there are functional differences between the left and right cerebral hemispheres in humans. Evidence from split-brain patients, individuals with unilateral brain damage, and neuroimaging studies suggest that each hemisphere may be specialized for certain cognitive…

  13. Brain Research and Learning.

    Science.gov (United States)

    Claycomb, Mary

    Current research on brain activity has many implications for educators. The triune brain concept and the left and right hemisphere concepts are among the many complex theories evolving from experimentation and observation. The triune brain concept suggests that the human forebrain has expanded while retaining three structurally unique formations…

  14. Isquemia cerebral como manifestación inicial de un mixoma atrial izquierdo: Reporte de un caso Brain ischemia as initial sign of a left atrial myxoma: Report of one case

    Directory of Open Access Journals (Sweden)

    Luis F Osio

    2008-04-01

    Full Text Available Los tumores primarios del corazón son raros; 75% de éstos son benignos y cerca de la mitad de los benignos son mixomas que, en la mayoría de los casos, se encuentran en las cavidades izquierdas. Las manifestaciones clínicas de los mixomas dependen del sitio de localización del tumor. Sin embargo, se afirma que la isquemia cerebral es la manifestación clínica inicial en un tercio de los mixomas atriales. Se presenta el caso de un paciente de género masculino, de 65 años de edad, en quien la primera manifestación clínica de mixoma atrial fue un evento cerebral vascular isquémico.Primary heart tumors are rare; 75% of them are benign and almost half of the benign ones are mixomas that in most cases are located in the left cavities. Clinical manifestations of myxomas depend on its localization site. Nevertheless, it is accepted that brain ischemia is the initial clinical manifestation in a third of atrial myxomas. The case of a 65 years old male patient in whom the first clinical manifestation of an atrial myxoma was an ischemic cerebrovascular event, is presented.

  15. Non-invasive detection and quantification of brain microvascular deficits by near-infrared spectroscopy in a rat model of Vascular Cognitive Impairment

    Science.gov (United States)

    Hallacoglu, Bertan; Sassaroli, Angelo M.; Rosenberg, Irwin H.; Troen, Aron; Fantini, Sergio

    2011-02-01

    Structural abnormalities in brain microvasculature are commonly associated with Alzheimer's Disease and other dementias. However, the extent to which structural microvascular abnormalities cause functional impairments in brain circulation and thereby to cognitive impairment is unclear. Non-invasive, near-infrared spectroscopy (NIRS) methods can be used to determine the absolute hemoglobin concentration and saturation in brain tissue, from which additional parameters such as cerebral blood volume (a theoretical correlate of brain microvascular density) can be derived. Validating such NIRS parameters in animal models, and understanding their relationship to cognitive function is an important step in the ultimate application of these methods to humans. To this end we applied a non-invasive multidistance NIRS method to determine the absolute concentration and saturation of cerebral hemoglobin in rat, by separately measuring absorption and reduced scattering coefficients without relying on pre- or post-correction factors. We applied this method to study brain circulation in folate deficient rats, which express brain microvascular pathology1 and which we have shown to develop cognitive impairment.2 We found absolute brain hemoglobin concentration ([HbT]) and oxygen saturation (StO2) to be significantly lower in folate deficient rats (n=6) with respect to control rats (n=5) (for [HbT]: 73+/-10 μM vs. 95+/-14 μM for StO2: 55%+/-7% vs. 66% +/-4%), implicating microvascular pathology and diminished oxygen delivery as a mechanism of cognitive impairment. More generally, our study highlights how noninvasive, absolute NIRS measurements can provide unique insight into the pathophysiology of Vascular Cognitive Impairment. Applying this method to this and other rat models of cognitive impairment will help to validate physiologically meaningful NIRS parameters for the ultimate goal of studying cerebral microvascular disease and cognitive decline in humans.

  16. Anatomic variations in vascular and collecting systems of kidneys from deceased donors.

    Science.gov (United States)

    Costa, H C; Moreira, R J; Fukunaga, P; Fernandes, R C; Boni, R C; Matos, A C

    2011-01-01

    Nephroureterectomy for transplantation has increased owing to the greater number of deceased donors. Anatomic variations may complicate the procedure or, if unrecognized, compromise the viability of kidneys for transplantation. We reviewed 254 surgical descriptions of nephroureterectomy specimens from January 2008 to December 2009. All organs collected according by standard techniques were evaluated for age, cause of death, renal function, frequency of injury during the procedure, as well as variations in the vascular and collecting systems. The mean donor age was 42 years (range, 2-74). The mean serum creatinine was 1.2 mg/dL (range, 1.0-7.0). The causes of death were cerebrovascular cause (stroke; n = 130), traumatic brain injury (n = 81) or other cause (n = 43). Among the anatomic variations: 8.6% (n = 22) were right arterial anatomical variations: 19 cases with 2 arteries and 3 cases with 3 arteries. In 25 cases (9.8%) the identified variation was the left artery: 2 arteries (n = 23), 3 arteries (n = 1) and 4 arteries (n = 1). We observed 9.8% on right side and 1.5% on left side venous anatomic variations, including 24 cases with 2 veins on the right side and 4 cases with 2 veins on the left side. Three cases of a retroaortic left renal vein and 1 case of a retro necklace vein (anterior and posterior to the aorta). Two cases of ureteral duplication were noted on the left and 1 on the right kidney. There were 3 horseshoe and 1 pelvic kidney. In 7.5% of cases, an injury to the graft included ureteral (n = 3), arterial (n = 10), or venous (n = 6). The most common anatomic variation was arterial (17.8%). Duplication of the renal vein was more frequent on the right. The high incidences of anatomic variations require more attention in the dissection of the renal hilum to avoid an injury that may compromise the graft. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Incidental Anatomic Finding of Celiacomesenteric Trunk Associated with 'Nutcracker Phenomenon,' or Compression of the Left Renal Vein.

    Science.gov (United States)

    Peterson, Joshua; Hage, Anthony N; Diljak, Stephan; Long, Benjamin D; Marcusa, Daniel P; Stribley, John M; Brzezinski, David W; Eliason, Jonathan

    2017-12-15

    BACKGROUND Celiacomesenteric trunk (CMT) is a very rare anatomic finding in which the celiac artery and the superior mesenteric artery (SMA) originate from the abdominal aorta through a common trunk. Clinical associations with CMT include arterial aneurysm, thrombosis, and celiac artery compression. However, an association between CMT and abdominal venous congestion caused by left renal vein compression, or 'nutcracker phenomenon,' has not been previously reported. CASE REPORT A 91-year-old woman, who died from a cerebrovascular accident (CVA), underwent a cadaveric examination at our medical school. On examination of the abdomen, there was an incidental finding of CMT. The arterial and venous diameters were measured, and vascular histopathology was undertaken. The vascular anatomy was consistent with CMT type 1-b. Nutcracker phenomenon (NCP) (left renal vein compression) was seen anatomically as dilatation and engorgement of the left renal vein, relative to the right renal vein (10.77±0.13 mm vs. 4.49±0.56 mm, respectively), and dilatation and engorgement of the left ovarian vein, relative to the right ovarian vein (4.37±0.15 mm vs. 1.06±0.09 mm, respectively) with left ovarian varicocele. The aortoceliac angle (ACA) and the aortomesenteric angle (AMA) approached zero degrees. CONCLUSIONS We have described a rare anatomic finding of CMT that created an acute AMA and NCP. Awareness of this rare association between CMT and NCP by clinicians, vascular surgeons, and radiologists may be of value in the future evaluation and surgical management of patients who present clinically with 'nutcracker syndrome.'

  18. Hypertension induces brain β-amyloid accumulation, cognitive impairment, and memory deterioration through activation of receptor for advanced glycation end products in brain vasculature.

    Science.gov (United States)

    Carnevale, Daniela; Mascio, Giada; D'Andrea, Ivana; Fardella, Valentina; Bell, Robert D; Branchi, Igor; Pallante, Fabio; Zlokovic, Berislav; Yan, Shirley Shidu; Lembo, Giuseppe

    2012-07-01

    Although epidemiological data associate hypertension with a strong predisposition to develop Alzheimer disease, no mechanistic explanation exists so far. We developed a model of hypertension, obtained by transverse aortic constriction, leading to alterations typical of Alzheimer disease, such as amyloid plaques, neuroinflammation, blood-brain barrier dysfunction, and cognitive impairment, shown here for the first time. The aim of this work was to investigate the mechanisms involved in Alzheimer disease of hypertensive mice. We focused on receptor for advanced glycation end products (RAGE) that critically regulates Aβ transport at the blood-brain barrier and could be influenced by vascular factors. The hypertensive challenge had an early and sustained effect on RAGE upregulation in brain vessels of the cortex and hippocampus. Interestingly, RAGE inhibition protected from hypertension-induced Alzheimer pathology, as showed by rescue from cognitive impairment and parenchymal Aβ deposition. The increased RAGE expression in transverse aortic coarctation mice was induced by increased circulating advanced glycation end products and sustained by their later deposition in brain vessels. Interestingly, a daily treatment with an advanced glycation end product inhibitor or antioxidant prevented the development of Alzheimer traits. So far, Alzheimer pathology in experimental animal models has been recognized using only transgenic mice overexpressing amyloid precursor. This is the first study demonstrating that a chronic vascular insult can activate brain vascular RAGE, favoring parenchymal Aβ deposition and the onset of cognitive deterioration. Overall we demonstrate that RAGE activation in brain vessels is a crucial pathogenetic event in hypertension-induced Alzheimer disease, suggesting that inhibiting this target can limit the onset of vascular-related Alzheimer disease.

  19. Kcne4 Deletion Sex-Dependently Alters Vascular Reactivity

    DEFF Research Database (Denmark)

    Abbott, Geoffrey W; Jepps, Thomas A

    2016-01-01

    transcripts, with no striking sex-specific differences. However, Kv7.4 protein expression in females was twice that in males, and was reduced in both sexes by Kcne4 deletion. Our findings confirm a crucial role for KCNE4 in regulation of Kv7 channel activity to modulate vascular tone, and provide the first......Voltage-gated potassium (Kv) channels formed by Kv7 (KCNQ) α-subunits are recognized as crucial for vascular smooth muscle function, in addition to their established roles in the heart (Kv7.1) and the brain (Kv7.2-5). In vivo, Kv7 α-subunits are often regulated by KCNE subfamily ancillary (β...... known molecular mechanism for sex-specificity of this modulation that has important implications for vascular reactivity and may underlie sex-specific susceptibility to cardiovascular diseases....

  20. Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla

    DEFF Research Database (Denmark)

    Larsson, Henrik B W; Courivaud, Frédéric; Rostrup, Egill

    2009-01-01

    Assessment of vascular properties is essential to diagnosis and follow-up and basic understanding of pathogenesis in brain tumors. In this study, a procedure is presented that allows concurrent estimation of cerebral perfusion, blood volume, and blood-brain permeability from dynamic T(1)-weighted...... on a pixel-by-pixel basis of cerebral perfusion, cerebral blood volume, and blood-brain barrier permeability.......Assessment of vascular properties is essential to diagnosis and follow-up and basic understanding of pathogenesis in brain tumors. In this study, a procedure is presented that allows concurrent estimation of cerebral perfusion, blood volume, and blood-brain permeability from dynamic T(1)-weighted...... imaging of a bolus of a paramagnetic contrast agent passing through the brain. The methods are applied in patients with brain tumors and in healthy subjects. Perfusion was estimated by model-free deconvolution using Tikhonov's method (gray matter/white matter/tumor: 72 +/- 16/30 +/- 8/56 +/- 45 mL/100 g...

  1. Headache and Vascular Events with Brain Tumors

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-05-01

    Full Text Available Investigators at the Children's Hospital of Philadelphia, PA, performed a retrospective study of 265 children with brain tumors who received cranial irradiation and developed severe recurrent headache.

  2. Brain volume reductions in adolescent heavy drinkers.

    Science.gov (United States)

    Squeglia, Lindsay M; Rinker, Daniel A; Bartsch, Hauke; Castro, Norma; Chung, Yoonho; Dale, Anders M; Jernigan, Terry L; Tapert, Susan F

    2014-07-01

    Brain abnormalities in adolescent heavy drinkers may result from alcohol exposure, or stem from pre-existing neural features. This longitudinal morphometric study investigated 40 healthy adolescents, ages 12-17 at study entry, half of whom (n=20) initiated heavy drinking over the 3-year follow-up. Both assessments included high-resolution magnetic resonance imaging. FreeSurfer was used to segment brain volumes, which were measured longitudinally using the newly developed quantitative anatomic regional change analysis (QUARC) tool. At baseline, participants who later transitioned into heavy drinking showed smaller left cingulate, pars triangularis, and rostral anterior cingulate volume, and less right cerebellar white matter volumes (pteens. Over time, participants who initiated heavy drinking showed significantly greater volume reduction in the left ventral diencephalon, left inferior and middle temporal gyrus, and left caudate and brain stem, compared to substance-naïve youth (pbrain regions in future drinkers and greater brain volume reduction in subcortical and temporal regions after alcohol use was initiated. This is consistent with literature showing pre-existing cognitive deficits on tasks recruited by frontal regions, as well as post-drinking consequences on brain regions involved in language and spatial tasks. Published by Elsevier Ltd.

  3. Notification of brain death in the hospital

    Directory of Open Access Journals (Sweden)

    Bruna Soares de Jesus Souza

    2015-05-01

    Full Text Available Objective: to identifying brain death in the hospital. Methods: it is a cross sectional and quantitative study which analyzed secondary data extracted from the notified brain death registers and from the medical records of the eligible patients. The data were processed and analyzed through descriptive statistics and comparisons. Results: of the 64 cases of notifications, the male gender predominated (67.2% within the age range from 40 to 59 years (64.1%. There was a greater proportion (71.8% of causes of death related to Hemorrhagic Cerebral Vascular Accident and Traumatic Brain Injury caused by motorcycle accident, showing statistically significant difference (p<0.05 regarding the gender, age and location. Conclusion: the Hemorrhagic Cerebral Vascular Accident was the most prevalent cause of notification of brain death and the Intensive Therapy Unit was the most notified venue.

  4. A Quick Tour of the Brain.

    Science.gov (United States)

    Hart, Leslie

    1983-01-01

    Using a question-and-answer format, the author discusses brain research, its relationship to existing learning theory, left- and right-brain differences and their relationship to logical thinking, brain growth spurts, learning styles, and the effects of future brain knowledge on learning, especially on schools' development of brain-compatible…

  5. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure.

    Science.gov (United States)

    Cauley, Edmund; Wang, Xin; Dyavanapalli, Jhansi; Sun, Ke; Garrott, Kara; Kuzmiak-Glancy, Sarah; Kay, Matthew W; Mendelowitz, David

    2015-10-01

    Hypertension, cardiac hypertrophy, and heart failure (HF) are widespread and debilitating cardiovascular diseases that affect nearly 23 million people worldwide. A distinctive hallmark of these cardiovascular diseases is autonomic imbalance, with increased sympathetic activity and decreased parasympathetic vagal tone. Recent device-based approaches, such as implantable vagal stimulators that stimulate a multitude of visceral sensory and motor fibers in the vagus nerve, are being evaluated as new therapeutic approaches for these and other diseases. However, little is known about how parasympathetic activity to the heart is altered with these diseases, and this lack of knowledge is an obstacle in the goal of devising selective interventions that can target and selectively restore parasympathetic activity to the heart. To identify the changes that occur within the brain stem to diminish the parasympathetic cardiac activity, left ventricular hypertrophy was elicited in rats by aortic pressure overload using a transaortic constriction approach. Cardiac vagal neurons (CVNs) in the brain stem that generate parasympathetic activity to the heart were identified with a retrograde tracer and studied using patch-clamp electrophysiological recordings in vitro. Animals with left cardiac hypertrophy had diminished excitation of CVNs, which was mediated both by an augmented frequency of spontaneous inhibitory GABAergic neurotransmission (with no alteration of inhibitory glycinergic activity) as well as a diminished amplitude and frequency of excitatory neurotransmission to CVNs. Opportunities to alter these network pathways and neurotransmitter receptors provide future targets of intervention in the goal to restore parasympathetic activity and autonomic balance to the heart in cardiac hypertrophy and other cardiovascular diseases. Copyright © 2015 the American Physiological Society.

  6. A GSK-3β Inhibitor Protects Against Radiation Necrosis in Mouse Brain

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiaoyu [Department of Chemistry, Washington University, St. Louis, Missouri (United States); Perez-Torres, Carlos J. [Department of Radiology, Washington University, St. Louis, Missouri (United States); Thotala, Dinesh [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Engelbach, John A. [Department of Radiology, Washington University, St. Louis, Missouri (United States); Yuan, Liya [Department of Neurosurgery, Washington University, St. Louis, Missouri (United States); Cates, Jeremy [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Gao, Feng [Division of Biostatistics, Washington University, St. Louis, Missouri (United States); Alvin J. Siteman Cancer Center, Washington University, St. Louis, Missouri (United States); Drzymala, Robert E.; Rich, Keith M. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Department of Neurosurgery, Washington University, St. Louis, Missouri (United States); Schmidt, Robert E. [Department of Neuropathology, Washington University, St. Louis, Missouri (United States); Ackerman, Joseph J.H. [Department of Chemistry, Washington University, St. Louis, Missouri (United States); Department of Radiology, Washington University, St. Louis, Missouri (United States); Department of Internal Medicine, Washington University, St. Louis, Missouri (United States); Alvin J. Siteman Cancer Center, Washington University, St. Louis, Missouri (United States); Hallahan, Dennis E. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Alvin J. Siteman Cancer Center, Washington University, St. Louis, Missouri (United States); Garbow, Joel R., E-mail: garbow@wustl.edu [Department of Radiology, Washington University, St. Louis, Missouri (United States); Alvin J. Siteman Cancer Center, Washington University, St. Louis, Missouri (United States)

    2014-07-15

    Purpose: To quantify the effectiveness of SB415286, a specific inhibitor of GSK-3β, as a neuroprotectant against radiation-induced central nervous system (brain) necrosis in a mouse model. Methods and Materials: Cohorts of mice were treated with SB415286 or dimethyl sulfoxide (DMSO) prior to irradiation with a single 45-Gy fraction targeted to the left hemisphere (brain) using a gamma knife machine. The onset and progression of radiation necrosis (RN) were monitored longitudinally by noninvasive in vivo small-animal magnetic resonance imaging (MRI) beginning 13 weeks postirradiation. MRI-derived necrotic volumes for SB415286- and DMSO-treated mice were compared. MRI results were supported by correlative histology. Results: Mice treated with SB415286 showed significant protection from radiation-induced necrosis, as determined by in vivo MRI with histologic validation. MRI-derived necrotic volumes were significantly smaller at all postirradiation time points in SB415286-treated animals. Although the irradiated hemispheres of the DMSO-treated mice demonstrated many of the classic histologic features of RN, including fibrinoid vascular necrosis, vascular telangiectasia, hemorrhage, and tissue loss, the irradiated hemispheres of the SB415286-treated mice consistently showed only minimal tissue damage. These studies confirmed that treatment with a GSK-3β inhibitor dramatically reduced delayed time-to-onset necrosis in irradiated brain. Conclusions: The unilateral cerebral hemispheric stereotactic radiation surgery mouse model in concert with longitudinal MRI monitoring provided a powerful platform for studying the onset and progression of RN and for developing and testing new neuroprotectants. Effectiveness of SB415286 as a neuroprotectant against necrosis motivates potential clinical trials of it or other GSK-3β inhibitors.

  7. A GSK-3β Inhibitor Protects Against Radiation Necrosis in Mouse Brain

    International Nuclear Information System (INIS)

    Jiang, Xiaoyu; Perez-Torres, Carlos J.; Thotala, Dinesh; Engelbach, John A.; Yuan, Liya; Cates, Jeremy; Gao, Feng; Drzymala, Robert E.; Rich, Keith M.; Schmidt, Robert E.; Ackerman, Joseph J.H.; Hallahan, Dennis E.; Garbow, Joel R.

    2014-01-01

    Purpose: To quantify the effectiveness of SB415286, a specific inhibitor of GSK-3β, as a neuroprotectant against radiation-induced central nervous system (brain) necrosis in a mouse model. Methods and Materials: Cohorts of mice were treated with SB415286 or dimethyl sulfoxide (DMSO) prior to irradiation with a single 45-Gy fraction targeted to the left hemisphere (brain) using a gamma knife machine. The onset and progression of radiation necrosis (RN) were monitored longitudinally by noninvasive in vivo small-animal magnetic resonance imaging (MRI) beginning 13 weeks postirradiation. MRI-derived necrotic volumes for SB415286- and DMSO-treated mice were compared. MRI results were supported by correlative histology. Results: Mice treated with SB415286 showed significant protection from radiation-induced necrosis, as determined by in vivo MRI with histologic validation. MRI-derived necrotic volumes were significantly smaller at all postirradiation time points in SB415286-treated animals. Although the irradiated hemispheres of the DMSO-treated mice demonstrated many of the classic histologic features of RN, including fibrinoid vascular necrosis, vascular telangiectasia, hemorrhage, and tissue loss, the irradiated hemispheres of the SB415286-treated mice consistently showed only minimal tissue damage. These studies confirmed that treatment with a GSK-3β inhibitor dramatically reduced delayed time-to-onset necrosis in irradiated brain. Conclusions: The unilateral cerebral hemispheric stereotactic radiation surgery mouse model in concert with longitudinal MRI monitoring provided a powerful platform for studying the onset and progression of RN and for developing and testing new neuroprotectants. Effectiveness of SB415286 as a neuroprotectant against necrosis motivates potential clinical trials of it or other GSK-3β inhibitors

  8. Improving ideomotor limb apraxia by electrical stimulation of the left posterior parietal cortex.

    Science.gov (United States)

    Bolognini, Nadia; Convento, Silvia; Banco, Elisabetta; Mattioli, Flavia; Tesio, Luigi; Vallar, Giuseppe

    2015-02-01

    Limb apraxia, a deficit of planning voluntary gestures, is most frequently caused by damage to the left hemisphere, where, according to an influential neurofunctional model, gestures are planned, before being executed through the motor cortex of the hemisphere contralateral to the acting hand. We used anodal transcranial direct current stimulation delivered to the left posterior parietal cortex (PPC), the right motor cortex (M1), and a sham stimulation condition, to modulate the ability of six left-brain-damaged patients with ideomotor apraxia, and six healthy control subjects, to imitate hand gestures, and to perform skilled hand movements using the left hand. Transcranial direct current stimulation delivered to the left PPC reduced the time required to perform skilled movements, and planning, but not execution, times in imitating gestures, in both patients and controls. In patients, the amount of decrease of planning times brought about by left PPC transcranial direct current stimulation was influenced by the size of the parietal lobe damage, with a larger parietal damage being associated with a smaller improvement. Of interest from a clinical perspective, left PPC stimulation also ameliorated accuracy in imitating hand gestures in patients. Instead, transcranial direct current stimulation to the right M1 diminished execution, but not planning, times in both patients and healthy controls. In conclusion, by using a transcranial stimulation approach, we temporarily improved ideomotor apraxia in the left hand of left-brain-damaged patients, showing a role of the left PPC in planning gestures. This evidence opens up novel perspectives for the use of transcranial direct current stimulation in the rehabilitation of limb apraxia. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Four cases of small, traumatic hemorrhage in the deep midline portion of the brain

    International Nuclear Information System (INIS)

    Kim, Suho; Tsukahara, Tetsuya; Iwama, Mitsuru; Nishikawa, Michio

    1981-01-01

    Four cases recently encountered are presented in which computerized tomography (CT) demonstrated a small, traumatic hemorrhage in the deep midline portion of the brain. The lesions of hemorrhage revealed by CT were: Case 1, in the septum pellucidum and left lateral ventricle; Case 2, in the Monro's foramen and right lateral ventricle and Case 3, midbrain. These three cases had no other abnormal findings. In addition, a hemorrhage of the corpus callosum and diffuse brain damage were seen in Case 4. These small hemorrhages might be caused not only by the direct damage, but also by a local tendency to bleed due to hystoiogical fragility or the existence of a vascular anomaly, such as AVM or cryptic angioma. The prognoses quod vitam of our cases were relatively better than the previous reports of these hemorrhages, but the prognoses quod functionem were poor. The patients have shown prolonged psychoneurological disorder; these symptoms might be caused by damage to the limbic system. (author)

  10. Enhancing motor network activity using real-time functional MRI neurofeedback of left premotor cortex

    Directory of Open Access Journals (Sweden)

    Theo Ferreira Marins

    2015-12-01

    Full Text Available Neurofeedback by functional Magnetic Resonance Imaging (fMRI is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC, important for motor recovery after brain injury. We investigated (i whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI task while receiving continuous fMRI-neurofeedback, and (ii whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and motor imagery, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke.

  11. Central Pulsatile Pressure and Flow Relationship in the Time and Frequency Domain to Characterise Hydraulic Input to the Brain and Cerebral Vascular Impedance.

    Science.gov (United States)

    Kim, Mi Ok; O'Rourke, Michael F; Adji, Audrey; Avolio, Alberto P

    2016-01-01

    In the time domain, pulsatile flow and pressure can be characterised as the ratio of the late systolic boost of flow or pressure to the pulse amplitude so as to estimate the hydraulic input to the brain. While vascular impedance has been widely used to represent the load presented to the heart by the systemic circulation, it has not been applied to the cerebral circulation.We set out to study the relationship between the pressure and the flow augmentation index (AIx) in the time domain and to determine cerebral vascular impedance using aortic blood pressure and cerebral blood flow waveforms in the frequency domain. Twenty-four young subjects (aged 21-39 years) were recruited; aortic pressure was derived using SphygmoCor from radial pressure. Flow waveforms were recorded from the middle cerebral artery. In three subjects, we performed the Valsalva manoeuvre to investigate their response to physiological intervention. There was a linear relationship between flow and pressure AIx, and cerebral impedance values were similar to those estimated for low resistance vascular beds. Substantial change in pressure and flow wave contour was observed during the Valsalva manoeuvre; however, the relationship in both the time and the frequency domains were unchanged. This confirms that aortic pressure and cerebral flow waveform can be used to study cerebral impedance.

  12. Possible selves in patients with right- versus left-onset Parkinson's disease.

    Science.gov (United States)

    Harris, Erica; McNamara, Patrick; Durso, Raymon

    2017-03-01

    Possible selves can be used to self-regulate and guide behavior towards what is desired to be achieved or avoided in life. Previous work suggests laterality effects exist within the brain regarding approach and avoidance systems to achieve self-regulation. A modified version of the possible selves task was administered to 45 patients with PD (22 right-onset and 23 left-onset) and 25 community dwelling control subjects (CS). Only 11.1% of patients exhibited balance among their hoped-for and feared possible selves versus 28% of CS. More right-onset patients used a promotion strategy whereas more left-onset patients used a prevention strategy. Patients with left-onset PD thought more about their feared selves, exhibiting reduced goal-directed behavior. Findings among the left-onset group indicate relative dependence of self-regulation on right-sided avoidance brain systems. This may point to an inability to move away from negative outcomes and to work towards rewarding outcomes, which could affect psychological health.

  13. Childhood Brain Stem Glioma Treatment

    Science.gov (United States)

    ... The tentorium separates the supratentorium from the infratentorium (right panel). The skull and meninges protect the brain and spinal cord (left panel). Brain tumors are the second most common ...

  14. Neurovascular regulation in the ischemic brain.

    Science.gov (United States)

    Jackman, Katherine; Iadecola, Costantino

    2015-01-10

    The brain has high energetic requirements and is therefore highly dependent on adequate cerebral blood supply. To compensate for dangerous fluctuations in cerebral perfusion, the circulation of the brain has evolved intrinsic safeguarding measures. The vascular network of the brain incorporates a high degree of redundancy, allowing the redirection and redistribution of blood flow in the event of vascular occlusion. Furthermore, active responses such as cerebral autoregulation, which acts to maintain constant cerebral blood flow in response to changing blood pressure, and functional hyperemia, which couples blood supply with synaptic activity, allow the brain to maintain adequate cerebral perfusion in the face of varying supply or demand. In the presence of stroke risk factors, such as hypertension and diabetes, these protective processes are impaired and the susceptibility of the brain to ischemic injury is increased. One potential mechanism for the increased injury is that collateral flow arising from the normally perfused brain and supplying blood flow to the ischemic region is suppressed, resulting in more severe ischemia. Approaches to support collateral flow may ameliorate the outcome of focal cerebral ischemia by rescuing cerebral perfusion in potentially viable regions of the ischemic territory.

  15. Subclavian artery aneurysm in a patient with vascular Ehlers-Danlos syndrome.

    Science.gov (United States)

    Yasuda, Shota; Imoto, Kiyotaka; Uchida, Keiji; Uranaka, Yasuko; Kurosawa, Kenji; Masuda, Munetaka

    2016-02-01

    We describe our experience of surgical treatment in a 28-year-old woman with vascular Ehlers-Danlos syndrome. A right subclavian artery aneurysm was detected. The right vertebral artery arose from the aneurysm. Digital subtraction angiography showed interruption of the left vertebral artery. The aneurysm was excised and the right vertebral artery was anastomosed end-to-side to the right common carotid artery under deep hypothermia and circulatory arrest. The patient remained very well 4 years after surgery, with no late vascular complication. © The Author(s) 2014.

  16. Vascular anomalies of the cerebellopontine angle

    International Nuclear Information System (INIS)

    Papanagiotou, P.; Grunwald, I.Q.; Politi, M.; Struffert, T.; Ahlhelm, F.; Reith, W.

    2006-01-01

    Vascular anomalies of the cerebellopontine angle are rare compared to tumors in this area. Irritation of the trigeminal, facial, or vestibulocochlear nerve may cause trigeminal neuralgia, hemifacial spasm and vertigo, or tinnitus accordingly. Vessel loops in the cerebellopontine cisterns may cause compression at the root entry or exit zone of the cranial nerves V, VII, and VIII, a phenomenon which is called ''vascular loop syndrome.'' Megadolichobasilar artery and aneurysms of the vertebrobasilar system can also lead to dislocation and compression of the cranial nerves and brain stem. Three-dimensional CISS MR imaging and MR angiography are useful in the detection of neurovascular compression. Microvascular decompression is an effective surgical procedure in the management of compression syndromes of the cranial nerves V, VII, and VIII. (orig.) [de

  17. “Anomalous right pulmonary artery left atrial fistula”: Growth in vain

    Directory of Open Access Journals (Sweden)

    Vishal Kumar Jain

    2015-12-01

    Full Text Available We report a case of direct communication between the right pulmonary artery and the left atrium; a rare cause of central cyanosis in 10 year old boy, emphasizing the role of multislice computed tomography scanner in delineating the complex vascular abnormality over more invasive conventional angiography.

  18. Protection of Vascular Endothelial Growth Factor to Brain Edema Following Intracerebral Hemorrhage and Its Involved Mechanisms: Effect of Aquaporin-4.

    Directory of Open Access Journals (Sweden)

    Heling Chu

    Full Text Available Vascular endothelial growth factor (VEGF has protective effects on many neurological diseases. However, whether VEGF acts on brain edema following intracerebral hemorrhage (ICH is largely unknown. Our previous study has shown aquaporin-4 (AQP4 plays an important role in brain edema elimination following ICH. Meanwhile, there is close relationship between VEGF and AQP4. In this study, we aimed to test effects of VEGF on brain edema following ICH and examine whether they were AQP4 dependent. Recombinant human VEGF165 (rhVEGF165 was injected intracerebroventricularly 1 d after ICH induced by microinjecting autologous whole blood into striatum. We detected perihemotomal AQP4 protein expression, then examined the effects of rhVEGF165 on perihemotomal brain edema at 1 d, 3 d, and 7 d after injection in wild type (AQP4(+/+ and AQP4 knock-out (AQP4(-/- mice. Furthermore, we assessed the possible signal transduction pathways activated by VEGF to regulate AQP4 expression via astrocyte cultures. We found perihemotomal AQP4 protein expression was highly increased by rhVEGF165. RhVEGF165 alleviated perihemotomal brain edema in AQP4(+/+ mice at each time point, but had no effect on AQP4(-/- mice. Perihemotomal EB extravasation was increased by rhVEGF165 in AQP4(-/- mice, but not AQP4(+/+ mice. RhVEGF165 reduced neurological deficits and increased Nissl's staining cells surrounding hemotoma in both types of mice and these effects were related to AQP4. RhVEGF165 up-regulated phospharylation of C-Jun amino-terminal kinase (p-JNK and extracellular signal-regulated kinase (p-ERK and AQP4 protein in cultured astrocytes. The latter was inhibited by JNK and ERK inhibitors. In conclusion, VEGF reduces neurological deficits, brain edema, and neuronal death surrounding hemotoma but has no influence on BBB permeability. These effects are closely related to AQP4 up-regulation, possibly through activating JNK and ERK pathways. The current study may present new insights to

  19. Brain size and urbanization in birds

    Institute of Scientific and Technical Information of China (English)

    Anders; Pape; M?ller; Johannes; Erritz?e

    2015-01-01

    Background: Brain size may affect the probability of invasion of urban habitats if a relatively larger brain entails superior ability to adapt to novel environments. However, once urbanized urban environments may provide poor quality food that has negative consequences for normal brain development resulting in an excess of individuals with small brains.Methods: Here we analyze the independent effects of mean, standard deviation and skewness in brain mass for invasion of urban habitats by 108 species of birds using phylogenetic multiple regression analyses weighted by sample size.Results: There was no significant difference in mean brain mass between urbanized and non-urbanized species or between urban and rural populations of the same species, and mean brain mass was not significantly correlated with time since urbanization. Bird species that became urbanized had a greater standard deviation in brain mass than non-urbanized species, and the standard deviation in brain mass increased with time since urbanization. Brain mass was significantly left skewed in species that remained rural, while there was no significant skew in urbanized species. The degree of left skew was greater in urban than in rural populations of the same species, and successfully urbanized species decreased the degree of left skew with time since urbanization. This is consistent with the hypothesis that sub-optimal brain development was more common in rural habitats resulting in disproportionately many individuals with very smal brains.Conclusions: These findings do not support the hypothesis that large brains promote urbanization, but suggest that skewness has played a role in the initial invasion of urban habitats, and that variance and skew in brain mass have increased as species have become urbanized.

  20. Brain size and urbanization in birds

    Institute of Scientific and Technical Information of China (English)

    Anders Pape Mller; Johannes Erritze

    2015-01-01

    Background:Brain size may affect the probability of invasion of urban habitats if a relatively larger brain entails superior ability to adapt to novel environments. However, once urbanized urban environments may provide poor quality food that has negative consequences for normal brain development resulting in an excess of individuals with small brains. Methods:Here we analyze the independent effects of mean, standard deviation and skewness in brain mass for invasion of urban habitats by 108 species of birds using phylogenetic multiple regression analyses weighted by sample size. Results:There was no significant difference in mean brain mass between urbanized and non-urbanized species or between urban and rural populations of the same species, and mean brain mass was not significantly correlated with time since urbanization. Bird species that became urbanized had a greater standard deviation in brain mass than non-urbanized species, and the standard deviation in brain mass increased with time since urbanization. Brain mass was significantly left skewed in species that remained rural, while there was no significant skew in urbanized species. The degree of left skew was greater in urban than in rural populations of the same species, and successfully urbanized species decreased the degree of left skew with time since urbanization. This is consistent with the hypothesis that sub-optimal brain development was more common in rural habitats resulting in disproportionately many individuals with very smal brains. Conclusions:These findings do not support the hypothesis that large brains promote urbanization, but suggest that skewness has played a role in the initial invasion of urban habitats, and that variance and skew in brain mass have increased as species have become urbanized.

  1. Vascular anastomosis by Argon Laser

    International Nuclear Information System (INIS)

    Gomes, O.M.; Macruz, R.; Armelin, E.; Brum, J.M.G.; Ribeiro, M.P.; Mnitentog, J.; Verginelli, G.; Pileggi, F.; Zerbini, E.J.

    1982-01-01

    Twenty four mongrel dogs, wheighing 13 to 24 kilograms were studied. After anesthesia, intubation and controlled ventilation, they were submitted to three types of vascular anastomosis: Group I - eight dogs with saphenous vein inter-carotid arteries by-pass: Group II - eight dogs with left mammary artery - left anterior descending coronary artery by-pass; Group III - eight dogs with venovenous anastomosis. In all groups 0.8 to 15 watts of Argon Laser power was applied to a total time of 90 to 300 seconds. The lower power for venovenous anastomosis and the greater for the arterial ones. The mean valves of resistence of the Laser anastomosis to pressure induced rupture was 730 mmHg in the immediate post operative study, and superior to 2.500 mmHg 30 days after. No signs of occlusion was demonstrated at the anastomosis sites by the angiographic and anathomo-patological study performed. (Author) [pt

  2. Vascular Contributions to Cognitive Impairment and Dementia

    Science.gov (United States)

    Gorelick, Philip B.; Scuteri, Angelo; Black, Sandra E.; DeCarli, Charles; Greenberg, Steven M.; Iadecola, Costantino; Launer, Lenore J.; Laurent, Stephane; Lopez, Oscar L.; Nyenhuis, David; Petersen, Ronald C.; Schneider, Julie A.; Tzourio, Christophe; Arnett, Donna K.; Bennett, David A.; Chui, Helena C.; Higashida, Randall T.; Lindquist, Ruth; Nilsson, Peter M.; Roman, Gustavo C.; Sellke, Frank W.; Seshadri, Sudha

    2013-01-01

    Background and Purpose This scientific statement provides an overview of the evidence on vascular contributions to cognitive impairment and dementia. Vascular contributions to cognitive impairment and dementia of later life are common. Definitions of vascular cognitive impairment (VCI), neuropathology, basic science and pathophysiological aspects, role of neuroimaging and vascular and other associated risk factors, and potential opportunities for prevention and treatment are reviewed. This statement serves as an overall guide for practitioners to gain a better understanding of VCI and dementia, prevention, and treatment. Methods Writing group members were nominated by the writing group co-chairs on the basis of their previous work in relevant topic areas and were approved by the American Heart Association Stroke Council Scientific Statement Oversight Committee, the Council on Epidemiology and Prevention, and the Manuscript Oversight Committee. The writing group used systematic literature reviews (primarily covering publications from 1990 to May 1, 2010), previously published guidelines, personal files, and expert opinion to summarize existing evidence, indicate gaps in current knowledge, and, when appropriate, formulate recommendations using standard American Heart Association criteria. All members of the writing group had the opportunity to comment on the recommendations and approved the final version of this document. After peer review by the American Heart Association, as well as review by the Stroke Council leadership, Council on Epidemiology and Prevention Council, and Scientific Statements Oversight Committee, the statement was approved by the American Heart Association Science Advisory and Coordinating Committee. Results The construct of VCI has been introduced to capture the entire spectrum of cognitive disorders associated with all forms of cerebral vascular brain injury—not solely stroke—ranging from mild cognitive impairment through fully developed

  3. Single photon emission computed tomography of the brain with a rotating gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Biersack, H J; Knopp, R; Winkler, C; Wappenschmidt, J

    1981-08-01

    In 471 patients SPECT of the brain was performed in addition to conventional serial brain scintigraphy using a rotating gamma camera (GAMMATOME T 9000). 23 patients had tumorous lesions, 26 had vascular lesions, and 422 patients revealed normal brain findings. 5 of the 23 patients with tumorous lesion and 5 of the 12 patients with vascular lesion (anamnesis shorter than 4 weeks) showed positive SPECT results but false negative conventional brain scans. Specificity could be improved up to 98% (412 out of 422 patients) using SPECT and conventional scintigraphy.

  4. Retro-aortic, left inferior renal capsular vein

    Directory of Open Access Journals (Sweden)

    Umberto G Rossi

    2015-01-01

    Full Text Available In our case report, abdominal multi-detector computed tomography was used for the pre-operative anatomy evaluation in a living kidney donor. The early phase of the test revealed normal kidneys in the donor. The vascular phase detected a venous variant on the left side: An inferior renal capsular vein, which had a loop and a retro-aortic course. This preoperative knowledge was crucial for the laparoscopic nephrectomy as a surgical procedure for harvesting kidney from the living donor.

  5. Ben's Plastic Brain

    Science.gov (United States)

    Kaplan, Susan L.

    2010-01-01

    This article shares a story of Ben who as a result of his premature birth, suffered a brain hemorrhage resulting in cerebral palsy, which affected his left side (left hemiparesis) and caused learning disabilities. Despite these challenges, he graduated from college and currently works doing information management for a local biotech start-up…

  6. Let thy left brain know what thy right brain doeth: Inter-hemispheric compensation of functional deficits after brain damage.

    Science.gov (United States)

    Bartolomeo, Paolo; Thiebaut de Schotten, Michel

    2016-12-01

    Recent evidence revealed the importance of inter-hemispheric communication for the compensation of functional deficits after brain damage. This review summarises the biological consequences observed using histology as well as the longitudinal findings measured with magnetic resonance imaging methods in brain damaged animals and patients. In particular, we discuss the impact of post-stroke brain hyperactivity on functional recovery in relation to time. The reviewed evidence also suggests that the proportion of the preserved functional network both in the lesioned and in the intact hemispheres, rather than the simple lesion location, determines the extent of functional recovery. Hence, future research exploring longitudinal changes in patients with brain damage may unveil potential biomarkers underlying functional recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Multiple vascular anomalies involving renal, testicular and suprarenal arteries

    Directory of Open Access Journals (Sweden)

    Suresh Rao

    2015-09-01

    Full Text Available Knowledge of variations of blood vessels of the abdomen is important during operative, diagnostic and endovascular pro- cedures. During routine dissection of the abdominal cavity, we came across multiple vascular anomalies involving renal, suprarenal and testicular arteries. The left kidney was supplied by two renal arteries originating together from the abdomi- nal aorta, and the right kidney was supplied by two accessory renal arteries, one of which was arising from the right renal artery and the other one from the aorta (about 2 inches below the origin of the renal artery. Accessory renal veins were present on both sides. The right testicular artery was arising from the lower accessory renal artery. The left testicular artery was looping around the inferior tributary of the left renal vein, whereby forming a sharp kink. The left middle suprarenal artery was diving into three small branches; the upper two branches were supplying the left suprarenal gland, whereas the lower branch was supplying the left kidney. Furthermore, detailed literature and the clinical and surgical importance of the case are discussed. [Arch Clin Exp Surg 2015; 4(3.000: 168-171

  8. An Analysis of Responses to Defibrotide in the Pulmonary Vascular Bed of the Cat.

    Science.gov (United States)

    Kaye, Alan D; Skonieczny, Brendan D; Kaye, Aaron J; Harris, Zoey I; Luk, Eric J

    2016-01-01

    Defibrotide is a polydisperse mixture of single-stranded oligonucleotides with many pharmacologic properties and multiple actions on the vascular endothelium. Responses to defibrotide and other vasodepressor agents were evaluated in the pulmonary vascular bed of the cat under conditions of controlled pulmonary blood flow and constant left atrial pressure. Lobar arterial pressure was increased to a high steady level with the thromboxane A2 analog U-46619. Under increased-tone conditions, defibrotide caused dose-dependent decreases in lobar arterial pressure without altering systemic arterial and left atrial pressures. Responses to defibrotide were significantly attenuated after the administration of the cyclooxygenase inhibitor sodium meclofenamate. Responses to defibrotide were also significantly attenuated after the administration of both the adenosine 1 and 2 receptor antagonists 8-cyclopentyl-1,3-dimethylxanthine and 8-(3-chlorostyryl)caffeine. Responses to defibrotide were not altered after the administration of the vascular selective adenosine triphosphate-sensitive potassium channel blocker U-37883A, or after the administration of the nitric oxide synthase inhibitor L-N-(1-iminoethyl)-ornithine. These data show that defibrotide has significant vasodepressor activity in the pulmonary vascular bed of the cat. They also suggest that pulmonary vasodilator responses to defibrotide are partially dependent on both the activation of the cyclooxygenase enzyme and adenosine 1 and 2 receptor pathways and independent of the activation of adenosine triphosphate-sensitive potassium channels or the synthesis of nitric oxide in the pulmonary vascular bed of the cat.

  9. Left coronary aneurysmal dilation and subaortic stenosis in a dog.

    Science.gov (United States)

    Hernandez, Juan L; Bélanger, Marie-Claude; Benoit-Biancamano, Marie-Odile; Girard, Christiane; Pibarot, Philippe

    2008-06-01

    A 6-month-old German shepherd dog was referred for evaluation of a cardiac murmur. Upon physical examination, the auscultated heart rate was 120 beats/min, and a grade IV/VI systolic heart murmur with a point of maximal intensity over the left heart base radiating up the neck was heard. The standard echocardiographic examination showed subaortic stenosis and an anechoic tubular structure extending from the sinus of Valsalva to the left ventricular posterior wall. Aneurysmal left coronary artery (CA) was confirmed by angiography. The dog was euthanized and post-mortem examination showed severe dilatation of the proximal left CA and confirmed the subaortic stenosis. Histopathology did not demonstrate abnormalities in the walls of the CA, aorta or pulmonary artery. The exact cause of the CA aneurysmal dilation remains unknown. Subaortic stenosis, elevated coronary vascular resistance or a congenital anomaly may have contributed to the dilation. To our knowledge, coronary aneurysmal dilation has never been described in dogs. Standard echocardiography provides reliable information on coronary anatomy.

  10. DWI and complex brain network analysis predicts vascular cognitive impairment in spontaneous hypertensive rats undergoing executive function tests

    Directory of Open Access Journals (Sweden)

    Xavier eLópez-Gil

    2014-07-01

    Full Text Available The identification of biomarkers of vascular cognitive impairment is urgent for its early diagnosis. The aim of this study was to detect and monitor changes in brain structure and connectivity, and to correlate them with the decline in executive function. We examined the feasibility of early diagnostic magnetic resonance imaging to predict cognitive impairment before onset in an animal model of chronic hypertension: Spontaneously Hypertensive Rats. Cognitive performance was tested in an operant conditioning paradigm that evaluated learning, memory and behavioral flexibility skills. Behavioral tests were coupled with longitudinal diffusion weighted imaging acquired with 126 diffusion gradient directions and 0.3 mm3 isometric resolution at 10, 14, 18, 22, 26 and 40 weeks after birth. Diffusion weighted imaging was analyzed in 2 different ways, by regional characterization of diffusion tensor imaging indices, and by assessing changes in structural brain network organization based on Q-Ball tractography. Already at the first evaluated times, diffusion tensor imaging scalar maps revealed significant differences in many regions, suggesting loss of integrity in white and grey matter of spontaneously hypertensive rats when compared to normotensive control rats. In addition, graph theory analysis of the structural brain network demonstrated a significant decrease of hierarchical modularity, global and local efficacy, with predictive value as shown by regional 3-fold cross validation study. Moreover, these decreases were significantly correlated with the behavioral performance deficits observed at subsequent time points, suggesting that the diffusion weighted imaging and connectivity studies can unravel neuroimaging alterations even overt signs of cognitive impairment become apparent.

  11. SU-D-207A-02: Possible Characterization of the Brain Tumor Vascular Environment by a Novel Strategy of Quantitative Analysis in Dynamic Contrast Enhanced MR Imaging: A Combination of Both Patlak and Logan Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Yee, S; Chinnaiyan, P; Wloch, J; Pirkola, M; Yan, D [Beaumont Health System, Royal Oak, MI (United States)

    2016-06-15

    Purpose: The majority of quantitative analyses involving dynamic contrast enhanced (DCE) MRI have been performed to obtain kinetic parameters such as Ktrans and ve. Such analyses are generally performed assuming a “reversible” tissue compartment, where the tracer is assumed to be rapidly equilibrated between the plasma and tissue compartments. However, some tumor vascular environments may be more suited for a “non-reversible” tissue compartment, where, as with FDG PET imaging, the tracer is continuously deposited into the tissue compartment (or the return back to the plasma compartment is very slow in the imaging time scale). Therefore, Patlak and Logan analyses, which represent tools for the “non-reversible” and “reversible” modeling, respectively, were performed to better characterize the brain tumor vascular environment. Methods: A voxel-by-voxel analysis was performed to generate both Patlak and Logan plots in two brain tumor patients, one with grade III astrocytoma and the other with grade IV astrocytoma or glioblastoma. The slopes of plots and the r-square were then obtained by linear fitting and compared for each voxel. Results: The 2-dimensional scatter plots of Logan (Y-axis) vs. Patlak slopes (X-axis) clearly showed increased Logan slopes for glioblastoma (Figure 3A). The scatter plots of goodness-of-fit (Figure 3B) also suggested glioblastoma, relative to grade III astrocytoma, might consist of more voxels that are kinetically Logan-like (i.e. rapidly equilibrated extravascular space and active vascular environment). Therefore, the enhanced Logan-like behavior (and the Logan slope) in glioblastoma may imply an increased fraction of active vascular environment, while the enhanced Patlak-like behavior implies the vascular environment permitting a relatively slower washout of the tracer. Conclusion: Although further verification is required, the combination of Patlak and Logan analyses in DCE MRI may be useful in characterizing the tumor

  12. Arterial vascularization of the pineal gland.

    Science.gov (United States)

    Kahilogullari, Gokmen; Ugur, Hasan Caglar; Comert, Ayhan; Brohi, Recep Ali; Ozgural, Onur; Ozdemir, Mevci; Karahan, Suleyman Tuna

    2013-10-01

    The arterial vascularization of the pineal gland (PG) remains a debatable subject. This study aims to provide detailed information about the arterial vascularization of the PG. Thirty adult human brains were obtained from routine autopsies. Cerebral arteries were separately cannulated and injected with colored latex. The dissections were carried out using a surgical microscope. The diameters of the branches supplying the PG at their origin and vascularization areas of the branches of the arteries were investigated. The main artery of the PG was the lateral pineal artery, and it originated from the posterior circulation. The other arteries included the medial pineal artery from the posterior circulation and the rostral pineal artery mainly from the anterior circulation. Posteromedial choroidal artery was an important artery that branched to the PG. The arterial supply to the PG was studied comprehensively considering the debate and inadequacy of previously published studies on this issue available in the literature. This anatomical knowledge may be helpful for surgical treatment of pathologies of the PG, especially in children who develop more pathology in this region than adults.

  13. Correlation of vocals and lyrics with left temporal musicogenic epilepsy.

    Science.gov (United States)

    Tseng, Wei-En J; Lim, Siew-Na; Chen, Lu-An; Jou, Shuo-Bin; Hsieh, Hsiang-Yao; Cheng, Mei-Yun; Chang, Chun-Wei; Li, Han-Tao; Chiang, Hsing-I; Wu, Tony

    2018-03-15

    Whether the cognitive processing of music and speech relies on shared or distinct neuronal mechanisms remains unclear. Music and language processing in the brain are right and left temporal functions, respectively. We studied patients with musicogenic epilepsy (ME) that was specifically triggered by popular songs to analyze brain hyperexcitability triggered by specific stimuli. The study included two men and one woman (all right-handed, aged 35-55 years). The patients had sound-triggered left temporal ME in response to popular songs with vocals, but not to instrumental, classical, or nonvocal piano solo versions of the same song. Sentimental lyrics, high-pitched singing, specificity/familiarity, and singing in the native language were the most significant triggering factors. We found that recognition of the human voice and analysis of lyrics are important causal factors in left temporal ME and provide observational evidence that sounds with speech structure are predominantly processed in the left temporal lobe. A literature review indicated that language-associated stimuli triggered ME in the left temporal epileptogenic zone at a nearly twofold higher rate compared with the right temporal region. Further research on ME may enhance understanding of the cognitive neuroscience of music. © 2018 New York Academy of Sciences.

  14. Hemifacial Pain and Hemisensory Disturbance Referred from Occipital Neuralgia Caused by Pathological Vascular Contact of the Greater Occipital Nerve

    OpenAIRE

    Son, Byung-chul; Choi, Jin-gyu

    2017-01-01

    Here we report a unique case of chronic occipital neuralgia caused by pathological vascular contact of the left greater occipital nerve. After 12 months of left-sided, unremitting occipital neuralgia, a hypesthesia and facial pain developed in the left hemiface. The decompression of the left greater occipital nerve from pathological contacts with the occipital artery resulted in immediate relief for hemifacial sensory change and facial pain, as well as chronic occipital neuralgia. Although re...

  15. [Total dream loss secondary to left temporo-occipital brain injury].

    Science.gov (United States)

    Poza, J J; Martí Massó, J F

    2006-04-01

    Recently the case of a woman who reported cessation of dreaming after a bilateral PCA stroke but without REM sleep loss has been reported, suggesting that deep bilateral occipital lobe damage including the right inferior lingual gyrus may represent the "minimal lesion extension" necessary for dream loss. We report the case of a 24-year-old man who ceased dreaming after a unilateral left temporo- occipital hematoma. The polysomnographic characteristics in rapid eyes movements (REM) sleep were otherwise normal. Our patient demonstrates that a unilateral left temporo-occipital injury could be sufficient for losing dreams.

  16. 47-year-old man with left leg numbness.

    Science.gov (United States)

    Mahta, Ali; Kim, Ryan Y; Saad, Ali G; Kesari, Santosh

    2013-03-01

    A 47-year-old white male with a history of uveitis, hypercalcemia and nephrolithiasis presented with acute onset partial seizure. On exam he had decreased sensation to light touch on his left lower extremity. A Brain MRI revealed a right frontal mass, which was initially thought to be a metastatic lesion or a primary brain tumor. However, biopsy of the lesion revealed it to be a non-caseating granulomatous lesion consistent with neurosarcoidosis.

  17. Testing the Language of German Cerebral Palsy Patients with Right Hemispheric Language Organization after Early Left Hemispheric Damage

    Science.gov (United States)

    Schwilling, Eleonore; Krageloh-Mann, Ingeborg; Konietzko, Andreas; Winkler, Susanne; Lidzba, Karen

    2012-01-01

    Language functions are generally represented in the left cerebral hemisphere. After early (prenatally acquired or perinatally acquired) left hemispheric brain damage language functions may be salvaged by reorganization into the right hemisphere. This is different from brain lesions acquired in adulthood which normally lead to aphasia. Right…

  18. Morphine induces expression of platelet-derived growth factor in human brain microvascular endothelial cells: implication for vascular permeability.

    Directory of Open Access Journals (Sweden)

    Hongxiu Wen

    Full Text Available Despite the advent of antiretroviral therapy, complications of HIV-1 infection with concurrent drug abuse are an emerging problem. Morphine, often abused by HIV-infected patients, is known to accelerate neuroinflammation associated with HIV-1 infection. Detailed molecular mechanisms of morphine action however, remain poorly understood. Platelet-derived growth factor (PDGF has been implicated in a number of pathological conditions, primarily due to its potent mitogenic and permeability effects. Whether morphine exposure results in enhanced vascular permeability in brain endothelial cells, likely via induction of PDGF, remains to be established. In the present study, we demonstrated morphine-mediated induction of PDGF-BB in human brain microvascular endothelial cells, an effect that was abrogated by the opioid receptor antagonist-naltrexone. Pharmacological blockade (cell signaling and loss-of-function (Egr-1 approaches demonstrated the role of mitogen-activated protein kinases (MAPKs, PI3K/Akt and the downstream transcription factor Egr-1 respectively, in morphine-mediated induction of PDGF-BB. Functional significance of increased PDGF-BB manifested as increased breach of the endothelial barrier as evidenced by decreased expression of the tight junction protein ZO-1 in an in vitro model system. Understanding the regulation of PDGF expression may provide insights into the development of potential therapeutic targets for intervention of morphine-mediated neuroinflammation.

  19. Persistent Left Superior Vena Cava Associated with Hemiazygos Vein Draining in It and Absence of Left Brachiocephalic Vein, in a Patient with Congenital Heart Defect

    Directory of Open Access Journals (Sweden)

    Opincariu Diana

    2016-09-01

    Full Text Available Persistent left superior vena cava is an anomalous vein that derives from a malfunction of obliteration of the left common cardinal vein during intrauterine life. The diagnosis can be suggested by a dilated coronary sinus as seen in echocardiography, or other imagistic methods. Due to the lack of hemodynamic impairment, and consequently with few or no symptoms, this vascular anomaly is frequently discovered incidentally. In this brief report we present the case of a 35-year-old male known with a complex congenital cardiovascular malformation that included atrial septum defect, persistent left superior vena cava and anomalous right pulmonary vein drainage in the PLSVC, diagnosed with sinoatrial block that required pacemaker implantation. Due to the patient’s medical history, investigations to decide the best approach needed for pacemaker implantation were performed, including a thoracic CT that incidentally found additional anomalies — the hemiazygos vein draining in PLSVC and the lack of the left brachiocephalic vein.

  20. Reversal of glial and neurovascular markers of unhealthy brain aging by exercise in middle-aged female mice.

    Directory of Open Access Journals (Sweden)

    Caitlin S Latimer

    Full Text Available Healthy brain aging and cognitive function are promoted by exercise. The benefits of exercise are attributed to several mechanisms, many which highlight its neuroprotective role via actions that enhance neurogenesis, neuronal morphology and/or neurotrophin release. However, the brain is also composed of glial and vascular elements, and comparatively less is known regarding the effects of exercise on these components in the aging brain. Here, we show that aerobic exercise at mid-age decreased markers of unhealthy brain aging including astrocyte hypertrophy, a hallmark of brain aging. Middle-aged female mice were assigned to a sedentary group or provided a running wheel for six weeks. Exercise decreased hippocampal astrocyte and myelin markers of aging but increased VEGF, a marker of angiogenesis. Brain vascular casts revealed exercise-induced structural modifications associated with improved endothelial function in the periphery. Our results suggest that age-related astrocyte hypertrophy/reactivity and myelin dysregulation are aggravated by a sedentary lifestyle and accompanying reductions in vascular function. However, these effects appear reversible with exercise initiated at mid-age. As this period of the lifespan coincides with the appearance of multiple markers of brain aging, including initial signs of cognitive decline, it may represent a window of opportunity for intervention as the brain appears to still possess significant vascular plasticity. These results may also have particular implications for aging females who are more susceptible than males to certain risk factors which contribute to vascular aging.

  1. Individual structural differences in left inferior parietal area are associated with schoolchildrens’ arithmetic scores

    Directory of Open Access Journals (Sweden)

    Yongxin eLi

    2013-12-01

    Full Text Available Arithmetic skill is of critical importance for academic achievement, professional success and everyday life, and childhood is the key period to acquire this skill. Neuroimaging studies have identified that left parietal regions are a key neural substrate for representing arithmetic skill. Although the relationship between functional brain activity in left parietal regions and arithmetic skill has been studied in detail, it remains unclear about the relationship between arithmetic achievement and structural properties in left inferior parietal area in schoolchildren. The current study employed a combination of voxel-based morphometry (VBM for high-resolution T1-weighted images and fiber tracking on diffusion tensor imaging (DTI to examine the relationship between structural properties in the inferior parietal area and arithmetic achievement in 10-year-old schoolchildren. VBM of the T1-weighted images revealed that individual differences in arithmetic scores were significantly and positively correlated with the grey matter (GM volume in the left intraparietal sulcus (IPS. Fiber tracking analysis revealed that the forceps major, left superior longitudinal fasciculus (SLF, bilateral inferior longitudinal fasciculus (ILF and inferior fronto-occipital fasciculus (IFOF were the primary pathways connecting the left IPS with other brain areas. Furthermore, the regression analysis of the probabilistic pathways revealed a significant and positive correlation between the fractional anisotropy (FA values in the left SLF, ILF and bilateral IFOF and arithmetic scores. The brain structure-behavior correlation analyses indicated that the GM volumes in the left IPS and the FA values in the tract pathways connecting left IPS were both related to children’s arithmetic achievement. The present findings provide evidence that individual structural differences in the left IPS are associated with arithmetic scores in schoolchildren.

  2. Nilai Rerata Vascular Pedicle Width, Vascular Pedicle-Cardiac Ratio Vascular Pedicle-Thoracic Ratio Orang Dewasa Normal Indonesia Studi di RS dr. Cipto Mangunkusomo

    Directory of Open Access Journals (Sweden)

    Rommy Zunera

    2016-03-01

    Full Text Available Vascular pedicle width (VPW adalah jarak tepi luar vena kava superior ke tepi luar arteri subklavia kiri. Pemeriksaan VPW di foto toraks bersifat non-invasif, cepat dan mudah untuk memprediksi hipervolemia.Penelitian ini bertujuan untuk mengetahui rerata nilai VPW orang dewasa normal Indonesia. VPW diukurdengan dua metode: pertama pengukuran VPW tunggal yang akurasinya terbatas di foto toraks digital karenarelatif tidak dipengaruhi faktor magnifikasi. Metode kedua untuk foto toraks nondigital yaitu pengukuranrasio:vascular pedicle-cardiac ratio (VPCR dan vascular pedicle-thoracic ratio (VPTR. Pengukuran serupadilakukan terhadap  topogram CT scan toraks AP terlentang dan CT scan toraks lalu dibandingkan akurasipengukuran di topogram dengan CT scan  toraks sebagai standar baku. Sampel terdiri atas 104 foto toraksPA subyek normal dan 103 CT scan  toraks subyek terpilih. Pada pemeriksaan toraks PA didapatkan rerata VPW 48,0±5,5mm, rerata VPCR 40,3±4,6%, dan rerata VPTR 17,2±1,7%. Pada pemeriksaan topogram CTscan didapatkan rerata VPW 50,3±6,2mm, rerata VPTR 45±5,1%, dan rerata VPTR 19,8±2,5%. Rerata VPWpada CT scan toraks 50,4±6,1mm. Pengukuran di foto toraks AP 10% lebih besar dibandingkan pada fototoraks PA dan pengukuranVPW di foto toraks terbukti memiliki akurasi  tinggi. Kata kunci: fototoraks, vascular pedicle width, vascular pedicle-cardiac ratio, vascular pedicle-thoracic ratio, hipervolemia.   The Mean Value of Vascular Pedicle Width, Vascular Pedicle-Cardiac Ratio,Vascular Pedicle-Thoracic Ratio of Normal Indonesian Adult Study In dr. Cipto Mangunkusomo Hospital Abstract Vascular pedicle width (VPW is the distance, from a perpendicular line at the takeoff point of the left subclavian artery off the aorta to the point at which the superior vena cava. Measurement of VPW on chestx-ray is relatively non-invasive, fast and easy technique as  hypervolemia predictor. The purpose of thisstudy is to know the mean VPW value of normal

  3. Acute Respiratory Distress Syndrome in Severe Brain Injury

    Directory of Open Access Journals (Sweden)

    Yu. A. Churlyaev

    2009-01-01

    Full Text Available Objective: to study the development of acute respiratory distress syndrome (ARDS in victims with isolated severe brain injury (SBI. Subject and methods. 171 studies were performed in 16 victims with SBI. Their general condition was rated as very critical. The patients were divided into three groups: 1 non-ARDS; 2 Stage 1 ARDS; and 3 Stage 2 ARDS. The indicators of Stages 1 and 2 were assessed in accordance with the classification proposed by V. V. Moroz and A. M. Golubev. Intracranial pressure (ICP, extravascular lung water index, pulmonary vascular permeability, central hemodynamics, oxygenation index, lung anastomosis, the X-ray pattern of the lung and brain (computed tomography, and its function were monitored. Results. The hemispheric cortical level of injury of the brain with function compensation of its stem was predominantly determined in the controls; subcompensation and decompensation were ascertained in the ARDS groups. According to the proposed classification, these patients developed Stages 1 and 2 ARDS. When ARDS developed, there were rises in the level of extravascular lung fluid and pulmonary vascular permeability, a reduction in the oxygenation index (it was 6—12 hours later as compared with them, increases in a lung shunt and ICP; X-ray study revealed bilateral infiltrates in the absence of heart failure in Stage 2 ARDS. The correlation was positive between ICP and extravascular lung water index, and lung vascular permeability index (r>0.4;p<0.05. Conclusion. The studies have indicated that the classification proposed by V. V. Moroz and A. M. Golubev enables an early diagnosis of ARDS. One of its causes is severe brainstem injury that results in increased extravascular fluid in the lung due to its enhanced vascular permeability. The ICP value is a determinant in the diagnosis of secondary brain injuries. Key words: acute respiratory distress syndrome, extravascu-lar lung fluid, pulmonary vascular permeability, brain injury

  4. Repairing the brain with physical exercise: Cortical thickness and brain volume increases in long-term pediatric brain tumor survivors in response to a structured exercise intervention

    Directory of Open Access Journals (Sweden)

    Kamila U. Szulc-Lerch

    Full Text Available There is growing evidence that exercise induced experience dependent plasticity may foster structural and functional recovery following brain injury. We examined the efficacy of exercise training for neural and cognitive recovery in long-term pediatric brain tumor survivors treated with radiation.We conducted a controlled clinical trial with crossover of exercise training (vs. no training in a volunteer sample of 28 children treated with cranial radiation for brain tumors (mean age = 11.5 yrs.; mean time since diagnosis = 5.7 yrs. The endpoints were anatomical T1 MRI data and multiple behavioral outcomes presenting a broader analysis of structural MRI data across the entire brain. This included an analysis of changes in cortical thickness and brain volume using automated, user unbiased approaches. A series of general linear mixed effects models evaluating the effects of exercise training on cortical thickness were performed in a voxel and vertex-wise manner, as well as for specific regions of interest. In exploratory analyses, we evaluated the relationship between changes in cortical thickness after exercise with multiple behavioral outcomes, as well as the relation of these measures at baseline.Exercise was associated with increases in cortical thickness within the right pre and postcentral gyri. Other notable areas of increased thickness related to training were present in the left pre and postcentral gyri, left temporal pole, left superior temporal gyrus, and left parahippocampal gyrus. Further, we observed that compared to a separate cohort of healthy children, participants displayed multiple areas with a significantly thinner cortex prior to training and fewer differences following training, indicating amelioration of anatomical deficits. Partial least squares analysis (PLS revealed specific patterns of relations between cortical thickness and various behavioral outcomes both after training and at baseline.Overall, our results

  5. Commentary: Left Hand, Right Hand and on the Other Hand

    Science.gov (United States)

    Parslow, Graham R.

    2011-01-01

    It was deeply ingrained in the author from his undergraduate studies of psychology and courses in learning theory that people have a rational left brain and a creative right brain. Learning theory suggested that activities needed to be tailored to develop both hemispheres. Handedness in relation to abilities has been commented on from the 1800s by…

  6. How the embryonic chick brain twists.

    Science.gov (United States)

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Forsch, Nickolas; Taber, Larry A

    2016-11-01

    During early development, the tubular embryonic chick brain undergoes a combination of progressive ventral bending and rightward torsion, one of the earliest organ-level left-right asymmetry events in development. Existing evidence suggests that bending is caused by differential growth, but the mechanism for the predominantly rightward torsion of the embryonic brain tube remains poorly understood. Here, we show through a combination of in vitro experiments, a physical model of the embryonic morphology and mechanics analysis that the vitelline membrane (VM) exerts an external load on the brain that drives torsion. Our theoretical analysis showed that the force is of the order of 10 micronewtons. We also designed an experiment to use fluid surface tension to replace the mechanical role of the VM, and the estimated magnitude of the force owing to surface tension was shown to be consistent with the above theoretical analysis. We further discovered that the asymmetry of the looping heart determines the chirality of the twisted brain via physical mechanisms, demonstrating the mechanical transfer of left-right asymmetry between organs. Our experiments also implied that brain flexure is a necessary condition for torsion. Our work clarifies the mechanical origin of torsion and the development of left-right asymmetry in the early embryonic brain. © 2016 The Author(s).

  7. Radionuclidr diagnosis of brain tumors, brain inflammatory and traumatic lesions

    International Nuclear Information System (INIS)

    Badmaev, K.N.; Mel'kishev, V.F.; Dement'ev, E.V.; Svetlova, N.L.

    1982-01-01

    A complex of problems of radionuclide diagnosis of central nervous system diseases including tumors, traumas, vascular lessons, inflammatory processes is considered. The principles, technique and results of radionuclide xintigraphy of a tumor, depending on its localization are given. Radioindication of brain tumours in the operation is given

  8. Dramatic Vascular Course of Behcet's Disease

    International Nuclear Information System (INIS)

    Elsharawy, Mohamed A.; Hassan, Khairi A.; Al-Awami, Majed; Al-Mulhim, Fatma A.

    2004-01-01

    Vascular involvement in Behcet's disease is rare (approximately 14% venous and 1.6% arterial), serious and recurrent. We report a case of Behcet's disease with deep venous thrombosis and right iliac pseudoaneurysm which was repaired with polytetrafluoroethylene (PTFE) graft. The patient received warfarin, aspirin, clopidogrel, immunosupressive and corticosteroids. Two months later the patient developed manifestations of superior vena cava thrombosis and the graft was blocked. Three months later, ischemia of the right foot deteriorated and left femoral artery crossover (PTFE) graft was performed. (author)

  9. Classification of functional near-infrared spectroscopy signals corresponding to the right- and left-wrist motor imagery for development of a brain-computer interface.

    Science.gov (United States)

    Naseer, Noman; Hong, Keum-Shik

    2013-10-11

    This paper presents a study on functional near-infrared spectroscopy (fNIRS) indicating that the hemodynamic responses of the right- and left-wrist motor imageries have distinct patterns that can be classified using a linear classifier for the purpose of developing a brain-computer interface (BCI). Ten healthy participants were instructed to imagine kinesthetically the right- or left-wrist flexion indicated on a computer screen. Signals from the right and left primary motor cortices were acquired simultaneously using a multi-channel continuous-wave fNIRS system. Using two distinct features (the mean and the slope of change in the oxygenated hemoglobin concentration), the linear discriminant analysis classifier was used to classify the right- and left-wrist motor imageries resulting in average classification accuracies of 73.35% and 83.0%, respectively, during the 10s task period. Moreover, when the analysis time was confined to the 2-7s span within the overall 10s task period, the average classification accuracies were improved to 77.56% and 87.28%, respectively. These results demonstrate the feasibility of an fNIRS-based BCI and the enhanced performance of the classifier by removing the initial 2s span and/or the time span after the peak value. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise

    Directory of Open Access Journals (Sweden)

    Takashi eTarumi

    2014-01-01

    Full Text Available Alzheimer disease (AD and cerebrovascular disease often coexist with advanced age. Mounting evidence indicates that the presence of vascular disease and its risk factors increase the risk of AD, suggesting a potential overlap of the underlying pathophysiological mechanisms. In particular, atherosclerosis, endothelial dysfunction, and stiffening of central elastic arteries have been shown to associate with AD. Currently, there are no effective treatments for the cure and prevention of AD. Vascular risk factors are modifiable via either pharmacological or lifestyle intervention. In this regard, habitual aerobic exercise is increasingly recognized for its benefits on brain structure and cognitive function. Considering the well-established benefits of regular aerobic exercise on vascular health, exercise-related improvements in brain structure and cognitive function may be mediated by vascular adaptations. In this review, we will present the current evidence for the physiological mechanisms by which vascular health alters the structural and functional integrity of the aging brain and how improvements in vascular health, via regular aerobic exercise, potentially benefits cognitive function.

  11. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats.

    Science.gov (United States)

    Li, Peng; Huang, Pei-Pei; Yang, Yun; Liu, Chi; Lu, Yan; Wang, Fang; Sun, Wei; Kong, Xiang-Qing

    2017-01-01

    Li P, Huang P, Yang Y, Liu C, Lu Y, Wang F, Sun W, Kong X. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats. J Appl Physiol 122: 121-129, 2017. First published October 14, 2016; doi:10.1152/japplphysiol.01019.2015-Sympathetic activity is enhanced in patients with essential or secondary hypertension, as well as in various hypertensive animal models. Therapeutic targeting of sympathetic activation is considered an effective antihypertensive strategy. We hypothesized that renal sympathetic denervation (RSD) attenuates hypertension and improves vascular remodeling and renal disease in the 2-kidney, 1-clip (2K1C) rat model. Rats underwent 2K1C modeling or sham surgery; then rats underwent RSD or sham surgery 4 wk later, thus resulting in four groups (normotensive-sham, normotensive-RSD, 2K1C-sham, and 2K1C-RSD). Norepinephrine was measured by ELISA. Echocardiography was used to assess heart function. Fibrosis and apoptosis were assessed by Masson and TUNEL staining. Changes in mean arterial blood pressure in response to hexamethonium and plasma norepinephrine levels were used to evaluate basal sympathetic nerve activity. The 2K1C modeling success rate was 86.8%. RSD reversed the elevated systolic blood pressure induced by 2K1C, but had no effect on body weight. Compared with rats in the 2K1C-sham group, rats in the 2K1C-RSD group showed lower left ventricular mass/body weight ratio, interventricular septal thickness in diastole, left ventricular end-systolic diameter, and left ventricular posterior wall thickness in systole, whereas fractional shortening and ejection fraction were higher. Right kidney apoptosis and left kidney hypertrophy were not changed by RSD. Arterial fibrosis was lower in animals in the 2K1C-RSD group compared with those in the 2K1C-sham group. RSD reduced plasma norepinephrine and basal sympathetic activity in rats in the 2K1C-RSD group compared with rats in the 2K1C-sham group. These

  12. Effect of alcohol exposure on fetal brain development

    Science.gov (United States)

    Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.

    2013-02-01

    Alcohol consumption during pregnancy can be severely damage to the brain development in fetuses. This study investigates the effects of maternal ethanol consumption on brain development in mice embryos. Pregnant mice at gestational day 12.5 were intragastrically gavaged with ethanol (3g/Kg bwt) twice daily for three consecutive days. On gestational day 14.5, fetuses were collected and fixed in 4% paraformaldehyde and imaged using a swept-source optical coherence tomography (SSOCT) system. 3D images of the mice embryo brain were obtained and the volumes of the left and right ventricles of the brain were measured. The average volumes of the left and the right volumes of 5 embryos each alcohol-exposed and control embryos were measured to be 0.35 and 0.15 mm3, respectively. The results suggest that the left and right ventricle volumes of brain are much larger in the alcohol-exposed embryos as compared to control embryos indicating alcohol-induced developmental delay.

  13. Arterial stiffness and peripheral vascular resistance in offspring of hypertensive parents

    DEFF Research Database (Denmark)

    Buus, Niels Henrik; Carlsen, Rasmus K; Khatir, Dinah S

    2018-01-01

    AIM: Established essential hypertension is associated with increased arterial stiffness and peripheral resistance, but the extent of vascular changes in persons genetically predisposed for essential hypertension is uncertain. METHODS: Participants from the Danish Hypertension Prevention Project...... (DHyPP) (both parents hypertensive) (n = 95, 41 ± 1 years, 53% men) were compared with available spouses (n = 45, 41 ± 1 years) using measurements of ambulatory blood pressure (BP), left ventricular mass index (LVMI), pulse wave velocity, central BP and augmentation index (AIx) in addition to forearm...... than men (P hypertension display increased AIx and LVMI, although vascular stiffness...

  14. How Children's Brains Think: Not Left or Right but Both Together

    Science.gov (United States)

    Geake, John

    2004-01-01

    The burgeoning interest over recent decades about the human brain, and possible implications for education, has, perhaps not surprisingly, fostered a suite of urban myths about brain functioning. The prize for the barmiest goes to the one about using only 10% of the brain, but there are plenty more that deserve dishonourable mention. The most…

  15. Cardio-ankle vascular index and subclinical heart disease.

    Science.gov (United States)

    Schillaci, Giuseppe; Battista, Francesca; Settimi, Laura; Anastasio, Fabio; Pucci, Giacomo

    2015-01-01

    The relationship between arterial stiffness, measured as pulse wave velocity (PWV), and the left ventricle is confounded by the effects of blood pressure. We evaluated the relationship between carotid-femoral PWV and cardio-ankle vascular index (CAVI), a less pressure-dependent measurement of the stiffness constant (β) of the aorta and the iliac, femoral and tibial arteries, and obtained prognostically relevant measurements of left ventricular structure and systolic function. CAVI, carotid-femoral PWV and echocardiographic left ventricular mass and systolic function were determined in 133 subjects with either hypertension or high-normal blood pressure (33% treated; 56 ± 16 years, blood pressure 145/89 ± 21/12 mm Hg). Carotid-femoral PWV exhibited a direct relationship with systolic and diastolic blood pressure (r = 0.33/0.26, P 0.1). Both CAVI and PWV correlated significantly with left ventricular mass index (r = 0.31, P0.1). In a multivariate regression model, CAVI was independently associated with inappropriate left ventricular mass (β = 0.40, P < 0.001), along with body mass index. CAVI also demonstrated a negative relationship with left ventricular midwall fractional shortening (r = -0.41, P = 0.001) that was independent of age, sex, blood pressure and left ventricular mass in a multivariate analysis. In conclusion, a high CAVI is associated with inappropriately high left ventricular mass and low midwall systolic function. As a marker of arterial diastolic-to-systolic stiffening, CAVI may have a relationship with left ventricular structure and function that is independent of blood pressure levels.

  16. Structural connectivity asymmetry in the neonatal brain.

    Science.gov (United States)

    Ratnarajah, Nagulan; Rifkin-Graboi, Anne; Fortier, Marielle V; Chong, Yap Seng; Kwek, Kenneth; Saw, Seang-Mei; Godfrey, Keith M; Gluckman, Peter D; Meaney, Michael J; Qiu, Anqi

    2013-07-15

    Asymmetry of the neonatal brain is not yet understood at the level of structural connectivity. We utilized DTI deterministic tractography and structural network analysis based on graph theory to determine the pattern of structural connectivity asymmetry in 124 normal neonates. We tracted white matter axonal pathways characterizing interregional connections among brain regions and inferred asymmetry in left and right anatomical network properties. Our findings revealed that in neonates, small-world characteristics were exhibited, but did not differ between the two hemispheres, suggesting that neighboring brain regions connect tightly with each other, and that one region is only a few paths away from any other region within each hemisphere. Moreover, the neonatal brain showed greater structural efficiency in the left hemisphere than that in the right. In neonates, brain regions involved in motor, language, and memory functions play crucial roles in efficient communication in the left hemisphere, while brain regions involved in emotional processes play crucial roles in efficient communication in the right hemisphere. These findings suggest that even at birth, the topology of each cerebral hemisphere is organized in an efficient and compact manner that maps onto asymmetric functional specializations seen in adults, implying lateralized brain functions in infancy. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Aetiological factors in left-handedness

    Directory of Open Access Journals (Sweden)

    Milenković Sanja M.

    2005-01-01

    Full Text Available Lateralisation associates the extremities and senses of one side of the body, which are connected by afferent and efferent pathways, with the primary motor and sensory areas of the hemisphere on the opposite side. Dominant laterality denotes the appearance of a dominant extremity or sense in the performance of complex psychomotor activities. Laterality is manifested both as right-handedness or left-handedness, which are functionally equivalent and symmetrical in the performance of activities. Right-handedness is significantly more common than left-handedness. Genetic theory is most widely accepted in explaining the onset of lateralisation. According to this theory, the models of brain organisation asymmetry (anatomical, functional, and biochemical are strongly, genetically determined. However, the inability to clearly demonstrate the association between genetic factors and left-handedness has led researchers to investigate the effects of the environment on left-handedness. Of particular interest are the intrauterine environment and the factors influencing foetal development, of which hormones and ultrasound exposure are the most significant. It has been estimated that an extra five cases of nonright-handed lateralisation can be expected in every 100 males who were exposed to ultrasound in utero compared to those who were not. Socio-cultural pressure on left-handed individuals was much more severe in the past, which is confirmed by scientific findings that left-handedness is present in 13% of individuals in their twenties, while in less than 1% of individuals in their eighties.

  18. Prospective study comparing three-dimensional computed tomography and magnetic resonance imaging for evaluating the renal vascular anatomy in potential living renal donors.

    Science.gov (United States)

    Bhatti, Aftab A; Chugtai, Aamir; Haslam, Philip; Talbot, David; Rix, David A; Soomro, Naeem A

    2005-11-01

    To prospectively compare the accuracy of multislice spiral computed tomographic angiography (CTA) and magnetic resonance angiography (MRA) in evaluating the renal vascular anatomy in potential living renal donors. Thirty-one donors underwent multislice spiral CTA and gadolinium-enhanced MRA. In addition to axial images, multiplanar reconstruction and maximum intensity projections were used to display the renal vascular anatomy. Twenty-four donors had a left laparoscopic donor nephrectomy (LDN), whereas seven had right open donor nephrectomy (ODN); LDN was only considered if the renal vascular anatomy was favourable on the left. CTA and MRA images were analysed by two radiologists independently. The radiological and surgical findings were correlated after the surgery. CTA showed 33 arteries and 32 veins (100% sensitivity) whereas MRA showed 32 arteries and 31 veins (97% sensitivity). CTA detected all five accessory renal arteries whereas MRA only detected one. CTA also identified all three accessory renal veins whereas MRA identified two. CTA had a sensitivity of 97% and 47% for left lumbar and left gonadal veins, whereas MRA had a sensitivity of 74% and 46%, respectively. Multislice spiral CTA with three-dimensional reconstruction was more accurate than MRA for both renal arterial and venous anatomy.

  19. Physical activity measured by accelerometry and its associations with cardiac structure and vascular function in young and middle-aged adults

    DEFF Research Database (Denmark)

    Andersson, Charlotte; Lyass, Asya; Larson, Martin G

    2015-01-01

    objective measures of moderate- to vigorous-intensity physical activity (MVPA, assessed by accelerometry) to cardiac and vascular indices in 2376 participants of the Framingham Heart Study third generation cohort (54% women, mean age 47 years). Using multivariable regression models, we related MVPA......BACKGROUND: Physical activity is associated with several health benefits, including lower cardiovascular disease risk. The independent influence of physical activity on cardiac and vascular function in the community, however, has been sparsely investigated. MEASURES AND RESULTS: We related...... to the following echocardiographic and vascular measures: left ventricular mass, left atrial and aortic root sizes, carotid-femoral pulse wave velocity, augmentation index, and forward pressure wave. Men and women engaged in MVPA 29.9±21.4 and 25.5±19.4 min/day, respectively. Higher values of MVPA (per 10-minute...

  20. Lateralization of Egocentric and Allocentric Spatial Processing after Parietal Brain Lesions

    Science.gov (United States)

    Iachini, Tina; Ruggiero, Gennaro; Conson, Massimiliano; Trojano, Luigi

    2009-01-01

    The purpose of this paper was to verify whether left and right parietal brain lesions may selectively impair egocentric and allocentric processing of spatial information in near/far spaces. Two Right-Brain-Damaged (RBD), 2 Left-Brain-Damaged (LBD) patients (not affected by neglect or language disturbances) and eight normal controls were submitted…

  1. [Resting-state functional magnetic resonance study of brain function changes after TIPS operation in patients with liver cirrhosis].

    Science.gov (United States)

    Liu, C; Wang, H B; Yu, Y Q; Wang, M Q; Zhang, G B; Xu, L Y; Wu, J M

    2016-12-20

    Objective: To investigate the brain function changes in cirrhosis patients after transjugular intrahepatic portosystemic shunt (TIPS), resting-state functional MRI (rs-fMRI) performed and fractional amplitude of low frequency fluctuation (fALFF) was analyzed. Methods: From January 2014 to February 2016, a total of 96 cirrhotic patients from invasive technology department and infection department in the First Affiliated Hospital of Anhui Medical University were selected , the blood ammonia data of 96 cirrhotic patients with TIPS operation in four groups were collected after 1, 3, 6 and 12 month, and all subjects performed rs-fMRI scans. The rs-fMRI data processed with DPARSF and SPM12 softwares, whole-brain fALFF values were calculated, and One-Way analysis of variance , multiple comparison analysis and correlation analysis were performed. Results: There were brain regions with significant function changes in four groups patients with TIPS operation after 1, 3, 6 and 12 month, including bilateral superior temporal gyrus, right middle temportal gyrus , right hippocampus, right island of inferior frontal gyrus, left fusiform gyrus, left olfactory cortex, left orbital superior frontal gyrus (all P brain function areas increased in left olfactory cortex, left inferior temporal gyrus, left fusiform gyrus, left orbital middle frontal gyrus, left putamen, left cerebelum, and decreased in left lingual gyrus; patients in the 6-month follow-up showed that brain function areas increased in left middle temportal gyrus, right supramarginal gyrus, right temporal pole, right central operculum, and decreased in left top edge of angular gyrus, left postcentral gyrus; patients in the 12-month follow-up showed that brain function areas increased in right hippocampus, right middle cingulate gyrus, and decreased in right middle temportal gyrus.Compared with patients in the 3-month follow-up, patients in the 6-month follow-up showed that brain function areas increased in left superior

  2. Hemispheric lateralization of topological organization in structural brain networks.

    Science.gov (United States)

    Caeyenberghs, Karen; Leemans, Alexander

    2014-09-01

    The study on structural brain asymmetries in healthy individuals plays an important role in our understanding of the factors that modulate cognitive specialization in the brain. Here, we used fiber tractography to reconstruct the left and right hemispheric networks of a large cohort of 346 healthy participants (20-86 years) and performed a graph theoretical analysis to investigate this brain laterality from a network perspective. Findings revealed that the left hemisphere is significantly more "efficient" than the right hemisphere, whereas the right hemisphere showed higher values of "betweenness centrality" and "small-worldness." In particular, left-hemispheric networks displayed increased nodal efficiency in brain regions related to language and motor actions, whereas the right hemisphere showed an increase in nodal efficiency in brain regions involved in memory and visuospatial attention. In addition, we found that hemispheric networks decrease in efficiency with age. Finally, we observed significant gender differences in measures of global connectivity. By analyzing the structural hemispheric brain networks, we have provided new insights into understanding the neuroanatomical basis of lateralized brain functions. Copyright © 2014 Wiley Periodicals, Inc.

  3. Three-dimensional Speckle Tracking Echocardiography in Light Chain Cardiac Amyloidosis: Examination of Left and Right Ventricular Myocardial Mechanics Parameters.

    Science.gov (United States)

    Urbano-Moral, Jose Angel; Gangadharamurthy, Dakshin; Comenzo, Raymond L; Pandian, Natesa G; Patel, Ayan R

    2015-08-01

    The study of myocardial mechanics has a potential role in the detection of cardiac involvement in patients with amyloidosis. This study aimed to characterize 3-dimensional-speckle tracking echocardiography-derived left and right ventricular myocardial mechanics in light chain amyloidosis and examine their relationship with brain natriuretic peptide. In patients with light chain amyloidosis, left ventricular longitudinal and circumferential strain (n=40), and right ventricular longitudinal strain and radial displacement (n=26) were obtained by 3-dimensional-speckle tracking echocardiography. Brain natriuretic peptide levels were determined. All myocardial mechanics measurements showed differences when compared by brain natriuretic peptide level tertiles. Left and right ventricular longitudinal strain were highly correlated (r=0.95, P<.001). Left ventricular longitudinal and circumferential strain were reduced in patients with cardiac involvement (-9±4 vs -16±2; P<.001, and -24±6 vs -29±4; P=.01, respectively), with the most prominent impairment at the basal segments. Right ventricular longitudinal strain and radial displacement were diminished in patients with cardiac involvement (-9±3 vs -17±3; P<.001, and 2.7±0.8 vs 3.8±0.3; P=.002). On multivariate analysis, left ventricular longitudinal strain was associated with the presence of cardiac involvement (odds ratio = 1.6; 95% confidence interval, 1.04 to 2.37; P=.03) independent of the presence of brain natriuretic peptide and troponin I criteria for cardiac amyloidosis. Three-dimensional-speckle tracking echocardiography-derived left and right ventricular myocardial mechanics are increasingly altered as brain natriuretic peptide increases in light chain amyloidosis. There appears to be a strong association between left ventricular longitudinal strain and cardiac involvement, beyond biomarkers such as brain natriuretic peptide and troponin I. Copyright © 2015 Sociedad Española de Cardiología. Published by

  4. Developmental dyslexia: dysfunction of a left hemisphere reading network

    Directory of Open Access Journals (Sweden)

    Fabio eRichlan

    2012-05-01

    Full Text Available This mini-review summarizes and integrates findings from recent meta-analyses and original neuroimaging studies on functional brain abnormalities in dyslexic readers. Surprisingly, there is little empirical support for the standard neuroanatomical model of developmental dyslexia, which localizes the primary phonological decoding deficit in left temporo-parietal regions. Rather, recent evidence points to a dysfunction of a left hemisphere reading network, which includes occipito-temporal, inferior frontal, and inferior parietal regions.

  5. Decreased expression of transient receptor potential channels in cerebral vascular tissue from patients after hypertensive intracerebral hemorrhage

    DEFF Research Database (Denmark)

    Thilo, Florian; Suess, Olaf; Liu, Ying

    2011-01-01

    , TRPC5, TRPC6, TRPM4, TRPM6, and TRPM7 channels were detected in cerebral vascular tissue by quantitative real-time RT-PCR. Control cerebral vascular tissue was obtained from normotensive patients who underwent neurosurgical operation because of brain tumor. To examine a possible relation between...

  6. Radiation-induced brain damage in children; Histological analysis of sequential tissue changes in 34 autopsy cases

    Energy Technology Data Exchange (ETDEWEB)

    Oi, Shizuo; Kokunai, Takashi; Ijichi, Akihiro; Matsumoto, Satoshi [Kobe Univ. (Japan). School of Medicine; Raimondi, A J

    1990-01-01

    The nature and sequence of the radiation-induced changes in the brain were studied postmortem in 34 children with glioma, 22 of whom underwent central nervous system radiation therapy. Twenty received whole-brain or whole-neuroaxis radiation at a total mean dosage of 4063 cGy. Brain tissue alternations were analyzed histologically by means of various staining methods, including immunohistochemical techniques. The histological features of irradiated brains were compared with those of non-irradiated brains. Microscopic findings included demyelination (seven cases), focal necrosis (six cases), cortical atrophy (four cases), endothelial proliferation (four cases), and telangiectatic vascular proliferation with vascular thickening and oozing of a thick fluid (one case). Such findings were rare in non-irradiated patients. Demyelination was observed earliest in a patient who died 5 months after radiation therapy and was more common after 9 months. Focal necrosis was first observed 9 months post-irradiation but was more advanced and extensive after 1 year. Calcified foci were found only after 60 months. Various vascular changes such as vascular thickening and thrombosis suggested ischemic insult to the brain as a late effect of radiation injury. The results of this study suggest that the immature brain may be more sensitive to radiation than is the adult brain, and that the manifestations of radiation-induced injury depend on the time elapsed after irradiation. (author).

  7. Vitamin D in Vascular Calcification: A Double-Edged Sword?

    Directory of Open Access Journals (Sweden)

    Jeffrey Wang

    2018-05-01

    Full Text Available Vascular calcification (VC as a manifestation of perturbed mineral balance, is associated with aging, diabetes and kidney dysfunction, as well as poorer patient outcomes. Due to the current limited understanding of the pathophysiology of vascular calcification, the development of effective preventative and therapeutic strategies remains a significant clinical challenge. Recent evidence suggests that traditional risk factors for cardiovascular disease, such as left ventricular hypertrophy and dyslipidaemia, fail to account for clinical observations of vascular calcification. Therefore, more complex underlying processes involving physiochemical changes to mineral balance, vascular remodelling and perturbed hormonal responses such as parathyroid hormone (PTH and fibroblast growth factor 23 (FGF-23 are likely to contribute to VC. In particular, VC resulting from modifications to calcium, phosphate and vitamin D homeostasis has been recently elucidated. Notably, deregulation of vitamin D metabolism, dietary calcium intake and renal mineral handling are associated with imbalances in systemic calcium and phosphate levels and endothelial cell dysfunction, which can modulate both bone and soft tissue calcification. This review addresses the current understanding of VC pathophysiology, with a focus on the pathogenic role of vitamin D that has provided new insights into the mechanisms of VC.

  8. Transient contribution of left posterior parietal cortex to cognitive restructuring.

    Science.gov (United States)

    Sutoh, Chihiro; Matsuzawa, Daisuke; Hirano, Yoshiyuki; Yamada, Makiko; Nagaoka, Sawako; Chakraborty, Sudesna; Ishii, Daisuke; Matsuda, Shingo; Tomizawa, Haruna; Ito, Hiroshi; Tsuji, Hiroshi; Obata, Takayuki; Shimizu, Eiji

    2015-03-17

    Cognitive restructuring is a fundamental method within cognitive behavioural therapy of changing dysfunctional beliefs into flexible beliefs and learning to react appropriately to the reality of an anxiety-causing situation. To clarify the neural mechanisms of cognitive restructuring, we designed a unique task that replicated psychotherapy during a brain scan. The brain activities of healthy male participants were analysed using functional magnetic resonance imaging. During the brain scan, participants underwent Socratic questioning aimed at cognitive restructuring regarding the necessity of handwashing after using the restroom. The behavioural result indicated that the Socratic questioning effectively decreased the participants' degree of belief (DOB) that they must wash their hands. Alterations in the DOB showed a positive correlation with activity in the left posterior parietal cortex (PPC) while the subject thought about and rated own belief. The involvement of the left PPC not only in planning and decision-making but also in conceptualization may play a pivotal role in cognitive restructuring.

  9. Diabetes : Brain changes in T1DM—a microvascular complication?

    NARCIS (Netherlands)

    Biessels, Geert Jan

    2015-01-01

    A recent study indicates that type 1 diabetes mellitus is associated with vascular brain lesions that affect cognition and might represent a target for preventive measures. This commentary discusses methods to ascertain vascular contributions to cerebral dysfunction in diabetes mellitus and

  10. Repair of a mandibular defect with a free vascularized coccygeal vertebra transfer in a dog.

    Science.gov (United States)

    Yeh, L S; Hou, S M

    1994-01-01

    Bilateral mandibular defects in a male mongrel dog were repaired. On the left side, a free vascularized coccygeal bone graft that included the median caudal artery and caudal vein was used to correct the defect. On the right side, the defect was bridged with a bone plate and screws. For further immobilization, the muzzle was temporarily taped for 3 weeks and a pharyngostomy tube was used for nutritional support. The dog was able to eat dry commercial food satisfactorily within 2 months of surgery despite mild malocclusion. Radiographs taken 2 months and 18 months postoperatively showed bony union with graft hypertrophy in the left mandible, whereas the right mandibular defect showed protracted nonunion. The results indicate that vascularized coccygeal vertebra transfer provides an alternative for the management of canine mandibular defects.

  11. Persistent left superior vena cava: a case report and review of literature

    Directory of Open Access Journals (Sweden)

    Verma Gita

    2008-10-01

    Full Text Available Abstract Persistent left superior vena cava is rare but important congenital vascular anomaly. It results when the left superior cardinal vein caudal to the innominate vein fails to regress. It is most commonly observed in isolation but can be associated with other cardiovascular abnormalities including atrial septal defect, bicuspid aortic valve, coarctation of aorta, coronary sinus ostial atresia, and cor triatriatum. The presence of PLSVC can render access to the right side of heart challenging via the left subclavian approach, which is a common site of access utilized when placing pacemakers and Swan-Ganz catheters. Incidental notation of a dilated coronary sinus on echocardiography should raise the suspicion of PLSVC. The diagnosis should be confirmed by saline contrast echocardiography.

  12. Sleep Apnea, Sleep Duration and Brain MRI Markers of Cerebral Vascular Disease and Alzheimer's Disease: The Atherosclerosis Risk in Communities Study (ARIC).

    Science.gov (United States)

    Lutsey, Pamela L; Norby, Faye L; Gottesman, Rebecca F; Mosley, Thomas; MacLehose, Richard F; Punjabi, Naresh M; Shahar, Eyal; Jack, Clifford R; Alonso, Alvaro

    2016-01-01

    A growing body of literature has suggested that obstructive sleep apnea (OSA) and habitual short sleep duration are linked to poor cognitive function. Neuroimaging studies may provide insight into this relation. We tested the hypotheses that OSA and habitual short sleep duration, measured at ages 54-73 years, would be associated with adverse brain morphology at ages 67-89 years. Included in this analysis are 312 ARIC study participants who underwent in-home overnight polysomnography in 1996-1998 and brain MRI scans about 15 years later (2012-2013). Sleep apnea was quantified by the apnea-hypopnea index and categorized as moderate/severe (≥15.0 events/hour), mild (5.0-14.9 events/hour), or normal (sleep duration was categorized, in hours, as sleep study participants were 61.7 (SD: 5.0) years old and 54% female; 19% had moderate/severe sleep apnea. MRI imaging took place 14.8 (SD: 1.0) years later, when participants were 76.5 (SD: 5.2) years old. In multivariable models which accounted for body mass index, neither OSA nor abnormal sleep duration were statistically significantly associated with odds of cerebral infarcts, WMH brain volumes or regional brain volumes. In this community-based sample, mid-life OSA and habitually short sleep duration were not associated with later-life cerebral markers of vascular dementia and Alzheimer's disease. However, selection bias may have influenced our results and the modest sample size led to relatively imprecise associations.

  13. Whole Brain Thinking : An Educational Alternative for Language Instructors

    OpenAIRE

    Ogawa,Ruby Toshimi

    2008-01-01

    Whole brain thinking offers new potentials in providing an educational alternative in teaching English as a Second Language (ESL). Prevailing research has shown that the right and the left sides of the brain function and process information differently according to Nobel Prize Winner Roger Sperry in his split-brain research on epileptics. While acknowledging these physical neurological differences, current research suggesting that in view of traditional teaching methods that rely on left-brai...

  14. Brain abscess mimicking lung cancer metastases; a case report.

    Science.gov (United States)

    Asano, Michiko; Fujimoto, Nobukazu; Fuchimoto, Yasuko; Ono, Katsuichiro; Ozaki, Shinji; Kimura, Fumiaki; Kishimoto, Takumi

    2013-01-01

    A 76-year-old woman came to us because of staggering, fever, dysarthria, and appetite loss. Magnetic resonance imaging (MRI) of the brain revealed multiple masses with surrounding edema. Chest X-ray and computed tomography demonstrated a mass-like lesion in the left lung and left pleural effusion. Lung cancer and multiple brain metastases were suspected. However, the brain lesions demonstrated a high intensity through diffusion-weighted MRI. The finding was an important key to differentiate brain abscesses from lung cancer metastases. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Polymorphonuclear neutrophil in brain parenchyma after experimental intracerebral hemorrhage.

    Science.gov (United States)

    Zhao, Xiurong; Sun, Guanghua; Zhang, Han; Ting, Shun-Ming; Song, Shen; Gonzales, Nicole; Aronowski, Jaroslaw

    2014-10-01

    Polymorphonuclear neutrophils (PMNs) infiltration into brain parenchyma after cerebrovascular accidents is viewed as a key component of secondary brain injury. Interestingly, a recent study of ischemic stroke suggests that after ischemic stroke, PMNs do not enter brain parenchyma and as such may cause no harm to the brain. Thus, the present study was designed to determine PMNs' behavior after intracerebral hemorrhage (ICH). Using the autologous blood injection model of ICH in rats and immunohistochemistry for PMNs and vascular components, we evaluated the temporal and spatial PMNs distribution in the ICH-affected brain. We found that, similar to ischemia, there is a robust increase in presence of PMNs in the ICH-injured tissue that lasts for at least 1 to 2 weeks. However, in contrast to what was suggested for ischemia, besides PMNs that stay in association with the vasculature, after ICH, we found abundance of intraparenchymal PMNs (with no obvious association with vessels) in the ICH core and hematoma border, especially between 1 and 7 days after the ictus. Interestingly, the increased presence of intraparenchymal PMNs after ICH coincided with the massive loss of microvascular integrity, suggesting vascular disruption as a potential cause of PMNs presence in the brain parenchyma. Our study indicates that in contrast to ischemic stroke, after ICH, PMNs target not only vascular compartment but also brain parenchyma in the affected brain. As such, it is possible that the pathogenic role and therapeutic implications of targeting PMNs after ICH could be different from these after ischemic stroke. Our work suggests the needs for more studies addressing the role of PMNs in ICH.

  16. Urinary type IV collagen is related to left ventricular diastolic function and brain natriuretic peptide in hypertensive patients with prediabetes.

    Science.gov (United States)

    Iida, Masato; Yamamoto, Mitsuru; Ishiguro, Yuko S; Yamazaki, Masatoshi; Ueda, Norihiro; Honjo, Haruo; Kamiya, Kaichirou

    2014-01-01

    Urinary type IV collagen is an early biomarker of diabetic nephropathy. Concomitant prediabetes (the early stage of diabetes) was associated with left ventricular (LV) diastolic dysfunction and increased brain natriuretic peptide (BNP) in hypertensive patients. We hypothesized that urinary type IV collagen may be related to these cardiac dysfunctions. We studied hypertensive patients with early prediabetes (HbA1c 110, n=18), those with prediabetes (HbA1c 5.7-6.4, n=98), and those with diabetes (HbA1c>6.5 or on diabetes medications, n=92). The participants underwent echocardiography to assess left atrial volume/body surface area (BSA) and the ratio of early mitral flow velocity to mitral annular velocity (E/e'). Left ventricular diastolic dysfunction (LVDD) was defined if patients had E/e'≥15, or E/e'=9-14 accompanied by left atrial volume/BSA≥32ml/mm(2). Urinary samples were collected for type IV collagen and albumin, and blood samples were taken for BNP and HbA1c. Urinary type IV collagen and albumin increased in parallel with the deterioration of glycemic status. In hypertensive patients with prediabetes, subjects with LVDD had higher levels of BNP and urinary type IV collagen than those without LVDD. In contrast, in hypertensive patients with diabetes, subjects with LVDD had higher urinary albumin and BNP than those without LVDD. Urinary type IV collagen correlated positively with BNP in hypertensive patients with prediabetes, whereas it correlated with HbA1c in those with diabetes. In hypertensive patients with prediabetes, urinary type IV collagen was associated with LV diastolic dysfunction and BNP. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Methylmercury Causes Blood-Brain Barrier Damage in Rats via Upregulation of Vascular Endothelial Growth Factor Expression.

    Directory of Open Access Journals (Sweden)

    Tetsuya Takahashi

    Full Text Available Clinical manifestations of methylmercury (MeHg intoxication include cerebellar ataxia, concentric constriction of visual fields, and sensory and auditory disturbances. The symptoms depend on the site of MeHg damage, such as the cerebellum and occipital lobes. However, the underlying mechanism of MeHg-induced tissue vulnerability remains to be elucidated. In the present study, we used a rat model of subacute MeHg intoxication to investigate possible MeHg-induced blood-brain barrier (BBB damage. The model was established by exposing the rats to 20-ppm MeHg for up to 4 weeks; the rats exhibited severe cerebellar pathological changes, although there were no significant differences in mercury content among the different brain regions. BBB damage in the cerebellum after MeHg exposure was confirmed based on extravasation of endogenous immunoglobulin G (IgG and decreased expression of rat endothelial cell antigen-1. Furthermore, expression of vascular endothelial growth factor (VEGF, a potent angiogenic growth factor, increased markedly in the cerebellum and mildly in the occipital lobe following MeHg exposure. VEGF expression was detected mainly in astrocytes of the BBB. Intravenous administration of anti-VEGF neutralizing antibody mildly reduced the rate of hind-limb crossing signs observed in MeHg-exposed rats. In conclusion, we demonstrated for the first time that MeHg induces BBB damage via upregulation of VEGF expression at the BBB in vivo. Further studies are required in order to determine whether treatment targeted at VEGF can ameliorate MeHg-induced toxicity.

  18. Brain functional connectivity and cognition in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Xiong, K.L.; Zhang, Y.L.; Chen, H.; Zhang, J.N.; Zhang, Y.; Qiu, M.G.

    2016-01-01

    The aim of this study was to analyze brain functional connectivity and its relationship to cognition in patients with mild traumatic brain injury (mTBI). Twenty-five patients with mTBI and 25 healthy control subjects were studied using resting-state functional MRI (rs-fMRI). Amplitudes of low-frequency fluctuations (ALFFs) and functional connectivity (FC) were calculated and correlated with cognition. Compared with the normal control group, the mTBI patients showed a significant decrease in working memory index (WMI) and processing speed index (PSI), as well as significantly decreased ALFFs in the cingulate gyrus, the middle frontal gyrus and superior frontal gyrus. In contrast, the mTBI patients' ALFFs in the left middle occipital gyrus, the left precuneus, and lingual gyrus increased. Additionally, FC significantly decreased in the thalamus, caudate nucleus, and right hippocampus in the mTBI patients. Statistical analysis further showed a significant positive correlation between the ALFF in the cingulate gyrus and the WMI (R 2 = 0.423, P < 0.05) and a significant positive correlation between the FC in the left thalamus and left middle frontal gyrus and the WMI (R 2 = 0.381, P < 0.05). rs-fMRI can reveal the functional state of the brain in patients with mTBI. This finding differed from observations of the normal control group and was significantly associated with clinical cognitive dysfunction. Therefore, rs-fMRI offers an objective imaging modality for treatment planning and prognosis assessment in patients with mTBI. (orig.)

  19. Human-like brain hemispheric dominance in birdsong learning.

    Science.gov (United States)

    Moorman, Sanne; Gobes, Sharon M H; Kuijpers, Maaike; Kerkhofs, Amber; Zandbergen, Matthijs A; Bolhuis, Johan J

    2012-07-31

    Unlike nonhuman primates, songbirds learn to vocalize very much like human infants acquire spoken language. In humans, Broca's area in the frontal lobe and Wernicke's area in the temporal lobe are crucially involved in speech production and perception, respectively. Songbirds have analogous brain regions that show a similar neural dissociation between vocal production and auditory perception and memory. In both humans and songbirds, there is evidence for lateralization of neural responsiveness in these brain regions. Human infants already show left-sided dominance in their brain activation when exposed to speech. Moreover, a memory-specific left-sided dominance in Wernicke's area for speech perception has been demonstrated in 2.5-mo-old babies. It is possible that auditory-vocal learning is associated with hemispheric dominance and that this association arose in songbirds and humans through convergent evolution. Therefore, we investigated whether there is similar song memory-related lateralization in the songbird brain. We exposed male zebra finches to tutor or unfamiliar song. We found left-sided dominance of neuronal activation in a Broca-like brain region (HVC, a letter-based name) of juvenile and adult zebra finch males, independent of the song stimulus presented. In addition, juvenile males showed left-sided dominance for tutor song but not for unfamiliar song in a Wernicke-like brain region (the caudomedial nidopallium). Thus, left-sided dominance in the caudomedial nidopallium was specific for the song-learning phase and was memory-related. These findings demonstrate a remarkable neural parallel between birdsong and human spoken language, and they have important consequences for our understanding of the evolution of auditory-vocal learning and its neural mechanisms.

  20. Repairing the brain with physical exercise: Cortical thickness and brain volume increases in long-term pediatric brain tumor survivors in response to a structured exercise intervention.

    Science.gov (United States)

    Szulc-Lerch, Kamila U; Timmons, Brian W; Bouffet, Eric; Laughlin, Suzanne; de Medeiros, Cynthia B; Skocic, Jovanka; Lerch, Jason P; Mabbott, Donald J

    2018-01-01

    There is growing evidence that exercise induced experience dependent plasticity may foster structural and functional recovery following brain injury. We examined the efficacy of exercise training for neural and cognitive recovery in long-term pediatric brain tumor survivors treated with radiation. We conducted a controlled clinical trial with crossover of exercise training (vs. no training) in a volunteer sample of 28 children treated with cranial radiation for brain tumors (mean age = 11.5 yrs.; mean time since diagnosis = 5.7 yrs). The endpoints were anatomical T1 MRI data and multiple behavioral outcomes presenting a broader analysis of structural MRI data across the entire brain. This included an analysis of changes in cortical thickness and brain volume using automated, user unbiased approaches. A series of general linear mixed effects models evaluating the effects of exercise training on cortical thickness were performed in a voxel and vertex-wise manner, as well as for specific regions of interest. In exploratory analyses, we evaluated the relationship between changes in cortical thickness after exercise with multiple behavioral outcomes, as well as the relation of these measures at baseline. Exercise was associated with increases in cortical thickness within the right pre and postcentral gyri. Other notable areas of increased thickness related to training were present in the left pre and postcentral gyri, left temporal pole, left superior temporal gyrus, and left parahippocampal gyrus. Further, we observed that compared to a separate cohort of healthy children, participants displayed multiple areas with a significantly thinner cortex prior to training and fewer differences following training, indicating amelioration of anatomical deficits. Partial least squares analysis (PLS) revealed specific patterns of relations between cortical thickness and various behavioral outcomes both after training and at baseline. Overall, our results indicate that

  1. Pulmonary hypertension due to left heart disease.

    Science.gov (United States)

    Berthelot, Emmanuelle; Bailly, Minh Tam; Hatimi, Safwane El; Robard, Ingrid; Rezgui, Hatem; Bouchachi, Amir; Montani, David; Sitbon, Olivier; Chemla, Denis; Assayag, Patrick

    Pulmonary hypertension due to left heart disease, also known as group 2 pulmonary hypertension according to the European Society of Cardiology/European Respiratory Society classification, is the most common cause of pulmonary hypertension. In patients with left heart disease, the development of pulmonary hypertension favours right heart dysfunction, which has a major impact on disease severity and outcome. Over the past few years, this condition has been considered more frequently. However, epidemiological studies of group 2 pulmonary hypertension are less exhaustive than studies of other causes of pulmonary hypertension. In group 2 patients, pulmonary hypertension may be caused by an isolated increase in left-sided filling pressures or by a combination of this condition with increased pulmonary vascular resistance, with an abnormally high pressure gradient between arteries and pulmonary veins. A better understanding of the conditions underlying pulmonary hypertension is of key importance to establish a comprehensive diagnosis, leading to an adapted treatment to reduce heart failure morbidity and mortality. In this review, epidemiology, mechanisms and diagnostic approaches are reviewed; then, treatment options and future approaches are considered. Copyright © 2017. Published by Elsevier Masson SAS.

  2. Neuroradiological findings in vascular dementia

    Energy Technology Data Exchange (ETDEWEB)

    Guermazi, Ali; Miaux, Yves; Suhy, Joyce; Pauls, Jon; Lopez, Ria [Synarc, Inc., Department of Radiology Services, San Francisco, CA (United States); Rovira-Canellas, Alex [Hospital General Universitari Vall d' Hebron, Unita de Resonancia Magnetica, Barcelona (Spain); Posner, Holly [Eisai, Inc., Teaneck, NJ (United States)

    2007-01-15

    There are multiple diagnostic criteria for vascular dementia (VaD) that may define different populations. Utilizing the criteria of the National Institute of Neurological Disorders and Stroke and Association Internationale pour la Recherche et l'Enseignement en Neurosciences (NINDS-AIREN) has provided improved consistency in the diagnosis of VaD. The criteria include a table listing brain imaging lesions associated with VaD. The different neuroradiological aspects of the criteria are reviewed based on the imaging data from an ongoing large-scale clinical trial testing a new treatment for VaD. The NINDS-AIREN criteria were applied by a centralized imaging rater to determine eligibility for enrollment in 1,202 patients using brain CT or MRI. Based on the above data set, the neuroradiological features that are associated with VaD and that can result from cerebral small-vessel disease with extensive leukoencephalopathy or lacunae (basal ganglia or frontal white matter), or may be the consequence of single strategically located infarcts or multiple infarcts in large-vessel territories, are illustrated. These features may also be the consequence of global cerebral hypoperfusion, intracerebral hemorrhage, or other mechanisms such as genetically determined arteriopathies. Neuroimaging confirmation of cerebrovascular disease in VaD provides information about the topography and severity of vascular lesions. Neuroimaging may also assist with the differential diagnosis of dementia associated with normal pressure hydrocephalus, chronic subdural hematoma, arteriovenous malformation or tumoral diseases. (orig.)

  3. Acute traumatic brain-stem hemorrhage produced by sudden caudal displacement of the brain

    International Nuclear Information System (INIS)

    Mirvis, S.E.; Wolf, A.L.; Thompson, R.K.

    1990-01-01

    This paper determines in an experimental canine study and a clinical review, whether acute caudal displacement of the brain following blunt trauma produces hemorrhage in the rostral anterior midline of the brain stem by tethering the basilar to the fixed carotid arteries. In four dogs, a balloon catheter was suddenly inflated over the frontal lobe; in two, the carotid-basilar vascular connections were severed prior to balloon inflation. ICP was monitored during and after balloon inflation. Hemorrhage was verified by MR imaging and direct inspection of the fixed brain specimens. Admission CT scans demonstrating acute traumatic brain stem hemorrhage (TBH) in human patients were reviewed to determine the site of TBH, predominant site of impact, and neurologic outcome

  4. MDCT assessment of tracheomalacia in symptomatic infants with mediastinal aortic vascular anomalies: preliminary technical experience

    International Nuclear Information System (INIS)

    Lee, Edward Y.; Mason, Keira P.; Zurakowski, David; Waltz, David A.; Ralph, Amy; Riaz, Farhana; Boiselle, Phillip M.

    2008-01-01

    Mediastinal aortic vascular anomalies are relatively common causes of extrinsic central airway narrowing in infants with respiratory symptoms. Surgical correction of mediastinal aortic vascular anomalies alone might not adequately treat airway symptoms if extrinsic narrowing is accompanied by intrinsic tracheomalacia (TM), a condition that escapes detection on routine end-inspiratory imaging. Paired inspiratory-expiratory multidetector CT (MDCT) has the potential to facilitate early diagnosis and timely management of TM in symptomatic infants with mediastinal aortic vascular anomalies. To assess the technical feasibility of paired inspiratory-expiratory MDCT for evaluating TM among symptomatic infants with mediastinal aortic vascular anomalies. The study group consisted of five consecutive symptomatic infants (four male, one female; mean age 4.1 months, age range 2 weeks to 6 months) with mediastinal aortic vascular anomalies who were referred for paired inspiratory-expiratory MDCT during a 22-month period. CT angiography was concurrently performed during the end-inspiration phase of the study. Two pediatric radiologists in consensus reviewed all CT images in a randomized and blinded fashion. The end-inspiration and end-expiration CT images were reviewed for the presence and severity of tracheal narrowing. TM was defined as ≥50% reduction in tracheal cross-sectional luminal area between end-inspiration and end-expiration. The presence of TM was compared to the bronchoscopy results when available (n = 4). Paired inspiratory-expiratory MDCT was technically successful in all five patients. Mediastinal aortic vascular anomalies included a right aortic arch with an aberrant left subclavian artery (n = 2), innominate artery compression (n = 2), and a left aortic arch with an aberrant right subclavian artery (n 1). Three (60%) of the five patients demonstrated focal TM at the level of mediastinal aortic vascular anomalies. The CT results were concordant with the results

  5. A Plea for Right Brain Usage.

    Science.gov (United States)

    Lord, Thomas R.

    1984-01-01

    The visuo-spatial centers of the right brain are crucial to being able to problem solve or conceptualize (two abilities necessary for success in understanding science). Yet, current educational format is almost exclusively a left-brain undertaking. Reasons why educators should emphasize right-brain understanding in educational curricula at all…

  6. Prevention of hemodynamic and vascular albumin filtration changes in diabetic rats by aldose reductase inhibitors

    International Nuclear Information System (INIS)

    Tilton, R.G.; Chang, K.; Pugliese, G.; Eades, D.M.; Province, M.A.; Sherman, W.R.; Kilo, C.; Williamson, J.R.

    1989-01-01

    This study investigated hemodynamic changes in diabetic rats and their relationship to changes in vascular albumin permeation and increased metabolism of glucose to sorbitol. The effects of 6 wk of streptozocin-induced diabetes and three structurally different inhibitors of aldose reductase were examined on (1) regional blood flow (assessed with 15-microns 85Sr-labeled microspheres) and vascular permeation by 125I-labeled bovine serum albumin (BSA) and (2) glomerular filtration rate (assessed by plasma clearance of 57Co-labeled EDTA) and urinary albumin excretion (determined by radial immunodiffusion assay). In diabetic rats, blood flow was significantly increased in ocular tissues (anterior uvea, posterior uvea, retina, and optic nerve), sciatic nerve, kidney, new granulation tissue, cecum, and brain. 125I-BSA permeation was increased in all of these tissues except brain. Glomerular filtration rate and 24-h urinary albumin excretion were increased 2- and 29-fold, respectively, in diabetic rats. All three aldose reductase inhibitors completely prevented or markedly reduced these hemodynamic and vascular filtration changes and increases in tissue sorbitol levels in the anterior uvea, posterior uvea, retina, sciatic nerve, and granulation tissue. These observations indicate that early diabetes-induced hemodynamic changes and increased vascular albumin permeation and urinary albumin excretion are aldose reductase-linked phenomena. Discordant effects of aldose reductase inhibitors on blood flow and vascular albumin permeation in some tissues suggest that increased vascular albumin permeation is not entirely attributable to hemodynamic change

  7. Migraine, the heart and the brain

    NARCIS (Netherlands)

    Koppen, H.

    2018-01-01

    The association between migraine and silent ischemic brain lesions was investigated. Also the occurence of right-to-left shunts in different migraine groups and controls. The functional consequences of silent ischemic brain lesions were investigated.

  8. Brain scintigraphy quantified on a digital computer. Statistical evaluation of the results

    International Nuclear Information System (INIS)

    Teijiro Vidal, J.; Martinez Alonso, J.R.; Ortiz Berrocal, J.

    1975-01-01

    A method of lesional activity quantification was used to obtain a differential diagnosis in brain studies with radioactive isotopes. The differences in uptake between the diseased zone and normal tissue was determined. This method also revealed a stronger technetium uptake in tumoral processes than in vascular processes. The use of 26 activity levels showed the existence of remarkable brain structure differences. 49 patients were examined altogether: 18 primitive tumours, 10 metastases, 21 vascular accidents [fr

  9. Neuro-vascular central nervous recording/stimulating system: Using nanotechnology probes

    International Nuclear Information System (INIS)

    Llinas, Rodolfo R.; Walton, Kerry D.; Nakao, Masayuki; Hunter, Ian; Anquetil, Patrick A.

    2005-01-01

    Electrical recording from spinal cord vascular capillary bed has been achieved demonstrating that the intravascular space may be utilized as a means to address brain activity with out violating the brain parenchyma. While the initial demonstration was implemented using electrically insulated platinum electrodes in vitro, the possibility of using conducting polymer filaments is now being explored. This paper presents a set of highly possible future scenarios where the integration of electrophysiology and novel polymer technology may serve as a new approach towards basic and medical neuroscience

  10. Neuro-vascular central nervous recording/stimulating system: Using nanotechnology probes

    Energy Technology Data Exchange (ETDEWEB)

    Llinas, Rodolfo R., E-mail: llinar01@popmail.med.nyu.edu; Walton, Kerry D. [NYU School of Medicine, Department of Physiology and Neuroscience (United States); Nakao, Masayuki [University of Tokyo, Institute of Engineering Innovation (Japan); Hunter, Ian; Anquetil, Patrick A. [Massachusetts Institute of Technology, Department of Mechanical Engineering, BioInstrumentation Laboratory (United States)

    2005-06-15

    Electrical recording from spinal cord vascular capillary bed has been achieved demonstrating that the intravascular space may be utilized as a means to address brain activity with out violating the brain parenchyma. While the initial demonstration was implemented using electrically insulated platinum electrodes in vitro, the possibility of using conducting polymer filaments is now being explored. This paper presents a set of highly possible future scenarios where the integration of electrophysiology and novel polymer technology may serve as a new approach towards basic and medical neuroscience.

  11. Clinical-pathologic correlations in vascular cognitive impairment and dementia.

    Science.gov (United States)

    Flanagan, Margaret; Larson, Eric B; Latimer, Caitlin S; Cholerton, Brenna; Crane, Paul K; Montine, Kathleen S; White, Lon R; Keene, C Dirk; Montine, Thomas J

    2016-05-01

    The most common causes of cognitive impairment and dementia are Alzheimer's disease (AD) and vascular brain injury (VBI), either independently, in combination, or in conjunction with other neurodegenerative disorders. The contribution of VBI to cognitive impairment and dementia, particularly in the context of AD pathology, has been examined extensively yet remains difficult to characterize due to conflicting results. Describing the relative contribution and mechanisms of VBI in dementia is important because of the profound impact of dementia on individuals, caregivers, families, and society, particularly the stability of health care systems with the rapidly increasing age of our population. Here we discuss relationships between pathologic processes of VBI and clinical expression of dementia, specific subtypes of VBI including microvascular brain injury, and what is currently known regarding contributions of VBI to the development and pathogenesis of the dementia syndrome. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. anomalous left anterior cerebral artery with hypoplastic right anterior ...

    African Journals Online (AJOL)

    2018-02-28

    Feb 28, 2018 ... We report an extremely rare anomalous variation of left anterior cerebral artery arising from the ... paraclinoid internal carotid artery and right ... Studies on the arteries of the brain: II-The anterior cerebral artery: Some anatomic ...

  13. Endovascular management of recurrent stenosis following left renal vein transposition for the treatment of Nutcracker syndrome.

    Science.gov (United States)

    Baril, Donald T; Polanco, Patricio; Makaroun, Michel S; Chaer, Rabih A

    2011-04-01

    Nutcracker syndrome is an entity resulting from left renal vein compression by the superior mesenteric artery and the aorta, leading to symptoms of left flank pain and hematuria. Conventional treatment has been surgical, commonly through transposition of the left renal vein to a more caudal location on the inferior vena cava. Additionally, endovascular approaches, primarily via renal vein stenting, have been described for treatment of this syndrome. We report the case of a patient with Nutcracker syndrome who underwent successful left renal vein transposition but then developed recurrent symptoms 10 months postoperatively and was successfully treated with angioplasty and stenting. Copyright © 2011 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  14. Molecular parallels between neural and vascular development.

    Science.gov (United States)

    Eichmann, Anne; Thomas, Jean-Léon

    2013-01-01

    The human central nervous system (CNS) features a network of ~400 miles of blood vessels that receives >20% of the body's cardiac output and uses most of its blood glucose. Many human diseases, including stroke, retinopathy, and cancer, are associated with the biology of CNS blood vessels. These vessels originate from extrinsic cell populations, including endothelial cells and pericytes that colonize the CNS and interact with glia and neurons to establish the blood-brain barrier and control cerebrovascular exchanges. Neurovascular interactions also play important roles in adult neurogenic niches, which harbor a unique population of neural stem cells that are intimately associated with blood vessels. We here review the cellular and molecular mechanisms required to establish the CNS vascular network, with a special focus on neurovascular interactions and the functions of vascular endothelial growth factors.

  15. Spontaneous brain activity predicts learning ability of foreign sounds.

    Science.gov (United States)

    Ventura-Campos, Noelia; Sanjuán, Ana; González, Julio; Palomar-García, María-Ángeles; Rodríguez-Pujadas, Aina; Sebastián-Gallés, Núria; Deco, Gustavo; Ávila, César

    2013-05-29

    Can learning capacity of the human brain be predicted from initial spontaneous functional connectivity (FC) between brain areas involved in a task? We combined task-related functional magnetic resonance imaging (fMRI) and resting-state fMRI (rs-fMRI) before and after training with a Hindi dental-retroflex nonnative contrast. Previous fMRI results were replicated, demonstrating that this learning recruited the left insula/frontal operculum and the left superior parietal lobe, among other areas of the brain. Crucially, resting-state FC (rs-FC) between these two areas at pretraining predicted individual differences in learning outcomes after distributed (Experiment 1) and intensive training (Experiment 2). Furthermore, this rs-FC was reduced at posttraining, a change that may also account for learning. Finally, resting-state network analyses showed that the mechanism underlying this reduction of rs-FC was mainly a transfer in intrinsic activity of the left frontal operculum/anterior insula from the left frontoparietal network to the salience network. Thus, rs-FC may contribute to predict learning ability and to understand how learning modifies the functioning of the brain. The discovery of this correspondence between initial spontaneous brain activity in task-related areas and posttraining performance opens new avenues to find predictors of learning capacities in the brain using task-related fMRI and rs-fMRI combined.

  16. Bioprinting for vascular and vascularized tissue biofabrication.

    Science.gov (United States)

    Datta, Pallab; Ayan, Bugra; Ozbolat, Ibrahim T

    2017-03-15

    Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision

  17. Synergistic Utility of Brain Natriuretic Peptide and Left Ventricular Global Longitudinal Strain in Asymptomatic Patients With Significant Primary Mitral Regurgitation and Preserved Systolic Function Undergoing Mitral Valve Surgery.

    Science.gov (United States)

    Alashi, Alaa; Mentias, Amgad; Patel, Krishna; Gillinov, A Marc; Sabik, Joseph F; Popović, Zoran B; Mihaljevic, Tomislav; Suri, Rakesh M; Rodriguez, L Leonardo; Svensson, Lars G; Griffin, Brian P; Desai, Milind Y

    2016-07-01

    In asymptomatic patients with ≥3+ mitral regurgitation and preserved left ventricular (LV) ejection fraction who underwent mitral valve surgery, we sought to discover whether baseline LV global longitudinal strain (LV-GLS) and brain natriuretic peptide provided incremental prognostic utility. Four hundred and forty-eight asymptomatic patients (61±12 years and 69% men) with ≥3+ primary mitral regurgitation and preserved left ventricular ejection fraction, who underwent mitral valve surgery (92% repair) at our center between 2005 and 2008, were studied. Baseline clinical and echocardiographic data (including LV-GLS using Velocity Vector Imaging, Siemens, PA) were recorded. The Society of Thoracic Surgeons score was calculated. The primary outcome was death. Mean Society of Thoracic Surgeons score, left ventricular ejection fraction, mitral effective regurgitant orifice, indexed LV end-diastolic volume, and right ventricular systolic pressure were 4±1%, 62±3%, 0.55±0.2 cm(2), 58±13 cc/m(2), and 37±15 mm Hg, respectively. Forty-five percent of patients had flail. Median log-transformed BNP and LV-GLS were 4.04 (absolute brain natriuretic peptide: 60 pg/dL) and -20.7%. At 7.7±2 years, death occurred in 41 patients (9%; 0% at 30 days). On Cox analysis, a higher Society of Thoracic Surgeons score (hazard ratio 1.55), higher baseline right ventricular systolic pressure (hazard ratio 1.11), more abnormal LV-GLS (hazard ratio 1.17), and higher median log-transformed BNP (hazard ratio 2.26) were associated with worse longer-term survival (all Pright ventricular systolic pressure) provided incremental prognostic utility (χ(2) for longer-term mortality increased from 31-47 to 61; Pleft ventricular ejection fraction who underwent mitral valve surgery, brain natriuretic peptide and LV-GLS provided synergistic risk stratification, independent of established factors. © 2016 American Heart Association, Inc.

  18. Hemifacial Pain and Hemisensory Disturbance Referred from Occipital Neuralgia Caused by Pathological Vascular Contact of the Greater Occipital Nerve.

    Science.gov (United States)

    Son, Byung-Chul; Choi, Jin-Gyu

    2017-01-01

    Here we report a unique case of chronic occipital neuralgia caused by pathological vascular contact of the left greater occipital nerve. After 12 months of left-sided, unremitting occipital neuralgia, a hypesthesia and facial pain developed in the left hemiface. The decompression of the left greater occipital nerve from pathological contacts with the occipital artery resulted in immediate relief for hemifacial sensory change and facial pain, as well as chronic occipital neuralgia. Although referral of pain from the stimulation of occipital and cervical structures innervated by upper cervical nerves to the frontal head of V1 trigeminal distribution has been reported, the development of hemifacial sensory change associated with referred trigeminal pain from chronic occipital neuralgia is extremely rare. Chronic continuous and strong afferent input of occipital neuralgia caused by pathological vascular contact with the greater occipital nerve seemed to be associated with sensitization and hypersensitivity of the second-order neurons in the trigeminocervical complex, a population of neurons in the C2 dorsal horn characterized by receiving convergent input from dural and cervical structures.

  19. Retinal vascular changes in hypertensive patients in Ibadan, Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Oluleye ST

    2016-08-01

    Full Text Available Sunday Tunji Oluleye,1 Bolutife Ayokunu Olusanya,1 Abiodun Moshood Adeoye2 1Department of Ophthalmology, 2Department of Medicine, College of Medicine, University of Ibadan and University College Hospital, Ibadan, Nigeria Background: Earlier studies in Nigeria reported the rarity of retinal vascular changes in hypertensives. The aim of this study was to describe the various retinal vascular changes in the hypertensive patients of Nigeria.Patients and methods: Nine hundred and three hypertensive patients were studied. This study was approved by the ethical and research committee of the University of Ibadan and University College Hospital, Ibadan, Nigeria. Blood pressure and anthropometric measurements were measured. Cardiac echocardiography was performed on 156 patients. All patients had dilated fundoscopy and fundus photography using the Kowa portable fundus camera and an Apple iPhone with 20 D lens. Statistical analysis was done with Statistical Packages for the Social Sciences (Version 21.Results: The mean age of patients was 57 years with a male:female ratio of 1. No retinopathy was found in 556 (61.5% patients. In all, 175 (19.4% patients had features of hypertensive retinopathy. Retinal vascular occlusion was a significant finding in 121 patients (13.4%, of which branch retinal vein occlusion, 43 (4.7%, and central retinal vein occlusion, 30 (3.3%, were the most prominent ones in cases. Hemicentral retinal vein occlusion, 26 (2.9%, and central retinal artery occlusion, 17 (1.9%, were significant presentations. Other findings included nonarteritic anterior ischemic optic neuropathy in five (0.6% patients, hypertensive choroidopathy in seven (0.8% patients, and hemorrhagic choroidal detachment in five (0.6% patients. Left ventricular (LV geometry was abnormal in 85 (55.5% patients. Concentric remodeling, eccentric hypertrophy, and concentric hypertrophy were observed in 43 (27.6%, 26 (17.2%, and 15 (9.7% patients, respectively. LV

  20. Gender differences in functional connectivities between insular subdivisions and selective pain-related brain structures.

    Science.gov (United States)

    Dai, Yu-Jie; Zhang, Xin; Yang, Yang; Nan, Hai-Yan; Yu, Ying; Sun, Qian; Yan, Lin-Feng; Hu, Bo; Zhang, Jin; Qiu, Zi-Yu; Gao, Yi; Cui, Guang-Bin; Chen, Bi-Liang; Wang, Wen

    2018-03-14

    The incidence of pain disorders in women is higher than in men, making gender differences in pain a research focus. The human insular cortex is an important brain hub structure for pain processing and is divided into several subdivisions, serving different functions in pain perception. Here we aimed to examine the gender differences of the functional connectivities (FCs) between the twelve insular subdivisions and selected pain-related brain structures in healthy adults. Twenty-six healthy males and 11 age-matched healthy females were recruited in this cross-sectional study. FCs between the 12 insular subdivisions (as 12 regions of interest (ROIs)) and the whole brain (ROI-whole brain level) or 64 selected pain-related brain regions (64 ROIs, ROI-ROI level) were measured between the males and females. Significant gender differences in the FCs of the insular subdivisions were revealed: (1) The FCs between the dorsal dysgranular insula (dId) and other brain regions were significantly increased in males using two different techniques (ROI-whole brain and ROI-ROI analyses); (2) Based on the ROI-whole brain analysis, the FC increases in 4 FC-pairs were observed in males, including the left dId - the right median cingulate and paracingulate/ right posterior cingulate gyrus/ right precuneus, the left dId - the right median cingulate and paracingulate, the left dId - the left angular as well as the left dId - the left middle frontal gyrus; (3) According to the ROI-ROI analysis, increased FC between the left dId and the right rostral anterior cingulate cortex was investigated in males. In summary, the gender differences in the FCs of the insular subdivisions with pain-related brain regions were revealed in the current study, offering neuroimaging evidence for gender differences in pain processing. ClinicalTrials.gov, NCT02820974 . Registered 28 June 2016.

  1. Computerized analysis of brain perfusion parameter images

    International Nuclear Information System (INIS)

    Turowski, B.; Haenggi, D.; Wittsack, H.J.; Beck, A.; Aurich, V.

    2007-01-01

    Purpose: The development of a computerized method which allows a direct quantitative comparison of perfusion parameters. The display should allow a clear direct comparison of brain perfusion parameters in different vascular territories and over the course of time. The analysis is intended to be the basis for further evaluation of cerebral vasospasm after subarachnoid hemorrhage (SAH). The method should permit early diagnosis of cerebral vasospasm. Materials and Methods: The Angiotux 2D-ECCET software was developed with a close cooperation between computer scientists and clinicians. Starting from parameter images of brain perfusion, the cortex was marked, segmented and assigned to definite vascular territories. The underlying values were averages for each segment and were displayed in a graph. If a follow-up was available, the mean values of the perfusion parameters were displayed in relation to time. The method was developed under consideration of CT perfusion values but is applicable for other methods of perfusion imaging. Results: Computerized analysis of brain perfusion parameter images allows an immediate comparison of these parameters and follow-up of mean values in a clear and concise manner. Values are related to definite vascular territories. The tabular output facilitates further statistic evaluations. The computerized analysis is precisely reproducible, i. e., repetitions result in exactly the same output. (orig.)

  2. Increased brain iron deposition is a risk factor for brain atrophy in patients with haemodialysis: a combined study of quantitative susceptibility mapping and whole brain volume analysis.

    Science.gov (United States)

    Chai, Chao; Zhang, Mengjie; Long, Miaomiao; Chu, Zhiqiang; Wang, Tong; Wang, Lijun; Guo, Yu; Yan, Shuo; Haacke, E Mark; Shen, Wen; Xia, Shuang

    2015-08-01

    To explore the correlation between increased brain iron deposition and brain atrophy in patients with haemodialysis and their correlation with clinical biomarkers and neuropsychological test. Forty two patients with haemodialysis and forty one age- and gender-matched healthy controls were recruited in this prospective study. 3D whole brain high resolution T1WI and susceptibility weighted imaging were scanned on a 3 T MRI system. The brain volume was analyzed using voxel-based morphometry (VBM) in patients and to compare with that of healthy controls. Quantitative susceptibility mapping was used to measure and compare the susceptibility of different structures between patients and healthy controls. Correlation analysis was used to investigate the relationship between the brain volume, iron deposition and neuropsychological scores. Stepwise multiple regression analysis was used to explore the effect of clinical biomarkers on the brain volumes in patients. Compared with healthy controls, patients with haemodialysis showed decreased volume of bilateral putamen and left insular lobe (All P brain iron deposition is negatively correlated with the decreased volume of bilateral putamen (P brain iron deposition and dialysis duration was risk factors for brain atrophy in patients with haemodialysis. The decreased gray matter volume of the left insular lobe was correlated with neurocognitive impairment.

  3. Left atrial enlargement increases the risk of major adverse cardiac events independent of coronary vasodilator capacity

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Angela S. [Brigham and Women' s Hospital, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston, MA (United States); National Heart Centre Singapore, Singapore (Singapore); Murthy, Venkatesh L.; Sitek, Arkadiusz; Gayed, Peter; Bruyere, John; Di Carli, Marcelo F. [Brigham and Women' s Hospital, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston, MA (United States); Wu, Justina [Brigham and Women' s Hospital, Division of Cardiology, Department of Medicine, and the Noninvasive Cardiovascular Imaging Program, Departments of Medicine (Cardiology) and Radiology, Boston, MA (United States); Dorbala, Sharmila [Brigham and Women' s Hospital, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston, MA (United States); Brigham and Women' s Hospital, Department of Radiology and the Division of Cardiology, Noninvasive Cardiovascular Imaging Section, Boston, MA (United States)

    2015-09-15

    Longstanding uncontrolled atherogenic risk factors may contribute to left atrial (LA) hypertension, LA enlargement (LAE) and coronary vascular dysfunction. Together they may better identify risk of major adverse cardiac events (MACE). The aim of this study was to test the hypothesis that chronic LA hypertension as assessed by LAE modifies the relationship between coronary vascular function and MACE. In 508 unselected subjects with a normal clinical {sup 82}Rb PET/CT, ejection fraction ≥40 %, no prior coronary artery disease, valve disease or atrial fibrillation, LAE was determined based on LA volumes estimated from the hybrid perfusion and CT transmission scan images and indexed to body surface area. Absolute myocardial blood flow and global coronary flow reserve (CFR) were calculated. Subjects were systematically followed-up for the primary end-point - MACE - a composite of all-cause death, myocardial infarction, hospitalization for heart failure, stroke, coronary artery disease progression or revascularization. During a median follow-up of 862 days, 65 of the subjects experienced a composite event. Compared with subjects with normal LA size, subjects with LAE showed significantly lower CFR (2.25 ± 0.83 vs. 1.95 ± 0.80, p = 0.01). LAE independently and incrementally predicted MACE even after accounting for clinical risk factors, medication use, stress left ventricular ejection fraction, stress left ventricular end-diastolic volume index and CFR (chi-squared statistic increased from 30.9 to 48.3; p = 0.001). Among subjects with normal CFR, those with LAE had significantly worse event-free survival (risk adjusted HR 5.4, 95 % CI 2.3 - 12.8, p < 0.0001). LAE and reduced CFR are related but distinct cardiovascular adaptations to atherogenic risk factors. LAE is a risk marker for MACE independent of clinical factors and left ventricular volumes; individuals with LAE may be at risk of MACE despite normal coronary vascular function. (orig.)

  4. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  5. Examination of Blood-Brain Barrier (BBB) Integrity In A Mouse Brain Tumor Model

    Science.gov (United States)

    On, Ngoc; Mitchell, Ryan; Savant, Sanjot D.; Bachmeier, Corbin. J.; Hatch, Grant M.; Miller, Donald W.

    2013-01-01

    The present study evaluates, both functionally and biochemically, brain tumor-induced alterations in brain capillary endothelial cells. Brain tumors were induced in Balb/c mice via intracranial injection of Lewis Lung carcinoma (3LL) cells into the right hemisphere of the mouse brain using stereotaxic apparatus. Blood-brain barrier (BBB) permeability was assessed at various stages of tumor development, using both radiolabeled tracer permeability and magnetic resonance imaging (MRI) with gadolinium diethylene-triamine-pentaacetate contrast enhancement (Gad-DTPA). The expression of the drug efflux transporter, P-glycoprotein (P-gp), in the BBB at various stages of tumor development was also evaluated by Western blot and immunohistochemistry. Median mouse survival following tumor cell injection was 17 days. The permeability of the BBB to 3H-mannitol was similar in both brain hemispheres at 7 and 10 days post-injection. By day 15, there was a 2-fold increase in 3H-mannitol permeability in the tumor bearing hemispheres compared to the non-tumor hemispheres. Examination of BBB permeability with Gad-DTPA contrast enhanced MRI indicated cerebral vascular permeability changes were confined to the tumor area. The permeability increase observed at the later stages of tumor development correlated with an increase in cerebral vascular volume suggesting angiogenesis within the tumor bearing hemisphere. Furthermore, the Gad-DPTA enhancement observed within the tumor area was significantly less than Gad-DPTA enhancement within the circumventricular organs not protected by the BBB. Expression of P-gp in both the tumor bearing and non-tumor bearing portions of the brain appeared similar at all time points examined. These studies suggest that although BBB integrity is altered within the tumor site at later stages of development, the BBB is still functional and limiting in terms of solute and drug permeability in and around the tumor. PMID:23184143

  6. Decreased Left Putamen and Thalamus Volume Correlates with Delusions in First-Episode Schizophrenia Patients

    Directory of Open Access Journals (Sweden)

    Xiaojun Huang

    2017-11-01

    Full Text Available BackgroundDelusional thinking is one of the hallmark symptoms of schizophrenia. However, the underlying neural substrate for delusions in schizophrenia remains unknown. In an attempt to further our understanding of the neural basis of delusions, we explored gray matter deficits and their clinical associations in first-episode schizophrenia patients with and without delusions.MethodsTwenty-four first-episode schizophrenia patients with delusions and 18 without delusions as well as 26 healthy controls (HC underwent clinical assessment and whole-brain structural imaging which were acquired a 3.0 T scanner. Voxel-based morphometry was used to explore inter-group differences in gray matter volume using analysis of covariance, and Spearman correlation coefficients (rho between the Scale for the Assessment of Positive Symptoms (SAPS-delusion scores and mean regional brain volumes was obtained.ResultsPatients with delusions showed decreased brain gray matter volumes in the left putamen, thalamus, and caudate regions compared with HC. Patients with delusions also showed decreased regional volume in the left putamen and thalamus compared with patients without delusions. SAPS-delusion scores were negatively correlated with the gray matter volumes of the left putamen and thalamus.DiscussionLeft putamen and thalamus volume loss may be biological correlates of delusions in schizophrenia.

  7. Studies of the endothelial origin of cells in systemic angioendotheliomatosis and other vascular lesions of the brain and meninges using ulex europaeus lectin stains.

    Science.gov (United States)

    Schelper, R L; Olson, S P; Carroll, T J; Hart, M N; Witters, E

    1986-01-01

    Ulex europaeus agglutinin I (UEA-I) is a plant lectin which binds specifically to alpha-L-fucose moieties on the surface glycoproteins of human endothelial cells. The binding is completely inhibited by preincubation of the lectin with fucose. UEA-I can be conjugated directly to fluorescein or peroxidase and can be used to stain endothelium of paraffin embedded tissues. UEA-I staining was evaluated on normal and infarcted brain, systemic angioendotheliomatosis, metastatic epidural angiosarcoma, hemangioendothelioma, hemangioblastoma, angioblastic meningioma of both the hemangioblastic and hemangiopericytic types, and vascular meningioma. The endothelium, but not neuropil of normal and infarcted brain was positive for UEA-I. The tumor cells of hemangioendothelioma and angiosarcoma also stained. However, no staining was seen in malignant intravascular cells of angioendotheliomatosis, the stromal cells of hemangioblastoma, or pericytes of angioblastic meningioma. It is concluded that the malignant cells in angioendotheliomatosis, the stromal cells of hemangioblastoma and the pericytes of angioblastic meningioma do not produce surface glycoproteins characteristic of endothelial cells.

  8. Left Hemisphere Regions Are Critical for Language in the Face of Early Left Focal Brain Injury

    Science.gov (United States)

    Beharelle, Anjali Raja; Dick, Anthony Steven; Josse, Goulven; Solodkin, Ana; Huttenlocher, Peter R.; Levine, Susan C.; Small, Steven L.

    2010-01-01

    A predominant theory regarding early stroke and its effect on language development, is that early left hemisphere lesions trigger compensatory processes that allow the right hemisphere to assume dominant language functions, and this is thought to underlie the near normal language development observed after early stroke. To test this theory, we…

  9. Characteristics of Brain Perfusion in Patients of Parkinson's Disease

    International Nuclear Information System (INIS)

    Jeong, Young Jin; Park, Min Jung; Kim, Jae Woo; Kang, Young Kang

    2008-01-01

    It was well known that cerebral blood perfusion is normal or diffusely decreased in the majority of patients with Parkinson's disease (PD). Actually we interpreted brain perfusion SPECT images of PD patients in the clinical situation, we observed various cerebral perfusion patterns in patients with PD. So we performed brain perfusion SPECT to know the brain perfusion patterns of PD patients and the difference of perfusion patterns according to the sex and the age. Also we classified PD patients into small groups based on the brain perfusion pattern. Two hundred nineteen patients (M: 70, F: 149, mean age: 62.9±6.9 y/o) who were diagnosed as PD without dementia clinically and 55 patients (M: 15, F: 40, mean age: 61.4±9.2 y/o) as normal controls who had no past illness history were performed 99m Tc-HMPAO brain perfusion SPECT and neuropsychological test. At first, we compared all patients with PD and normal controls. Brain perfusion in left inferior frontal gyrus, left insula, left transverse temporal gyrus, left inferior parietal lobule, left superior parietal lobule, right precuneus, right caudate tail were lower in patients with PD than normal controls. Secondly, we compared male and female patients with PD and normal controls, respectively. Brain perfusion SPECT showed more decreased cerebral perfusion in left hemisphere than right side in both male and female patients compared to normal controls. And there was larger hypoperfusion area in female patients compared with male. Thirdly, we classified patients with PD and normal controls into 4 groups according to the age and compared brain perfusion respectively. In patient below fifties, brain perfusion in both occipitoparietal and left temporal lobe were lower in PD group. As the patients with PD grew older, hypoperfusion area were shown in both frontal, temporal and limbic lobes. Fourthly, We were able to divide patients into small groups based on cerebral perfusion pattern. There was normal cerebral blood

  10. A case of vascular Ehlers-Danlos Syndrome with a cardiomyopathy and multi-system involvement.

    Science.gov (United States)

    Lan, Nick Si Rui; Fietz, Michael; Pachter, Nicholas; Paul, Vincent; Playford, David

    Ehlers-Danlos Syndrome comprises a heterogeneous group of heritable connective tissue disorders resulting from various gene mutations. We present an unusual case of vascular Ehlers-Danlos Syndrome with distinctive physical characteristics and a cardiomyopathy with features suggesting isolated left ventricular non-compaction. The cardiac features represent the first report of a cardiomyopathy associated with a mutation in the COL3A1 gene. This case also illustrates the multi-system nature of Ehlers-Danlos Syndrome and the complexity of managing patients with the vascular subtype. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Characteristics of Spatial Synchronization of Encephalograms in Left- and Right-Handed Subjects in Resting State and During Cognitive Testing: a Graph-Theory Analysis

    OpenAIRE

    Lukoyanov M.V.; Grechikhin I.S.; Kalyagin V.A.; Pardalos P.M.; Mukhina I.V.

    2014-01-01

    Hand preference is one of the most striking manifestations of functional brain asymmetry. However, the nature of the phenomenon, as well as its interaction with other brain functions has not been fully understood. Therefore, the study of brain peculiarities of left- and right-handed subjects by neuronal network analysis is of particular interest. The aim of the investigation was to analyze brain network structures according to electroencephalography findings in left- and right-handed subj...

  12. Brain tumor-targeted drug delivery strategies

    Directory of Open Access Journals (Sweden)

    Xiaoli Wei

    2014-06-01

    Full Text Available Despite the application of aggressive surgery, radiotherapy and chemotherapy in clinics, brain tumors are still a difficult health challenge due to their fast development and poor prognosis. Brain tumor-targeted drug delivery systems, which increase drug accumulation in the tumor region and reduce toxicity in normal brain and peripheral tissue, are a promising new approach to brain tumor treatments. Since brain tumors exhibit many distinctive characteristics relative to tumors growing in peripheral tissues, potential targets based on continuously changing vascular characteristics and the microenvironment can be utilized to facilitate effective brain tumor-targeted drug delivery. In this review, we briefly describe the physiological characteristics of brain tumors, including blood–brain/brain tumor barriers, the tumor microenvironment, and tumor stem cells. We also review targeted delivery strategies and introduce a systematic targeted drug delivery strategy to overcome the challenges.

  13. Incidental Anatomic Finding of Celiacomesenteric Trunk Associated with ‘Nutcracker Phenomenon,’ or Compression of the Left Renal Vein

    Science.gov (United States)

    Peterson, Joshua; Hage, Anthony N.; Diljak, Stephan; Long, Benjamin D.; Marcusa, Daniel P.; Brzezinski, David W.; Eliason, Jonathan

    2017-01-01

    Patient: Female, 91 Final Diagnosis: Nutcracker syndrome • celiacomesenteric trunk Symptoms: Dyspepsia • dysphagia Medication: — Clinical Procedure: — Specialty: Surgery Objective: Congenital defects/diseases Background: Celiacomesenteric trunk (CMT) is a very rare anatomic finding in which the celiac artery and the superior mesenteric artery (SMA) originate from the abdominal aorta through a common trunk. Clinical associations with CMT include arterial aneurysm, thrombosis, and celiac artery compression. However, an association between CMT and abdominal venous congestion caused by left renal vein compression, or ‘nutcracker phenomenon,’ has not been previously reported. Case Report: A 91-year-old woman, who died from a cerebrovascular accident (CVA), underwent a cadaveric examination at our medical school. On examination of the abdomen, there was an incidental finding of CMT. The arterial and venous diameters were measured, and vascular histopathology was undertaken. The vascular anatomy was consistent with CMT type 1-b. Nutcracker phenomenon (NCP) (left renal vein compression) was seen anatomically as dilatation and engorgement of the left renal vein, relative to the right renal vein (10.77±0.13 mm vs. 4.49±0.56 mm, respectively), and dilatation and engorgement of the left ovarian vein, relative to the right ovarian vein (4.37±0.15 mm vs. 1.06±0.09 mm, respectively) with left ovarian varicocele. The aortoceliac angle (ACA) and the aortomesenteric angle (AMA) approached zero degrees. Conclusions: We have described a rare anatomic finding of CMT that created an acute AMA and NCP. Awareness of this rare association between CMT and NCP by clinicians, vascular surgeons, and radiologists may be of value in the future evaluation and surgical management of patients who present clinically with ‘nutcracker syndrome.’ PMID:29242494

  14. CT assessment of tracheobronchial anomaly in left pulmonary artery sling

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yu-Min M.; Zhu, Ming; Sun, Ai-Min M.; Wang, Qian [Shanghai Jiao Tong University School of Medicine, Department of Radiology, Shanghai Children' s Medical Center, Shanghai (China); Jaffe, Richard B. [Primary Children' s Medical Center, Department of Medical Imaging, Salt Lake City, UT (United States); Gao, Wei [Shanghai Jiao Tong University School of Medicine, Department of Cardiology, Shanghai Children' s Medical Center, Shanghai (China)

    2010-11-15

    The left pulmonary artery sling (LPAS) is a rare vascular anomaly where the left pulmonary artery arises from the right pulmonary artery, passes over the right bronchus, and goes posteriorly between the trachea and esophagus. The LPAS is frequently associated with cardiac and non-cardiac defects including tracheobronchial abnormalities. To evaluate the utility of multislice CT (MSCT) and helical CT (HCT) in diagnosing and defining the tracheobronchial anomaly and anatomic relationships between the trachea and aberrant left pulmonary artery. MSCT or HCT was performed in 27 children to determine the tracheobronchial anatomy and identify tracheobronchial stenosis. Eighteen children underwent surgery. According to the Wells [6] classification of LPAS, which includes two main types and two subtypes, there were eight cases of type 1A, five cases of type 1B, six cases of type 2A and eight cases of type 2B in this group. Twenty-four of the 27 children had substantial tracheobronchial stenosis. Four died before surgery; the 18 had reanastomosis of the left pulmonary artery. Five children also had tracheoplasty; three died after surgery. CT, especially MSCT, is an ideal modality for simultaneously identifying aberrant left pulmonary artery and any associated tracheobronchial anomaly. The Wells classification is useful for operative planning. (orig.)

  15. Preliminary application of voxel-based morphometry technique on brain changes in neuromyelitis

    International Nuclear Information System (INIS)

    Xiao Hui; Ma Lin; Chen Ziqian; Lou Xin; Chen Zhiye

    2011-01-01

    Objective: To investigate the changes of brain volumes in neuromyelitis optica (NMO) patients using voxel-based morphometry (VBM) method, and preliminarily explore the pattern of cerebral anatomical impairment. Methods: Twenty-three clinically defined NMO patients and 15 gender and age matched healthy volunteers underwent 3-dimensional (3D) fast spoiled gradient echo (FSPGR) sequence scanning on 3.0 Tesla MR system. Raw data was processed and analyzed using statistical parametric mapping (SPM) 5. Whole brain volumes included grey matter volume (GMV), white matter volume (WMV), total intracranial volume (TIV), grey matter fraction (GMF), white matter fraction (WMF), brain tissue fraction (BTF) and regional brain volumes between the two groups were compared by independent samples t-test and an Pearson were performed to compare the regional brain volumes and the ages. Results: GMV of NMO group [(610.2±55.0) ml] was significantly decreased comparing to healthy control group [(657.2±36.3) ml] (t=-2.915, P<0.05). The age of NMO patients [(40±9) years old] showed negative correlation with GMF [(42.5±2.6) %] (r=-0.673, P<0.05). Regional brain volume analysis showed decreased GMV in left insula and bilateral posterior cingutates in NMO patients, while decreased WMV was found in left frontal and left parietal white matter. Conclusion: VBM could detect brain volume changes sensitively. Total grey matter volume in NMO patients was decreased comparing to HC group. Regional grey matter atrophy in NMO patients occurred in left insular and bilateral posterior cingutates, regional white matter atrophy occurred in left frontal and left parietal lobe. (authors)

  16. Tc-99m ECD brain SPECT in MELAS syndrome and mitochondrial myopathy: comparison with MR findings

    International Nuclear Information System (INIS)

    Park, Sang Joon; Ryu, Young Hoon; Jeon, Tae Joo; Kim, Jai Keun; Nam, Ji Eun; Yoon, Pyeong Ho; Yoon, Choon Sik; Lee, Jong Doo

    1998-01-01

    We evaluated brain perfusion SPECT findings of MELAS syndrome and mitochondrial myopathy in correlation with MR imaging in search of specific imaging features. Subjects were five patients (four females and one male; age range, 1 to 25 year) who presented with repeated stroke like episodes, seizures or developmental delay or asymptomatic but had elevated lactic acid in CSF and serum. Conventional non-contrast MR imaging and Tc-99m-ethyl cysteinate dimer (ECD) brain perfusion SPECT were performed and imaging features were analyzed. MRI demonstrated increased T2 signal intensities in the affected areas of gray and white matters mainly in the parietal (4/5) and occipital lobes (4/5) and in the basal ganglia (1/5), which were not restricted to a specific vascular territory. SPECT demonstrated decreased perfusion in the corresponding regions of MRI lesions. In addition, there were perfusion defects in parietal (1 patient), temporal (2), and frontal (1) lobes and basal ganglia (1) and thalami (2). In a patient with mitochondrial myopathy who had normal MRI, decreased perfusion was noted in left parietal area and bilateral thalami. Tc-99m ECD SPECT imaging in patients with MELAS syndrome and mitochondrial myopathy showed hypoperfusion of parieto-occipital cortex, basal ganglia, thalamus and temporal cortex, which were not restricted to a specific vascular territory. There were no specific imaging features on SPECT. The significance of abnormal perfusion on SPECT without corresponding MR abnormalities needs to be evaluated further in larger number of patients

  17. The Brain Research Bandwagon: Proceed with Caution.

    Science.gov (United States)

    Franklin, Elda; Franklin, A. David

    1978-01-01

    The authors review current brain hemisphere laterality research in relation to music education, concluding that evidence is still insufficient to determine the functions of the left brain and right brain in music perception. They also consider the effects of training on the cerebral processing of music stimuli. (SJL)

  18. Left-Right Asymmetry of Maturation Rates in Human Embryonic Neural Development.

    Science.gov (United States)

    de Kovel, Carolien G F; Lisgo, Steven; Karlebach, Guy; Ju, Jia; Cheng, Gang; Fisher, Simon E; Francks, Clyde

    2017-08-01

    Left-right asymmetry is a fundamental organizing feature of the human brain, and neuropsychiatric disorders such as schizophrenia sometimes involve alterations of brain asymmetry. As early as 8 weeks postconception, the majority of human fetuses move their right arms more than their left arms, but because nerve fiber tracts are still descending from the forebrain at this stage, spinal-muscular asymmetries are likely to play an important developmental role. We used RNA sequencing to measure gene expression levels in the left and right spinal cords, and the left and right hindbrains, of 18 postmortem human embryos aged 4 to 8 weeks postconception. Genes showing embryonic lateralization were tested for an enrichment of signals in genome-wide association data for schizophrenia. The left side of the embryonic spinal cord was found to mature faster than the right side. Both sides transitioned from transcriptional profiles associated with cell division and proliferation at earlier stages to neuronal differentiation and function at later stages, but the two sides were not in synchrony (p = 2.2 E-161). The hindbrain showed a left-right mirrored pattern compared with the spinal cord, consistent with the well-known crossing over of function between these two structures. Genes that showed lateralization in the embryonic spinal cord were enriched for association signals with schizophrenia (p = 4.3 E-05). These are the earliest stage left-right differences of human neural development ever reported. Disruption of the lateralized developmental program may play a role in the genetic susceptibility to schizophrenia. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Split brain: divided perception but undivided consciousness.

    Science.gov (United States)

    Pinto, Yair; Neville, David A; Otten, Marte; Corballis, Paul M; Lamme, Victor A F; de Haan, Edward H F; Foschi, Nicoletta; Fabri, Mara

    2017-05-01

    In extensive studies with two split-brain patients we replicate the standard finding that stimuli cannot be compared across visual half-fields, indicating that each hemisphere processes information independently of the other. Yet, crucially, we show that the canonical textbook findings that a split-brain patient can only respond to stimuli in the left visual half-field with the left hand, and to stimuli in the right visual half-field with the right hand and verbally, are not universally true. Across a wide variety of tasks, split-brain patients with a complete and radiologically confirmed transection of the corpus callosum showed full awareness of presence, and well above chance-level recognition of location, orientation and identity of stimuli throughout the entire visual field, irrespective of response type (left hand, right hand, or verbally). Crucially, we used confidence ratings to assess conscious awareness. This revealed that also on high confidence trials, indicative of conscious perception, response type did not affect performance. These findings suggest that severing the cortical connections between hemispheres splits visual perception, but does not create two independent conscious perceivers within one brain. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Laterotopic representation of left-right information onto the dorso-ventral axis of a zebrafish midbrain target nucleus.

    Science.gov (United States)

    Aizawa, Hidenori; Bianco, Isaac H; Hamaoka, Takanori; Miyashita, Toshio; Uemura, Osamu; Concha, Miguel L; Russell, Claire; Wilson, Stephen W; Okamoto, Hitoshi

    2005-02-08

    The habenulae are part of an evolutionarily highly conserved limbic-system conduction pathway that connects telencephalic nuclei to the interpeduncular nucleus (IPN) of the midbrain . In zebrafish, unilateral activation of the Nodal signaling pathway in the left brain specifies the laterality of the asymmetry of habenular size . We show "laterotopy" in the habenulo-interpeduncular projection in zebrafish, i.e., the stereotypic, topographic projection of left-sided habenular axons to the dorsal region of the IPN and of right-sided habenular axons to the ventral IPN. This asymmetric projection is accounted for by a prominent left-right (LR) difference in the size ratio of the medial and lateral habenular sub-nuclei, each of which specifically projects either to ventral or dorsal IPN targets. Asymmetric Nodal signaling directs the orientation of laterotopy but is dispensable for the establishment of laterotopy itself. Our results reveal a mechanism by which information distributed between left and right sides of the brain can be transmitted bilaterally without loss of LR coding, which may play a crucial role in functional lateralization of the vertebrate brain .

  1. Severe blood-brain barrier disruption and surrounding tissue injury.

    Science.gov (United States)

    Chen, Bo; Friedman, Beth; Cheng, Qun; Tsai, Phil; Schim, Erica; Kleinfeld, David; Lyden, Patrick D

    2009-12-01

    Blood-brain barrier opening during ischemia follows a biphasic time course, may be partially reversible, and allows plasma constituents to enter brain and possibly damage cells. In contrast, severe vascular disruption after ischemia is unlikely to be reversible and allows even further extravasation of potentially harmful plasma constituents. We sought to use simple fluorescent tracers to allow wide-scale visualization of severely damaged vessels and determine whether such vascular disruption colocalized with regions of severe parenchymal injury. Severe vascular disruption and ischemic injury was produced in adult Sprague Dawley rats by transient occlusion of the middle cerebral artery for 1, 2, 4, or 8 hours, followed by 30 minutes of reperfusion. Fluorescein isothiocyanate-dextran (2 MDa) was injected intravenously before occlusion. After perfusion-fixation, brain sections were processed for ultrastructure or fluorescence imaging. We identified early evidence of tissue damage with Fluoro-Jade staining of dying cells. With increasing ischemia duration, greater quantities of high molecular weight dextran-fluorescein isothiocyanate invaded and marked ischemic regions in a characteristic pattern, appearing first in the medial striatum, spreading to the lateral striatum, and finally involving cortex; maximal injury was seen in the mid-parietal areas, consistent with the known ischemic zone in this model. The regional distribution of the severe vascular disruption correlated with the distribution of 24-hour 2,3,5-triphenyltetrazolium chloride pallor (r=0.75; P<0.05) and the cell death marker Fluoro-Jade (r=0.86; P<0.05). Ultrastructural examination showed significantly increased areas of swollen astrocytic foot process and swollen mitochondria in regions of high compared to low leakage, and compared to contralateral homologous regions (ANOVA P<0.01). Dextran extravasation into the basement membrane and surrounding tissue increased significantly from 2 to 8 hours of

  2. High Frequency rTMS over the Left Parietal Lobule Increases Non-Word Reading Accuracy

    Science.gov (United States)

    Costanzo, Floriana; Menghini, Deny; Caltagirone, Carlo; Oliveri, Massimiliano; Vicari, Stefano

    2012-01-01

    Increasing evidence in the literature supports the usefulness of Transcranial Magnetic Stimulation (TMS) in studying reading processes. Two brain regions are primarily involved in phonological decoding: the left superior temporal gyrus (STG), which is associated with the auditory representation of spoken words, and the left inferior parietal lobe…

  3. Right and left cardiac function in HIV-infected patients investigated using radionuclide ventriculography and brain natriuretic peptide: a 5-year follow-up study

    DEFF Research Database (Denmark)

    Kristoffersen, U.S.; Lebech, A.M.; Gerstoft, J.

    2008-01-01

    ventricular ejection fraction (RVEF) and left ventricular ejection fraction (LVEF), as well as measurement of brain natriuretic peptide (BNP). Between July 2005 and January 2007, 63 patients (69%) agreed to participate in a follow-up study with a mean follow-up of 4.5 years. RESULTS: All patients had normal......, it seems that the improvement in immunocompetency and viral load has removed the problem of HIV-related cardiomyopathy. Although HAART has been suggested as a possible new cause of cardiomyopathy, we did not find any evidence of this Udgivelsesdato: 2008/3...

  4. Brain metabolism in patients with freezing of gait after hypoxic-ischemic brain injury: A pilot study.

    Science.gov (United States)

    Yoon, Seo Yeon; Lee, Sang Chul; Kim, Na Young; An, Young-Sil; Kim, Yong Wook

    2017-11-01

    Movement disorders are 1 of the long-term neurological complications that can occur after hypoxic-ischemic brain injury (HIBI). However, freezing of gait (FOG) after HIBI is rare. The aim of this study was to examine the brain metabolism of patients with FOG after HIBI using F-18 fluoro-2-deoxy-D-glucose positron emission tomography (F-18 FDG PET).We consecutively enrolled 11 patients with FOG after HIBI. The patients' overall brain metabolism was measured by F-18 FDG PET, and we compared their regional brain metabolic activity with that from 15 healthy controls using a voxel-by-voxel-based statistical mapping analysis. Additionally, we correlated each patient's FOG severity with the brain metabolism using a covariance analysis.Patients with FOG had significantly decreased brain glucose metabolism in the midbrain, bilateral thalamus, bilateral cingulate gyri, right supramarginal gyrus, right angular gyrus, right paracentral lobule, and left precentral gyrus (PFDR-corrected brain metabolism were noted in patients with FOG. The covariance analysis identified significant correlations between the FOG severity and the brain metabolism in the right lingual gyrus, left fusiform gyrus, and bilateral cerebellar crus I (Puncorrected brain regions in the gait-related neural network, including the cerebral cortex, subcortical structures, brainstem, and cerebellum, may significantly contribute to the development of FOG in HIBI. Moreover, the FOG severity may be associated with the visual cortex and cerebellar regions.

  5. Diamox-enhanced brain SPECT in cerebrovascular diseases

    International Nuclear Information System (INIS)

    Choi, Yun Young

    2007-01-01

    Acute event in cerebrovascular disease is the second most common cause of death in Korea following cancer, and it can also cause serious neurologic deficits. Understanding of perfusion status is important for clinical applications in management of patients with cerebrovascular diseases, and then the attacks of ischemic neurologic symptoms and the risk of acute events can be reduced. Therefore, the normal vascular anatomy of brain, various clinical applications of acetazolamide-enhanced brain perfusion SPECT, including meaning and role of assessment of vascular reserve in carotid stenosis before procedure, in pediatric Moyamoya disease before and after operation, in prediction of development of hyperperfusion syndrome before procedure, and in prediction of vasospasm and of prognosis in subarachnoid hemorrhage were reviewed in this paper

  6. Low-frequency brain stimulation to the left dorsolateral prefrontal cortex increases the negative impact of social exclusion among those high in personal distress.

    Science.gov (United States)

    Fitzgibbon, Bernadette Mary; Kirkovski, Melissa; Bailey, Neil Wayne; Thomson, Richard Hilton; Eisenberger, Naomi; Enticott, Peter Gregory; Fitzgerald, Paul Bernard

    2017-06-01

    The dorsolateral prefrontal cortex (DLPFC) is thought to play a key role in the cognitive control of emotion and has therefore, unsurprisingly, been implicated in the regulation of physical pain perception. This brain region may also influence the experience of social pain, which has been shown to activate similar neural networks as seen in response to physical pain. Here, we applied sham or active low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC, previously shown to exert bilateral effects in pain perception, in healthy participants. Following stimulation, participants played the "Cyberball Task"; an online ball-tossing game in which the subject participant is included or excluded. Compared to sham, rTMS did not modulate behavioural response to social exclusion. However, within the active rTMS group only, greater trait personal distress was related to enhanced negative outcomes to social exclusion. These results add further support to the notion that the effect of brain stimulation is not homogenous across individuals, and indicates the need to consider baseline individual differences when assessing response to brain stimulation. This seems particularly relevant in social neuroscience investigations, where trait factors may have a meaningful effect.

  7. A "blind" vascular ring in association with congenital cystic adenomatoid malformation: A case report.

    Science.gov (United States)

    Xia, Bo; Hong, Chun; Tang, Jing; Liu, Cuifen; Yu, Gang

    2017-12-01

    The occurrence of congenital cystic adenomatoid malformation (CCAM) and vascular ring (VR) is extremely rare. We present a case of left CCAM with VR consisting of a left aortic arch and right descending aorta with left tracheal compression causing atelectasis. A high-risk male neonate with the diagnosis of left CCAM was diagnosed at 20 weeks gestational age by antenatal ultrasound. Chest CT revealed multiple cysts in the left inferior lung. Cardiac CT showed VR consisting of a left aortic arch and right descending aorta with left tracheal compression causing atelectasis. left inferior lobectomy was performed. Cardiac CT showed VR consisting of a left aortic arch and right descending aorta with left tracheal compression causing atelectasis. Descending aorta transposition was performed. The patient recovered smoothly and remained asymptomatic during the 12-months of postoperative follow-up period. We report this rare case of CCAM with VR consisting of left aortic arch and right descending aorta with left tracheal compression causing atelectasis. From the findings of this report, early surgical treatment is recommended. Although the prognosis after surgery remained good, second surgery can be avoided if VR was detected early. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  8. Using Ferumoxytol-Enhanced MRI to Measure Inflammation in Patients With Brain Tumors or Other Conditions of the CNS

    Science.gov (United States)

    2017-08-30

    Brain Injury; Central Nervous System Degenerative Disorder; Central Nervous System Infectious Disorder; Central Nervous System Vascular Malformation; Hemorrhagic Cerebrovascular Accident; Ischemic Cerebrovascular Accident; Primary Brain Neoplasm; Brain Cancer; Brain Tumors

  9. Childhood Brain and Spinal Cord Tumors Treatment Overview

    Science.gov (United States)

    ... The tentorium separates the supratentorium from the infratentorium (right panel). The skull and meninges protect the brain and spinal cord (left panel). The spinal cord connects the brain with ...

  10. Linking vascular disorders and Alzheimer’s disease: Potential involvement of BACE1

    Science.gov (United States)

    Cole, Sarah L.; Vassar, Robert

    2012-01-01

    The etiology of Alzheimer’s disease (AD) remains unknown. However, specific risk factors have been identified, and aging is the strongest AD risk factor. The majority of cardiovascular events occur in older people and a close relationship between vascular disorders and AD exists. Amyloid plaques, composed of the beta amyloid peptide (Aβ), are hallmark lesions in AD and evidence indicates that Aβ plays a central role in AD pathophysiology. The BACE1 enzyme is essential for Aβ generation, and BACE1 levels are elevated in AD brain. The cause(s) of this BACE1 elevation remains undetermined. Here we review the potential contribution of vascular disease to AD pathogenesis. We examine the putative vasoactive properties of Aβ and how the cellular changes associated with vascular disease may elevate BACE1 levels. Despite increasing evidence, the exact role(s) vascular disorders play in AD remains to be determined. However, given that vascular diseases can be addressed by lifestyle and pharmacologic interventions, the potential benefits of these therapies in delaying the clinical appearance and progression of AD may warrant investigation. PMID:18289733

  11. The relationship between right-to-left shunt and brain white matter lesions in Japanese patients with migraine: a single center study.

    Science.gov (United States)

    Iwasaki, Akio; Suzuki, Keisuke; Takekawa, Hidehiro; Takashima, Ryotaro; Suzuki, Ayano; Suzuki, Shiho; Hirata, Koichi

    2017-12-01

    There may be a link between right-to-left shunt (RLs) and brain white matter lesions (WMLs) in patients with migraine. In this study, we assessed the relationship between WMLs and RLs in Japanese migraine patients. A total of 107 consecutive patients with migraine with (MA) and without aura (MWOA) were included in this study. Contrast transcranial Doppler ultrasound was used to detect RLs. WMLs were graded using brain magnetic resonance imaging based on well-established criteria. The prevalence of RLs was significantly increased in the WMLs positive group (n = 24) compared with the WMLs negative group (n = 83) (75.0% vs. 47.0%, p = 0.015). In prevalence of WMLs between MA and MWOA patients, there were no statistical differences (p = 0.410). Logistic regression analysis adjusted by age and disease duration of migraine identified an RLs-positive status as the sole determinant for the presence of WMLs (OR = 6.15; 95% CI 1.82-20.8; p = 0.003) CONCLUSION: Our study suggests a possible link between RLs and WMLs in Japanese patients with migraine.

  12. Vascular expression of endothelial antigen PAL-E indicates absence of blood-ocular barriers in the normal eye

    NARCIS (Netherlands)

    Schlingemann, R. O.; Hofman, P.; Anderson, L.; Troost, D.; van der Gaag, R.

    1997-01-01

    The endothelium-specific antigen PAL-E is expressed in capillaries and veins throughout the body with the exception of the brain, where the antigen is absent from anatomical sites with a patent blood-brain barrier. In this study we determined vascular endothelial staining for PAL-E in the normal eye

  13. Left frontal hub connectivity delays cognitive impairment in autosomal-dominant and sporadic Alzheimer’s disease

    Science.gov (United States)

    Franzmeier, Nicolai; Düzel, Emrah; Jessen, Frank; Buerger, Katharina; Levin, Johannes; Duering, Marco; Dichgans, Martin; Haass, Christian; Suárez-Calvet, Marc; Fagan, Anne M; Paumier, Katrina; Benzinger, Tammie; Masters, Colin L; Morris, John C; Perneczky, Robert; Janowitz, Daniel; Catak, Cihan; Wolfsgruber, Steffen; Wagner, Michael; Teipel, Stefan; Kilimann, Ingo; Ramirez, Alfredo; Rossor, Martin; Jucker, Mathias; Chhatwal, Jasmeer; Spottke, Annika; Boecker, Henning; Brosseron, Frederic; Falkai, Peter; Fliessbach, Klaus; Heneka, Michael T; Laske, Christoph; Nestor, Peter; Peters, Oliver; Fuentes, Manuel; Menne, Felix; Priller, Josef; Spruth, Eike J; Franke, Christiana; Schneider, Anja; Kofler, Barbara; Westerteicher, Christine; Speck, Oliver; Wiltfang, Jens; Bartels, Claudia; Araque Caballero, Miguel Ángel; Metzger, Coraline; Bittner, Daniel; Weiner, Michael; Lee, Jae-Hong; Salloway, Stephen; Danek, Adrian; Goate, Alison; Schofield, Peter R; Bateman, Randall J; Ewers, Michael

    2018-01-01

    Abstract Patients with Alzheimer’s disease vary in their ability to sustain cognitive abilities in the presence of brain pathology. A major open question is which brain mechanisms may support higher reserve capacity, i.e. relatively high cognitive performance at a given level of Alzheimer’s pathology. Higher functional MRI-assessed functional connectivity of a hub in the left frontal cortex is a core candidate brain mechanism underlying reserve as it is associated with education (i.e. a protective factor often associated with higher reserve) and attenuated cognitive impairment in prodromal Alzheimer’s disease. However, no study has yet assessed whether such hub connectivity of the left frontal cortex supports reserve throughout the evolution of pathological brain changes in Alzheimer’s disease, including the presymptomatic stage when cognitive decline is subtle. To address this research gap, we obtained cross-sectional resting state functional MRI in 74 participants with autosomal dominant Alzheimer’s disease, 55 controls from the Dominantly Inherited Alzheimer’s Network and 75 amyloid-positive elderly participants, as well as 41 amyloid-negative cognitively normal elderly subjects from the German Center of Neurodegenerative Diseases multicentre study on biomarkers in sporadic Alzheimer’s disease. For each participant, global left frontal cortex connectivity was computed as the average resting state functional connectivity between the left frontal cortex (seed) and each voxel in the grey matter. As a marker of disease stage, we applied estimated years from symptom onset in autosomal dominantly inherited Alzheimer’s disease and cerebrospinal fluid tau levels in sporadic Alzheimer’s disease cases. In both autosomal dominant and sporadic Alzheimer’s disease patients, higher levels of left frontal cortex connectivity were correlated with greater education. For autosomal dominant Alzheimer’s disease, a significant left frontal cortex connectivity

  14. Phonological decisions require both the left and right supramarginal gyri

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Baumgaertner, Annette; Price, Cathy J

    2010-01-01

    Recent functional imaging studies demonstrated that both the left and right supramarginal gyri (SMG) are activated when healthy right-handed subjects make phonological word decisions. However, lesion studies typically report difficulties with phonological processing after left rather than right...... the right or left SMG. Taken together, these findings provide converging evidence that the right SMG contributes to accurate and efficient phonological decisions in the healthy brain, with no evidence that the left and right SMG can compensate for one another during TMS. Our findings motivate detailed...... hemisphere damage. Here, we used a unique dual-site transcranial magnetic stimulation (TMS) approach to test whether the SMG in the right hemisphere contributes to modality-independent (i.e., auditory and visual) phonological decisions. To test task-specificity, we compared the effect of real or sham TMS...

  15. Brain volumetry and self-regulation of brain activity relevant for neurofeedback.

    Science.gov (United States)

    Ninaus, M; Kober, S E; Witte, M; Koschutnig, K; Neuper, C; Wood, G

    2015-09-01

    Neurofeedback is a technique to learn to control brain signals by means of real time feedback. In the present study, the individual ability to learn two EEG neurofeedback protocols - sensorimotor rhythm and gamma rhythm - was related to structural properties of the brain. The volumes in the anterior insula bilaterally, left thalamus, right frontal operculum, right putamen, right middle frontal gyrus, and right lingual gyrus predicted the outcomes of sensorimotor rhythm training. Gray matter volumes in the supplementary motor area and left middle frontal gyrus predicted the outcomes of gamma rhythm training. These findings combined with further evidence from the literature are compatible with the existence of a more general self-control network, which through self-referential and self-control processes regulates neurofeedback learning. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Vascular pattern of the dentate gyrus is regulated by neural progenitors.

    Science.gov (United States)

    Pombero, Ana; Garcia-Lopez, Raquel; Estirado, Alicia; Martinez, Salvador

    2018-05-01

    Neurogenesis is a vital process that begins during early embryonic development and continues until adulthood, though in the latter case, it is restricted to the subventricular zone and the subgranular zone of the dentate gyrus (DG). In particular, the DG's neurogenic properties are structurally and functionally unique, which may be related to its singular vascular pattern. Neurogenesis and angiogenesis share molecular signals and act synergistically, supporting the concept of a neurogenic niche as a functional unit between neural precursors cells and their environment, in which the blood vessels play an important role. Whereas it is well known that vascular development controls neural proliferation in the embryonary and in the adult brain, by releasing neurotrophic factors; the potential influence of neural cells on vascular components during angiogenesis is largely unknown. We have demonstrated that the reduction of neural progenitors leads to a significant impairment of vascular development. Since VEGF is a potential regulator in the neurogenesis-angiogenesis crosstalk, we were interested in assessing the possible role of this molecule in the hippocampal neurovascular development. Our results showed that VEGF is the molecule involved in the regulation of vascular development by neural progenitor cells in the DG.

  17. Dual modal ultra-bright nanodots with aggregation-induced emission and gadolinium-chelation for vascular integrity and leakage detection.

    Science.gov (United States)

    Feng, Guangxue; Li, Jackson Liang Yao; Claser, Carla; Balachander, Akhila; Tan, Yingrou; Goh, Chi Ching; Kwok, Immanuel Weng Han; Rénia, Laurent; Tang, Ben Zhong; Ng, Lai Guan; Liu, Bin

    2018-01-01

    The study of blood brain barrier (BBB) functions is important for neurological disorder research. However, the lack of suitable tools and methods has hampered the progress of this field. Herein, we present a hybrid nanodot strategy, termed AIE-Gd dots, comprising of a fluorogen with aggregation-induced emission (AIE) characteristics as the core to provide bright and stable fluorescence for optical imaging, and gadolinium (Gd) for accurate quantification of vascular leakage via inductively-coupled plasma mass spectrometry (ICP-MS). In this report, we demonstrate that AIE-Gd dots enable direct visualization of brain vascular networks under resting condition, and that they form localized punctate aggregates and accumulate in the brain tissue during experimental cerebral malaria, indicative of hemorrhage and BBB malfunction. With its superior detection sensitivity and multimodality, we hereby propose that AIE-Gd dots can serve as a better alternative to Evans blue for visualization and quantification of changes in brain barrier functions. Copyright © 2017. Published by Elsevier Ltd.

  18. Interactive Associations of Vascular Risk and β-Amyloid Burden With Cognitive Decline in Clinically Normal Elderly Individuals: Findings From the Harvard Aging Brain Study.

    Science.gov (United States)

    Rabin, Jennifer S; Schultz, Aaron P; Hedden, Trey; Viswanathan, Anand; Marshall, Gad A; Kilpatrick, Emily; Klein, Hannah; Buckley, Rachel F; Yang, Hyun-Sik; Properzi, Michael; Rao, Vaishnavi; Kirn, Dylan R; Papp, Kathryn V; Rentz, Dorene M; Johnson, Keith A; Sperling, Reisa A; Chhatwal, Jasmeer P

    2018-05-21

    Identifying asymptomatic individuals at high risk of impending cognitive decline because of Alzheimer disease is crucial for successful prevention of dementia. Vascular risk and β-amyloid (Aβ) pathology commonly co-occur in older adults and are significant causes of cognitive impairment. To determine whether vascular risk and Aβ burden act additively or synergistically to promote cognitive decline in clinically normal older adults; and, secondarily, to evaluate the unique influence of vascular risk on prospective cognitive decline beyond that of commonly used imaging biomarkers, including Aβ burden, hippocampal volume, fludeoxyglucose F18-labeled (FDG) positron emission tomography (PET), and white matter hyperintensities, a marker of cerebrovascular disease. In this longitudinal observational study, we examined clinically normal older adults from the Harvard Aging Brain Study. Participants were required to have baseline imaging data (FDG-PET, Aβ-PET, and magnetic resonance imaging), baseline medical data to quantify vascular risk, and at least 1 follow-up neuropsychological visit. Data collection began in 2010 and is ongoing. Data analysis was performed on data collected between 2010 and 2017. Vascular risk was quantified using the Framingham Heart Study general cardiovascular disease (FHS-CVD) risk score. We measured Aβ burden with Pittsburgh Compound-B PET. Cognition was measured annually with the Preclinical Alzheimer Cognitive Composite. Models were corrected for baseline age, sex, years of education, and apolipoprotein E ε4 status. Of the 223 participants, 130 (58.3%) were women. The mean (SD) age was 73.7 (6.0) years, and the mean (SD) follow-up time was 3.7 (1.2) years. Faster cognitive decline was associated with both a higher FHS-CVD risk score (β = -0.064; 95% CI, -0.094 to -0.033; P < .001) and higher Aβ burden (β = -0.058; 95% CI, -0.079 to -0.037; P < .001). The interaction of the FHS-CVD risk score and Aβ burden with time

  19. Changes in spontaneous brain activity in early Parkinson's disease.

    Science.gov (United States)

    Yang, Hong; Zhou, Xiaohong Joe; Zhang, Min-Ming; Zheng, Xu-Ning; Zhao, Yi-Lei; Wang, Jue

    2013-08-09

    Resting state brain activity can provide valuable insights into the pathophysiology of Parkinson's disease (PD). The purpose of the present study was (a) to investigate abnormal spontaneous neuronal activity in early PD patients using resting-state functional MRI (fMRI) with a regional homogeneity (ReHo) method and (b) to demonstrate the potential of using changes in abnormal spontaneous neuronal activity for monitoring the progression of PD during its early stages. Seventeen early PD patients were assessed with the Unified Parkinson's Disease Rating Scale (UPDRS), the Hoehn and Yahr disability scale and the Mini-mental State Examination (MMSE) were compared with seventeen gender- and age-matched healthy controls. All subjects underwent MRI scans using a 1.5T General Electric Signa Excite II scanner. The MRI scan protocol included whole-brain volumetric imaging using a 3D inversion recovery prepared (IR-Prep) fast spoiled gradient-echo pulse sequence and 2D multi-slice (22 axial slices covering the whole brain) resting-state fMRI using an echo planar imaging (EPI) sequence. Images were analyzed in SPM5 together with a ReHo algorithm using the in-house software program REST. A corrected threshold of pbrain regions, including the left cerebellum, left parietal lobe, right middle temporal lobe, right sub-thalamic nucleus areas, right superior frontal gyrus, middle frontal gyrus (MFG), right inferior parietal lobe (IPL), right precuneus lobe, left MFG and left IPL. Additionally, significantly reduced ReHo was also observed in the early PD patients in the following brain regions: the left putamen, left inferior frontal gyrus, right hippocampus, right anterior cingulum, and bilateral lingual gyrus. Moreover, in PD patients, ReHo in the left putamen was negatively correlated with the UPDRS scores (r=-0.69). These results indicate that the abnormal resting state spontaneous brain activity associated with patients with early PD can be revealed by Reho analysis. Copyright

  20. Neuroprotective effect of Cucumis melo Var. flexuosus leaf extract on the brains of rats with streptozotocin-induced diabetes.

    Science.gov (United States)

    Ibrahim, Doaa S

    2017-02-01

    The central nervous system is one of the most vulnerable organs affected by the oxidative stress associated with diabetes mellitus. Healthy food provides an important source for antioxidants. Therefore, the protective effect of Cucumis melo var. flexuosus (C. melo var. flexuosus) leaf extract on the brains of diabetic rats was investigated. Adult male albino rats divided into 5 groups of 6 rats each were assigned into a normal control group and four diabetic groups. Diabetes was induced in rats by a single intraperitoneal injection of streptozotocin (STZ; 60 mg/kg bw). One of the four diabetic groups was left untreated and was considered as a diabetic control group while the three other groups were treated with C. melo var. flexuosus leaf extract at the doses of 30, 60 and 120 mg/kg bw for a period of 30 days. After completion of experimental duration plasma and brains were used for evaluating biochemical changes. The obtained data showed that C. melo var. flexuosus leaf extract treatment lowered blood glucose, glycated hemoglobin, brain tumor necrosis factor-alpha, interleukin levels, brain malondialdehyde content and caspase-3 activity. Furthermore, the treatment resulted in a marked increase in plasma dopamine, melatonin, brain vascular endothelial growth factor-A levels, brain catalase and superoxide dismutase activities. From the present study, it can be concluded that the C. melo var. flexuosus leaf extract exerts a neuroprotective effect against oxidative damage associated with diabetes.

  1. Characteristic pattern of cerebral perfusion in patients with the early stage of subcortical vascular dementia compared with Alzheimer's disease

    International Nuclear Information System (INIS)

    Jeong, Young Jin; Kang, Do Young; Park, Kyung Won; Cheon, Sang Myung; Kim, Jong Kuk; Kim, Jae Woo

    2004-01-01

    Brain perfusion SPECT has been commonly used to evaluate several different types of dementia. The aim of this study is to assess the specific patterns of regional cerebral blood flow (rCBF) in patients with the early stage of subcortical vascular dementia (SVD) and Alzheimer's disease (AD) using Tc-99m HMPAO SPECT, and to compare the differences between the two conditions. Sixteen SVD (mean age; 68.0±7.0 years, educational period; 6.3±5.6 years, CDR; 0.80±0.26). 46 AD (mean age; 69.9±7.4 years, educational period; 5.4±4.7 years, CDR; 0.86±0.23) and 12 normal control subjects (mean age; 67.1±7.7 years, educational period; 6.2±4.2 years) participated in this study. We included the patients with SVD and AD according to NINCDS-ADRDA criteria for probable AD and NINDS-AIREN criteria for probable or possible VD. They were all matched for age, education and clinical dementia scale scores. SPM analysis of the SPECT image showed significant perfusion deficits on the right temporal region and right thalamus, left insula and superior temporal gyrus, both cingulate gyri and frontal subgyral regions in patients with SVD and on the left supramarginal gyrus, superior temporal gyrus, postcentral gyrus and inferior parietal lobule, right fugiform gyrus and both cingulate gyri in patients with AD compared with control subjects (uncorrected p<0.01). SVD patients revealed significant hypoperfusion in the right parahippocampal gyrus, right cingulated gyrus, left insula, and both frontal subgyral regions compared with AD patients (uncorrected p<0.01). SVD patients revealed significant hyperperfusion in right superior frontal gyrus, left pre- and postcentral gyri, left paracentral lobule, left precuneus and both medial frontal gyri compared with AD patients (uncorrected p<0.01). Our study shows characteristic and different pattern of perfusion deficits in patients with SVD and AD, and these results may be helpful to discriminate the two conditions in the early stage of illness

  2. Calculation of cardiac pressures using left ventricular ejection fraction (LVEF) derived from radionuclide angiography

    International Nuclear Information System (INIS)

    Hommer, E.

    1981-01-01

    An attempt has been made to develop formulas to determine cardiac pressures in an undisturbed flow in patients without valvular or shunt diseases. These are based entirely on the results of left ventricular ejection fraction rates, permitting pressure analysis of several compartments at the same tine. According to BORER et al. they also enable determination of left ventricular 'Functional Reserve' after bycycle exercise as well as left ventricular 'Relaxation Reserve'. They support the views of NYHA in determining the grades of cardiac insufficiency proving the system- and low-pressure participation. A single formula for pulmonary flow can determine the pulmonary arterial pressure. The left ventricular enddiastolic pressure can also be exclusively calculated by values of left ventricular functions, thus both formulas may be used in disorders of the mitral valves. The possibility to calculate pressures of all the compartments of the heart from left ventricular ejection rate shows, that in undisturbed flow global heart function depends on left ventricular function. Therefore the mutual dependence of these formulas presents an intercompartimental pressure regulation of the heart through pulmonary flow and pulmonary vascular pressure, which leaves an aspect of autonomous cardiac regulation open to discussion. (orig.) [de

  3. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI.

    Science.gov (United States)

    Moeskops, Pim; de Bresser, Jeroen; Kuijf, Hugo J; Mendrik, Adriënne M; Biessels, Geert Jan; Pluim, Josien P W; Išgum, Ivana

    2018-01-01

    Automatic segmentation of brain tissues and white matter hyperintensities of presumed vascular origin (WMH) in MRI of older patients is widely described in the literature. Although brain abnormalities and motion artefacts are common in this age group, most segmentation methods are not evaluated in a setting that includes these items. In the present study, our tissue segmentation method for brain MRI was extended and evaluated for additional WMH segmentation. Furthermore, our method was evaluated in two large cohorts with a realistic variation in brain abnormalities and motion artefacts. The method uses a multi-scale convolutional neural network with a T 1 -weighted image, a T 2 -weighted fluid attenuated inversion recovery (FLAIR) image and a T 1 -weighted inversion recovery (IR) image as input. The method automatically segments white matter (WM), cortical grey matter (cGM), basal ganglia and thalami (BGT), cerebellum (CB), brain stem (BS), lateral ventricular cerebrospinal fluid (lvCSF), peripheral cerebrospinal fluid (pCSF), and WMH. Our method was evaluated quantitatively with images publicly available from the MRBrainS13 challenge ( n  = 20), quantitatively and qualitatively in relatively healthy older subjects ( n  = 96), and qualitatively in patients from a memory clinic ( n  = 110). The method can accurately segment WMH (Overall Dice coefficient in the MRBrainS13 data of 0.67) without compromising performance for tissue segmentations (Overall Dice coefficients in the MRBrainS13 data of 0.87 for WM, 0.85 for cGM, 0.82 for BGT, 0.93 for CB, 0.92 for BS, 0.93 for lvCSF, 0.76 for pCSF). Furthermore, the automatic WMH volumes showed a high correlation with manual WMH volumes (Spearman's ρ  = 0.83 for relatively healthy older subjects). In both cohorts, our method produced reliable segmentations (as determined by a human observer) in most images (relatively healthy/memory clinic: tissues 88%/77% reliable, WMH 85%/84% reliable) despite various degrees of

  4. Right-ear precedence and vocal emotion contagion: The role of the left hemisphere.

    Science.gov (United States)

    Schepman, Astrid; Rodway, Paul; Cornmell, Louise; Smith, Bethany; de Sa, Sabrina Lauren; Borwick, Ciara; Belfon-Thompson, Elisha

    2018-05-01

    Much evidence suggests that the processing of emotions is lateralized to the right hemisphere of the brain. However, under some circumstances the left hemisphere might play a role, particularly for positive emotions and emotional experiences. We explored whether emotion contagion was right-lateralized, lateralized valence-specifically, or potentially left-lateralized. In two experiments, right-handed female listeners rated to what extent emotionally intoned pseudo-sentences evoked target emotions in them. These sound stimuli had a 7 ms ear lead in the left or right channel, leading to stronger stimulation of the contralateral hemisphere. In both experiments, the results revealed that right ear lead stimuli received subtly but significantly higher evocation scores, suggesting a left hemisphere dominance for emotion contagion. A control experiment using an emotion identification task showed no effect of ear lead. The findings are discussed in relation to prior findings that have linked the processing of emotional prosody to left-hemisphere brain regions that regulate emotions, control orofacial musculature, are involved in affective empathy processing areas, or have an affinity for processing emotions socially. Future work is needed to eliminate alternative interpretations and understand the mechanisms involved. Our novel binaural asynchrony method may be useful in future work in auditory laterality.

  5. Glutamatergic stimulation of the left dentate gyrus abolishes depressive-like behaviors in a rat learned helplessness paradigm.

    Science.gov (United States)

    Seo, Jeho; Cho, Hojin; Kim, Gun Tae; Kim, Chul Hoon; Kim, Dong Goo

    2017-10-01

    Episodic experiences of stress have been identified as the leading cause of major depressive disorder (MDD). The occurrence of MDD is profoundly influenced by the individual's coping strategy, rather than the severity of the stress itself. Resting brain activity has been shown to alter in several mental disorders. However, the functional relationship between resting brain activity and coping strategies has not yet been studied. In the present study, we observed different patterns of resting brain activity in rats that had determined either positive (resilient to stress) or negative (vulnerable to stress) coping strategies, and examined whether modulation of the preset resting brain activity could influence the behavioral phenotype associated with negative coping strategy (i.e., depressive-like behaviors). We used a learned helplessness paradigm-a well-established model of MDD-to detect coping strategies. Differences in resting state brain activity between animals with positive and negative coping strategies were assessed using 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET). Glutamatergic stimulation was used to modulate resting brain activity. After exposure to repeated uncontrollable stress, seven of 23 rats exhibited positive coping strategies, while eight of 23 rats exhibited negative coping strategies. Increased resting brain activity was observed only in the left ventral dentate gyrus of the positive coping rats using FDG-PET. Furthermore, glutamatergic stimulation of the left dentate gyrus abolished depressive-like behaviors in rats with negative coping strategies. Increased resting brain activity in the left ventral dentate gyrus helps animals to select positive coping strategies in response to future stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Left-Handedness Among a Community Sample of Psychiatric Outpatients Suffering From Mood and Psychotic Disorders

    Directory of Open Access Journals (Sweden)

    Jadon R. Webb

    2013-10-01

    Full Text Available The human brain develops asymmetrically, such that certain cognitive processes arise predominantly from the left or right side. It has been proposed that variations in this laterality contribute to certain forms of mental illness, such as schizophrenia. A convenient measure of brain laterality is hand dominance, and prior work has found that patients with schizophrenia are more likely to be left-handed than the general population. This finding is not consistent, however, and fewer studies have directly compared handedness between psychiatric diagnoses. We assessed hand dominance in 107 patients presenting to an outpatient psychiatric clinic with diagnoses of a mood or psychotic disorder. The prevalence of left-handedness was 11% for mood disorders, which is similar to the rate in the general population. It was 40% in those with psychotic disorders (adjusted odds ratio = 7.9, p < .001. The prevalence of left-handedness was much higher in psychotic disorders compared with mood disorders in this community mental health sample.

  7. Right Brain Activities to Improve Analytical Thinking.

    Science.gov (United States)

    Lynch, Marion E.

    Schools tend to have a built-in bias toward left brain activities (tasks that are linear and sequential in nature), so the introduction of right brain activities (functions related to music, rhythm, images, color, imagination, daydreaming, dimensions) brings a balance into the classroom and helps those students who may be right brain oriented. To…

  8. Altered functional connectivity differs in stroke survivors with impaired touch sensation following left and right hemisphere lesions

    Directory of Open Access Journals (Sweden)

    Peter Goodin

    Full Text Available One in two survivors experience impairment in touch sensation after stroke. The nature of this impairment is likely associated with changes associated with the functional somatosensory network of the brain; however few studies have examined this. In particular, the impact of lesioned hemisphere has not been investigated. We examined resting state functional connectivity in 28 stroke survivors, 14 with left hemisphere and 14 with right hemisphere lesion, and 14 healthy controls. Contra-lesional hands showed significantly decreased touch discrimination. Whole brain functional connectivity (FC data was extracted from four seed regions, i.e. primary (S1 and secondary (S2 somatosensory cortices in both hemispheres. Whole brain FC maps and Laterality Indices (LI were calculated for subgroups. Inter-hemispheric FC was greater in healthy controls compared to the combined stroke cohort from the left S1 seed and bilateral S2 seeds. The left lesion subgroup showed decreased FC, relative to controls, from left ipsi-lesional S1 to contra-lesional S1 and to distributed temporal, occipital and parietal regions. In comparison, the right lesion group showed decreased connectivity from contra-lesional left S1 and bilateral S2 to ipsi-lesional parietal operculum (S2, and to occipital and temporal regions. The right lesion group also showed increased intra-hemispheric FC from ipsi-lesional right S1 to inferior parietal regions compared to controls. In comparison to the left lesion group, those with right lesion showed greater intra-hemispheric connectivity from left S1 to left parietal and occipital regions and from right S1 to right angular and parietal regions. Laterality Indices were significantly greater for stroke subgroups relative to matched controls for contra-lesional S1 (left lesion group and contra-lesional S2 (both groups. We provide evidence of altered functional connectivity within the somatosensory network, across both hemispheres, and to other

  9. Characteristic effects of heavy ion irradiation on the rat brain

    International Nuclear Information System (INIS)

    Sun, X.Z.; Takahashi, S.; Kubota, Y.; Yoshida, S.; Takeda, H.; Zhang, R.; Fukui, Y.

    2005-01-01

    successfully and satisfactorily retained its high-dose localization in the defined region. Histological and neuronal behavioral examinations showed that no obvious behavioral and histological changes before 7 weeks of exposure, but loss of hairs was found in the left brain this time in the irradiated group. The shape and size of depilation were almost same to the left collimation. At 8 weeks after exposure, the distinctive histological changes such as necrosis, vascular dilatation and tissue swelling were observed and almost animals exposed to the heavy ion beams exhibited behavioral changes, either in an abnormal walking pattern or rotation when suspended by their tail. From 16 to 32 weeks after irradiation, necrotic rarefaction became dominant at the center of the irradiated region and enlarged blood vessels were present in the surrounding area. Behavioral changes during this period also became more marked. The rats showed total loss of their balance both in an abnormal walking pattern and rotation from 16 weeks onwards, Major elemental contribution in the brain studied with X-rays fluorescence indicated that a sudden decrease in the concentration of K and Cl appeared as early as 24 hours after ischemia induction in the rat brain, while the concentrations of P, Fe and Zn did not significantly change. A decrease in the concentration of K and P in the region where tissue selling and necrosis was observed. Significant increases in the concentrations of Cl, Fe, Zn were found in the thalamus and surrounding area o f necrosis. These results revealed that levels of inorganic ions in the brain were good indicators for the pathological states of the nervous system.

  10. Specific diagnosis of brain disease with double isotope brain scanning

    Energy Technology Data Exchange (ETDEWEB)

    Ell, P J; Lotritsch, K H; Hilbrand, E; Meixner, M; Barolin, G; Scholz, H [Landesunfallkrankenhaus, Feldkirch (Austria). Dept. of Nuclear Medicine; Landesnervenkrankenhaus, Feldkirch (Austria). Dept. of Neurology)

    1976-02-01

    25 patients with known cerebral disease (either CVA's or primary or secondary tumours) diagnosed by clinical and angiographic criteria were submitted to a double siotope imaging technique using sup(99m)TcO/sub 4/- and sup(99m)Tc-EHDP. The different biological behaviour of these radiopharmaceuticals has provided specific and differential diagnosis between vascular and neoplastic disease of the brain. sup(99m)Tc-EHDP is shown to be the tracer of choice for the imaging of CVA's and sup(99m)TcO/sub 4/- is confirmed as the tracer of choice for the imaging of primary or secondary tumours in the brain.

  11. Grammatical distinctions in the left frontal cortex.

    Science.gov (United States)

    Shapiro, K A; Pascual-Leone, A; Mottaghy, F M; Gangitano, M; Caramazza, A

    2001-08-15

    Selective deficits in producing verbs relative to nouns in speech are well documented in neuropsychology and have been associated with left hemisphere frontal cortical lesions resulting from stroke and other neurological disorders. The basis for these impairments is unresolved: Do they arise because of differences in the way grammatical categories of words are organized in the brain, or because of differences in the neural representation of actions and objects? We used repetitive transcranial magnetic stimulation (rTMS) to suppress the excitability of a portion of left prefrontal cortex and to assess its role in producing nouns and verbs. In one experiment subjects generated real words; in a second, they produced pseudowords as nouns or verbs. In both experiments, response latencies increased for verbs but were unaffected for nouns following rTMS. These results demonstrate that grammatical categories have a neuroanatomical basis and that the left prefrontal cortex is selectively engaged in processing verbs as grammatical objects.

  12. Diagnosis of Tubercular Brain Abscess Through Ocular Manifestation

    African Journals Online (AJOL)

    Dr. Smita Anand, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India. ... visual acuity (BCVA) in right and left eyes were ... with ring enhancement in the left tempro‑parietal ... Tubercular brain abscess (TBA) is a rare manifestation.

  13. Brain Dominance And Speaking Strategy Use of Iranian EFL Learners

    Directory of Open Access Journals (Sweden)

    Nastaran Mireskandari

    2015-05-01

    Full Text Available The present study investigated the effect of brain dominance on the use of Language learning speaking strategies. One hundred forty two undergraduate students of Shiraz University, Iran, participated in this study. The Hemispheric Dominance Test (HDT was employed to categorize participants as right-, left- and whole-brain dominant, and a Speaking Strategy Questionnaire was administered to evaluate their use of speaking strategies. The results were analyzed using a one-way between groups analysis of variance (ANOVA to investigate whether there were any significant differences between the three brain dominant groups in their overall use of speaking strategies. A MANOVA was also run to investigate whether the groups had preferences regarding the use of any particular strategy type. Results indicated a statistically significant difference between the whole brain dominant participants and both left brain and right brain dominant learners for using compensation speaking strategies. To teach and learn more effectively, instructors and learners need to better understand and appreciate individual differences and how they can affect the learning process. They could find ways to combine activities that accommodate both left and right brain learners, employing not only the usual linear, verbal model, but also the active, image-rich, visuo-spatial models so that learners would be able to use both hemispheres.

  14. of brain tumours

    African Journals Online (AJOL)

    outline of the important clinical issues related to brain tumours and psychiatry. ... Left-sided, frontal tumours also seem to be associated with higher rates of depression, while those in the frontal lobe of the right .... Oxford: Blackwell Science,.

  15. Effect of lower limb preference on local muscular and vascular function

    International Nuclear Information System (INIS)

    Fahs, Christopher A; Rossow, Lindy M; Thiebaud, Robert S; Loenneke, Jeremy P; Kim, Daeyeol; Bemben, Michael G; Abe, Takashi

    2014-01-01

    Unilateral physical training can enhance muscular size and function as well as vascular function in the trained limb. In non-athletes, the preferred arm for use during unilateral tasks may exhibit greater muscular strength compared to the non-preferred arm. It is unclear if lower limb preference affects lower limb vascular function or muscular endurance and power in recreationally active adults. To examine the effect of lower limb preference on quadriceps muscle size and function and on lower limb vascular function in middle-aged adults. Twenty (13 men, 7 women) recreationally-active middle-aged (55 ± 7 yrs) adults underwent measurements of quadriceps muscle thickness, strength, mean power, endurance, and arterial stiffness, calf venous compliance, and calf blood flow in the preferred and non-preferred lower limb. The preferred limb exhibited greater calf vascular conductance (31.6 ± 15.5 versus 25.8 ± 13.0 units flow/mmHg; p = 0.011) compared to the non-preferred limb. The interlimb difference in calf vascular conductance was negatively related to weekly aerobic activity (hrs/week) (r = −0.521; p = 0.019). Lower limb preference affects calf blood flow but not quadriceps muscle size or function. Studies involving unilateral lower limb testing procedures in middle-aged individuals should consider standardizing the testing to either the preferred or non-preferred limb rather than the right or left limb. (paper)

  16. Brain CT image and handedness of schizophrenia

    International Nuclear Information System (INIS)

    Hirose, Katsutoshi; Maehara, Katsuya; Iizuka, Reiji; Mikami, Akihiro.

    1989-01-01

    Brain CT images were reviewed of 98 schizophrenic patients and 90 healthy persons in relation to handedness and aging. CT images were further reconstructed to examine morphologically subtle changes in each region. Schizophrenic patients had progressive brain atrophy and dilated lateral ventricles, especially on the left side and in the posterior part of the lateral ventricle. These findings were more marked in left-handed than in right-handed schizophrenic patients. According to age groups, there were significant differences between schizophrenic and normal persons over the age of 40. The incidence of left handedness was significantly higher in schizophrenic patients in their fourties than the age-matched normal persons (31.4% vs 15.1%). Morphological abnormality and laterality might be due to the same pathologic consequences. (N.K.)

  17. The other side of the brain: The politics of split-brain research in the 1970s-1980s.

    Science.gov (United States)

    Staub, Michael E

    2016-11-01

    In the course of the 1970s and 1980s, theories derived from neuropsychological research on the bisected brain came rapidly to achieve the status of common sense in the United States and Canada, inflecting all manner of popular and academic discussion. These theories often posited that the right hemisphere was the seat of creative expression, whereas the left hemisphere housed rationality and language. This article analyzes the political and cultural implications of theories about the split brain. Gender relations, educational reform, management theory, race relations, and countercultural concepts about self-expression all quickly came to be viewed through the lens of left-brain/right-brain neuropsychological research. Yet these theories were often contradictory. On the one hand, some psychophysiological experiments premised that the brain was inherently plastic in nature, and thus self-improvement techniques (like mindfulness meditation) could be practiced to unfurl the right hemisphere's intuitive potentialities. On the other hand, other psychophysiological experiments concluded that Native Americans as well as African Americans and persons from "the East" appeared inherently to possess more highly developed right-brain talents, and therefore suffered in the context of a left-hemisphere-dominated Western society. In both instances, psychologists put neuroscientific research to political and social use. This article thus connects a story from the annals of the neurosciences to the history of psychological experimentation. It analyzes the critical impact that speculative ideas about the split brain were to have not only on the post-1960s history of psychology but also on what soon emerged after the 1990s as the social neuroscience revolution. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. Assessment of MRI Parameters as Imaging Biomarkers for Radiation Necrosis in the Rat Brain

    Energy Technology Data Exchange (ETDEWEB)

    Wang Silun [Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Tryggestad, Erik [Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Zhou Tingting [Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Armour, Michael [Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Wen Zhibo [Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong (China); Fu Dexue [Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Ford, Eric [Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Zijl, Peter C.M. van [Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland (United States); Zhou Jinyuan, E-mail: jzhou@mri.jhu.edu [Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland (United States)

    2012-07-01

    Purpose: Radiation necrosis is a major complication of radiation therapy. We explore the features of radiation-induced brain necrosis in the rat, using multiple MRI approaches, including T{sub 1}, T{sub 2}, apparent diffusion constant (ADC), cerebral blood flow (CBF), magnetization transfer ratio (MTR), and amide proton transfer (APT) of endogenous mobile proteins and peptides. Methods and Materials: Adult rats (Fischer 344; n = 15) were irradiated with a single, well-collimated X-ray beam (40 Gy; 10 Multiplication-Sign 10 mm{sup 2}) in the left brain hemisphere. MRI was acquired on a 4.7-T animal scanner at {approx}25 weeks' postradiation. The MRI signals of necrotic cores and perinecrotic regions were assessed with a one-way analysis of variance. Histological evaluation was accomplished with hematoxylin and eosin staining. Results: ADC and CBF MRI could separate perinecrotic and contralateral normal brain tissue (p < 0.01 and < 0.05, respectively), whereas T{sub 1}, T{sub 2}, MTR, and APT could not. MRI signal intensities were significantly lower in the necrotic core than in normal brain for CBF (p < 0.001) and APT (p < 0.01) and insignificantly higher or lower for T{sub 1}, T{sub 2}, MTR, and ADC. Histological results demonstrated coagulative necrosis within the necrotic core and reactive astrogliosis and vascular damage within the perinecrotic region. Conclusion: ADC and CBF are promising imaging biomarkers for identifying perinecrotic regions, whereas CBF and APT are promising for identifying necrotic cores.

  19. Histopathological and immunohistochemical study of the wall of ...

    African Journals Online (AJOL)

    N. Sobhy

    2011-09-03

    Sep 3, 2011 ... the development of varicocele testis. N. Sobhy a,. *, K. El- ... Production and hosting by Elsevier B.V. All rights reserved. Peer review under ... the angle at which the left testicular vein enters the left renal vein, to functional .... tive and negative controls (vascular tumor for CD31 and brain tissue for NF 200) ...

  20. An Annotated Bibliography of the Literature Dealing with the Incorporation of Right Brain Learning into Left Brain Oriented Schools.

    Science.gov (United States)

    Lewallen, Martha

    Articles and documents concerning brain growth and hemispheric specialization, theories of cognitive style, educational implications of brain research, and right-brain learning activities are cited in this annotated bibliography. Citations are preceded by a glossary of terms and followed by a brief review of the assembled literature. Educational…