WorldWideScience

Sample records for left brain damage

  1. TOOL USE DISORDERS AFTER LEFT BRAIN DAMAGE

    Directory of Open Access Journals (Sweden)

    Josselin eBaumard

    2014-05-01

    Full Text Available In this paper we review studies that investigated tool use disorders in left-brain damaged (LBD patients over the last thirty years. Four tasks are classically used in the field of apraxia: Pantomime of tool use, single tool use, real tool use and mechanical problem solving. Our aim was to address two issues, namely, (1 the role of mechanical knowledge in real tool use and (2 the cognitive mechanisms underlying pantomime of tool use, a task widely employed by clinicians and researchers. To do so, we extracted data from 36 papers and computed the difference between healthy subjects and LBD patients. On the whole, pantomime of tool use is the most difficult task and real tool use is the easiest one. Moreover, associations seem to appear between pantomime of tool use, real tool use and mechanical problem solving. These results suggest that the loss of mechanical knowledge is critical in LBD patients, even if all of those tasks (and particularly pantomime of tool use might put differential demands on semantic memory and working memory.

  2. Line and word bisection in right-brain-damaged patients with left spatial neglect.

    Science.gov (United States)

    Veronelli, Laura; Vallar, Giuseppe; Marinelli, Chiara V; Primativo, Silvia; Arduino, Lisa S

    2014-01-01

    Right-brain-damaged patients with left unilateral spatial neglect typically set the mid-point of horizontal lines to the right of the objective center. By contrast, healthy participants exhibit a reversed bias (pseudoneglect). The same effect has been described also when bisecting orthographic strings. In particular, for this latter kind of stimulus, some recent studies have shown that visuo-perceptual characteristics, like stimulus length, may contribute to both the magnitude and the direction bias of the bisection performance (Arduino et al. in Neuropsychologia 48:2140-2146, 2010). Furthermore, word stress was shown to modulate reading performances in both healthy participants, and patients with left spatial neglect and neglect dyslexia (Cubelli and Beschin in Brain Lang 95:319-326, 2005; Rusconi et al. in Neuropsychology 18:135-140, 2004). In Experiment I, 22 right-brain-damaged patients (11 with left visuo-spatial neglect) and 11 matched neurologically unimpaired control participants were asked to set the subjective mid-point of word letter strings, and of lines of comparable length. Most patients exhibited an overall disproportionate rightward bias, sensitive to stimulus length, and similar for words and lines. Importantly, in individual patients, biases differed according to stimulus type (words vs. lines), indicating that at least partly different mechanisms may be involved. In Experiment II, the putative effects on the bisection bias of ortho-phonological information (i.e., word stress endings), arising from the non-neglected right hand side of the stimulus were investigated. The orthographic cue induced a rightward shift of the perceived mid-point in both patients and controls, with short words stressed on the antepenultimate final sequence inducing a smaller rightward deviation with respect to short words stressed on the penultimate final sequence. In conclusion, partly different mechanisms, including both visuo-spatial and lexical factors, may support

  3. Post-stroke acquired amusia: A comparison between right- and left-brain hemispheric damages.

    Science.gov (United States)

    Jafari, Zahra; Esmaili, Mahdiye; Delbari, Ahmad; Mehrpour, Masoud; Mohajerani, Majid H

    2017-01-01

    Although extensive research has been published about the emotional consequences of stroke, most studies have focused on emotional words, speech prosody, voices, or facial expressions. The emotional processing of musical excerpts following stroke has been relatively unexplored. The present study was conducted to investigate the effects of chronic stroke on the recognition of basic emotions in music. Seventy persons, including 25 normal controls (NC), 25 persons with right brain damage (RBD) from stroke, and 20 persons with left brain damage (LBD) from stroke between the ages of 31-71 years were studied. The Musical Emotional Bursts (MEB) test, which consists of a set of short musical pieces expressing basic emotional states (happiness, sadness, and fear) and neutrality, was used to test musical emotional perception. Both stroke groups were significantly poorer than normal controls for the MEB total score and its subtests (p amusia with greater severity in RBD than LBD. These results supported the "valence hypothesis" of right hemisphere dominance in processing negative emotions.

  4. The perception of peripersonal space in right and left brain damage hemiplegic patients

    Directory of Open Access Journals (Sweden)

    Angela eBartolo

    2014-01-01

    Full Text Available Peripersonal space, as opposed to extrapersonal space, is the space that contains reachable objects and in which multisensory and sensorimotor integration is enhanced. Thus, the perception of peripersonal space requires combining information on the spatial properties of the environment with information on the current capacity to act. In support of this, recent studies have provided converging evidences that perceiving objects in peripersonal space activates a neural network overlapping with that subtending voluntary motor action and motor imagery. Other studies have also underlined the dominant role of the right hemisphere in motor planning and of the left hemisphere in on-line motor guiding, respectively. In the present study, we investigated the effect of a right or left hemiplegia in the perception of peripersonal space. 16 hemiplegic patients with brain damage to the left (LH or right (RH hemisphere and 8 matched healthy controls (HC performed a colour discrimination, a motor imagery and a reachability judgment task. Analyses of response times and accuracy revealed no variation among the three groups in the colour discrimination task, suggesting the absence of any specific perceptual or decisional deficits in the patient groups. In contrast, the patient groups revealed longer response times in the motor imagery task when performed in reference to the hemiplegic arm (RH and LH or to the healthy arm (RH. Moreover, RH group showed longer response times in the reachability judgement task, but only for stimuli located at the boundary of peripersonal space, which was furthermore significantly reduced in size. Considered together, these results confirm the crucial role of the motor system in motor imagery task and the perception of peripersonal space. They also revealed that right hemisphere damage has a more detrimental effect on reachability estimates, suggesting that motor planning processes contribute specifically to the perception of

  5. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    Science.gov (United States)

    Tyler, Lorraine K; Wright, Paul; Randall, Billi; Marslen-Wilson, William D; Stamatakis, Emmanuel A

    2010-11-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to be strongly left-lateralized, combining measures of tissue integrity, neural activation and behavioural performance. In a functional neuroimaging study participants heard spoken sentences that differentially loaded on syntactic and semantic information. While healthy controls activated a left-hemisphere network of correlated activity including Brodmann areas 45/47 and posterior middle temporal gyrus during syntactic processing, patients activated Brodmann areas 45/47 bilaterally and right middle temporal gyrus. However, voxel-based morphometry analyses showed that only tissue integrity in left Brodmann areas 45/47 was correlated with activity and performance; poor tissue integrity in left Brodmann area 45 was associated with reduced functional activity and increased syntactic deficits. Activity in the right-hemisphere was not correlated with damage in the left-hemisphere or with performance. Reduced neural integrity in the left-hemisphere through brain damage or healthy ageing results in increased right-hemisphere activation in homologous regions to those left-hemisphere regions typically involved in the young. However, these regions do not support the same linguistic functions as those in the left-hemisphere and only indirectly contribute to preserved syntactic capacity. This establishes the unique role of the left hemisphere in syntax, a core component in human language.

  6. Lesion characteristics driving right-hemispheric language reorganization in congenital left-hemispheric brain damage.

    Science.gov (United States)

    Lidzba, Karen; de Haan, Bianca; Wilke, Marko; Krägeloh-Mann, Ingeborg; Staudt, Martin

    2017-10-01

    Pre- or perinatally acquired ("congenital") left-hemispheric brain lesions can be compensated for by reorganizing language into homotopic brain regions in the right hemisphere. Language comprehension may be hemispherically dissociated from language production. We investigated the lesion characteristics driving inter-hemispheric reorganization of language comprehension and language production in 19 patients (7-32years; eight females) with congenital left-hemispheric brain lesions (periventricular lesions [n=11] and middle cerebral artery infarctions [n=8]) by fMRI. 16/17 patients demonstrated reorganized language production, while 7/19 patients had reorganized language comprehension. Lesions to the insular cortex and the temporo-parietal junction (predominantly supramarginal gyrus) were significantly more common in patients in whom both, language production and comprehension were reorganized. These areas belong to the dorsal stream of the language network, participating in the auditory-motor integration of language. Our data suggest that the integrity of this stream might be crucial for a normal left-lateralized language development. Copyright © 2017. Published by Elsevier Inc.

  7. False memories to emotional stimuli are not equally affected in right- and left-brain-damaged stroke patients.

    Science.gov (United States)

    Buratto, Luciano Grüdtner; Zimmermann, Nicolle; Ferré, Perrine; Joanette, Yves; Fonseca, Rochele Paz; Stein, Lilian Milnitsky

    2014-10-01

    Previous research has attributed to the right hemisphere (RH) a key role in eliciting false memories to visual emotional stimuli. These results have been explained in terms of two right-hemisphere properties: (i) that emotional stimuli are preferentially processed in the RH and (ii) that visual stimuli are represented more coarsely in the RH. According to this account, false emotional memories are preferentially produced in the RH because emotional stimuli are both more strongly and more diffusely activated during encoding, leaving a memory trace that can be erroneously reactivated by similar but unstudied emotional items at test. If this right-hemisphere hypothesis is correct, then RH damage should result in a reduction in false memories to emotional stimuli relative to left-hemisphere lesions. To investigate this possibility, groups of right-brain-damaged (RBD, N=15), left-brain-damaged (LBD, N=15) and healthy (HC, N=30) participants took part in a recognition memory experiment with emotional (negative and positive) and non-emotional pictures. False memories were operationalized as incorrect responses to unstudied pictures that were similar to studied ones. Both RBD and LBD participants showed similar reductions in false memories for negative pictures relative to controls. For positive pictures, however, false memories were reduced only in RBD patients. The results provide only partial support for the right-hemisphere hypothesis and suggest that inter-hemispheric cooperation models may be necessary to fully account for false emotional memories. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Severity and Co-occurrence of Oral and Verbal Apraxias in Left Brain Damaged Adults

    Directory of Open Access Journals (Sweden)

    Fariba Yadegari

    2012-04-01

    Full Text Available Objective: Oral and verbal apraxias represent motor programming deficits of nonverbal and verbal movements respectively. Studying their properties may shed light on speech motor control processes. This study was focused on identifying cases with oral or verbal apraxia, their co–occurrences and severities. Materials & Methods: In this non-experimental study, 55 left adult subjects with left brain lesion including 22 women and 33 men with age range of 23 to 84 years, were examined and videotaped using oral apraxia and verbal apraxia tasks. Three speech and language pathologists independently scored apraxia severities. Data were analyzed by independent t test, Pearson, Phi and Contingency coefficients using SPSS 12. Results: Mean score of oral and verbal apraxias in patients with and without oral and verbal apraxias were significantly different (P<0.001. Forty- two patients had simultaneous oral and verbal apraxias, with significant correlation between their oral and verbal apraxia scores (r=0.75, P<0.001. Six patients showed no oral or verbal apraxia and 7 had just one type of apraxia. Comparison of co-occurrence of two disorders (Phi=0.59 and different oral and verbal intensities (C=0.68 were relatively high (P<0.001. Conclusion: The present research revealed co-occurrence of oral and verbal apraxias to a great extent. It appears that speech motor control is influenced by a more general verbal and nonverbal motor control.

  9. Contextualizing aquired brain damage

    DEFF Research Database (Denmark)

    Nielsen, Charlotte Marie Bisgaard

    2014-01-01

    Contextualizing aquired brain damage Traditional approaches study ’communicational problems’ often in a discourse of disabledness or deficitness. With an ontology of communcation as something unique and a presupposed uniqueness of each one of us, how could an integrational approach (Integrational...... for people with aquired brain injuries will be presented and comparatively discussed in a traditional versus an integrational perspective. Preliminary results and considerations on ”methods” and ”participation” from this study will be presented along with an overview of the project's empirical data....

  10. Mechanical knowledge does matter to tool use even when assessed with a non-production task: Evidence from left brain-damaged patients.

    Science.gov (United States)

    Lesourd, Mathieu; Budriesi, Carla; Osiurak, François; Nichelli, Paolo F; Bartolo, Angela

    2017-12-20

    In the literature on apraxia of tool use, it is now accepted that using familiar tools requires semantic and mechanical knowledge. However, mechanical knowledge is nearly always assessed with production tasks, so one may assume that mechanical knowledge and familiar tool use are associated only because of their common motor mechanisms. This notion may be challenged by demonstrating that familiar tool use depends on an alternative tool selection task assessing mechanical knowledge, where alternative uses of tools are assumed according to their physical properties but where actual use of tools is not needed. We tested 21 left brain-damaged patients and 21 matched controls with familiar tool use tasks (pantomime and single tool use), semantic tasks and an alternative tool selection task. The alternative tool selection task accounted for a large amount of variance in the single tool use task and was the best predictor among all the semantic tasks. Concerning the pantomime of tool use task, group and individual results suggested that the integrity of the semantic system and preserved mechanical knowledge are neither necessary nor sufficient to produce pantomimes. These results corroborate the idea that mechanical knowledge is essential when we use tools, even when tasks assessing mechanical knowledge do not require the production of any motor action. Our results also confirm the value of pantomime of tool use, which can be considered as a complex activity involving several cognitive abilities (e.g., communicative skills) rather than the activation of gesture engrams. © 2017 The British Psychological Society.

  11. Instrumentos para avaliação da linguagem pós-lesão cerebrovascular esquerda Instruments for language assessment following a left brain damage

    Directory of Open Access Journals (Sweden)

    Karina Carlesso Pagliarin

    2013-04-01

    Full Text Available O tema deste estudo é a avaliação padronizada da linguagem em pacientes com lesão cerebrovascular esquerda (LHE que pode ser muito útil no estabelecimento do diagnóstico, prognóstico e plano terapêutico, complementando observação, entrevistas e tarefas clínicas. Este estudo teve como objetivo identificar quais instrumentos de investigação de linguagem têm sido utilizados para avaliação de quadros neurológicos súbitos envolvendo o hemisfério esquerdo (HE e analisar quais componentes linguísticos são os mais avaliados. Foi possível identificar nove instrumentos utilizados internacionalmente que avaliam diferentes componentes linguísticos em pacientes com LHE; no contexto nacional, porém, foram encontradas apenas duas baterias para avaliação dessa população, ficando evidente a necessidade da construção e/ou de adaptação de instrumentos para a população brasileira. Os componentes linguísticos mais investigados foram nomeação e compreensão oral, respectivamente. A avaliação da linguagem torna-se essencial nos quadros envolvendo o HE, pois déficits linguísticos podem acarretar prejuízos sociais, ocupacionais e familiares.The theme of this study is the language assessment in patients with left brain damage (LBD. It is necessary as it helps to establish the diagnosis, prognosis and rehabilitation planning, adding findings to clinical observation, interview and tasks. The purpose is to identify which language instruments have been used to assess non-progressive neurological disorders involving the left hemisphere (LH and to analyze which language components are the most assessed ones. It was possible to identify nine international instruments that assess different components of language in LBD patients. In the national context, however, only two batteries to assess this population were found, highlighting the need for construction and/or adaptation of language assessment tools for the Brazilian population

  12. Teaching Creativity for Right Brain and Left Brain Thinkers.

    Science.gov (United States)

    Geske, Joel

    Right brain and left brain dominant people process information differently and need different techniques to learn how to become more creative. Various exercises can help students take advantage of both sides of their brains. Students must feel comfortable and unthreatened to reach maximal creativity, and a positive personal relationship with…

  13. Neuronal connectivity, regional differentiation, and brain damage in humans.

    OpenAIRE

    Zaidel, Dahlia W.

    1999-01-01

    When circumscribed brain regions are damaged in humans, highly specific iimpairments in language, memory, problem solving, and cognition are observed. Neurosurgery such as "split brain" or hemispherectomy, for example has shown that encompassing regions, the left and right cerebral hemispheres each control human behavior in unique ways. Observations stretching over 100 years of patients with unilateral focal brain damage have revealed, withouth the theoretical benefits of "cognitive neurosci...

  14. From the Left to the Right: How the Brain Compensates Progressive Loss of Language Function

    Science.gov (United States)

    Thiel, Alexander; Habedank, Birgit; Herholz, Karl; Kessler, Josef; Winhuisen, Lutz; Haupt, Walter F.; Heiss, Wolf-Dieter

    2006-01-01

    In normal right-handed subjects language production usually is a function of the left brain hemisphere. Patients with aphasia following brain damage to the left hemisphere have a considerable potential to compensate for the loss of this function. Sometimes, but not always, areas of the right hemisphere which are homologous to language areas of the…

  15. Testing the Language of German Cerebral Palsy Patients with Right Hemispheric Language Organization after Early Left Hemispheric Damage

    Science.gov (United States)

    Schwilling, Eleonore; Krageloh-Mann, Ingeborg; Konietzko, Andreas; Winkler, Susanne; Lidzba, Karen

    2012-01-01

    Language functions are generally represented in the left cerebral hemisphere. After early (prenatally acquired or perinatally acquired) left hemispheric brain damage language functions may be salvaged by reorganization into the right hemisphere. This is different from brain lesions acquired in adulthood which normally lead to aphasia. Right…

  16. The application of SHERPA (Systematic Human Error Reduction and Prediction Approach) in the development of compensatory cognitive rehabilitation strategies for stroke patients with left and right brain damage.

    Science.gov (United States)

    Hughes, Charmayne M L; Baber, Chris; Bienkiewicz, Marta; Worthington, Andrew; Hazell, Alexa; Hermsdörfer, Joachim

    2015-01-01

    Approximately 33% of stroke patients have difficulty performing activities of daily living, often committing errors during the planning and execution of such activities. The objective of this study was to evaluate the ability of the human error identification (HEI) technique SHERPA (Systematic Human Error Reduction and Prediction Approach) to predict errors during the performance of daily activities in stroke patients with left and right hemisphere lesions. Using SHERPA we successfully predicted 36 of the 38 observed errors, with analysis indicating that the proportion of predicted and observed errors was similar for all sub-tasks and severity levels. HEI results were used to develop compensatory cognitive strategies that clinicians could employ to reduce or prevent errors from occurring. This study provides evidence for the reliability and validity of SHERPA in the design of cognitive rehabilitation strategies in stroke populations.

  17. Air pollution and brain damage.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Azzarelli, Biagio; Acuna, Hilda; Garcia, Raquel; Gambling, Todd M; Osnaya, Norma; Monroy, Sylvia; DEL Tizapantzi, Maria Rosario; Carson, Johnny L; Villarreal-Calderon, Anna; Rewcastle, Barry

    2002-01-01

    Exposure to complex mixtures of air pollutants produces inflammation in the upper and lower respiratory tract. Because the nasal cavity is a common portal of entry, respiratory and olfactory epithelia are vulnerable targets for toxicological damage. This study has evaluated, by light and electron microscopy and immunohistochemical expression of nuclear factor-kappa beta (NF-kappaB) and inducible nitric oxide synthase (iNOS), the olfactory and respiratory nasal mucosae, olfactory bulb, and cortical and subcortical structures from 32 healthy mongrel canine residents in Southwest Metropolitan Mexico City (SWMMC), a highly polluted urban region. Findings were compared to those in 8 dogs from Tlaxcala, a less polluted, control city. In SWMMC dogs, expression of nuclear neuronal NF-kappaB and iNOS in cortical endothelial cells occurred at ages 2 and 4 weeks; subsequent damage included alterations of the blood-brain barrier (BBB), degenerating cortical neurons, apoptotic glial white matter cells, deposition of apolipoprotein E (apoE)-positive lipid droplets in smooth muscle cells and pericytes, nonneuritic plaques, and neurofibrillary tangles. Persistent pulmonary inflammation and deteriorating olfactory and respiratory barriers may play a role in the neuropathology observed in the brains of these highly exposed canines. Neurodegenerative disorders such as Alzheimer's may begin early in life with air pollutants playing a crucial role.

  18. Dermatological conditions in patients with brain damage

    Directory of Open Access Journals (Sweden)

    Joon Lee

    2014-09-01

    Conclusion: The characteristics of dermatological consultations in patients with brain damage may be different from those of other inpatients attending dermatological clinics. The analysis of dermatological disorders in patients with brain damage can assist in understanding the “brain–skin connection”.

  19. Hyperschematia after right brain damage: a meaningful entity?

    Directory of Open Access Journals (Sweden)

    Gilles eRode

    2014-01-01

    Full Text Available In recent years we reported three right-brain-damaged patients, who exhibited a left-sided disprortionate expansion of drawings, both by copying and from memory, contralateral to the side of the hemispheric lesion (Neurology, 67: 1801, 2006, Neurocase 14: 369, 2008. We proposed the term hyperschematia for such an expansion, with reference to an interpretation in terms of a lateral leftward distortion of the representation of extra-personal space, with a leftward anisometric expansion (relaxation of the spatial medium. The symptom-complex shown by right-brain-damaged patients with hyperschematia includes: 1 a disproportionate leftward expansion of drawings (with possible addition of details, by copy and from memory (also in clay modeling, in one patient; 2 an overestimation of left lateral extent, when a leftward movement is required, associated with a perceptual underestimation; 4 unawareness of the disorder; 5 no unilateral spatial neglect. In most right-brain-damaged patients, left hyperschematia involves extra-personal space. In one patient the deficit was confined to a body part (left half-face: personal hyperschematia. The neural underpinnings of the disorder include damage to the fronto-temporo-parietal cortices, and subcortical structures in the right cerebral hemisphere, in the vascular territory of the middle cerebral artery. Here, four novel additional patients are reported. Finally, hypeschematia is reconsidered, in its clinical components, the underlying pathological mechanisms, as well as its neural underpinnings.

  20. Testing the language of German cerebral palsy patients with right hemispheric language organization after early left hemispheric damage.

    Science.gov (United States)

    Schwilling, Eleonore; Krägeloh-Mann, Ingeborg; Konietzko, Andreas; Winkler, Susanne; Lidzba, Karen

    2012-02-01

    Language functions are generally represented in the left cerebral hemisphere. After early (prenatally acquired or perinatally acquired) left hemispheric brain damage language functions may be salvaged by reorganization into the right hemisphere. This is different from brain lesions acquired in adulthood which normally lead to aphasia. Right hemispheric reorganized language (RL) is not associated with obvious language deficits. In this pilot study we compared a group of German-speaking patients with left hemispheric brain damage and RL with a group of matched healthy controls. The novel combination of reliable language lateralization as assessed by neuroimaging (functional magnetic resonance imaging) and specific linguistic tasks revealed significant differences between patients with RL and healthy controls in both language comprehension and production. Our results provide evidence for the hypothesis that RL is significantly different from normal left hemispheric language. This knowledge can be used to improve counselling of parents and to develop specific therapeutic approaches.

  1. PREDICTING APHASIA TYPE FROM BRAIN DAMAGE MEASURED WITH STRUCTURAL MRI

    Science.gov (United States)

    Yourganov, Grigori; Smith, Kimberly G.; Fridriksson, Julius; Rorden, Chris

    2015-01-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca’s, Wernicke’s, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery. Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients’ aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. PMID:26465238

  2. Musical anhedonia after focal brain damage.

    Science.gov (United States)

    Belfi, Amy M; Evans, Erin; Heskje, Jonah; Bruss, Joel; Tranel, Daniel

    2017-03-01

    People listen to music because it is pleasurable. However, there are individual differences in the reward value of music. At the extreme low end of this continuum, individuals who derive no pleasure from music are said to have 'musical anhedonia.' Cases of acquired musical anhedonia following focal brain damage are rare, with only a handful having been reported in the scientific literature. Here, we surveyed a large sample of patients with focal brain damage to identify the frequency, specificity, and neural correlates of acquired musical anhedonia. Participants completed the Musical anhedonia Questionnaire and the Barcelona Music Reward Questionnaire (Mas-Herrero et al., 2013) to assess changes in musical enjoyment and reward following brain injury. Neuroanatomical data were analyzed with a proportional MAP-3 method to create voxelwise lesion proportion difference maps. No clear or consistent neuroanatomical correlates of musical anhedonia were identified. One patient with damage to the right-hemisphere putamen and internal capsule displayed specific and severe acquired musical anhedonia. These findings indicate that acquired musical anhedonia is very uncommon, a result which is consistent with the fact that only a small number of such cases have been reported in the literature. This rarity could have positive implications for the therapeutic potentialities of music in patients with severe neurological disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Impaired spontaneous belief inference following acquired damage to the left posterior temporoparietal junction.

    Science.gov (United States)

    Biervoye, Aurélie; Dricot, Laurence; Ivanoiu, Adrian; Samson, Dana

    2016-10-01

    Efficient social interactions require taking into account other people's mental states such as their beliefs, intentions or emotions. Recent studies have shown that in some social situations at least, we do spontaneously take into account others' mental states. The extent to which we have dedicated brain areas for such spontaneous perspective taking is however still unclear. Here, we report two brain-damaged patients whose common lesions were almost exclusively in the left posterior temporoparietal junction (TPJp) and who both showed the same striking and distinctive theory of mind (ToM) deficit. More specifically, they had an inability to take into account someone else's belief unless they were explicitly instructed to tell what that other person thinks or what that person will do. These patients offer a unique insight into the causal link between a specific subregion of the TPJ and a specific cognitive facet of ToM. © The Author (2016). Published by Oxford University Press.

  4. [Neuroendocrine disturbances after acquired brain damage].

    Science.gov (United States)

    Kreitschmann-Andermahr, I; Brabant, G

    2011-04-01

    Hypopituitarism is not a rare disease and its clinical signs and symptoms deserve the attention of the clinically practising neurologist. Next to the classical cause of hypopituitarism mediated by tumours of the hypothalamo-pituitary region, a number of recent articles have highlighted the high frequency of central endocrine disturbances in patients with brain damage, i. e. not only after traumatic brain injury and subarachnoid haemorrhage but also as a consequence of the treatment of childhood brain tumours. This article provides an overview of the clinical symptomatology and pathophysiology of hypopituitarism as well as the current knowledge about neuroendocrine disturbances in the adult patient suffering from the above-mentioned disorders. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Clinical and pathological features of alcohol-related brain damage.

    Science.gov (United States)

    Zahr, Natalie M; Kaufman, Kimberley L; Harper, Clive G

    2011-05-01

    One of the sequelae of chronic alcohol abuse is malnutrition. Importantly, a deficiency in thiamine (vitamin B(1)) can result in the acute, potentially reversible neurological disorder Wernicke encephalopathy (WE). When WE is recognized, thiamine treatment can elicit a rapid clinical recovery. If WE is left untreated, however, patients can develop Korsakoff syndrome (KS), a severe neurological disorder characterized by anterograde amnesia. Alcohol-related brain damage (ARBD) describes the effects of chronic alcohol consumption on human brain structure and function in the absence of more discrete and well-characterized neurological concomitants of alcoholism such as WE and KS. Through knowledge of both the well-described changes in brain structure and function that are evident in alcohol-related disorders such as WE and KS and the clinical outcomes associated with these changes, researchers have begun to gain a better understanding of ARBD. This Review examines ARBD from the perspective of WE and KS, exploring the clinical presentations, postmortem brain pathology, in vivo MRI findings and potential molecular mechanisms associated with these conditions. An awareness of the consequences of chronic alcohol consumption on human behavior and brain structure can enable clinicians to improve detection and treatment of ARBD.

  6. Decreased Defibrillation Threshold and Minimized Myocardial Damage With Left Axilla Implantable Cardioverter Defibrillator Implantation.

    Science.gov (United States)

    Noro, Mahito; Zhu, Xin; Enomoto, Yoshinari; Oikawa, Yasuhiro; Tatsunami, Hiroyuki; Ishii, Rina; Toyoda, Yasutake; Asami, Masako; Sahara, Naohiko; Takagi, Takahito; Narabayashi, Yuriko; Hashimoto, Hikari; Ito, Naoshi; Kujime, Shingo; Sakai, Tsuyoshi; Nakamura, Keijirou; Sakata, Takao; Abe, Haruhiko; Sugi, Kaoru

    2016-01-01

    To reduce myocardial damage caused by implantable cardioverter defibrillator (ICD) shock, the left axilla was studied as an alternative pulse generator implantation site, and compared with the traditional implantation site, the left anterior chest. Computer simulation was used to study the defibrillation conduction pattern and estimate the simulated defibrillation threshold (DFT) and myocardial damage when pulse generators were placed in the left axilla and left anterior chest, respectively; pulse generators were also newly implanted in the left axilla (n=30) and anterior chest (n=40) to compare the corresponding DFT. On simulation, when ICD generators were implanted in the left axilla, compared with the left anterior chest, the whole heart may be defibrillated with a lower defibrillation energy (left axilla 6.4 J vs. left anterior chest 12.0 J) and thus the proportion of cardiac myocardial damage may be reduced (2.1 vs. 4.2%). Clinically, ventricular fibrillation was successfully terminated with a defibrillation output ≤5 J in 86.7% (26/30) of the left axillary group, and in 27.5% (11/40) of the left anterior group (P<0.001). Clinically and theoretically, the left axilla was shown to be an improved ICD implantation site that may reduce DFT and lessen myocardial damage due to shock. Lower DFT also facilitates less myocardial damage, as a result of the lower shock required.

  7. Neuroimmune Basis of Alcoholic Brain Damage

    Science.gov (United States)

    Crews, Fulton T.; Vetreno, Ryan P.

    2017-01-01

    Alcohol-induced brain damage likely contributes to the dysfunctional poor decisions associated with alcohol dependence. Human alcoholics have a global loss of brain volume that is most severe in the frontal cortex. Neuroimmune gene induction by binge drinking increases neurodegeneration through increased oxidative stress, particularly NADPH oxidase-induced oxidative stress. In addition, HMGB1-TLR4 and innate immune NF-κB target genes are increased leading to persistent and sensitized neuroimmune responses to ethanol and other agents that release HMGB1 or directly stimulate TLR receptors and/or NMDA receptors. Neuroimmune signaling and glutamate excitotoxicity are linked to alcoholic neurodegeneration. Models of adolescent alcohol abuse lead to significant frontal cortical degeneration and show the most severe loss of hippocampal neurogenesis. Adolescence is a period of high risk for ethanol-induced neurodegeneration and alterations in brain structure, gene expression, and maturation of adult phenotypes. Together, these findings support the hypothesis that adolescence is a period of risk for persistent and long-lasting increases in brain neuroimmune gene expression that promote persistent and long-term increases in alcohol consumption, neuroimmune gene induction, and neurodegeneration that we find associated with alcohol use disorders. PMID:25175868

  8. Damage to the Left Precentral Gyrus Is Associated With Apraxia of Speech in Acute Stroke.

    Science.gov (United States)

    Itabashi, Ryo; Nishio, Yoshiyuki; Kataoka, Yuka; Yazawa, Yukako; Furui, Eisuke; Matsuda, Minoru; Mori, Etsuro

    2016-01-01

    Apraxia of speech (AOS) is a motor speech disorder, which is clinically characterized by the combination of phonemic segmental changes and articulatory distortions. AOS has been believed to arise from impairment in motor speech planning/programming and differentiated from both aphasia and dysarthria. The brain regions associated with AOS are still a matter of debate. The aim of this study was to address this issue in a large number of consecutive acute ischemic stroke patients. We retrospectively studied 136 patients with isolated nonlacunar infarcts in the left middle cerebral artery territory (70.5±12.9 years old, 79 males). In accordance with speech and language assessments, the patients were classified into the following groups: pure form of AOS (pure AOS), AOS with aphasia (AOS-aphasia), and without AOS (non-AOS). Voxel-based lesion-symptom mapping analysis was performed on T2-weighted images or fluid-attenuated inversion recovery images. Using the Liebermeister method, group-wise comparisons were made between the all AOS (pure AOS plus AOS-aphasia) and non-AOS, pure AOS and non-AOS, AOS-aphasia and non-AOS, and pure AOS and AOS-aphasia groups. Of the 136 patients, 22 patients were diagnosed with AOS (7 patients with pure AOS and 15 patients with AOS-aphasia). The voxel-based lesion-symptom mapping analysis demonstrated that the brain regions associated with AOS were centered on the left precentral gyrus. Damage to the left precentral gyrus is associated with AOS in acute to subacute stroke patients, suggesting a role of this brain region in motor speech production. © 2015 American Heart Association, Inc.

  9. Functionality predictors in acquired brain damage.

    Science.gov (United States)

    Huertas Hoyas, E; Pedrero Pérez, E J; Águila Maturana, A M; García López-Alberca, S; González Alted, C

    2015-01-01

    Most individuals who have survived an acquired brain injury present consequences affecting the sensorimotor, cognitive, affective or behavioural components. These deficits affect the proper performance of daily living activities. The aim of this study is to identify functional differences between individuals with unilateral acquired brain injury using functional independence, capacity, and performance of daily activities. Descriptive cross-sectional design with a sample of 58 people, with right-sided injury (n=14 TBI; n=15 stroke) or left-sided injury (n = 14 TBI, n = 15 stroke), right handed, and with a mean age of 47 years and time since onset of 4 ± 3.65 years. The functional assessment/functional independence measure (FIM/FAM) and the International Classification of Functioning (ICF) were used for the study. The data showed significant differences (P<.000), and a large size effect (dr=0.78) in the cross-sectional estimates, and point to fewer restrictions for patients with a lesion on their right side. The major differences were in the variables 'speaking' and 'receiving spoken messages' (ICF variables), and 'Expression', 'Writing' and 'intelligible speech' (FIM/FAM variables). In the linear regression analysis, the results showed that only 4 FIM/FAM variables, taken together, predict 44% of the ICF variance, which measures the ability of the individual, and up to 52% of the ICF, which measures the individual's performance. Gait alone predicts a 28% of the variance. It seems that individuals with acquired brain injury in the left hemisphere display important differences regarding functional and communication variables. The motor aspects are an important prognostic factor in functional rehabilitation. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  10. Alcohol-related brain damage in humans.

    Directory of Open Access Journals (Sweden)

    Amaia M Erdozain

    Full Text Available Chronic excessive alcohol intoxications evoke cumulative damage to tissues and organs. We examined prefrontal cortex (Brodmann's area (BA 9 from 20 human alcoholics and 20 age, gender, and postmortem delay matched control subjects. H & E staining and light microscopy of prefrontal cortex tissue revealed a reduction in the levels of cytoskeleton surrounding the nuclei of cortical and subcortical neurons, and a disruption of subcortical neuron patterning in alcoholic subjects. BA 9 tissue homogenisation and one dimensional polyacrylamide gel electrophoresis (PAGE proteomics of cytosolic proteins identified dramatic reductions in the protein levels of spectrin β II, and α- and β-tubulins in alcoholics, and these were validated and quantitated by Western blotting. We detected a significant increase in α-tubulin acetylation in alcoholics, a non-significant increase in isoaspartate protein damage, but a significant increase in protein isoaspartyl methyltransferase protein levels, the enzyme that triggers isoaspartate damage repair in vivo. There was also a significant reduction in proteasome activity in alcoholics. One dimensional PAGE of membrane-enriched fractions detected a reduction in β-spectrin protein levels, and a significant increase in transmembranous α3 (catalytic subunit of the Na+,K+-ATPase in alcoholic subjects. However, control subjects retained stable oligomeric forms of α-subunit that were diminished in alcoholics. In alcoholics, significant loss of cytosolic α- and β-tubulins were also seen in caudate nucleus, hippocampus and cerebellum, but to different levels, indicative of brain regional susceptibility to alcohol-related damage. Collectively, these protein changes provide a molecular basis for some of the neuronal and behavioural abnormalities attributed to alcoholics.

  11. Radial bisection of words and lines in right-brain-damaged patients with spatial neglect.

    Science.gov (United States)

    Veronelli, Laura; Arduino, Lisa S; Girelli, Luisa; Vallar, Giuseppe

    2017-09-01

    The bisection of lines positioned radially (with the two ends of the line close and far, with respect to the participant's body) has been less investigated than that of lines placed horizontally (with their two ends left and right, with respect to the body's midsagittal plane). In horizontal bisection, patients with left neglect typically show a rightward bias for both lines and words, greater with longer stimuli. As for radial bisection, available data indicate that neurologically unimpaired participants make a distal error, while results from right-brain-damaged patients with left spatial neglect are contradictory. We investigated the bisection of radially oriented words, with the prediction that, during bisection, linguistic material would be recoded to its canonical left-to-right format in reading, with the performance of neglect patients being similar to that for horizontal words. Thirteen right-brain-damaged patients (seven with left spatial neglect) and fourteen healthy controls were asked to manually bisect 40 radial and 40 horizontal words (5-10 letters), and 80 lines, 40 radial and 40 horizontal, of comparable length. Right-brain-damaged patients with spatial neglect exhibited a proximal bias in the bisection of short radial words, with the proximal part corresponding to the final right part of horizontally oriented words. This proximal error was not found in patients without neglect and healthy controls. For bisection, short radial words may be recoded to the canonical orthographic horizontal format, unveiling the impact of left neglect on radially oriented stimuli. © 2015 The British Psychological Society.

  12. Postconditioning with repeated mild hypoxia protects neonatal hypoxia-ischemic rats against brain damage and promotes rehabilitation of brain function.

    Science.gov (United States)

    Deng, Qingqing; Chang, Yanqun; Cheng, Xiaomao; Luo, Xingang; Zhang, Jing; Tang, Xiaoyuan

    2018-02-06

    Mild hypoxia conditioning induced by repeated episodes of transient ischemia is a clinically applicable method for protecting the brain against injury after hypoxia-ischemic brain damage. To assess the effect of repeated mild hypoxia postconditioning on brain damage and long-term neural functional recovery after hypoxia-ischemic brain damage. Rats received different protocols of repeated mild hypoxia postconditioning. Seven-day-old rats with hypoxia ischemic brain damage (HIBD) from the left carotid ligation procedure plus 2 h hypoxic stress (8% O 2 at 37 °C) were further receiving repeated mild hypoxia intermittently. The gross anatomy, functional analyses, hypoxia inducible factor 1 alpha (HIF-1a) expression, and neuronal apoptosis of the rat brains were subsequently examined. Compared to the HIBD group, rats postconditioned with mild hypoxia had elevated HIF-1a expression, more Nissl-stain positive cells in their brain tissue and their brains functioned better in behavioral analyses. The recovery of the brain function may be directly linked to the inhibitory effect of HIF-1α on neuronal apoptosis. Furthermore, there were significantly less neuronal apoptosis in the hippocampal CA1 region of the rats postconditioned with mild hypoxia, which might also be related to the higher HIF-1a expression and better brain performance. Overall, these results suggested that postconditioning of neonatal rats after HIBD with mild hypoxia increased HIF-1a expression, exerted a neuroprotective effect and promoted neural functional recovery. Repeated mild hypoxia postconditioning protects neonatal rats with HIBD against brain damage and improves neural functional recovery. Our results may have clinical implications for treating infants with HIBD. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Remote effects of hippocampal damage on default network connectivity in the human brain.

    Science.gov (United States)

    Frings, Lars; Schulze-Bonhage, Andreas; Spreer, Joachim; Wagner, Kathrin

    2009-12-01

    In the healthy human brain the hippocampus is known to work in concert with a variety of cortical brain regions. It has recently been linked to the default network of the brain, with the precuneus being its core hub. Here we studied the remote effects of damage to the hippocampus on functional connectivity patterns of the precuneus. From 14 epilepsy patients with selective, unilateral hippocampal sclerosis and 8 healthy control subjects, we acquired functional MRI data during performance of an object-location memory task. We assessed functional connectivity of a functionally defined region in the precuneus, which showed the typical properties of the default network: significant task-related deactivation, which was reduced in patients compared to control subjects. In control subjects, a largely symmetrical pattern of functional coherence to the precuneus emerged, including canonical default network areas such as ventral medial prefrontal cortex, inferior parietal cortex, and the hippocampi. Assessment of group differences within the default network areas revealed reduced connectivity to the precuneus in ipsilesional middle temporal gyrus and hippocampus in left hippocampal sclerosis patients compared to controls. Furthermore, left hippocampal sclerosis patients showed lower connectivity than right hippocampal sclerosis patients in left middle temporal gyrus, ventral medial prefrontal cortex, and left amygdala. We report remote effects of unilateral hippocampal damage on functional connectivity between distant brain regions associated with the default network of the human brain. These preliminary results underline the impact of circumscribed pathology on functionally connected brain regions.

  14. MRI findings of brain damage due to neonatal hypoglycemia

    International Nuclear Information System (INIS)

    Wang Lu; Fan Guoguang; Ji Xu; Sun Baohai; Guo Qiyong

    2009-01-01

    Objective: To report the MRI findings of brain damage observed in neonatal patients who suffered from isolated hypoglycemia and to explore the value of diffusion-weighted imaging(DWI) in early detection of neonatal hypoglycemic brain injury. Methods: Twelve neonates with isolated hypoglycemia (10 of the 12 were diagnosed to suffer from hypoglycemic encephalopathy) were enrolled in this study. They were first scanned at age from 3 days to 10 days with T 1 WI, T 2 WI and DWI(b is 0 s/mm 2 , 1000 s/mm 2 ), and 4 of them were then scanned from 7 days to 10 days following the initial scan. All acquired MR images were retrospectively analysed. Results: First series of DWI images showed distinct hyperintense signal in 11 cases in several areas including bilateral occipital cortex (2 cases), right occipital cortex (1 case), left occipital cortex and subcortical white matter(1 case), bilateral occipital cortex and subcortical white matter (2 cases), bilateral parieto-occipital cortex (2 cases), bilateral parieto-occipital cortex and subcortical white matter(2 cases), the splenium of corpus callosum (4 cases), bilateral corona radiata( 2 cases), left caudate nucleus and globus pallidus (1 case), bilateral thalamus (1 case), bilaterally posterior limb of internal capsule (1 case). In the initial T 1 WI and T 2 WI images, there were subtle hypointensity in the damaged cortical areas (3 cases), hyperintensity in the bilaterally affected occipital cortex( 1 case) on T 1 weighted images, and hyperintensity in the affected cortex and subcortical white matter with poor differentiation on T 2 weighted images. The followed-up MRI of 4 cases showed regional encephalomalacia in the affected occipital lobes(4 cases), slightly hyperintensity on T 2 weighted images in the damaged occipital cortex (2 cases), extensive demyelination (1 case), disappearance of hyperintensity of the splenium of corpus callosum (1 case), and persistent hyperintensity in the splenium of corpus callosum (1 case

  15. Right Brain/Left Brain President Barack Obama's Uncommon Leadership Ability and How We Can Each Develop It

    CERN Document Server

    Decosterd, Mary Lou

    2010-01-01

    Right Brain/Left Brain President: Barack Obama's Uncommon Leadership Ability and How We Can Each Develop It is an inspirational guide to leadership as it should be practiced, conveyed through an up-close look at the man who sets the new leadership bar. Author Mary Lou D'costerd uses her Right Brain/Left Brain Leadership Model to frame Barack Obama's leadership skill sets. Her book shows that Obama's unique brand of leadership is the result of his extraordinary ability to leverage full-brain potential in the ways he thinks, decides, and acts. ||Right Brain/Left Brain President examines Obama's

  16. Processing of basic speech acts following localized brain damage: a new light on the neuroanatomy of language.

    Science.gov (United States)

    Soroker, Nachum; Kasher, Asa; Giora, Rachel; Batori, Gila; Corn, Cecilia; Gil, Mali; Zaidel, Eran

    2005-03-01

    We examined the effect of localized brain lesions on processing of the basic speech acts (BSAs) of question, assertion, request, and command. Both left and right cerebral damage produced significant deficits relative to normal controls, and left brain damaged patients performed worse than patients with right-sided lesions. This finding argues against the common conjecture that the right hemisphere of most right-handers plays a dominant role in natural language pragmatics. In right-hemisphere damaged patients, there was no correlation between location and extent of lesion in perisylvian cortex and performance on BSAs. By contrast, processing of the different BSAs by left hemisphere-damaged patients was strongly affected by perisylvian lesion location, with each BSA showing a distinct pattern of localization. This finding raises the possibility that the classical left perisylvian localization of language functions, as measured by clinical aphasia batteries, partly reflects the localization of the BSAs required to perform these functions.

  17. Experience-Dependent Neural Plasticity in the Adult Damaged Brain

    Science.gov (United States)

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper…

  18. Bottom-up and top-down processes in body representation: a study of brain-damaged and amputee patients.

    Science.gov (United States)

    Palermo, Liana; Di Vita, Antonella; Piccardi, Laura; Traballesi, Marco; Guariglia, Cecilia

    2014-09-01

    Body representation is a complex process involving different sources of top-down and bottom-up information. Processing the position and the relations among different body parts is necessary to build up a specific body representation, that is, the visuospatial body map (or topological map of the body). Here we aimed to investigate how the loss of peripheral or central information affects this representation by testing amputee and brain-damaged patients. Thirty-two unilateral brain-damaged patients (i.e., left-brain-damaged patients and right-brain-damaged patients who were or were not affected by personal neglect), 18 lower limb amputees and 15 healthy controls took part in the study. The topological body map was assessed by means of the "Frontal body-evocation subtest" (Daurat-Hmeljiak, Stambak, & Berges, 1978), in which participants have to put tiles (each representing a body part) on a small wooden board on which a head is depicted. Group statistical analysis showed that in amputee patients the loss of peripheral information about the right lower limb affects the ability to represent relations among different body parts as much as the loss of top-down information in brain-damaged patients with personal neglect. Single case analysis of brain-damaged patients without personal neglect showed that the topological map of the body was deficient in 1 right-brain-damaged and 2 left-brain-damaged patients. Studying amputee and brain-damaged patients together allowed us to highlight the importance of visuospatial information about one's own limbs and the role of both hemispheres (not only the left one) in creating an efficient topological body representation. (c) 2014 APA, all rights reserved.

  19. Unilateral Brain Damage Effects on Processing Homonymous and Polysemous Words

    Science.gov (United States)

    Klepousniotou, E.; Baum, S.R.

    2005-01-01

    Using an auditory semantic priming paradigm, the present study investigated the abilities of left-hemisphere-damaged (LHD) non-fluent aphasic, right-hemisphere-damaged (RHD) and normal control individuals to access, out of context, the multiple meanings of three types of ambiguous words, namely homonyms (e.g., ''punch''), metonymies (e.g.,…

  20. Alcohol Alert: Alcohol's Damaging Effects on the Brain

    Science.gov (United States)

    ... United States commonly are fortified with thiamine, including breads and cereals. As a result, most people consume ... most frequently damaged in association with chronic alcohol consumption. Administering thiamine helps to improve brain function, especially ...

  1. Brain damage and addictive behavior: a neuropsychological and electroencephalogram investigation with pathologic gamblers.

    Science.gov (United States)

    Regard, Marianne; Knoch, Daria; Gütling, Eva; Landis, Theodor

    2003-03-01

    Gambling is a form of nonsubstance addiction classified as an impulse control disorder. Pathologic gamblers are considered healthy with respect to their cognitive status. Lesions of the frontolimbic systems, mostly of the right hemisphere, are associated with addictive behavior. Because gamblers are not regarded as "brain-lesioned" and gambling is nontoxic, gambling is a model to test whether addicted "healthy" people are relatively impaired in frontolimbic neuropsychological functions. Twenty-one nonsubstance dependent gamblers and nineteen healthy subjects underwent a behavioral neurologic interview centered on incidence, origin, and symptoms of possible brain damage, a neuropsychological examination, and an electroencephalogram. Seventeen gamblers (81%) had a positive medical history for brain damage (mainly traumatic head injury, pre- or perinatal complications). The gamblers, compared with the controls, were significantly more impaired in concentration, memory, and executive functions, and evidenced a higher prevalence of non-right-handedness (43%) and, non-left-hemisphere language dominance (52%). Electroencephalogram (EEG) revealed dysfunctional activity in 65% of the gamblers, compared with 26% of controls. This study shows that the "healthy" gamblers are indeed brain-damaged. Compared with a matched control population, pathologic gamblers evidenced more brain injuries, more fronto-temporo-limbic neuropsychological dysfunctions and more EEG abnormalities. The authors thus conjecture that addictive gambling may be a consequence of brain damage, especially of the frontolimbic systems, a finding that may well have medicolegal consequences.

  2. The neuroimaging evidence for chronic brain damage due to boxing

    International Nuclear Information System (INIS)

    Moseley, I.F.

    2000-01-01

    A number of imaging techniques have been used to investigate changes produced in the brain by boxing. Most morphological studies have failed to show significant correlations between putative abnormalities on imaging and clinical evidence of brain damage. Fenestration of the septum pellucidum, with formation of a cavum, one of the most frequent observations, does not appear to correlate with neurological or physiological evidence of brain damage. Serial studies on large groups may be more informative. Magnetic resonance spectroscopy and cerebral blood flow studies have been reported in only small numbers of boxers; serial studies are not available to date. (orig.)

  3. Brain natriuretic peptide and left ventricular dysfunction in chagasic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Andre Talvani

    2004-10-01

    Full Text Available Global left ventricular (LV systolic dysfunction is the strongest predictor of morbidity and mortality in Chagas disease. Echocardiography is considered the gold standard for the detection of LV dysfunction, but not always available in endemic areas where chagasic cardiomyopathy is most common. Brain natriuretic peptide (BNP is a neurohormone that has been recently described as a simple and inexpensive diagnostic and prognostic marker for patients with congestive heart failure. Chagasic patients (n = 63 and non-infected healthy individuals (n = 18 were recruited prospectively and underwent complete clinical examination, echocardiography and 24-h Holter monitoring. BNP was measured from thawed plasma samples using the Triage BNP test. We observed high levels of BNP in association with depression of LV ejection fraction, with increase of LV end-diastolic diameter and with LV premature complexes. An elevated concentration of BNP, defined as a concentration of 60 pg/ml or more, had a sensitivity of 91.7%, specificity of 82.8%, positive predictive value of 52.4%, and negative predictive value of 98% for detecting LV dysfunction (LV ejection fraction < 40%.BNP measurement using a simple, relatively inexpensive and rapid test has a promising role in identifying LV dysfunction associated with chagasic cardiomyopathy. Equally important, patients with Trypanosoma cruzi infection who have low levels of BNP level in plasma have a very low likelihood of severe cardiac involvement, and echocardiography is probably not necessary.

  4. Game Utilization as a Media to Train the Balance of Left and Right Brain

    Directory of Open Access Journals (Sweden)

    Evan Wijaya

    2017-10-01

    Full Text Available Human have two brain hemispheres, left hemisphere and right hemisphere. Left hemisphere is used for processing language, words, numbers, equations, etc. Right hemisphere is used for processing creativity, imagination, music, color, etc. Every human should have balance between left and right hemisphere. One method that could be used for balancing brain hemispheres is to use left and right hands for using tools, writing, or typing. “Typing Rhythm” is a game for PC platform, the purpose of this game is for brain balancing exercise by typing lyric of a song while the song is played.

  5. Emergence of realism: Enhanced visual artistry and high accuracy of visual numerosity representation after left prefrontal damage.

    Science.gov (United States)

    Takahata, Keisuke; Saito, Fumie; Muramatsu, Taro; Yamada, Makiko; Shirahase, Joichiro; Tabuchi, Hajime; Suhara, Tetsuya; Mimura, Masaru; Kato, Motoichiro

    2014-05-01

    Over the last two decades, evidence of enhancement of drawing and painting skills due to focal prefrontal damage has accumulated. It is of special interest that most artworks created by such patients were highly realistic ones, but the mechanism underlying this phenomenon remains to be understood. Our hypothesis is that enhanced tendency of realism was associated with accuracy of visual numerosity representation, which has been shown to be mediated predominantly by right parietal functions. Here, we report a case of left prefrontal stroke, where the patient showed enhancement of artistic skills of realistic painting after the onset of brain damage. We investigated cognitive, functional and esthetic characteristics of the patient׳s visual artistry and visual numerosity representation. Neuropsychological tests revealed impaired executive function after the stroke. Despite that, the patient׳s visual artistry related to realism was rather promoted across the onset of brain damage as demonstrated by blind evaluation of the paintings by professional art reviewers. On visual numerical cognition tasks, the patient showed higher performance in comparison with age-matched healthy controls. These results paralleled increased perfusion in the right parietal cortex including the precuneus and intraparietal sulcus. Our data provide new insight into mechanisms underlying change in artistic style due to focal prefrontal lesion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Irreversible brain damage caused by methamphetamine

    Directory of Open Access Journals (Sweden)

    Sebastian Moeller

    2016-03-01

    Full Text Available Methamphetamine is an addictive scene substance usage of which is increasing rapidly. While methamphetamine often causes neuropsychiatric symptoms like anxiety, psychosis and hallucinations, reports of structural ongoing cerebral alterations are rare. We here report a case of this kind of damage caused through methamphetamine use.

  7. Patterns of poststroke brain damage that predict speech production errors in apraxia of speech and aphasia dissociate.

    Science.gov (United States)

    Basilakos, Alexandra; Rorden, Chris; Bonilha, Leonardo; Moser, Dana; Fridriksson, Julius

    2015-06-01

    Acquired apraxia of speech (AOS) is a motor speech disorder caused by brain damage. AOS often co-occurs with aphasia, a language disorder in which patients may also demonstrate speech production errors. The overlap of speech production deficits in both disorders has raised questions on whether AOS emerges from a unique pattern of brain damage or as a subelement of the aphasic syndrome. The purpose of this study was to determine whether speech production errors in AOS and aphasia are associated with distinctive patterns of brain injury. Forty-three patients with history of a single left-hemisphere stroke underwent comprehensive speech and language testing. The AOS Rating Scale was used to rate speech errors specific to AOS versus speech errors that can also be associated with both AOS and aphasia. Localized brain damage was identified using structural magnetic resonance imaging, and voxel-based lesion-impairment mapping was used to evaluate the relationship between speech errors specific to AOS, those that can occur in AOS or aphasia, and brain damage. The pattern of brain damage associated with AOS was most strongly associated with damage to cortical motor regions, with additional involvement of somatosensory areas. Speech production deficits that could be attributed to AOS or aphasia were associated with damage to the temporal lobe and the inferior precentral frontal regions. AOS likely occurs in conjunction with aphasia because of the proximity of the brain areas supporting speech and language, but the neurobiological substrate for each disorder differs. © 2015 American Heart Association, Inc.

  8. Diffuse brain damage in normal tension glaucoma.

    Science.gov (United States)

    Giorgio, Antonio; Zhang, Jian; Costantino, Francesco; De Stefano, Nicola; Frezzotti, Paolo

    2018-01-01

    Brain changes within and beyond the visual system have been demonstrated in primary open angle glaucoma (POAG), the most common type of glaucoma. These changes have been often interpreted as a neurodegenerative process due, at least partially, to the raised intraocular pressure (IOP). In this context, normal tension glaucoma (NTG), a form of POAG with IOP acquired multimodal brain MRI in NTG patients (n = 17) and compared them with demographically matched groups of POAG patients with raised IOP (n = 17) and normal controls (NC, n = 29). Voxelwise statistics was performed with nonparametric permutation testing. Both NTG and POAG patients showed, compared to NC, significantly more gray matter atrophy in both the visual system and in nonvisual brain regions and altered diffusion tensor imaging-derived anatomical connectivity (AC; lower fractional anisotropy and/or higher diffusivities). Compared with NTG, POAG had both more atrophic visual cortex and higher axial diffusivity in nonvisual regions. Functional connectivity (FC) with respect to NC was altered in NTG at short-range level [visual network (VN), ventral attention network] and in POAG at long-range level (between secondary VN and limbic network). FC of POAG was higher than NTG in both VN and executive network. This study provides further evidence that diffuse structural and functional abnormalities across glaucoma brain may be, at least partially, independent of raised IOP and the consequent retinal degeneration. This further defines glaucoma as a condition with neurodegeneration spreading. Hum Brain Mapp 39:532-541, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Damage and repair of irradiated mammalian brain

    International Nuclear Information System (INIS)

    Frankel, K.; Lo, E.; Phillips, M.; Fabrikant, J.; Brennan, K.; Valk, P.; Poljak, A.; Delapaz, R.; Woodruff, K.

    1989-07-01

    We have demonstrated that focal charged particle irradiation of the rabbit brain can create well-defined lesions which are observable by nuclear magnetic resonance imaging (NMR) and positron emission tomography (PET) imaging techniques. These are similar, in terms of location and characteristic NMR and PET features, to those that occur in the brain of about 10% of clinical research human subjects, who have been treated for intracranial vascular malformations with stereotactic radiosurgery. These lesions have been described radiologically as ''vasogenic edema of the deep white matter,'' and the injury is of variable intensity and temporal duration, can recede or progress to serious neurologic sequelae, and persist for a considerable period of time, frequently 18 mon to 3 yr. 8 refs., 6 figs

  10. Damage and repair of irradiated mammalian brain

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, K.; Lo, E.; Phillips, M.; Fabrikant, J.; Brennan, K.; Valk, P.; Poljak, A.; Delapaz, R.; Woodruff, K. (Lawrence Berkeley Lab., CA (USA); Stanford Univ., CA (USA). Medical Center; Brookside Hospital, San Pablo, CA (USA))

    1989-07-01

    We have demonstrated that focal charged particle irradiation of the rabbit brain can create well-defined lesions which are observable by nuclear magnetic resonance imaging (NMR) and positron emission tomography (PET) imaging techniques. These are similar, in terms of location and characteristic NMR and PET features, to those that occur in the brain of about 10% of clinical research human subjects, who have been treated for intracranial vascular malformations with stereotactic radiosurgery. These lesions have been described radiologically as vasogenic edema of the deep white matter,'' and the injury is of variable intensity and temporal duration, can recede or progress to serious neurologic sequelae, and persist for a considerable period of time, frequently 18 mon to 3 yr. 8 refs., 6 figs.

  11. Brain damage in former association football players

    International Nuclear Information System (INIS)

    Sortland, O.; Tysvaer, A.T.

    1989-01-01

    Thirty-three former football players from the National Football Team of Norway were examined by cerebral computer tomography (CT). The CT studies, evaluated for brain atrophy, visually and by linear measurements compared two different normal materials. One third of the players were found to have central cerebral atrophy. It is concluded that the atrophy probably was caused by repeated small head injuries during the football play, mainly in connection with heading the ball. (orig.)

  12. The use of computed tomography in brain damage testing

    International Nuclear Information System (INIS)

    De Villiers, J.F.K.

    1980-01-01

    The article deals with the diagnosis of brain damage by the use of computerized tomography - especially referring to the injuries of boxers. Three conditions may be evaluated with computerized tomography: i) fenestration of the septum pellucidum; ii) cortical atrophy; and, iii) cerebral atrophy. It also appears that computerized tomography has a place in the evaluation of injuries sustained in the ring, as well as the detection of accelerated ageing of the brain or atrophy

  13. Shock treatment, brain damage, and memory loss: a neurological perspective.

    Science.gov (United States)

    Friedberg, J

    1977-09-01

    The author reviews reports of neuropathology resulting from electroconvulsive therapy in experimental animals and humans. Although findings of petechial hemorrhage, gliosis, and neuronal loss were well established in the decade following the introduction of ECT, they have been generally ignored since then. ECT produces characteristic EEG changes and severe retrograde amnesia, as well as other more subtle effects on memory and learning. The author concludes that ECT results in brain disease and questions whether doctors should offer brain damage to their patients.

  14. Left inferior frontal gyrus mediates morphosyntax: ERP evidence from verb processing in left-hemisphere damaged patients.

    Science.gov (United States)

    Regel, Stefanie; Kotz, Sonja A; Henseler, Ilona; Friederici, Angela D

    2017-01-01

    Neurocognitive models of language comprehension have proposed different mechanisms with different neural substrates mediating human language processing. Whether the left inferior frontal gyrus (LIFG) is engaged in morpho-syntactic information processing is currently still controversially debated. The present study addresses this issue by examining the processing of irregular verb inflection in real words (e.g., swim > swum > swam) and pseudowords (e.g., frim > frum > fram) by using event-related brain potentials (ERPs) in neurological patients with lesions in the LIFG involving Broca's area as well as healthy controls. Different ERP patterns in response to the grammatical violations were observed in both groups. Controls showed a biphasic negativity-P600 pattern in response to incorrect verb inflections whereas patients with LIFG lesions displayed a N400. For incorrect pseudoword inflections, a late positivity was found in controls, while no ERP effects were obtained in patients. These findings of different ERP patterns in the two groups strongly indicate an involvement of LIFG in morphosyntactic processing, thereby suggesting brain regions' specialization for different language functions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Brain damage associated with apraxia of speech: evidence from case studies.

    Science.gov (United States)

    Moser, Dana; Basilakos, Alexandra; Fillmore, Paul; Fridriksson, Julius

    2016-08-01

    The site of crucial damage that causes acquired apraxia of speech (AOS) has been debated in the literature. This study presents five in-depth cases that offer insight into the role of brain areas involved in AOS. Four of the examined participants had a primary impairment of AOS either with (n = 2) or without concomitant mild aphasia (n = 2). The fifth participant presented with a lesion relatively isolated to the left anterior insula (AIns-L), damage that is rarely reported in the literature, but without AOS. Taken together, these cases challenge the role of the AIns-L and implicate the left motor regions in AOS.

  16. Brain damage in commercial breath-hold divers.

    Directory of Open Access Journals (Sweden)

    Kiyotaka Kohshi

    Full Text Available Acute decompression illness (DCI involving the brain (Cerebral DCI is one of the most serious forms of diving-related injuries which may leave residual brain damage. Cerebral DCI occurs in compressed air and in breath-hold divers, likewise. We conducted this study to investigate whether long-term breath-hold divers who may be exposed to repeated symptomatic and asymptomatic brain injuries, show brain damage on magnetic resonance imaging (MRI.Our study subjects were 12 commercial breath-hold divers (Ama with long histories of diving work in a district of Japan. We obtained information on their diving practices and the presence or absence of medical problems, especially DCI events. All participants were examined with MRI to determine the prevalence of brain lesions.Out of 12 Ama divers (mean age: 54.9±5.1 years, four had histories of cerebral DCI events, and 11 divers demonstrated ischemic lesions of the brain on MRI studies. The lesions were situated in the cortical and/or subcortical area (9 cases, white matters (4 cases, the basal ganglia (4 cases, and the thalamus (1 case. Subdural fluid collections were seen in 2 cases.These results suggest that commercial breath-hold divers are at a risk of clinical or subclinical brain injury which may affect the long-term neuropsychological health of divers.

  17. Bisecting real and fake body parts: effects of prism adaptation after right brain damage

    Directory of Open Access Journals (Sweden)

    Nadia eBolognini

    2012-06-01

    Full Text Available The representation of body parts holds a special status in the brain, due to their prototypical shape and the contribution of multisensory (visual and somatosensory-proprioceptive information. In a previous study (Sposito et al., 2010, we showed that patients with left unilateral spatial neglect exhibit a rightward bias in setting the mid-point of their left forearm, which becomes larger when bisecting a cylindrical object comparable in size. This body part advantage, found also in control participants, suggests partly different processes for computing the extent of body parts and objects. In this study we tested 16 right-brain-damaged patients, and 10 unimpaired participants, on a manual bisection task of their own (real left forearm, or a size-matched fake forearm. We then explored the effects of adaptation to rightward displacing prism exposure, which brings about leftward aftereffects. We found that all participants showed prism adaptation and aftereffects, with right-brain-damaged patients exhibiting a reduction of the rightward bias for both real and fake forearm, with no overall differences between them. Second, correlation analyses highlighted the role of visual and proprioceptive information for the metrics of body parts. Third, single-patient analyses showed dissociations between real and fake forearm bisections, and the effects of prism adaptation, as well as a more frequent impairment with fake body parts. In sum, the rightward bias shown by right-brain-damaged patients in bisecting body parts is reduced by prism exposure, as other components of the neglect syndrome; discrete spatial representations for real and fake body parts, for which visual and proprioceptive codes play different roles, are likely to exist. Multisensory information seems to render self bodily segments more resistant to the disruption brought about by right-hemisphere injury.

  18. Bisecting Real and Fake Body Parts: Effects of Prism Adaptation After Right Brain Damage

    Science.gov (United States)

    Bolognini, Nadia; Casanova, Debora; Maravita, Angelo; Vallar, Giuseppe

    2012-01-01

    The representation of body parts holds a special status in the brain, due to their prototypical shape and the contribution of multisensory (visual and somatosensory-proprioceptive) information. In a previous study (Sposito et al., 2010), we showed that patients with left unilateral spatial neglect exhibit a rightward bias in setting the midpoint of their left forearm, which becomes larger when bisecting a cylindrical object comparable in size. This body part advantage, found also in control participants, suggests partly different processes for computing the extent of body parts and objects. In this study we tested 16 right-brain-damaged patients, and 10 unimpaired participants, on a manual bisection task of their own (real) left forearm, or a size-matched fake forearm. We then explored the effects of adaptation to rightward displacing prism exposure, which brings about leftward aftereffects. We found that all participants showed prism adaptation (PA) and aftereffects, with right-brain-damaged patients exhibiting a reduction of the rightward bias for both real and fake forearm, with no overall differences between them. Second, correlation analyses highlighted the role of visual and proprioceptive information for the metrics of body parts. Third, single-patient analyses showed dissociations between real and fake forearm bisections, and the effects of PA, as well as a more frequent impairment with fake body parts. In sum, the rightward bias shown by right-brain-damaged patients in bisecting body parts is reduced by prism exposure, as other components of the neglect syndrome; discrete spatial representations for real and fake body parts, for which visual and proprioceptive codes play different roles, are likely to exist. Multisensory information seems to render self bodily segments more resistant to the disruption brought about by right-hemisphere injury. PMID:22679422

  19. The way to "left" Piazza del Popolo: damage to white matter tracts in representational neglect for places.

    Science.gov (United States)

    Boccia, Maddalena; Di Vita, Antonella; Palermo, Liana; Committeri, Giorgia; Piccardi, Laura; Guariglia, Cecilia

    2018-02-13

    The ability of seeing with the mind's eye, the visual mental imagery, is peculiarly compromised in patients with representational neglect. Representational neglect affects the processing of the left side of a mental image and may selectively concern the ability to imagine places and/or objects. Right-brain damaged patients with representational neglect for places (RN+) lose the ability to imagine themselves within a familiar place and fail in transforming an egocentric representation of the environment into an allocentric one and vice-versa. A peak region located at the posterior junction between the parietal and temporal lobes has emerged as pivotal in determining representational neglect for places. Here we aimed at verifying whether white matter disconnections affecting parietal lobe, by preventing the integration of egocentric information with the allocentric one, play a role in representational neglect for places. A track-wise statistical analysis on 58 right brain damaged patients, with and without extrapersonal perceptual neglect and/or representational neglect for places, suggests that the disconnection of the superior longitudinal fasciculus and that of the posterior arcuate segment, together with the disconnection of a fronto-parietal u-shaped tract, may be crucial in determining the representational neglect for places. These results suggest that representational neglect for places emerges from a complex pattern of lesion location and disconnection that involves parietal, temporal and frontal lobes.

  20. Effect of propolis consumption on hepatotoxicity and brain damage ...

    African Journals Online (AJOL)

    This study was undertaken to determine the protective effect of propolis against the hepatotoxicity and brain damage of chlorpyrifos (CPF) in male rats. Animals were assigned to one of four groups. The first group was used as control. Groups 2, 3 and 4 were treated with 6.8 mg CPF /kg BW (1/20 LD50); 50 mg propolis/kg ...

  1. Objective instrumental memory and performance tests for evaluation of patients with brain damage: a search for a behavioral diagnostic tool.

    Science.gov (United States)

    Harness, B Z; Bental, E; Carmon, A

    1976-03-01

    Cognition and performance of patients with localized and diffuse brain damage was evaluated through the application of objective perceptual testing. A series of visual perceptual and verbal tests, memory tests, as well as reaction time tasks were administered to the patients by logic programming equipment. In order to avoid a bias due to communicative disorders, all responses were motor, and achievement was scored in terms of correct identification and latencies of response. Previously established norms based on a large sample of non-brain-damaged hospitalized patients served to standardize the performance of the brain-damaged patient since preliminary results showed that age and educational level constitute an important variable affecting performance of the control group. The achievement of brain-damaged patients, corrected for these factors, was impaired significantly in all tests with respect to both recognition and speed of performance. Lateralized effects of brain damage were not significantly demonstrated. However, when the performance was analyzed with respect to the locus of visual input, it was found that patients with right hemispheric lesions showed impairment mainly on perception of figurative material, and that this deficit was more apparent in the left visual field. Conversely, patients with left hemispheric lesions tended to show impairment on perception of visually presented verbal material when the input was delivered to the right visual field.

  2. Hemispheric specificity for proprioception: Postural control of standing following right or left hemisphere damage during ankle tendon vibration.

    Science.gov (United States)

    Duclos, Noémie C; Maynard, Luc; Abbas, Djawad; Mesure, Serge

    2015-11-02

    Right brain damage (RBD) following stroke often causes significant postural instability. In standing (without vision), patients with RBD are more unstable than those with left brain damage (LBD). We hypothesised that this postural instability would relate to the cortical integration of proprioceptive afferents. The aim of this study was to use tendon vibration to investigate whether these changes were specific to the paretic or non-paretic limbs. 14 LBD, 12 RBD patients and 20 healthy subjects were included. Displacement of the Centre of Pressure (CoP) was recorded during quiet standing, then during 3 vibration conditions (80 Hz - 20s): paretic limb, non-paretic limb (left and right limbs for control subjects) and bilateral. Vibration was applied separately to the peroneal and Achilles tendons. Mean antero-posterior position of the CoP, variability and velocity were calculated before (4s), during and after (24s) vibration. For all parameters, the strongest perturbation was during Achilles vibrations. The Achilles non-paretic condition induced a larger backward displacement than the Achilles paretic condition. This condition caused specific behaviour on the velocity: the LBD group was perturbed at the onset of the vibrations, but gradually recovered their stability; the RBD group was significantly perturbed thereafter. After bilateral Achilles vibration, RBD patients required the most time to restore initial posture. The reduction in use of information from the paretic limb may be a central strategy to deal with risk-of-fall situations such as during Achilles vibration. The postural behaviour is profoundly altered by lesions of the right hemisphere when proprioception is perturbed. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Performance of brain-damaged, schizophrenic, and normal subjects on a visual searching task.

    Science.gov (United States)

    Goldstein, G; Kyc, F

    1978-06-01

    Goldstein, Rennick, Welch, and Shelly (1973) reported on a visual searching task that generated 94.1% correct classifications when comparing brain-damaged and normal subjects, and 79.4% correct classifications when comparing brain-damaged and psychiatric patients. In the present study, representing a partial cross-validation with some modification of the test procedure, comparisons were made between brain-damaged and schizophrenic, and brain-damaged and normal subjects. There were 92.5% correct classifications for the brain-damaged vs normal comparison, and 82.5% correct classifications for the brain-damaged vs schizophrenic comparison.

  4. Neuroprotective actions of taurine on hypoxic-ischemic brain damage in neonatal rats.

    Science.gov (United States)

    Zhu, Xiao-Yun; Ma, Peng-Sheng; Wu, Wei; Zhou, Ru; Hao, Yin-Ju; Niu, Yang; Sun, Tao; Li, Yu-Xiang; Yu, Jian-Qiang

    2016-06-01

    Taurine is an abundant amino acid in the nervous system, which has been proved to possess antioxidation, osmoregulation and membrane stabilization. Previously it has been demonstrated that taurine exerts ischemic brain injury protective effect. This study was designed to investigate whether the protective effect of taurine has the possibility to be applied to treat neonatal hypoxic-ischemic brain damage. Seven-day-old Sprague-Dawley rats were treated with left carotid artery ligation followed by exposure to 8% oxygen to generate the experimental group. The cerebral damage area was measured after taurine post-treatment with 2,3,5-triphenyltetrazolium chloride (TTC) staining, Hematoxyline-Eosin (HE) staining and Nissl staining. The activities of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), myeloperoxtidase (MPO), ATP and Lactic Acid productions were assayed with ipsilateral hemisphere homogenates. Western-blot and immunofluorescence assay were processed to detect the expressions of AIF, Cyt C, Bax, Bcl-2 in brain. We found that taurine significantly reduced brain infarct volume and ameliorated morphological injury obviously reversed the changes of SOD, MDA, GSH-Px, T-AOC, ATP, MPO, and Lactic Acid levels. Compared with hypoxic-ischemic group, it showed marked reduction of AIF, Cyt C and Bax expressions and increase of Bcl-2 after post-treatment. We conclude that taurine possesses an efficacious neuroprotective effect after cerebral hypoxic-ischemic damage in neonatal rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Left-Insular Damage, Autonomic Instability and Sudden Unexpected Death in Epilepsy

    Science.gov (United States)

    Lacuey, Nuria; Zonjy, Bilal; Theerannaew, Wanchat; Loparo, Kenneth A.; Tatsuoka, Curtis; Sahadevan, Jayakumar; Lhatoo, Samden D.

    2015-01-01

    We analyzed the only two sudden unexpected death in epilepsy (SUDEP) cases from 320 prospectively recruited patients in the three-year Prevention and Risk Identification of SUDEP Mortality (PRISM) Project. Both patients had surgically refractory epilepsy, evidence of left insular damage following previous temporal/temporo-insular resections, and progressive changes in Heart Rate Variability (HRV) in monitored evaluations prior to death. Insular damage is known to cause autonomic dysfunction and increased mortality in acute stroke. This report suggests a possible role for the insula in the pathogenesis of SUDEP. The presence of intrinsic insular lesions or acquired insular damage in refractory epilepsy patients may be an additional risk factor for SUDEP. PMID:26797084

  6. Brain damage among the prenatally exposed

    International Nuclear Information System (INIS)

    Otake, Masanori; Schull, W.J.; Yoshimaru, Hiroshi.

    1991-01-01

    Significant effects on the developing brain of exposure to ionizing radiation are seen among those individuals exposed in the 8th through the 25th week after fertilization. These effects, particularly in the most sensitive period, 8-15 weeks after fertilization, manifest themselves as an increased frequency of severe mental retardation (SMR), a diminution in IQ score and in school performance, and an increase in the occurrence of seizures. Of 30 SMR cases, 18 (60%) had small heads. About 10% of the individuals with small head sizes observed among the in utero clinical sample were mentally retarded. When all of the cases of mental retardation are included in the analysis, a linear dose-response model fits the data adequately and no evidence of a threshold emerges; however, if the two probable nonradiation-related cases of Down's syndrome are excluded from the 19 SMR cases exposed 8-15 weeks after fertilization, the evidence of a threshold is stronger. The 95% lower bound of the threshold based on the new dosimetry system appears to be in the range of 0.12-0.23 Gy. In the 16-25 week period, the 95% lower bound of the threshold is 0.21 Gy both with and without inclusion of two probable nonradiation-related retarded cases. In a regression analysis of IQ scores and school performance data, a greater linearity is suggested with the new dosimetry (DS86) than with the old (T65DR), but the mean IQ score and the mean school performance of those exposed in utero to doses under 0.10 Gy are similar, and not statistically different from the means in the control group. The risk ratios for unprovoked seizures, following exposure during the 8th through the 15th week after fertilization, are 4.4 (90% confidence interval: 0.5-40.9) after 0.10-0.49 Gy and 24.9 (4.1-191.6) after 0.50 Gy or more when the mentally retarded are included and 4.4 (0.5-40.9) and 14.5 (0.4-199.6), respectively, when they are excluded. (author)

  7. Protective effect of Kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat

    Directory of Open Access Journals (Sweden)

    Najmeh Kabiri

    2016-09-01

    Full Text Available The aim of study was to investigate the potential neuroprotective effects of Kombucha on cerebral damage induced by ischemia in rats (n=99. Cerebral infarct volume in the ischemic rats received Kombucha solution showed no significance alteration. However, the permeability of blood-brain barrier significantly decreased in both ischemic rats received 15 mg/kg Kombucha tea and Sham group. In addition, brain water content in the ischemic groups treated with Kombucha solution was significantly higher than the Sham group, although right hemispheres in all of the treated groups illustrated higher brain water content than the left ones. Brain anti-oxidant capacity elevated in the ischemic rats treated with Kombucha and in the Sham group. Brain and plasma malondialdehyde concentrations significantly decreased in both of the ischemic groups injected with Kombucha. The findings suggest that Kombucha tea could be useful for the prevention of cerebral damage.

  8. Independent effects of both right and left ventricular function on plasma brain natriuretic peptide

    DEFF Research Database (Denmark)

    Vogelsang, Thomas Wiis; Jensen, Ruben J; Monrad, Astrid L

    2007-01-01

    BACKGROUND: Brain natriuretic peptide (BNP) is increased in heart failure; however, the relative contribution of the right and left ventricles is largely unknown. AIM: To investigate if right ventricular function has an independent influence on plasma BNP concentration. METHODS: Right (RVEF), left......, which is a strong prognostic marker in heart failure, independently depends on both left and right ventricular systolic function. This might, at least in part, explain why BNP holds stronger prognostic value than LVEF alone....

  9. On the Relationship between Right- brain and Left- brain Dominance and Reading Comprehension Test Performance of Iranian EFL Learners

    Directory of Open Access Journals (Sweden)

    Hassan Soleimani

    2012-05-01

    Full Text Available A tremendous amount of works have been conducted by psycholinguistics to identify hemisphere processing during second/ foreign language learning, or in other words to investigate the role of the brain hemisphere dominance in language performance of learners. Most of these researches have focused on single words and word pairs (e.g., Anaki et al., 1998; Arzouan et. al., 2007; Faust & Mahal, 2007 or simple sentences (Rapp et al., 2007; Kacinik & Chiarello, 2007, and it has been discovered that there is an advantage of right hemisphere for metaphors and an
    advantage of left hemisphere for literal text. But the present research was designed to study Iranian EFL learners' performance in different reading tasks, so there could be differences between the consequences of the former research and the results of the present study due to the context. Here left-brain and right-brain dominance was investigated in 60 individuals (20 right-handed and 10 left-handed male, 20 right-handed and 10 left-handed female via the Edinburg Handedness Questionnaire (EHQ. The research results suggested that the right-handed learners who are supposed to be left-brain outperformed the left-handed ones; and regarding participant's gender, male learners outperformed female learners on reading comprehension test tasks.

  10. Functional characteristics of developmental dyslexia in left-hemispheric posterior brain regions predate reading onset.

    Science.gov (United States)

    Raschle, Nora Maria; Zuk, Jennifer; Gaab, Nadine

    2012-02-07

    Individuals with developmental dyslexia (DD) show a disruption in posterior left-hemispheric neural networks during phonological processing. Additionally, compensatory mechanisms in children and adults with DD have been located within frontal brain areas. However, it remains unclear when and how differences in posterior left-hemispheric networks manifest and whether compensatory mechanisms have already started to develop in the prereading brain. Here we investigate functional networks during phonological processing in 36 prereading children with a familial risk for DD (n = 18, average age = 66.50 mo) compared with age and IQ-matched controls (n = 18; average age = 65.61 mo). Functional neuroimaging results reveal reduced activation in prereading children with a family-history of DD (FHD(+)), compared with those without (FHD(-)), in bilateral occipitotemporal and left temporoparietal brain regions. This finding corresponds to previously identified hypoactivations in left hemispheric posterior brain regions for school-aged children and adults with a diagnosis of DD. Furthermore, left occipitotemporal and temporoparietal brain activity correlates positively with prereading skills in both groups. Our results suggest that differences in neural correlates of phonological processing in individuals with DD are not a result of reading failure, but are present before literacy acquisition starts. Additionally, no hyperactivation in frontal brain regions was observed, suggesting that compensatory mechanisms for reading failure are not yet present. Future longitudinal studies are needed to determine whether the identified differences may serve as neural premarkers for the early identification of children at risk for DD.

  11. Computerized axial tomography in the detection of brain damage

    International Nuclear Information System (INIS)

    Cala, L.A.; Mastaglia, F.L.

    1980-01-01

    The cranial computerized axial tomography (CAT) findings in groups of patients with epilepsy, migraine, hypertension, and other general medical disorders have been reviewed to assess the frequency and patterns of focal and diffuse brain damage. In addition to demonstrating focal lesions in a proportion of patients with seizures and in patients presenting with a stroke, the CAT scan showed a premature degree of cerebral atrophy in an appreciable proportion of patients with long-standing epilepsy, hypertension and diabetes, and in some patients with migraine, valvular and ischaemic heart disease, chronic obstructive airways disease, and chronic renal failure. The value of CAT as a means of screening for brain damage in groups of individuals at risk is discussed

  12. No Brain Left Behind: Consequences of Neuroscience Discourse for Education

    Science.gov (United States)

    Busso, Daniel S.; Pollack, Courtney

    2015-01-01

    Educational neuroscience represents a concerted interdisciplinary effort to bring the fields of cognitive science, neuroscience and education to bear on classroom practice. This article draws attention to the current and potential implications of importing biological ideas, language and imagery into education. By analysing examples of brain-based…

  13. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice.

    Science.gov (United States)

    Timaru-Kast, Ralph; Luh, Clara; Gotthardt, Philipp; Huang, Changsheng; Schäfer, Michael K; Engelhard, Kristin; Thal, Serge C

    2012-01-01

    After traumatic brain injury (TBI) elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months) and old (21 months) male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI) on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count) were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2%) compared to young (0%). This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral inflammation

  14. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke.

    Science.gov (United States)

    Zavaglia, Melissa; Forkert, Nils D; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a 'map of stroke'.

  15. Gut-Brain Axis in Gastric Mucosal Damage and Protection.

    Science.gov (United States)

    Sgambato, Dolores; Capuano, Annalisa; Sullo, Maria Giuseppa; Miranda, Agnese; Federico, Alessandro; Romano, Marco

    2016-01-01

    The gut-brain axis plays a potential role in numerous physiological and pathological conditions. Several substances link stomach with central nervous system. In particular, hypothalamo-pituitary-adrenocortical axis, thyrotropinreleasing factor-containing nerve fibers and capsaicin-sensitive nerves are principal mediators of the harmful and protective central nervous system-mediated effects on gastric mucosa. Also, existing evidence indicates that nitric oxide, prostaglandins and calcitonin gene-related peptide play a role as final effectors of gastric protection. We undertook a structured search of bibliographic databases for peerreviewed research literature with the aim of focusing on the role of gut-brain axis in gastric damage and protection. In particular, we examined manuscripts dealing with the role of steroids, thyrotropin-releasing hormone, prostaglandins, melatonin, hydrogen sulfide and peptides influencing food intake (i.e. leptin, cholecystokinin, peptide YY, central glucagon-like peptide-1, and ghrelin). Also, the role of GABAergic and glutamatergic pathways in gastric mucosal protection have been examined. We found and reviewed 61 peer-reviewed papers dealing with the major aspects related to the role of gut brain axis in gastric mucosal damage and protection. A dense neuronal network links stomach with central nervous system and a number of neurotransmitters and peptides functionally and anatomically related to central nervous system play a major role in contributing to gastric mucosal integrity. Exploiting the mechanisms underlying the connection between brain and gut may lead to a better understanding of the pathophysiology of gastric mucosal injury and to an improvement in the prevention and, eventually, management of gastric damage.

  16. Cognitive impairment and structural brain damage in benign multiple sclerosis.

    Science.gov (United States)

    Rovaris, M; Riccitelli, G; Judica, E; Possa, F; Caputo, D; Ghezzi, A; Bertolotto, A; Capra, R; Falautano, M; Mattioli, F; Martinelli, V; Comi, G; Filippi, M

    2008-11-04

    Although in benign multiple sclerosis (BMS) locomotor disability is absent or only minimal, subclinical cognitive impairment seems to occur in many cases. Diffusion tensor (DT) MRI enables us to quantify the extent of "actual" tissue damage, which goes undetected when using conventional MRI. Against this background, we investigated the extent of structural brain damage underlying cognitive dysfunction in BMS, with the ultimate aim to move a first step toward a more reliable definition of this disease phenotype. Conventional and DT MRI scans of the brain were acquired from 62 BMS patients. Thirty-six secondary progressive multiple sclerosis (SPMS) patients and 19 healthy subjects served as controls. In BMS patients, neuropsychological tests exploring memory, attention, and frontal lobe functions were administered. Normalized brain volume (NBV), mean diffusivity (MD), and fractional anisotropy (FA) of the normal-appearing white matter (NAWM) and MD of the gray matter (GM) were computed. Twelve BMS patients (19%) fulfilled predefined criteria for cognitive impairment. BMS patients had abnormal MD and FA values from both NAWM and GM. Whereas BMS patients without cognitive impairment had lower T2 LV (p = 0.03), higher NBV (p = 0.006), and lower average GM MD (p = 0.03) than SPMS patients, BMS patients with cognitive impairment did not significantly differ from SPMS patients for any MRI-derived metric. In benign multiple sclerosis (BMS), cognitive dysfunction is associated with severe structural brain damage, which resembles that of patients with a much more disabling disease course. A reliable definition of BMS should, therefore, include the preservation of cognitive functioning as an additional requisite.

  17. Patterns of Post-Stroke Brain Damage that Predict Speech Production Errors in Apraxia of Speech and Aphasia Dissociate

    Science.gov (United States)

    Basilakos, Alexandra; Rorden, Chris; Bonilha, Leonardo; Moser, Dana; Fridriksson, Julius

    2015-01-01

    Background and Purpose Acquired apraxia of speech (AOS) is a motor speech disorder caused by brain damage. AOS often co-occurs with aphasia, a language disorder in which patients may also demonstrate speech production errors. The overlap of speech production deficits in both disorders has raised questions regarding if AOS emerges from a unique pattern of brain damage or as a sub-element of the aphasic syndrome. The purpose of this study was to determine whether speech production errors in AOS and aphasia are associated with distinctive patterns of brain injury. Methods Forty-three patients with history of a single left-hemisphere stroke underwent comprehensive speech and language testing. The Apraxia of Speech Rating Scale was used to rate speech errors specific to AOS versus speech errors that can also be associated with AOS and/or aphasia. Localized brain damage was identified using structural MRI, and voxel-based lesion-impairment mapping was used to evaluate the relationship between speech errors specific to AOS, those that can occur in AOS and/or aphasia, and brain damage. Results The pattern of brain damage associated with AOS was most strongly associated with damage to cortical motor regions, with additional involvement of somatosensory areas. Speech production deficits that could be attributed to AOS and/or aphasia were associated with damage to the temporal lobe and the inferior pre-central frontal regions. Conclusion AOS likely occurs in conjunction with aphasia due to the proximity of the brain areas supporting speech and language, but the neurobiological substrate for each disorder differs. PMID:25908457

  18. Resveratrol Protects the Brain of Obese Mice from Oxidative Damage

    Directory of Open Access Journals (Sweden)

    Shraddha D. Rege

    2013-01-01

    Full Text Available Resveratrol (3,5,4′-trihydroxy-trans-stilbene is a polyphenolic phytoalexin that exerts cardioprotective, neuroprotective, and antioxidant effects. Recently it has been shown that obesity is associated with an increase in cerebral oxidative stress levels, which may enhance neurodegeneration. The present study evaluates the neuroprotective action of resveratrol in brain of obese (ob/ob mice. Resveratrol was administered orally at the dose of 25 mg kg−1 body weight daily for three weeks to lean and obese mice. Resveratrol had no effect on body weight or blood glucose levels in obese mice. Lipid peroxides were significantly increased in brain of obese mice. The enzymatic antioxidants superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and nonenzymatic antioxidants tocopherol, ascorbic acid, and glutathione were decreased in obese mice brain. Administration of resveratrol decreased lipid peroxide levels and upregulated the antioxidant activities in obese mice brain. Our findings indicate a neuroprotective effect of resveratrol by preventing oxidative damage in brain tissue of obese mice.

  19. Late damage to brain microvasculature after chronic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lyubimova, N. [Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Moscow (Russian Federation)

    1997-03-01

    The effects on mouse brain microvasculature were examined 12 months after exposure to chronic {gamma}- irradiation at 3 cGy/day for three months. Animals were injected i.p. with 100 mg/kg iproniazid, an inhibitor of mono-amine-oxidase. Six hours later and 15 min before animal sacrifice, 100 mg/kg L-DOPA was also injected. This procedure resulted in the accumulation of catecholamines (CA) in the endothelial cells, a process which otherwise would be prevented by mono-amine-oxidase activity. Animals were killed by decapitation under nembutal anesthesia at various times post irradiation. Dissected pieces of brain were immediately frozen in liquid nitrogen and lyophilized at -20 deg C under vacuum to avoid CA diffusion from the endothelial cell. The reaction between CA and paraformaldehyde gas at 70 % humidity and 80 deg C was used to generate fluorophores which act as endothelial cell markers. Histological specimens were embedded in paraffin was under vacuum and serial section cut. These were assessed under fluorescent microscopy. These studies indicate that in some ways repair of chronic radiation damage may be less complete than repair of damage caused by a single acute exposure. The dystrophic changes seen in the endothelium also suggest the possibility that chronic exposure may be more likely to lead to late functional impairment of brain microcirculation. (author)

  20. Quality of life in patients with right- or left-sided brain tumours: literature review.

    Science.gov (United States)

    Palese, Alvisa; Lamanna, Francesca; Di Monte, Carmen; Calligaris, Sonia; Doretto, Mara; Criveller, Michela

    2008-06-01

    To determine if patients with left- or right-sided hemisphere neoplasm perceive their quality of life (QoL) differently. It is not clear whether patients with a lesion in the left hemisphere have a different QoL than those with a lesion in the right hemisphere. (1) In the pre-operative period, patients with a left-sided lesion may have different symptoms according to the position of the tumour. (2) Studies on patients with brain injury demonstrate an association between left frontal lesions and depression: depression can alter the patients' perception of QoL. (3) In the postoperative period, right-handed patients may be disadvantaged by surgical trauma to the motor cortex in the left hemisphere. (4) During the different phases of the disease, the various functions of the two hemispheres may influence the patient's capacity to control QoL; also, as suggested by authors, both the ego and the conscience are mostly located in the left hemisphere. This is the reason that patients with a left-sided lesion may perceive a worse QoL. A review of literature was carried out using the Medline database (1966-2007) and CINHAL (1982-2007), using the following Mesh Terms and key words: brain neoplasm, tumour or cancer, hemispheric dominance or laterality or right or left hemisphere, QoL. Seven studies emerged that documented non-homogeneous results and which included different populations. The association between QoL and the side of the lesion was evaluated. The lack of a substantial number of recent, robust follow-up studies investigating the QoL in patients at different stages of disease and treatment indicates that more research is needed. Relevance to clinical practice. Understanding the QoL in patients with brain neoplasm and the differences between right and left hemisphere sites of the neoplasm can help nurses develop different interventions and offer more guidance for effective clinical intervention.

  1. Left and right brain-oriented hemisity subjects show opposite behavioral preferences

    Directory of Open Access Journals (Sweden)

    Bruce Eldine Morton

    2012-11-01

    Full Text Available Introduction: Recently, three independent, intercorrelated biophysical measures have provided the first quantitative measures of a binary form of behavioral laterality called Hemisity, a term referring to inherent opposite right or left brain-oriented differences in thinking and behavioral styles. Crucially, the right or left brain-orientation of individuals assessed by these methods was later found to be essentially congruent with the thicker side of their ventral gyrus of the anterior cingulate cortex (vgACC as revealed by a 3 minute MRI procedure. Laterality of this putative executive structural element has thus become the primary standard defining individual hemisity. Methods: Here, the behavior of 150 subjects, whose hemisity had been calibrated by MRI, was assessed using five MRI-calibrated preference questionnaires, two of which were new.Results: Right and left brain-oriented subjects selected opposite answers (p > 0.05 for 47 of the 107 either-or, forced choice type preference questionnaire items. Hemisity subtype preference differences were present in several areas. They were in: a. logical orientation, b. type of consciousness, c. fear level and sensitivity, d. social-professional orientation, and e. pair bonding-spousal dominance style.Conclusions: The right and left brain-oriented hemisity subtype subjects, sorted on the anatomical basis of upon which brain side their vgACC was thickest, showed numerous significant differences in their either-or type of behavioral preferences.

  2. Cathepsin D deficiency induces oxidative damage in brain pericytes and impairs the blood-brain barrier.

    Science.gov (United States)

    Okada, Ryo; Wu, Zhou; Zhu, Aiqin; Ni, Junjun; Zhang, Jingqi; Yoshimine, Yoshito; Peters, Christoph; Saftig, Paul; Nakanishi, Hiroshi

    2015-01-01

    Recent evidence suggests that peripheral blood mononuclear cells (PBMCs) contribute to the pathogenesis of neuropathological changes in patients with neuronal ceroid lipofuscinosis (NCL) and lysosomal storage diseases. In order to examine the possible increase in the permeability of the blood-brain-barrier (BBB) and resultant infiltration of PBMCs due to cathepsin D (CatD) deficiency, a process underlying the onset of congenital NCL, we examined structural changes in brain vessels in CatD-/- mice. Consequently, the mean diameter of the brain vessels in the cerebral cortex on postnatal day 24 (P24) was significantly larger in CatD-/- mice than in wild-type mice. Furthermore, the mean number of brain pericytes in CatD-/- mice began to decline significantly on P16 and almost disappeared on P24, and oxidative DNA damage was first detected in brain pericytes on P12. Examinations with electron microscopy revealed that brain pericytes were laden with dense granular bodies, cytoplasmic vacuoles and lipid droplets. The infiltration of PBMCs characterized by segmented nucleus laden with dense granular bodies was also noted in the cerebral cortex of CatD-/- mice. When primary cultured microglia prepared from enhanced green fluorescent protein (GFP)-expressing transgenic rats were injected into the common carotid artery, GFP-positive microglia were detected in the brain parenchyma of CatD-/-, but not wild-type, mice. Moreover, pepstatin A, a specific aspartic protease inhibitor, induced mitochondria-derived reactive oxygen species (ROS) production in the isolated brain pericytes, which decreased the cell viability. These observations suggest that increased lysosomal storage due to CatD deficiency causes oxidative damage in brain pericytes, subsequently resulting in an increased vessel diameter, enhanced permeability of the BBB and the infiltration of PBMCs. Therefore, protecting brain pericytes against lysosomal storage-induced oxidative stress may represent an alternative

  3. Neuronal Rat Brain Damage Caused by Endogenous and Exogenous Hyperthermia

    Directory of Open Access Journals (Sweden)

    Mustafa Aydın

    2012-03-01

    Full Text Available OBJECTIVE: Hyperthermia may induce pathologic alterations within body systems and organs including brain. In this study, neuronal effects of endogenous and exogenous hyperthermia (41°C were studied in rats. METHODS: The endogenous hyperthermia (41°C was induced by lipopolysaccharide and the exogenous by an (electric heater. Possible neuronal damage was evaluated by examining healthy, apoptotic and necrotic cells, and heat shock proteins (HSP 27, HSP 70 in the cerebral cortex, cerebellum and hypothalamus RESULTS: At cellular level, when all neuronal tissues are taken into account; (i a significant increase in the necrotic cells was observed in the both groups (p0.05. CONCLUSION: The neural tissue of brain can show different degree of response to hyperthermia. But we can conclude that endogenous hyperthermia is more harmful to central nervous system than exogenous hyperthermia

  4. Disturbances of mental image processing in post-stroke patients with left and right hemisphere damage.

    Science.gov (United States)

    Pachalska, M; Talar, J; Brodziak, A; MacQueen, B D

    2001-01-01

    The purpose of this article is to point out significant differences in how mental images are processed by post-stroke patients with left and right hemisphere damage. The issues involved are of theoretical importance because of the light shed on the modularity of cerebral functions, especially the imagination, and of clinical importance due to the better understanding of the underlying pathomechanism. The research involved 82 right-handed patients with a lesion in the left hemisphere (Group L), 82 right-handed patients with a lesion in the right hemisphere (Group R), and, as a control group, 82 patients with musculo-skeletal disorders not affecting the central nervous system (Group C), matched by age and sex. Image processing of complex notions was examined by using selected items from the Simple Neurolinguistic Test. In the control group, the majority of the patients responded to most of the prompts with polymodal associations of various types. In Group L, responses were dominated by isolated elements of the complex situation, while in Group R the associations were mostly verbal (lexical) and highly restricted in scope. The results indicate that the loss of LH functions interferes with the ability to assemble pieces of polymodal image information into sensible strings, while the loss of RH functions leaves strings to which little information is attached.

  5. Brain macro- and microscopic damage in patients with paediatric MS.

    Science.gov (United States)

    Absinta, Martina; Rocca, Maria A; Moiola, Lucia; Ghezzi, Angelo; Milani, Nicoletta; Veggiotti, Pierangelo; Comi, Giancarlo; Filippi, Massimo

    2010-12-01

    To characterise, using conventional and diffusion tensor (DT) MRI, the nature and distribution of lesions and the extent of damage in the brain normal-appearing white matter (NAWM) and grey matter (GM) from a relatively large population of paediatric multiple sclerosis (MS) patients. Brain conventional and DT MRI scans were acquired from 48 patients with paediatric MS (10 clinically isolated syndromes (CIS), 38 relapsing remitting (RR) MS), 30 adult CIS, 27 adult RRMS, 15 paediatric healthy controls (HC) and 18 adult HC. T2-lesion probability maps and DT MRI of lesions, NAWM and GM were compared among controls and MS groups. T2-visible lesion volumes did not differ among patient groups, but T2 lesions were more frequently located in the posterior periventricular regions in adult RRMS patients than in adult CIS and paediatric RRMS patients. Adult RRMS patients had a significantly higher lesion average mean diffusivity than paediatric RRMS patients. No DT MRI changes in the NA tissues were found in paediatric and adult CIS patients. DT MRI abnormalities were limited to the NAWM in paediatric RRMS patients, while they involved the NAWM and GM in adult RRMS patients. The extent of NAWM involvement was similar between adult and paediatric RRMS patients and was significantly correlated with T2-visible lesion burden. A less severe intrinsic lesion damage, a less frequent lesion occurrence in the posterior periventricular WM and the sparing of GM may help to explain the favourable short-/medium-term disease outcome of paediatric MS.

  6. Brain damage and neurological symptoms induced by T-2 toxin in rat brain.

    Science.gov (United States)

    Guo, Pu; Liu, Aimei; Huang, Deyu; Wu, Qinghua; Fatima, Zainab; Tao, Yanfei; Cheng, Guyue; Wang, Xu; Yuan, Zonghui

    2018-04-01

    T-2 toxin, a trichothecene mycotoxin, is a common contaminant in food and animal feed, and is also present in processed cereal products. The most common route of T-2 toxin exposure in humans is through dietary ingestion. The cytotoxic effects of T-2 toxin include modifications to feeding behavior, nervous disorders, cardiovascular alterations, immunosuppression, and hemostatic derangements. However, to date, effects on the central nervous system (CNS) have rarely been reported. In the present study, female Wistar rat were given a single dose of T-2 toxin at 2 mg/kg b.w. and were sacrificed at one, three, and seven days post-exposure. Histopathological analysis and transmission electron microscope (TEM) observations were used to investigate injury to the brain and pituitary gland. Damage to the brain and pituitary at the molecular level was detected by real time-polymerase chain reaction (RT-PCR), western blot, and immunohistochemical assays. Liquid chromatograph-mass spectrometer/mass spectrometer (LC-MS/MS) was used to investigate T-2 concentration in the brain. The results showed that pathological lesions were obvious in the brain at three days post-exposure; lesions in the pituitary were not observed until seven days post-exposure. Autophagy in the brain and apoptosis in the pituitary suggest that T-2 toxin may induce different acute reactions in different tissues. Importantly, low concentrations of T-2 toxin in the brain were observed in only one rat. Responsible for the above mentioned, we hypothesize that brain damage caused by this toxin may be due to the ability of the toxin to directly cross the blood-brain barrier (BBB). Therefore, given its widespread pollution in food, we should pay more attention to the neurotoxic effects of the T-2 toxin, which may have widespread implications for human health. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Mapping neuroplastic potential in brain-damaged patients.

    Science.gov (United States)

    Herbet, Guillaume; Maheu, Maxime; Costi, Emanuele; Lafargue, Gilles; Duffau, Hugues

    2016-03-01

    It is increasingly acknowledged that the brain is highly plastic. However, the anatomic factors governing the potential for neuroplasticity have hardly been investigated. To bridge this knowledge gap, we generated a probabilistic atlas of functional plasticity derived from both anatomic magnetic resonance imaging results and intraoperative mapping data on 231 patients having undergone surgery for diffuse, low-grade glioma. The atlas includes detailed level of confidence information and is supplemented with a series of comprehensive, connectivity-based cluster analyses. Our results show that cortical plasticity is generally high in the cortex (except in primary unimodal areas and in a small set of neural hubs) and rather low in connective tracts (especially associative and projection tracts). The atlas sheds new light on the topological organization of critical neural systems and may also be useful in predicting the likelihood of recovery (as a function of lesion topology) in various neuropathological conditions-a crucial factor in improving the care of brain-damaged patients. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Stuttering Following Acquired Brain Damage: A Review of the Literature.

    Science.gov (United States)

    Lundgren, Kristine; Helm-Estabrooks, Nancy; Klein, Reva

    2010-09-01

    Communication problems resulting from acquired brain damage are most frequently manifested as motor speech disorders such as dysarthria, syndromes of aphasia, and impairments of pragmatics. A much less common phenomenon is the onset of stuttering in adults who sustain a stroke, traumatic brain injury, or other neurologic events. When stuttering occurs in association with neuropathology, precise characterization and explanation of observed behaviors is often difficult. Among the clinical challenges presented by acquired stuttering are the problem of distinguishing this form of dysfluency from those associated with dysarthria and aphasia, and identifying the neuropathological condition(s) and brain lesion site(s) giving rise to this speech disorder. Another challenge to the precise characterization of acquired stuttering is the fact that some cases of acquired stuttering apparently have a psychological or neuropsychiatric genesis rather than a neuropathological one. In this paper we provide a review of the literature pertaining to the complicated phenomenon of acquired stuttering in adults and draw some tentative explanatory conclusions regarding this disorder.

  9. Intelligent Automatic Right-Left Sign Lamp Based on Brain Signal Recognition System

    Science.gov (United States)

    Winda, A.; Sofyan; Sthevany; Vincent, R. S.

    2017-12-01

    Comfort as a part of the human factor, plays important roles in nowadays advanced automotive technology. Many of the current technologies go in the direction of automotive driver assistance features. However, many of the driver assistance features still require physical movement by human to enable the features. In this work, the proposed method is used in order to make certain feature to be functioning without any physical movement, instead human just need to think about it in their mind. In this work, brain signal is recorded and processed in order to be used as input to the recognition system. Right-Left sign lamp based on the brain signal recognition system can potentially replace the button or switch of the specific device in order to make the lamp work. The system then will decide whether the signal is ‘Right’ or ‘Left’. The decision of the Right-Left side of brain signal recognition will be sent to a processing board in order to activate the automotive relay, which will be used to activate the sign lamp. Furthermore, the intelligent system approach is used to develop authorized model based on the brain signal. Particularly Support Vector Machines (SVMs)-based classification system is used in the proposed system to recognize the Left-Right of the brain signal. Experimental results confirm the effectiveness of the proposed intelligent Automatic brain signal-based Right-Left sign lamp access control system. The signal is processed by Linear Prediction Coefficient (LPC) and Support Vector Machines (SVMs), and the resulting experiment shows the training and testing accuracy of 100% and 80%, respectively.

  10. Dexamethasone alleviates tumor-associated brain damage and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Zheng Fan

    Full Text Available Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA, a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system Xc-; SLC7a11 and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage.

  11. The findings of Tc-99m ECD brain perfusion SPECT in the patients with left anterior thalamic infarction

    International Nuclear Information System (INIS)

    Jeong, Y. A.; Kim, S. H.; Sohn, H. S.; Jeong, S. G.

    2005-01-01

    The thalamus has multiple connections with areas of the cerebral cortex involved in arousal and cognition. Thalamic damage has been reported to be associated with variable neuropsychological dysfunctions and dementia. This study evaluates the changes of regional cerebral blood flow (rCBF) by using SPM analysis of brain perfusion SPECT and examining the neuropsychological abnormalities of 4 patients with anterior thalamic infarctions. Four patients with left anterior thalamic infarctions and eleven normal controls were evaluated. K-MMSE and the Seoul Neuropsychological Screening Battery were performed within 2 days after stroke. The normalized SPECT data of 4 patients were compared to those of 11 controls for the detection of areas with decreased rCBF by SPM analysis. All 4 patients showed anterograde amnesia in their verbal memory, which was not improved by recognition. Dysexecutive features were occasionally present, such as decreased word fluency and impaired Stroop test results. SPM analysis revealed decreased rCBF in the left supra marginal gyrus, the superior temporal gyrus, the middle and inferior frontal gyrus, the medial dorsal and anterior nucleus of the left thalamus. The changes of rCBF in patients with left anterior thalamic infarctions may be due to the remote suppression on metabolism by the interruption of the cortico-subcortical circuit, which connects the anterior thalamic nucleus and various cortical areas. The executive dysfunction and dysnomia may be caused by the left dorsolateral frontal dysfunction of the thalamo-cortical circuit. Anterograde amnesia with storage deficit may be caused by the disruption of mamillothalamic tract

  12. The findings of Tc-99m ECD brain perfusion SPECT in the patients with left anterior thalamic infarction

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y. A.; Kim, S. H.; Sohn, H. S.; Jeong, S. G. [The Catholic University of Korea, Seoul (Korea, Republic of)

    2005-07-01

    The thalamus has multiple connections with areas of the cerebral cortex involved in arousal and cognition. Thalamic damage has been reported to be associated with variable neuropsychological dysfunctions and dementia. This study evaluates the changes of regional cerebral blood flow (rCBF) by using SPM analysis of brain perfusion SPECT and examining the neuropsychological abnormalities of 4 patients with anterior thalamic infarctions. Four patients with left anterior thalamic infarctions and eleven normal controls were evaluated. K-MMSE and the Seoul Neuropsychological Screening Battery were performed within 2 days after stroke. The normalized SPECT data of 4 patients were compared to those of 11 controls for the detection of areas with decreased rCBF by SPM analysis. All 4 patients showed anterograde amnesia in their verbal memory, which was not improved by recognition. Dysexecutive features were occasionally present, such as decreased word fluency and impaired Stroop test results. SPM analysis revealed decreased rCBF in the left supra marginal gyrus, the superior temporal gyrus, the middle and inferior frontal gyrus, the medial dorsal and anterior nucleus of the left thalamus. The changes of rCBF in patients with left anterior thalamic infarctions may be due to the remote suppression on metabolism by the interruption of the cortico-subcortical circuit, which connects the anterior thalamic nucleus and various cortical areas. The executive dysfunction and dysnomia may be caused by the left dorsolateral frontal dysfunction of the thalamo-cortical circuit. Anterograde amnesia with storage deficit may be caused by the disruption of mamillothalamic tract.

  13. Brain Abscess Associated with Isolated Left Superior Vena Cava Draining into the Left Atrium in the Absence of Coronary Sinus and Atrial Septal Defect

    International Nuclear Information System (INIS)

    Erol, Ilknur; Cetin, I. Ilker; Alehan, Fuesun; Varan, Birguel; Ozkan, Sueleyman; Agildere, A. Muhtesem; Tokel, Kursad

    2006-01-01

    A previously healthy 12-year-old girl presented with severe headache for 2 weeks. On physical examination, there was finger clubbing without apparent cyanosis. Neurological examination revealed only papiledema without focal neurologic signs. Cerebral magnetic resonance imaging showed the characteristic features of brain abscess in the left frontal lobe. Cardiologic workup to exclude a right-to-left shunt showed an abnormality of the systemic venous drainage: presence of isolated left superior vena cava draining into the left atrium in the absence of coronary sinus and atrial septal defect. This anomaly is rare, because only a few other cases have been reported

  14. Assessment of brain damage in a geriatric population through use of a visual-searching task.

    Science.gov (United States)

    Turbiner, M; Derman, R M

    1980-04-01

    This study was designed to assess the discriminative capacity of a visual-searching task for brain damage, as described by Goldstein and Kyc (1978), for 10 hospitalized male, brain-damaged patients, 10 hospitalized male schizophrenic patients, and 10 normal subjects in a control group, all of whom were approximately 65 yr. old. The derived data indicated, at a statistically significant level, that the visual-searching task was effective in successfully classifying 80% of the brain-damaged sample when compared to the schizophrenic patients and discriminating 90% of the brain-damaged patients from normal subjects.

  15. [Total dream loss secondary to left temporo-occipital brain injury].

    Science.gov (United States)

    Poza, J J; Martí Massó, J F

    2006-04-01

    Recently the case of a woman who reported cessation of dreaming after a bilateral PCA stroke but without REM sleep loss has been reported, suggesting that deep bilateral occipital lobe damage including the right inferior lingual gyrus may represent the "minimal lesion extension" necessary for dream loss. We report the case of a 24-year-old man who ceased dreaming after a unilateral left temporo- occipital hematoma. The polysomnographic characteristics in rapid eyes movements (REM) sleep were otherwise normal. Our patient demonstrates that a unilateral left temporo-occipital injury could be sufficient for losing dreams.

  16. Right brain, left brain in depressive disorders: Clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings.

    Science.gov (United States)

    Bruder, Gerard E; Stewart, Jonathan W; McGrath, Patrick J

    2017-07-01

    The right and left side of the brain are asymmetric in anatomy and function. We review electrophysiological (EEG and event-related potential), behavioral (dichotic and visual perceptual asymmetry), and neuroimaging (PET, MRI, NIRS) evidence of right-left asymmetry in depressive disorders. Recent electrophysiological and fMRI studies of emotional processing have provided new evidence of altered laterality in depressive disorders. EEG alpha asymmetry and neuroimaging findings at rest and during cognitive or emotional tasks are consistent with reduced left prefrontal activity in depressed patients, which may impair downregulation of amygdala response to negative emotional information. Dichotic listening and visual hemifield findings for non-verbal or emotional processing have revealed abnormal perceptual asymmetry in depressive disorders, and electrophysiological findings have shown reduced right-lateralized responsivity to emotional stimuli in occipitotemporal or parietotemporal cortex. We discuss models of neural networks underlying these alterations. Of clinical relevance, individual differences among depressed patients on measures of right-left brain function are related to diagnostic subtype of depression, comorbidity with anxiety disorders, and clinical response to antidepressants or cognitive behavioral therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Opposed Left and Right Brain Hemisphere Contributions to Sexual Drive: A Multiple Lesion Case Analysis

    Directory of Open Access Journals (Sweden)

    Claude M. J. Braun

    2003-01-01

    Full Text Available Brain topographical studies of normal men have have shown that sexual excitation is asymmetric in the brain hemispheres. Group studies of patients with unilateral epileptic foci and other studies of patients with unilateral brain lesions have come to the same conclusion. The present study reviewed previously published single case reports of patients with frank hypo or hypersexuality subsequent to a unilateral brain lesion. Hyposexual patients tended to have left hemisphere lesions (primarily of the temporal lobe, and hypersexual patients tended to have right hemisphere lesions (primarily of the temporal lobe (p < 0.05. We interpret this double dissociation as part of a more general phenomenon of psychic tone similarly dissociated with regard to hemispheric control, including mood, psychomotor baseline, speech rate, and even immunity. The behavioral significance of this psychic tone is to modulate approach versus avoidance behavior.

  18. Moral judgement by the disconnected left and right cerebral hemispheres: a split-brain investigation.

    Science.gov (United States)

    Steckler, Conor M; Hamlin, J Kiley; Miller, Michael B; King, Danielle; Kingstone, Alan

    2017-07-01

    Owing to the hemispheric isolation resulting from a severed corpus callosum, research on split-brain patients can help elucidate the brain regions necessary and sufficient for moral judgement. Notably, typically developing adults heavily weight the intentions underlying others' moral actions, placing greater importance on valenced intentions versus outcomes when assigning praise and blame. Prioritization of intent in moral judgements may depend on neural activity in the right hemisphere's temporoparietal junction, an area implicated in reasoning about mental states. To date, split-brain research has found that the right hemisphere is necessary for intent-based moral judgement. When testing the left hemisphere using linguistically based moral vignettes, split-brain patients evaluate actions based on outcomes, not intentions. Because the right hemisphere has limited language ability relative to the left, and morality paradigms to date have involved significant linguistic demands, it is currently unknown whether the right hemisphere alone generates intent-based judgements. Here we use nonlinguistic morality plays with split-brain patient J.W. to examine the moral judgements of the disconnected right hemisphere, demonstrating a clear focus on intent. This finding indicates that the right hemisphere is not only necessary but also sufficient for intent-based moral judgement, advancing research into the neural systems supporting the moral sense.

  19. Reappraisal generation after acquired brain damage: The role of laterality and cognitive control.

    Directory of Open Access Journals (Sweden)

    Christian E Salas Riquelme

    2014-03-01

    Full Text Available In the last decade there has been a growing literature exploring the neuroanatomical and neuropsychological basis of reappraisal. This data suggests that reappraisal tasks activate a set of areas in the left hemisphere, which are commonly associated to language abilities and verbally mediated cognitive control. The main goal of this study was to investigate such hypothesis, by exploring whether subjects with focal damage to the left hemisphere [LH, n=8] were more markedly impaired on a reappraisal generation task than individuals with right hemisphere lesions [RH, n=8], and healthy controls [HC, n=14]. The reappraisal generation task consisted of a set of ten pictures from the IAPS, depicting negative events of different sort. Participants were asked to quickly generate as many positive reinterpretations as possible for each picture. Two scores were derived from this task; reappraisal difficulty and productivity. A second goal was to explore which cognitive control processes were associated to performance on the reappraisal task. For this purpose, participants were assessed on several measures of cognitive control. The results showed that the average amount of seconds used to generate a first reappraisal did not differ between LH and RH groups. However, significant differences were found between patients with brain injury [LH+RH] and HC, thus suggesting that having a brain damage, with disregard of the laterality of the lesion, does have an impact on reappraisal difficulty. In relation to reappraisal productivity, no differences were found across the three groups, suggesting that neurological groups and HC are equally productive when time constraints is not considered. Finally, only two cognitive control processes –inhibition and verbal fluency- were inversely associated to reappraisal difficulty. The results of this study are discussed in relation to the neuroanatomical and neuropsychological basis of reappraisal, and its implications for

  20. Cognitive reserve, cognition, and regional brain damage in MS: A 2 -year longitudinal study.

    Science.gov (United States)

    Rocca, Maria Assunta; Riccitelli, Gianna C; Meani, Alessandro; Pagani, Elisabetta; Del Sette, Paola; Martinelli, Vittorio; Comi, Giancarlo; Falini, Andrea; Filippi, Massimo

    2018-01-01

    According to the cognitive reserve (CR) theory, enriching experiences protect against cognitive decline. To investigate the dynamic interaction between CR and global/regional measures of brain white matter (WM) and gray matter (GM) damage and their effect on cognitive performance in multiple sclerosis (MS). Baseline and 2 -year three-dimensional (3D) T1-weighted scans were obtained from 54 MS patients and 20 healthy controls. Patients' cognitive functions were tested and a cognitive reserve index (CRI) was calculated. Baseline regional atrophy and longitudinal volume changes were investigated using voxel-wise methods. Structural damage and CRI effects on cognitive performance were explored with linear models. At baseline, MS patients showed atrophy of the deep GM nuclei, GM/WM frontal-temporal-parietal-occipital regions, and left cerebellum. Controlling for atrophy, higher CRI explained significant portions of variance in verbal memory and verbal fluency (∆ R 2  = 0.07-0.16; p cognitive changes. In MS, CR may have a protective role in preserving cognitive functions, moderating the effect of structural damage on cognitive performance. This protective role may diminish with disease progression.

  1. KCC2 expression changes in Diazepam-treated neonatal rats with hypoxia-ischaemia brain damage.

    Science.gov (United States)

    Ma, Jun-Yuan; Zhang, Su-Pei; Guo, Liu-Bin; Li, Yong-Mei; Li, Qiang; Wang, Sai-Qi; Liu, Hong-Min; Wang, Cong

    2014-05-14

    Hypoxia-ischaemia brain damage (HIBD) is a major type of perinatal brain injury in newborns. In this study, we investigate the short- and long-term neuroprotective effects of Diazepam on neonatal rats with HIBD and the potential mechanisms underlying its protective effects. Seven-day-old Sprague-Dawley rats were subjected to left carotid artery ligation followed by a 2-h exposure to 8% oxygen and 92% nitrogen. Diazepam was administered immediately via intraperitoneal (i.p.) injection after inducing HIBD at a dose of 10 mg kg(-1)8h(-1) for three consecutive days. Three days after HIBD, rats were decapitated, and the extent of brain injury was evaluated using 2,3,5-triphenyltetrazolium chloride (TTC) staining. Additionally, the expression of Potassium-chloride cotransporter-2 (KCC2) was analysed using real-time PCR, Western blot analysis and immunohistochemistry. Three weeks after HIBD, rats were subjected to the Morris water maze (MWM) test and the locomotor activity test to determine the long-term therapeutic effects of Diazepam. We observed that the volume of infarction in the Diazepam group was significantly less (PDiazepam rats improved significantly compared with the untreated rats (PDiazepam appears to attenuate HIBD and can efficiently improve the long-term learning and memory capabilities of the animal. A potential mechanism underlying these effects may involve preventing the decrease in KCC2 expression. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A comparison of brain activity associated with language production in brain tumor patients with left and right sided language laterality.

    Science.gov (United States)

    Jansma, J M; Ramsey, N; Rutten, G J

    2015-12-01

    Language dominance is an important factor for clinical decision making in brain tumor surgery. Functional MRI can provide detailed information about the organization of language in the brain. One often used measure derived from fMRI data is the laterality index (LI). The LI is typically based on the ratio between left and right brain activity in a specific region associated with language. Nearly all fMRI language studies show language-related activity in both hemispheres, and as a result the LI shows a large range of values. The clinical significance of the variation in language laterality as measured with the LI is still under debate. In this study, we tested two hypotheses in relation to the LI, measured in Broca's region, and it's right hemisphere homologue: 1: the level of activity in Broca's and it's right hemisphere homologue is mirrored for subjects with an equal but opposite LI; 2: the whole brain language activation pattern differs between subjects with an equal but opposite LI. One hundred sixty-three glioma and meningioma patients performed a verb generation task as part of a standard clinical protocol. We calculated the LI in the pars orbitalis, pars triangularis and pars opercularis of the left inferior frontal gyrus, referred to as Broca's region from here on. In our database, 21 patients showed right lateralized activity, with a moderate average level (-0.32). A second group of 21 patients was selected from the remaining group, for equal but opposite LI (0.32). We compared the level and distribution of activity associated with language production in the left and right hemisphere in these two groups. Patients with left sided laterality showed a significantly higher level of activity in Broca's region than the patients with right sided laterality. However, both groups showed no difference in level of activity in Broca's homologue region in the right hemisphere. Also, we did not see any difference in the pattern of activity between patients with left

  3. Differential Impact of Brain Damage and Depression on Memory Test Performance.

    Science.gov (United States)

    Gass, Carlton S.; Russell, Elbert W.

    1986-01-01

    Compared the effects of depression and brain damage on the Wechsler Adult Intelligence Scale Digit Span subscale and the Wechsler Memory Scale-Revised Logical Memory subtest. Performance on both tests was substantially affected by brain damage, but not by depression. Implications regarding neuropsychological assessment and rehabilitation are…

  4. Planning for Young Adults with Brain Damage in New South Wales.

    Science.gov (United States)

    Ehrlich, Frederick

    1994-01-01

    This article on young adults with brain damage in New South Wales (Australia) focuses on epidemiological considerations and implications for management. Jointly planning for provision of services for individuals who have either congenital or acquired brain damage is recommended, in view of their similar needs. (JDD)

  5. Desmin loss and mitochondrial damage precede left ventricular systolic failure in volume overload heart failure.

    Science.gov (United States)

    Guichard, Jason L; Rogowski, Michael; Agnetti, Giulio; Fu, Lianwu; Powell, Pamela; Wei, Chih-Chang; Collawn, James; Dell'Italia, Louis J

    2017-07-01

    Heart failure due to chronic volume overload (VO) in rats and humans is characterized by disorganization of the cardiomyocyte desmin/mitochondrial network. Here, we tested the hypothesis that desmin breakdown is an early and continuous process throughout VO. Male Sprague-Dawley rats had aortocaval fistula (ACF) or sham surgery and were examined 24 h and 4 and 12 wk later. Desmin/mitochondrial ultrastructure was examined by transmission electron microscopy (TEM) and immunohistochemistry (IHC). Protein and kinome analysis were performed in isolated cardiomyocytes, and desmin cleavage was assessed by mass spectrometry in left ventricular (LV) tissue. Echocardiography demonstrated a 40% decrease in the LV mass-to-volume ratio with spherical remodeling at 4 wk with ACF and LV systolic dysfunction at 12 wk. Starting at 24 h and continuing to 4 and 12 wk, with ACF there is TEM evidence of extensive mitochondrial clustering, IHC evidence of disorganization associated with desmin breakdown, and desmin protein cleavage verified by Western blot analysis and mass spectrometry. IHC results revealed that ACF cardiomyocytes at 4 and 12 wk had perinuclear translocation of αB-crystallin from the Z disk with increased α, β-unsaturated aldehyde 4-hydroxynonelal. Use of protein markers with verification by TUNEL staining and kinome analysis revealed an absence of cardiomyocyte apoptosis at 4 and 12 wk of ACF. Significant increases in protein indicators of mitophagy were countered by a sixfold increase in p62/sequestosome-1, which is indicative of an inability to complete autophagy. An early and continuous disruption of the desmin/mitochondrial architecture, accompanied by oxidative stress and inhibition of apoptosis and mitophagy, suggests its causal role in LV dilatation and systolic dysfunction in VO. NEW & NOTEWORTHY This study provides new evidence of early onset (24 h) and continuous (4-12 wk) desmin misarrangement and disruption of the normal sarcomeric and mitochondrial

  6. Posterior brain damage and cognitive impairment in pediatric multiple sclerosis.

    Science.gov (United States)

    Rocca, Maria A; Absinta, Martina; Amato, Maria Pia; Moiola, Lucia; Ghezzi, Angelo; Veggiotti, Pierangelo; Capra, Ruggero; Portaccio, Emilio; Fiorino, Agnese; Pippolo, Lorena; Pera, Maria Carmela; Horsfield, Mark A; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo

    2014-04-15

    We combined structural and functional MRI to better understand the mechanisms responsible for cognitive impairment in pediatric patients with multiple sclerosis (MS). Brain dual-echo, diffusion tensor, 3D T1-weighted, and resting-state (RS) fMRI scans were acquired from 35 consecutive pediatric patients with MS and 16 sex- and age-matched healthy controls. Patients with abnormalities in ≥2 neuropsychological tests were classified as cognitively impaired. The regional distribution of white matter (WM) and gray matter (GM) damage was assessed using voxel-wise analyses. Default mode network (DMN) RS functional connectivity (FC) was also measured. Sixteen patients (45%) were classified as cognitively impaired. Compared to cognitively preserved (CP) patients, cognitively impaired patients with MS had higher occurrence of T2 lesions as well as more severe damage to the WM and GM, as measured by atrophy and diffusivity abnormalities, in the posterior regions of the parietal lobes close to the midline (precuneus, posterior cingulum, and corpus callosum). Compared to the other study groups, they also showed reduced RS FC of the precuneus, whereas CP patients experienced an increased RS FC of the anterior cingulate cortex. A multivariable model identified diffusivity abnormalities of the cingulum and corpus callosum and RS FC of the precuneus as the covariates more strongly associated with cognitive impairment (C-index = 0.99). In pediatric patients with MS, cognitive dysfunction is associated with structural and functional abnormalities of the posterior core regions of the DMN. WM structural abnormalities co-occurring at this level are likely to be the substrate of such modifications.

  7. Left Brain vs. Right Brain: Findings on Visual Spatial Capacities and the Functional Neurology of Giftedness

    Science.gov (United States)

    Kalbfleisch, M. Layne; Gillmarten, Charles

    2013-01-01

    As neuroimaging technologies increase their sensitivity to assess the function of the human brain and results from these studies draw the attention of educators, it becomes paramount to identify misconceptions about what these data illustrate and how these findings might be applied to educational contexts. Some of these "neuromyths" have…

  8. S100B - a potential biomarker for early detection of neonatal brain damage following asphyxia.

    Science.gov (United States)

    Beharier, Ofer; Kahn, Joy; Shusterman, Eden; Sheiner, Eyal

    2012-09-01

    Birth asphyxia results in a significant percentage of neonatal morbidity and mortality. A key factor in the management of this complication is the early and accurate detection of brain damage following asphyxia. Currently, reliable tools for such diagnosis are absent. Extensive research has focused on biomarkers in an attempt to solve this matter. Recent data marked serum and urine elevation of the S100B protein as an established peripheral biomarker for detection of brain injury including traumatic head injuries and brain damage following cardiac arrest and stroke. In the past decade, a substantial number of studies illustrated the potential use of S100B testing in order to detect brain damage in asphyxiated newborns. This review summarizes the available data regarding the use of S100B as a biomarker of brain damage following birth asphyxia.

  9. Dynamics and heterogeneity of brain damage in multiple sclerosis

    KAUST Repository

    Kotelnikova, Ekaterina

    2017-10-26

    Multiple Sclerosis (MS) is an autoimmune disease driving inflammatory and degenerative processes that damage the central nervous system (CNS). However, it is not well understood how these events interact and evolve to evoke such a highly dynamic and heterogeneous disease. We established a hypothesis whereby the variability in the course of MS is driven by the very same pathogenic mechanisms responsible for the disease, the autoimmune attack on the CNS that leads to chronic inflammation, neuroaxonal degeneration and remyelination. We propose that each of these processes acts more or less severely and at different times in each of the clinical subgroups. To test this hypothesis, we developed a mathematical model that was constrained by experimental data (the expanded disability status scale [EDSS] time series) obtained from a retrospective longitudinal cohort of 66 MS patients with a long-term follow-up (up to 20 years). Moreover, we validated this model in a second prospective cohort of 120 MS patients with a three-year follow-up, for which EDSS data and brain volume time series were available. The clinical heterogeneity in the datasets was reduced by grouping the EDSS time series using an unsupervised clustering analysis. We found that by adjusting certain parameters, albeit within their biological range, the mathematical model reproduced the different disease courses, supporting the dynamic CNS damage hypothesis to explain MS heterogeneity. Our analysis suggests that the irreversible axon degeneration produced in the early stages of progressive MS is mainly due to the higher rate of myelinated axon degeneration, coupled to the lower capacity for remyelination. However, and in agreement with recent pathological studies, degeneration of chronically demyelinated axons is not a key feature that distinguishes this phenotype. Moreover, the model reveals that lower rates of axon degeneration and more rapid remyelination make relapsing MS more resilient than the

  10. Beyond Hemispheric Dominance: Brain Regions Underlying the Joint Lateralization of Language and Arithmetic to the Left Hemisphere

    Science.gov (United States)

    Pinel, Philippe; Dehaene, Stanislas

    2010-01-01

    Language and arithmetic are both lateralized to the left hemisphere in the majority of right-handed adults. Yet, does this similar lateralization reflect a single overall constraint of brain organization, such an overall "dominance" of the left hemisphere for all linguistic and symbolic operations? Is it related to the lateralization of specific…

  11. Cannabidiol reduces lung injury induced by hypoxic-ischemic brain damage in newborn piglets.

    Science.gov (United States)

    Arruza, Luis; Pazos, Maria Ruth; Mohammed, Nagat; Escribano, Natalia; Lafuente, Hector; Santos, Martín; Alvarez-Díaz, Francisco J; Hind, William; Martínez-Orgado, Jose

    2017-07-01

    BackgroundBrain hypoxic-ischemic (HI) damage induces distant inflammatory lung damage in newborn pigs. We aimed to investigate the effects of cannabidiol (CBD) on lung damage in this scenario.MethodsNewborn piglets received intravenous vehicle, CBD, or CBD+WAY100635 (5-HT 1A receptor antagonist) after HI brain damage (carotid flow interruption and FiO 2 0.10 for 30 min). Total lung compliance (TLC), oxygenation index (OI), and extravascular lung water content (EVLW) were monitored for 6 h. Histological damage, interleukin (IL)-1β concentration, and oxidative stress were assessed in brain and lung tissue. Total protein content was determined in bronchoalveolar lavage fluid (BALF).ResultsCBD prevented HI-induced deleterious effects on TLC and OI and reduced lung histological damage, modulating inflammation (decreased leukocyte infiltration and IL-1 concentration) and reducing protein content in BALF and EVLW. These effects were related to CBD-induced anti-inflammatory changes in the brain. HI did not increase oxidative stress in the lungs. In the lungs, WAY100635 blunted the beneficial effects of CBD on histological damage, IL-1 concentration, and EVLW.ConclusionsCBD reduced brain HI-induced distant lung damage, with 5-HT 1A receptor involvement in these effects. Whether the effects of CBD on the lungs were due to the anti-inflammatory effects on the brain or due to the direct effects on the lungs remains to be elucidated.

  12. MR spectroscopic evaluation of brain tissue damage after treatment for pediatric brain tumors.

    Science.gov (United States)

    Blamek, Sławomir; Larysz, Dawid; Ficek, Kornelia; Sokół, Maria; Miszczyk, Leszek; Tarnawski, Rafał

    2010-01-01

    The aim of this study was to evaluate the metabolic profile of uninvolved brain tissue after treatment for pediatric brain tumors. A group of 24 patients aged 4-18 years was analyzed after combined treatment for brain tumors. In this group, there were nine medulloblastomas, seven low-grade gliomas, three high-grade gliomas, two ependymomas and three children with conservatively treated diffuse brainstem gliomas. Short echo-time (TE = 30 ms) point-resolved spectra were acquired using a 2 T clinical scanner (Elscint Prestige). The ratios of signal intensities for N-acetylaspartate (NAA), choline (Cho), myo-inositol (mI), lactate (Lac), and lipids (Lip) were calculated using the creatine (Cr) signal as an internal reference. The spectra were acquired both from the tumor bed and from contralateral uninvolved brain tissue; only control spectra were analyzed. The first examination was made between the third and sixth month after therapy (24 spectra), the second examination occurred 8-12 months after treatment (15 spectra available), and the third was performed approximately 18 months after completion of therapy (eight spectra available). The results were compared using the t-test for dependent samples. At all time points, the metabolite ratios showed alterations indicating brain tissue damage. The most important were the decrease of NAA/Cr and increase of Lac/Cr and Lip/Cr ratios. The mean NAA/Cr values were 0.91, 0.91, and 0.86, respectively, for the three examinations, while the Lac/Cr and Lip/Cr values were 1.66, 2.11, 1.19 and 12.24, 12.05, 5.69, respectively. Interestingly, in children with supratentorial tumors, a significant increase in NAA/Cr value was observed (from 0.82 to 1.11 in the first and second examinations, respectively; p = 0.0487), which may be indicative of neuronal function recovery. MRS examinations of uninvolved brain tissue indicate long-lasting metabolic disturbances. However, the NAA/Cr ratio increase may be a sign of at least partial recovery

  13. A multiparametric evaluation of regional brain damage in patients with primary progressive multiple sclerosis.

    Science.gov (United States)

    Ceccarelli, Antonia; Rocca, Maria A; Valsasina, Paola; Rodegher, Mariaemma; Pagani, Elisabetta; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo

    2009-09-01

    The purpose of this study is to define the topographical distribution of gray matter (GM) and white matter (WM) damage in patients with primary progressive multiple sclerosis (PPMS), using a multiparametric MR-based approach. Using a 3 Tesla scanner, dual-echo, 3D fast-field echo (FFE), and diffusion tensor (DT) MRI scans were acquired from 18 PPMS patients and 17 matched healthy volunteers. An optimized voxel-based (VB) analysis was used to investigate the patterns of regional GM density changes and to quantify GM and WM diffusivity alterations of the entire brain. In PPMS patients, GM atrophy was found in the thalami and the right insula, while mean diffusivity (MD) changes involved several cortical-subcortical structures in all cerebral lobes and the cerebellum. An overlap between decreased WM fractional anisotropy (FA) and increased WM MD was found in the corpus callosum, the cingulate gyrus, the left short temporal fibers, the right short frontal fibers, the optic radiations, and the middle cerebellar peduncles. Selective MD increase, not associated with FA decrease, was found in the internal capsules, the corticospinal tracts, the superior longitudinal fasciculi, the fronto-occipital fasciculi, and the right cerebral peduncle. A discrepancy was found between regional WM diffusivity changes and focal lesions because several areas had DT MRI abnormalities but did not harbor T2-visible lesions. Our study allowed to detect tissue damage in brain areas associated with motor and cognitive functions, which are known to be impaired in PPMS patients. Combining regional measures derived from different MR modalities may be a valuable tool to improve our understanding of PPMS pathophysiology. 2009 Wiley-Liss, Inc.

  14. Reappraisal generation after acquired brain damage: The role of laterality and cognitive control.

    Science.gov (United States)

    Salas, Christian E; Gross, James J; Turnbull, Oliver H

    2014-01-01

    In the past decade, there has been growing interest in the neuroanatomical and neuropsychological bases of reappraisal. Findings suggest that reappraisal activates a set of areas in the left hemisphere (LH), which are commonly associated with language abilities and verbally mediated cognitive control. The main goal of this study was to investigate whether individuals with focal damage to the LH (n = 8) were more markedly impaired on a reappraisal generation task than individuals with right hemisphere lesions (RH, n = 8), and healthy controls (HC, n = 14). The reappraisal generation task consisted of a set of ten pictures from the IAPS, depicting negative events of different sorts. Participants were asked to quickly generate as many positive reinterpretations as possible for each picture. Two scores were derived from this task, namely difficulty and productivity. A second goal of this study was to explore which cognitive control processes were associated with performance on the reappraisal task. For this purpose, participants were assessed on several measures of cognitive control. Findings indicated that reappraisal difficulty - defined as the time taken to generate a first reappraisal - did not differ between LH and RH groups. However, differences were found between patients with brain injury (LH + RH) and HC, suggesting that brain damage in either hemisphere influences reappraisal difficulty. No differences in reappraisal productivity were found across groups, suggesting that neurological groups and HC are equally productive when time constraints are not considered. Finally, only two cognitive control processes inhibition and verbal fluency- were inversely associated with reappraisal difficulty. Implications for the neuroanatomical and neuropsychological bases of reappraisal generation are discussed, and implications for neuro-rehabilitation are considered.

  15. Intellectual Function Training in adults with acquired brain damage. Evaluation.

    Science.gov (United States)

    Söderback, I; Normell, L A

    1986-01-01

    Intellectual Function Training (IFT) is an occupational therapy method for remediating cognitive functions in patients with acquired brain damage and has been presented in a previous paper. It has been evaluated by comparing a group of trained patients (n = 13) using the IFT method with a control group (n = 13) which underwent conventional rehabilitation. The trained group received IFT for 40 min each day, 5 days a week for about three months. Age, education and neurological status did not differ between the groups. The measurement methods of evaluation were Intellectual Function Assessment (IFP) and three psychometric test batteries. At the beginning of the study there was no significant difference in any subtest between the two groups. After the training period there was a significant difference of at least p less than 0.05 between the trained and the control group in the IFP battery, except for the Long-term Memory subtest. The improvement for the trained group was evident six months later at the time of the follow-up measurement, clearly indicating a significant difference between the groups. In one psychometric subtest a significant difference of p less than 0.01 was found. Within the experimental group over the study time there was a slight increase in performance which was notable in seven of the psychometric subtests p less than 0.05-p less than 0.001. The positive effect of IFT is considered to be specific for the type of task in which the patients were trained, while evidence of the effect on general intellectual function is inconclusive.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. BHT blocks NF-kappaB activation and ethanol-induced brain damage.

    Science.gov (United States)

    Crews, Fulton; Nixon, Kimberly; Kim, Daniel; Joseph, James; Shukitt-Hale, Barbara; Qin, Liya; Zou, Jian

    2006-11-01

    Binge ethanol administration causes corticolimbic brain damage that models alcoholic neurodegeneration. The mechanism of binge ethanol-induced degeneration is unknown, but is not simple glutamate-N-methyl-D-aspartate (NMDA) excitotoxicity. To test the hypothesis that oxidative stress and inflammation are mechanisms of binge ethanol-induced brain damage, we administered 4 antioxidants, e.g., butylated hydroxytoluene (BHT), ebselen (Eb), vitamin E (VE), and blueberry (BB) extract, during binge ethanol treatment and assessed various measures of neurodegeneration. Adult Sprague-Dawley rats were treated with intragastric ethanol 3 times per day (8-12 g/kg/d) alone or in combination with antioxidants or isocaloric diet for 4 days. Animals were killed, and brains were perfused and extracted for histochemical silver stain determination of brain damage, markers of neurogenesis, or other immunohistochemistry. Some animals were used for determination of nuclear factor kappa B (NF-kappaB)-DNA binding by electrophoretic mobility shift assay (EMSA) or for reverse transcription-polymerase chain reaction (RT-PCR) of cyclooxygenase 2 (COX2). Binge ethanol induced corticolimbic brain damage and reduced neurogenesis. Treatment with BHT reversed binge induced brain damage and blocked ethanol inhibition of neurogenesis in all regions studied. Interestingly, the other antioxidants studied, e.g., Eb, VE, and BB, did not protect against binge-induced brain damage. Binge ethanol treatment also caused microglia activation, increased NF-kappaB-DNA binding and COX2 expression. Butylated hydroxytoluene reduced binge-induced NF-kappaB-DNA binding and COX2 expression. Binge-induced brain damage and activation of NF-kappaB-DNA binding are blocked by BHT. These studies support a neuroinflammatory mechanism of binge ethanol-induced brain damage.

  17. Noninvasive brain stimulation for treatment of right- and left-handed poststroke aphasics.

    Science.gov (United States)

    Heiss, Wolf-Dieter; Hartmann, Alexander; Rubi-Fessen, Ilona; Anglade, Carole; Kracht, Lutz; Kessler, Josef; Weiduschat, Nora; Rommel, Thomas; Thiel, Alexander

    2013-01-01

    Accumulating evidence from single case studies, small case series and randomized controlled trials seems to suggest that inhibitory noninvasive brain stimulation (NIBS) over the contralesional inferior frontal gyrus (IFG) of right-handers in conjunction with speech and language therapy (SLT) improves recovery from poststroke aphasia. Application of inhibitory NIBS to improve recovery in left-handed patients has not yet been reported. A total of 29 right-handed subacute poststroke aphasics were randomized to receive either 10 sessions of SLT following 20 min of inhibitory repetitive transcranial magnetic stimulation (rTMS) over the contralesional IFG or 10 sessions of SLT following sham stimulation; 2 left-handers were treated according to the same protocol with real rTMS. Language activation patterns were assessed with positron emission tomography prior to and after the treatment; 95% confidence intervals for changes in language performance scores and the activated brain volumes in both hemispheres were derived from TMS- and sham-treated right-handed patients and compared to the same parameters in left-handers. Right-handed patients treated with rTMS showed better recovery of language function in global aphasia test scores (t test, p left-handed patients also improved, with 1 patient within the confidence limits of TMS-treated right-handers (23 points, 15.9-28.9) and the other patient within the limits of sham-treated subjects (8 points, 2.8-14.5). Both patients exhibited only a very small interhemispheric shift, much less than expected in TMS-treated right-handers, and more or less consolidated initially active networks in both hemispheres. Inhibitory rTMS over the nondominant IFG appears to be a safe and effective treatment for right-handed poststroke aphasics. In the 2 cases of left-handed aphasics no deterioration of language performance was observed with this protocol. However, therapeutic efficiency is less obvious and seems to be more related to the

  18. A neurocorrective approach for MMPI-2 use for brain-damaged patients

    NARCIS (Netherlands)

    Balen, H.G.G. van; Mey, H.R.A. De; Limbeek, J. van

    1999-01-01

    Conventional administration of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2) to aetiologically distinct brain-damaged out-patients (n = 137) revealed significant indications of psychological maladjustment. An adjustment for the endorsement of aetiology-specific items pertaining to

  19. Attenuating brain inflammation, ischemia, and oxidative damage by hyperbaric oxygen in diabetic rats after heat stroke

    Directory of Open Access Journals (Sweden)

    Kai-Li Lee

    2013-08-01

    Conclusion: Our results suggest that, in diabetic animals, HBO2 therapy may improve outcomes of HS in part by reducing heat-induced activated inflammation and ischemic and oxidative damage in the hypothalamus and other brain regions.

  20. Hypertensive Target Organ Damage and Longitudinal Changes in Brain Structure and Function: The Second Manifestations of Arterial Disease-Magnetic Resonance Study.

    Science.gov (United States)

    van der Veen, Pieternella H; Geerlings, Mirjam I; Visseren, Frank L J; Nathoe, Hendrik M; Mali, Willem P T M; van der Graaf, Yolanda; Muller, Majon

    2015-12-01

    Hypertension has been related to structural and functional brain changes. In high-risk populations, hypertensive target organ damage might better represent exposure to high blood pressure than the blood pressure measurement itself. We examined the association of hypertensive target organ damage with longitudinal changes in brain structure and function within the Second Manifestations of Arterial Disease-Magnetic Resonance (SMART-MR) study. Renal function, albuminuria, and left ventricular hypertrophy on electrocardiography were measured in 663 patients with manifest arterial disease (mean age, 57±9 years; 81% men). Automated brain segmentation was used to quantify progression of global brain atrophy (change in brain parenchymal fraction) and progression of cerebral small vessel disease on 1.5T magnetic resonance imaging, and memory and executive functioning were assessed at baseline and after on average 3.9 years of follow-up. Regression analyses showed that an increasing number of signs of target organ damage was associated with more progression of global brain atrophy and more rapid decline in memory performance. Compared with no target organ damage, mean differences in change in brain parenchymal fraction (95% confidence interval) for 1 and ≥2 signs of organ damage were -0.12 (-0.30; 0.06) and -0.41 (-0.77; -0.05) % intracranial volume, and mean (95% confidence interval) differences in change in memory performance (z score) were -0.15 (-0.29; -0.00) and -0.27 (-0.54; -0.01). Results were independent of blood pressure, antihypertensive treatment, and other confounders. Hypertension target organ damage was not associated with progression of cerebral small vessel disease or change in executive functioning. Routinely assessed signs of hypertensive target organ damage, and in particular impaired renal function, could be used to identify patients at the highest risk of cognitive decline. © 2015 American Heart Association, Inc.

  1. Prenatal Alcohol Exposure Damages Brain Signal Transduction Systems

    National Research Council Canada - National Science Library

    Caldwell, Kevin

    2001-01-01

    .... One and twenty-four hours following fear conditioning this learning deficit is associated with altered brain signal transduction mechanisms that are dependent on an enzyme termed phosphatidylinositol...

  2. Problems in the acquisition of imagery mnemonics: three brain-damaged cases.

    Science.gov (United States)

    Crovitz, H F; Harvey, M T; Horn, R W

    1979-06-01

    The literature provides little direction on how to overcome difficulties which some brain-damaged patients have in acquiring imagery mnemonics as a memory aid during the period of anterograde amnesia. For those interested in the therepeutic usefulness of imagery mediation, we provide a detailed account of the acquisition of some mnemonic skill in three brain-damaged patients who initially failed in using visual imagery mediators to recall words lists.

  3. Teaching nutrition to the left and right brain: an overview of learning styles.

    Science.gov (United States)

    Churchill, Julie A

    2008-01-01

    Functioning effectively as a veterinarian requires proficiency in multiple learning styles. Whether the goal is to design a nutrition course, plan a veterinary curriculum, or help students develop interpersonal, communication, and leadership skills, students benefit when content, design, and delivery are balanced to meet their learning-style preferences. An overview of four different learning style models is presented: the Myers-Briggs Type Indicator (MBTI), Kolb's Learning Style Model, the Felder-Silverman Learning Style Model, and the Herrmann Brain Dominance Instrument (HBDI). A whole-brain approach (HBDI) was used in the development and implementation of the small-animal clinical nutrition course at the University of Minnesota College of Veterinary Medicine. One educational objective of this course is to help students develop mental dexterity, increasing their proficiency in both their preferred and their less preferred modes of learning. The instructional goals are to deliver the content of the small-animal clinical nutrition course through exercises that meet the needs of learners in each thinking quadrant (left and right, cerebral and limbic) at least part of the time. Examples of exercises are presented to portray a balanced or whole-brain approach to teaching clinical nutrition.

  4. Secondary Damage after Traumatic Brain Injury: Epidemiology, Pathophysiology and Therapy

    NARCIS (Netherlands)

    D.C. Engel (Doortje Caroline)

    2008-01-01

    textabstractTraumatic brain injury (TBI) is defined as a microscopic or macroscopic injury to the brain caused by external physical forces. Road traffic accidents, falls, sports injuries (i.e. boxing), recreational accidents (i.e. parachute jumping), the use of firearms, assault, child abuse,

  5. Evidence for zolpidem efficacy in brain damage | Clauss | South ...

    African Journals Online (AJOL)

    Previous reports have shown that zolpidem could reverse semi-coma and improve cerebral perfusion after brain injury. Studies in animals have implicated omega 1 GABAergic action as reason for this improvement. Evidence for the efficacy of zolpidem in a wide range of brain pathology is reviewed here and the mechanism ...

  6. Left atrial deformation: Useful index for early detection of cardiac damage in chronic mitral regurgitation.

    Science.gov (United States)

    Cameli, M; Incampo, E; Mondillo, S

    2017-12-01

    In chronic mitral regurgitation (MR) left atrium is one of the first cardiac structures that is involved in remodeling and ultrastructural changes for a progressive volume overload. Severe left atrial (LA) dilation on echocardiography and new onset of atrial fibrillation in asymptomatic patients with preserved Left Ventricular (LV) function, appeared as a Class IIb recommendation for consideration for surgical mitral valve repair in the actual guidelines. However, before atrial dilatation and dysfunction, several ultrastructural changes appear in the atrial muscle tissue that are difficult to identify with the standard echocardiography. Speckle tracking echocardiography (STE) can analyze LA function: it has been showed that it can indirectly identify structural tissue modifications from excessive atrial effort in the early stages of MR up to the full depression of atrial function in the late stages where there are advanced ultrastructural alterations. This review aims to summarize current knowledge on the role of atrial strain identifying early structural alterations of the atrial tissue in the rising stages of MR considering that Left Atrial Peak Longitudinal Strain (PALS) considered useful parameter for a more extensive evaluation of MR patients.

  7. The Use of Computers and Video Games in Brain Damage Therapy.

    Science.gov (United States)

    Lorimer, David

    The use of computer assisted therapy (CAT) in the rehabilitation of individuals with brain damage is examined. Hardware considerations are explored, and the variety of software programs available for brain injury rehabilitation is discussed. Structured testing and treatment programs in time measurement, memory, and direction finding are described,…

  8. The involvement of secondary neuronal damage in the development of neuropsychiatric disorders following brain insults

    Directory of Open Access Journals (Sweden)

    Yun eChen

    2014-03-01

    Full Text Available Neuropsychiatric disorders are one of the leading causes of disability worldwide and affect the health of billions of people. Previous publications have demonstrated that neuropsychiatric disorders can cause histomorphological damage in particular regions of the brain. By using a clinical symptom-comparing approach, 55 neuropsychiatric signs or symptoms related usually to 14 types of acute and chronic brain insults were identified and categorized in the present study. Forty percent of the 55 neuropsychiatric signs and symptoms have been found to be commonly shared by the 14 brain insults. A meta-analysis supports existence of the same neuropsychiatric signs or symptoms in all brain insults. The results suggest that neuronal damage might be occurring in the same or similar regions or structures of the brain. Neuronal cell death, neural loss and axonal degeneration in some parts of the brain (the limbic system, basal ganglia system, brainstem, cerebellum, and cerebral cortex might be the histomorphological basis that is responsible for the neuropsychiatric symptom clusters. These morphological alterations may be the result of secondary neuronal damage (a cascade of progressive neural injury and neuronal cell death that is triggered by the initial insult. Secondary neuronal damage causes neuronal cell death and neural injury in not only the initial injured site but also remote brain regions. It may be a major contributor to subsequent neuropsychiatric disorders following brain insults.

  9. Leukotriene-mediated neuroinflammation, toxic brain damage, and neurodegeneration in acute methanol poisoning

    Czech Academy of Sciences Publication Activity Database

    Zakharov, S.; Kotíková, K.; Nurieva, O.; Hlušička, J.; Kačer, P.; Urban, P.; Vaněčková, M.; Seidl, Z.; Diblík, P.; Kuthan, P.; Navrátil, Tomáš; Pelclová, D.

    2017-01-01

    Roč. 55, č. 4 (2017), s. 249-259 ISSN 1556-3650 Institutional support: RVO:61388955 Keywords : brain damage * leukotrienes * methanol poisoning * Neuroinflammation * nontraumatic brain injury * sequelae of poisoning Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 3.677, year: 2016

  10. Creating rat model for hypoxic brain damage in neonates by oxygen deprivation.

    Science.gov (United States)

    Zhang, Qiaoli; Ding, Yingxue; Yao, Yanqing; Yu, Yang; Yang, Lijun; Cui, Hong

    2013-01-01

    Current study explores the feasibility of using a non-surgical method of oxygen deprivation to create Hypoxic brain damage in neonatal rats for medical studies. 7-day-old Sprague Dowley (SD) rats were kept in a container with low oxygen level (8%) for 1.5h. A second group had bilateral cephalic artery ligation before the 1.5h-low oxygen treatment, a method similar to the popular Rice method, to expose the brain to both hypoxic and ischemic situations. Short term neural functions and brain water weights were evaluated 1 day after the hypoxic treatment. Brain pathology and histology were also examined at 1 day and 3 days after the hypoxic treatment. Both groups showed impaired neural functions and increased brain water weight compared to the controls. Histology studies also revealed injuries in the subcortex, hippocampus and lateral ventricle in the brains from both groups. There is no significant difference in the degree of brain damages observed in the two groups. Our work demonstrated that oxygen deprivation alone is sufficient to cause brain damages similar to those seen in Hypoxic-ischemic brain disease (HIBD). Because this method avoids the invasive surgical procedure and therefore reduces the stress and mortality of laboratory animals during the experiment, we recommend it to be the favorable method for creating rat models for HIBD studies.

  11. Creating rat model for hypoxic brain damage in neonates by oxygen deprivation.

    Directory of Open Access Journals (Sweden)

    Qiaoli Zhang

    Full Text Available Current study explores the feasibility of using a non-surgical method of oxygen deprivation to create Hypoxic brain damage in neonatal rats for medical studies. 7-day-old Sprague Dowley (SD rats were kept in a container with low oxygen level (8% for 1.5h. A second group had bilateral cephalic artery ligation before the 1.5h-low oxygen treatment, a method similar to the popular Rice method, to expose the brain to both hypoxic and ischemic situations. Short term neural functions and brain water weights were evaluated 1 day after the hypoxic treatment. Brain pathology and histology were also examined at 1 day and 3 days after the hypoxic treatment. Both groups showed impaired neural functions and increased brain water weight compared to the controls. Histology studies also revealed injuries in the subcortex, hippocampus and lateral ventricle in the brains from both groups. There is no significant difference in the degree of brain damages observed in the two groups. Our work demonstrated that oxygen deprivation alone is sufficient to cause brain damages similar to those seen in Hypoxic-ischemic brain disease (HIBD. Because this method avoids the invasive surgical procedure and therefore reduces the stress and mortality of laboratory animals during the experiment, we recommend it to be the favorable method for creating rat models for HIBD studies.

  12. Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage.

    Science.gov (United States)

    Shao, Qiang; Herrlinger, Stephanie; Yang, Si-Lu; Lai, Fan; Moore, Julie M; Brindley, Melinda A; Chen, Jian-Fu

    2016-11-15

    Zika virus (ZIKV) infection of pregnant women can result in fetal brain abnormalities. It has been established that ZIKV disrupts neural progenitor cells (NPCs) and leads to embryonic microcephaly. However, the fate of other cell types in the developing brain and their contributions to ZIKV-associated brain abnormalities remain largely unknown. Using intracerebral inoculation of embryonic mouse brains, we found that ZIKV infection leads to postnatal growth restriction including microcephaly. In addition to cell cycle arrest and apoptosis of NPCs, ZIKV infection causes massive neuronal death and axonal rarefaction, which phenocopy fetal brain abnormalities in humans. Importantly, ZIKV infection leads to abnormal vascular density and diameter in the developing brain, resulting in a leaky blood-brain barrier (BBB). Massive neuronal death and BBB leakage indicate brain damage, which is further supported by extensive microglial activation and astrogliosis in virally infected brains. Global gene analyses reveal dysregulation of genes associated with immune responses in virus-infected brains. Thus, our data suggest that ZIKV triggers a strong immune response and disrupts neurovascular development, resulting in postnatal microcephaly with extensive brain damage. © 2016. Published by The Company of Biologists Ltd.

  13. MECHANISMS OF SECONDARY BRAIN DAMAGE IN COMA DEVELOPED IN ACUTE PERIOD OF ISCHEMIC STROKE

    Directory of Open Access Journals (Sweden)

    Константин Владимирович Лукашев

    2017-06-01

    Conclusions. One of the mechanisms of secondary brain damage in patients in coma in acute period of ischemic stroke is a worsening dysfunction of the brain stem followed bythe cerebral autoregulationdisturbance in the absence of a significant increase of intracranial pressure.This causes disturbances of the central hemodynamics, the mechanical and gas exchange properties,the accumulation of extravascular lung water.These processesresult in acute lung injury, itbeing a critical element in the development and progression of systemic hypoxia as a key mechanism of secondary brain damage.

  14. Clinical peculiarities of the brain damage in the liquidators of the Chernobyl accident

    International Nuclear Information System (INIS)

    Zozulya, Y.A.; Vinnitsky, A.R.; Stepanenko, I.V.

    1997-01-01

    Investigation into the features of the brain damage by the liquidators of the Chernobyl accident has become an urgent issue of today due to a number of circumstances. According to the classical concept dominating radiobiology until recently, the brain being composed of highly - differentiated nerve cells, present a radioresistant structure responsive to radiation injury induced by high and very high radiation doses (10000 rem and higher) only. The results of clinical examinations given to the Chernobyl accident recovery workers at Kiev Institute of Neurosurgery, Academy of Medical Sciences of Ukraine, show that even the so - called ''small - dose'' radiation, when consumed continuously, produces neurological sings of brain damage. 6 figs

  15. Neuropharmacological modulation of cognitive deficits after brain damage.

    Science.gov (United States)

    Parton, Andrew; Coulthard, Elizabeth; Husain, Masud

    2005-12-01

    This review discusses recent studies that have implications for potential neuropharmacological interventions which target cognitive deficits resulting from traumatic brain injury or stroke. An important new study concerning the activity of N-methyl-D-aspartate (NMDA) receptors after brain injury reveals that previous influential hypotheses about an increase in glutamate triggering neuronal death may need to be revised. Furthermore, the study suggests that cognitive function may be best preserved by stimulation of NMDA receptors with agonists rather than by the use of antagonists, as previously believed. Investigations of animal models of stroke and traumatic brain injury have further demonstrated the possibility of intervening in the acute and sub-acute stages to protect specific brain systems, such as preservation of the cholinergic system (via cholinesterase inhibitors) and hippocampal neurons (via a D2 agonist). Clinical trials in humans indicate it is also possible to target these neurotransmitter systems to enhance cognitive performance in patients with chronic deficits. In particular, recent studies demonstrated that it is possible to ameliorate the effects of two common cognitive syndromes, visual neglect and aphasia. Cognitive deficits are an extremely common consequence of either traumatic brain injury or stroke. Recent studies demonstrate the potential for using neuropharmacological intervention after acquired brain injury to prevent or ameliorate the effects of cognitive impairments. These treatments, however, are still in their preliminary stages and further research is required to identify the most effective compounds.

  16. Auditory middle latency responses differ in right- and left-handed subjects: an evaluation through topographic brain mapping.

    Science.gov (United States)

    Mohebbi, Mehrnaz; Mahmoudian, Saeid; Alborzi, Marzieh Sharifian; Najafi-Koopaie, Mojtaba; Farahani, Ehsan Darestani; Farhadi, Mohammad

    2014-09-01

    To investigate the association of handedness with auditory middle latency responses (AMLRs) using topographic brain mapping by comparing amplitudes and latencies in frontocentral and hemispheric regions of interest (ROIs). The study included 44 healthy subjects with normal hearing (22 left handed and 22 right handed). AMLRs were recorded from 29 scalp electrodes in response to binaural 4-kHz tone bursts. Frontocentral ROI comparisons revealed that Pa and Pb amplitudes were significantly larger in the left-handed than the right-handed group. Topographic brain maps showed different distributions in AMLR components between the two groups. In hemispheric comparisons, Pa amplitude differed significantly across groups. A left-hemisphere emphasis of Pa was found in the right-handed group but not in the left-handed group. This study provides evidence that handedness is associated with AMLR components in frontocentral and hemispheric ROI. Handedness should be considered an essential factor in the clinical or experimental use of AMLRs.

  17. Treatment for Alexia With Agraphia Following Left Ventral Occipito-Temporal Damage: Strengthening Orthographic Representations Common to Reading and Spelling

    Science.gov (United States)

    Rising, Kindle; Rapcsak, Steven Z.; Beeson, Pélagie M.

    2015-01-01

    Purpose Damage to left ventral occipito-temporal cortex can give rise to written language impairment characterized by pure alexia/letter-by-letter (LBL) reading, as well as surface alexia and agraphia. The purpose of this study was to examine the therapeutic effects of a combined treatment approach to address concurrent LBL reading with surface alexia/agraphia. Method Simultaneous treatment to address slow reading and errorful spelling was administered to 3 individuals with reading and spelling impairments after left ventral occipito-temporal damage due to posterior cerebral artery stroke. Single-word reading/spelling accuracy, reading latencies, and text reading were monitored as outcome measures for the combined effects of multiple oral re-reading treatment and interactive spelling treatment. Results After treatment, participants demonstrated faster and more accurate single-word reading and improved text-reading rates. Spelling accuracy also improved, particularly for untrained irregular words, demonstrating generalization of the trained interactive spelling strategy. Conclusion This case series characterizes concomitant LBL with surface alexia/agraphia and demonstrates a successful treatment approach to address both the reading and spelling impairment. PMID:26110814

  18. Energy metabolisme and brain damage : Investigations by positron emission tomography (PET); the role of ketone bodies in cerebral protection

    NARCIS (Netherlands)

    Prenen, Gerardus Hyacinthus Maria

    1992-01-01

    In a general sense this thesis comprises three subjects: a) the changes in energy metabolism of the brain during cerebral pathology, b) the effect of alterations in energy metabolism on the extent of brain damage, and c) measures to prevent or limit brain damage. In this context the formation of

  19. Lipopolysaccharide hyporesponsiveness: protective or damaging response to the brain?

    Science.gov (United States)

    Pardon, Marie Christine

    2015-01-01

    Lipopolysaccharide (LPS) endotoxins are widely used as experimental models of systemic bacterial infection and trigger robust inflammation by potently activating toll-like receptors 4 (TLR4) expressed on innate immune cells. Their ability to trigger robust neuroinflammation despite poor brain penetration can prove useful for the understanding of how inflammation induced by viral infections contributes to the pathogenesis of neurodegenerative diseases. A single LPS challenge often result in a blunted inflammatory response to subsequent stimulation by LPS and other TLR ligands, but the extent to which endotoxin tolerance occur in the brain requires further clarification. LPS is also thought to render the brain transiently resistant to subsequent brain injuries by attenuating the concomitant pro-inflammatory response. While LPS hyporesponsiveness and preconditioning are classically seen as protective mechanisms limiting the toxic effects of sustained inflammation, recent research casts doubt as to whether they have beneficial or detrimental roles on the brain and in neurodegenerative disease. These observations suggest that spatio-temporal aspects of the immune responses to LPS and the disease status are determinant factors. Endotoxin tolerance may lead to a late pro-inflammatory response with potential harmful consequences. And while reduced TLR4 signaling reduces the risk of neurodegenerative diseases, up-regulation of anti-inflammatory cytokines associated with LPS hyporesponsiveness can have deleterious consequences to the brain by inhibiting the protective phenotype of microglia, aggravating the progression of some neurodegenerative conditions such as Alzheimer's disease. Beneficial effects of LPS preconditioning, however appear to require a stimulation of anti-inflammatory mediators rather than an attenuation of the pro-inflammatory response.

  20. [Evaluation of different treatment in minimal brain damage].

    Science.gov (United States)

    Ortiz de Alemán, M Y; Castañón de Martínez, V

    1977-01-01

    In 78 children (5-13 years old) with minimal brain dysfunction, a comparative trial was carried out in order to evaluate three different treatment plans: carbamazepine alone, carbamazepine plus psychotherapy and psychotherapy alone. The improvement obtained in children who received carbamazepine (alone or with psychoterapy) was greater than that of patients treated with psychotherapy only. The difference was highly statistically significant (p=0.01). Carbamazepine was well tolerated. This trial has shown that carbamazepine is a useful aid in the treatment of behavioral and learning disorders occurring in children with minimal brain dysfunction.

  1. Effect of propolis consumption on hepatotoxicity and brain damage ...

    African Journals Online (AJOL)

    user

    2013-08-14

    Aug 14, 2013 ... Lipoprotein metabolism during acute inhibition of hepatic triglyceride lipase in the Cynomolgus monkey. J. Clin. Invest. 70. (6):1184-1192. Gonzalez R, Rernirez D, Rodriguez S (1994). Hepatoprotective effects of propolis extract on paracetarnol induced liver damage in mice. Phytother. Res. 8:229-232.

  2. Prostacyclin infusion may prevent secondary damage in pericontusional brain tissue

    DEFF Research Database (Denmark)

    Reinstrup, Peter; Nordström, Carl-Henrik

    2011-01-01

    Prostacyclin is a potent vasodilator, inhibitor of leukocyte adhesion, and platelet aggregation, and has been suggested as therapy for cerebral ischemia. A case of focal traumatic brain lesion that was monitored using intracerebral microdialysis, and bedside analysis and display is reported here........ When biochemical signs of cerebral ischemia progressed, i.v. infusion of prostacyclin was started....

  3. Zingiber officinale Mitigates Brain Damage and Improves Memory Impairment in Focal Cerebral Ischemic Rat

    Directory of Open Access Journals (Sweden)

    Jintanaporn Wattanathorn

    2011-01-01

    Full Text Available Cerebral ischemia is known to produce brain damage and related behavioral deficits including memory. Recently, accumulating lines of evidence showed that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, possible protective effect of Zingiber officinale, a medicinal plant reputed for neuroprotective effect against oxidative stress-related brain damage, on brain damage and memory deficit induced by focal cerebral ischemia was elucidated. Male adult Wistar rats were administrated an alcoholic extract of ginger rhizome orally 14 days before and 21 days after the permanent occlusion of right middle cerebral artery (MCAO. Cognitive function assessment was performed at 7, 14, and 21 days after MCAO using the Morris water maze test. The brain infarct volume and density of neurons in hippocampus were also determined. Furthermore, the level of malondialdehyde (MDA, superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px in cerebral cortex, striatum, and hippocampus was also quantified at the end of experiment. The results showed that cognitive function and neurons density in hippocampus of rats receiving ginger rhizome extract were improved while the brain infarct volume was decreased. The cognitive enhancing effect and neuroprotective effect occurred partly via the antioxidant activity of the extract. In conclusion, our study demonstrated the beneficial effect of ginger rhizome to protect against focal cerebral ischemia.

  4. Primary gonadal damage following treatment of brain tumors in childhood

    International Nuclear Information System (INIS)

    Ahmed, S.R.; Shalet, S.M.; Campbell, R.H.; Deakin, D.P.

    1983-01-01

    Gonadal function was studied in two groups of children previously treated for medulloblastoma with surgery followed by postoperative craniospinal irradiation. In group 1 but not in group 2, the children also received adjuvant chemotherapy for one to two years. All children in group 1 received a nitrosourea (BCNU or CCNU), plus vincristine in four and procarbazine in three patients. The nine children in group 1 showed clinical and biochemical evidence of gonadal damage with elevated serum FSH concentrations and, in the boys, small testes for their stage of pubertal development. In group 2 (n . 8), each child had completed pubertal development normally, the boys had adult sized testes and the girls regular menses. Gonadotropin values were normal in all eight children. We conclude that nitrosoureas were responsible for the gonadal damage in the children in group 1, with procarbazine also contributing to the damage in the three children who received this drug. In view of the limited proved value of adjuvant chemotherapy with nitrosoureas in the treatment of medulloblastoma, recognition of this serious complication of cytotoxic drug therapy may necessitate reassessing in which subgroups of children with medulloblastoma the benefits of adjuvant chemotherapy outweigh the complications

  5. Brain damage following prophylactic cranial irradiation in lung cancer survivors.

    Science.gov (United States)

    Simó, Marta; Vaquero, Lucía; Ripollés, Pablo; Jové, Josep; Fuentes, Rafael; Cardenal, Felipe; Rodríguez-Fornells, Antoni; Bruna, Jordi

    2016-03-01

    Long-term toxic effects of prophylactic cranial irradiation (PCI) on cognition in small cell lung cancer (SCLC) patients have not yet been well-established. The aim of our study was to examine the cognitive toxic effects together with brain structural changes in a group of long-term SCLC survivors treated with PCI. Eleven SCLC patients, who underwent PCI ≥ 2 years before, were compared with an age and education matched healthy control group. Both groups were evaluated using a neuropsychological battery and multimodal structural magnetic resonance imaging. Voxel-based morphometry and Tract-based Spatial Statistics were used to study gray matter density (GMD) and white matter (WM) microstructural changes. Cognitive deterioration was correlated with GMD and Fractional Anisotropy (FA). Finally, we carried out a single-subject analysis in order to evaluate individual structural brain changes. Nearly half of the SCLC met criteria for cognitive impairment, all exhibiting a global worsening of cognitive functioning. Patients showed significant decreases of GMD in basal ganglia bilaterally (putamen and caudate), bilateral thalamus and right insula, together with WM microstructural changes of the entire corpus callosum. Cognitive deterioration scores correlated positively with mean FA values in the corpus callosum. Single-subject analysis revealed that GMD and WM changes were consistently observed in nearly all patients. This study showed neuropsychological deficits together with brain-specific structural differences in long-term SCLC survivors. Our results suggest that PCI therapy, possibly together with platinum-based chemotherapy, was associated to permanent long-term cognitive and structural brain effects in a SCLC population.

  6. Electroencephalographic (eeg coherence between visual and motor areas of the left and the right brain hemisphere while performing visuomotor task with the right and the left hand

    Directory of Open Access Journals (Sweden)

    Simon Brežan

    2007-09-01

    Full Text Available Background: Unilateral limb movements are based on the activation of contralateral primary motor cortex and the bilateral activation of premotor cortices. Performance of a visuomotor task requires a visuomotor integration between motor and visual cortical areas. The functional integration (»binding« of different brain areas, is probably mediated by the synchronous neuronal oscillatory activity, which can be determined by electroencephalographic (EEG coherence analysis. We introduced a new method of coherence analysis and compared coherence and power spectra in the left and right hemisphere for the right vs. left hand visuomotor task, hypothesizing that the increase in coherence and decrease in power spectra while performing the task would be greater in the contralateral hemisphere.Methods: We analyzed 6 healthy subjects and recorded their electroencephalogram during visuomotor task with the right or the left hand. For data analysis, a special Matlab computer programme was designed. The results were statistically analysed by a two-way analysis of variance, one-way analysis of variance and post-hoc t-tests with Bonferroni correction.Results: We demonstrated a significant increase in coherence (p < 0.05 for the visuomotor task compared to control tasks in alpha (8–13 Hz in beta 1 (13–20 Hz frequency bands between visual and motor electrodes. There were no significant differences in coherence nor power spectra depending on the hand used. The changes of coherence and power spectra between both hemispheres were symmetrical.Conclusions: In previous studies, a specific increase of coherence and decrease of power spectra for the visuomotor task was found, but we found no conclusive asymmetries when performing the task with right vs. left hand. This could be explained in a way that increases in coherence and decreases of power spectra reflect symmetrical activation and cooperation between more complex visual and motor brain areas.

  7. The Brain Tourniquet: Physiological Isolation of Brain Regions Damaged by Traumatic Head Injury

    Science.gov (United States)

    2008-06-19

    brain slices were treated after injury with either a nootropic agent (aniracetam, cyclothiazide, IDRA 21, or 1-BCP) or the antiepileptic drug...pharmacological approach. 15. SUBJECT TERMS traumatic brain injury, cell necrosis, neuroprotection, nootropics , epilepsy, long-term potentiation...render their use problematic in an effective brain tourniquet system. We chose to focus our investigations on the nootropic (cognition enhancing) drugs

  8. A Lesion-Proof Brain? Multidimensional Sensorimotor, Cognitive, and Socio-Affective Preservation Despite Extensive Damage in a Stroke Patient.

    Science.gov (United States)

    García, Adolfo M; Sedeño, Lucas; Herrera Murcia, Eduar; Couto, Blas; Ibáñez, Agustín

    2016-01-01

    In this study, we report an unusual case of mutidimensional sensorimotor, cognitive, and socio-affective preservation in an adult with extensive, acquired bilateral brain damage. At age 43, patient CG sustained a cerebral hemorrhage and a few months later, she suffered a second (ischemic) stroke. As a result, she exhibited extensive damage of the right hemisphere (including frontal, temporal, parietal, and occipital regions), left Sylvian and striatal areas, bilateral portions of the insula and the amygdala, and the splenium. However, against all probability, she was unimpaired across a host of cognitive domains, including executive functions, attention, memory, language, sensory perception (e.g., taste recognition and intensity discrimination), emotional processing (e.g., experiencing of positive and negative emotions), and social cognition skills (prosody recognition, theory of mind, facial emotion recognition, and emotional evaluation). Her functional integrity was further confirmed through neurological examination and contextualized observation of her performance in real-life tasks. In sum, CG's case resists straightforward classifications, as the extent and distribution of her lesions would typically produce pervasive, multidimensional deficits. We discuss the rarity of this patient against the backdrop of other reports of atypical cognitive preservation, expound the limitations of several potential accounts, and highlight the challenges that the case poses for current theories of brain organization and resilience.

  9. Brain parenchymal damage in neuromyelitis optica spectrum disorder - A multimodal MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Pache, F.; Paul, F. [Max Delbrueck Center for Molecular Medicine and Charite Universitaetsmedizin Berlin, NeuroCure Clinical Research Center and Experimental and Clinical Research Center, Berlin (Germany); Charite Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Zimmermann, H.; Lacheta, A.; Papazoglou, S.; Kuchling, J.; Wuerfel, J.; Brandt, A.U. [Max Delbrueck Center for Molecular Medicine and Charite Universitaetsmedizin Berlin, NeuroCure Clinical Research Center and Experimental and Clinical Research Center, Berlin (Germany); Finke, C. [Charite Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Humboldt-Universitaet zu Berlin, Berlin School of Mind and Brain, Berlin (Germany); Hamm, B. [Charite Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Ruprecht, K. [Charite Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Scheel, M. [Max Delbrueck Center for Molecular Medicine and Charite Universitaetsmedizin Berlin, NeuroCure Clinical Research Center and Experimental and Clinical Research Center, Berlin (Germany); Charite Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany)

    2016-12-15

    To investigate different brain regions for grey (GM) and white matter (WM) damage in a well-defined cohort of neuromyelitis optica spectrum disorder (NMOSD) patients and compare advanced MRI techniques (VBM, Subcortical and cortical analyses (Freesurfer), and DTI) for their ability to detect damage in NMOSD. We analyzed 21 NMOSD patients and 21 age and gender matched control subjects. VBM (GW/WM) and DTI whole brain (TBSS) analyses were performed at different statistical thresholds to reflect different statistical approaches in previous studies. In an automated atlas-based approach, Freesurfer and DTI results were compared between NMOSD and controls. DTI TBSS and DTI atlas based analysis demonstrated microstructural impairment only within the optic radiation or in regions associated with the optic radiation (posterior thalamic radiation p < 0.001, 6.9 % reduction of fractional anisotropy). VBM demonstrated widespread brain GM and WM reduction, but only at exploratory statistical thresholds, with no differences remaining after correction for multiple comparisons. Freesurfer analysis demonstrated no group differences. NMOSD specific parenchymal brain damage is predominantly located in the optic radiation, likely due to a secondary degeneration caused by ON. In comparison, DTI appears to be the most reliable and sensitive technique for brain damage detection in NMOSD. (orig.)

  10. Effect of weightlifting upon left ventricular function and markers of cardiomyocyte damage.

    Science.gov (United States)

    Stephenson, Claire; McCarthy, Jenny; Vikelis, Elias; Shave, Rob; Whyte, Greg; Gaze, David; George, Keith

    The purpose of this study was to assess left ventricular (LV) function and biochemical markers of myocyte after prolonged weightlifting activity. Seventeen male subjects (age range 20-34 years) performed a 90-min bout of weightlifting exercise consisting of three sets of 8-10 repetitions at 70% one-repetition maximum. Body mass, heart rate, systolic blood pressure (SBP) and echocardiographically determined indices of LV loading (LV internal diameter during diastole, LV meridonial wall stress), systolic function (stroke volume (SV), ejection fraction (EF), end-systolic pressure volume relationship; SBP/ESV) and diastolic filling (ratio of early to late; E:A) were obtained pre-exercise, immediately after and 24 h post-exercise. A 5-ml venous blood sample was obtained for the assessment of cardiac troponin T (cTnT) via third generation electrochemiluminescence assay. Data were assessed via one-way ANOVA and Pearson's correlation. Although SV declined (80.9 +/- 18.3 vs. 66.9 +/- 17.2, p 0.05). The E:A ratio was significantly decreased following exercise (1.78 +/- 0.41 vs. 1.33 +/- 0.37, p < 0.05). This decrease was not fully explained by loading conditions (r2 = 0.05 to 0.24). All values returned to baseline 24 h post-exercise. No cTnT was reported in any of the blood samples. In conclusion, there was no significant evidence of any LV contractile depression and no cTnT was observed post exercise. The small reduction in diastolic filling could not be explained by changes in haemodynamic loading or the post-exercise elevation in heart rate.

  11. Tempol prevents cardiac oxidative damage and left ventricular dysfunction in the PPAR-α KO mouse.

    Science.gov (United States)

    Guellich, Aziz; Damy, Thibaud; Conti, Marc; Claes, Victor; Samuel, Jane-Lise; Pineau, Thierry; Lecarpentier, Yves; Coirault, Catherine

    2013-06-01

    Peroxisome proliferator-activated receptor (PPAR)-α deletion induces a profound decrease in MnSOD activity, leading to oxidative stress and left ventricular (LV) dysfunction. We tested the hypothesis that treatment of PPAR-α knockout (KO) mice with the SOD mimetic tempol prevents the heart from pathological remodelling and preserves LV function. Twenty PPAR-α KO mice and 20 age-matched wild-type mice were randomly treated for 8 wk with vehicle or tempol in the drinking water. LV contractile parameters were determined both in vivo using echocardiography and ex vivo using papillary muscle mechanics. Translational and posttranslational modifications of myosin heavy chain protein as well as the expression and activity of major antioxidant enzymes were measured. Tempol treatment did not affect LV function in wild-type mice; however, in PPAR-α KO mice, tempol prevented the decrease in LV ejection fraction and restored the contractile parameters of papillary muscle, including maximum shortening velocity, maximum extent of shortening, and total tension. Moreover, compared with untreated PPAR-α KO mice, myosin heavy chain tyrosine nitration and anion superoxide production were markedly reduced in PPAR-α KO mice after treatment. Tempol also significantly increased glutathione peroxidase and glutathione reductase activities (~ 50%) in PPAR-α KO mice. In conclusion, these findings demonstrate that treatment with the SOD mimetic tempol can prevent cardiac dysfunction in PPAR-α KO mice by reducing the oxidation of contractile proteins. In addition, we show that the beneficial effects of tempol in PPAR-α KO mice involve activation of the glutathione peroxidase/glutathione reductase system.

  12. Relationship between tissue Doppler measurements of left ventricular diastolic function and silent brain infarction in patients with non-valvular atrial fibrillation.

    Science.gov (United States)

    Ishikawa, Sera; Sugioka, Kenichi; Sakamoto, Shinichi; Fujita, Suwako; Ito, Asahiro; Norioka, Naoki; Iwata, Shinichi; Nakagawa, Masashi; Takagi, Masahiko; Miki, Yukio; Ueda, Makiko; Yoshiyama, Minoru

    2017-11-01

    Left ventricular (LV) diastolic function assessed by tissue Doppler imaging (TDI) is reported to be associated with left atrial (LA) blood stasis in patients with non-valvular atrial fibrillation (AF). This study aimed to evaluate the relationship of diastolic TDI parameters with silent brain infarction (SBI) on brain magnetic resonance imaging (MRI), and in turn the risks of subsequent stroke or dementia, in non-valvular AF patients. The study population consisted of 171 neurologically asymptomatic patients with non-valvular AF who underwent transoesophageal echocardiography (TOE) (128 men; mean age, 63 ± 11 years). We measured diastolic TDI parameters by transthoracic echocardiography, and also screened for SBI employing brain MRI. Early transmitral flow velocity (E) and mitral annular velocity by TDI (e') were measured, and E/e' ratios were calculated. An increased tertile of the E/e' ratio was significantly related to high prevalences of LA abnormalities detected by TOE (32% vs. 12% vs. 9%; P =0.002) and SBI on brain MRI (46% vs. 23% vs. 14%; P chronic kidney disease, and CHA2DS2-VASc score ≥2, the E/e' ratio ≥12.4 was found to be an independent predictor of the presence of SBI (OR 3.98, 95% CI 1.74-9.07; P = 0.001). Impaired LV diastolic function evaluated by increased E/e' ratio was closely associated with the presence of SBI independent of CHA2DS2-VASc score. TDI measurements are non-invasive and useful for risk stratification of the early stage of cerebral damages in patients with non-valvular AF. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions, please email: journals.permissions@oup.com.

  13. Ablation of brain by erbium laser: study of dynamic behavior and tissue damage

    Science.gov (United States)

    Cubeddu, Rinaldo; Sozzi, C.; Taroni, Paola; Valentini, Gianluca; Bottiroli, Giovanni F.; Croce, Anna C.

    1994-02-01

    In this work two aspects of the ablation of brain by Erbium laser have been mainly addressed: the time evolution of the phenomenon and the damages, both thermal and mechanical, produced in the tissues. The time resolved images acquired during the laser interaction revealed that deep lacerations develop in the tissue due to a mechanical stress. The damages have been evaluated by studying the changes in the autofluorescence emission properties and the reduction in enzymatic activities (NADH Oxidase and ATPase). The results obtained in this study indicate that the thermal alterations resulting from the exposure to Erbium laser are limited, whereas the mechanical damages can be very pronounced.

  14. Carcinoma cells misuse the host tissue damage response to invade the brain.

    Science.gov (United States)

    Chuang, Han-Ning; van Rossum, Denise; Sieger, Dirk; Siam, Laila; Klemm, Florian; Bleckmann, Annalen; Bayerlová, Michaela; Farhat, Katja; Scheffel, Jörg; Schulz, Matthias; Dehghani, Faramarz; Stadelmann, Christine; Hanisch, Uwe-Karsten; Binder, Claudia; Pukrop, Tobias

    2013-08-01

    The metastatic colonization of the brain by carcinoma cells is still barely understood, in particular when considering interactions with the host tissue. The colonization comes with a substantial destruction of the surrounding host tissue. This leads to activation of damage responses by resident innate immune cells to protect, repair, and organize the wound healing, but may distract from tumoricidal actions. We recently demonstrated that microglia, innate immune cells of the CNS, assist carcinoma cell invasion. Here we report that this is a fatal side effect of a physiological damage response of the brain tissue. In a brain slice coculture model, contact with both benign and malignant epithelial cells induced a response by microglia and astrocytes comparable to that seen at the interface of human cerebral metastases. While the glial damage response intended to protect the brain from intrusion of benign epithelial cells by inducing apoptosis, it proved ineffective against various malignant cell types. They did not undergo apoptosis and actually exploited the local tissue reaction to invade instead. Gene expression and functional analyses revealed that the C-X-C chemokine receptor type 4 (CXCR4) and WNT signaling were involved in this process. Furthermore, CXCR4-regulated microglia were recruited to sites of brain injury in a zebrafish model and CXCR4 was expressed in human stroke patients, suggesting a conserved role in damage responses to various types of brain injuries. Together, our findings point to a detrimental misuse of the glial damage response program by carcinoma cells resistant to glia-induced apoptosis. Copyright © 2013 Wiley Periodicals, Inc.

  15. White-matter microstructure and language lateralization in left-handers: a whole-brain MRI analysis.

    Science.gov (United States)

    Perlaki, Gabor; Horvath, Reka; Orsi, Gergely; Aradi, Mihaly; Auer, Tibor; Varga, Eszter; Kantor, Gyongyi; Altbäcker, Anna; John, Flora; Doczi, Tamas; Komoly, Samuel; Kovacs, Norbert; Schwarcz, Attila; Janszky, Jozsef

    2013-08-01

    Most people are left-hemisphere dominant for language. However the neuroanatomy of language lateralization is not fully understood. By combining functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), we studied whether language lateralization is associated with cerebral white-matter (WM) microstructure. Sixteen healthy, left-handed women aged 20-25 were included in the study. Left-handers were targeted in order to increase the chances of involving subjects with atypical language lateralization. Language lateralization was determined by fMRI using a verbal fluency paradigm. Tract-based spatial statistics analysis of DTI data was applied to test for WM microstructural correlates of language lateralization across the whole brain. Fractional anisotropy and mean diffusivity were used as indicators of WM microstructural organization. Right-hemispheric language dominance was associated with reduced microstructural integrity of the left superior longitudinal fasciculus and left-sided parietal lobe WM. In left-handed women, reduced integrity of the left-sided language related tracts may be closely linked to the development of right hemispheric language dominance. Our results may offer new insights into language lateralization and structure-function relationships in human language system. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Early (n170/m170) face-sensitivity despite right lateral occipital brain damage in acquired prosopagnosia.

    Science.gov (United States)

    Prieto, Esther Alonso; Caharel, Stéphanie; Henson, Richard; Rossion, Bruno

    2011-01-01

    Compared to objects, pictures of faces elicit a larger early electromagnetic response at occipito-temporal sites on the human scalp, with an onset of 130 ms and a peak at about 170 ms. This N170 face effect is larger in the right than the left hemisphere and has been associated with the early categorization of the stimulus as a face. Here we tested whether this effect can be observed in the absence of some of the visual areas showing a preferential response to faces as typically identified in neuroimaging. Event-related potentials were recorded in response to faces, cars, and their phase-scrambled versions in a well-known brain-damaged case of prosopagnosia (PS). Despite the patient's right inferior occipital gyrus lesion encompassing the most posterior cortical area showing preferential response to faces ("occipital face area"), we identified an early face-sensitive component over the right occipito-temporal hemisphere of the patient that was identified as the N170. A second experiment supported this conclusion, showing the typical N170 increase of latency and amplitude in response to inverted faces. In contrast, there was no N170 in the left hemisphere, where PS has a lesion to the middle fusiform gyrus and shows no evidence of face-preferential response in neuroimaging (no left "fusiform face area"). These results were replicated by a magnetoencephalographic investigation of the patient, disclosing a M170 component only in the right hemisphere. These observations indicate that face-preferential activation in the inferior occipital cortex is not necessary to elicit early visual responses associated with face perception (N170/M170) on the human scalp. These results further suggest that when the right inferior occipital cortex is damaged, the integrity of the middle fusiform gyrus and/or the superior temporal sulcus - two areas showing face-preferential responses in the patient's right hemisphere - might be necessary to generate the N170 effect.

  17. Pathophysiology of repetitive head injury in sports. Prevention against catastrophic brain damage

    International Nuclear Information System (INIS)

    Mori, Tatsuro; Kawamata, Tatsuro; Katayama, Yoichi

    2008-01-01

    The most common head injury in sports is concussion and experiencing multiple concussions in a short period of time sometimes can cause severe brain damage. In this paper, we investigate severe brain damage due to repeated head injury in sports and discuss the pathophysiology of repeated sports injury. The majority of these severe cases are usually male adolescents or young adults that suffer a second head injury before they have recovered from the first head injury. All cases that could be confirmed by brain CT scan after the second injury revealed brain swelling associated with a thin subdural hematoma. We suggested that the existence of subdural hematoma is one of the major causes of brain swelling after repeated head injury in sports. Since repeated concussions occurring within a short period may have a risk for severe brain damage, the diagnosis for initial cerebral concussion should be done appropriately. To prevent catastrophic brain damage, the player who suffered from concussion should not engage in any sports before recovery. The american Academy of Neurology and Colorado Medical Society set a guideline to return to play after cerebral concussion. An international conference on concussion in sports was held at Prague in 2004. The summary and agreement of this meeting was published and the Sports Concussion Assessment Tool (SCAT) was introduced to treat sports-related concussion. In addition, a number of computerized cognitive assessment tests and test batteries have been developed to allow athletes to return to play. It is important that coaches, as well as players and trainers, understand the medical issues involved in concussion. (author)

  18. The ability of left- and right-hemisphere damaged individuals to produce prosodic cues to disambiguate Korean idiomatic sentences

    Directory of Open Access Journals (Sweden)

    Seung-Yun Yang

    2014-05-01

    Three speech language pathologists with training in phonetics participated as raters for vocal qualities. Nasality was significantly salient vocal quality of idiomatic utterances. Conclusion The findings support that (1 LHD negatively affected the production of durational cues and RHD negatively affected the production of fundamental frequency cues in idiomatic-literal contrasts; (2 healthy listeners successfully identified idiomatic and literal versions of ambiguous sentences produced by healthy speakers but not by RHD speakers; (3 Productions in brain-damaged participants approximated HC’s measures in the repetition tasks, but not in the elicitation tasks; (4 Nasal voice quality was judged to be associated with idiomatic utterances in all groups of participants. Findings agree with previous studies indicating HC’s abilities to discriminate literal versus idiomatic meanings in ditropically ambiguous idioms, as well as deficient processing of pitch production and impaired pragmatic ability in RHD.

  19. Automated detection of unfilled pauses in speech of healthy and brain-damaged individuals

    NARCIS (Netherlands)

    Ossewaarde, Roelant; Jonkers, Roel; Jalvingh, Fedor; Bastiaanse, Yvonne

    Automated detection of un lled pauses in speech of healthy and brain-damaged individuals Roelant Ossewaardea,b, Roel Jonkersa, Fedor Jalvingha,c, Roelien Bastiaansea aCenter for Language and Cognition, University of Groningen; bInstitute for ICT, HU University of Applied Science, Utrecht; cSt.

  20. Principles of Experience-Dependent Neural Plasticity: Implications for Rehabilitation after Brain Damage

    Science.gov (United States)

    Kleim, Jeffrey A.; Jones, Theresa A.

    2008-01-01

    Purpose: This paper reviews 10 principles of experience-dependent neural plasticity and considerations in applying them to the damaged brain. Method: Neuroscience research using a variety of models of learning, neurological disease, and trauma are reviewed from the perspective of basic neuroscientists but in a manner intended to be useful for the…

  1. Perioperative brain damage after cardiovascular surgery; Clinical evaluation including CT scans

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Michiyuki; Kuriyama, Yoshihiro; Sawada, Toru; Fujita, Tsuyoshi; Omae, T. (National Cardiovascular Center, Suita, Osaka (Japan))

    1989-08-01

    We examined 39 cases (1.6%) of post-operative brain damages out of 2,445 sequential cases of cardiovascular surgery in NCVC during past three years. In this study, we investigated clinical course and CT findings of each patient in details and analyzed the causes of the post operative brain damages. Of 39 cases, 23 (59%) were complicated with cerebral ischemia, 8 (21%) with subdural hematoma (SDH), 2 (5%) with intracranial hemorrhage (ICH) and 1 (2%) with subarachnoid hemorrhage (SAH), respectively. 5 cases (13%) had unclassified brain damages. In 23 cases of cerebral ischemia there were 5 cases of hypotension-induced ischemia, 4 cases of hypoxic encephalopathy, 3 cases of ischemia induced by intra-operative maneuvers, 3 cases of embolism after operation and a single case of 'microembolism'. Seven cases could not be classified into any of these categories. Duration of ECC was 169.9 {plus minus} 48.5 min on the average in patients with such brain damages as SDH, ICH, SAH and cardiogenic embolism, which were thought not to be related with ECC. On the other hand, that of the patients hypotensive ischemia or 'microembolism' gave an average value of 254.5 {plus minus} 96.8 min. And these patients were thought to have occurred during ECC. There was a statistically significant difference between these two mean values. (J.P.N.).

  2. Alcohol-Mediated Organ Damages: Heart and Brain

    Directory of Open Access Journals (Sweden)

    Adam Obad

    2018-02-01

    Full Text Available Alcohol is one of the most commonly abused substances in the United States. Chronic consumption of ethanol has been responsible for numerous chronic diseases and conditions globally. The underlying mechanism of liver injury has been studied in depth, however, far fewer studies have examined other organs especially the heart and the central nervous system (CNS. The authors conducted a narrative review on the relationship of alcohol with heart disease and dementia. With that in mind, a complex relationship between inflammation and cardiovascular disease and dementia has been long proposed but inflammatory biomarkers have gained more attention lately. In this review we examine some of the consequences of the altered cytokine regulation that occurs in alcoholics in organs other than the liver. The article reviews the potential role of inflammatory markers such as TNF-α in predicting dementia and/or cardiovascular disease. It was found that TNF-α could promote and accelerate local inflammation and damage through autocrine/paracrine mechanisms. Unraveling the mechanisms linking chronic alcohol consumption with proinflammatory cytokine production and subsequent inflammatory signaling pathways activation in the heart and CNS, is essential to improve our understanding of the disease and hopefully facilitate the development of new remedies.

  3. Modafinil Effects on Behavior and Oxidative Damage Parameters in Brain of Wistar Rats

    Directory of Open Access Journals (Sweden)

    Felipe Ornell

    2014-01-01

    Full Text Available The effects of modafinil (MD on behavioral and oxidative damage to protein and lipid in the brain of rats were evaluated. Wistar rats were given a single administration by gavage of water or MD (75, 150, or 300 mg/kg. Behavioral parameters were evaluated in open-field apparatus 1, 2, and 3 h after drug administration. Thiobarbituric acid reactive substances (TBARS and protein carbonyl formation were measured in the brain. MD increased locomotor activity at the highest dose 1 and 3 h after administration. MD administration at the dose of 300 mg/kg increased visits to the center of open-field 1 h after administration; however, 3 h after administration, all administered doses of MD increased visits to the open-field center. MD 300 mg/kg increased lipid damage in the amygdala, hippocampus, and striatum. Besides, MD increased protein damage in the prefrontal cortex, amygdala, and hippocampus; however, this effect varies depending on the dose administered. In contrast, the administration of MD 75 and 300 mg/kg decreased the protein damage in the striatum. This study demonstrated that the MD administration induces behavioral changes, which was depending on the dose used. In addition, the effects of MD on oxidative damage parameters seemed to be in specific brain region and doses.

  4. [Cerebral visual impairment in brain-damaged children - four case studies].

    Science.gov (United States)

    Dalens, H; Solé, M; Neyrial, M

    2006-01-01

    Cerebral visual impairment is one of the main causes of childhood visual impairment in developed countries. These disorders are often linked with pre- or perinatal hypoxic brain injuries. The patterns of brain injuries depend on the severity and duration of hypoxia and the child's age. In premature children, periventricular leukomalacia affects the optic radiations and the subcortical visual brain. In full-term newborn babies, chronic hypoxia leads to the damage of the visual cortex and acute hypoxia damages the basal ganglia. They recover from cortical blindness in variable ways. Visual dysfunction is characterized by fixation troubles, subnormal acuity (crowding), difficulty with perceiving visual fields, movements, depth, cognitive defects (agnosia of images, objects or faces, visuospatial disorders), ocular motility disorders (tonic gaze deviation, strabismus, nystagmus). Accompanying these cerebral injuries, there are accommodation defects and optic disk abnormalities that vary according to the gestational age at the time of hypoxia.

  5. Melatonin attenuated brain death tissue extract-induced cardiac damage by suppressing DAMP signaling.

    Science.gov (United States)

    Sung, Pei-Hsun; Lee, Fan-Yen; Lin, Ling-Chun; Chen, Kuan-Hung; Lin, Hung-Sheng; Shao, Pei-Lin; Li, Yi-Chen; Chen, Yi-Ling; Lin, Kun-Chen; Yuen, Chun-Man; Chang, Hsueh-Wen; Lee, Mel S; Yip, Hon-Kan

    2018-01-09

    We tested the hypothesis that melatonin prevents brain death (BD) tissue extract (BDEX)-induced cardiac damage by suppressing inflammatory damage-associated molecular pattern (DAMP) signaling in rats. Six hours after BD induction, levels of a DAMP component (HMGB1) and inflammatory markers (TLR-2, TLR-4, MYD88, IκB, NF-κB, IL-1β, IFN-γ, TNF-α and IL-6) were higher in brain tissue from BD animals than controls. Levels of HMGB1 and inflammatory markers were higher in BDEX-treated H9C2 cardiac myoblasts than in cells treated with healthy brain tissue extract. These increases were attenuated by melatonin but re-induced with luzindole (all P DAMP inflammatory axis.

  6. [Importance of hypertensive left ventricular hypertrophy in patients with ischemic events of the heart or brain].

    Science.gov (United States)

    Castilla-Guerra, L; Fernández-Moreno, M C; Aguilera-Saborido, A; Solanella-Soler, J

    2016-01-01

    Hypertensive left ventricular hypertrophy (H-LVH) is a potentially modifiable vascular risk factor (VRF) often overlooked in clinical practice. We aimed to evaluate the frequency of H-LVH in patients with coronary heart disease (CHD) or ischemic stroke (IS). We retrospectively assessed all the echocardiography studies of patients admitted with the diagnosis CHD or IS over a 4-year period. We studied 533 patients, 330 with CHD and 203 with IS. Mean age was 69 (±11) years, 61.5% males. Hypertension was the most common RF: 362 patients (67.9%) (CHD vs. IS: 70 vs. 64.5%; P=NS). H-LVH was seen in 234 patients (43.9%) (CHD vs. IS: 44.8 vs. 42.3%; P=NS). Patients with H-LVH were older and received a greater number of antihypertensive drugs at discharge. Half of patients with hypertension presented H-LVH (184 patients; 50.8%), with similar frequency in both groups (CHD vs. IS: 50.6 vs. 51.1%; P=NS). Neither patients' characteristics nor VRF with the exception of hypertension (P=.0001) were associated with H-LVH. H-LVH is a major VRF in patients with ischemic events in the heart and brain. Nearly half the patients present H-LVH, with a similar frequency in both groups. It is important to identify H-LVH in these patients to optimize treatment and improve long-term prognosis. Copyright © 2015 SEHLELHA. Published by Elsevier España, S.L.U. All rights reserved.

  7. Apraxia in left-handers.

    Science.gov (United States)

    Goldenberg, Georg

    2013-08-01

    In typical right-handed patients both apraxia and aphasia are caused by damage to the left hemisphere, which also controls the dominant right hand. In left-handed subjects the lateralities of language and of control of the dominant hand can dissociate. This permits disentangling the association of apraxia with aphasia from that with handedness. Pantomime of tool use, actual tool use and imitation of meaningless hand and finger postures were examined in 50 consecutive left-handed subjects with unilateral hemisphere lesions. There were three aphasic patients with pervasive apraxia caused by left-sided lesions. As the dominant hand is controlled by the right hemisphere, they constitute dissociations of apraxia from handedness. Conversely there were also three patients with pervasive apraxia caused by right brain lesions without aphasia. They constitute dissociations of apraxia from aphasia. Across the whole group of patients dissociations from handedness and from aphasia were observed for all manifestations of apraxia, but their frequency depended on the type of apraxia. Defective pantomime and defective tool use occurred rarely without aphasia, whereas defective imitation of hand, but not finger, postures was more frequent after right than left brain damage. The higher incidence of defective imitation of hand postures in right brain damage was mainly due to patients who had also hemi-neglect. This interaction alerts to the possibility that the association of right hemisphere damage with apraxia has to do with spatial aptitudes of the right hemisphere rather than with its control of the dominant left hand. Comparison with data from right-handed patients showed no differences between the severity of apraxia for imitation of hand or finger postures, but impairment on pantomime of tool use was milder in apraxic left-handers than in apraxic right-handers. This alleviation of the severity of apraxia corresponded with a similar alleviation of the severity of aphasia as

  8. Brain damages in ketamine addicts as revealed by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Chunmei eWang

    2013-07-01

    Full Text Available Ketamine, a known antagonist of N-methyl-D-aspartic (NMDA glutamate receptors, had been used as an anesthetic particularly for pediatric or for cardiac patients. Unfortunately, ketamine has become an abusive drug in many parts of the world while chronic and prolonged usage led to damages of many organs including the brain. However, no studies on possible damages in the brains induced by chronic ketamine abuse have been documented in the human via neuroimaging. This paper described for the first time via employing magnetic resonance imaging (MRI the changes in ketamine addicts of 0.5 to 12 years and illustrated the possible brain regions susceptible to ketamine abuse. Twenty-one ketamine addicts were recruited and the results showed that the lesions in the brains of ketamine addicts were located in many regions which appeared 2-4 years after ketamine addiction. Cortical atrophy was usually evident in the frontal, parietal or occipital cortices of addicts. Such study confirmed that many brain regions in the human were susceptible to chronic ketamine injury and presented a diffuse effect of ketamine on the brain which might differ from other central nervous system (CNS drugs, such as cocaine, heroin and methamphetamine.

  9. Alcohol consumption during adolescence: A link between mitochondrial damage and ethanol brain intoxication.

    Science.gov (United States)

    Tapia-Rojas, Cheril; Mira, Rodrigo G; Torres, Angie K; Jara, Claudia; Pérez, María José; Vergara, Erick H; Cerpa, Waldo; Quintanilla, Rodrigo A

    2017-12-01

    Adolescence is a period of multiple changes where social behaviors influence interpersonal-relations. Adolescents live new experiences, including alcohol consumption which has become an increasing health problem. The age of onset for consumption has declined in the last decades, and additionally, the adolescents now uptake greater amounts of alcohol per occasion. Alcohol consumption is a risk factor for accidents, mental illnesses or other pathologies, as well as for the appearance of addictions, including alcoholism. An interesting topic to study is the damage that alcohol induces on the central nervous system (CNS) in the young population. The brain undergoes substantial modifications during adolescence, making brain cells more vulnerable to the ethanol toxicity. Over the last years, the brain mitochondria have emerged as a cell organelle which is particularly susceptible to alcohol. Mitochondria suffer severe alterations which can be exacerbated if the amount of alcohol or the exposure time is increased. In this review, we focus on the changes that the adolescent brain undergoes after drinking, placing particular emphasis on mitochondrial damage and their consequences against brain function. Finally, we propose the mitochondria as an important mediator in alcohol toxicity and a potential therapeutic target to reduce or treat brain conditions associated with excessive alcohol consumption. © 2017 Wiley Periodicals, Inc.

  10. Prenatal exposure to atomic radiation and brain damage

    International Nuclear Information System (INIS)

    Otake, Masanori; Yoshimaru, Hiroshi; Schull, W.J.

    1989-01-01

    The purpose of this study was threefold: to evaluate the risks to the developing human embryonic and fetal brain of exposure to ionizing radiation using the new DS86 doses; to compare the estimate of risk so derived with those based on the earlier T65DR doses; and to present the evidence bearing on a threshold in the low dose region under the two systems of dosimetry, especially for the data on clinically recognized severe mental retardation (SMR) and seizure. Regarding dose-related SMR, IQ scores, school performance and seizures, there was a high temporal correspondence between the T65DR and DS86 dosimetry systems. A linear no-threshold model with both dosimetry systems also revealed that a significant increase in SMR was observed when the subjects were exposed in the uterus during the periods both 8-15 and 16-25 weeks after fertilization. A threshold in the low dose region was not suggested with the T65DR fetal absorbed doses, but suggested with the DS86 uterine absorbed doses. However, the location or even the existence of a threshold during both periods after fertilization was difficult to demonstrate statistically with the DS86 uterine absorbed doses. When two probable nonradiation-related cases of Down's syndrome were excluded, a threshold with a lower bound was suggested to be observed in the 0.10-0.20 Gy region. Both dosimetries indicated a threshold in the dose-response function for mental retardation in the 16-25 week period, probably within the range from 0.23 to 0.70 Gy. The seizure data provided no persuasive evidence of a threshold during the 8-15 week period after fertilization; the 95% lower bound of the estimate of the threshold included zero. Finally, although the mean IQ scores and the mean school performances in the low dose region were similar to the values in the control group, particularly with doses under 0.10 Gy, evidence for a threshold is not compelling. (N.K.)

  11. Alpha1A-adrenergic receptor-directed autoimmunity induces left ventricular damage and diastolic dysfunction in rats.

    Directory of Open Access Journals (Sweden)

    Katrin Wenzel

    Full Text Available BACKGROUND: Agonistic autoantibodies to the alpha(1-adrenergic receptor occur in nearly half of patients with refractory hypertension; however, their relevance is uncertain. METHODS/PRINCIPAL FINDINGS: We immunized Lewis rats with the second extracellular-loop peptides of the human alpha(1A-adrenergic receptor and maintained them for one year. Alpha(1A-adrenergic antibodies (alpha(1A-AR-AB were monitored with a neonatal cardiomyocyte contraction assay by ELISA, and by ERK1/2 phosphorylation in human alpha(1A-adrenergic receptor transfected Chinese hamster ovary cells. The rats were followed with radiotelemetric blood pressure measurements and echocardiography. At 12 months, the left ventricles of immunized rats had greater wall thickness than control rats. The fractional shortening and dp/dt(max demonstrated preserved systolic function. A decreased E/A ratio in immunized rats indicated a diastolic dysfunction. Invasive hemodynamics revealed increased left ventricular end-diastolic pressures and decreased dp/dt(min. Mean diameter of cardiomyocytes showed hypertrophy in immunized rats. Long-term blood pressure values and heart rates were not different. Genes encoding sarcomeric proteins, collagens, extracellular matrix proteins, calcium regulating proteins, and proteins of energy metabolism in immunized rat hearts were upregulated, compared to controls. Furthermore, fibrosis was present in immunized hearts, but not in control hearts. A subset of immunized and control rats was infused with angiotensin (Ang II. The stressor raised blood pressure to a greater degree and led to more cardiac fibrosis in immunized, than in control rats. CONCLUSIONS/SIGNIFICANCE: We show that alpha(1A-AR-AB cause diastolic dysfunction independent of hypertension, and can increase the sensitivity to Ang II. We suggest that alpha(1A-AR-AB could contribute to cardiovascular endorgan damage.

  12. Examining Brain-Cognition Effects of Ginkgo Biloba Extract: Brain Activation in the Left Temporal and Left Prefrontal Cortex in an Object Working Memory Task

    Directory of Open Access Journals (Sweden)

    R. B. Silberstein

    2011-01-01

    Full Text Available Ginkgo Biloba extract (GBE is increasingly used to alleviate symptoms of age related cognitive impairment, with preclinical evidence pointing to a pro-cholinergic effect. While a number of behavioral studies have reported improvements to working memory (WM associated with GBE, electrophysiological studies of GBE have typically been limited to recordings during a resting state. The current study investigated the chronic effects of GBE on steady state visually evoked potential (SSVEP topography in nineteen healthy middle-aged (50-61 year old male participants whilst completing an object WM task. A randomized double-blind crossover design was employed in which participants were allocated to receive 14 days GBE and 14 days placebo in random order. For both groups, SSVEP was recorded from 64 scalp electrode sites during the completion of an object WM task both pre- and 14 days post-treatment. GBE was found to improve behavioural performance on the WM task. GBE was also found to increase the SSVEP amplitude at occipital and frontal sites and increase SSVEP latency at left temporal and left frontal sites during the hold component of the WM task. These SSVEP changes associated with GBE may represent more efficient processing during WM task completion.

  13. Left ventricular mass-geometry and silent cerebrovascular disease: The Cardiovascular Abnormalities and Brain Lesions (CABL) study.

    Science.gov (United States)

    Nakanishi, Koki; Jin, Zhezhen; Homma, Shunichi; Elkind, Mitchell S V; Rundek, Tatjana; Tugcu, Aylin; Yoshita, Mitsuhiro; DeCarli, Charles; Wright, Clinton B; Sacco, Ralph L; Di Tullio, Marco R

    2017-03-01

    Although abnormal left ventricular geometric patterns have prognostic value for morbidity and mortality, their possible association with silent cerebrovascular disease has not been extensively evaluated. We examined 665 participants in the CABL study who underwent transthoracic echocardiography and brain magnetic resonance imaging. Participants were divided into 4 geometric patterns: normal geometry (n=397), concentric remodeling (n=89), eccentric hypertrophy (n=126), and concentric hypertrophy (n=53). Subclinical cerebrovascular disease was defined as silent brain infarcts (SBIs) and white matter hyperintensity volume (WMHV; expressed as log-transformed percentage of the total cranial volume). Silent brain infarcts were observed in 94 participants (14%). Mean log-WMHV was -0.97±0.93. Concentric hypertrophy carried the greatest risk for both SBI (adjusted odds ratio [OR] 3.39, Pdisease. In subgroup analyses, concentric and eccentric hypertrophies were significantly associated with SBI and WMHV in both genders and nonobese participants, but differed for SBI by age (all ages for eccentric hypertrophy, only patients ≥70years for concentric hypertrophy) and by race-ethnicity (Hispanics for eccentric hypertrophy, blacks for concentric hypertrophy; no association in whites). Left ventricular hypertrophy, with both eccentric and concentric patterns, was significantly associated with subclinical cerebrovascular disease in a multiethnic stroke-free general population. Left ventricular geometric patterns may carry different risks for silent cerebrovascular disease in different sex, age, race-ethnic, and body size subgroups. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. DNA damage in the oligodendrocyte lineage and its role in brain aging.

    Science.gov (United States)

    Tse, Kai-Hei; Herrup, Karl

    2017-01-01

    Myelination is a recent evolutionary addition that significantly enhances the speed of transmission in the neural network. Even slight defects in myelin integrity impair performance and enhance the risk of neurological disorders. Indeed, myelin degeneration is an early and well-recognized neuropathology that is age associated, but appears before cognitive decline. Myelin is only formed by fully differentiated oligodendrocytes, but the entire oligodendrocyte lineage are clear targets of the altered chemistry of the aging brain. As in neurons, unrepaired DNA damage accumulates in the postmitotic oligodendrocyte genome during normal aging, and indeed may be one of the upstream causes of cellular aging - a fact well illustrated by myelin co-morbidity in premature aging syndromes arising from deficits in DNA repair enzymes. The clinical and experimental evidence from Alzheimer's disease, progeroid syndromes, ataxia-telangiectasia and other conditions strongly suggest that oligodendrocytes may in fact be uniquely vulnerable to oxidative DNA damage. If this damage remains unrepaired, as is increasingly true in the aging brain, myelin gene transcription and oligodendrocyte differentiation is impaired. Delineating the relationships between early myelin loss and DNA damage in brain aging will offer an additional dimension outside the neurocentric view of neurodegenerative disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Embedded Words in Visual Word Recognition: Does the Left Hemisphere See the Rain in Brain?

    Science.gov (United States)

    McCormick, Samantha F.; Davis, Colin J.; Brysbaert, Marc

    2010-01-01

    To examine whether interhemispheric transfer during foveal word recognition entails a discontinuity between the information presented to the left and right of fixation, we presented target words in such a way that participants fixated immediately left or right of an embedded word (as in "gr*apple", "bull*et") or in the middle…

  16. Bacterial cytolysin during meningitis disrupts the regulation of glutamate in the brain, leading to synaptic damage.

    Directory of Open Access Journals (Sweden)

    Carolin Wippel

    Full Text Available Streptococcus pneumoniae (pneumococcal meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage.

  17. A comparison of brain activity associated with language production in brain tumor patients with left and right sided language laterality

    NARCIS (Netherlands)

    Jansma, J. M.; Ramsey, N.; Rutten, G.J.M.

    2015-01-01

    Aim. Language dominance is an important factor for clinical decision making in brain tumor surgery. Functional MM can provide detailed information about the organization of language in the brain. One often used measure derived from fMRI data is the laterality index (LI). The LI is typically based on

  18. Platelets recognize brain-specific glycolipid structures, respond to neurovascular damage and promote neuroinflammation.

    Science.gov (United States)

    Sotnikov, Ilya; Veremeyko, Tatyana; Starossom, Sarah C; Barteneva, Natalia; Weiner, Howard L; Ponomarev, Eugene D

    2013-01-01

    Platelets respond to vascular damage and contribute to inflammation, but their role in the neurodegenerative diseases is unknown. We found that the systemic administration of brain lipid rafts induced a massive platelet activation and degranulation resulting in a life-threatening anaphylactic-like response in mice. Platelets were engaged by the sialated glycosphingolipids (gangliosides) integrated in the rigid structures of astroglial and neuronal lipid rafts. The brain-abundant gangliosides GT1b and GQ1b were specifically recognized by the platelets and this recognition involved multiple receptors with P-selectin (CD62P) playing the central role. During the neuroinflammation, platelets accumulated in the central nervous system parenchyma, acquired an activated phenotype and secreted proinflammatory factors, thereby triggering immune response cascades. This study determines a new role of platelets which directly recognize a neuronal damage and communicate with the cells of the immune system in the pathogenesis of neurodegenerative diseases.

  19. Platelets recognize brain-specific glycolipid structures, respond to neurovascular damage and promote neuroinflammation.

    Directory of Open Access Journals (Sweden)

    Ilya Sotnikov

    Full Text Available Platelets respond to vascular damage and contribute to inflammation, but their role in the neurodegenerative diseases is unknown. We found that the systemic administration of brain lipid rafts induced a massive platelet activation and degranulation resulting in a life-threatening anaphylactic-like response in mice. Platelets were engaged by the sialated glycosphingolipids (gangliosides integrated in the rigid structures of astroglial and neuronal lipid rafts. The brain-abundant gangliosides GT1b and GQ1b were specifically recognized by the platelets and this recognition involved multiple receptors with P-selectin (CD62P playing the central role. During the neuroinflammation, platelets accumulated in the central nervous system parenchyma, acquired an activated phenotype and secreted proinflammatory factors, thereby triggering immune response cascades. This study determines a new role of platelets which directly recognize a neuronal damage and communicate with the cells of the immune system in the pathogenesis of neurodegenerative diseases.

  20. Reduced daytime activity in patients with acquired brain damage and apathy: a study with ambulatory actigraphy.

    Science.gov (United States)

    Müller, Ulrich; Czymmek, Jana; Thöne-Otto, Angelika; Von Cramon, D Yves

    2006-02-01

    Apathy is difficult to assess in clinical practice. Ambulatory actigraphy was used with the aim to measure locomotor activity during the daytime as a correlate of self-initiated action in brain-damaged patients with apathy. Twenty-four patients with acquired brain damage and high levels of apathy or low levels of apathy as well as 12 healthy controls were investigated using a parallel group design. Apathy was diagnosed after clinical observation and evaluated with the apathy evaluation scale. Locomotor activity was measured with a wrist-worn actigraph over 3 days. High apathy patients showed significantly reduced locomotor activity and more episodes of inactivity (naps) during the daytime. Self-rated apathy correlated with daytime activity, nap frequency and cognitive (executive) deficits. Ambulatory actigraphy is a promising method to evaluate self-initiated action in patients with apathy.

  1. Role of microvascular disruption in brain damage from traumatic brain injury

    Science.gov (United States)

    Logsdon, Aric F.; Lucke-Wold, Brandon P.; Turner, Ryan C.; Huber, Jason D.; Rosen, Charles L.; Simpkins, James W.

    2015-01-01

    Traumatic brain injury (TBI) is acquired from an external force, which can inflict devastating effects to the brain vasculature and neighboring neuronal cells. Disruption of vasculature is a primary effect that can lead to a host of secondary injury cascades. The primary effects of TBI are rapidly occurring while secondary effects can be activated at later time points and may be more amenable to targeting. Primary effects of TBI include diffuse axonal shearing, changes in blood brain barrier (BBB) permeability, and brain contusions. These mechanical events, especially changes to the BBB, can induce calcium perturbations within brain cells producing secondary effects, which include cellular stress, inflammation, and apoptosis. These secondary effects can be potentially targeted to preserve the tissue surviving the initial impact of TBI. In the past, TBI research had focused on neurons without any regard for glial cells and the cerebrovasculature. Now a greater emphasis is being placed on the vasculature and the neurovascular unit following TBI. A paradigm shift in the importance of the vascular response to injury has opened new avenues of drug treatment strategies for TBI. However, a connection between the vascular response to TBI and the development of chronic disease has yet to be elucidated. Long-term cognitive deficits are common amongst those sustaining severe or multiple mild TBIs. Understanding the mechanisms of cellular responses following TBI is important to prevent the development of neuropsychiatric symptoms. With appropriate intervention following TBI, the vascular network can perhaps be maintained and the cellular repair process possibly improved to aid in the recovery of cellular homeostasis. PMID:26140712

  2. Role of Microvascular Disruption in Brain Damage from Traumatic Brain Injury.

    Science.gov (United States)

    Logsdon, Aric F; Lucke-Wold, Brandon P; Turner, Ryan C; Huber, Jason D; Rosen, Charles L; Simpkins, James W

    2015-07-01

    Traumatic brain injury (TBI) is acquired from an external force, which can inflict devastating effects to the brain vasculature and neighboring neuronal cells. Disruption of vasculature is a primary effect that can lead to a host of secondary injury cascades. The primary effects of TBI are rapidly occurring while secondary effects can be activated at later time points and may be more amenable to targeting. Primary effects of TBI include diffuse axonal shearing, changes in blood-brain barrier (BBB) permeability, and brain contusions. These mechanical events, especially changes to the BBB, can induce calcium perturbations within brain cells producing secondary effects, which include cellular stress, inflammation, and apoptosis. These secondary effects can be potentially targeted to preserve the tissue surviving the initial impact of TBI. In the past, TBI research had focused on neurons without any regard for glial cells and the cerebrovasculature. Now a greater emphasis is being placed on the vasculature and the neurovascular unit following TBI. A paradigm shift in the importance of the vascular response to injury has opened new avenues of drug-treatment strategies for TBI. However, a connection between the vascular response to TBI and the development of chronic disease has yet to be elucidated. Long-term cognitive deficits are common amongst those sustaining severe or multiple mild TBIs. Understanding the mechanisms of cellular responses following TBI is important to prevent the development of neuropsychiatric symptoms. With appropriate intervention following TBI, the vascular network can perhaps be maintained and the cellular repair process possibly improved to aid in the recovery of cellular homeostasis. © 2015 American Physiological Society.

  3. Piezosurgery prevents brain tissue damage: an experimental study on a new rat model

    Czech Academy of Sciences Publication Activity Database

    Pavlíková, G.; Foltán, R.; Burian, M.; Horká, E.; Adámek, S.; Hejčl, Aleš; Hanzelka, T.; Šedý, Jiří

    2011-01-01

    Roč. 40, č. 8 (2011), s. 840-844 ISSN 0901-5027 R&D Projects: GA MŠk(CZ) LC554; GA ČR GAP304/10/0320 Grant - others:GA MŠk(CZ) 1M0538 Program:1M Institutional research plan: CEZ:AV0Z50390703 Keywords : piezosurgery * brain * tissue damage Subject RIV: FJ - Surgery incl. Transplants; FH - Neurology (UEM-P) Impact factor: 1.506, year: 2011

  4. Cannabidiol reduces brain damage and improves functional recovery in a neonatal rat model of arterial ischemic stroke.

    Science.gov (United States)

    Ceprián, Maria; Jiménez-Sánchez, Laura; Vargas, Carlos; Barata, Lorena; Hind, Will; Martínez-Orgado, Jose

    2017-04-01

    and purpose: Currently there is no effective treatment for neonatal arterial ischemic stroke (AIS). Cannabidiol (CBD) is neuroprotective in models of newborn hypoxic-ischemic brain damage and adult stroke. The purpose of this work was to study the protective effect of CBD in a neonatal rat model of AIS. Middle Cerebral Artery Occlusion (MCAO) was achieved in neonatal Wistar rats by introducing a nylon filament to the left MCA for 3 h; 15 min after removing the occluder vehicle (MCAO-V) or CBD single dose 5 mg/kg (MCAO-C) were administered i. p. Similarly manipulated but non-occluded rats served as controls (SHM). A set of behavioral tests was then conducted one week (P15) or one month (P38) after MCAO. Brain damage was then assessed by magnetic resonance imaging (MRI), proton magnetic resonance spectroscopy (H + -MRS) and histologic (TUNEL for cell death, immunohistochemistry for neuron, astrocyte and microglia identification) studies. CBD administration improved neurobehavioral function regarding strength, hemiparesis, coordination and sensorimotor performance as assessed at P15 and P38. MRI indicated that CBD did not reduce the volume of infarct but reduced the volume of perilesional gliosis. H + -MRS indicated that CBD reduced metabolic derangement and excitotoxicty, and protected astrocyte function. Histologic studies indicated that CBD reduced neuronal loss and apoptosis, and modulated astrogliosis and microglial proliferation and activation. CBD administration after MCAO led to long-term functional recovery, reducing neuronal loss and astrogliosis, and modulating apoptosis, metabolic derangement, excitotoxicity and neuro-inflammation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. [Visually based reading disorders after brain damage. Standardised assessment and treatment with READ].

    Science.gov (United States)

    Kerkhoff, G; Marquardt, C

    2009-12-01

    Visually based reading disorders are frequently encountered in patients with acquired brain damage. Homonymous visual field defects, impaired elementary visual capacities (acuity, contrast sensitivity, convergent fusion, ocular motor disorders), visual neglect or Balint-Holmes syndrome are the most frequent causes of such reading disorders. Reading is not only an important prerequisite for vocational and private life, but is also indispensable for subsequent cognitive abilities such as verbal working memory and long-term memory. Despite this importance no comprehensive system exists for the standardised assessment and treatment of visually based reading capacities in the German-speaking area. Here, we describe the basic properties of such a system (READ). After a short survey of the main causes of visually based reading disorders after brain damage, the anamnesis, diagnostic facilities, normative data as well as a variety of treatment techniques of the novel system are described. Selected results from ongoing clinical group studies as well as case examples highlight the diagnostic sensitivity and therapeutic efficiency of the new system for better management of visually based reading disorders after brain damage.

  6. Melatonin Improves Outcomes of Heatstroke in Mice by Reducing Brain Inflammation and Oxidative Damage and Multiple Organ Dysfunction

    Directory of Open Access Journals (Sweden)

    Yu-Feng Tian

    2013-01-01

    Full Text Available We report here that when untreated mice underwent heat stress, they displayed thermoregulatory deficit (e.g., animals display hypothermia during room temperature exposure, brain (or hypothalamic inflammation, ischemia, oxidative damage, hypothalamic-pituitary-adrenal axis impairment (e.g., decreased plasma levels of both adrenocorticotrophic hormone and corticosterone during heat stress, multiple organ dysfunction or failure, and lethality. Melatonin therapy significantly reduced the thermoregulatory deficit, brain inflammation, ischemia, oxidative damage, hypothalamic-pituitary-adrenal axis impairment, multiple organ dysfunction, and lethality caused by heat stroke. Our data indicate that melatonin may improve outcomes of heat stroke by reducing brain inflammation, oxidative damage, and multiple organ dysfunction.

  7. Association between Peripheral Oxidative Stress and White Matter Damage in Acute Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Wei-Ming Lin

    2014-01-01

    Full Text Available The oxidative stress is believed to be one of the mechanisms involved in the neuronal damage after acute traumatic brain injury (TBI. However, the disease severity correlation between oxidative stress biomarker level and deep brain microstructural changes in acute TBI remains unknown. In present study, twenty-four patients with acute TBI and 24 healthy volunteers underwent DTI. The peripheral blood oxidative biomarkers, like serum thiol and thiobarbituric acid-reactive substances (TBARS concentrations, were also obtained. The DTI metrics of the deep brain regions, as well as the fractional anisotropy (FA and apparent diffusion coefficient, were measured and correlated with disease severity, serum thiol, and TBARS levels. We found that patients with TBI displayed lower FAs in deep brain regions with abundant WMs and further correlated with increased serum TBARS level. Our study has shown a level of anatomic detail to the relationship between white matter (WM damage and increased systemic oxidative stress in TBI which suggests common inflammatory processes that covary in both the peripheral and central reactions after TBI.

  8. Greater sparing of visual search abilities in children after congenital rather than acquired focal brain damage.

    Science.gov (United States)

    Tinelli, Francesca; Guzzetta, Andrea; Bertini, Caterina; Ricci, Daniela; Mercuri, Eugenio; Ladavas, Elisabetta; Cioni, Giovanni

    2011-10-01

    Visual search refers to the capacity of an individual to find a target among simultaneously presented distracters and is based on visual abilities such as a fast visual processing and an accurate control of ballistic eye movements (saccades) that guide the fovea to the target location. In adults, visual field defects caused by brain damage are often associated with visual search disorders; in children, little is known about the effects of early brain lesions on visual search abilities. To test the presence of visual search defects and to investigate the role of cortical plasticity after early brain lesions, 29 children with congenital or acquired cerebral lesions, with and without visual field defects, underwent a visual search test battery. The children with acquired lesions and visual field defects had longer reaction times (RTs) in the contralesional visual field compared with the ipsilesional, whereas those with congenital lesions and visual field defects did not have differences in RTs between the contralateral and ipsilateral visual fields and had a visual search pattern similar to children without a visual field defect. These findings support the hypothesis of more effective mechanisms of functional compensation and reorganization of the visual system in children with very early brain lesions, as opposed to those with later damage.

  9. Study on developing brain damage of neonatal rats induced by enriched uranium

    International Nuclear Information System (INIS)

    Gu Guixiong; Zhu Shoupeng; Yang Shuqin

    2000-01-01

    Objective: The injurious effects of enriched uranium 235 U on developing brain of neonatal Wistar pure bred rats were studied. Methods: The model of irradiation induced brain damage in vivo was settled. The effects of cerebrum exposure by 235 U on somatic growth and neuro-behavior development of neonatal rats were examined by thirteen index determination of multiple parameters. The dynamic retention of autoradiographic tracks of 235 U in cells of developing brain was observed. The changes of NSE, IL-1β, SOD, and ET in cerebral cortex, hippocampus, diencephalon, cerebellum after expose to 235 U were examined with radioimmunoassay. Results: The somatic growth such as increase of body weight and brain weight was lower significantly. The retardation of development was found such as eye opening, sensuous function as auditory startle, movement and coordination function and activity as swimming, physiological reflexes as negative geotaxis, surface righting, grasping reflex suspension and the tendency behavior. The data showed delayed growth and abnormal neuro-behavior. The micro-autoradiographic tracing showed that the tracks of 235 U were mainly accumulated in the nucleus of developing brain. At the same time only few tracks appeared in the cytoplasm and interval between cells. Experimental study showed that when the dose of 235 U irradiation was increased, the level of NSE was decreased and the IL-1β was increased. However, the results indicated that SOD and ET can be elevated by the low dose irradiation of 235 U, and can be inhibited by the high dose. Conclusion: The behavior of internal irradiation from 235 U on the developing brain damage of neonatal rats were of sensibility and compensation in nervous cells

  10. Influence of a brief episode of anesthesia during the induction of experimental brain trauma on secondary brain damage and inflammation.

    Directory of Open Access Journals (Sweden)

    Clara Luh

    Full Text Available It is unclear whether a single, brief, 15-minute episode of background anesthesia already modulates delayed secondary processes after experimental brain injury. Therefore, this study was designed to characterize three anesthesia protocols for their effect on molecular and histological study endpoints. Mice were randomly separated into groups that received sevoflurane (sevo, isoflurane (iso or an intraperitoneal anesthetic combination (midazolam, fentanyl and medetomidine; comb prior to traumatic brain injury (controlled cortical impact, CCI; 8 m/s, 1 mm impact depth, 3 mm diameter. Twenty-four hours after insult, histological brain damage, neurological function (via neurological severity score, cerebral inflammation (via real-time RT-PCR for IL6, COX-2, iNOS and microglia (via immunohistochemical staining for Iba1 were determined. Fifteen minutes after CCI, the brain contusion volume did not differ between the anesthetic regimens (sevo = 17.9±5.5 mm(3; iso = 20.5±3.7 mm(3; comb = 19.5±4.6 mm(3. Within 24 hours after injury, lesion size increased in all groups (sevo = 45.3±9.0 mm(3; iso = 31.5±4.0 mm(3; comb = 44.2±6.2 mm(3. Sevo and comb anesthesia resulted in a significantly larger contusion compared to iso, which was in line with the significantly better neurological function with iso (sevo = 4.6±1.3 pts.; iso = 3.9±0.8 pts.; comb = 5.1±1.6 pts.. The expression of inflammatory marker genes was not significantly different at 15 minutes and 24 hours after CCI. In contrast, significantly more Iba1-positive cells were present in the pericontusional region after sevo compared to comb anesthesia (sevo = 181±48/mm(3; iso = 150±36/mm(3; comb = 113±40/mm(3. A brief episode of anesthesia, which is sufficient for surgical preparations of mice for procedures such as delivering traumatic brain injury, already has a significant impact on the extent of secondary brain damage.

  11. Differences in visual vs. verbal memory impairments as a result of focal temporal lobe damage in patients with traumatic brain injury.

    Science.gov (United States)

    Ariza, Mar; Pueyo, Roser; Junqué, Carme; Mataró, María; Poca, María Antonia; Mena, Maria Pau; Sahuquillo, Juan

    2006-09-01

    The aim of the present study was to determine whether the type of lesion in a sample of moderate and severe traumatic brain injury (TBI) was related to material-specific memory impairment. Fifty-nine patients with TBI were classified into three groups according to whether the site of the lesion was right temporal, left temporal or diffuse. Six-months post-injury, visual (Warrington's Facial Recognition Memory Test and Rey's Complex Figure Test) and verbal (Rey's Auditory Verbal Learning Test) memories were assessed. Visual memory deficits assessed by facial memory were associated with right temporal lobe lesion, whereas verbal memory performance assessed with a list of words was related to left temporal lobe lesion. The group with diffuse injury showed both verbal and visual memory impairment. These results suggest a material-specific memory impairment in moderate and severe TBI after focal temporal lesions and a non-specific memory impairment after diffuse damage.

  12. Roots of brain specializations: preferential left-eye use during mirror-image inspection in six species of teleost fish.

    Science.gov (United States)

    Sorvano, V A; Rainoldi, C; Bisazza, A; Vallortigara, G

    1999-12-01

    It has recently been reported that predator inspection is more likely to occur when a companion (i.e. the mirror image of the test animal) is visible on the left rather than on the right side of mosquitofish Gambusia holbrooki. This very unexpected outcome could be consistent with the hypothesis of a preferential use of the right eye during sustained fixation of a predator as well as of a preferential use of the left eye during fixation of conspecifics. We measured the time spent in monocular viewing during inspection of their own mirror images in females of six species of fish, belonging to different families-G. holbrooki, Xenotoca eiseni, Phoxinus phoxinus, Pterophyllum scalare, Xenopoecilus sarasinorun, and Trichogaster trichopterus. Results revealed a consistent left-eye preference during sustained fixation in all of the five species. Males of G. holbrooki, which do not normally show any social behaviour, did not exhibit any eye preferences during mirror-image inspection. We found, however, that they could be induced to manifest a left-eye preference, likewise females, if tested soon after capture, when some affiliative tendencies can be observed. These findings add to current evidence in a variety of vertebrate species for preferential involvement of structures located in the right side of the brain in response to the viewing of conspecifics.

  13. Metric to quantify white matter damage on brain magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Valdes Hernandez, Maria del C.; Munoz Maniega, Susana; Anblagan, Devasuda; Bastin, Mark E.; Wardlaw, Joanna M. [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); UK Dementia Research Institute, Edinburgh Dementia Research Centre, London (United Kingdom); Chappell, Francesca M.; Morris, Zoe; Sakka, Eleni [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); UK Dementia Research Institute, Edinburgh Dementia Research Centre, London (United Kingdom); Dickie, David Alexander; Royle, Natalie A. [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); Armitage, Paul A. [University of Sheffield, Department of Cardiovascular Sciences, Sheffield (United Kingdom); Deary, Ian J. [University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); University of Edinburgh, Department of Psychology, Edinburgh (United Kingdom)

    2017-10-15

    Quantitative assessment of white matter hyperintensities (WMH) on structural Magnetic Resonance Imaging (MRI) is challenging. It is important to harmonise results from different software tools considering not only the volume but also the signal intensity. Here we propose and evaluate a metric of white matter (WM) damage that addresses this need. We obtained WMH and normal-appearing white matter (NAWM) volumes from brain structural MRI from community dwelling older individuals and stroke patients enrolled in three different studies, using two automatic methods followed by manual editing by two to four observers blind to each other. We calculated the average intensity values on brain structural fluid-attenuation inversion recovery (FLAIR) MRI for the NAWM and WMH. The white matter damage metric is calculated as the proportion of WMH in brain tissue weighted by the relative image contrast of the WMH-to-NAWM. The new metric was evaluated using tissue microstructure parameters and visual ratings of small vessel disease burden and WMH: Fazekas score for WMH burden and Prins scale for WMH change. The correlation between the WM damage metric and the visual rating scores (Spearman ρ > =0.74, p < 0.0001) was slightly stronger than between the latter and WMH volumes (Spearman ρ > =0.72, p < 0.0001). The repeatability of the WM damage metric was better than WM volume (average median difference between measurements 3.26% (IQR 2.76%) and 5.88% (IQR 5.32%) respectively). The follow-up WM damage was highly related to total Prins score even when adjusted for baseline WM damage (ANCOVA, p < 0.0001), which was not always the case for WMH volume, as total Prins was highly associated with the change in the intense WMH volume (p = 0.0079, increase of 4.42 ml per unit change in total Prins, 95%CI [1.17 7.67]), but not with the change in less-intense, subtle WMH, which determined the volumetric change. The new metric is practical and simple to calculate. It is robust to variations in

  14. Metric to quantify white matter damage on brain magnetic resonance images

    International Nuclear Information System (INIS)

    Valdes Hernandez, Maria del C.; Munoz Maniega, Susana; Anblagan, Devasuda; Bastin, Mark E.; Wardlaw, Joanna M.; Chappell, Francesca M.; Morris, Zoe; Sakka, Eleni; Dickie, David Alexander; Royle, Natalie A.; Armitage, Paul A.; Deary, Ian J.

    2017-01-01

    Quantitative assessment of white matter hyperintensities (WMH) on structural Magnetic Resonance Imaging (MRI) is challenging. It is important to harmonise results from different software tools considering not only the volume but also the signal intensity. Here we propose and evaluate a metric of white matter (WM) damage that addresses this need. We obtained WMH and normal-appearing white matter (NAWM) volumes from brain structural MRI from community dwelling older individuals and stroke patients enrolled in three different studies, using two automatic methods followed by manual editing by two to four observers blind to each other. We calculated the average intensity values on brain structural fluid-attenuation inversion recovery (FLAIR) MRI for the NAWM and WMH. The white matter damage metric is calculated as the proportion of WMH in brain tissue weighted by the relative image contrast of the WMH-to-NAWM. The new metric was evaluated using tissue microstructure parameters and visual ratings of small vessel disease burden and WMH: Fazekas score for WMH burden and Prins scale for WMH change. The correlation between the WM damage metric and the visual rating scores (Spearman ρ > =0.74, p < 0.0001) was slightly stronger than between the latter and WMH volumes (Spearman ρ > =0.72, p < 0.0001). The repeatability of the WM damage metric was better than WM volume (average median difference between measurements 3.26% (IQR 2.76%) and 5.88% (IQR 5.32%) respectively). The follow-up WM damage was highly related to total Prins score even when adjusted for baseline WM damage (ANCOVA, p < 0.0001), which was not always the case for WMH volume, as total Prins was highly associated with the change in the intense WMH volume (p = 0.0079, increase of 4.42 ml per unit change in total Prins, 95%CI [1.17 7.67]), but not with the change in less-intense, subtle WMH, which determined the volumetric change. The new metric is practical and simple to calculate. It is robust to variations in

  15. Global Proteomic Analysis of Brain Tissues in Transient Ischemia Brain Damage in Rats

    Directory of Open Access Journals (Sweden)

    Jiann-Hwa Chen

    2015-05-01

    Full Text Available Ischemia-reperfusion injury resulting from arterial occlusion or hypotension in patients leads to tissue hypoxia with glucose deprivation, which causes endoplasmic reticulum (ER stress and neuronal death. A proteomic approach was used to identify the differentially expressed proteins in the brain of rats following a global ischemic stroke. The mechanisms involved the action in apoptotic and ER stress pathways. Rats were treated with ischemia-reperfusion brain injuries by the bilateral occlusion of the common carotid artery. The cortical neuron proteins from the stroke animal model (SAM and the control rats were separated using two-dimensional gel electrophoresis (2-DE to purify and identify the protein profiles. Our results demonstrated that the SAM rats experienced brain cell death in the ischemic core. Fifteen proteins were expressed differentially between the SAM rats and control rats, which were assayed and validated in vivo and in vitro. Interestingly, the set of differentially expressed, down-regulated proteins included catechol O-methyltransferase (COMT and cathepsin D (CATD, which are implicated in oxidative stress, inflammatory response and apoptosis. After an ischemic stroke, one protein spot, namely the calretinin (CALB2 protein, showed increased expression. It mediated the effects of SAM administration on the apoptotic and ER stress pathways. Our results demonstrate that the ischemic injury of neuronal cells increased cell cytoxicity and apoptosis, which were accompanied by sustained activation of the IRE1-alpha/TRAF2, JNK1/2, and p38 MAPK pathways. Proteomic analysis suggested that the differential expression of CALB2 during a global ischemic stroke could be involved in the mechanisms of ER stress-induced neuronal cell apoptosis, which occurred via IRE1-alpha/TRAF2 complex formation, with activation of JNK1/2 and p38 MAPK. Based on these results, we also provide the molecular evidence supporting the ischemia

  16. Global proteomic analysis of brain tissues in transient ischemia brain damage in rats.

    Science.gov (United States)

    Chen, Jiann-Hwa; Kuo, Hsing-Chun; Lee, Kam-Fai; Tsai, Tung-Hu

    2015-05-26

    Ischemia-reperfusion injury resulting from arterial occlusion or hypotension in patients leads to tissue hypoxia with glucose deprivation, which causes endoplasmic reticulum (ER) stress and neuronal death. A proteomic approach was used to identify the differentially expressed proteins in the brain of rats following a global ischemic stroke. The mechanisms involved the action in apoptotic and ER stress pathways. Rats were treated with ischemia-reperfusion brain injuries by the bilateral occlusion of the common carotid artery. The cortical neuron proteins from the stroke animal model (SAM) and the control rats were separated using two-dimensional gel electrophoresis (2-DE) to purify and identify the protein profiles. Our results demonstrated that the SAM rats experienced brain cell death in the ischemic core. Fifteen proteins were expressed differentially between the SAM rats and control rats, which were assayed and validated in vivo and in vitro. Interestingly, the set of differentially expressed, down-regulated proteins included catechol O-methyltransferase (COMT) and cathepsin D (CATD), which are implicated in oxidative stress, inflammatory response and apoptosis. After an ischemic stroke, one protein spot, namely the calretinin (CALB2) protein, showed increased expression. It mediated the effects of SAM administration on the apoptotic and ER stress pathways. Our results demonstrate that the ischemic injury of neuronal cells increased cell cytoxicity and apoptosis, which were accompanied by sustained activation of the IRE1-alpha/TRAF2, JNK1/2, and p38 MAPK pathways. Proteomic analysis suggested that the differential expression of CALB2 during a global ischemic stroke could be involved in the mechanisms of ER stress-induced neuronal cell apoptosis, which occurred via IRE1-alpha/TRAF2 complex formation, with activation of JNK1/2 and p38 MAPK. Based on these results, we also provide the molecular evidence supporting the ischemia-reperfusion-related neuronal injury.

  17. Organophosphates induce distal axonal damage, but not brain oedema, by inactivating neuropathy target esterase

    International Nuclear Information System (INIS)

    Read, David J.; Li Yong; Chao, Moses V.; Cavanagh, John B.; Glynn, Paul

    2010-01-01

    Single doses of organophosphorus compounds (OP) which covalently inhibit neuropathy target esterase (NTE) can induce lower-limb paralysis and distal damage in long nerve axons. Clinical signs of neuropathy are evident 3 weeks post-OP dose in humans, cats and chickens. By contrast, clinical neuropathy in mice following acute dosing with OPs or any other toxic compound has never been reported. Moreover, dosing mice with ethyloctylphosphonofluoridate (EOPF) - an extremely potent NTE inhibitor - causes a different (subacute) neurotoxicity with brain oedema. These observations have raised the possibility that mice are intrinsically resistant to neuropathies induced by acute toxic insult, but may incur brain oedema, rather than distal axonal damage, when NTE is inactivated. Here we provide the first report that hind-limb dysfunction and extensive axonal damage can occur in mice 3 weeks after acute dosing with a toxic compound, bromophenylacetylurea. Three weeks after acutely dosing mice with neuropathic OPs no clinical signs were observed, but distal lesions were present in the longest spinal sensory axons. Similar lesions were evident in undosed nestin-cre:NTEfl/fl mice in which NTE had been genetically-deleted from neural tissue. The extent of OP-induced axonal damage in mice was related to the duration of NTE inactivation and, as reported in chickens, was promoted by post-dosing with phenylmethanesulfonylfluoride. However, phenyldipentylphosphinate, another promoting compound in chickens, itself induced in mice lesions different from the neuropathic OP type. Finally, EOPF induced subacute neurotoxicity with brain oedema in both wild-type and nestin-cre:NTEfl/fl mice indicating that the molecular target for this effect is not neural NTE.

  18. Early (N170/M170 face-sensitivity despite right lateral occipital brain damage in acquired prosopagnosia

    Directory of Open Access Journals (Sweden)

    Esther eAlonso Prieto

    2011-12-01

    Full Text Available Compared to objects, pictures of faces elicit a larger early electromagnetic response at occipito-temporal sites on the human scalp, with an onset of 130 ms and a peak at about 170 ms. This N170 face effect is larger in the right than the left hemisphere and has been associated with the early categorization of the stimulus as a face. Here we tested whether this effect can be observed in the absence of some of the visual areas showing a preferential response to faces as typically identified in neuroimaging. Event related potentials were recorded in response to faces, cars and their phase-scrambled versions in a well-known brain-damaged case of prosopagnosia (PS. Despite the patient’s right inferior occipital gyrus lesion encompassing the most posterior cortical area showing preferential response to faces (occipital face area, OFA, we identified an early face-sensitive component over the right occipito-temporal hemisphere of the patient that was identified as the N170. A second experiment supported this conclusion, showing the typical N170 increase of latency and amplitude in response to inverted faces. In contrast, there was no N170 in the left hemisphere, where PS has a lesion to the middle fusiform gyrus and shows no evidence of face-preferential response in neuroimaging (no left fusiform face area, or lFFA. These results were replicated by a magneto-encephalographic (MEG investigation of the patient, disclosing a M170 component only in the right hemisphere. These observations indicate that face preferential activation in the inferior occipital cortex is not necessary to elicit early visual responses associated with face perception (N170/M170 on the human scalp. These results further suggest that when the right inferior occipital cortex is damaged, the integrity of the middle fusiform gyrus and/or the superior temporal sulcus – two areas showing face preferential responses in the patient’s right hemisphere - might be necessary to generate

  19. Detection of left ventricular enlargement and impaired systolic function with plasma N-terminal pro brain natriuretic peptide concentrations

    DEFF Research Database (Denmark)

    Grønning, Bjørn Aaris; Nilsson, Jens C.; Søndergaard, Lars

    2002-01-01

    BACKGROUND: Brain- and N-terminal pro brain natriuretic peptide (NT-proBNP) have been identified as promising markers for heart failure. However, previous studies have revealed that they may hold insufficient diagnostic power for implementation into clinical practice because of a significant...... overlap in the range of plasma levels between healthy subjects and subjects with heart failure. We hypothesized that imprecision of the reference method (ie, the echocardiographic evaluation of left ventricular [LV] function) may have affected results from those earlier studies. We therefore wanted...... to investigate the diagnostic potential of NT-proBNP with magnetic resonance imaging as the reference method for the cardiac measurements. METHODS: Forty-eight patients with stable symptomatic heart failure in New York Heart Association functional classifications II to IV were examined once with blood samples...

  20. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk.

    Directory of Open Access Journals (Sweden)

    Denis N Silachev

    Full Text Available BACKGROUND: Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. METHODOLOGY/PRINCIPAL FINDINGS: We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated

  1. Edaravone protects against methylglyoxal-induced barrier damage in human brain endothelial cells.

    Directory of Open Access Journals (Sweden)

    Andrea E Tóth

    Full Text Available Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line treated with methylglyoxal.Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging.Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound.These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases.

  2. Role of the left frontal aslant tract in stuttering: a brain stimulation and tractographic study.

    Science.gov (United States)

    Kemerdere, Rahsan; de Champfleur, Nicolas Menjot; Deverdun, Jérémy; Cochereau, Jérôme; Moritz-Gasser, Sylvie; Herbet, Guillaume; Duffau, Hugues

    2016-01-01

    The neural correlates of stuttering are to date incompletely understood. Although the possible involvement of the basal ganglia, the cerebellum and certain parts of the cerebral cortex in this speech disorder has previously been reported, there are still not many studies investigating the role of white matter fibers in stuttering. Axonal stimulation during awake surgery provides a unique opportunity to study the functional role of structural connectivity. Here, our goal was to investigate the white matter tracts implicated in stuttering, by combining direct electrostimulation mapping and postoperative tractography imaging, with a special focus on the left frontal aslant tract. Eight patients with no preoperative stuttering underwent awake surgery for a left frontal low-grade glioma. Intraoperative cortical and axonal electrical mapping was used to interfere in speech processing and subsequently provoke stuttering. We further assessed the relationship between the subcortical sites leading to stuttering and the spatial course of the frontal aslant tract. All patients experienced intraoperative stuttering during axonal electrostimulation. On postsurgical tractographies, the subcortical distribution of stimulated sites matched the topographical position of the left frontal aslant tract. This white matter pathway was preserved during surgery, and no patients had postoperative stuttering. For the first time to our knowledge, by using direct axonal stimulation combined with postoperative tractography, we provide original data supporting a pivotal role of the left frontal aslant tract in stuttering. We propose that this speech disorder could be the result of a disconnection within a large-scale cortico-subcortical circuit subserving speech motor control.

  3. Dimethyloxalylglycine treatment of brain-dead donor rats improves both donor and graft left ventricular function after heart transplantation.

    Science.gov (United States)

    Hegedűs, Péter; Li, Shiliang; Korkmaz-Icöz, Sevil; Radovits, Tamás; Mayer, Tobias; Al Said, Samer; Brlecic, Paige; Karck, Matthias; Merkely, Béla; Szabó, Gábor

    2016-01-01

    Hypoxia inducible factor (HIF)-1 pathway signalling has a protective effect against ischemia/reperfusion injury. The prolyl-hydroxylase inhibitor dimethyloxalylglycine (DMOG) activates the HIF-1 pathway by stabilizing HIF-1α. In a rat model of brain death (BD)-associated donor heart dysfunction we tested the hypothesis that pre-treatment of brain-dead donors with DMOG would result in a better graft heart condition. BD was induced in anesthetized Lewis rats by inflating a subdurally placed balloon catheter. Controls underwent sham operations. Then, rats were injected with an intravenous dose of DMOG (30 mg/kg) or an equal volume of physiologic saline. After 5 hours of BD or sham operation, hearts were perfused with a cold (4°C) preservation solution (Custodiol; Dr. Franz Köhler Chemie GmbH; Germany), explanted, stored at 4°C in Custodiol, and heterotopically transplanted. Graft function was evaluated 1.5 hours after transplantation. Compared with control, BD was associated with decreased left ventricular systolic and diastolic function. DMOG treatment after BD improved contractility (end-systolic pressure volume relationship E'max: 3.7 ± 0.6 vs 3.1 ± 0.5 mm Hg/µ1; p brain-dead group. After heart transplantation, DMOG treatment of brain-dead donors significantly improved the altered systolic function and decreased inflammatory infiltration, cardiomyocyte necrosis, and DNA strand breakage. In addition, compared with the brain-dead group, DMOG treatment moderated the pro-apoptotic changes in the gene and protein expression. In a rat model of potential brain-dead heart donors, pre-treatment with DMOG resulted in improved early recovery of graft function after transplantation. These results support the hypothesis that activation of the HIF-1 pathway has a protective role against BD-associated cardiac dysfunction. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  4. Mouse model of diffuse brain damage following anoxia, evaluated by a new assay of generalized arousal.

    Science.gov (United States)

    Arrieta-Cruz, Isabel; Pfaff, Donald W; Shelley, Deborah N

    2007-06-01

    Diffuse brain damage following anoxia due to cardiac failure, drowning, carbon monoxide exposure or other accidents constitutes a major medical problem. We have created a novel mouse model using the breathing of pure nitrogen, followed by a recently developed assay that reflects an operational definition of generalized arousal. The operational definition is precise, complete, and leads to quantitative, physical measures in a genetically tractable animal. Exposure to pure nitrogen for controlled periods had a surprising bifurcate effect: about half the mice survived with neurological measures that were virtually normal while the other half died. The new assay detected behavioral deficits unrevealed by neurological screening. Two important features of the results were that (i) deficits were not equal across the circadian cycle, and (ii) deficits were not equal across all the measures within the operational definition of arousal. Specific voluntary motor measurements were decreased in a manner that depended on the phase of the circadian cycle. Sensory responses were also decreased, with an emphasis on vertical movement responses; but, interestingly, fear learning was not damaged. This study establishes the first useful approach to diffuse brain damage in a genetically tractable animal. The model and its outcome measurements will be useful during future attempts at amelioration of acquired neurological disabilities following hypoxic-ischemic injuries.

  5. Use of prosodic cues in the production of idiomatic and literal sentences by individuals with right- and left-hemisphere damage.

    Science.gov (United States)

    Bélanger, Nathalie; Baum, Shari R; Titone, Debra

    2009-07-01

    The neural bases of prosody during the production of literal and idiomatic interpretations of literally plausible idioms was investigated. Left- and right-hemisphere-damaged participants and normal controls produced literal and idiomatic versions of idioms (He hit the books.) All groups modulated duration to distinguish the interpretations. LHD patients, however, showed typical speech timing difficulties. RHD patients did not differ from the normal controls. The results partially support a differential lateralization of prosodic cues in the two cerebral hemispheres [Van Lancker, D., & Sidtis, J. J. (1992). The identification of affective-prosodic stimuli by left- and right-hemisphere-damaged subjects: All errors are not created equal. Journal of Speech and Hearing Research, 35, 963-970]. Furthermore, extended final word lengthening appears to mark idiomaticity.

  6. Elucidation of mechanism of blood-brain barrier damage for prevention and treatment of vascular dementia.

    Science.gov (United States)

    Ueno, Masaki

    2017-03-28

    . These clearance pathways may play a role in maintenance of the barrier in the entire brain. Obstruction of the passage of fluids through the perivascular drainage and glymphatic pathways as well as damage of the BBB and BCSFB may induce several kinds of brain disorders, such as vascular dementia. In this review, we focus on the relationship between damage of the barriers and the pathogenesis of vascular dementia and introduce recent findings including our experimental data using animal models.

  7. Hand rehabilitation using MIDI keyboard playing in adolescents with brain damage: a preliminary study.

    Science.gov (United States)

    Chong, Hyun Ju; Cho, Sung-Rae; Kim, Soo Ji

    2014-01-01

    As a sequential, programmed movement of fingers, keyboard playing is a promising technique for inducing execution and a high level of coordination during finger movements. Also, keyboard playing can be physically and emotionally rewarding for adolescents in rehabilitation settings and thereby motivate continued involvement in treatment. The purpose of this study is to evaluate the effects of keyboard playing using Musical Instrument Digital Interface (MIDI) on finger movement for adolescents with brain damage. Eight adolescents with brain damage, ages 9 to 18 years (M = 13 years, SD = 2.78), in physical rehabilitation settings participated in this study. Measurements included MIDI keyboard playing for pressing force of the fingers and hand function tests (Grip and Pinch Power Test, Box and Block Test of Manual Dexterity [BBT], and the Jebsen Taylor Hand Function Test). Results showed increased velocity of all fingers on the MIDI-based test, and statistical significance was found in the velocity of F2 (index finger), F3 (middle finger), and F5 (little finger) between pre- and post-training tests. Correlation analysis between the pressing force of the finger and hand function tests showed a strong positive correlation between the measure of grip power and the pressing force of F2 and F5 on the Grip and Pinch Strength Test. All fingers showed strong correlation between MIDI results and BBT. For the Jebsen Taylor Hand Function Test, only the moving light objects task at post-training yielded strong correlation with MIDI results of all fingers. The results support using keyboard playing for hand rehabilitation, especially in the pressing force of individual finger sequential movements. Further investigation is needed to define the feasibility of the MIDI program for valid hand rehabilitation for people with brain damage.

  8. Brain white matter damage in aging and cognitive ability in youth and older age☆

    Science.gov (United States)

    Valdés Hernández, Maria del C.; Booth, Tom; Murray, Catherine; Gow, Alan J.; Penke, Lars; Morris, Zoe; Maniega, Susana Muñoz; Royle, Natalie A.; Aribisala, Benjamin S.; Bastin, Mark E.; Starr, John M.; Deary, Ian J.; Wardlaw, Joanna M.

    2013-01-01

    Cerebral white matter hyperintensities (WMH) reflect accumulating white matter damage with aging and impair cognition. The role of childhood intelligence is rarely considered in associations between cognitive impairment and WMH. We studied community-dwelling older people all born in 1936, in whom IQ had been assessed at age 11 years. We assessed medical histories, current cognitive ability and quantified WMH on MR imaging. Among 634 participants, mean age 72.7 (SD 0.7), age 11 IQ was the strongest predictor of late life cognitive ability. After accounting for age 11 IQ, greater WMH load was significantly associated with lower late life general cognitive ability (β = −0.14, p cognitive ability, after accounting for prior ability, age 11IQ. Early-life IQ also influenced WMH in later life. Determining how lower IQ in youth leads to increasing brain damage with aging is important for future successful cognitive aging. PMID:23850341

  9. The Left, The Better: White-Matter Brain Integrity Predicts Foreign Language Imitation Ability.

    Science.gov (United States)

    Vaquero, Lucía; Rodríguez-Fornells, Antoni; Reiterer, Susanne M

    2017-08-01

    Speech imitation is crucial for language acquisition and second-language learning. Interestingly, large individual differences regarding the ability in imitating foreign-language sounds have been observed. The origin of this interindividual diversity remains unknown, although it might be partially explained by structural predispositions. Here we correlated white-matter structural properties of the arcuate fasciculus (AF) with the performance of 52 German-speakers in a Hindi sentence- and word-imitation task. First, a manual reconstruction was performed, permitting us to extract the mean values along the three branches of the AF. We found that a larger lateralization of the AF volume toward the left hemisphere predicted the performance of our participants in the imitation task. Second, an automatic reconstruction was carried out, allowing us to localize the specific region within the AF that exhibited the largest correlation with foreign language imitation. Results of this reconstruction also showed a left lateralization trend: greater fractional anisotropy values in the anterior half of the left AF correlated with the performance in the Hindi-imitation task. From the best of our knowledge, this is the first time that foreign language imitation aptitude is tested using a more ecological imitation task and correlated with DTI tractography, using both a manual and an automatic method. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Methodological issues in interviews involving people with communication impairments after acquired brain damage.

    Science.gov (United States)

    Carlsson, Eva; Paterson, Barbara L; Scott-Findlay, Shannon; Ehnfors, Margareta; Ehrenberg, Anna

    2007-12-01

    Qualitative research has made a significant contribution to the body of knowledge related to how people experience living with various chronic diseases and disabilities; however, the voices of certain vulnerable populations, particularly those with impairments that affect their ability to communicate, are commonly absent. In recent years, a few researchers have attempted to explore the most effective ways to ensure that the voices of people with communication impairments from acquired brain damages can be captured in qualitative research interviews; yet several methodological issues related to including this population in qualitative research remained unexamined. In this article, the authors draw on insights derived from their research on the experiences of adult survivors of stroke and traumatic brain injury to describe methodological issues related to sampling, informed consent, and fatigue in participant and researcher while also making some recommendations for conducting qualitative interviews with these populations.

  11. Functional neuroimaging studies of cognitive recovery after acquired brain damage in adults.

    Science.gov (United States)

    Muñoz-Cespedes, Juan M; Rios-Lago, Marcos; Paul, Nuria; Maestu, Fernando

    2005-12-01

    The first two decades of cognitive neuroimaging research have provided a constant increase of the knowledge about the neural organization of cognitive processes. Many cognitive functions (e.g.working memory) can now be associated with particular neural structures, and ongoing research promises to clarify this picture further, providing a new mapping between cognitive and neural function. The main goal of this paper is to outline conceptual issues that are particularly important in the context of imaging changes in neural function through recovery process. This review focuses primarily on studies made in stroke and traumatic brain injury patients, but most of the issues raised here are also relevant to studies using other acquired brain damages. Finally, we summarize a set of methodological issues related to functional neuroimaging that are relevant for the study of neural plasticity and recovery after rehabilitation.

  12. Anomalous Brain Dominance and the Immune System: Do Left-Handers Have Specific Immunological Patterns?

    Science.gov (United States)

    Lengen, Charis; Regard, Marianne; Joller, Helen; Landis, Theodor; Lalive, Patrice

    2009-01-01

    Geschwind and Behan (1982) and Geschwind and Galaburda (1985a, 1985b, 1985c) suggested a correlation between brain laterality and immune disorders. To test whether this hypothesis holds true not only for the frequency of immune diseases and circulating autoantibodies, but extends also to cellular immunity, we examined the association between…

  13. Reflecting on Co-Creating a Smart Learning Ecosystem for Adolescents with Congenital Brain Damage

    DEFF Research Database (Denmark)

    Krummheuer, Antonia Lina; Rehm, Matthias; Lund, Maja K. L.

    2018-01-01

    . In this paper we present a first part of an ongoing collaboration with a special needs education facility for adolescents with congenital and acquired brain damage, that is interested in exploring the transformation of the institutional space into a smart learning ecosystem. We exemplify our research approach......Special needs education is focusing on a complex interplay of cognitive (knowledge), physical (motor rehabilitation), and social (interaction) learning. There is a strong discrepancy between the institutional spaces in which learning takes place and the need for scaffolding these levels of learning...

  14. Reflecting on Co-Creating a Smart Learning Ecosystem for Adolescents with Congenital Brain Damage

    DEFF Research Database (Denmark)

    Krummheuer, Antonia Lina; Rehm, Matthias; Lund, Maja K. L.

    2018-01-01

    Special needs education is focusing on a complex interplay of cognitive (knowledge), physical (motor rehabilitation), and social (interaction) learning. There is a strong discrepancy between the institutional spaces in which learning takes place and the need for scaffolding these levels of learning....... In this paper we present a first part of an ongoing collaboration with a special needs education facility for adolescents with congenital and acquired brain damage, that is interested in exploring the transformation of the institutional space into a smart learning ecosystem. We exemplify our research approach...

  15. Intellectual Function Training in adults with acquired brain damage. An occupational therapy method.

    Science.gov (United States)

    Söderback, I; Normell, L A

    1986-01-01

    An occupational therapy method termed Intellectual Function Training (IFT) is presented for cognitive retraining of patients with brain damage. Comprehensive training material, comprising about 900 pages, is described. The method is used to remediate intellectual dysfunction and to give intellectual stimulation, particularly concerning the following abilities: visual perception ability, spatial ability, verbal ability, numerical ability, memory ability and logical ability. The material is used for systematic individualized, daily treatment over a period of 2-4 months. The way in which the material is used is based on neuropsychological and pedagogical principles. Examples of training tasks and the training procedure are given.

  16. Implications of astrocytes in mediating the protective effects of Selective Estrogen Receptor Modulators upon brain damage

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-04-01

    Full Text Available Selective Estrogen Receptor Modulators (SERMs are steroidal or non-steroidal compounds that are already used in clinical practice for the treatment of breast cancer, osteoporosis and menopausal symptoms. While SERMs actions in the breast, bone, and uterus have been well characterized, their actions in the brain are less well understood. Previous works have demonstrated the beneficial effects of SERMs in different chronic neurodegenerative diseases like Alzheimer, Parkinson’s disease and Multiple sclerosis, as well as acute degeneration as stroke and traumatic brain injury. Moreover, these compounds exhibit similar protective actions as those of estradiol in the Central Nervous System, overt any secondary effect. For these reasons, in the past few years, there has been a growing interest in the neuroprotective effects exerted directly or indirectly by SERMs in the SNC. In this context, astrocytes play an important role in the maintenance of brain metabolism, and antioxidant support to neurons, thus indicating that better protection of astrocytes are an important asset targeting neuronal protection. Moreover, various clinical and experimental studies have reported that astrocytes are essential for the neuroprotective effects of SERMs during neuronal injuries, as these cells express different estrogen receptors in cell membrane, demonstrating that part of SERMs effects upon injury may be mediated by astrocytes. The present work highlights the current evidence on the protective mechanisms of SERMs, such as tamoxifen and raloxifene, in the SNC, and their modulation of astrocytic properties as promising therapeutic targets during brain damage.

  17. Maternal obesity increases inflammation and exacerbates damage following neonatal hypoxic-ischaemic brain injury in rats.

    Science.gov (United States)

    Teo, Jonathan D; Morris, Margaret J; Jones, Nicole M

    2017-07-01

    In humans, maternal obesity is associated with an increase in the incidence of birth related difficulties. However, the impact of maternal obesity on the severity of brain injury in offspring is not known. Recent studies have found evidence of increased glial response and inflammatory mediators in the brains as a result of obesity in humans and rodents. We hypothesised that hypoxic-ischaemic (HI) brain injury is greater in neonatal offspring from obese rat mothers compared to lean controls. Female Sprague Dawley rats were randomly allocated to high fat (HFD, n=8) or chow (n=4) diet and mated with lean male rats. On postnatal day 7 (P7), male and female pups were randomly assigned to HI injury or control (C) groups. HI injury was induced by occlusion of the right carotid artery followed by 3h exposure to 8% oxygen, at 37°C. Control pups were removed from the mother for the same duration under ambient conditions. Righting behaviour was measured on day 1 and 7 following HI. The extent of brain injury was quantified in brain sections from P14 pups using cresyl violet staining and the difference in volume between brain hemispheres was measured. Before mating, HFD mothers were 11% heavier than Chow mothers (pmaternal weight. Similar observations were made with neuronal staining showing a greater loss of neurons in the brain of offspring from HFD-mothers following HI compared to Chow. Astrocytes appeared to more hypertrophic and a greater number of microglia were present in the injured hemisphere in offspring from mothers on HFD. HI caused an increase in the proportion of amoeboid microglia and exposure to maternal HFD exacerbated this response. In the contralateral hemisphere, offspring exposed to maternal HFD displayed a reduced proportion of ramified microglia. Our data clearly demonstrate that maternal obesity can exacerbate the severity of brain damage caused by HI in neonatal offspring. Given that previous studies have shown enhanced inflammatory responses in

  18. Resveratrol for prenatal-stress-induced oxidative damage in growing brain and its consequences on survival of neurons.

    Science.gov (United States)

    Madhyastha, Sampath; Sahu, Sudhanshu Sekhar; Rao, Gayathri

    2014-02-01

    Prenatal-stress-induced neuronal damage in offspring is multifactorial, including oxidative damage in the developing brain. Resveratrol is known to exert its neuroprotective potentials by upregulating several antioxidant systems. Hence, the study was undertaken to evaluate the neuroprotective effect of resveratrol against prenatal-stress-induced hippocampal damage and oxidative damage in neonate rat brains. Pregnant rats were subjected to restraint stress during early or late gestational period. Another set of rats received resveratrol during the entire gestational period along with early or late gestational stress. The study parameters included several antioxidant studies directly from rat brain homogenate on the 40th postnatal day and hippocampal neuronal assay on the 21st postnatal day. Early as well as late gestational stress resulted in a significant increase in lipid peroxidation and advanced oxidation protein products and decrease in total antioxidant activity and nitric oxide levels in rat brain homogenate. The neurons of the dentate gyrus were severely affected in early and late gestational stress, and only the neurons of the CA3 region were adversely affected in late gestational stress. Administration of resveratrol reversed the prenatal-stress-induced oxidative damage and neurons of dentate gyrus but not the CA3 hippocampal neurons. These results show the neuroprotective abilities of resveratrol against prenatal-stress-induced oxidative damage in neonatal rat brain.

  19. Associations Between Left Ventricular Dysfunction and Brain Structure and Function: Findings From the SABRE (Southall and Brent Revisited) Study.

    Science.gov (United States)

    Park, Chloe M; Williams, Emily D; Chaturvedi, Nish; Tillin, Therese; Stewart, Robert J; Richards, Marcus; Shibata, Dean; Mayet, Jamil; Hughes, Alun D

    2017-04-18

    Subclinical left ventricular (LV) dysfunction has been inconsistently associated with early cognitive impairment, and mechanistic pathways have been poorly considered. We investigated the cross-sectional relationship between LV dysfunction and structural/functional measures of the brain and explored the role of potential mechanisms. A total of 1338 individuals (69±6 years) from the Southall and Brent Revisited study underwent echocardiography for systolic (tissue Doppler imaging peak systolic wave) and diastolic (left atrial diameter) assessment. Cognitive function was assessed and total and hippocampal brain volumes were measured by magnetic resonance imaging. Global LV function was assessed by circulating N-terminal pro-brain natriuretic peptide. The role of potential mechanistic pathways of arterial stiffness, atherosclerosis, microvascular disease, and inflammation were explored. After adjusting for age, sex, and ethnicity, lower systolic function was associated with lower total brain (beta±standard error, 14.9±3.2 cm 3 ; P function was associated with poorer working memory (-0.21±0.07, P =0.004) and fluency scores (-0.18±0.08, P =0.02). Reduced global LV function was associated with smaller hippocampal volume (-0.10±0.03 cm 3 , P =0.004) and adverse visual memory (-0.076±0.03, P =0.02) and processing speed (0.063±0.02, P =0.006) scores. Separate adjustment for concomitant cardiovascular risk factors attenuated associations with hippocampal volume and fluency only. Further adjustment for the alternative pathways of microvascular disease or arterial stiffness attenuated the relationship between global LV function and visual memory. In a community-based sample of older people, measures of LV function were associated with structural/functional measures of the brain. These associations were not wholly explained by concomitant risk factors or potential mechanistic pathways. © 2017 The Authors. Published on behalf of the American Heart Association, Inc

  20. Inhibition of myeloperoxidase oxidant production by N-acetyl lysyltyrosylcysteine amide reduces brain damage in a murine model of stroke.

    Science.gov (United States)

    Yu, Guoliang; Liang, Ye; Huang, Ziming; Jones, Deron W; Pritchard, Kirkwood A; Zhang, Hao

    2016-05-24

    Oxidative stress plays an important and causal role in the mechanisms by which ischemia/reperfusion (I/R) injury increases brain damage after stroke. Accordingly, reducing oxidative stress has been proposed as a therapeutic strategy for limiting damage in the brain after stroke. Myeloperoxidase (MPO) is a highly potent oxidative enzyme that is capable of inducing both oxidative and nitrosative stress in vivo. To determine if and the extent to which MPO-generated oxidants contribute to brain I/R injury, we treated mice subjected to middle cerebral artery occlusion (MCAO) with N-acetyl lysyltyrosylcysteine amide (KYC), a novel, specific and non-toxic inhibitor of MPO. Behavioral testing, ischemic damage, blood-brain-barrier disruption, apoptosis, neutrophils infiltration, microglia/macrophage activation, and MPO oxidation were analyzed within a 7-day period after MCAO. Our studies show that KYC treatment significantly reduces neurological severity scores, infarct size, IgG extravasation, neutrophil infiltration, loss of neurons, apoptosis, and microglia/macrophage activation in the brains of MCAO mice. Immunofluorescence studies show that KYC treatment reduces the formation of chlorotyrosine (ClTyr), a fingerprint biomarker of MPO oxidation, nitrotyrosine (NO2Tyr), and 4-hydroxynonenal (4HNE) in MCAO mice. All oxidative products colocalized with MPO in the infarcted brains, suggesting that MPO-generated oxidants are involved in forming the oxidative products. MPO-generated oxidants play detrimental roles in causing brain damage after stroke which is effectively reduced by KYC.

  1. Chlorogenic Acid Prevents Alcohol-induced Brain Damage in Neonatal Rat

    Science.gov (United States)

    Guo, Zikang; Li, Jiang

    2017-01-01

    Abstract The present investigation evaluates the neuroprotective effect of chlorogenic acid (CA) in alcohol-induced brain damage in neonatal rats. Ethanol (12 % v/v, 5 g/kg) was administered orally in the wistar rat pups on postnatal days (PD) 7-9. Chlorogenic acid (100 and 200 mg/kg, p.o.) was administered continuously from PD 6 to 28. Cognitive function was estimated by Morris water maze (MWM) test. However, activity of acetylcholinesterase, inflammatory mediators, parameters of oxidative stress and activity of caspase-3 enzyme was estimated in the tissue homogenate of cerebral cortex and hippocampus of ethanol-exposed pups. It has been observed that treatment with CA attenuates the altered cognitive function in ethanol-exposed pups. There was a significant decrease in the activity of acetylcholinesterase in the CA treated group compared to the negative control group. However, treatment with CA significantly ameliorates the increased oxidative stress and concentration of inflammatory mediators in the brain tissues of ethanol-exposed pups. Activity of caspase-3 enzyme was also found significantly decreased in the CA treated group compared to the negative control group. The present study concludes that CA attenuates the neuronal damage induced in alcohol exposed neonatal rat by decreasing the apoptosis of neuronal cells. PMID:29318034

  2. Piano training in youths with hand motor impairments after damage to the developing brain

    Science.gov (United States)

    Lampe, Renée; Thienel, Anna; Mitternacht, Jürgen; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana

    2015-01-01

    Damage to the developing brain may lead to impairment of the hand motor function and negatively impact on patients’ quality of life. Development of manual dexterity and finger and hand motor function may be promoted by learning to play the piano. The latter brings together music with the intensive training of hand coordination and fine finger mobility. We investigated if learning to play the piano helped to improve hand motor skills in 18 youths with hand motor disorders resulting from damage during early brain development. Participants trained 35–40 minutes twice a week for 18 months with a professional piano teacher. With the use of a Musical Instrument Digital Interface piano, the uniformity of finger strokes could be objectively assessed from the timing of keystrokes. The analysis showed a significant improvement in the uniformity of keystrokes during the training. Furthermore, the youths showed strong motivation and engagement during the study. This is nevertheless an open study, and further studies remain needed to exclude effects of growth and concomitant therapies on the improvements observed and clarify which patients will more likely benefit from learning to play the piano. PMID:26345312

  3. Exploring social cognition in patients with apathy following acquired brain damage

    Science.gov (United States)

    2014-01-01

    Background Research on cognition in apathy has largely focused on executive functions. To the best of our knowledge, no studies have investigated the relationship between apathy symptoms and processes involved in social cognition. Apathy symptoms include attenuated emotional behaviour, low social engagement and social withdrawal, all of which may be linked to underlying socio-cognitive deficits. Methods We compared patients with brain damage who also had apathy symptoms against similar patients with brain damage but without apathy symptoms. Both patient groups were also compared against normal controls on key socio-cognitive measures involving moral reasoning, social awareness related to making judgements between normative and non-normative behaviour, Theory of Mind processing, and the perception of facial expressions of emotion. We also controlled for the likely effects of executive deficits and depressive symptoms on these comparisons. Results Our results indicated that patients with apathy were distinctively impaired in making moral reasoning decisions and in judging the social appropriateness of behaviour. Deficits in Theory of Mind and perception of facial expressions of emotion did not distinguish patients with apathy from those without apathy. Conclusion Our findings point to a possible socio-cognitive profile for apathy symptoms and provide initial insights into how socio-cognitive deficits in patients with apathy may affect social functioning. PMID:24450311

  4. Piano training in youths with hand motor impairments after damage to the developing brain.

    Science.gov (United States)

    Lampe, Renée; Thienel, Anna; Mitternacht, Jürgen; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana

    2015-01-01

    Damage to the developing brain may lead to impairment of the hand motor function and negatively impact on patients' quality of life. Development of manual dexterity and finger and hand motor function may be promoted by learning to play the piano. The latter brings together music with the intensive training of hand coordination and fine finger mobility. We investigated if learning to play the piano helped to improve hand motor skills in 18 youths with hand motor disorders resulting from damage during early brain development. Participants trained 35-40 minutes twice a week for 18 months with a professional piano teacher. With the use of a Musical Instrument Digital Interface piano, the uniformity of finger strokes could be objectively assessed from the timing of keystrokes. The analysis showed a significant improvement in the uniformity of keystrokes during the training. Furthermore, the youths showed strong motivation and engagement during the study. This is nevertheless an open study, and further studies remain needed to exclude effects of growth and concomitant therapies on the improvements observed and clarify which patients will more likely benefit from learning to play the piano.

  5. Behavior outcome after ischemic and hemorrhagic stroke, with similar brain damage, in rats.

    Science.gov (United States)

    Mestriner, Régis Gemerasca; Miguel, Patrícia Maidana; Bagatini, Pamela Brambilla; Saur, Lisiani; Boisserand, Lígia Simões Braga; Baptista, Pedro Porto Alegre; Xavier, Léder Leal; Netto, Carlos Alexandre

    2013-05-01

    Stroke causes disability and mortality worldwide and is divided into ischemic and hemorrhagic subtypes. Although clinical trials suggest distinct recovery profiles for ischemic and hemorrhagic events, this is not conclusive due to stroke heterogeneity. The aim of this study was to produce similar brain damage, using experimental models of ischemic (IS) and hemorrhagic (HS) stroke and evaluate the motor spontaneous recovery profile. We used 31 Wistar rats divided into the following groups: Sham (n=7), ischemic (IS) (n=12) or hemorrhagic (HS) (n=12). Brain ischemia or hemorrhage was induced by endotelin-1 (ET-1) and collagenase type IV-S (collagenase) microinjections, respectively. All groups were evaluated in the open field, cylinder and ladder walk behavioral tests at distinct time points as from baseline to 30 days post-surgery (30 PS). Histological and morphometric analyses were used to assess the volume of lost tissue and lesion length. Present results reveal that both forms of experimental stroke had a comparable long-term pattern of damage, since no differences were found in volume of tissue lost or lesion size 30 days after surgery. However, behavioral data showed that hemorrhagic rats were less impaired at skilled walking than ischemic ones at 15 and 30 days post-surgery. We suggest that experimentally comparable stroke design is useful because it reduces heterogeneity and facilitates the assessment of neurobiological differences related to stroke subtypes; and that spontaneous skilled walking recovery differs between experimental ischemic and hemorrhagic insults. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Exploring social cognition in patients with apathy following acquired brain damage.

    Science.gov (United States)

    Njomboro, Progress; Humphreys, Glyn W; Deb, Shoumitro

    2014-01-23

    Research on cognition in apathy has largely focused on executive functions. To the best of our knowledge, no studies have investigated the relationship between apathy symptoms and processes involved in social cognition. Apathy symptoms include attenuated emotional behaviour, low social engagement and social withdrawal, all of which may be linked to underlying socio-cognitive deficits. We compared patients with brain damage who also had apathy symptoms against similar patients with brain damage but without apathy symptoms. Both patient groups were also compared against normal controls on key socio-cognitive measures involving moral reasoning, social awareness related to making judgements between normative and non-normative behaviour, Theory of Mind processing, and the perception of facial expressions of emotion. We also controlled for the likely effects of executive deficits and depressive symptoms on these comparisons. Our results indicated that patients with apathy were distinctively impaired in making moral reasoning decisions and in judging the social appropriateness of behaviour. Deficits in Theory of Mind and perception of facial expressions of emotion did not distinguish patients with apathy from those without apathy. Our findings point to a possible socio-cognitive profile for apathy symptoms and provide initial insights into how socio-cognitive deficits in patients with apathy may affect social functioning.

  7. Pathological and MRI study on experimental heroin-induced brain damage in rats

    International Nuclear Information System (INIS)

    Long Yu; Kong Xiangquan; Xu Haibo; Liu Dingxi; Yuan Ren; Yu Qun; Xiong Yin; Deng Xianbo

    2005-01-01

    Objective: To study the pathological characteristics of the heroin-induced brain damage in rats, and to assess the diagnostic value of MRI. Methods: A total of 40 adult Wistar rats were studied, 32 rats were used for injecting heroin as heroin group and 8 were used for injecting saline as control group. The heroin dependent rat model was established by administering heroin (ip) in the ascending dosage schedule (0.5 mg/kg), three times a day (at 8:00, 12:00, and 18:00). The control group was established by the same way by injection with saline. The withdrawal scores were evaluated with imp roved criterion in order to estimate the degree of addiction after administering naloxone. Based on the rat model of heroin dependence, the rat model of heroin-induced brain damage was established by the same way with increasing heroin dosage everyday. Two groups were examined by using MRI, light microscope, and electron microscope, respectively in different heroin accumulated dosage (918, 1580, 2686, 3064, 4336, and 4336 mg/kg withdrawal after 2 weeks). Results: There was statistically significant difference (t=9.737, P<0.01) of the withdrawal scores between the heroin dependent group and the saline group (23.0 ± 4.4 and 1.4 ± 0.5, respectively). It suggested that the heroin dependent rat model be established successfully. In different accumulated dosage ( from 1580 mg/kg to 4336 mg/kg), there were degeneration and death of nerve cells in cerebrum and cerebellum of heroin intoxicated rats, and it suggested that the rat model of heroin-induced brain damage was established successfully. The light microscope and electron microscope features of heroin-induced brain damage in rats included: (1) The nerve cells of cerebral cortex degenerated and died. According to the heroin accumulated dosage, there were statistically significant difference of the nerve cell deaths between 4336 mg/kg group and 1580 mg/kg group or control group (P=0.024 and P=0.032, respectively); (2) The main

  8. A cross-talk between brain-damage patients and infants on action and language.

    Science.gov (United States)

    Papeo, Liuba; Hochmann, Jean-Remy

    2012-06-01

    Sensorimotor representations in the brain encode the sensory and motor aspects of one's own bodily activity. It is highly debated whether sensorimotor representations are the core basis for the representation of action-related knowledge and, in particular, action words, such as verbs. In this review, we will address this question by bringing to bear insights from the study of brain-damaged patients exhibiting language disorders and from the study of the mechanisms for language acquisition in infants. Cognitive neuropsychology studies have assessed how damage to representations supporting action production impacts patients' ability to process action-related words. While correlations between verbal and nonverbal (motor) impairments are very common in patients, damage to the representations for action production can leave the ability to understand action-words unaffected; likewise, actions can still be produced successfully in cases of impaired action-word understanding. Studies with infants have evaluated the relevance of sensorimotor information when infants learn to map a novel word onto an action that they are performing or perceiving. These results demonstrate that sensorimotor information is insufficient to fully account for the complexity of verb learning: in this process, infants seem to privilege abstract constructs such as goal, intentionality and causality, as well as syntactic constraints, over the perceptual and motor dimensions of an action. Altogether, the empirical data suggest that, while not crucial for verb learning and understanding, sensorimotor processes can contribute to solving the problem of symbol grounding and/or serve as a primary mechanism in social cognition, to learn about others' goals and intentions. By assessing the relevance of sensorimotor representations in the way action-related words are acquired and represented, we aim to provide a useful set of criteria for testing specific predictions made by different theories of concepts

  9. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    Science.gov (United States)

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (pmicrowave exposed groups (pmicrowave exposed animal (pmicrowave exposed groups as compared to their corresponding values in sham exposed group (pmicrowave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect. The study also indicates that increased oxidative stress and inflammatory response might be the factors involved in DNA damage following low intensity microwave exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Quan-Guang Zhang

    Full Text Available BACKGROUND: Oxidative stress is known to play an important role in the pathology of traumatic brain injury. Mitochondria are thought to be the major source of the damaging reactive oxygen species (ROS following TBI. However, recent work has revealed that the membrane, via the enzyme NADPH oxidase can also generate the superoxide radical (O(2(-, and thereby potentially contribute to the oxidative stress following TBI. The current study thus addressed the potential role of NADPH oxidase in TBI. METHODOLOGY/PRINCIPAL FINDINGS: The results revealed that NADPH oxidase activity in the cerebral cortex and hippocampal CA1 region increases rapidly following controlled cortical impact in male mice, with an early peak at 1 h, followed by a secondary peak from 24-96 h after TBI. In situ localization using oxidized hydroethidine and the neuronal marker, NeuN, revealed that the O(2(- induction occurred in neurons at 1 h after TBI. Pre- or post-treatment with the NADPH oxidase inhibitor, apocynin markedly inhibited microglial activation and oxidative stress damage. Apocynin also attenuated TBI-induction of the Alzheimer's disease proteins β-amyloid and amyloid precursor protein. Finally, both pre- and post-treatment of apocynin was also shown to induce significant neuroprotection against TBI. In addition, a NOX2-specific inhibitor, gp91ds-tat was also shown to exert neuroprotection against TBI. CONCLUSIONS/SIGNIFICANCE: As a whole, the study demonstrates that NADPH oxidase activity and superoxide production exhibit a biphasic elevation in the hippocampus and cortex following TBI, which contributes significantly to the pathology of TBI via mediation of oxidative stress damage, microglial activation, and AD protein induction in the brain following TBI.

  11. Return to drive after non-evolutive brain damage: French recommendations.

    Science.gov (United States)

    D'apolito, Anne-Claire; Leguiet, Jean-Luc; Enjalbert, Michel; Lemoine, Francis; Mazaux, Jean-Michel

    2017-07-01

    Return to drive after brain damage is a crucial question either for patients than health professionals. The Société française de medicine physique et de réadaptation (SOFMER) and Comète France association developed recommandations for patient's identification, evaluation and accompaniment as part of their project to resume to drive. The place of rehabilitation process and patient's focus has been also discussed. Using a literature review, the aim was to define clinical pathways to determine people who need a fitness to drive evaluation after a non-evolutive brain damage as well as the assessment process. Following the method for Clinical practice guidelines, 1388 abstracts were identified, among which 379 were analysed and confronted with the working group's experience. The draft propositions were submitted to a review group before being validated by the High French Health Autority. No article enabled the development of recommendations above the "expert opinion". The detection of sensory (visual), sensitive, motor and/or cognitive sequelaes is needed before return to drive. It is not recommended to return to drive in case of unilateral spatial neglect. Different assessment strategies, function of sequeale's gravity, are proposed after stroke or brain injury. In case of sequeale, the assessment process (clinical, cognitive, on road evaluation) has to be pluriprofessional. The results are the subject of a pluriprofessional synthesis, shared with the patient and, if possible, in the presence of a close. An accompaniment to maintain the best mobility of the person is needed, whatever the assessment result. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Omega-3 prevents behavior response and brain oxidative damage in the ketamine model of schizophrenia.

    Science.gov (United States)

    Zugno, A I; Chipindo, H L; Volpato, A M; Budni, J; Steckert, A V; de Oliveira, M B; Heylmann, A S; da Rosa Silveira, F; Mastella, G A; Maravai, S G; Wessler, P G; Binatti, A R; Panizzutti, B; Schuck, P F; Quevedo, J; Gama, C S

    2014-02-14

    Supplementation with omega-3 has been identified as an adjunctive alternative for the treatment of psychiatric disorders, in order to minimize symptoms. Considering the lack of understanding concerning the pathophysiology of schizophrenia, the present study hypothesized that omega 3 prevents the onset of symptoms similar to schizophrenia in young Wistar rats submitted to ketamine treatment. Moreover, the role of oxidative stress in this model was assessed. Omega-3 (0.8g/kg) or vehicle was given by orogastric gavage once daily. Both treatments were performed during 21days, starting at the 30th day of life in young rats. After 14days of treatment with omega-3 or vehicle, a concomitant treatment with saline or ketamine (25mg/kg ip daily) was started and maintained until the last day of the experiment. We evaluated the pre-pulse inhibition of the startle reflex, activity of antioxidant systems and damage to proteins and lipids. Our results demonstrate that supplementation of omega-3 prevented: decreased inhibition of startle reflex, damage to lipids in the hippocampus and striatum and damage to proteins in the prefrontal cortex. Furthermore, these changes are associated with decreased GPx in brain tissues evaluated. Together, our results suggest the prophylactic role of omega-3 against the outcome of symptoms associated with schizophrenia. Copyright © 2014. Published by Elsevier Ltd.

  13. Maladaptive change of body representation in the brain after damage to central or peripheral nervous system.

    Science.gov (United States)

    Oouchida, Yutaka; Sudo, Tamami; Inamura, Tetsunari; Tanaka, Naofumi; Ohki, Yukari; Izumi, Shin-ichi

    2016-03-01

    Our brain has great flexibility to cope with various changes in the environment. Use-dependent plasticity, a kind of functional plasticity, plays the most important role in this ability to cope. For example, the functional recovery of paretic limb motor movement during post-stroke rehabilitation depends mainly on how much it is used. Patients with hemiparesis, however, tend to gradually disuse the paretic limb because of its motor impairment. Decreased use of the paretic hand then leads to further functional decline brought by use-dependent plasticity. To break this negative loop, body representation, which is the conscious and unconscious information regarding body state stored in the brain, is key for using the paretic limb because it plays an important role in selecting an effector while a motor program is generated. In an attempt to understand body representation in the brain, we reviewed animal and human literature mainly on the alterations of the sensory maps in the primary somatosensory cortex corresponding to the changes in limb usage caused by peripheral or central nervous system damage. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  14. Neuroprotective effects of cactus polysaccharide on oxygen and glucose deprivation induced damage in rat brain slices.

    Science.gov (United States)

    Huang, Xianju; Li, Qin; Zhang, Yingpei; Lü, Qing; Guo, Lianjun; Huang, Lin; He, Zhi

    2008-06-01

    1. The neuroprotective effect of cactus polysaccharide (CP) on oxygen and glucose deprivation (OGD) and reoxygenation (REO)-induced damage in the cortical and hippocampal slices of rat brain was investigated. 2. Cell viability was evaluated by using the 2, 3, 5-triphenyl tetrazolium chloride (TTC) method. The fluorescence of propidium iodide (PI) staining was used for quantification of cellular survival, and lactate dehydrogenase (LDH) activity in incubation medium was assessed by LDH assay to evaluate the degree of injury. 3. The OGD ischemic condition significantly decreased cellular viability and increased LDH release in the incubation medium. CP (0.2 mg/l approximately 2 mg/l) protected brain slices from OGD injury in a dosage dependent manner as demonstrated by increased A 490 value of TTC, decreased PI intensity and LDH release. At the above concentration, CP also prevented the increase of nitric oxide (NO) content and inducible nitric oxide synthase (iNOS) activity induced by OGD. 4. CP can protect the brain slices (cortical and hippocampus) against injury induced by OGD. Its neuroprotective effect may be partly mediated by the NO/iNOS system induced by OGD insult.

  15. Organotins in Neuronal Damage, Brain Function, and Behavior: A Short Review

    Directory of Open Access Journals (Sweden)

    Igor Ferraz da Silva

    2018-01-01

    Full Text Available The consequences of exposure to environmental contaminants have shown significant effects on brain function and behavior in different experimental models. The endocrine-disrupting chemicals (EDC present various classes of pollutants with potential neurotoxic actions, such as organotins (OTs. OTs have received special attention due to their toxic effects on the central nervous system, leading to abnormal mammalian neuroendocrine axis function. OTs are organometallic pollutants with a tin atom bound to one or more carbon atoms. OT exposure may occur through the food chain and/or contaminated water, since they have multiple applications in industry and agriculture. In addition, OTs have been used with few legal restrictions in the last decades, despite being highly toxic. In addition to their action as EDC, OTs can also cross the blood–brain barrier and show relevant neurotoxic effects, as observed in several animal model studies specifically involving the development of neurodegenerative processes, neuroinflammation, and oxidative stress. Thus, the aim of this short review is to summarize the toxic effects of the most common OT compounds, such as trimethyltin, tributyltin, triethyltin, and triphenyltin, on the brain with a focus on neuronal damage as a result of oxidative stress and neuroinflammation. We also aim to present evidence for the disruption of behavioral functions, neurotransmitters, and neuroendocrine pathways caused by OTs.

  16. Lateral cord stimulation decreases spastic electromyographic spreading: responses in a brain-damaged pig preparation.

    Science.gov (United States)

    Andreani, Juan Carlos M; Guma, Cristina

    2008-07-01

    Objective.  The aim of our work was to investigate whether lateral stimulation of the spinal cord, lateral cord stimulation (LCS), results in inhibition of the spastic phenomena of upper motor lesions in an animal model. Methods.  This study was conducted using an animal model consisting of surgically brain damaged pigs subjected to unilateral cortical and subcortical brain lesions. A double laminectomy at cervical (C3-C4) and lumbar (L3-L6) was performed, and spastic thresholds of abnormal electromyographic responses, disseminated to adjacent segments, facilitated by spinal liberation, and produced by extradural electrical stimulation of the fourth lumbar root, were measured before and after cervical stimulation of the LCS. The variable studied was the minimal amount of current of LCS necessary to abolish electromyographic responses in the L7 myotome, away from the stimulated L4 nerve root. Results.  Experiments in 12 animals showed a significant increase of threshold after LCS, with a marked posteffect, signaling a less abnormal threshold. Conclusions.  This experiment demonstrated that LCS produces threshold increases to abolish abnormally propagated electromyographic evoked responses induced by the electrical stimulation of the fourth lumbar root in pigs with experimental cortical and subcortical brain lesions. © 2008 International Neuromodulation Society.

  17. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure.

    Science.gov (United States)

    Cauley, Edmund; Wang, Xin; Dyavanapalli, Jhansi; Sun, Ke; Garrott, Kara; Kuzmiak-Glancy, Sarah; Kay, Matthew W; Mendelowitz, David

    2015-10-01

    Hypertension, cardiac hypertrophy, and heart failure (HF) are widespread and debilitating cardiovascular diseases that affect nearly 23 million people worldwide. A distinctive hallmark of these cardiovascular diseases is autonomic imbalance, with increased sympathetic activity and decreased parasympathetic vagal tone. Recent device-based approaches, such as implantable vagal stimulators that stimulate a multitude of visceral sensory and motor fibers in the vagus nerve, are being evaluated as new therapeutic approaches for these and other diseases. However, little is known about how parasympathetic activity to the heart is altered with these diseases, and this lack of knowledge is an obstacle in the goal of devising selective interventions that can target and selectively restore parasympathetic activity to the heart. To identify the changes that occur within the brain stem to diminish the parasympathetic cardiac activity, left ventricular hypertrophy was elicited in rats by aortic pressure overload using a transaortic constriction approach. Cardiac vagal neurons (CVNs) in the brain stem that generate parasympathetic activity to the heart were identified with a retrograde tracer and studied using patch-clamp electrophysiological recordings in vitro. Animals with left cardiac hypertrophy had diminished excitation of CVNs, which was mediated both by an augmented frequency of spontaneous inhibitory GABAergic neurotransmission (with no alteration of inhibitory glycinergic activity) as well as a diminished amplitude and frequency of excitatory neurotransmission to CVNs. Opportunities to alter these network pathways and neurotransmitter receptors provide future targets of intervention in the goal to restore parasympathetic activity and autonomic balance to the heart in cardiac hypertrophy and other cardiovascular diseases. Copyright © 2015 the American Physiological Society.

  18. Relationships of Blood Pressure Circadian Rhythm and Brain Natriuretic Peptide with Left Ventricular Hypertrophy in the Patients with Primary Hypertension.

    Science.gov (United States)

    Kou, Hui-Juan; Wang, Xin; Gao, Deng-Feng; Dong, Xin; Wei, Jin; Ma, Rui

    2016-10-10

    Objective To investigate the relationships of blood pressure circadian rhythm and brain natriuretic peptide (BNP) with left ventricular hypertrophy (LVH) in patients with primary hypertension. Methods Totally 349 patients (74 with LVH and 275 without LVH) with primary hypertension were enrolled in this study.Echocardiography was performed to determine left ventricular mass index (LVMI) using the Devereux formula. The nocturnal blood pressure decline rate,24-hour blood pressure (24 h PP; especially 24 h mean systolic blood pressure,24 h SBP) and blood pressure index (PPI) were determined by 24 h-ambulatory blood pressure monitoring. These 349 hypertensive patients were divided into four groups including supper-dipper group (defined as≥;20%, n=7),dipper group (defined as 10%- 20%, n=77),non-dipper group (defined as 0- 10%, n=173),and anti-dipper group (defined ashypertension (85.1% vs. 46.9%;χ 2 =34.428,Pblood pressure decline rate [(1.30±8.02)% vs. (5.68±7.25)%; t=-4.510,Phypertensive group had significantly higher BNP level (87.8 pg/ml vs. 28.8 pg/ml; t=2.170,P=0.034) and LVMI (135.1 g/m 2 vs. 88.7 g/m 2 ; t=15.285,Phypertension. Conclusion With the increasing of plasma BNP level,the left ventricular hypertrophy is closely related to abnormal blood pressure circadian rhythm and the grade of hypertension in primary hypertensive patients.

  19. More vulnerability of left than right hippocampal damage in right-handed patients with post-traumatic stress disorder.

    Science.gov (United States)

    Shu, Xi-Ji; Xue, Li; Liu, Wei; Chen, Fu-Yin; Zhu, Cheng; Sun, Xiao-Hai; Wang, Xiao-Ping; Liu, Zhong-Cun; Zhao, Hu

    2013-06-30

    Previous studies have shown hippocampal abnormalities in people with post-traumatic stress disorder (PTSD), but findings of diminished volume in shortages in the hippocampus have been inconsistent. In this study, we investigated changes in hippocampal volume and neuronal metabolites in right-handed PTSD patients to determine their possible relationship(s) with PTSD severity. We performed a case-control study of 11 right-handed PTSD patients and 11 healthy controls using magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy ((1)H MRS). Hippocampal volume and metabolite ratios of N-acetylaspartate (NAA) to creatine (Cr) (NAA/Cr) and choline compounds (Cho) to Cr (Cho/Cr) were calculated. The severity of PTSD was evaluated by the Clinician-Administered PTSD Scale (CAPS). Significantly decreased left and total normalized hippocampal volumes were found in PTSD patients compared with controls (6.6% for the left hippocampus, 5.5% for total hippocampus). Also, the bilateral hippocampal NAA/Cr ratio of PTSD patients was significantly reduced compared with controls. The volume of the left hippocampus was negatively correlated to the CAPS total and CPAS-C scores. The left hippocampal NAA/Cr ratio was negatively correlated to the CAPS-total, CAPS-B, CAPS-C, and CAPS-D scores. The CAPS total and the CAPS-B scores were positively correlated to the Cho/Cr ratio of the right hippocampus. Our results indicate that hippocampal dysfunction is asymmetric in right-handed PTSD patients, with the left side affected more than the right. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Verb retrieval in brain-damaged subjects: 2. Analysis of errors.

    Science.gov (United States)

    Kemmerer, D; Tranel, D

    2000-07-01

    Verb retrieval for action naming was assessed in 53 brain-damaged subjects by administering a standardized test with 100 items. In a companion paper (Kemmerer & Tranel, 2000), it was shown that impaired and unimpaired subjects did not differ as groups in their sensitivity to a variety of stimulus, lexical, and conceptual factors relevant to the test. For this reason, the main goal of the present study was to determine whether the two groups of subjects manifested theoretically interesting differences in the kinds of errors that they made. All of the subjects' errors were classified according to an error coding system that contains 27 distinct types of errors belonging to five broad categories-verbs, phrases, nouns, adpositional words, and "other" responses. Errors involving the production of verbs that are semantically related to the target were especially prevalent for the unimpaired group, which is similar to the performance of normal control subjects. By contrast, the impaired group had a significantly smaller proportion of errors in the verb category and a significantly larger proportion of errors in each of the nonverb categories. This relationship between error rate and error type is consistent with previous research on both object and action naming errors, and it suggests that subjects with only mild damage to putative lexical systems retain an appreciation of most of the semantic, phonological, and grammatical category features of words, whereas subjects with more severe damage retain a much smaller set of features. At the level of individual subjects, a wide range of "predominant error types" were found, especially among the impaired subjects, which may reflect either different action naming strategies or perhaps different patterns of preservation and impairment of various lexical components. Overall, this study provides a novel addition to the existing literature on the analysis of naming errors made by brain-damaged subjects. Not only does the study

  1. Structural Brain Damage and Upper Limb Kinematics in Children with Unilateral Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Lisa Mailleux

    2017-12-01

    Full Text Available Background: In children with unilateral cerebral palsy (uCP virtually nothing is known on the relation between structural brain damage and upper limb (UL kinematics quantified with three-dimensional movement analysis (3DMA. This explorative study aimed to (1 investigate differences in UL kinematics between children with different lesion timings, i.e., periventricular white matter (PWM vs. cortical and deep gray matter (CDGM lesions and (2 to explore the relation between UL kinematics and lesion location and extent within each lesion timing group.Methods: Forty-eight children (age 10.4 ± 2.7 year; 29 boys; 21 right-sided; 33 PWM; 15 CDGM underwent an UL 3DMA during a reach-to-grasp task. Spatiotemporal parameters [movement duration, (timing of maximum velocity, trajectory straightness], the Arm Profile Score (APS and Arm Variable Scores (AVS were extracted. The APS and AVS refer to the total amount of movement pathology and movement deviations of the wrist, elbow, shoulder, scapula and trunk respectively. Brain lesion location and extent were scored based on FLAIR-images using a semi-quantitative MRI-scale.Results: Children with CDGM lesions showed more aberrant spatiotemporal parameters (p < 0.03 and more movement pathology (APS, p = 0.003 compared to the PWM group, mostly characterized by increased wrist flexion (p = 0.01. In the CDGM group, moderate to high correlations were found between lesion location and extent and duration, timing of maximum velocity and trajectory straightness (r = 0.53–0.90. Lesion location and extent were further moderately correlated with distal UL movement pathology (wrist flexion/extension, elbow pronation/supination, elbow flexion/extension; r = 0.50–0.65 and with the APS (r = 0.51–0.63. In the PWM group, only a few and low correlations were observed, mostly between damage to the PLIC and higher AVS of elbow flexion/extension, shoulder elevation and trunk rotation (r = 0.35–0.42. Regression analysis

  2. Structural brain abnormalities in patients with inflammatory illness acquired following exposure to water-damaged buildings: a volumetric MRI study using NeuroQuant®.

    Science.gov (United States)

    Shoemaker, Ritchie C; House, Dennis; Ryan, James C

    2014-01-01

    Executive cognitive and neurologic abnormalities are commonly seen in patients with a chronic inflammatory response syndrome (CIRS) acquired following exposure to the interior environment of water-damaged buildings (WDB), but a clear delineation of the physiologic or structural basis for these abnormalities has not been defined. Symptoms of affected patients routinely include headache, difficulty with recent memory, concentration, word finding, numbness, tingling, metallic taste and vertigo. Additionally, persistent proteomic abnormalities in inflammatory parameters that can alter permeability of the blood-brain barrier, such as C4a, TGFB1, MMP9 and VEGF, are notably present in cases of CIRS-WDB compared to controls, suggesting a consequent inflammatory injury to the central nervous system. Findings of gliotic areas in MRI scans in over 45% of CIRS-WDB cases compared to 5% of controls, as well as elevated lactate and depressed ratios of glutamate to glutamine, are regularly seen in MR spectroscopy of cases. This study used the volumetric software program NeuroQuant® (NQ) to determine specific brain structure volumes in consecutive patients (N=17) seen in a medical clinic specializing in inflammatory illness. Each of these patients presented for evaluation of an illness thought to be associated with exposure to WDB, and received an MRI that was evaluated by NQ. When compared to those of a medical control group (N=18), statistically significant differences in brain structure proportions were seen for patients in both hemispheres of two of the eleven brain regions analyzed; atrophy of the caudate nucleus and enlargement of the pallidum. In addition, the left amygdala and right forebrain were also enlarged. These volumetric abnormalities, in conjunction with concurrent abnormalities in inflammatory markers, suggest a model for structural brain injury in "mold illness" based on increased permeability of the blood-brain barrier due to chronic, systemic inflammation

  3. Structure and function in acquired prosopagnosia: lessons from a series of 10 patients with brain damage.

    Science.gov (United States)

    Barton, Jason J S

    2008-03-01

    Acquired prosopagnosia varies in both behavioural manifestations and the location and extent of underlying lesions. We studied 10 patients with adult-onset lesions on a battery of face-processing tests. Using signal detection methods, we found that discriminative power for the familiarity of famous faces was most reduced by bilateral occipitotemporal lesions that involved the fusiform gyri, and better preserved with unilateral right-sided lesions. Tests of perception of facial structural configuration showed severe deficits with lesions that included the right fusiform gyrus, whether unilateral or bilateral. This deficit was most consistent for eye configuration, with some patients performing normally for mouth configuration. Patients with anterior temporal lesions had better configuration perception, though at least one patient showed a more subtle failure to integrate configural data from different facial regions. Facial imagery, an index of facial memories, was severely impaired by bilateral lesions that included the right anterior temporal lobe and marginally impaired by fusiform lesions alone; unilateral right fusiform lesions tended to spare imagery for facial features. These findings suggest that (I) prosopagnosia is more severe with bilateral than unilateral lesions, indicating a minor contribution of the left hemisphere to face recognition, (2) perception of facial configuration critically involves the right fusiform gyrus and (3) access to facial memories is most disrupted by bilateral lesions that also include the right anterior temporal lobe. This supports assertions that more apperceptive variants of prosopagnosia are linked to fusiform damage, whereas more associative variants are linked to anterior temporal damage. Next, we found that behavioural indices of covert recognition correlated with measures of overt familiarity, consistent with theories that covert behaviour emerges from the output of damaged neural networks, rather than alternative

  4. Ipsilesional deficit of selective attention in left homonymous hemianopia and left unilateral spatial neglect.

    Science.gov (United States)

    Chokron, Sylvie; Peyrin, Carole; Perez, Céline

    2018-03-15

    Patients with homonymous hemianopia may present a subtle ipsilesional deficit, recently referred to as 'sightblindness' in addition to the contralesional visual field defect. We recently demonstrated that this deficit could be worse in right brain-damaged patients with left hemianopia than in left brain-damaged patients with right hemianopia, confirming right hemisphere dominance for visuo-spatial and attentional capacities. In the present study we investigate whether this ipsilesional deficit could be attentional in nature and to what extent it is comparable in right brain-damaged (RBD) patients with left hemianopia and in RBD patients with left neglect. The study was also conducted in RBD patients with neither left hemianopia nor left neglect signs in order to test if a right hemisphere lesion per se could be responsible for subtle ipsilesional attentional deficit. To reach this aim, we tested selective attentional capacities in both visual fields of 10 right brain-damaged patients with left neglect (LN), 8 right brain-damaged patients with left homonymous hemianopia (LHH), 8 right brain-damaged patients with no signs of left neglect or left hemianopia (RBD controls), and 17 healthy age-matched participants (Normal controls). A lateralized letter-detection task was used to test if right-brain damaged patients with LN or LH may present a deficit of selective attention in their right, ipsilesional visual field, in comparison to Normal and RBD controls. Participants were asked to detect a target letter in either a single large stimulus (low attentional load) or a small stimulus surrounded by flankers (high attentional load). Stimuli were displayed either in the left or in the right visual field. Accuracy and reaction times were recorded. Results on accuracy showed that both LN and LH patients exhibited lower correct responses than Normal controls in their ipsilesional right visual field, suggesting an attentional deficit in their ipsilesional, supposed healthy

  5. Lateralization in the invertebrate brain: left-right asymmetry of olfaction in bumble bee, Bombus terrestris.

    Directory of Open Access Journals (Sweden)

    Gianfranco Anfora

    Full Text Available Brain and behavioural lateralization at the population level has been recently hypothesized to have evolved under social selective pressures as a strategy to optimize coordination among asymmetrical individuals. Evidence for this hypothesis have been collected in Hymenoptera: eusocial honey bees showed olfactory lateralization at the population level, whereas solitary mason bees only showed individual-level olfactory lateralization. Here we investigated lateralization of odour detection and learning in the bumble bee, Bombus terrestris L., an annual eusocial species of Hymenoptera. By training bumble bees on the proboscis extension reflex paradigm with only one antenna in use, we provided the very first evidence of asymmetrical performance favouring the right antenna in responding to learned odours in this species. Electroantennographic responses did not reveal significant antennal asymmetries in odour detection, whereas morphological counting of olfactory sensilla showed a predominance in the number of olfactory sensilla trichodea type A in the right antenna. The occurrence of a population level asymmetry in olfactory learning of bumble bee provides new information on the relationship between social behaviour and the evolution of population-level asymmetries in animals.

  6. Clinical investigation of cognitive styles in patients with acquired brain damage.

    Science.gov (United States)

    Oliveri, Serena; Incorpora, Chiara; Genevini, Marina; Santagostino, Laura; Tettamanti, Laura; Antonietti, Alessandro; Risoli, Annalisa

    2012-01-01

    This study aims to investigate relationships between the preference in use of visual-verbal cognitive representation and strategies and lesion site in patients with acquired brain injury. The Visualiser-Verbaliser Questionnaire (VVQ) and the Questionnaire on Visual and Verbal Strategies (QSVV) were administered to 48 patients by an examiner in an ambulatory setting. Data showed that the preference for verbalisation decreased in patients with a parietal focal lesion, who tended to use a mixed cognitive style. Patients with subcortical bilateral lesions verbalised more than patients with no lesion or right focal lesions. In general, damage in a specific area associated to a type of cognitive strategy may compromise its use, but does not lead to its extinction. From a neurorehabilitation perspective, findings suggest that patients can learn to use cognitive strategies to compensate for their deficits.

  7. Overexpression of HIF-1α in mesenchymal stem cells contributes to repairing hypoxic-ischemic brain damage in rats.

    Science.gov (United States)

    Lin, Deju; Zhou, Liping; Wang, Biao; Liu, Lizhen; Cong, Li; Hu, Chuanqin; Ge, Tingting; Yu, Qin

    2017-01-01

    Preclinical researches on mesenchymal stem cells (MSCs) transplantation, which is used to treat hypoxic-ischemic (HI) brain damage, have received inspiring achievements. However, the insufficient migration of active cells to damaged tissues has limited their potential therapeutic effects. There are some evidences that hypoxia inducible factor-1 alpha (HIF-1α) promotes the viability and migration of the cells. Here, we aim to investigate whether overexpression of HIF-1α in MSCs could improve the viability and migration capacity of cells, and its therapeutic efficiency on HI brain damage. In the study, MSCs with HIF-1α overexpression was achieved by recombinant lentiviral vector and transplanted to the rats subsequent to HI. Our data indicated that overexpression of HIF-1α promoted the viability and migration of MSCs, HIF-1α overexpressed MSCs also had a stronger therapeutic efficiency on HI brain damaged treatment by mitigating the injury on behavioral and histological changes evoked by HI insults, accompanied with more MSCs migrating to cerebral damaged area. This study demonstrated that HIF-1α overexpression could increase the MSCs' therapeutic efficiency in HI and the promotion of the cells' directional migration to cerebral HI area by overexpression may be responsible for it, which showed that transplantation of MSCs with HIF-1α overexpression is an attractive therapeutic option to treat HI-induced brain injury in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  8. Comparison of graphic symbol learning in individuals with aphasia and right hemisphere brain damage.

    Science.gov (United States)

    Koul, R K; Lloyd, L L

    1998-05-01

    This study compared the differences in performance on recognition of graphic symbols across time by individuals with aphasia, individuals with right-hemisphere brain damage, and neurologically normal adults. The subjects, seen individually, learned 40 Blissymbols. The symbols were selected so that the effects of symbol translucency and complexity on the recognition of graphic symbols could be examined. A paired-associate learning paradigm was used to teach the symbol-referent pairs to subjects. The results indicated that individuals with aphasia and neurologically normal adults do not differ significantly in recognition of graphic symbols. However, individuals with right-hemisphere damage recognized fewer symbols compared to individuals with aphasia and normal adults, suggesting that they have difficulty in associative learning of graphic symbols. Additionally, translucency was found to be a potent factor in the recognition of Blissymbols by all groups. The finding that individuals with severe chronic aphasia can learn and retain graphic symbols has significant clinical implications for aphasia rehabilitation. Copyright 1998 Academic Press.

  9. Brain white matter damage in aging and cognitive ability in youth and older age.

    Science.gov (United States)

    Valdés Hernández, Maria Del C; Booth, Tom; Murray, Catherine; Gow, Alan J; Penke, Lars; Morris, Zoe; Maniega, Susana Muñoz; Royle, Natalie A; Aribisala, Benjamin S; Bastin, Mark E; Starr, John M; Deary, Ian J; Wardlaw, Joanna M

    2013-12-01

    Cerebral white matter hyperintensities (WMH) reflect accumulating white matter damage with aging and impair cognition. The role of childhood intelligence is rarely considered in associations between cognitive impairment and WMH. We studied community-dwelling older people all born in 1936, in whom IQ had been assessed at age 11 years. We assessed medical histories, current cognitive ability and quantified WMH on MR imaging. Among 634 participants, mean age 72.7 (SD 0.7), age 11 IQ was the strongest predictor of late life cognitive ability. After accounting for age 11 IQ, greater WMH load was significantly associated with lower late life general cognitive ability (β = -0.14, p age 11 IQ (β = -0.08, p age 11IQ. Early-life IQ also influenced WMH in later life. Determining how lower IQ in youth leads to increasing brain damage with aging is important for future successful cognitive aging. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Endoplasmic Reticulum Stress Mediates Methamphetamine-Induced Blood–Brain Barrier Damage

    Directory of Open Access Journals (Sweden)

    Xiaojuan Qie

    2017-09-01

    Full Text Available Methamphetamine (METH abuse causes serious health problems worldwide, and long-term use of METH disrupts the blood–brain barrier (BBB. Herein, we explored the potential mechanism of endoplasmic reticulum (ER stress in METH-induced BBB endothelial cell damage in vitro and the therapeutic potential of endoplasmic reticulum stress inhibitors for METH-induced BBB disruption in C57BL/6J mice. Exposure of immortalized BMVEC (bEnd.3 cells to METH significantly decreased cell viability, induced apoptosis, and diminished the tightness of cell monolayers. METH activated ER stress sensor proteins, including PERK, ATF6, and IRE1, and upregulated the pro-apoptotic protein CHOP. The ER stress inhibitors significantly blocked the upregulation of CHOP. Knockdown of CHOP protected bEnd.3 cells from METH-induced cytotoxicity. Furthermore, METH elevated the production of reactive oxygen species (ROS and induced the dysfunction of mitochondrial characterized by a Bcl2/Bax ratio decrease, mitochondrial membrane potential collapse, and cytochrome c. ER stress release was partially reversed by ROS inhibition, and cytochrome c release was partially blocked by knockdown of CHOP. Finally, PBA significantly attenuated METH-induced sodium fluorescein (NaFluo and Evans Blue leakage, as well as tight junction protein loss, in C57BL/6J mice. These data suggest that BBB endothelial cell damage was caused by METH-induced endoplasmic reticulum stress, which further induced mitochondrial dysfunction, and that PBA was an effective treatment for METH-induced BBB disruption.

  11. Damage to Myelin and Oligodendrocytes: A Role in Chronic Outcomes Following Traumatic Brain Injury?

    Directory of Open Access Journals (Sweden)

    William L. Maxwell

    2013-09-01

    Full Text Available There is increasing evidence in the experimental and clinical traumatic brain injury (TBI literature that loss of central myelinated nerve fibers continues over the chronic post-traumatic phase after injury. However, the biomechanism(s of continued loss of axons is obscure. Stretch-injury to optic nerve fibers in adult guinea-pigs was used to test the hypothesis that damage to the myelin sheath and oligodendrocytes of the optic nerve fibers may contribute to, or facilitate, the continuance of axonal loss. Myelin dislocations occur within internodal myelin of larger axons within 1–2 h of TBI. The myelin dislocations contain elevated levels of free calcium. The volume of myelin dislocations increase with greater survival and are associated with disruption of the axonal cytoskeleton leading to secondary axotomy. Waves of Ca2+ depolarization or spreading depression extend from the initial locus injury for perhaps hundreds of microns after TBI. As astrocytes and oligodendrocytes are connected via gap junctions, it is hypothesized that spreading depression results in depolarization of central glia, disrupt axonal ionic homeostasis, injure axonal mitochondria and allow the onset of axonal degeneration throughout an increasing volume of brain tissue; and contribute toward post-traumatic continued loss of white matter.

  12. Effects of maternal separation on behavior and brain damage in adult rats exposed to neonatal hypoxia-ischemia.

    Science.gov (United States)

    Tata, Despina A; Markostamou, Ioanna; Ioannidis, Anestis; Gkioka, Mara; Simeonidou, Constantina; Anogianakis, Georgios; Spandou, Evangelia

    2015-03-01

    Animal studies suggest that maternal separation, a widely used paradigm to study the effects of early life adversity, exerts a profound and life-long impact on both brain and behavior. The aim of the current study was to investigate whether adverse early life experiences interact with neonatal hypoxia-ischemia, affecting the outcome of this neurological insult at both functional and structural levels during adulthood. Rat pups were separated from their mothers during postnatal days 1-6, for either a short (15 min) or prolonged (180 min) period, while another group was left undisturbed. On postnatal day 7, a subgroup from each of the three postnatal manipulations was exposed to a hypoxic-ischemic episode. Behavioral examination took place approximately at three months of age and included tests of learning and memory (Morris water maze, novel object and novel place recognition), as well as motor coordination (rota-rod). We found that both prolonged maternal separation and neonatal hypoxia-ischemia impaired the animals' spatial learning and reference memory. Deficits in spatial but not visual recognition memory were detected only in hypoxic-ischemic rats. Interestingly, prolonged maternal separation prior to neonatal hypoxia-ischemia augmented the reference memory impairments. Histological analysis of infarct size, hippocampal area and thickness of corpus callosum did not reveal any exacerbation of damage in hypoxic-ischemic rats that were maternally separated for a prolonged period. These are the first data suggesting that an adverse postnatal environmental manipulation of just 6 days causes long-term effects on spatial learning and memory and may render the organism more vulnerable to a subsequent insult. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Palmitoylethanolamide Ameliorates Hippocampal Damage and Behavioral Dysfunction After Perinatal Asphyxia in the Immature Rat Brain

    Directory of Open Access Journals (Sweden)

    María I. Herrera

    2018-03-01

    Full Text Available Perinatal asphyxia (PA is an obstetric complication associated with an impaired gas exchange. This health problem continues to be a determinant of neonatal mortality and neurodevelopmental disorders. Palmitoylethanolamide (PEA has exerted neuroprotection in several models of brain injury and neurodegeneration. We aimed at evaluating the potential neuroprotective role of PEA in an experimental model, which induces PA in the immature rat brain. PA was induced by placing Sprague Dawley newborn rats in a water bath at 37°C for 19 min. Once their physiological conditions improved, they were given to surrogate mothers that had delivered normally within the last 24 h. The control group was represented by non-fostered vaginally delivered pups, mimicking the clinical situation. Treatment with PEA (10 mg/kg was administered within the first hour of life. Modifications in the hippocampus were analyzed with conventional electron microscopy, immunohistochemistry (for NeuN, pNF-H/M, MAP-2, and GFAP and western blot (for pNF H/M, MAP-2, and GFAP. Behavior was also studied throughout Open Field (OF Test, Passive Avoidance (PA Task and Elevated Plus Maze (EPM Test. After 1 month of the PA insult, we observed neuronal nucleus degeneration in CA1 using electron microscopy. Immunohistochemistry revealed a significant increase in pNF-H/M and decrease in MAP-2 in CA1 reactive area. These changes were also observed when analyzing the level of expression of these markers by western blot. Vertical exploration impairments and anxiety-related behaviors were encountered in the OF and EPM tests. PEA treatment attenuated PA-induced hippocampal damage and its corresponding behavioral alterations. These results contribute to the elucidation of PEA neuroprotective role after PA and the future establishment of therapeutic strategies for the developing brain.

  14. Tanshinone I alleviates motor and cognitive impairments via suppressing oxidative stress in the neonatal rats after hypoxic-ischemic brain damage.

    Science.gov (United States)

    Dai, Chunfang; Liu, Yannan; Dong, Zhifang

    2017-11-14

    Neonatal hypoxia-ischemia is one of the main reasons that cause neuronal damage and neonatal death. Several studies have shown that tanshinone I (TsI), one of the major ingredients of Danshen, exerts potential neuroprotective effect in adult mice exposed to permanent left cerebral ischemia. However, it is unclear whether administration of TsI has neuroprotective effect on neonatal hypoxic-ischemic brain damage (HIBD), and if so, the potential mechanisms also remain unclear. Here, we reported that treatment with TsI (5 mg/kg, i.p.) significantly alleviated the deficits of myodynamia and motor functions as well as the spatial learning and memory in the rat model of HIBD. These behavioral changes were accompanied by a significant decrease in the number of neuronal loss in the CA1 area of hippocampus. Moreover, ELISA assay showed that TsI significantly increased the production of antioxidants including total antioxidant capacity (T-AOC), glutathione (GSH), total superoxide dismutase (T-SOD) and catalase (CAT), and reduced the production of pro-oxidants including hydrogen peroxide (H 2 O 2 ), total nitric oxide synthase (T-NOS) and inducible nitric oxide synthase (iNOS). Taken together, these results indicate that TsI presents potential neuroprotection against neuronal damage via exerting significantly antioxidative activity and against pro-oxidant challenge, thereby ameliorating hypoxia-ischemia-induced motor and cognitive impairments in the neonatal rats, suggesting that TsI may be a potential therapeutic agent against HIBD.

  15. Late radiation damage in bone, bone marrow and brain vasculature, with particular emphasis upon fractionation models

    International Nuclear Information System (INIS)

    Pitkaenen, Maunu.

    1986-04-01

    X-ray induced changes in rat and human bone and bone marrow vasculature and in rat brain vasculature were measured as a function of time after irradiation and absorbed dose. The absorbed dose in the organ varied from 5 to 25 Gy for single dose irradiations and from 19 to 58 Gy for fractionated irradiations.The number of fractions varied from 3 to 10 for the rats and from 12 to 25 for the human. Blood flow changes were measured using an ''1''2''5I antipyrine or ''8''6RbCl extraction technique. The red blood cell (RBC) volume was examined by ''5''1Cr labelled red cells. Different fractionation models have been compared. Radiation induced reduction of bone and bone marrow blood flow were both time and dose dependent. Reduced blood flow 3 months after irradiation would seem to be an important factor in the subsequent atrophy of bones. With a single dose of 10 Gy the bone marrow blood flow returned to the control level by 7 months after irradiation. In the irradiated bone the RBC volume was about same as that in the control side but in bone marrow the reduction was from 32 to 59%. The dose levels predicted by the nominal standard dose (NSD) formula produced about the same damage to the rat femur seven months after irradiation when the extraction of ''8''6Rb chloride and the dry weight were concerned as the end points. However, the results suggest that the NSB formula underestimates the late radiation damage in bone marrow when a small number of large fractions are used. In the irradiated brains of the rats the blood flow was on average 20.4% higher compared to that in the control group. There was no significant difference in brain blood flow between different fractionation schemes. The value of 0.42 for the exponent of N corresponds to the average value for central nervous system tolerance in the literature. The model used may be sufficiently accurate for clinical work provided the treatment schemes used do not depart too radically from standard practice

  16. Quantitative MRI analysis of the brain after twenty-two years of neuromyelitis optica indicates focal tissue damage

    DEFF Research Database (Denmark)

    Aradi, Mihaly; Koszegi, Edit; Orsi, Gergely

    2013-01-01

    BACKGROUND: The long-term effect of neuromyelitis optica (NMO) on the brain is not well established. METHODS: After 22 years of NMO, a patient's brain was examined by quantitative T1- and T2-weighted mono- and biexponential diffusion and proton spectroscopy. It was compared to 3 cases with short......, and they were also not quantitatively different from the controls. CONCLUSION: After NMO of 22-year duration, metabolic changes, altered diffusivity and magnetic resonance relaxation features of patchy brain areas may suggest tissue damage in NAWM that persist for at least 6 months....

  17. Visual field function in school-aged children with spastic unilateral cerebral palsy related to different patterns of brain damage.

    Science.gov (United States)

    Jacobson, Lena; Rydberg, Agneta; Eliasson, Ann-Christin; Kits, Annika; Flodmark, Olof

    2010-08-01

    To relate visual field function to brain morphology in children with unilateral cerebral palsy (CP). Visual field function was assessed using the confrontation technique and Goldmann perimetry in 29 children (15 males, 14 females; age range 7-17y, median age 11y) with unilateral CP classified at Gross Motor Function Classification System (GMFCS) level I and Manual Ability Classification System levels I to III. The type and extent of brain lesions were determined using cerebral imaging. Eighteen children had subnormal visual field function. The visual fields were severely restricted in six. The underlying brain lesions were malformation (n=7), white matter damage of immaturity (WMDI; n=13), and cortical-subcortical lesions (n=9). Visual field function could be correlated with the pattern of brain damage in children with cortical-subcortical lesions or extensive lesions caused by malformation or WMDI. Total homonymous hemianopia was common in the cortical-subcortical group but rare in children with malformation or WMDI. Five children had normal visual field function despite having malformation or WMDI involving parts of the brain usually encompassing the visual system. Visual field function may be preserved by plasticity of the immature brain in children with malformation and WMDI. Severely restricted visual fields were more often associated with lesions occurring later in the developing brain. All children with severely restricted visual fields were identified by the confrontation technique. Goldmann perimetry was a suitable method to identify relative visual field defects.

  18. Systematic review of prediction of poor outcome in anoxic-ischaemic coma with biochemical markers of brain damage

    NARCIS (Netherlands)

    Zandbergen, E. G.; de Haan, R. J.; Hijdra, A.

    2001-01-01

    OBJECTIVE: To investigate whether accurate prognostic rules can be derived from the combined results of studies concerning prediction of poor prognosis in anoxic-ischaemic coma with biochemical markers of brain damage in cerebrospinal fluid (CSF) or serum. DESIGN: A meta-analysis of prognostic

  19. Signs of long-term adaptation to permanent brain damage as revealed by prehension studies of children with spastic hemiparesis

    NARCIS (Netherlands)

    Steenbergen, B.; Meulenbroek, R.G.J.; Latash, M.L.; Levin, M.

    2003-01-01

    This chapter focusses on signs of long-term adaptation to permanent brain damage in children with spastic hemiparesis. First, we recognize that adaptation processes may occur at various time scales. Then, we formulate a tentative strategy to infer signs of adaptation from behavioral data.

  20. CCL23: a new CC chemokine involved in human brain damage.

    Science.gov (United States)

    Simats, A; García-Berrocoso, T; Penalba, A; Giralt, D; Llovera, G; Jiang, Y; Ramiro, L; Bustamante, A; Martinez-Saez, E; Canals, F; Wang, X; Liesz, A; Rosell, A; Montaner, J

    2018-02-07

    CCL23 role in the inflammatory response after acute brain injuries remains elusive. Here, we evaluated whether CCL23 blood levels associate with acquired cerebral lesions and determined CCL23 predictive capacity for assessing stroke prognosis. We used preclinical models to study the CCL23 homologous chemokines in rodents, CCL9 and CCL6. Baseline CCL23 blood levels were determined on 245 individuals, including ischaemic strokes (IS), stroke mimics and controls. Temporal profile of circulating CCL23 was explored from baseline to 24 h in 20 of the IS. In an independent cohort of 120 IS with a 3-month follow-up, CCL23 blood levels were included in logistic regression models to predict IS outcome. CCL9/CCL6 cerebral expression was evaluated in rodent models of brain damage. Both chemokines were also profiled in circulation and histologically located on brain following ischaemia. Baseline CCL23 blood levels did not discriminate IS, but permitted an accurate discrimination of patients presenting acute brain lesions (P = 0.003). IS exhibited a continuous increase from baseline to 24 h in circulating CCL23 (P < 0.001). Baseline CCL23 blood levels resulted an independent predictor of IS outcome at hospital discharge (OR adj : 19.702 [1.815-213.918], P = 0.014) and mortality after 3 months (OR adj : 21.47 [3.434-134.221], P = 0.001). In preclinics, expression of rodent chemokines in neurons following cerebral lesions was elevated. CCL9 circulating levels decreased early after ischaemia (P < 0.001), whereas CCL6 did not alter within the first 24 h after ischaemia. Although preclinical models do not seem suitable to characterize CCL23, it might be a novel promising biomarker for the early diagnosis of cerebral lesions and might facilitate the prediction of stroke patient outcome. © 2018 The Association for the Publication of the Journal of Internal Medicine.

  1. Patterns of DNA damage response in intracranial germ cell tumors versus glioblastomas reflect cell of origin rather than brain environment

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Hoei-Hansen, Christina E; Krizova, Katerina

    2014-01-01

    can be breached by defects in DDR factors, such as the ATM-Chk2-p53 pathway, thereby allowing tumor progression. The DDR barrier is strongly activated in brain tumors, particularly gliomas, due to oxidative damage and replication stress. Here, we took advantage of rare human primary intracranial germ...... cell tumors (PIGCTs), to address the roles of cell-intrinsic factors including cell of origin, versus local tissue environment, in the constitutive DDR activation in vivo. Immunohistochemical analysis of 7 biomarkers on a series of 21 PIGCTs (germinomas and other subtypes), 20 normal brain specimens...... than the brain tumors with which they share the tissue environment. Hence cell-intrinsic factors and cell of origin dictate the extent of DDR barrier activation and also the ensuing pressure to select for DDR defects. Our data provide conceptually important insights into the role of DNA damage...

  2. Influence of the topography of brain damage on depression and fatigue in patients with multiple sclerosis.

    Science.gov (United States)

    Gobbi, C; Rocca, M A; Riccitelli, G; Pagani, E; Messina, R; Preziosa, P; Colombo, B; Rodegher, M; Falini, A; Comi, G; Filippi, M

    2014-02-01

    Involvement of selected central nervous system (CNS) regions has been associated with depression and fatigue in MS. We assessed whether specific regional patterns of lesion distribution and atrophy of the gray (GM) and white matter (WM) are associated with these symptoms in MS. Brain dual-echo and 3D T1-weighted images were acquired from 123 MS patients (69 depressed (D), 54 non-depressed (nD), 64 fatigued, 59 non-fatigued) and 90 controls. Lesion distribution, GM and WM atrophy were estimated using VBM and SPM8. Gender, age, disease duration and conventional MRI characteristics did not differ between D-MS and nD-MS patients. Fatigued patients experienced higher EDSS and depression than non-fatigued ones. Lesion distribution and WM atrophy were not related to depression and fatigue. Atrophy of regions in the frontal, parietal and occipital lobes had a combined effect on depression and fatigue. Atrophy of the left middle frontal gyrus and right inferior frontal gyrus were selectively related to depression. No specific pattern of GM atrophy was found to be related to fatigue. Depression in MS is linked to atrophy of cortical regions located in the bilateral frontal lobes. A distributed pattern of GM atrophy contributes to the concomitant presence of depression and fatigue in these patients.

  3. Elevated endogenous erythropoietin concentrations are associated with increased risk of brain damage in extremely preterm neonates.

    Directory of Open Access Journals (Sweden)

    Steven J Korzeniewski

    Full Text Available We sought to determine, in very preterm infants, whether elevated perinatal erythropoietin (EPO concentrations are associated with increased risks of indicators of brain damage, and whether this risk differs by the co-occurrence or absence of intermittent or sustained systemic inflammation (ISSI.Protein concentrations were measured in blood collected from 786 infants born before the 28th week of gestation. EPO was measured on postnatal day 14, and 25 inflammation-related proteins were measured weekly during the first 2 postnatal weeks. We defined ISSI as a concentration in the top quartile of each of 25 inflammation-related proteins on two separate days a week apart. Hypererythropoietinemia (hyperEPO was defined as the highest quartile for gestational age on postnatal day 14. Using logistic regression and multinomial logistic regression models, we compared risks of brain damage among neonates with hyperEPO only, ISSI only, and hyperEPO+ISSI, to those who had neither hyperEPO nor ISSI, adjusting for gestational age.Newborns with hyperEPO, regardless of ISSI, were more than twice as likely as those without to have very low (< 55 Mental (OR 2.3; 95% CI 1.5-3.5 and/or Psychomotor (OR 2.4; 95% CI 1.6-3.7 Development Indices (MDI, PDI, and microcephaly at age two years (OR 2.4; 95%CI 1.5-3.8. Newborns with both hyperEPO and ISSI had significantly increased risks of ventriculomegaly, hemiparetic cerebral palsy, microcephaly, and MDI and PDI < 55 (ORs ranged from 2.2-6.3, but not hypoechoic lesions or other forms of cerebral palsy, relative to newborns with neither hyperEPO nor ISSI.hyperEPO, regardless of ISSI, is associated with elevated risks of very low MDI and PDI, and microcephaly, but not with any form of cerebral palsy. Children with both hyperEPO and ISSI are at higher risk than others of very low MDI and PDI, ventriculomegaly, hemiparetic cerebral palsy, and microcephaly.

  4. Ketogenic diet in a patient with congenital hyperinsulinism: a novel approach to prevent brain damage.

    Science.gov (United States)

    Maiorana, Arianna; Manganozzi, Lucilla; Barbetti, Fabrizio; Bernabei, Silvia; Gallo, Giorgia; Cusmai, Raffaella; Caviglia, Stefania; Dionisi-Vici, Carlo

    2015-09-24

    Congenital hyperinsulinism (CHI) is the most frequent cause of hypoglycemia in children. In addition to increased peripheral glucose utilization, dysregulated insulin secretion induces profound hypoglycemia and neuroglycopenia by inhibiting glycogenolysis, gluconeogenesis and lipolysis. This results in the shortage of all cerebral energy substrates (glucose, lactate and ketones), and can lead to severe neurological sequelae. Patients with CHI unresponsive to medical treatment can be subjected to near-total pancreatectomy with increased risk of secondary diabetes. Ketogenic diet (KD), by reproducing a fasting-like condition in which body fuel mainly derives from beta-oxidation, is intended to provide alternative cerebral substrates such ketone bodies. We took advantage of known protective effect of KD on neuronal damage associated with GLUT1 deficiency, a disorder of impaired glucose transport across the blood-brain barrier, and administered KD in a patient with drug-unresponsive CHI, with the aim of providing to neurons an energy source alternative to glucose. A child with drug-resistant, long-standing CHI caused by a spontaneous GCK activating mutation (p.Val455Met) suffered from epilepsy and showed neurodevelopmental abnormalities. After attempting various therapeutic regimes without success, near-total pancreatectomy was suggested to parents, who asked for other options. Therefore, we proposed KD in combination with insulin-suppressing drugs. We administered KD for 2 years. Soon after the first six months, the patient was free of epileptic crises, presented normalization of EEG, and showed a marked recover in psychological development and quality of life. KD could represent an effective treatment to support brain function in selected cases of CHI.

  5. Evolution of changes in the computed tomography scans of the brain of a patient with left middle cerebral artery infarction: a case report.

    Science.gov (United States)

    John, Kurien; Singhal, Parag; Cook, Chris

    2008-05-08

    Stroke is a common and important condition in medicine. Effective early management of acute stroke can reduce morbidity and mortality. A 63-year-old man presented to the Accident and Emergency department with a history of collapse and progressive right-sided weakness. Clinically this was a cerebrovascular accident affecting the left hemisphere of the brain causing right hemiplegia. Computed tomography scans, performed 3 days apart, showed the evolution of infarction in the brain caused by the thrombus in the left middle cerebral artery. This is one of the early signs for stroke seen on computed tomography imaging and it is called the hyperdense middle cerebral artery sign. Patients admitted with a stroke, undergo CT brain within 24 hours. The scan usually takes place at admission into the hospital and is done to rule out a bleed or a space occupying lesion within the brain. A normal CT brain does not confirm a stroke has not taken place. When scanned early, the changes seen on the CT due to an infarction from a thrombus may not have taken place yet. This paper highlights the early changes that can be seen on the CT brain following a stroke caused by infarction due to a thrombus in the middle cerebral artery.

  6. Hypoxic-Ischemic Brain Damage in 7-Days-Old Rats: Early Neuronal Changes and the Long-Term Outcome

    OpenAIRE

    Ota Nakasone, Arturo; Departamento de Ginecología y Obstetricia Escuela de Medicina de Miyazaki Miyazaki, Japón; Ikeda, Tomoaki; Departamento de Ginecología y Obstetricia Escuela de Medicina de Miyazaki Miyazaki, Japón; Sameshima, Hiroshi; Departamento de Ginecología y Obstetricia Escuela de Medicina de Miyazaki Miyazaki, Japóni; Ikenoue, Tsuyomu; Departamento de Ginecología y Obstetricia Escuela de Medicina de Miyazaki Miyazaki, Japón; Toshimori, Kiyotaka; Departamento de Anatomía Escuela de Medicina de Miyazaki Miyazaki, Japón

    2014-01-01

    OBJECTIVES: To study the changes after hypoxia-ischemia (HI), and to observe both, the vulnerability of the different regions of the brain to HI and the heat shock protein-72 kDa (HSP72) induction and its efects on the neuronal cell. MATERIAL AND METHODS: 7-days-old rats were exposed to left carotid artery ligation followed by 2 h of HI and then they were sacrificed at different time points. Brains extracted at 1-72 h were immunohistochemically study using the HSP-72 and the microtubule assoc...

  7. Clozapine linked to nanocapsules minimizes tissue and oxidative damage to biomolecules lipids, proteins and DNA in brain of rats Wistar.

    Science.gov (United States)

    da Costa Güllich, Angélica Aparecida; Coelho, Ritiéle Pinto; Pilar, Bruna Cocco; Ströher, Deise Jaqueline; Galarça, Leandro Alex Sander Leal; Vieira, Simone Machado; da Costa Escobar Piccoli, Jacqueline; Haas, Sandra Elisa; Manfredini, Vanusa

    2015-06-01

    Clozapine, atypical antipsychotic, can change oxidative stress parameters. It is known that reactive species, in excess, can have a crucial role in the etiology of diseases, as well as, can potentiating adverse effects induce by drugs. The nanocapsules have attracted attention as carriers of several drugs, with consequent reduction of adverse effects. This study aimed to evaluate histopathology and oxidative damage of biomolecules lipids, proteins and DNA in the brain of Wistar rats after treatment with nanocapsules containing clozapine. The study consisted of eight groups of male Wistar rats (n = 6): saline (SAL), free clozapine (CZP) (25 mg/Kg i.p.), blank uncoated nanocapsules (BNC), clozapine-loaded uncoated nanocapsules (CNC) (25 mg/Kg i.p.), blank chitosan-coated nanocapsules (BCSN), clozapine-loaded chitosan-coated nanocapsules (CCSN) (25 mg/Kg i.p.), blank polyethyleneglycol-coated nanocapsules (BPEGN), clozapine-loaded polyethyleneglycol-coated nanocapsules (CPEGN) (25 mg/Kg i.p.). The animals received the formulation once a day for seven consecutive days and euthanized in the eighth day. After euthanasia, the brain was collected and homogenate was processed for further analysis. The histopathology showed less brain tissue damage in nanocapsules-treated groups. The lipid peroxidation and carbonylation of proteins showed a significant increase (p < 0.05) induced by CZP. CNC and CPEGN groups obtained a reduction membrane of lipids damage and nanocapsules-treated groups showed significant improvement protein damage. CZP was able to induce genetic oxidative damage, while the nanocapsules causing less damage to DNA. The findings show that different coatings can act protecting target tissues decreasing oxidative damage, suggesting that the drug when linked to different nanocapsules is able to mitigate the harmful effects of clozapine.

  8. Reorganization of the Cerebro-Cerebellar Network of Language Production in Patients with Congenital Left-Hemispheric Brain Lesions

    Science.gov (United States)

    Lidzba, K.; Wilke, M.; Staudt, M.; Krageloh-Mann, I.; Grodd, W.

    2008-01-01

    Patients with congenital lesions of the left cerebral hemisphere may reorganize language functions into the right hemisphere. In these patients, language production is represented homotopically to the left-hemispheric language areas. We studied cerebellar activation in five patients with congenital lesions of the left cerebral hemisphere to assess…

  9. Relationship between the severity of mitral regurgitation, left ventricular dysfunction and plasma brain natriuretic peptide level: An observational strain imaging study

    Directory of Open Access Journals (Sweden)

    Mehmet Ali Elbey

    2012-12-01

    Full Text Available Objectives: The aim of the this study was to investigatethe relationship between the degree of mitral regurgitation(MR, left ventricular (LV dysfunction determined bystrain (S/strain rate (SR imaging and plasma brain natriureticpeptide (BNP levels.Materials and methods: This is an observational crosssectionalstudy which included 31 consecutive patients(15[48.4%] male who had applied to our outpatient clinicsand diagnosed as mitral regurgitation and 25 (12[48.0%] male healthy persons as control subjects. Themitral regurgitation patients were divided into two groups:those with moderate MR (n=14[45.2%] and those withsevere MR (n=17[54.8%], and maximum strain / strainrate measurements of left ventricular wall segments andplasma brain natriuretic peptide levels were determined inthese two groups and controls.Results: S/SR values of all wall segments of left ventriclewere found to be decreased in patient with severe MRwhen compared with the control subjects and patientswith moderate MR (p<0.001.Conclusions: Although left ventricle functions with conventionalechocardiography in patients with mitral valveregurgitation were normal, subclinic deteriorations ofleft ventricle were detected in patients with severe mitralvalve regurgitation. J Clin Exp Invest 2012; 3 (4: 451-456Key words: strain/strain rate, echocardiography, mitralregurgitation, left ventricular functions

  10. A training apartment with electronic aids to daily living: lived experiences of persons with brain damage.

    Science.gov (United States)

    Erikson, Anette; Karlsson, Gunnar; Söderström, Marianne; Tham, Kerstin

    2004-01-01

    The objective of this study was to investigate how persons with acquired brain damage experienced their 1-week stay in an apartment fitted with electronic aids to daily living (EADL). The study focused on how the individuals adapted to this artificial environment in their performance of daily activities and how their occupational experiences influenced their view of the future. The 11 participants were interviewed on the last day of their rehabilitation period in an EADL-equipped training apartment. The data were collected and analyzed using the Empirical Phenomenological Psychological (EPP) method. The findings revealed four main characteristics that described an adaptation process that occurred during the week in the EADL-equipped training apartment: plunging into an EADL-equipped environment, "landing" and feeling comfortable with the new environment, incorporating the "new" in daily activities, and "taking-off" for the future. In a short time, the combination of the EADL and the aesthetically attractive environment gave the participants experiences that contributed to a "taking off" for their future life. Findings from this study suggest that, in clinical practice, clients may need initial guidance from the therapists to "land" and feel comfortable in a new environment, like a training apartment, before they can learn how to incorporate new electronic aids in their every day activities.

  11. [Mutabor--ambulatory intensive promotion for patients with acquired brain damage].

    Science.gov (United States)

    Wingruber, M

    1995-05-01

    Mutabor is an incorporated society offering intensive home treatment services for persons with acquired brain damage. While family respite is included, the intensive treatment provided is primarily focussed on transferring the potential acquired during clinical therapy into the patients' personal and occupational day-to-day life and/or on building up new possibilities. Our treatment approach is aimed at enabling the patients to regain an individual and social identity while strengthening the patients' environment through respite care, counselling and ongoing therapeutic support. Mutabor works in close cooperation with medical doctors and therapists in the regional special clinics. Diagnosis and treatment however are weighted differently from what could usually be the case in a clinical setting; we rather undertake a highly individualized scrutiny of what would be practicable and desirable in a specific life situation. The cost is carried by the health insurance funds on a hourly or per diem basis. Our treatment concept is implemented by a team of 37 staff members from the fields of nursing, Occupational Therapy, logopedics/speech education, kinesitherapy, music therapy, social education, administration.

  12. Detection of Low Level Microwave Radiation Induced Deoxyribonucleic Acid Damage Vis-à-vis Genotoxicity in Brain of Fischer Rats

    Science.gov (United States)

    Deshmukh, Pravin Suryakantrao; Megha, Kanu; Banerjee, Basu Dev; Ahmed, Rafat Sultana; Chandna, Sudhir; Abegaonkar, Mahesh Pandurang; Tripathi, Ashok Kumar

    2013-01-01

    Background: Non-ionizing radiofrequency radiation has been increasingly used in industry, commerce, medicine and especially in mobile phone technology and has become a matter of serious concern in present time. Objective: The present study was designed to investigate the possible deoxyribonucleic acid (DNA) damaging effects of low-level microwave radiation in brain of Fischer rats. Materials and Methods: Experiments were performed on male Fischer rats exposed to microwave radiation for 30 days at three different frequencies: 900, 1800 and 2450 MHz. Animals were divided into 4 groups: Group I (Sham exposed): Animals not exposed to microwave radiation but kept under same conditions as that of other groups, Group II: Animals exposed to microwave radiation at frequency 900 MHz at specific absorption rate (SAR) 5.953 × 10−4 W/kg, Group III: Animals exposed to 1800 MHz at SAR 5.835 × 10−4 W/kg and Group IV: Animals exposed to 2450 MHz at SAR 6.672 × 10−4 W/kg. At the end of the exposure period animals were sacrificed immediately and DNA damage in brain tissue was assessed using alkaline comet assay. Results: In the present study, we demonstrated DNA damaging effects of low level microwave radiation in brain. Conclusion: We concluded that low SAR microwave radiation exposure at these frequencies may induce DNA strand breaks in brain tissue. PMID:23833433

  13. Neuronal complex I deficiency occurs throughout the Parkinson's disease brain, but is not associated with neurodegeneration or mitochondrial DNA damage.

    Science.gov (United States)

    Flønes, Irene H; Fernandez-Vizarra, Erika; Lykouri, Maria; Brakedal, Brage; Skeie, Geir Olve; Miletic, Hrvoje; Lilleng, Peer K; Alves, Guido; Tysnes, Ole-Bjørn; Haugarvoll, Kristoffer; Dölle, Christian; Zeviani, Massimo; Tzoulis, Charalampos

    2018-03-01

    Mitochondrial complex I deficiency occurs in the substantia nigra of individuals with Parkinson's disease. It is generally believed that this phenomenon is caused by accumulating mitochondrial DNA damage in neurons and that it contributes to the process of neurodegeneration. We hypothesized that if these theories are correct, complex I deficiency should extend beyond the substantia nigra to other affected brain regions in Parkinson's disease and correlate tightly with neuronal mitochondrial DNA damage. To test our hypothesis, we employed a combination of semiquantitative immunohistochemical analyses, Western blot and activity measurements, to assess complex I quantity and function in multiple brain regions from an extensively characterized population-based cohort of idiopathic Parkinson's disease (n = 18) and gender and age matched healthy controls (n = 11). Mitochondrial DNA was assessed in single neurons from the same areas by real-time PCR. Immunohistochemistry showed that neuronal complex I deficiency occurs throughout the Parkinson's disease brain, including areas spared by the neurodegenerative process such as the cerebellum. Activity measurements in brain homogenate confirmed a moderate decrease of complex I function, whereas Western blot was less sensitive, detecting only a mild reduction, which did not reach statistical significance at the group level. With the exception of the substantia nigra, neuronal complex I loss showed no correlation with the load of somatic mitochondrial DNA damage. Interestingly, α-synuclein aggregation was less common in complex I deficient neurons in the substantia nigra. We show that neuronal complex I deficiency is a widespread phenomenon in the Parkinson's disease brain which, contrary to mainstream theory, does not follow the anatomical distribution of neurodegeneration and is not associated with the neuronal load of mitochondrial DNA mutation. Our findings suggest that complex I deficiency in Parkinson's disease can

  14. Effects of Acute Systemic Hypoxia and Hypercapnia on Brain Damage in a Rat Model of Hypoxia-Ischemia.

    Directory of Open Access Journals (Sweden)

    Wanchao Yang

    Full Text Available Therapeutic hypercapnia has the potential for neuroprotection after global cerebral ischemia. Here we further investigated the effects of different degrees of acute systemic hypoxia in combination with hypercapnia on brain damage in a rat model of hypoxia and ischemia. Adult wistar rats underwent unilateral common carotid artery (CCA ligation for 60 min followed by ventilation with normoxic or systemic hypoxic gas containing 11%O2,13%O2,15%O2 and 18%O2 (targeted to PaO2 30-39 mmHg, 40-49 mmHg, 50-59 mmHg, and 60-69 mmHg, respectively or systemic hypoxic gas containing 8% carbon dioxide (targeted to PaCO2 60-80 mmHg for 180 min. The mean artery pressure (MAP, blood gas, and cerebral blood flow (CBF were evaluated. The cortical vascular permeability and brain edema were examined. The ipsilateral cortex damage and the percentage of hippocampal apoptotic neurons were evaluated by Nissl staining and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL assay as well as flow cytometry, respectively. Immunofluorescence and western blotting were performed to determine aquaporin-4 (AQP4 expression. In rats treated with severe hypoxia (PaO2 50 mmHg, hypercapnia protected against these pathophysiological changes. Moreover, hypercapnia treatment significantly reduced brain damage in the ischemic ipsilateral cortex and decreased the percentage of apoptotic neurons in the hippocampus after the CCA ligated rats were exposed to mild or moderate hypoxemia (PaO2 > 50 mmHg; especially under mild hypoxemia (PaO2 > 60 mmHg, hypercapnia significantly attenuated the expression of AQP4 protein with brain edema (p < 0.05. Hypercapnia exerts beneficial effects under mild to moderate hypoxemia and augments detrimental effects under severe hypoxemia on brain damage in a rat model of hypoxia-ischemia.

  15. Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation

    International Nuclear Information System (INIS)

    Jeon, Myounggun; Yoon, Eui-Sung; Cho, Il-Joo; Cho, Jeiwon; Jung, Dahee; Kim, Yun Kyung; Shin, Sehyun

    2014-01-01

    This paper presents a flexible microelectromechanical systems (MEMS) neural probe that minimizes neuron damage and immune response, suitable for chronic recording applications. MEMS neural probes with various features such as high electrode densities have been actively investigated for neuron stimulation and recording to study brain functions. However, successful recording of neural signals in chronic application using rigid silicon probes still remains challenging because of cell death and macrophages accumulated around the electrodes over time from continuous brain movement. Thus, in this paper, we propose a new flexible MEMS neural probe that consists of two segments: a polyimide-based, flexible segment for connection and a rigid segment composed of thin silicon for insertion. While the flexible connection segment is designed to reduce the long-term chronic neuron damage, the thin insertion segment is designed to minimize the brain damage during the insertion process. The proposed flexible neural probe was successfully fabricated using the MEMS process on a silicon on insulator wafer. For a successful insertion, a biodegradable sucrose gel is coated on the flexible segment to temporarily increase the probe stiffness to prevent buckling. After the insertion, the sucrose gel dissolves inside the brain exposing the polyimide probe. By performing an insertion test, we confirm that the flexible probe has enough stiffness. In addition, by monitoring immune responses and brain histology, we successfully demonstrate that the proposed flexible neural probe incurs fivefold less neural damage than that incurred by a conventional silicon neural probe. Therefore, the presented flexible neural probe is a promising candidate for recording stable neural signals for long-time chronic applications. (paper)

  16. Normobaric hyperoxia markedly reduces brain damage and sensorimotor deficits following brief focal ischaemia.

    Science.gov (United States)

    Ejaz, Sohail; Emmrich, Julius V; Sitnikov, Sergey L; Hong, Young T; Sawiak, Stephen J; Fryer, Tim D; Aigbirhio, Franklin I; Williamson, David J; Baron, Jean-Claude

    2016-03-01

    'True' transient ischaemic attacks are characterized not only clinically, but also radiologically by a lack of corresponding changes on magnetic resonance imaging. During a transient ischaemic attack it is assumed that the affected tissue is penumbral but rescued by early spontaneous reperfusion. There is, however, evidence from rodent studies that even brief focal ischaemia not resulting in tissue infarction can cause extensive selective neuronal loss associated with long-lasting sensorimotor impairment but normal magnetic resonance imaging. Selective neuronal loss might therefore contribute to the increasingly recognized cognitive impairment occurring in patients with transient ischaemic attacks. It is therefore relevant to consider treatments to reduce brain damage occurring with transient ischaemic attacks. As penumbral neurons are threatened by markedly constrained oxygen delivery, improving the latter by increasing arterial O2 content would seem logical. Despite only small increases in arterial O2 content, normobaric oxygen therapy experimentally induces significant increases in penumbral O2 pressure and by such may maintain the penumbra alive until reperfusion. Nevertheless, the effects of normobaric oxygen therapy on infarct volume in rodent models have been conflicting, although duration of occlusion appeared an important factor. Likewise, in the single randomized trial published to date, early-administered normobaric oxygen therapy had no significant effect on clinical outcome despite reduced diffusion-weighted imaging lesion growth during therapy. Here we tested the hypothesis that normobaric oxygen therapy prevents both selective neuronal loss and sensorimotor deficits in a rodent model mimicking true transient ischaemic attack. Normobaric oxygen therapy was applied from the onset and until completion of 15 min distal middle cerebral artery occlusion in spontaneously hypertensive rats, a strain representative of the transient ischaemic attack

  17. Early morphologic and spectroscopic magnetic resonance in severe traumatic brain injuries can detect "invisible brain stem damage" and predict "vegetative states".

    Science.gov (United States)

    Carpentier, Alexandre; Galanaud, Damien; Puybasset, Louis; Muller, Jean-Charles; Lescot, Thomas; Boch, Anne-Laure; Riedl, Valentin; Riedl, Vincent; Cornu, Philippe; Coriat, Pierre; Dormont, Didier; van Effenterre, Remy

    2006-05-01

    A precise evaluation of the brain damage in the first days of severe traumatic brain injured (TBI) patients is still uncertain despite numerous available cerebral evaluation methods and imaging. In 5-10% of severe TBI patients, clinicians remain concerned with prolonged coma and long-term marked cognitive impairment unexplained by normal morphological T2 star, flair, and diffusion magnetic resonance imaging (MRI). For this reason, we prospectively assessed the potential value of magnetic resonance spectroscopy (MRS) of the brain stem to evaluate the functionality of the consciousness areas. Forty consecutive patients with severe TBI were included. Single voxel proton MRS of the brain stem and morphological MRI of the whole brain were performed at day 17.5 +/- 6.4. Disability Rating Scale and Glasgow Outcome Scale (GOS) were evaluated at 18 months posttrauma. MRS appeared to be a reliable tool in the exploration of brainstem metabolism in TBI. Three different spectra were observed (normal, cholinergic reaction, or neuronal damage) allowing an evaluation of functional damage. MRS disturbances were not correlated with anatomical MRI lesions suggesting that the two techniques are strongly complementarity. In two GOS 2 vegetative patients with normal morphological MRI, MRS detected severe functional damage of the brainstem (NAA/Cr brain stem damage." MRI and MRS taken separately could not distinguish patients GOS 3 (n = 7) from GOS 1-2 (n = 11) and GOS 4-5 (n = 20). However, a principal component analysis of combined MRI and MRS data enabled a clear-cut separation between GOS 1-2, GOS 3, and GOS 4-5 patients with no overlap between groups. This study showed that combined MRI and MRS provide a reliable evaluation of patients presenting in deep coma, specially when there are insufficient MRI lesions of the consciousness pathways to explain their status. In the first few days post-trauma metabolic (brainstem spectroscopy) and morphological (T2 star and Flair) MRI studies

  18. Selected Gray Matter Volumes and Gender but Not Basal Ganglia nor Cerebellum Gyri Discriminate Left Versus Right Cerebral Hemispheres: Multivariate Analyses in human Brains at 3T.

    Science.gov (United States)

    Roldan-Valadez, Ernesto; Suarez-May, Marcela A; Favila, Rafael; Aguilar-Castañeda, Erika; Rios, Camilo

    2015-07-01

    Interest in the lateralization of the human brain is evident through a multidisciplinary number of scientific studies. Understanding volumetric brain asymmetries allows the distinction between normal development stages and behavior, as well as brain diseases. We aimed to evaluate volumetric asymmetries in order to select the best gyri able to classify right- versus left cerebral hemispheres. A cross-sectional study performed in 47 right-handed young-adults healthy volunteers. SPM-based software performed brain segmentation, automatic labeling and volumetric analyses for 54 regions involving the cerebral lobes, basal ganglia and cerebellum from each cerebral hemisphere. Multivariate discriminant analysis (DA) allowed the assembling of a predictive model. DA revealed one discriminant function that significantly differentiated left vs. right cerebral hemispheres: Wilks' λ = 0.008, χ(2) (9) = 238.837, P vision and language; our findings favored the concept that lateralization has been evolutionary favored by mental processes increasing cognitive efficiency and brain capacity. © 2015 Wiley Periodicals, Inc.

  19. REORGANIZATION OF VISUAL CALLOSAL CONNECTIONS FOLLOWING ALTERATIONS OF RETINAL INPUT AND BRAIN DAMAGE

    Directory of Open Access Journals (Sweden)

    LAURA RESTANI

    2016-11-01

    Full Text Available Vision is a very important sensory modality in humans. Visual disorders are numerous and arising from diverse and complex causes. Deficits in visual function are highly disabling from a social point of view and in addition cause a considerable economic burden. For all these reasons there is an intense effort by the scientific community to gather knowledge on visual deficit mechanisms and to find possible new strategies for recovery and treatment. In this review we focus on an important and sometimes neglected player of the visual function, the corpus callosum (CC. The CC is the major white matter structure in the brain and is involved in information processing between the two hemispheres. In particular, visual callosal connections interconnect homologous areas of visual cortices, binding together the two halves of the visual field. This interhemispheric communication plays a significant role in visual cortical output. Here, we will first review essential literature on the physiology of the callosal connections in normal vision. The available data support the view that the callosum contributes to both excitation and inhibition to the target hemisphere, with a dynamic adaptation to the strength of the incoming visual input. Next, we will focus on data showing how callosal connections may sense visual alterations and respond to the classical paradigm for the study of visual plasticity, i.e. monocular deprivation. This is a prototypical example of a model for the study of callosal plasticity in pathological conditions (e.g. strabismus and amblyopia characterized by unbalanced input from the two eyes. We will also discuss findings of callosal alterations in blind subjects. Noteworthy, we will discuss data showing that inter-hemispheric transfer mediates recovery of visual responsiveness following cortical damage. Finally, we will provide an overview of how callosal projections dysfunction could contribute to pathologies such as neglect and occipital

  20. Language development at 2 years is correlated to brain microstructure in the left superior temporal gyrus at term equivalent age: a diffusion tensor imaging study.

    Science.gov (United States)

    Aeby, Alec; De Tiège, Xavier; Creuzil, Marylise; David, Philippe; Balériaux, Danielle; Van Overmeire, Bart; Metens, Thierry; Van Bogaert, Patrick

    2013-09-01

    This study aims at testing the hypothesis that neurodevelopmental abilities at age 2 years are related with local brain microstructure of preterm infants at term equivalent age. Forty-one preterm infants underwent brain MRI with diffusion tensor imaging sequences to measure mean diffusivity (MD), fractional anisotropy (FA), longitudinal and transverse diffusivity (λ// and λ[perpendicular]) at term equivalent age. Neurodevelopment was assessed at 2 years corrected age using the Bayley III scale. A voxel-based analysis approach, statistical parametric mapping (SPM8), was used to correlate changes of the Bayley III scores with the regional distribution of MD, FA, λ// and λ[perpendicular]. We found that language abilities are negatively correlated to MD, λ// and λ[perpendicular] in the left superior temporal gyrus in preterm infants. These findings suggest that higher MD, λ// and λ[perpendicular] values at term-equivalent age in the left superior temporal gyrus are associated with poorer language scores in later childhood. Consequently, it highlights the key role of the left superior temporal gyrus for the development of language abilities in children. Further studies are needed to assess on an individual basis and on the long term the prognostic value of brain DTI at term equivalent age for the development of language. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. 1HMR spectroscopy and diffusion tensor technology in heroin-induced brain damage

    International Nuclear Information System (INIS)

    Li Min; Liu Shuyong; Geng Daoying

    2008-01-01

    Objective: To study the values of 1 HMRS and DTI technology for detecting brain damage in heroin-dependent patients. Methods: The routine MRI, 1 HMRS and DTI were performed in 7 heroin abusers and 8 healthy volunteers without the history of drug abuse. The regions of interest (ROI) were selected in the gray matter and white matter of prefrontal lobe in 1HMRS exam, and the ratio of NAA/ Cr, Cho/Cr and Cho/NAA were measured respectively. For the DTI, six ROIs were selected, and the values of fractional anisotropy (FA) and ADC were calculated respectively. The independent samples t test was used for the statistics. Results: No abnormality was found in the routine MRI. The ratio of NAA/Cr decreased in the prefrontal lobe, the values were 1.40 + 0. 16 in gray matter and 1.72 + 0.41 in white matter of the drug group, 1.57±0.09 and 2.08±0.21 in the control group on 1 HMRS examiation. The difference between the two groups had statistical significance (t = 2. 183, 2.190, P -4 , (7.54±0.22) x 10 -4 , (7.72±0.30) x 10 -4 , and (7.50±0.26) x 10 -4 , (7.15±0.20) x 10 -4 , (7.19±0.39) x 10 -4 mm 2 /s in control group respectively. The difference between the two groups had statistical significance (t=3.477, 3.507, 2.895, P 1 HMRS and DTI. (authors)

  2. Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage

    OpenAIRE

    Shao, Qiang; Herrlinger, Stephanie; Yang, Si-Lu; Lai, Fan; Moore, Julie M.; Brindley, Melinda A.; Chen, Jian-Fu

    2016-01-01

    Zika virus (ZIKV) infection of pregnant women can result in fetal brain abnormalities. It has been established that ZIKV disrupts neural progenitor cells (NPCs) and leads to embryonic microcephaly. However, the fate of other cell types in the developing brain and their contributions to ZIKV-associated brain abnormalities remain largely unknown. Using intracerebral inoculation of embryonic mouse brains, we found that ZIKV infection leads to postnatal growth restriction including microcephaly. ...

  3. The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair.

    Directory of Open Access Journals (Sweden)

    Davide Lecca

    Full Text Available Deciphering the mechanisms regulating the generation of new neurons and new oligodendrocytes, the myelinating cells of the central nervous system, is of paramount importance to address new strategies to replace endogenous damaged cells in the adult brain and foster repair in neurodegenerative diseases. Upon brain injury, the extracellular concentrations of nucleotides and cysteinyl-leukotrienes (cysLTs, two families of endogenous signaling molecules, are markedly increased at the site of damage, suggesting that they may act as "danger signals" to alert responses to tissue damage and start repair. Here we show that, in brain telencephalon, GPR17, a recently deorphanized receptor for both uracil nucleotides and cysLTs (e.g., UDP-glucose and LTD(4, is normally present on neurons and on a subset of parenchymal quiescent oligodendrocyte precursor cells. We also show that induction of brain injury using an established focal ischemia model in the rodent induces profound spatiotemporal-dependent changes of GPR17. In the lesioned area, we observed an early and transient up-regulation of GPR17 in neurons expressing the cellular stress marker heat shock protein 70. Magnetic Resonance Imaging in living mice showed that the in vivo pharmacological or biotechnological knock down of GPR17 markedly prevents brain infarct evolution, suggesting GPR17 as a mediator of neuronal death at this early ischemic stage. At later times after ischemia, GPR17 immuno-labeling appeared on microglia/macrophages infiltrating the lesioned area to indicate that GPR17 may also acts as a player in the remodeling of brain circuitries by microglia. At this later stage, parenchymal GPR17+ oligodendrocyte progenitors started proliferating in the peri-injured area, suggesting initiation of remyelination. To confirm a specific role for GPR17 in oligodendrocyte differentiation, the in vitro exposure of cortical pre-oligodendrocytes to the GPR17 endogenous ligands UDP-glucose and LTD(4

  4. The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair.

    Science.gov (United States)

    Lecca, Davide; Trincavelli, Maria Letizia; Gelosa, Paolo; Sironi, Luigi; Ciana, Paolo; Fumagalli, Marta; Villa, Giovanni; Verderio, Claudia; Grumelli, Carlotta; Guerrini, Uliano; Tremoli, Elena; Rosa, Patrizia; Cuboni, Serena; Martini, Claudia; Buffo, Annalisa; Cimino, Mauro; Abbracchio, Maria P

    2008-01-01

    Deciphering the mechanisms regulating the generation of new neurons and new oligodendrocytes, the myelinating cells of the central nervous system, is of paramount importance to address new strategies to replace endogenous damaged cells in the adult brain and foster repair in neurodegenerative diseases. Upon brain injury, the extracellular concentrations of nucleotides and cysteinyl-leukotrienes (cysLTs), two families of endogenous signaling molecules, are markedly increased at the site of damage, suggesting that they may act as "danger signals" to alert responses to tissue damage and start repair. Here we show that, in brain telencephalon, GPR17, a recently deorphanized receptor for both uracil nucleotides and cysLTs (e.g., UDP-glucose and LTD(4)), is normally present on neurons and on a subset of parenchymal quiescent oligodendrocyte precursor cells. We also show that induction of brain injury using an established focal ischemia model in the rodent induces profound spatiotemporal-dependent changes of GPR17. In the lesioned area, we observed an early and transient up-regulation of GPR17 in neurons expressing the cellular stress marker heat shock protein 70. Magnetic Resonance Imaging in living mice showed that the in vivo pharmacological or biotechnological knock down of GPR17 markedly prevents brain infarct evolution, suggesting GPR17 as a mediator of neuronal death at this early ischemic stage. At later times after ischemia, GPR17 immuno-labeling appeared on microglia/macrophages infiltrating the lesioned area to indicate that GPR17 may also acts as a player in the remodeling of brain circuitries by microglia. At this later stage, parenchymal GPR17+ oligodendrocyte progenitors started proliferating in the peri-injured area, suggesting initiation of remyelination. To confirm a specific role for GPR17 in oligodendrocyte differentiation, the in vitro exposure of cortical pre-oligodendrocytes to the GPR17 endogenous ligands UDP-glucose and LTD(4) promoted the

  5. Magnetic resonance imaging of post-ischemic blood-brain barrier damage with PEGylated iron oxide nanoparticles

    Science.gov (United States)

    Liu, Dong-Fang; Qian, Cheng; An, Yan-Li; Chang, Di; Ju, Sheng-Hong; Teng, Gao-Jun

    2014-11-01

    Blood-brain barrier (BBB) damage during ischemia may induce devastating consequences like cerebral edema and hemorrhagic transformation. This study presents a novel strategy for dynamically imaging of BBB damage with PEGylated supermagnetic iron oxide nanoparticles (SPIONs) as contrast agents. The employment of SPIONs as contrast agents made it possible to dynamically image the BBB permeability alterations and ischemic lesions simultaneously with T2-weighted MRI, and the monitoring could last up to 24 h with a single administration of PEGylated SPIONs in vivo. The ability of the PEGylated SPIONs to highlight BBB damage by MRI was demonstrated by the colocalization of PEGylated SPIONs with Gd-DTPA after intravenous injection of SPION-PEG/Gd-DTPA into a mouse. The immunohistochemical staining also confirmed the leakage of SPION-PEG from cerebral vessels into parenchyma. This study provides a novel and convenient route for imaging BBB alteration in the experimental ischemic stroke model.

  6. Study on CT changes in autistic children; Anatomical correlation of the damaged brain and delay of psychomotor development

    Energy Technology Data Exchange (ETDEWEB)

    Yaguchi, Katsumi (Juntendo Univ., Tokyo (Japan). School of Medicine)

    1993-05-01

    Since 1979 we have performed CT examinations on 132 autistic children. Neurological diagnosis of the lesion was established by Dr. Segawa's group. On the CT of many autistic children, we found a small low density change located in the anterior wall of the temporal horn, or localized dilatation of the inferior horn near the damaged brain. We reviewed 96 of these patients who all had the obvious low density changes, or localized irregular dilatations in the anterior wall of the temporal horn. By measuring the distance of damage from the midline, we divided the 96 cases into two groups. Group 1 consisted of those with damage located laterally more than 30 mm line from the midline. Group 2 consisted of those with damage medially to the 30 mm line from the midline. Those cases with a large lesion both laterally and medially of the 30 mm line were categorized into group 1. In the adult brain the lateral border of the amygdaloid nucleus was never located laterally more than 30 mm from the midline. Laterally over the 30 mm line there were two marked fiber systems running near the anterior wall of the temporal horn: the fiber of the anterior commissure and the uncinate fascicle. Group 1 consisted of 62 patients and group 2 of 34 patients. The majority of the two group patients were pure autism children. This suggested that the main lesion in autism was in the amygdala. (author).

  7. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Cakmak G.; Miller L.; Zorlu, F.; Severcan, F.

    2012-03-03

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH{sub 2} groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH{sub 3} groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems.

  8. Effect of Coenzyme Q10 on ischemia and neuronal damage in an experimental traumatic brain-injury model in rats

    Directory of Open Access Journals (Sweden)

    Hanci Volkan

    2011-07-01

    Full Text Available Abstract Background Head trauma is one of the most important clinical issues that not only can be fatal and disabling, requiring long-term treatment and care, but also can cause heavy financial burden. Formation or distribution of free oxygen radicals should be decreased to enable fixing of poor neurological outcomes and to prevent neuronal damage secondary to ischemia after trauma. Coenzyme Q10 (CoQ10, a component of the mitochondrial electron transport chain, is a strong antioxidant that plays a role in membrane stabilization. In this study, the role of CoQ10 in the treatment of head trauma is researched by analyzing the histopathological and biochemical effects of CoQ10 administered after experimental traumatic brain injury in rats. A traumatic brain-injury model was created in all rats. Trauma was inflicted on rats by the free fall of an object of 450 g weight from a height of 70 cm on the frontoparietal midline onto a metal disc fixed between the coronal and the lambdoid sutures after a midline incision was carried out. Results In the biochemical tests, tissue malondialdehyde (MDA levels were significantly higher in the traumatic brain-injury group compared to the sham group (p 10 after trauma was shown to be protective because it significantly lowered the increased MDA levels (p 10 group had SOD levels ranging between those of sham group and traumatic brain-injury group, and no statistically significant increase was detected. Histopathological results showed a statistically significant difference between the CoQ10 and the other trauma-subjected groups with reference to vascular congestion, neuronal loss, nuclear pyknosis, nuclear hyperchromasia, cytoplasmic eosinophilia, and axonal edema (p Conclusion Neuronal degenerative findings and the secondary brain damage and ischemia caused by oxidative stress are decreased by CoQ10 use in rats with traumatic brain injury.

  9. Increased Low-Frequency Resting-State Brain Activity by High-Frequency Repetitive TMS on the Left Dorsolateral Prefrontal Cortex.

    Science.gov (United States)

    Xue, Shao-Wei; Guo, Yonghu; Peng, Wei; Zhang, Jian; Chang, Da; Zang, Yu-Feng; Wang, Ze

    2017-01-01

    Beneficial effects of repetitive transcranial magnetic stimulation (rTMS) on left dorsolateral prefrontal cortex (DLPFC) have been consistently shown for treating various neuropsychiatrical or neuropsychological disorders, but relatively little is known about its neural mechanisms. Here we conducted a randomized, double-blind, SHAM-controlled study to assess the effects of high-frequency left DLPFC rTMS on resting-state activity. Thirty-eight young healthy subjects received two sessions of either real rTMS ( N = 18, 90% motor-threshold; left DLPFC at 20 Hz) or SHAM TMS ( N = 20) and functional magnetic resonance imaging scan during rest in 2 days separated by 48 h. Resting-state bran activity was measured with the fractional amplitude of low-frequency fluctuation (fALFF) and functional connectivity (FC). Increased fALFF was found in rostral anterior cingulate cortex (rACC) after 20 Hz rTMS, while no changes were observed after SHAM stimulation. Using the suprathreshold rACC cluster as the seed, increased FC was found in left temporal cortex (stimulation vs. group interaction). These data suggest that high-frequency rTMS on left DLPFC enhances low-frequency resting-state brain activity in the target site and remote sites as reflected by fALFF and FC.

  10. Melatonin alleviates brain and peripheral tissue edema in a neonatal rat model of hypoxic-ischemic brain damage: the involvement of edema related proteins.

    Science.gov (United States)

    Xu, Li-Xiao; Lv, Yuan; Li, Yan-Hong; Ding, Xin; Wang, Ying; Han, Xing; Liu, Ming-Hua; Sun, Bin; Feng, Xing

    2017-03-28

    Previous studies have indicated edema may be involved in the pathophysiology following hypoxic-ischemic encephalopathy (HIE), and melatonin may exhibit neuro-protection against brain insults. However, little is known regarding the mechanisms that involve the protective effects of melatonin in the brain and peripheral tissues after HIE. The present study aimed to examine the effects of melatonin on multiple organs, and the expression of edema related proteins in a neonatal rat model of hypoxic-ischemic brain damage (HIBD). One hundred ninety-two neonatal rats were randomly divided into three subgroups that underwent a sham surgery or HIBD. After the HIBD or sham-injury, the rats received an intraperitoneal injection of melatonin or an equal volume vehicle, respectively. We investigated the effects of melatonin on brain, kidney, and colon edema via histological examination and the expression of edema related proteins, including AQP-4, ZO-1 and occludin, via qPCR and western blot. Our data indicated (1) Melatonin reduced the histological injury in the brain and peripheral organs induced by HIBD as assessed via H-E staining and transmission electron microscopy. (2) Melatonin alleviated the HIBD-induced cerebral edema characterized by increased brain water content. (3) HIBD induced significant changes of edema related proteins, such as AQP-4, ZO-1 and occludin, and these changes were partially reversed by melatonin treatment. These findings provide substantial evidence that melatonin treatment has protective effects on the brain and peripheral organs after HIBD, and the edema related proteins, AQP4, ZO-1, and occludin, may indirectly contribute tothe mechanism of the edema protection by melatonin.

  11. Left neglect dyslexia: Perseveration and reading error types.

    Science.gov (United States)

    Ronchi, Roberta; Algeri, Lorella; Chiapella, Laura; Gallucci, Marcello; Spada, Maria Simonetta; Vallar, Giuseppe

    2016-08-01

    Right-brain-damaged patients may show a reading disorder termed neglect dyslexia. Patients with left neglect dyslexia omit letters on the left-hand-side (the beginning, when reading left-to-right) part of the letter string, substitute them with other letters, and add letters to the left of the string. The aim of this study was to investigate the pattern of association, if any, between error types in patients with left neglect dyslexia and recurrent perseveration (a productive visuo-motor deficit characterized by addition of marks) in target cancellation. Specifically, we aimed at assessing whether different productive symptoms (relative to the reading and the visuo-motor domains) could be associated in patients with left spatial neglect. Fifty-four right-brain-damaged patients took part in the study: 50 out of the 54 patients showed left spatial neglect, with 27 of them also exhibiting left neglect dyslexia. Neglect dyslexic patients who showed perseveration produced mainly substitution neglect errors in reading. Conversely, omissions were the prevailing reading error pattern in neglect dyslexic patients without perseveration. Addition reading errors were much infrequent. Different functional pathological mechanisms may underlie omission and substitution reading errors committed by right-brain-damaged patients with left neglect dyslexia. One such mechanism, involving the defective stopping of inappropriate responses, may contribute to both recurrent perseveration in target cancellation, and substitution errors in reading. Productive pathological phenomena, together with deficits of spatial attention to events taking place on the left-hand-side of space, shape the manifestations of neglect dyslexia, and, more generally, of spatial neglect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Heritability of brain structure and glutamate levels in the anterior cingulate and left thalamus assessed with MR: A twin study

    DEFF Research Database (Denmark)

    Broberg, Brian Villumsen; Legind, Christian Stefan; Mandl, Rene C W

    the SIENAX tool provided with FSL. MRS data from the left thalamus and anterior cingulate cortex (ACC) (bilaterally) were processed using LCModel. Metabolite concentrations (Cramer-Rao Lower bound ... correlations (positive) were found in monozygotic twin pairs in both the ACC (n = 56, r = 0.484, p = 0.009)) and the left thalamus (n = 56, r = 0.444, p = 0.018), but not in dizygotic twin pairs (ACC: n = 40, r = -0.123, p = 0.606; left thalamus: n = 40, r = 0.030, p = 0.902). No significant differences were...

  13. Language learning and brain reorganization in a 3.5-year-old child with left perinatal stroke revealed using structural and functional connectivity.

    Science.gov (United States)

    François, Clément; Ripollés, Pablo; Bosch, Laura; Garcia-Alix, Alfredo; Muchart, Jordi; Sierpowska, Joanna; Fons, Carme; Solé, Jorgina; Rebollo, Monica; Gaitán, Helena; Rodriguez-Fornells, Antoni

    2016-04-01

    Brain imaging methods have contributed to shed light on the possible mechanisms of recovery and cortical reorganization after early brain insult. The idea that a functional left hemisphere is crucial for achieving a normalized pattern of language development after left perinatal stroke is still under debate. We report the case of a 3.5-year-old boy born at term with a perinatal ischemic stroke of the left middle cerebral artery, affecting mainly the supramarginal gyrus, superior parietal and insular cortex extending to the precentral and postcentral gyri. Neurocognitive development was assessed at 25 and 42 months of age. Language outcomes were more extensively evaluated at the latter age with measures on receptive vocabulary, phonological whole-word production and linguistic complexity in spontaneous speech. Word learning abilities were assessed using a fast-mapping task to assess immediate and delayed recall of newly mapped words. Functional and structural imaging data as well as a measure of intrinsic connectivity were also acquired. While cognitive, motor and language levels from the Bayley Scales fell within the average range at 25 months, language scores were below at 42 months. Receptive vocabulary fell within normal limits but whole word production was delayed and the child had limited spontaneous speech. Critically, the child showed clear difficulties in both the immediate and delayed recall of the novel words, significantly differing from an age-matched control group. Neuroimaging data revealed spared classical cortical language areas but an affected left dorsal white-matter pathway together with right lateralized functional activations. In the framework of the model for Social Communication and Language Development, these data confirm the important role of the left arcuate fasciculus in understanding and producing morpho-syntactic elements in sentences beyond two word combinations and, most importantly, in learning novel word-referent associations, a

  14. Does any aspect of mind survive brain damage that typically leads to a persistent vegetative state? Ethical considerations

    Directory of Open Access Journals (Sweden)

    Fuchs Thomas

    2007-12-01

    Full Text Available Abstract Recent neuroscientific evidence brings into question the conclusion that all aspects of consciousness are gone in patients who have descended into a persistent vegetative state (PVS. Here we summarize the evidence from human brain imaging as well as neurological damage in animals and humans suggesting that some form of consciousness can survive brain damage that commonly causes PVS. We also raise the issue that neuroscientific evidence indicates that raw emotional feelings (primary-process affects can exist without any cognitive awareness of those feelings. Likewise, the basic brain mechanisms for thirst and hunger exist in brain regions typically not damaged by PVS. If affective feelings can exist without cognitive awareness of those feelings, then it is possible that the instinctual emotional actions and pain "reflexes" often exhibited by PVS patients may indicate some level of mentality remaining in PVS patients. Indeed, it is possible such raw affective feelings are intensified when PVS patients are removed from life-supports. They may still experience a variety of primary-process affective states that could constitute forms of suffering. If so, withdrawal of life-support may violate the principle of nonmaleficence and be tantamount to inflicting inadvertent "cruel and unusual punishment" on patients whose potential distress, during the process of dying, needs to be considered in ethical decision-making about how such individuals should be treated, especially when their lives are ended by termination of life-supports. Medical wisdom may dictate the use of more rapid pharmacological forms of euthanasia that minimize distress than the de facto euthanasia of life-support termination that may lead to excruciating feelings of pure thirst and other negative affective feelings in the absence of any reflective awareness.

  15. Does any aspect of mind survive brain damage that typically leads to a persistent vegetative state? Ethical considerations.

    Science.gov (United States)

    Panksepp, Jaak; Fuchs, Thomas; Garcia, Victor Abella; Lesiak, Adam

    2007-12-17

    Recent neuroscientific evidence brings into question the conclusion that all aspects of consciousness are gone in patients who have descended into a persistent vegetative state (PVS). Here we summarize the evidence from human brain imaging as well as neurological damage in animals and humans suggesting that some form of consciousness can survive brain damage that commonly causes PVS. We also raise the issue that neuroscientific evidence indicates that raw emotional feelings (primary-process affects) can exist without any cognitive awareness of those feelings. Likewise, the basic brain mechanisms for thirst and hunger exist in brain regions typically not damaged by PVS. If affective feelings can exist without cognitive awareness of those feelings, then it is possible that the instinctual emotional actions and pain "reflexes" often exhibited by PVS patients may indicate some level of mentality remaining in PVS patients. Indeed, it is possible such raw affective feelings are intensified when PVS patients are removed from life-supports. They may still experience a variety of primary-process affective states that could constitute forms of suffering. If so, withdrawal of life-support may violate the principle of nonmaleficence and be tantamount to inflicting inadvertent "cruel and unusual punishment" on patients whose potential distress, during the process of dying, needs to be considered in ethical decision-making about how such individuals should be treated, especially when their lives are ended by termination of life-supports. Medical wisdom may dictate the use of more rapid pharmacological forms of euthanasia that minimize distress than the de facto euthanasia of life-support termination that may lead to excruciating feelings of pure thirst and other negative affective feelings in the absence of any reflective awareness.

  16. Extracellular Mitochondria and Mitochondrial Components Act as Damage-Associated Molecular Pattern Molecules in the Mouse Brain.

    Science.gov (United States)

    Wilkins, Heather M; Koppel, Scott J; Weidling, Ian W; Roy, Nairita; Ryan, Lauren N; Stanford, John A; Swerdlow, Russell H

    2016-12-01

    Mitochondria and mitochondrial debris are found in the brain's extracellular space, and extracellular mitochondrial components can act as damage associated molecular pattern (DAMP) molecules. To characterize the effects of potential mitochondrial DAMP molecules on neuroinflammation, we injected either isolated mitochondria or mitochondrial DNA (mtDNA) into hippocampi of C57BL/6 mice and seven days later measured markers of inflammation. Brains injected with whole mitochondria showed increased Tnfα and decreased Trem2 mRNA, increased GFAP protein, and increased NFκB phosphorylation. Some of these effects were also observed in brains injected with mtDNA (decreased Trem2 mRNA, increased GFAP protein, and increased NFκB phosphorylation), and mtDNA injection also caused several unique changes including increased CSF1R protein and AKT phosphorylation. To further establish the potential relevance of this response to Alzheimer's disease (AD), a brain disorder characterized by neurodegeneration, mitochondrial dysfunction, and neuroinflammation we also measured App mRNA, APP protein, and Aβ 1-42 levels. We found mitochondria (but not mtDNA) injections increased these parameters. Our data show that in the mouse brain extracellular mitochondria and its components can induce neuroinflammation, extracellular mtDNA or mtDNA-associated proteins can contribute to this effect, and mitochondria derived-DAMP molecules can influence AD-associated biomarkers.

  17. Impact of prenatal antimicrobial treatment on fetal brain damage due to autogenous fecal peritonitis in Wistar rats: A Histomorphometric Study

    Directory of Open Access Journals (Sweden)

    Neylane Gadelha

    2017-10-01

    Full Text Available Purpose: To investigate brain neuronal density in newborn rats whose mothers were subjected to fecal peritonitis and compare findings between rats born to mothers treated and not treated with antimicrobials. Methods: Peritonitis was induced with a 10% fecal suspension (4mL/kg in 2 pregnant rats. Of these, 1 received antimicrobial treatment 24 hours after peritonitis induction: moxifloxacin and dexamethasone plus 2 mL of the inner bark of the Schinus terebinthifolius raddi extract. One pregnant rat underwent no intervention and served as a control. Results: The newborn brains of rats born to mothers with fecal peritonitis were significantly smaller and of less firm consistency. Brain neuronal density was lower in the untreated group than in the control and treated groups (P<0.01. Conclusions: Untreated peritonitis caused brain damage in the offspring, which was averted by effective early antimicrobial treatment. This approach may provide an early avenue for translation of such therapy in humans. Keywords: peritonitis, brain injuries, rats

  18. [Arm Motor Function Recovery during Rehabilitation with the Use of Hand Exoskeleton Controlled by Brain-Computer Interface: a Patient with Severe Brain Damage].

    Science.gov (United States)

    Biryukova, E V; Pavlova, O G; Kurganskaya, M E; Bobrov, P D; Turbina, L G; Frolov, A A; Davydov, V I; Sil'tchenko, A V; Mokienko, O A

    2016-01-01

    We studied the dynamics of motor function recovery in a patient with severe brain damage in the course of neurorehabilitation using hand exoskeleton controlled by brain-computer interface. For estimating the motor function of paretic arm, we used the biomechanical analysis of movements registered during the course of rehabilitation. After 15 weekly sessions of hand exoskeleton control, the following results were obtained: a) the velocity profile of goal-directed movements of paretic hand became bell-shaped, b) the patient began to extend and abduct the hand which was flexed and adducted in the beginning of rehabilitation, and c) the patient began to supinate the forearm which was pronated in the beginning of rehabilitation. The first result is an evidence of the general improvement of the quality of motor control, while the second and third results prove that the spasticity of paretic arm has decreased.

  19. A combination of experimental measurement, constitutive damage model, and diffusion tensor imaging to characterize the mechanical properties of the human brain.

    Science.gov (United States)

    Karimi, Alireza; Rahmati, Seyed Mohammadali; Razaghi, Reza

    2017-09-01

    Understanding the mechanical properties of the human brain is deemed important as it may subject to various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the frontal lobe of the human brain. The constrained nonlinear minimization method was employed to identify the brain coefficients according to the axial and transversal compressive data. The pseudo-elastic damage model data was also well compared with that of the experimental data and it not only up to the primary loading but also the discontinuous softening could well address the mechanical behavior of the brain tissue.

  20. Early environmental enrichment affects neurobehavioral development and prevents brain damage in rats submitted to neonatal hypoxia-ischemia.

    Science.gov (United States)

    Schuch, Clarissa Pedrini; Diaz, Ramiro; Deckmann, Iohanna; Rojas, Joseane Jiménez; Deniz, Bruna Ferrary; Pereira, Lenir Orlandi

    2016-03-23

    Our previous results demonstrated improved cognition in adolescent rats housed in environmental enrichment (EE) that underwent neonatal hypoxia-ischemia (HI). The aim of this study was to investigate the effects of early EE on neurobehavioral development and brain damage in rats submitted to neonatal HI. Wistar rats were submitted to the HI procedure on the 7th postnatal day (PND) and housed in an enriched environment (8th-20th PND). The maturation of physical characteristics and the neurological reflexes were evaluated and the volume of striatum, corpus callosum and neocortex was measured. Data analysis demonstrated a clear effect of EE on neurobehavioral development; also, daily performance was improved in enriched rats on righting, negative geotaxis and cliff aversion reflex. HI caused a transient motor deficit on gait latency. Brain atrophy was found in HI animals and this damage was partially prevented by the EE. In conclusion, early EE stimulated neurobehavioral development in neonate rats and also protects the neocortex and the corpus callosum from atrophy following HI. These findings reinforce the potential of EE as a strategy for rehabilitation following neonatal HI and provide scientific support to the use of this therapeutic strategy in the treatment of neonatal brain injuries in humans. Copyright © 2016. Published by Elsevier Ireland Ltd.

  1. Low-level light emitting diode (LED) therapy suppresses inflammasome-mediated brain damage in experimental ischemic stroke.

    Science.gov (United States)

    Lee, Hae In; Lee, Sae-Won; Kim, Nam Gyun; Park, Kyoung-Jun; Choi, Byung Tae; Shin, Yong-Il; Shin, Hwa Kyoung

    2017-11-01

    Use of photostimulation including low-level light emitting diode (LED) therapy has broadened greatly in recent years because it is compact, portable, and easy to use. Here, the effects of photostimulation by LED (610 nm) therapy on ischemic brain damage was investigated in mice in which treatment started after a stroke in a clinically relevant setting. The mice underwent LED therapy (20 min) twice a day for 3 days, commencing at 4 hours post-ischemia. LED therapy group generated a significantly smaller infarct size and improvements in neurological function based on neurologic test score. LED therapy profoundly reduced neuroinflammatory responses including neutrophil infiltration and microglia activation in the ischemic cortex. LED therapy also decreased cell death and attenuated the NLRP3 inflammasome, in accordance with down-regulation of pro-inflammatory cytokines IL-1β and IL-18 in the ischemic brain. Moreover, the mice with post-ischemic LED therapy showed suppressed TLR-2 levels, MAPK signaling and NF-kB activation. These findings suggest that by suppressing the inflammasome, LED therapy can attenuate neuroinflammatory responses and tissue damage following ischemic stroke. Therapeutic interventions targeting the inflammasome via photostimulation with LED may be a novel approach to ameliorate brain injury following ischemic stroke. Effect of post-ischemic low-level light emitting diode therapy (LED-T) on infarct reduction was mediated by inflammasome suppression. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The effect of piracetam on brain damage and serum nitric oxide levels in dogs submitted to hemorrhagic shock.

    Science.gov (United States)

    Ozkan, Seda; Ikizceli, Ibrahim; Sözüer, Erdoğan Mütevelli; Avşaroğullari, Levent; Oztürk, Figen; Muhtaroğlu, Sebahattin; Akdur, Okhan; Küçük, Can; Durukan, Polat

    2008-10-01

    To demonstrate the effect of piracetam on changes in brain tissue and serum nitric oxide levels in dogs submitted to hemorrhagic shock. The subjects were randomized into four subgroups each consisting of 10 dogs. Hemorrhagic shock was induced in Group I for 1 hour and no treatment was given to this group. Blood and saline solutions were administered to Group II following 1 hour hemorrhagic shock. Blood and piracetam were given to Group III following 1 hour shock. No shock was induced and no treatment was applied to Group IV. Blood samples were obtained at the onset of the experiment and at 60, 120 and 180 minutes for nitric oxide analysis. For histopathological examination, brain tissue samples were obtained at the end of the experiment. The observed improvement in blood pressure and pulse rates in Group III was more than in Group II. Nitric oxide levels were increased in Group I; however, no correlation between piracetam and nitric oxide levels was determined. It was seen that recovery in brain damage in Group III was greater than in the control group. Piracetam, added to the treatment, may ecrease ischemic damage in hemorrhagic shock.

  3. Hypertensive Target Organ Damage and Longitudinal Changes in Brain Structure and Function The Second Manifestations of Arterial Disease-Magnetic Resonance Study

    NARCIS (Netherlands)

    van der Veen, Pieternella H.; Geerlings, Mirjam I.|info:eu-repo/dai/nl/146382315; Visseren, Frank L. J.|info:eu-repo/dai/nl/166267678; Nathoe, Hendrik M.|info:eu-repo/dai/nl/267961472; Mali, Willem P T M|info:eu-repo/dai/nl/071107533; van der Graaf, Yolanda|info:eu-repo/dai/nl/072825847; Muller, Majon

    2015-01-01

    Hypertension has been related to structural and functional brain changes. In high-risk populations, hypertensive target organ damage might better represent exposure to high blood pressure than the blood pressure measurement itself. We examined the association of hypertensive target organ damage with

  4. Effect of antibodies to glutamate on the content of neurotransmitter amino acids in brain structures of rats with ischemic damage to the prefrontal cortex.

    Science.gov (United States)

    Romanova, G A; Kvashennikova, Yu N; Shakova, F M; Davydova, T V

    2012-05-01

    Experiments on the model of bilateral photothrombosis in the prefrontal cortex showed that antibodies to glutamate administered intranasally 1 h after ischemic damage to the brain cortex led to a decrease in glutamate content in the hippocampus and prefrontal cortex and had no effect on aspartate concentration in these structures of the brain.

  5. Neuroprotection and enhanced neurogenesis by extract from the tropical plant Knema laurina after inflammatory damage in living brain tissue.

    Science.gov (United States)

    Häke, Ines; Schönenberger, Silvia; Neumann, Jens; Franke, Katrin; Paulsen-Merker, Katrin; Reymann, Klaus; Ismail, Ghazally; Bin Din, Laily; Said, Ikram M; Latiff, A; Wessjohann, Ludger; Zipp, Frauke; Ullrich, Oliver

    2009-01-03

    Inflammatory reactions in the CNS, resulting from a loss of control and involving a network of non-neuronal and neuronal cells, are major contributors to the onset and progress of several major neurodegenerative diseases. Therapeutic strategies should therefore keep or restore the well-controlled and finely-tuned balance of immune reactions, and protect neurons from inflammatory damage. In our study, we selected plants of the Malaysian rain forest by an ethnobotanic survey, and investigated them in cell-based-assay-systems and in living brain tissue cultures in order to identify anti-inflammatory and neuroprotective effects. We found that alcoholic extracts from the tropical plant Knema laurina (Black wild nutmeg) exhibited highly anti-inflammatory and neuroprotective effects in cell culture experiments, reduced NO- and IL-6-release from activated microglia cells dose-dependently, and protected living brain tissue from microglia-mediated inflammatory damage at a concentration of 30 microg/ml. On the intracellular level, the extract inhibited ERK-1/2-phosphorylation, IkB-phosphorylation and subsequently NF-kB-translocation in microglia cells. K. laurina belongs to the family of Myristicaceae, which have been used for centuries for treatment of digestive and inflammatory diseases and is also a major food plant of the Giant Hornbill. Moreover, extract from K. laurina promotes also neurogenesis in living brain tissue after oxygen-glucose deprivation. In conclusion, extract from K. laurina not only controls and limits inflammatory reaction after primary neuronal damage, it promotes moreover neurogenesis if given hours until days after stroke-like injury.

  6. EFFECTS OF CANNABIDIOL PLUS HYPOTHERMIA ON SHORT-TERM NEWBORN PIG BRAIN DAMAGE AFTER ACUTE HYPOXIA-ISCHEMIA

    Directory of Open Access Journals (Sweden)

    Hector Lafuente

    2016-07-01

    Full Text Available Background: Hypothermia is standard treatment for neonatal encephalopathy, but near 50% of treated infants have adverse outcomes. Pharmacological therapies can act through complementary mechanisms to hypothermia and would improve neuroprotection. Cannabidiol could be a good candidate.Objective: To test whether immediate treatment with cannabidiol and hypothermia act through complementary brain pathways in hypoxic-ischemic newborn piglets.Methods: Hypoxic-ischemic animals were randomized to receive 30 min after the insult: 1 normothermia- and vehicle-treated group; 2 normothermia- and cannabidiol-treated group; 3 hypothermia- and vehicle-treated group; and 4 hypothermia- and cannabidiol-treated group. Six hours after treatment, brains were processed to qualify the number of neurons by Nissl staining. Proton nuclear magnetic resonance spectra were obtained and analyzed for lactate, N-acetyl-aspartate and glutamate. Metabolite ratios were calculated to assess neuronal damage (lactate/N-acetyl-aspartate and excitotoxicity (glutamate/Nacetyl-aspartate. Western blot studies were performed to quantify protein nitrosylation (oxidative stress and expression of caspase-3 (apoptosis and TNFα (inflammation.Results: Individually, the hypothermia and the cannabidiol treatments reduced the glutamate/Nacetyl-aspartate ratio, as well as TNFα and oxidized protein levels. Also, both therapies reduced the number of necrotic neurons and prevented an increase in lactate/N-acetyl-aspartate ratio. The combined effect of hypothermia and cannabidiol on excitotoxicity, inflammation and oxidative stress, and on histological damage, was greater than either hypothermia or cannabidiol alone.Conclusion: Cannabidiol and hypothermia act complementarily and show additive effects on the main factors leading to hypoxic-ischemic brain damage.

  7. On the efficiency of Gore-Tex layer for brain protection from shock wave damage in cranioplasty

    Science.gov (United States)

    Saito, T.; Voinovich, P. A.; Nakagawa, A.; Hosseini, S. H. R.; Takayama, K.; Hirano, T.

    2004-11-01

    The effectiveness of a Gore-Tex layer for protecting soft tissue from damage in shock wave therapy is investigated analytically, numerically and experimentally. Analytical considerations based on the fundamentals of wave dynamics and two-dimensional numerical simulations based on the elastodynamic equations are carried out for underwater shock wave propagation and interaction with Gore-Tex membrane models of different complexity. The results clearly demonstrate that considerable attenuation of shock waves with Gore-Tex is due to the air trapped inside the membrane. The experimental results confirm that a Gore-Tex sheet placed in the liquid reduces the transmitted shock wave peak overpressure significantly, by up to two orders of magnitude. Another experimental series reveals what kind of damage in the rat brain tissue can be caused by shock waves of different intensity.

  8. The effects of different fractions of Coriandrum sativum on pentylenetetrazole-induced seizures and brain tissues oxidative damage in rats.

    Science.gov (United States)

    Anaeigoudari, Akbar; Hosseini, Mahmoud; Karami, Reza; Vafaee, Farzaneh; Mohammadpour, Toktam; Ghorbani, Ahmad; Sadeghnia, Hamid Reza

    2016-01-01

    In the present work, the effects of different fractions of Coriandrum sativum (C. sativum), on pentylenetetrazole (PTZ)-induced seizures and brain tissues oxidative damage were investigated in rats. The rats were divided into the following groups: (1) vehicle, (2) PTZ (90 mg/kg), (3) water fraction (WF) of C. sativum (25 and 100 mg/kg), (4) n-butanol fraction (NBF) of C. sativum (25 and 100 mg/kg), and (5) ethyl acetate fraction (EAF) of C. sativum (25 and 100 mg/kg). The first generalized tonic-clonic seizures (GTCS) latency in groups treated with 100 mg /kg of WF or EAF was significantly higher than that of PTZ group (psativum possess antioxidant activity in the brain and WF and EAF of this plant have anticonvulsant effects.

  9. Concomitants of alcoholism: differential effects of thiamine deficiency, liver damage, and food deprivation on the rat brain in vivo.

    Science.gov (United States)

    Zahr, Natalie M; Sullivan, Edith V; Rohlfing, Torsten; Mayer, Dirk; Collins, Amy M; Luong, Richard; Pfefferbaum, Adolf

    2016-07-01

    Serious neurological concomitants of alcoholism include Wernicke's encephalopathy (WE), Korsakoff's syndrome (KS), and hepatic encephalopathy (HE). This study was conducted in animal models to determine neuroradiological signatures associated with liver damage caused by carbon tetrachloride (CCl4), thiamine deficiency caused by pyrithiamine treatment, and nonspecific nutritional deficiency caused by food deprivation. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) were used to evaluate brains of wild-type Wistar rats at baseline and following treatment. Similar to observations in ethanol (EtOH) exposure models, thiamine deficiency caused enlargement of the lateral ventricles. Liver damage was not associated with effects on cerebrospinal fluid volumes, whereas food deprivation caused modest enlargement of the cisterns. In contrast to what has repeatedly been shown in EtOH exposure models, in which levels of choline-containing compounds (Cho) measured by MRS are elevated, Cho levels in treated animals in all three experiments (i.e., liver damage, thiamine deficiency, and food deprivation) were lower than those in baseline or controls. These results add to the growing body of literature suggesting that MRS-detectable Cho is labile and can depend on a number of variables that are not often considered in human experiments. These results also suggest that reductions in Cho observed in humans with alcohol use disorder (AUD) may well be due to mild manifestations of concomitants of AUD such as liver damage or nutritional deficiencies and not necessarily to alcohol consumption per se.

  10. Gamma Amino Butyric Acid Attenuates Brain Oxidative Damage Associated with Insulin Alteration in Streptozotocin-Treated Rats.

    Science.gov (United States)

    Eltahawy, N A; Saada, H N; Hammad, A S

    2017-06-01

    The aim of the current study was to evaluate the role of γ-amino butyric acid (GABA) in insulin disturbance and hyperglycemia associated with brain oxidative damage in streptozotocin-treated rats. Streptozotocin (STZ) was administered to male albino rats as a single intraperitoneal dose (60 mg/kg body weight). GABA (200 mg/Kg body weight/day) was administered daily via gavages during 3 weeks to STZ-treated-rats. Male albino rats Sprague-Dawley (10 ± 2 weeks old; 120 ± 10 g body weight) were divided into 4 groups of 6 rats and treated in parallel. (1) Control group: received distilled water, (2) GABA group: received GABA, (3) STZ group: STZ-treated rats received distilled water, (4) STZ + GABA group: STZ-treated rats received GABA. Rats were sacrificed after a fasting period of 12 h next last dose of GABA. The results obtained showed that STZ-treatment produced hyperglycemia and insulin deficiency (similar to type1 Diabetes). These changes were associated with oxidative damage in brain tissue and notified by significant decreases of superoxide dismutase and catalase activities in parallel to significant increases of malondialdehyde and advanced oxidation protein products levels. The histopathology reports also revealed that STZ-treatment produced degeneration of pancreatic cells. The administration of GABA to STZ-treated rats preserved pancreatic tissue with improved insulin secretion, improved glucose level and minimized oxidative stress in brain tissues. It could be concluded that GABA might protect the brain from oxidative stress and preserve pancreas tissues with adjusting glucose and insulin levels in Diabetic rats and might decrease the risk of neurodegenerative disease in diabetes.

  11. MRI at 3 Tesla detects no evidence for ischemic brain damage in intensively treated patients with homozygous familial hypercholesterolemia

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Stephan A.; O' Regan, Declan P.; Fitzpatrick, Julie; Hajnal, Joseph V. [Hammersmith Hospital Campus, Imaging Sciences Department, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, London (United Kingdom); Neuwirth, Clare; Potter, Elizabeth; Tosi, Isabella; Naoumova, Rossi P. [MRC Clinical Sciences Centre, Clinical Research Facility, London (United Kingdom); Hammersmith Hospital, Lipid Clinic, London (United Kingdom)

    2007-11-15

    Homozygous familial hypercholesterolemia (FH) is considered a model disease for excessive plasma cholesterol levels. Patients with untreated homozygous FH have a markedly increased risk for premature atherosclerosis. The frequency and extent of ischemic brain damage detectable by high-field magnetic resonance imaging (MRI) after long-term intensive treatment are unknown. In a case control study, five patients with homozygous FH (one male and four females; mean age: 23.6 {+-} 9.2, range: 12-36 years; mean pre-treatment serum total cholesterol level: 26.9 {+-} 3.24 mmol/L; all patients with documented atherosclerotic plaques in the carotid arteries) and five age- and sex-matched healthy controls were studied. All patients had been on maximal lipid-lowering medication since early childhood, and four of them were also on treatment with low-density lipoprotein (LDL) apheresis at bi-weekly intervals. Brain MRI was performed at 3 Tesla field strength with fluid-attenuated T2-weighted inversion recovery and T1-weighted spin-echo MR pulse sequences and subsequently evaluated by two independent readers. The maximal lipid-lowering treatment reduced the total serum cholesterol by more than 50% in the patients, but their serum concentrations were still 3.6-fold higher than those found in the controls (11.9 {+-} 4.2 vs. 4.5 {+-} 0.5 mmol/L; p < 0.0047). No brain abnormality was observed in any of the patients with homozygous FH. Homozygous FH patients on intensive cholesterol-lowering therapy have no evidence of ischemic brain damage at 3 Tesla MRI despite the remaining high cholesterol levels. (orig.)

  12. MRI at 3 Tesla detects no evidence for ischemic brain damage in intensively treated patients with homozygous familial hypercholesterolemia

    International Nuclear Information System (INIS)

    Schmitz, Stephan A.; O'Regan, Declan P.; Fitzpatrick, Julie; Hajnal, Joseph V.; Neuwirth, Clare; Potter, Elizabeth; Tosi, Isabella; Naoumova, Rossi P.

    2007-01-01

    Homozygous familial hypercholesterolemia (FH) is considered a model disease for excessive plasma cholesterol levels. Patients with untreated homozygous FH have a markedly increased risk for premature atherosclerosis. The frequency and extent of ischemic brain damage detectable by high-field magnetic resonance imaging (MRI) after long-term intensive treatment are unknown. In a case control study, five patients with homozygous FH (one male and four females; mean age: 23.6 ± 9.2, range: 12-36 years; mean pre-treatment serum total cholesterol level: 26.9 ± 3.24 mmol/L; all patients with documented atherosclerotic plaques in the carotid arteries) and five age- and sex-matched healthy controls were studied. All patients had been on maximal lipid-lowering medication since early childhood, and four of them were also on treatment with low-density lipoprotein (LDL) apheresis at bi-weekly intervals. Brain MRI was performed at 3 Tesla field strength with fluid-attenuated T2-weighted inversion recovery and T1-weighted spin-echo MR pulse sequences and subsequently evaluated by two independent readers. The maximal lipid-lowering treatment reduced the total serum cholesterol by more than 50% in the patients, but their serum concentrations were still 3.6-fold higher than those found in the controls (11.9 ± 4.2 vs. 4.5 ± 0.5 mmol/L; p < 0.0047). No brain abnormality was observed in any of the patients with homozygous FH. Homozygous FH patients on intensive cholesterol-lowering therapy have no evidence of ischemic brain damage at 3 Tesla MRI despite the remaining high cholesterol levels. (orig.)

  13. Arctigenin Treatment Protects against Brain Damage through an Anti-Inflammatory and Anti-Apoptotic Mechanism after Needle Insertion

    Science.gov (United States)

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-feng; Kong, Liang; Yao, Ying-Jia; Jiao, Ya-Nan; Yan, Yu-Hui; Li, Shao-Heng; Tao, Zhen-Yu; Lian, Guan; Yang, Jing-Xian; Kang, Ting-Guo

    2016-01-01

    Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in a stab wound injury (SWI). Subsequent secondary injury involves the release of inflammatory and apoptotic cytokines, which have dramatic consequences on the integrity of damaged tissue, leading to the evolution of a pericontusional-damaged area minutes to days after in the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary brain injury and the determination of the underlying mechanism of action in a mouse model of SWI that mimics the process of CED. After CED, mice received a gavage of ARC from 30 min to 14 days. Neurological severity scores (NSS) and wound closure degree were assessed after the injury. Histological analysis and immunocytochemistry were used to evaluated the extent of brain damage and neuroinflammation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect universal apoptosis. Enzyme-linked immunosorbent assays (ELISA) was used to test the inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10) and lactate dehydrogenase (LDH) content. Gene levels of inflammation (TNF-α, IL-6, and IL-10) and apoptosis (Caspase-3, Bax and Bcl-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR). Using these, we analyzed ARC’s efficacy and mechanism of action. Results: ARC treatment improved neurological function by reducing brain water content and hematoma and accelerating wound closure relative to untreated mice. ARC treatment reduced the levels of TNF-α and IL-6 and the number of allograft inflammatory factor (IBA)- and myeloperoxidase (MPO)-positive cells and increased the levels of IL-10. ARC-treated mice had fewer TUNEL+ apoptotic neurons and activated caspase-3-positive neurons surrounding the lesion than controls, indicating increased neuronal survival. Conclusions: ARC treatment confers

  14. Sevoflurane postconditioning improves long-term learning and memory of neonatal hypoxia-ischemia brain damage rats via the PI3K/Akt-mPTP pathway.

    Science.gov (United States)

    Lai, Zhongmeng; Zhang, Liangcheng; Su, Jiansheng; Cai, Dongmiao; Xu, Qingxiu

    2016-01-01

    Volatile anesthetic postconditioning has been documented to provide neuroprotection in adult animals. Our aim was to investigate whether sevoflurane postconditioning improves long-term learning and memory of neonatal hypoxia-ischemia brain damage (HIBD) rats, and whether the PI3K/Akt pathway and mitochondrial permeability transition pore (mPTP) opening participate in the effect. Seven-day-old Sprague-Dawley rats were subjected to brain HI and randomly allocated to 10 groups (n=24 each group) and treated as follows: (1) Sham, without hypoxia-ischemia; (2) HI/Control, received cerebral hypoxia-ischemia; (3) HI+Atractyloside (Atr), (4) HI+Cyclosporin A (CsA), (5) HI+sevoflurane (Sev), (6) HI+Sev+ LY294002 (LY), (7) HI+Sev+ L-NAME (L-N), (8) HI+Sev+ SB216763 (SB), (9) HI+Sev+Atr, and (10) HI+Sev+CsA. Twelve rats in each group underwent behavioral testing and their brains were harvested for hippocampus neuron count and morphology study. Brains of the other 12 animals were harvested 24h after intervention to examine the expression of Akt, p-Akt, eNOS, p-eNOS, GSK-3β, p-GSK-3β by Western bolting and mPTP opening. Sevoflurane postconditioning significantly improved the long-term cognitive performance of the rats, increased the number of surviving neurons in CA1 and CA3 hippocampal regions, and protected the histomorphology of the left hippocampus. These effects were abolished by inhibitors of PI3K/eNOS/GSK-3β. Although blocking mPTP opening simulated sevoflurane postconditioning-induced neuroprotection, it failed to enhance it. Sevoflurane postconditioning exerts a neuroprotective effect against HIBD in neonatal rats via PI3K/Akt/eNOS and PI3K/Akt/GSK-3β pathways, and blockage of mPTP opening may be involved in attenuation of histomorphological injury. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Factors predicting functional and cognitive recovery following severe traumatic, anoxic, and cerebrovascular brain damage.

    Science.gov (United States)

    Smania, Nicola; Avesani, Renato; Roncari, Laura; Ianes, Patrizia; Girardi, Paolo; Varalta, Valentina; Gambini, Maria Grazia; Fiaschi, Antonio; Gandolfi, Marialuisa

    2013-01-01

    To compare demographic data, clinical data, and rate of functional and cognitive recovery in patients with severe traumatic, cerebrovascular, or anoxic acquired brain injury (ABI) and to identify factors predicting discharge home. Three hundred twenty-nine patients with severe ABI (192 with traumatic, 104 with cerebrovascular, and 33 with anoxic brain injury). Longitudinal prospective study of inpatients attending the intensive Rehabilitation Department of the "Sacro Cuore" Don Calabria Hospital (Negrar, Verona, Italy). Etiology, sex, age, rehabilitation admission interval, rehabilitation length of stay, discharge destination, Glasgow Coma Scale, Disability Rating Scale (DRS), Glasgow Outcome Scale, Levels of Cognitive Functioning, and Functional Independence Measure. Predominant etiology was traumatic; male gender was prevalent in all the etiologic groups; patients with traumatic brain injury were younger than the patients in the other groups and had shorter rehabilitation admission interval, greater functional and cognitive outcomes on all considered scales, and a higher frequency of returning home. Patients with anoxic brain injury achieved the lowest grade of functional and cognitive recovery. Age, etiology, and admission DRS score predicted return home. Patients with traumatic brain injury achieved greater functional and cognitive improvements than patients with cerebrovascular and anoxic ABI. Age, etiology, and admission DRS score can assist in predicting discharge destination.

  16. Diagnostic and prognostic value of asphyxia, Sarnat's clinical classification, and CT-scan in perinatal brain damage

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Toshihide; Wakita, Yoshiharu; Kubonishi, Sakae; Yoshikawa, Seishi (Kochi Prefectural Central Hospital (Japan)); Ito, Toshiyuki; Okada, Yasusuke

    1990-11-01

    A retrospective review was made of 145 babies, excluding those with congenital heart disease or chromosome aberration, admitted for CT scanning. The study was done to determine the diagnostic and prognostic value of CT findings, as well as the presence of asphyxia and the clinical stage based on the Sarnat's classification, in perinatal brain damage. The patients had a minimum follow up of 2 years for the evaluation of neurologic manifestations, such as cerebral palsy, epilepsy and mental retardation. Among babies weighing 2,000 g or more at birth, neonatal asphyxia was significantly correlated with neurologic prognosis. In addition, both clinical stages and CT findings were significantly correlated with neurologic prognosis, irrespective of birth weight. The correlation between clinical stages and CT findings was significant, irrespective of body weight, however, a significant correlation between clinical stages and neonatal asphyxia was restricted to those weighing 2,000 g or more. These findings suggest that the presence of asphyxia, clinical stages and CT findings are complementary in the diagnosis and prognosis evaluation of perinatal brain damage. (N.K.).

  17. N-Terminal Pro-B-Type Natriuretic Peptide and Subclinical Brain Damage in the General Population.

    Science.gov (United States)

    Zonneveld, Hazel I; Ikram, M Arfan; Hofman, Albert; Niessen, Wiro J; van der Lugt, Aad; Krestin, Gabriel P; Franco, Oscar H; Vernooij, Meike W

    2017-04-01

    Purpose To investigate the association between N-terminal pro-B-type natriuretic peptide (NT-proBNP), which is a marker of heart disease, and markers of subclinical brain damage on magnetic resonance (MR) images in community-dwelling middle-aged and elderly subjects without dementia and without a clinical diagnosis of heart disease. Materials and Methods This prospective population-based cohort study was approved by a medical ethics committee overseen by the national government, and all participants gave written informed consent. Serum levels of NT-proBNP were measured in 2397 participants without dementia or stroke (mean age, 56.6 years; age range, 45.7-87.3 years) and without clinical diagnosis of heart disease who were drawn from the population-based Rotterdam Study. All participants were examined with a 1.5-T MR imager. Multivariable linear and logistic regression analyses were used to investigate the association between NT-proBNP level and MR imaging markers of subclinical brain damage, including volumetric, focal, and microstructural markers. Results A higher NT-proBNP level was associated with smaller total brain volume (mean difference in z score per standard deviation increase in NT-proBNP level, -0.021; 95% confidence interval [CI]: -0.034, -0.007; P = .003) and was predominantly driven by gray matter volume (mean difference in z score per standard deviation increase in NT-proBNP level, -0.037; 95% CI: -0.057, -0.017; P < .001). Higher NT-proBNP level was associated with larger white matter lesion volume (mean difference in z score per standard deviation increase in NT-proBNP level, 0.090; 95% CI: 0.051, 0.129; P < .001), with lower fractional anisotropy (mean difference in z score per standard deviation increase in NT-proBNP level, -0.048; 95% CI: -0.088, -0.008; P = .019) and higher mean diffusivity (mean difference in z score per standard deviation increase in NT-proBNP level, 0.054; 95% CI: 0.018, 0.091; P = .004) of normal-appearing white matter

  18. GCR Transport in the Brain: Assessment of Self-Shielding, Columnar Damage, and Nuclear Reactions on Cell Inactivation Rates

    Science.gov (United States)

    Shavers, M. R.; Atwell, W.; Cucinotta, F. A.; Badhwar, G. D. (Technical Monitor)

    1999-01-01

    Radiation shield design is driven by the need to limit radiation risks while optimizing risk reduction with launch mass/expense penalties. Both limitation and optimization objectives require the development of accurate and complete means for evaluating the effectiveness of various shield materials and body-self shielding. For galactic cosmic rays (GCR), biophysical response models indicate that track structure effects lead to substantially different assessments of shielding effectiveness relative to assessments based on LET-dependent quality factors. Methods for assessing risk to the central nervous system (CNS) from heavy ions are poorly understood at this time. High-energy and charge (HZE) ion can produce tissue events resulting in damage to clusters of cells in a columnar fashion, especially for stopping heavy ions. Grahn (1973) and Todd (1986) have discussed a microlesion concept or model of stochastic tissue events in analyzing damage from HZE's. Some tissues, including the CNS, maybe sensitive to microlesion's or stochastic tissue events in a manner not illuminated by either conventional dosimetry or fluence-based risk factors. HZE ions may also produce important lateral damage to adjacent cells. Fluences of high-energy proton and alpha particles in the GCR are many times higher than HZE ions. Behind spacecraft and body self-shielding the ratio of protons, alpha particles, and neutrons to HZE ions increases several-fold from free-space values. Models of GCR damage behind shielding have placed large concern on the role of target fragments produced from tissue atoms. The self-shielding of the brain reduces the number of heavy ions reaching the interior regions by a large amount and the remaining light particle environment (protons, neutrons, deuterons. and alpha particles) may be the greatest concern. Tracks of high-energy proton produce nuclear reactions in tissue, which can deposit doses of more than 1 Gv within 5 - 10 cell layers. Information on rates of

  19. Improving ideomotor limb apraxia by electrical stimulation of the left posterior parietal cortex.

    Science.gov (United States)

    Bolognini, Nadia; Convento, Silvia; Banco, Elisabetta; Mattioli, Flavia; Tesio, Luigi; Vallar, Giuseppe

    2015-02-01

    Limb apraxia, a deficit of planning voluntary gestures, is most frequently caused by damage to the left hemisphere, where, according to an influential neurofunctional model, gestures are planned, before being executed through the motor cortex of the hemisphere contralateral to the acting hand. We used anodal transcranial direct current stimulation delivered to the left posterior parietal cortex (PPC), the right motor cortex (M1), and a sham stimulation condition, to modulate the ability of six left-brain-damaged patients with ideomotor apraxia, and six healthy control subjects, to imitate hand gestures, and to perform skilled hand movements using the left hand. Transcranial direct current stimulation delivered to the left PPC reduced the time required to perform skilled movements, and planning, but not execution, times in imitating gestures, in both patients and controls. In patients, the amount of decrease of planning times brought about by left PPC transcranial direct current stimulation was influenced by the size of the parietal lobe damage, with a larger parietal damage being associated with a smaller improvement. Of interest from a clinical perspective, left PPC stimulation also ameliorated accuracy in imitating hand gestures in patients. Instead, transcranial direct current stimulation to the right M1 diminished execution, but not planning, times in both patients and healthy controls. In conclusion, by using a transcranial stimulation approach, we temporarily improved ideomotor apraxia in the left hand of left-brain-damaged patients, showing a role of the left PPC in planning gestures. This evidence opens up novel perspectives for the use of transcranial direct current stimulation in the rehabilitation of limb apraxia. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Is There Chronic Brain Damage in Retired NFL Players? Neuroradiology, Neuropsychology, and Neurology Examinations of 45 Retired Players.

    Science.gov (United States)

    Casson, Ira R; Viano, David C; Haacke, E Mark; Kou, Zhifeng; LeStrange, Danielle G

    2014-09-01

    Neuropathology and surveys of retired National Football League (NFL) players suggest that chronic brain damage is a frequent result of a career in football. There is limited information on the neurological statuses of living retired players. This study aimed to fill the gap in knowledge by conducting in-depth neurological examinations of 30- to 60-year-old retired NFL players. In-depth neurological examinations of 30- to 60-year-old retired players are unlikely to detect objective clinical abnormalities in the majority of subjects. A day-long medical examination was conducted on 45 retired NFL players, including state-of-the-art magnetic resonance imaging (MRI; susceptibility weighted imaging [SWI], diffusion tensor imaging [DTI]), comprehensive neuropsychological and neurological examinations, interviews, blood tests, and APOE (apolipoprotein E) genotyping. Level 3. Participants' histories focused on neurological and depression symptoms, exposure to football, and other factors that could affect brain function. The neurological examination included Mini-Mental State Examination (MMSE) evaluation of cognitive function and a comprehensive search for signs of dysarthria, pyramidal system dysfunction, extrapyramidal system dysfunction, and cerebellar dysfunction. The Beck Depression Inventory (BDI) and Patient Health Questionnaire (PHQ) measured depression. Neuropsychological tests included pen-and-paper and ImPACT evaluation of cognitive function. Anatomical examination SWI and DTI MRI searched for brain injuries. The results were statistically analyzed for associations with markers of exposure to football and related factors, such as body mass index (BMI), ethanol use, and APOE4 status. The retired players' ages averaged 45.6 ± 8.9 years (range, 30-60 years), and they had 6.8 ± 3.2 years (maximum, 14 years) of NFL play. They reported 6.9 ± 6.2 concussions (maximum, 25) in the NFL. The majority of retired players had normal clinical mental status and central

  1. Calcium antagonists decrease capillary wall damage in aging hypertensive rat brain

    NARCIS (Netherlands)

    Farkas, E.; de Jong, G.I.; Apro, E.; Keuker, J.I.H.; Luiten, P.G.M.

    2001-01-01

    Chronic hypertension during aging is a serious threat to the cerebral vasculature. The larger brain arteries can react to hypertension with an abnormal wall thickening, a loss of elasticity and a narrowed lumen. However, little is known about the hypertension-induced alterations of cerebral

  2. Chronic exposure to Tributyltin induces brain functional damage in juvenile common carp (Cyprinus carpio.

    Directory of Open Access Journals (Sweden)

    Zhi-Hua Li

    Full Text Available The aim of the present study was to investigate the effect of Tributyltin (TBT on brain function and neurotoxicity of freshwater teleost. The effects of long-term exposure to TBT on antioxidant related indices (MDA, malondialdehyde; SOD, superoxide dismutase; CAT, catalase; GR, glutathione reductase; GPx, glutathione peroxidase, Na+-K+-ATPase and neurological parameters (AChE, acetylcholinesterase; MAO, monoamine oxidase; NO, nitric oxide in the brain of common carp were evaluated. Fish were exposed to sublethal concentrations of TBT (75 ng/L, 0.75 μg/L and 7.5 μg/L for 15, 30, and 60 days. Based on the results, a low level and short-term TBT-induced stress could not induce the notable responses of the fish brain, but long-term exposure (more than 15 days to TBT could lead to obvious physiological-biochemical responses (based on the measured parameters. The results also strongly indicated that neurotoxicity of TBT to fish. Thus, the measured physiological responses in fish brain could provide useful information to better understand the mechanisms of TBT-induced bio-toxicity.

  3. Psychosocial Adjustment and Life Satisfaction until 5 Years after Severe Brain Damage

    Science.gov (United States)

    Sorbo, Ann K.; Blomqvist, Maritha; Emanuelsson, Ingrid M.; Rydenhag, Bertil

    2009-01-01

    The objectives of this study were to describe psychosocial adjustment and outcome over time for severely brain-injured patients and to find suitable outcome measures for clinical practice during the rehabilitation process and for individual rehabilitation planning after discharge from hospital. The methods include a descriptive, prospective,…

  4. Organotypic hippocampal slice cultures for studies of brain damage, neuroprotection and neurorepair

    DEFF Research Database (Denmark)

    Noraberg, Jens; Poulsen, Frantz Rom; Blaabjerg, Morten

    2005-01-01

    Slices of developing brain tissue can be grown for several weeks as so-called organotypic slice cultures. Here we summarize and review studies using hippocampal slice cultures to investigate mechanisms and treatment strategies for the neurodegenerative disorders like stroke (cerebral ischemia), A...

  5. Monocrotaline: Histological Damage and Oxidant Activity in Brain Areas of Mice

    Directory of Open Access Journals (Sweden)

    José Eduardo Ribeiro Honório Junior

    2012-01-01

    Full Text Available This work was designed to study MCT effect in histopathological analysis of hippocampus (HC and parahippocampal cortex (PHC and in oxidative stress (OS parameters in brain areas such as hippocampus (HC, prefrontal cortex (PFC, and striatum (ST. Swiss mice (25–30 g were administered a single i.p. dose of MCT (5, 50, or 100 mg/kg or 4% Tween 80 in saline (control group. After 30 minutes, the animals were sacrificed by decapitation and the brain areas (HC, PHC, PFC, or ST were removed for histopathological analysis or dissected and homogenized for measurement of OS parameters (lipid peroxidation, nitrite, and catalase by spectrophotometry. Histological evaluation of brain structures of rats treated with MCT (50 and 100 mg/kg revealed lesions in the hippocampus and parahippocampal cortex compared to control. Lipid peroxidation was evident in all brain areas after administration of MCT. Nitrite/nitrate content decreased in all doses administered in HC, PFC, and ST. Catalase activity was increased in the MCT group only in HC. In conclusion, monocrotaline caused cell lesions in the hippocampus and parahippocampal cortex regions and produced oxidative stress in the HC, PFC, and ST in mice. These findings may contribute to the neurological effects associated with this compound.

  6. Rehabilitation of executive functioning in patients with frontal lobe brain damage with Goal Management Training

    Directory of Open Access Journals (Sweden)

    Brian eLevine

    2011-02-01

    Full Text Available Executive functioning deficits due to brain disease affecting frontal lobe functions cause significant real-life disability, yet solid evidence in support of executive functioning interventions is lacking. Goal Management Training (GMT, an executive functioning intervention that draws upon theories concerning goal processing and sustained attention, has received empirical support in studies of patients with traumatic brain injury, normal aging, and case studies. GMT promotes a mindful approach to complex real-life tasks that pose problems for patients with executive functioning deficits, with a main goal of periodically stopping ongoing behavior to monitor and adjust goals. In this controlled trial, an expanded version of GMT was compared to an alternative intervention, Brain Health Workshop (BHW that was matched to GMT on non-specific characteristics that can affect intervention outcome. Participants included 19 individuals in the chronic phase of recovery from brain disease (predominantly stroke affecting frontal lobe function. Outcome data indicated specific effects of GMT on the Sustained Attention to Response Task (SART as well as the Tower Test, a visuospatial problem solving measure that reflected far transfer of training effects. There were no significant effects on self-report questionnaires, likely owing to the complexity of these measures in this heterogeneous patient sample. Overall, these data support the efficacy of GMT in the rehabilitation of executive functioning deficits.

  7. A Cross-Talk between Brain-Damage Patients and Infants on Action and Language

    Science.gov (United States)

    Papeo, Liuba; Hochmann, Jean-Remy

    2012-01-01

    Sensorimotor representations in the brain encode the sensory and motor aspects of one's own bodily activity. It is highly debated whether sensorimotor representations are the core basis for the representation of action-related knowledge and, in particular, action words, such as verbs. In this review, we will address this question by bringing to…

  8. Progressive brain damage, synaptic reorganization and NMDA activation in a model of epileptogenic cortical dysplasia.

    Directory of Open Access Journals (Sweden)

    Francesca Colciaghi

    Full Text Available Whether severe epilepsy could be a progressive disorder remains as yet unresolved. We previously demonstrated in a rat model of acquired focal cortical dysplasia, the methylazoxymethanol/pilocarpine - MAM/pilocarpine - rats, that the occurrence of status epilepticus (SE and subsequent seizures fostered a pathologic process capable of modifying the morphology of cortical pyramidal neurons and NMDA receptor expression/localization. We have here extended our analysis by evaluating neocortical and hippocampal changes in MAM/pilocarpine rats at different epilepsy stages, from few days after onset up to six months of chronic epilepsy. Our findings indicate that the process triggered by SE and subsequent seizures in the malformed brain i is steadily progressive, deeply altering neocortical and hippocampal morphology, with atrophy of neocortex and CA regions and progressive increase of granule cell layer dispersion; ii changes dramatically the fine morphology of neurons in neocortex and hippocampus, by increasing cell size and decreasing both dendrite arborization and spine density; iii induces reorganization of glutamatergic and GABAergic networks in both neocortex and hippocampus, favoring excitatory vs inhibitory input; iv activates NMDA regulatory subunits. Taken together, our data indicate that, at least in experimental models of brain malformations, severe seizure activity, i.e., SE plus recurrent seizures, may lead to a widespread, steadily progressive architectural, neuronal and synaptic reorganization in the brain. They also suggest the mechanistic relevance of glutamate/NMDA hyper-activation in the seizure-related brain pathologic plasticity.

  9. Progressive brain damage, synaptic reorganization and NMDA activation in a model of epileptogenic cortical dysplasia.

    Science.gov (United States)

    Colciaghi, Francesca; Finardi, Adele; Nobili, Paola; Locatelli, Denise; Spigolon, Giada; Battaglia, Giorgio Stefano

    2014-01-01

    Whether severe epilepsy could be a progressive disorder remains as yet unresolved. We previously demonstrated in a rat model of acquired focal cortical dysplasia, the methylazoxymethanol/pilocarpine - MAM/pilocarpine - rats, that the occurrence of status epilepticus (SE) and subsequent seizures fostered a pathologic process capable of modifying the morphology of cortical pyramidal neurons and NMDA receptor expression/localization. We have here extended our analysis by evaluating neocortical and hippocampal changes in MAM/pilocarpine rats at different epilepsy stages, from few days after onset up to six months of chronic epilepsy. Our findings indicate that the process triggered by SE and subsequent seizures in the malformed brain i) is steadily progressive, deeply altering neocortical and hippocampal morphology, with atrophy of neocortex and CA regions and progressive increase of granule cell layer dispersion; ii) changes dramatically the fine morphology of neurons in neocortex and hippocampus, by increasing cell size and decreasing both dendrite arborization and spine density; iii) induces reorganization of glutamatergic and GABAergic networks in both neocortex and hippocampus, favoring excitatory vs inhibitory input; iv) activates NMDA regulatory subunits. Taken together, our data indicate that, at least in experimental models of brain malformations, severe seizure activity, i.e., SE plus recurrent seizures, may lead to a widespread, steadily progressive architectural, neuronal and synaptic reorganization in the brain. They also suggest the mechanistic relevance of glutamate/NMDA hyper-activation in the seizure-related brain pathologic plasticity.

  10. Use of biomarker S100B for traumatic brain damage in the emergency department may change observation strategy

    DEFF Research Database (Denmark)

    Hansen-Schwartz, Jacob; Bouchelouche, Pierre Nourdine

    2014-01-01

    to the treating physician and treatment was conducted according to existing practice. Patient records were reviewed retrospectively and post hoc divided into two groups depending on whether the SNC criteria for taking the blood sample were met. The use of CT and admission was analysed. RESULTS: A total of 39...... impact of using S100B on the use of computed tomographies (CT) of the brain and admission for observation. MATERIAL AND METHODS: Patients referred for assessment of head injury over a period of 1.5 months had their blood sampled for measurement of S100B in serum. Results were not available...... patients had their blood sampled for analysis. In all, 12 patients were excluded in pursuance of SNC guidelines, which left 27 patients for analysis. A total of 15 patients had abnormally high S100B levels. Using the SNC criteria, only eight of these qualified a priori for blood sampling. Furthermore...

  11. Automatic segmentation of short association bundles using a new multi-subject atlas of the left hemisphere fronto-parietal brain connections.

    Science.gov (United States)

    Guevara, M; Seguel, D; Roman, C; Duclap, D; Lebois, A; Le Bihan; Mangin, J-F; Poupon, C; Guevara, P

    2015-08-01

    Human brain connection map is far from being complete. In particular the study of the superficial white matter (SWM) is an unachieved task. Its description is essential for the understanding of human brain function and the study of the pathogenesis associated to it. In this work we developed a method for the automatic creation of a SWM bundle multi-subject atlas. The atlas generation method is based on a cortical parcellation for the extraction of fibers connecting two different gyri. Then, an intra-subject fiber clustering is applied, in order to divide each bundle into sub-bundles with similar shape. After that, a two-step inter-subject fiber clustering is used in order to find the correspondence between the sub-bundles across the subjects, fuse similar clusters and discard the outliers. The method was applied to 40 subjects of a high quality HARDI database, focused on the left hemisphere fronto-parietal and insula brain regions. We obtained an atlas composed of 44 bundles connecting 22 pair of ROIs. Then the atlas was used to automatically segment 39 new subjects from the database.

  12. Low-frequency brain stimulation to the left dorsolateral prefrontal cortex increases the negative impact of social exclusion among those high in personal distress.

    Science.gov (United States)

    Fitzgibbon, Bernadette Mary; Kirkovski, Melissa; Bailey, Neil Wayne; Thomson, Richard Hilton; Eisenberger, Naomi; Enticott, Peter Gregory; Fitzgerald, Paul Bernard

    2017-06-01

    The dorsolateral prefrontal cortex (DLPFC) is thought to play a key role in the cognitive control of emotion and has therefore, unsurprisingly, been implicated in the regulation of physical pain perception. This brain region may also influence the experience of social pain, which has been shown to activate similar neural networks as seen in response to physical pain. Here, we applied sham or active low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC, previously shown to exert bilateral effects in pain perception, in healthy participants. Following stimulation, participants played the "Cyberball Task"; an online ball-tossing game in which the subject participant is included or excluded. Compared to sham, rTMS did not modulate behavioural response to social exclusion. However, within the active rTMS group only, greater trait personal distress was related to enhanced negative outcomes to social exclusion. These results add further support to the notion that the effect of brain stimulation is not homogenous across individuals, and indicates the need to consider baseline individual differences when assessing response to brain stimulation. This seems particularly relevant in social neuroscience investigations, where trait factors may have a meaningful effect.

  13. Left-Deviating Prism Adaptation in Left Neglect Patient: Reflexions on a Negative Result

    Directory of Open Access Journals (Sweden)

    Jacques Luauté

    2012-01-01

    Full Text Available Adaptation to right-deviating prisms is a promising intervention for the rehabilitation of patients with left spatial neglect. In order to test the lateral specificity of prism adaptation on left neglect, the present study evaluated the effect of left-deviating prism on straight-ahead pointing movements and on several classical neuropsychological tests in a group of five right brain-damaged patients with left spatial neglect. A group of healthy subjects was also included for comparison purposes. After a single session of exposing simple manual pointing to left-deviating prisms, contrary to healthy controls, none of the patients showed a reliable change of the straight-ahead pointing movement in the dark. No significant modification of attentional paper-and-pencil tasks was either observed immediately or 2 hours after prism adaptation. These results suggest that the therapeutic effect of prism adaptation on left spatial neglect relies on a specific lateralized mechanism. Evidence for a directional effect for prism adaptation both in terms of the side of the visuomanual adaptation and therefore possibly in terms of the side of brain affected by the stimulation is discussed.

  14. N-terminal pro brain natriuretic peptide in arterial hypertension--a marker for left ventricular dimensions and prognosis

    DEFF Research Database (Denmark)

    Hildebrandt, Per; Boesen, Mikael; Olsen, Michael

    2004-01-01

    In arterial hypertension risk factor evaluation, including LV mass measurements, and risk stratification using risk charts or programs, is generally recommended. In heart failure NT-proBNP has been shown to be a marker of LV dimensions and of prognosis. If the same diagnostic and prognostic value...... is present in arterial hypertension, risk factor evaluation would be easier. In 36 patients with arterial hypertension, electrocardiographic LV hypertrophy and preserved left ventricular function, NT-proBNP was eight-fold higher than in healthy subjects. The log NT-proBNP correlated with LV mass index (R=0...

  15. Why does brain damage impair memory? A connectionist model of object recognition memory in perirhinal cortex.

    Science.gov (United States)

    Cowell, Rosemary A; Bussey, Timothy J; Saksida, Lisa M

    2006-11-22

    Object recognition is the canonical test of declarative memory, the type of memory putatively impaired after damage to the temporal lobes. Studies of object recognition memory have helped elucidate the anatomical structures involved in declarative memory, indicating a critical role for perirhinal cortex. We offer a mechanistic account of the effects of perirhinal cortex damage on object recognition memory, based on the assumption that perirhinal cortex stores representations of the conjunctions of visual features possessed by complex objects. Such representations are proposed to play an important role in memory when it is difficult to solve a task using representations of only individual visual features of stimuli, thought to be stored in regions of the ventral visual stream caudal to perirhinal cortex. The account is instantiated in a connectionist model, in which development of object representations with visual experience provides a mechanism for judgment of previous occurrence. We present simulations addressing the following empirical findings: (1) that impairments after damage to perirhinal cortex (modeled by removing the "perirhinal cortex" layer of the network) are exacerbated by lengthening the delay between presentation of to-be-remembered items and test, (2) that such impairments are also exacerbated by lengthening the list of to-be-remembered items, and (3) that impairments are revealed only when stimuli are trial unique rather than repeatedly presented. This study shows that it may be possible to account for object recognition impairments after damage to perirhinal cortex within a hierarchical, representational framework, in which complex conjunctive representations in perirhinal cortex play a critical role.

  16. Brain white matter damage in aging and cognitive ability in youth and older age ☆

    OpenAIRE

    Valdés Hernández, Maria del C.; Booth, Tom; Murray, Catherine; Gow, Alan J.; Penke, Lars; Morris, Zoe; Maniega, Susana Muñoz; Royle, Natalie A.; Aribisala, Benjamin S.; Bastin, Mark E.; Starr, John M.; Deary, Ian J.; Wardlaw, Joanna M.

    2013-01-01

    Cerebral white matter hyperintensities (WMH) reflect accumulating white matter damage with aging and impair cognition. The role of childhood intelligence is rarely considered in associations between cognitive impairment and WMH. We studied community-dwelling older people all born in 1936, in whom IQ had been assessed at age 11 years. We assessed medical histories, current cognitive ability and quantified WMH on MR imaging. Among 634 participants, mean age 72.7 (SD 0.7), age 11 IQ was the stro...

  17. Everyday memory self-assessed by adult patients with acquired brain damage and their significant others.

    Science.gov (United States)

    Olsson, Erik; Wik, Karin; Ostling, Ann-Katrine; Johansson, Magnus; Andersson, Gerhard

    2006-06-01

    Self-assessment of everyday memory dysfunction was examined in a sample of 48 patients with acquired brain injury. A modified version of the Everyday Memory Questionnaire (EMQ20) was used as an interview. Patients were compared to 30 persons without brain injury. EMQ20 was completed by significant others (SOs) to both patients and controls. Patients reported a higher frequency of memory problems (days per week) and more distress due to memory deficits compared to controls. A high degree of consistency was found between patient and SO ratings on these measures. No difference was found on the total usage of memory aids, but patients asked other people more for a reminder and used loose notes less than controls. Implications for rehabilitation and future research are discussed.

  18. Automated Quantification of Stroke Damage on Brain Computed Tomography Scans: e-ASPECTS

    Directory of Open Access Journals (Sweden)

    James Hampton-Till

    2015-08-01

    Full Text Available Emergency radiological diagnosis of acute ischaemic stroke requires the accurate detection and appropriate interpretation of relevant imaging findings. Non-contrast computed tomography (CT provides fast and low-cost assessment of the early signs of ischaemia and is the most widely used diagnostic modality for acute stroke. The Alberta Stroke Program Early CT Score (ASPECTS is a quantitative and clinically validated method to measure the extent of ischaemic signs on brain CT scans. The CE-marked electronic-ASPECTS (e-ASPECTS software automates the ASPECTS score. Anglia Ruskin Clinical Trials Unit (ARCTU independently carried out a clinical investigation of the e-ASPECTS software, an automated scoring system which can be integrated into the diagnostic pathway of an acute ischaemic stroke patient, thereby assisting the physician with expert interpretation of the brain CT scan. Here we describe a literature review of the clinical importance of reliable assessment of early ischaemic signs on plain CT scans, and of technologies automating these processed scoring systems in ischaemic stroke on CT scans focusing on the e-ASPECTS software. To be suitable for critical appraisal in this evaluation, the published studies needed a sample size of a minimum of 10 cases. All randomised studies were screened and data deemed relevant to demonstration of performance of ASPECTS were appraised. The literature review focused on three domains: i interpretation of brain CT scans of stroke patients, ii the application of the ASPECTS score in ischaemic stroke, and iii automation of brain CT analysis. Finally, the appraised references are discussed in the context of the clinical impact of e-ASPECTS and the expected performance, which will be independently evaluated by a non-inferiority study conducted by the ARCTU.

  19. Ecological Assessment Battery for Numbers (EABN) for brain-damaged patients: standardization and validity study.

    Science.gov (United States)

    Villain, M; Tarabon-Prevost, C; Bayen, E; Robert, H; Bernard, B; Hurteaux, E; Pradat-Diehl, P

    2015-10-01

    Number-processing may be altered following brain injury and might affect the everyday life of patients. We developed the first ecological tool to assess number-processing disorders in brain-injured patients, the Ecological Assessment Battery for Numbers (EABN; in French, the BENQ). The aim of the present study was to standardize and validate this new tool. Standardization included 126 healthy controls equally distributed by age, sex and sociocultural level. First, 17 patients were evaluated by the EABN; then scores for a subgroup of 10 were compared with those from a French analytical calculation test, the Évaluation Clinique des Aptitudes Numériques (ECAN). The concordance between the EABN and the ECAN was analyzed to determine construct validity. Discrimination indexes were calculated to assess the sensitivity of the subtests. Standardization highlighted a major effect of sociocultural level. In total, 9 of 17 patients had a pathological EABN score, with difficulties in telling time, making appointments and reading numerical data. The results of both the EABN and ECAN tests were concordant (Kendall's w=0.97). Finally, the discriminatory power was good, particularly for going to the movies, cheque-writing and following a recipe: scores were>0.4. The EABN is a new tool to assess number-processing disorders in adults. This tool has been standardized and has good psychometric properties for patients with brain injury. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Analysis of miRNAs Involved in Mouse Brain Damage upon Enterovirus 71 Infection.

    Science.gov (United States)

    Yang, Xiaoxia; Xie, Jing; Jia, Leili; Liu, Nan; Liang, Yuan; Wu, Fuli; Liang, Beibei; Li, Yongrui; Wang, Jinyan; Sheng, Chunyu; Li, Hao; Liu, Hongbo; Ma, Qiuxia; Yang, Chaojie; Du, Xinying; Qiu, Shaofu; Song, Hongbin

    2017-01-01

    Enterovirus 71 (EV71) infects the central nervous system (CNS) and causes brainstem encephalitis in children. MiRNAs have been found to play various functions in EV71 infection in human cell lines. To identify potential miRNAs involved in the inflammatory injury in CNS, our study, for the first time, performed a miRNA microarray assay in vivo using EV71 infected mice brains. Twenty differentially expressed miRNAs were identified (four up- and 16 down-regulated) and confirmed by qRT-PCR. The target genes of these miRNAs were analyzed using KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, revealing that the miRNAs were mainly involved in the regulation of inflammation and neural system function. MiR-150-5p, -3082-5p, -3473a, -468-3p, -669n, -721, -709, and -5107-5p that regulate MAPK and chemokine signaling were all down-regulated, which might result in increased cytokine production. In addition, miR-3473a could also regulate focal adhesion and leukocyte trans-endothelial migration, suggesting a role in virus-induced blood-brain barrier disruption. The miRNAs and pathways identified in this study could help to understand the intricate interactions between EV71 and the brain injury, offering new insight for the future research of the molecular mechanism of EV71 induced brainstem encephalitis.

  1. Effect of Withania somnifera supplementation on rotenone-induced oxidative damage in cerebellum and striatum of the male mice brain.

    Science.gov (United States)

    Manjunath, Mallaya Jayawanth; Muralidhara

    2013-03-01

    Withania somnifera (WS) an ayurvedic medicinal herb is widely known for its memory enhancing ability and improvement of brain function. In the present study, we tested the hypothesis that WS prophylaxis could offset neurotoxicant-induced oxidative dysfunctions in developing brain employing a rotenone (ROT) mouse model. Initially, we assessed the potential of WS oral supplements (100-400 mg/ kg b.w/ d, 4wks) to modulate the endogenous levels of oxidative markers in cerebellum (cb) and striatum (st) of prepubertal (PP) mice. Further, we assessed the induction of oxidative stress in cb and st of mice administered with ROT (i.p. 0.5 and 1mg/ kg b.w, 7d). ROT caused significant elevation in the levels of reactive oxygen species (ROS), malondialdehyde (MDA), hydroperoxides (HP) and nitric oxide (NO) levels in both brain regions. Further ROT caused significant perturbations in the levels of reduced glutathione (GSH), activity levels of antioxidant enzymes, acetylcholinesterase and mitochondrial dysfunctions suggesting a state of oxidative stress. In a satellite study, we examined the protective effects of WS root powder (400mg/ kg b.w/ d, 4wks) in PP mice challenged with ROT (0.5 mg/ kg b.w/ d, 7 d). WS prophylaxis significantly offset ROT-induced oxidative damage in st and cb as evident by the normalized levels of oxidative markers (MDA, ROS levels and HP) and restoration of depleted GSH levels. Further, WS effectively normalized the NO levels in both brain regions suggesting its antiinflammatory action. Furthermore, WS prophylaxis restored the activity levels of cytosolic antioxidant enzymes, neurotransmitter function and dopamine levels in st. Taken together, these findings suggest that WS prophylaxis has the propensity to modulate neurotoxicant-mediated oxidative impairments and mitochondrial dysfunctions in specific brain regions of mice. While the exact mechanism/s underlying the neuroprotective effects of WS merit further investigation, based on our findings, we

  2. No increases in biomarkers of genetic damage or pathological changes in heart and brain tissues in male rats administered methylphenidate hydrochloride (Ritalin) for 28 days.

    Science.gov (United States)

    Witt, Kristine L; Malarkey, David E; Hobbs, Cheryl A; Davis, Jeffrey P; Kissling, Grace E; Caspary, William; Travlos, Gregory; Recio, Leslie

    2010-01-01

    Following a 2005 report of chromosomal damage in children with attention deficit/hyperactivity disorder (ADHD) who were treated with the commonly prescribed medication methylphenidate (MPH), numerous studies have been conducted to clarify the risk for MPH-induced genetic damage. Although most of these studies reported no changes in genetic damage endpoints associated with exposure to MPH, one recent study (Andreazza et al. [2007]: Prog Neuropsychopharmacol Biol Psychiatry 31:1282-1288) reported an increase in DNA damage detected by the Comet assay in blood and brain cells of Wistar rats treated by intraperitoneal injection with 1, 2, or 10 mg/kg MPH; no increases in micronucleated lymphocyte frequencies were observed in these rats. To clarify these findings, we treated adult male Wistar Han rats with 0, 2, 10, or 25 mg/kg MPH by gavage once daily for 28 consecutive days and measured micronucleated reticulocyte (MN-RET) frequencies in blood, and DNA damage in blood, brain, and liver cells 4 hr after final dosing. Flow cytometric evaluation of blood revealed no significant increases in MN-RET. Comet assay evaluations of blood leukocytes and cells of the liver, as well as of the striatum, hippocampus, and frontal cortex of the brain showed no increases in DNA damage in MPH-treated rats in any of the three treatment groups. Thus, the previously reported observations of DNA damage in blood and brain tissue of rats exposed to MPH for 28 days were not confirmed in this study. Additionally, no histopathological changes in brain or heart, or elevated serum biomarkers of cardiac injury were observed in these MPH-exposed rats. (c) 2009 Wiley-Liss, Inc.

  3. Zinc-induced DNA damage and the distribution of metals in the brain of grasshoppers by the comet assay and micro-PIXE.

    Science.gov (United States)

    Augustyniak, Maria; Juchimiuk, Jolanta; Przybyłowicz, Wojciech J; Mesjasz-Przybyłowicz, Jolanta; Babczyńska, Agnieszka; Migula, Paweł

    2006-11-01

    The distribution and concentration of selected elements by PIXE method and DNA damage using comet assay in brains of 1st instars of grasshoppers Chorthippus brunneus from unpolluted (Pilica) and polluted (Olkusz) site, additionally exposed to various doses of zinc during diapause or after hatching, were measured. We tried to assess the degree of possible pre-adaptation of the insects to heavy metals and evaluate the utility of these parameters in estimation of insect exposure to industrial pollutants. Additionally, the mechanism of zinc toxicity for grasshopper brains was discussed. We observed the correlation between experimental zinc dose, zinc contents in the brain and DNA damage in neuroblasts, but only in groups exposed to lower zinc concentration. For higher zinc concentration the amount of the metal in brain and DNA damage remained at the control level. Some site-related differences in DNA damage between grasshoppers from Pilica and Olkusz were observed during short-term exposure (after hatching). Significant increase in the calcium contents in the brain, proportional to zinc concentration in sand, was also observed, especially in the offsprings from Olkusz. The results may be the basis for further searching for molecular mechanisms of defense against heavy metals in insects living in polluted habitats.

  4. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats.

    Science.gov (United States)

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Samini, Mohammad; Farkhondeh, Tahereh

    2017-05-04

    Oxidative stress through chronic stress destroys the brain function. There are many documents have shown that carnosol may have a therapeutic effect versus free radical induced diseases. The current research focused the protective effect of carnosol against the brain injury induced by the restraint stress. The restraint stress induced by keeping animals in restrainers for 21 consecutive days. Thereafter, the rats were injected carnosol or vehicle for 21 consecutive days. At the end of experiment, all the rats were subjected to his open field test and forced swimming test. Afterwards, the rats were sacrificed for measuring their oxidative stress parameters. To measure the modifications in the biochemical aspects after the experiment, the activities of malondialdehyde (MDA), reduced glutathione (GSH), as well as superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were evaluated in the whole brain. Our data showed that the animals received chronic stress had a raised immobility time versus the non-stressed animals (p < 0.01). Furthermore, chronic stress diminished the number of crossing in the animals that were subjected to the chronic stress versus the non-stressed rats (p < 0.01). Carnosol ameliorated this alteration versus the non-treated rats (p < 0.05). In the vehicle treated rats that submitted to the stress, the level of MDA levels was significantly increased (P < 0.001), and the levels of GSH and antioxidant enzymes were significantly decreased versus the non-stressed animals (P < 0.001). Carnosol treatment reduced the modifications in the stressed animals as compared with the control groups (P < 0.001). All of these carnosol effects were nearly similar to those observed with fluoxetine. The current research shows that the protective effects of carnosol may be accompanied with enhanced antioxidant defenses and decreased oxidative injury.

  5. N-terminal pro brain natriuretic peptide in arterial hypertension--a marker for left ventricular dimensions and prognosis

    DEFF Research Database (Denmark)

    Hildebrandt, Per; Boesen, Mikael; Olsen, Michael

    2004-01-01

    and preserved LV function demonstrated that NT-proBNP was a very strong prognostic marker, especially combined with a history of cardiovascular disease. Patients with high NT-proBNP and known cardiovascular disease had a seven-fold increase in CV events compared to patients with low NT-proBNP and no CV disease......In arterial hypertension risk factor evaluation, including LV mass measurements, and risk stratification using risk charts or programs, is generally recommended. In heart failure NT-proBNP has been shown to be a marker of LV dimensions and of prognosis. If the same diagnostic and prognostic value.......47, P=0.0002) measured by magnetic resonance imaging. In other subjects with arterial hypertension a significant but weak correlation to diastolic properties has been demonstrated. As for prognosis, a recent study in patients with hypertension, electrocardiographic left ventricular hypertrophy...

  6. Percutaneous Needle Tenotomy for the Treatment of Muscle and Tendon Contractures in Adults With Brain Damage: Results and Complications.

    Science.gov (United States)

    Coroian, Flavia; Jourdan, Claire; Froger, Jérome; Anquetil, Claire; Choquet, Olivier; Coulet, Bertand; Laffont, Isabelle

    2017-05-01

    To study the results and complications of percutaneous needle tenotomy for superficial retracted tendons in patients with brain damage. Prospective observational study. University hospital. Patients with severe brain damage (N=38; mean age, 60.7y; age range, 24-93y; 21 women) requiring surgical management of contractures and eligible for percutaneous needle tenotomy were enrolled between February 2015 and February 2016. The percutaneous needle tenotomy gesture was performed by a physical medicine and rehabilitation physician trained by an orthopedic surgeon, under local or locoregional anesthesia. Treated tendons varied among patients. All patients were evaluated at 1, 3, and 6 months to assess surgical outcomes (joint range of motion [ROM], pain, and functional improvement) while screening for complications. Improvements in ROM (37/38) and contractures-related pain (12/12) were satisfactory. Functional results were satisfactory (Goal Attainment Scale score ≥0) for most patients (37/38): nursing (n=12), putting shoes on (n=8), getting in bed or sitting on a chair (n=6), verticalization (n=7), transfers and gait (n=8), and grip (n=2). Five patients had complications related to the surgical gesture: cast-related complications (n=2), hand hematoma (n=2), and cutaneous necrosis of the Achilles tendon in a patient with previous obliterative arteriopathy of the lower limbs (n=1). Percutaneous needle tenotomy yields good results in the management of selected superficial muscle and tendon contractures. The complications rate is very low, and this treatment can be an alternative to conventional surgery in frail patients with neurologic diseases. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Hydrogels-Assisted Cell Engraftment for Repairing the Stroke-Damaged Brain: Chimera or Reality

    Directory of Open Access Journals (Sweden)

    Daniel González-Nieto

    2018-02-01

    Full Text Available The use of advanced biomaterials as a structural and functional support for stem cells-based therapeutic implants has boosted the development of tissue engineering applications in multiple clinical fields. In relation to neurological disorders, we are still far from the clinical reality of restoring normal brain function in neurodegenerative diseases and cerebrovascular disorders. Hydrogel polymers show unique mechanical stiffness properties in the range of living soft tissues such as nervous tissue. Furthermore, the use of these polymers drastically enhances the engraftment of stem cells as well as their capacity to produce and deliver neuroprotective and neuroregenerative factors in the host tissue. Along this article, we review past and current trends in experimental and translational research to understand the opportunities, benefits, and types of tentative hydrogel-based applications for the treatment of cerebral disorders. Although the use of hydrogels for brain disorders has been restricted to the experimental area, the current level of knowledge anticipates an intense development of this field to reach clinics in forthcoming years.

  8. Thymoquinone reverses learning and memory impairments and brain tissue oxidative damage in hypothyroid juvenile rats

    Directory of Open Access Journals (Sweden)

    Yousef Baghcheghi

    Full Text Available ABSTRACT In this study, the effect of thymoquinone (TQ on propylthiouracil (PTU-induced memory impairment was investigated in juvenile rats. The rats were grouped into control, Hypo, Hypo-TQ5 and Hypo-TQ10. Propylthiouracil increased latency time in the Morris water maze test and decreased delay in entering the dark compartment in the passive avoidance test. Both 5 mg/kg and 10 mg/kg doses of TQ decreased latency time in the Morris water maze test and increased delay in entering the dark compartment in a passive avoidance test. The PTU also increased malondialdehyde and nitric oxide metabolites in the brain while reduced the thiol content and superoxide dismutase and catalase activities and serum T4 level. Both doses of TQ decreased malondialdehyde and nitric oxide metabolites in the brain while enhanced the thiol content and superoxide dismutase and catalase activities and serum T4 level. The results of the present study showed that TQ protected against PTU-induced memory impairments in rats.

  9. Human umbilical cord blood cells restore brain damage induced changes in rat somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Maren Geissler

    Full Text Available Intraperitoneal transplantation of human umbilical cord blood (hUCB cells has been shown to reduce sensorimotor deficits after hypoxic ischemic brain injury in neonatal rats. However, the neuronal correlate of the functional recovery and how such a treatment enforces plastic remodelling at the level of neural processing remains elusive. Here we show by in-vivo recordings that hUCB cells have the capability of ameliorating the injury-related impairment of neural processing in primary somatosensory cortex. Intact cortical processing depends on a delicate balance of inhibitory and excitatory transmission, which is disturbed after injury. We found that the dimensions of cortical maps and receptive fields, which are significantly altered after injury, were largely restored. Additionally, the lesion induced hyperexcitability was no longer observed in hUCB treated animals as indicated by a paired-pulse behaviour resembling that observed in control animals. The beneficial effects on cortical processing were reflected in an almost complete recovery of sensorimotor behaviour. Our results demonstrate that hUCB cells reinstall the way central neurons process information by normalizing inhibitory and excitatory processes. We propose that the intermediate level of cortical processing will become relevant as a new stage to investigate efficacy and mechanisms of cell therapy in the treatment of brain injury.

  10. Relationship between opioid therapy, tissue-damaging procedures, and brain metabolites as measured by proton MRS in asphyxiated term neonates.

    Science.gov (United States)

    Angeles, Danilyn M; Ashwal, Stephen; Wycliffe, Nathaniel D; Ebner, Charlotte; Fayard, Elba; Sowers, Lawrence; Holshouser, Barbara A

    2007-05-01

    To examine the effects of opioid and tissue-damaging procedures (TDPs) [i.e. procedures performed in the neonatal intensive care unit (NICU) known to result in pain, stress, and tissue damage] on brain metabolites, we reviewed the medical records of 28 asphyxiated term neonates (eight opioid-treated, 20 non-opioid treated) who had undergone magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (MRS) within the first month of life as well as eight newborns with no clinical findings of asphyxial injury. We found that lower creatine (Cr), myoinositol (Ins), and N-acetylaspartate (NAA)/choline (Cho) (p OGM) NAA/Cr was decreased (p = 0.03) and lactate (Lac) was present in a significantly higher amount (40%; p = 0.03) in non-opioid-treated neonates compared with opioid-treated neonates. Compared with controls, untreated neonates showed larger changes in more metabolites in basal ganglia (BG), thalami (TH), and OGM with greater significance than treated neonates. Our data suggest that TDPs affect spectral metabolites and that opioids do not cause harm in asphyxiated term neonates exposed to repetitive TDPs in the first 2-4 DOL and may provide a degree of neuroprotection.

  11. The effects of different fractions of Coriandrum sativum on pentylenetetrazole-induced seizures and brain tissues oxidative damage in rats

    Directory of Open Access Journals (Sweden)

    Akbar Anaeigoudari

    2016-03-01

    Full Text Available Objective: In the present work, the effects of different fractions of Coriandrum sativum (C. sativum, on pentylenetetrazole (PTZ-induced seizures and brain tissues oxidative damage were investigated in rats. Materials and Methods: The rats were divided into the following groups: (1 vehicle, (2 PTZ (90 mg/kg, (3 water fraction (WF of C. sativum (25 and 100 mg/kg, (4 n-butanol fraction (NBF of C. sativum (25 and 100 mg/kg, and (5 ethyl acetate fraction (EAF of C. sativum (25 and 100 mg/kg. Results: The first generalized tonic-clonic seizures (GTCS latency in groups treated with 100 mg /kg of WF or EAF was significantly higher than that of PTZ group (p< 0.01. In contrast to WF, the EAF and NBF were not effective in increasing the first minimal clonic seizure (MCS latency. Malondialdehyde (MDA levels in both cortical and hippocampal tissues of PTZ group were significantly higher than those of control animals (p< 0.001. Pretreatment with WF, NBF, or EAF resulted in a significant reduction in the MDA levels of hippocampi (pConclusion: The present study showed that different fractions of C. sativum possess antioxidant activity in the brain and WF and EAF of this plant have anticonvulsant effects.

  12. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Maronpot, Robert R; Torres-Jardon, Ricardo; Henríquez-Roldán, Carlos; Schoonhoven, Robert; Acuña-Ayala, Hilda; Villarreal-Calderón, Anna; Nakamura, Jun; Fernando, Reshan; Reed, William; Azzarelli, Biagio; Swenberg, James A

    2003-01-01

    Acute, subchronic, or chronic exposures to particulate matter (PM) and pollutant gases affect people in urban areas and those exposed to fires, disasters, and wars. Respiratory tract inflammation, production of mediators of inflammation capable of reaching the brain, systemic circulation of PM, and disruption of the nasal respiratory and olfactory barriers are likely in these populations. DNA damage is crucial in aging and in age-associated diseases such as Alzheimer's disease. We evaluated apurinic/apyrimidinic (AP) sites in nasal and brain genomic DNA, and explored by immunohistochemistry the expression of nuclear factor NFkappaB p65, inducible nitric oxide synthase (iNOS), cyclo-oxygenase 2 (COX2), metallothionein I and II, apolipoprotein E, amyloid precursor protein (APP), and beta-amyloid(1-42) in healthy dogs naturally exposed to urban pollution in Mexico City. Nickel (Ni) and vanadium (V) were measured by inductively coupled plasma mass spectrometry (ICP-MS). Forty mongrel dogs, ages 7 days-10 years were studied (14 controls from Tlaxcala and 26 exposed to urban pollution in South West Metropolitan Mexico City (SWMMC)). Nasal respiratory and olfactory epithelium were found to be early pollutant targets. Olfactory bulb and hippocampal AP sites were significantly higher in exposed than in control age matched animals. Ni and V were present in a gradient from olfactory mucosa > olfactory bulb > frontal cortex. Exposed dogs had (a) nuclear neuronal NFkappaB p65, (b) endothelial, glial and neuronal iNOS, (c) endothelial and glial COX2, (d) ApoE in neuronal, glial and vascular cells, and (e) APP and beta amyloid(1-42) in neurons, diffuse plaques (the earliest at age 11 months), and in subarachnoid blood vessels. Increased AP sites and the inflammatory and stress protein brain responses were early and significant in dogs exposed to urban pollution. Oil combustion PM-associated metals Ni and V were detected in the brain. There was an acceleration of Alzheimer

  13. Subchronic treatment with acai frozen pulp prevents the brain oxidative damage in rats with acute liver failure.

    Science.gov (United States)

    de Souza Machado, Fernanda; Kuo, Jonnsin; Wohlenberg, Mariane Farias; da Rocha Frusciante, Marina; Freitas, Márcia; Oliveira, Alice S; Andrade, Rodrigo B; Wannmacher, Clovis M D; Dani, Caroline; Funchal, Claudia

    2016-12-01

    Acai has been used by the population due to its high nutritional value and its benefits to health, such as its antioxidant properties. The aim of this study was to evaluate the protective effect of acai frozen pulp on oxidative stress parameters in cerebral cortex, hippocampus and cerebellum of Wistar rats treated with carbon tetrachloride (CCl 4 ). Thirty male Wistar rats (90-day-old) were orally treated with water or acai frozen pulp for 14 days (7 μL/g). On the 15th day, half of the animals received treatment with mineral oil and the other half with CCl 4 (3.0 mL/kg). The cerebral cortex, hippocampus and cerebellum were dissected and used for analysis of creatine kinase activity (CK), thiobarbituric acid reactive substances (TBARS), carbonyl, sulfhydryl, and the activity of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD). Statistical analysis was performed by ANOVA followed by Tukey's post-test. CCl 4 was able to inhibit CK activity in all tissues tested and to provoke lipid damage in cerebral cortex and cerebellum, and protein damage in the three tissues tested. CCl 4 enhanced CAT activity in the cerebral cortex, and inhibited CAT activity in the hippocampus and cerebellum and reduced SOD activity in all tissues studied. Acai frozen pulp prevented the inhibition of CK, TBARS, carbonyl and CAT activity in all brain structures and only in hippocampus for SOD activity. Therefore, acai frozen pulp has antioxidant properties and maybe could be useful in the treatment of some diseases that affect the central nervous system that are associated with oxidative damage.

  14. Changes in regional cerebral blood flow in the right cortex homologous to left language areas are directly affected by left hemispheric damage in aphasic stroke patients: evaluation by Tc-ECD SPECT and novel analytic software.

    Science.gov (United States)

    Uruma, G; Kakuda, W; Abo, M

    2010-03-01

    The objective of this study was to clarify the influence of regional cerebral blood flow (rCBF) changes in language-relevant areas of the dominant hemisphere on rCBF in each region in the non-dominant hemisphere in post-stroke aphasic patients. The study subjects were 27 aphasic patients who suffered their first symptomatic stroke in the left hemisphere. In each subject, we measured rCBF by means of 99mTc-ethylcysteinate dimmer single photon emission computed tomography (SPECT). The SPECT images were analyzed by the statistical imaging analysis programs easy Z-score Imaging System (eZIS) and voxel-based stereotactic extraction estimation (vbSEE). Segmented into Brodmann Area (BA) levels, Regions of Interest (ROIs) were set in language-relevant areas bilaterally, and changes in the relative rCBF as average negative and positive Z-values were computed fully automatically. To assess the relationship between rCBF changes of each ROIs in the left and right hemispheres, the Spearman ranked correlation analysis and stepwise multiple regression analysis were applied. Globally, a negative and asymmetric influence of rCBF changes in the language-relevant areas of the dominant hemisphere on the right hemisphere was found. The rCBF decrease in left BA22 significantly influenced the rCBF increase in right BA39, BA40, BA44 and BA45. The results suggested that the chronic increase in rCBF in the right language-relevant areas is due at least in part to reduction in the trancallosal inhibitory activity of the language-dominant left hemisphere caused by the stroke lesion itself and that these relationships are not always symmetric.

  15. [Interference of vitamin E on the brain tissue damage by electromagnetic radiation of cell phone in pregnant and fetal rats].

    Science.gov (United States)

    Gao, Xian; Luo, Rui; Ma, Bin; Wang, Hui; Liu, Tian; Zhang, Jing; Lian, Zhishun; Cui, Xi

    2013-07-01

    To investigate the interlerence ot vitamin E on brain tissue damage by electromagnetic radiation of cell phone in pregnant and fetal rats. 40 pregnant rats were randomly divided into five groups (positive control, negative control, low, middle and high dosage of vitamin E groups). The low, middle and high dosage of vitamin E groups were supplemented with 5, 15 and 30 mg/ml vitamin E respectively since the first day of pregnancy. And the negative control group and the positive control group were given peanut oil without vitamin E. All groups except for the negative control group were exposed to 900MHz intensity of cell phone radiation for one hour each time, three times per day for 21 days. After accouchement, the right hippocampus tissue of fetal rats in each group was taken and observed under electron microscope. The vitality of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and the content of malondialdehyde (MDA) in pregnant and fetal rats' brain tissue were tested. Compared with the negative control group, the chondriosomes in neuron and neuroglia of brain tissues was swelling, mild edema was found around the capillary, chromatin was concentrated and collected, and bubbles were formed in vascular endothelial cells (VEC) in the positive fetal rat control group, whereas the above phenomenon was un-conspicuous in the middle and high dosage of vitamin E groups. We can see uniform chromatin, abundant mitochondrion, rough endoplasmic reticulum and free ribosomes in the high dosage group. The apoptosis has not fond in all groups'sections. In the antioxidase activity analysis, compared with the negative control group, the vitality of SOD and GSH-Px significantly decreased and the content of MDA significantly increased both in the pregnant and fetal rats positive control group (P electromagnetic radiation of cell phone in pregnant rats and fetal rats.

  16. Overeating and obesity from damage to a noradrenergic system in the brain.

    Science.gov (United States)

    Ahlskog, J E; Hoebel, B G

    1973-10-12

    A discrete, ascending fiber system that supplies the hypothalamus with most of its noradrenergic terminals was destroyed at midbrain level, both electrolytically and with local injections of 6-hydroxydopamine, a destructive agent specific for catecholaminergic neurons. The result was hyperphagia leading to obesity. Fluorescence histochemical analysis showed that loss of noradrenergic terminals in ventral bundle termination areas such as the hypothalamus was necessary for hyperphagia. Damage to dorsal bundle or dopaminergic projections was not. Prior treatment with desmethylimipramine to selectively block uptake of 6-hydroxydopamine into noradrenergic neurons prevented both hyperphagia and loss of norepinephrine fluorescence. The lesions that produced hyperphagia also reduced the potency of d-amphetamine as an appetite suppressant. It is concluded that this noradrenergic bundle normally mediates suppression of feeding, thereby influences body weight, and serves as a substrate for d-amphetamine-induced loss of appetite.

  17. Resolvin D1 Halts Remote Neuroinflammation and Improves Functional Recovery after Focal Brain Damage Via ALX/FPR2 Receptor-Regulated MicroRNAs.

    Science.gov (United States)

    Bisicchia, Elisa; Sasso, Valeria; Catanzaro, Giuseppina; Leuti, Alessandro; Besharat, Zein Mersini; Chiacchiarini, Martina; Molinari, Marco; Ferretti, Elisabetta; Viscomi, Maria Teresa; Chiurchiù, Valerio

    2018-01-22

    Remote damage is a secondary phenomenon that usually occurs after a primary brain damage in regions that are distant, yet functionally connected, and that is critical for determining the outcomes of several CNS pathologies, including traumatic brain and spinal cord injuries. The understanding of remote damage-associated mechanisms has been mostly achieved in several models of focal brain injury such as the hemicerebellectomy (HCb) experimental paradigm, which helped to identify the involvement of many key players, such as inflammation, oxidative stress, apoptosis and autophagy. Currently, few interventions have been shown to successfully limit the progression of secondary damage events and there is still an unmet need for new therapeutic options. Given the emergence of the novel concept of resolution of inflammation, mediated by the newly identified ω3-derived specialized pro-resolving lipid mediators, such as resolvins, we reported a reduced ability of HCb-injured animals to produce resolvin D1 (RvD1) and an increased expression of its target receptor ALX/FPR2 in remote brain regions. The in vivo administration of RvD1 promoted functional recovery and neuroprotection by reducing the activation of Iba-1+ microglia and GFAP+ astrocytes as well as by impairing inflammatory-induced neuronal cell death in remote regions. These effects were counteracted by intracerebroventricular neutralization of ALX/FPR2, whose activation by RvD1 also down-regulated miR-146b- and miR-219a-1-dependent inflammatory markers. In conclusion, we propose that innovative therapies based on RvD1-ALX/FPR2 axis could be exploited to curtail remote damage and enable neuroprotective effects after acute focal brain damage.

  18. Reversible brain damage following acute organic solvents' poisoning determined by magnetic resonance

    Directory of Open Access Journals (Sweden)

    Dujmović Irena

    2005-01-01

    Full Text Available Introduction. Acute exposure to the effects of volatile solvents is characterized by the abrupt onset of symptoms and signs of poisoning, and relatively fast recovery in the majority of cases. Case report. We report a 24-year-old patient with an acute, accidental poisoning with a mixture of volatile organic solvents (most probably toluene, styrene and xylene, which led to the development of upward gaze paresis, diplopia, hemiparesis, ataxic gate, and the late onset truncal ataxia episodes. After 6 weeks, he recovered completely, while his extensive brain MRI lesions in the caudate nuclei, laterobasal putaminal regions, bilateral anterior insular cortex, central midbrain tegmental area withdrew completely after 4 months. Conclusion. Acute toxic encephalopathy should be a part of the differential diagnosis in any patient with acute neurobehavioral and neurological deficit.

  19. Increased brain damage after ischaemic stroke in mice lacking the chemokine receptor CCR5

    Science.gov (United States)

    Sorce, S; Bonnefont, J; Julien, S; Marq-Lin, N; Rodriguez, I; Dubois-Dauphin, M; Krause, KH

    2010-01-01

    Background and purpose: The chemokine receptor CCR5 is well known for its function in immune cells; however, it is also expressed in the brain, where its specific role remains to be elucidated. Because genetic factors may influence the risk of developing cerebral ischaemia or affect its clinical outcome, we have analysed the role of CCR5 in experimental stroke. Experimental approach: Permanent cerebral ischaemia was performed by occlusion of the middle cerebral artery in wild-type and CCR5-deficient mice. Locomotor behaviour, infarct size and histochemical alterations were analysed at different time points after occlusion. Key results: The cerebral vasculature was comparable in wild-type and CCR5-deficient mice. However, the size of the infarct and the motor deficits after occlusion were markedly increased in CCR5-deficient mice as compared with wild type. No differences between wild-type and CCR5-deficient mice were elicited by occlusion with respect to the morphology and abundance of astrocytes and microglia. Seven days after occlusion the majority of CCR5-deficient mice displayed neutrophil invasion in the infarct region, which was not observed in wild type. As compared with wild type, the infarct regions of CCR5-deficient mice were characterized by increased neuronal death. Conclusions and implications: Lack of CCR5 increased the severity of brain injury following occlusion of the middle cerebral artery. This is of particular interest with respect to the relatively frequent occurrence of CCR5 deficiency in the human population (1–2% of the Caucasian population) and the advent of CCR5 inhibitors as novel drugs. PMID:20423342

  20. Augmenting Melodic Intonation Therapy with non-invasive brain stimulation to treat impaired left-hemisphere function: two case studies

    Directory of Open Access Journals (Sweden)

    Shahd eAl-Janabi

    2014-02-01

    Full Text Available The purpose of this study was to investigate whether or not the right hemisphere can be engaged using Melodic Intonation Therapy (MIT and excitatory repetitive transcranial magnetic stimulation (rTMS to improve language function in people with aphasia. The two participants in this study (GOE and AMC have chronic non-fluent aphasia. A functional Magnetic Resonance Imaging (fMRI task was used to localize the right Broca’s homologue area in the inferior frontal gyrus for rTMS coil placement. The treatment protocol included an rTMS phase, which consisted of 3 treatment sessions that used an excitatory stimulation method known as intermittent theta burst stimulation, and a sham-rTMS phase, which consisted of 3 treatment sessions that used a sham coil. Each treatment session was followed by 40 minutes of MIT. A linguistic battery was administered after each session. Our findings show that one participant, GOE, improved in verbal fluency and the repetition of phrases treated with MIT in combination with TMS. However, AMC showed no evidence of behavioural benefit from this brief treatment trial. Post-treatment neural activity changes were observed for both participants in the left Broca’s area and right Broca’s homologue. These case studies indicate that a combination of rTMS applied to the right Broca’s homologue and MIT has the potential to improve speech and language outcomes for at least some people with post-stroke aphasia.

  1. Augmenting melodic intonation therapy with non-invasive brain stimulation to treat impaired left-hemisphere function: two case studies.

    Science.gov (United States)

    Al-Janabi, Shahd; Nickels, Lyndsey A; Sowman, Paul F; Burianová, Hana; Merrett, Dawn L; Thompson, William F

    2014-01-01

    The purpose of this study was to investigate whether or not the right hemisphere can be engaged using Melodic Intonation Therapy (MIT) and excitatory repetitive transcranial magnetic stimulation (rTMS) to improve language function in people with aphasia. The two participants in this study (GOE and AMC) have chronic non-fluent aphasia. A functional Magnetic Resonance Imaging (fMRI) task was used to localize the right Broca's homolog area in the inferior frontal gyrus for rTMS coil placement. The treatment protocol included an rTMS phase, which consisted of 3 treatment sessions that used an excitatory stimulation method known as intermittent theta burst stimulation, and a sham-rTMS phase, which consisted of 3 treatment sessions that used a sham coil. Each treatment session was followed by 40 min of MIT. A linguistic battery was administered after each session. Our findings show that one participant, GOE, improved in verbal fluency and the repetition of phrases when treated with MIT in combination with TMS. However, AMC showed no evidence of behavioral benefit from this brief treatment trial. Post-treatment neural activity changes were observed for both participants in the left Broca's area and right Broca's homolog. These case studies indicate that a combination of MIT and rTMS applied to the right Broca's homolog has the potential to improve speech and language outcomes for at least some people with post-stroke aphasia.

  2. The relationship between right-to-left shunt and brain white matter lesions in Japanese patients with migraine: a single center study.

    Science.gov (United States)

    Iwasaki, Akio; Suzuki, Keisuke; Takekawa, Hidehiro; Takashima, Ryotaro; Suzuki, Ayano; Suzuki, Shiho; Hirata, Koichi

    2017-12-01

    There may be a link between right-to-left shunt (RLs) and brain white matter lesions (WMLs) in patients with migraine. In this study, we assessed the relationship between WMLs and RLs in Japanese migraine patients. A total of 107 consecutive patients with migraine with (MA) and without aura (MWOA) were included in this study. Contrast transcranial Doppler ultrasound was used to detect RLs. WMLs were graded using brain magnetic resonance imaging based on well-established criteria. The prevalence of RLs was significantly increased in the WMLs positive group (n = 24) compared with the WMLs negative group (n = 83) (75.0% vs. 47.0%, p = 0.015). In prevalence of WMLs between MA and MWOA patients, there were no statistical differences (p = 0.410). Logistic regression analysis adjusted by age and disease duration of migraine identified an RLs-positive status as the sole determinant for the presence of WMLs (OR = 6.15; 95% CI 1.82-20.8; p = 0.003) CONCLUSION: Our study suggests a possible link between RLs and WMLs in Japanese patients with migraine.

  3. The African Zika virus MR-766 is more virulent and causes more severe brain damage than current Asian lineage and dengue virus.

    Science.gov (United States)

    Shao, Qiang; Herrlinger, Stephanie; Zhu, Ya-Nan; Yang, Mei; Goodfellow, Forrest; Stice, Steven L; Qi, Xiao-Peng; Brindley, Melinda A; Chen, Jian-Fu

    2017-11-15

    The Zika virus (ZIKV) has two lineages, Asian and African, and their impact on developing brains has not been compared. Dengue virus (DENV) is a close family member of ZIKV and co-circulates with ZIKV. Here, we performed intracerebral inoculation of embryonic mouse brains with dengue virus 2 (DENV2), and found that DENV2 is sufficient to cause smaller brain size due to increased cell death in neural progenitor cells (NPCs) and neurons. Compared with the currently circulating Asian lineage of ZIKV (MEX1-44), DENV2 grows slower, causes less neuronal death and fails to cause postnatal animal death. Surprisingly, our side-by-side comparison uncovered that the African ZIKV isolate (MR-766) is more potent at causing brain damage and postnatal lethality than MEX1-44. In comparison with MEX1-44, MR-766 grows faster in NPCs and in the developing brain, and causes more pronounced cell death in NPCs and neurons, resulting in more severe neuronal loss. Together, these results reveal that DENV2 is sufficient to cause smaller brain sizes, and suggest that the ZIKV African lineage is more toxic and causes more potent brain damage than the Asian lineage. © 2017. Published by The Company of Biologists Ltd.

  4. Brain Malformations

    Science.gov (United States)

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  5. Differences in supratentorial white matter diffusion after radiotherapy - New biomarker of normal brain tissue damage?

    Energy Technology Data Exchange (ETDEWEB)

    Ravn, Soeren; Jens Broendum Froekaer, Jens [Dept. of Radiology, Aalborg Univ. Hospital, Aalborg (Denmark)], e-mail: sorl@rn.dk; Holmberg, Mats [Dept. of Oncology, Aalborg Univ. Hospital, Aalborg (Denmark); Soerensen, Preben [Dept. of Neurosurgery, Aalborg Univ. Hospital, Aalborg (Denmark); Carl, Jesper [Dept. of Neurosurgery, Aalborg Univ. Hospital, Aalborg (Denmark)

    2013-10-15

    Introduction: Therapy-induced injury to normal brain tissue is a concern in the treatment of all types of brain tumours. The purpose of this study was to investigate if magnetic resonance diffusion tensor imaging (DTI) could serve as a potential biomarker for the assessment of radiation-induced long-term white matter injury. Material and methods: DTI- and T1-weighted images of the brain were obtained in 19 former radiotherapy patients [nine men and 10 women diagnosed with astrocytoma (4), pituitary adenoma (6), meningioma (8) and craniopharyngioma (1), average age 57.8 (range 35-71) years]. Average time from radiotherapy to DTI scan was 4.6 (range 2.0-7.1) years. NordicICE software (NIC) was used to calculate apparent diffusion coefficient maps (ADC-maps). The co-registration between T1 images and ADC-maps were done using the auto function in NIC. The co-registration between the T1 images and the patient dose plans were done using the auto function in the treatment planning system Eclipse from Varian. Regions of interest were drawn on the T1-weighted images in NIC based on iso curves from Eclipse. Data was analysed by t-test. Estimates are given with 95 % CI. Results: A mean ADC difference of 4.6(0.3;8.9) X 10{sup -5} mm{sup 2}/s, p = 0.03 was found between paired white matter structures with a mean dose difference of 31.4 Gy. Comparing the ADC-values of the areas with highest dose from the paired data (dose > 33 Gy) with normal white matter (dose < 5 Gy) resulted in a mean dose difference of 44.1 Gy and a mean ADC difference of 7.87(3.15;12.60) X 10{sup -5} mm{sup 2}/s, p = 0.003. Following results were obtained when looking at differences between white matter mean ADC in average dose levels from 5 to 55 Gy in steps of 10 Gy with normal white matter mean ADC: 5 Gy; 1.91(-1.76;5.58) X 10{sup -5} mm{sup 2}/s, p = 0.29; 15 Gy; 5.81(1.53;10.11) X 10{sup -5} mm{sup 2}/s, p = 0.01; 25 Gy; 5.80(2.43;9.18) X 10{sup -5} mm{sup 2}/s, p = 0.002; 35 Gy; 5.93(2.89;8.97) X 10

  6. Association between neuroserpin and molecular markers of brain damage in patients with acute ischemic stroke.

    Science.gov (United States)

    Rodríguez-González, Raquel; Sobrino, Tomás; Rodríguez-Yáñez, Manuel; Millán, Mónica; Brea, David; Miranda, Elena; Moldes, Octavio; Pérez, Juan; Lomas, David A; Leira, Rogelio; Dávalos, Antoni; Castillo, José

    2011-05-11

    Neuroserpin has shown neuroprotective effects in animal models of cerebral ischemia and has been associated with functional outcome after ischemic stroke. Our aim was to study whether neuroserpin serum levels could be associated to biomarkers of excitotoxicity, inflammation and blood brain barrier disruption. We prospectively included 129 patients with ischemic stroke (58.1% male; mean age, 72.4 ± 9.6 years) not treated with tPA within 12 hours (h) of symptoms onset (mean time, 4.7 ± 2.1 h). Poor functional outcome at 3 months was considered as a modified Rankin scale score >2. Serum levels of neuroserpin, Interleukin 6 (IL-6), Intercellular adhesion molecule-1 (ICAM-1), active Matrix metalloproteinase 9 (MMP-9), and cellular fibronectin (cFn) (determined by ELISA) and glutamate (determined by HPLC) were measured on admission, 24 and 72 h. The main variable was considered the decrease of neuroserpin levels within the first 24 h. ROC analysis was used to select the best predictive value for neuroserpin to predict poor functional outcome due to a lack of linearity. The decrease of neuroserpin levels within the first 24 h was negatively correlated with serum levels at 24 hours of glutamate (r = -0.642), IL-6 (r = -0.678), ICAM-1 (r = -0.345), MMP-9 (r = -0.554) and cFn (r = -0.703) (all P < 0.0001). In the multivariate analysis, serum levels of glutamate (OR, 1.04; CI95%, 1.01-1.06, p = 0.001); IL-6 (OR, 1.4; CI95%, 1.1-1.7, p = 0.001); and cFn (OR, 1.3; CI95%, 1.1-1.6, p = 0.002) were independently associated with a decrease of neuroserpin levels <70 ng/mL at 24 h after adjusting for confounding factors. These findings suggest that neuroprotective properties of neuroserpin may be related to the inhibition of excitotoxicity, inflammation, as well as blood brain barrier disruption that occur after acute ischemic stroke.

  7. Unraveling the Relationship Between Delirium, Brain Damage, and Subsequent Cognitive Decline in a Cohort of Individuals Undergoing Surgery for Hip Fracture

    NARCIS (Netherlands)

    Beishuizen, Sara J. E.; Scholtens, Rikie M.; van Munster, Barbara C.; de Rooij, Sophia E.

    2017-01-01

    To assess the association between serum S100B levels (a marker of brain damage), delirium, and subsequent cognitive decline. Substudy of a multicenter randomized controlled trial. Surgical, orthopedic, and trauma surgery wards of two teaching hospitals. Individuals aged 65 and older (range 65-102)

  8. Unraveling the Relationship Between Delirium, Brain Damage, and Subsequent Cognitive Decline in a Cohort of Individuals Undergoing Surgery for Hip Fracture

    NARCIS (Netherlands)

    Beishuizen, Sara J E; Scholtens, Rikie M.; van Munster, Barbara C.; de Rooij, Sophia E.

    ObjectivesTo assess the association between serum S100B levels (a marker of brain damage), delirium, and subsequent cognitive decline. DesignSubstudy of a multicenter randomized controlled trial. SettingSurgical, orthopedic, and trauma surgery wards of two teaching hospitals. ParticipantsIndividuals

  9. Chronic brain damage in sickle cell disease and its relation with quality of life.

    Science.gov (United States)

    Cela, Elena; Vélez, Ana G; Aguado, Alejandra; Medín, Gabriela; Bellón, José M; Beléndez, Cristina

    2016-12-16

    Sickle cell anaemia causes progressive organ damage. The objective is to describe school performance of patients with sickle cell anaemia and their clinical parameters and quality of life that may have an influence. The hypothesis is that if school alterations occur without other objective data, additional factors must be present besides the disease itself. Transversal study performed in November 2015 considering analytical variables, complications and neuroradiological images of children with sickle cell anaemia, and family survey on school performance and quality of life. Median age was 6.8 years and 78% were diagnosed at birth. Sixty patients were included. School performance was altered in 51% of cases and was related to nocturnal hypoxemia. Acute stroke incidence was 6.7%. Transcranial ultrasound was abnormal in 4% of cases and magnetic resonance imaging in 16% of cases. Quality of life showed pathological findings in all areas and the low values increased proportionally in older ages. The stroke affected the physical and social sphere, and lung disease affected the physical and emotional spheres. Poor school performance affects half of the patients and it is related to nocturnal hypoxemia, although other socio-cultural factors may have an influence. Quality of life is affected in most of these cases independently of academic results. The absence of alterations in neuroimaging or the apparent lack of severe clinical parameters do not mean that quality of life and schooling are normal. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  10. The assessment of pragmatics in Iranian patients with right brain damage.

    Science.gov (United States)

    Sobhani-Rad, Davood; Ghorbani, Askar; Ashayeri, Hassan; Jalaei, Shohereh; Mahmoodi-Bakhtiari, Behrooz

    2014-04-03

    Pragmatics is appropriate use of language across a variety of social contexts that provides accurate interpretation of intentions. The occurrence of the right hemisphere lesions can interfere with pragmatic abilities, and particularly with the processing of nonliteral speech acts. Since the objective of this study was to assess different aspects of pragmatic competence in the right hemisphere damage (RHD) patients, 20 Iranian patients with right hemisphere lesions were examined by adult pragmatic profile (APP) and a novel checklist was introduced for Persian language speaking individuals. Meanwhile, 40 healthy adult individuals, who were age and gender matched with RHD patients, were considered as the control group. After obtaining video records, all subjects were evaluated for 35 pragmatic skills, including 24 verbal, 5 paralinguistic, and 6 nonverbal aspects, by a two-point scale system. Studying RHD patients and their healthy counterparts revealed that the performance by participants with right hemisphere lesions exhibited a high degree of inappropriate pragmatic abilities compared with controls in all domains. Furthermore, RHD patients showed a trend of increasing difficulty in understanding and producing different pragmatic phenomena, including standard communication acts. Present results indicated that the right hemisphere lesions significantly affected pragmatic abilities in verbal, paralinguistic and nonverbal aspects. Such a pattern of performance, which is in line with deficits previously reported for RHD, proved the unquestioned role of the right hemisphere in processing nonliteral language.

  11. Neuroendocrine Disturbances after Brain Damage: An Important and Often Undiagnosed Disorder

    Directory of Open Access Journals (Sweden)

    Fatih Tanriverdi

    2015-04-01

    Full Text Available Traumatic brain injury (TBI is a common and significant public health problem all over the world. Until recently, TBI has been recognized as an uncommon cause of hypopituitarism. The studies conducted during the last 15 years revealed that TBI is a serious cause of hypopituitarism. Although the underlying pathophysiology has not yet been fully clarified, new data indicate that genetic predisposition, autoimmunity and neuroinflammatory changes may play a role in the development of hypopituitarism. Combative sports, including boxing and kickboxing, both of which are characterized by chronic repetitive head trauma, have been shown as new causes of neuroendocrine abnormalities, mainly hypopituitarism, for the first time during the last 10 years. Most patients with TBI-induced pituitary dysfunction remain undiagnosed and untreated because of the non-specific and subtle clinical manifestations of hypopituitarism. Replacement of the deficient hormones, of which GH is the commonest hormone lost, may not only reverse the clinical manifestations and neurocognitive dysfunction, but may also help posttraumatic disabled patients resistant to classical treatment who have undiagnosed hypopituitarism and GH deficiency in particular. Therefore, early diagnosis, which depends on the awareness of TBI as a cause of neuroendocrine abnormalities among the medical community, is crucially important.

  12. Therapeutic Potential of Umbilical Cord Blood Stem Cells on Brain Damage of a Model of Stroke

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Nikravesh

    2011-11-01

    Full Text Available Introduction: Human cord blood-derived stem cells are a rich source of stem cells as well as precursors. With regard to the researchers have focused on the therapeutic potential of stem cell in the neurological disease such as stroke, the aim of this study was the investiga-tion of the therapeutic effects of human cord blood-derived stem cells in cerebral ischemia on rat. Methods: This study was carried out on young rats. Firstly, to create a laboratory model of ischemic stroke, carotid artery of animals was occluded for 30 minutes. Then, umbilical cord blood cells were isolated and labeled using bromodeoxyuridine and 2×105 cells were injected into the experimental group via the tail vein. Rats with hypoxic condi-tions were used as a sham group. A group of animals did not receive any injection or sur-geries were used as a control. Results: Obtained results were evaluated based on behavior-al responses and immunohistochemistry, with emphasis on areas of putamen and caudate nucleus in the control, sham and experimental groups. Our results indicated that behavioral recovery was observed in the experimental group compared to the either the sham or the control group. However, histological studies demonstrated a low percent of tissue injury in the experimental group in comparison with the sham group. Conclusion: Stem cell trans-plantation is beneficial for the brain tissue reparation after hypoxic ischemic cell death.

  13. Role of histidine/histamine in carnosine-induced neuroprotection during ischemic brain damage.

    Science.gov (United States)

    Bae, Ok-Nam; Majid, Arshad

    2013-08-21

    Urgent need exists for new therapeutic options in ischemic stroke. We recently demonstrated that carnosine, an endogenous dipeptide consisting of alanine and histidine, is robustly neuroprotective in ischemic brain injury and has a wide clinically relevant therapeutic time window. The precise mechanistic pathways that mediate this neuroprotective effect are not known. Following in vivo administration, carnosine is hydrolyzed into histidine, a precursor of histamine. It has been hypothesized that carnosine may exert its neuroprotective activities through the histidine/histamine pathway. Herein, we investigated whether the neuroprotective effect of carnosine is mediated by the histidine/histamine pathway using in vitro primary astrocytes and cortical neurons, and an in vivo rat model of ischemic stroke. In primary astrocytes, carnosine significantly reduced ischemic cell death after oxygen-glucose deprivation, and this effect was abolished by histamine receptor type I antagonist. However, histidine or histamine did not exhibit a protective effect on ischemic astrocytic cell death. In primary neuronal cultures, carnosine was found to be neuroprotective but histamine receptor antagonists had no effect on the extent of neuroprotection. The in vivo effect of histidine and carnosine was compared using a rat model of ischemic stroke; only carnosine exhibited neuroprotection. Taken together, our data demonstrate that although the protective effects of carnosine may be partially mediated by activity at the histamine type 1 receptor on astrocytes, the histidine/histamine pathway does not appear to play a critical role in carnosine induced neuroprotection. Copyright © 2013. Published by Elsevier B.V.

  14. Peripheral benzodiazepines receptor (PBR stimulates steroidogenesis: A potential neuroprotective pathway following brain damage

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-04-01

    Full Text Available The effects of neuroactive steroids have been highly assessed for their significance on inflammation resolution induced by cytotoxic agents. Steroids are derived from cholesterol, and this regulatory pathway may be a target for possible protective strategies. For example, the increased expression of peripheral benzodiazepine receptor (PBR stimulates steroids production, and the action of specific ligands on PBR favors the reduction of glial activity and act as a protective mechanism. The augmented expression of PBR and steroidogenic acute regulatory protein (StAR after injury is associated with local production of steroids by glial cells. For instance, cholesterol is captured by StAR in the outer mitochondrial membrane that transfers it to PBR, which uses it as substrate for the enzyme P450scc in the inner mitochondrial membrane. Some ligands, such as 4'-Chlorodiazepam (Ro5-4864 and isoquinoline carboxamide (PK 11195, act as agonists of the PBR receptor. Previous studies indicate that Ro5-4864 reduces neuronal loss, thus implying the regulation of mitochondrial transition after a traumatic brain injury. In this work, we assess the effects of PBR ligands directly involved in neuronal cell survival and proliferation after injury, thereby activating potential downstream targets as novel therapeutic approaches.

  15. Longitudinal MRI monitoring of brain damage in the neonatal ventral hippocampal lesion rat model of schizophrenia.

    Science.gov (United States)

    Bertrand, Jean-Baptiste; Langlois, Jean-Baptiste; Bégou, Mélina; Volle, Julien; Brun, Philippe; d'Amato, Thierry; Saoud, Mohamed; Suaud-Chagny, Marie-Françoise

    2010-02-01

    Rat with excitotoxic neonatal ventral hippocampal lesions (NVHL rats) is considered as a heuristic neurodevelopmental model for studying schizophrenia. Extensive study of this model is limited by the lack of clear validity criteria of such lesions and because ascertaining of the lesions is realized postmortem with histological examination after completing experiments. Here, in a first experiment, by assessing the locomotor response to amphetamine in adult NVHL rats, we further specify that the lesions must be bilateral and confined to the ventral hippocampus to obtain the validated behavioral phenotype. We then show a longitudinal magnetic resonance imaging (MRI) protocol suitable for the detection of brain structural changes in NVHL rats. The T(2)-weighted images acquired in adult NVHL rats reveal the same structural changes as those appraised with histological protocol. Moreover, we demonstrate that the lesion status in adulthood can be accurately predicted from the T(2)-weighted images acquired in the juvenile period. As technical advantages, our MRI protocol makes possible to select animals according to lesion criteria as soon as in the juvenile period before long-lasting experiments and gives access in vivo to a quantitative parameter indicative of the lesion extent. Finally, we show that the lesion size increases only slightly between juvenile and adult periods. These latter results are discussed in the context of the specific postpubertal emergence of the behavioral deficits in NVHL rats.

  16. Acute, transient hemorrhagic hypotension does not aggravate structural damage or neurologic motor deficits but delays the long-term cognitive recovery following mild to moderate traumatic brain injury

    Science.gov (United States)

    Schütz, Christian; Stover, John F.; Thompson, Hilaire J.; Hoover, Rachel C.; Morales, Diego M.; Schouten, Joost W.; McMillan, Asenia; Soltesz, Kristie; Motta, Melissa; Spangler, Zachery; Neugebauer, Edmund; McIntosh, Tracy K.

    2008-01-01

    Objectives Posttraumatic hypotension is believed to increase morbidity and mortality in traumatically brain-injured patients. Using a clinically relevant model of combined traumatic brain injury with superimposed hemorrhagic hypotension in rats, the present study evaluated whether a reduction in mean arterial blood pressure aggravates regional brain edema formation, regional cell death, and neurologic motor/cognitive deficits associated with traumatic brain injury. Design Experimental prospective, randomized study in rodents. Setting Experimental laboratory at a university hospital. Subjects One hundred nineteen male Sprague-Dawley rats weighing 350-385 g. Interventions Experimental traumatic brain injury of mild to moderate severity was induced using the lateral fluid percussion brain injury model in anesthetized rats (n = 89). Following traumatic brain injury, in surviving animals one group of animals was subjected to pressure-controlled hemorrhagic hypotension, maintaining the mean arterial blood pressure at 50-60 mm Hg for 30 mins (n = 47). The animals were subsequently either resuscitated with lactated Ringer’s solution (three times shed blood volume, n = 18) or left uncompensated (n = 29). Other groups of animals included those with isolated traumatic brain injury (n = 34), those with isolated hemorrhagic hypotension (n = 8), and sham-injured control animals receiving anesthesia and surgery alone (n = 22). Measurements and Main Results The withdrawal of 6-7 mL of arterial blood significantly reduced mean arterial blood pressure by 50% without decreasing arterial oxygen saturation or Pao2. Brain injury induced significant cerebral edema (p hypotension. Brain injury-induced neurologic deficits persisted up to 20 wks after injury and were also not aggravated by the hemorrhagic hypotension. Cognitive dysfunction persisted for up to 16 wks postinjury. The superimposition of hemorrhagic hypotension significantly delayed the time course of cognitive recovery

  17. Red photon treatment inhibits apoptosis via regulation of bcl-2 proteins and ROS levels, alleviating hypoxic-ischemic brain damage.

    Science.gov (United States)

    Jiang, W; Chen, L; Zhang, X J; Chen, J; Li, X C; Hou, W S; Xiao, N

    2014-05-30

    Therapeutic options for hypoxic-ischemic brain damage (HIBD) are scarce and inefficient. Recently, many studies have demonstrated that red photon plays an important role in anti-inflammatory processes as well as apoptosis, the main trait of HIBD. In this study, we investigated whether red photon can protect from HIBD in SD rats and oxygen-glucose deprivation (OGD) in PC12 cells. Apoptosis, mitochondrial transmembrane potential (MMP), and reactive oxygen species (ROS) rates were assessed in PC12 cells. We found that 6-h irradiation resulted in decreased MMP, ROS and apoptosis rates, although these changes were reversible with prolonged irradiation. Importantly, these effects were sustained for 2-8h upon quenching of the red photon. Similar trends were observed for protein and mRNA expression of bax and bcl-2, with short-term irradiation (6h) inhibiting apoptosis in PC12 Cells. However, long-term (>6h) irradiation caused cell damage. In vivo experiments, bax mRNA and protein levels were reduced after 7days in HIBD model rats treated with red photon, in contrast to bcl-2. Furthermore, we found that bax and bcl-2 were mainly expressed in pyramidal cells of the hippocampus CA1 and CA3. Importantly, Morris Water Maze test results revealed an improvement in learning ability and spatial memory in rats after irradiation. Overall, our data showed that short-term irradiation with red photon in the acute phase inhibits the mitochondrial apoptotic pathway via regulation of bcl-2-related proteins and reduction of ROS levels, thereby decreasing apoptosis in nerve cells and improving the neurological prognosis of HIBD. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Improving left spatial neglect through music scale playing.

    Science.gov (United States)

    Bernardi, Nicolò Francesco; Cioffi, Maria Cristina; Ronchi, Roberta; Maravita, Angelo; Bricolo, Emanuela; Zigiotto, Luca; Perucca, Laura; Vallar, Giuseppe

    2017-03-01

    The study assessed whether the auditory reference provided by a music scale could improve spatial exploration of a standard musical instrument keyboard in right-brain-damaged patients with left spatial neglect. As performing music scales involves the production of predictable successive pitches, the expectation of the subsequent note may facilitate patients to explore a larger extension of space in the left affected side, during the production of music scales from right to left. Eleven right-brain-damaged stroke patients with left spatial neglect, 12 patients without neglect, and 12 age-matched healthy participants played descending scales on a music keyboard. In a counterbalanced design, the participants' exploratory performance was assessed while producing scales in three feedback conditions: With congruent sound, no-sound, or random sound feedback provided by the keyboard. The number of keys played and the timing of key press were recorded. Spatial exploration by patients with left neglect was superior with congruent sound feedback, compared to both Silence and Random sound conditions. Both the congruent and incongruent sound conditions were associated with a greater deceleration in all groups. The frame provided by the music scale improves exploration of the left side of space, contralateral to the right hemisphere, damaged in patients with left neglect. Performing a scale with congruent sounds may trigger at some extent preserved auditory and spatial multisensory representations of successive sounds, thus influencing the time course of space scanning, and ultimately resulting in a more extensive spatial exploration. These findings offer new perspectives also for the rehabilitation of the disorder. © 2015 The British Psychological Society.

  19. Mechanisms of Secondary Neuronal Damage in Severe Brain Injury (Part 1

    Directory of Open Access Journals (Sweden)

    N. B. Karmen

    2011-01-01

    Full Text Available Objective: to improve the results of treatment in victims with acute heart failure complicating severe concomitant injury, by optimizing inotropic support and to evaluate the efficiency and safety of combined use of drugs with a different mechanism of positive inotropic action. Subjects and methods. In a prospective randomized clinical trial, 26 victims with polytrauma and coronary heart disease-compromized myocardial contractility received inotropic support as a combination of dobuta-mine and levosimendan (Group 1; n=12 or that of dobutamine and epinephrine (Group 2; n=14. Invasive hemodynamic monitoring (Swan-Ganz was made every 6 hours for 72 hours. The levels of lactate, troponin I, and brain natriuretic peptide (BNP were measured. Holter ECG monitoring was also made. The end points of the study were cardiac index (CI, duration of inotropic therapy, length of stay in an intensive care unit (ICU, and development of complications. The differences in the indicators were considered statistically significant atpResults. By the use of combination inotropic therapy, hemodynamic instability was thought to be predominantly manifestations of acute heart failure (ejection fraction, 41±7%; CI, 2.1±0.15 l/min/m2; BNP, 1130±280 ng/dl in compensated normovolemia (central venous pressure, 12±2 Hg mm; pulmonary artery wedge pressure, 14±1 Hg mm. Mean CI was 3.5±0.14 l/min/m2 in Group 1 patients receiving therapy and 2.6±0.33 l/min/m2 in Group 2 (95% confidence interval (CI, 0.49—0.91;p=0.03. The mean duration of inotropic therapy was 71±10.5 and 102±13.5 hours in Groups 1 and 2, respectively (95% CI, 99—161; p=0.001. In Group 2, cardiac arrhythmias (defined as Lown-Wolf class 3-5, an elevation of serum lactate levels (mean, 3.8±0.8 mmol/l; p<0.05, and a clinically significant increase in troponin-I concentrations (mean, 0.85±0.17 ng/ml; p<0.05 were more frequently recorded than those in Group 1. The victims showed no statistically significant

  20. Pomegranate from Oman Alleviates the Brain Oxidative Damage in Transgenic Mouse Model of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Selvaraju Subash

    2014-10-01

    Full Text Available Oxidative stress may play a key role in Alzheimer’s disease (AD neuropathology. Pomegranates (石榴 Shí Liú contain very high levels of antioxidant polyphenolic substances, as compared to other fruits and vegetables. Polyphenols have been shown to be neuroprotective in different model systems. Here, the effects of the antioxidant-rich pomegranate fruit grown in Oman on brain oxidative stress status were tested in the AD transgenic mouse. The 4-month-old mice with double Swedish APP mutation (APPsw/Tg2576 were purchased from Taconic Farm, NY, USA. Four-month-old Tg2576 mice were fed with 4% pomegranate or control diet for 15 months and then assessed for the influence of diet on oxidative stress. Significant increase in oxidative stress was found in terms of enhanced levels of lipid peroxidation (LPO and protein carbonyls. Concomitantly, decrease in the activities of antioxidant enzymes was observed in Tg2576 mice treated with control diet. Supplementation with 4% pomegranate attenuated oxidative damage, as evidenced by decreased LPO and protein carbonyl levels and restoration in the activities of the antioxidant enzymes [superoxide dismutase (SOD, catalase, glutathione peroxidase (GPx, glutathione (GSH, and Glutathione S transferase (GST]. The activities of membrane-bound enzymes [Na+ K+-ATPase and acetylcholinesterase (AChE] were altered in the brain regions of Tg2576 mouse treated with control diet, and 4% pomegranate supplementation was able to restore the activities of enzymes to comparable values observed in controls. The results suggest that the therapeutic potential of 4% pomegranate in the treatment of AD might be associated with counteracting the oxidative stress by the presence of active phytochemicals in it.

  1. Brain Damage and Motor Cortex Impairment in Chronic Obstructive Pulmonary Disease: Implication of Nonrapid Eye Movement Sleep Desaturation.

    Science.gov (United States)

    Alexandre, Francois; Heraud, Nelly; Sanchez, Anthony M J; Tremey, Emilie; Oliver, Nicolas; Guerin, Philippe; Varray, Alain

    2016-02-01

    Nonrapid eye movement (NREM) sleep desaturation may cause neuronal damage due to the withdrawal of cerebrovascular reactivity. The current study (1) assessed the prevalence of NREM sleep desaturation in nonhypoxemic patients with chronic obstructive pulmonary disease (COPD) and (2) compared a biological marker of cerebral lesion and neuromuscular function in patients with and without NREM sleep desaturation. One hundred fifteen patients with COPD (Global Initiative for Chronic Obstructive Lung Disease [GOLD] grades 2 and 3), resting PaO2 of 60-80 mmHg, aged between 40 and 80 y, and without sleep apnea (apnea-hypopnea index sleep recordings. In addition, twenty-nine patients (substudy) were assessed i) for brain impairment by serum S100B (biological marker of cerebral lesion), and ii) for neuromuscular function via motor cortex activation and excitability and maximal voluntary quadriceps strength measurement. A total of 51.3% patients (n = 59) had NREM sleep desaturation (NREMDes). Serum S100B was higher in the NREMDes patients of the substudy (n = 14): 45.1 [Q1: 37.7, Q3: 62.8] versus 32.9 [Q1: 25.7, Q3: 39.5] pg.ml(-1) (P = 0.028). Motor cortex activation and excitability were lower in NREMDes patients (both P = 0.03), but muscle strength was comparable between groups (P = 0.58). Over half the nonhypoxemic COPD patients exhibited NREM sleep desaturation associated with higher values of the cerebral lesion biomarker and lower neural drive reaching the quadriceps during maximal voluntary contraction. The lack of muscle strength differences between groups suggests a compensatory mechanism(s). Altogether, the results are consistent with an involvement of NREM sleep desaturation in COPD brain impairment. The study was registered at www.clinicaltrials.gov as NCT01679782. © 2016 Associated Professional Sleep Societies, LLC.

  2. Persistence of Gender Related-Effects on Visuo-Spatial and Verbal Working Memory in Right Brain-Damaged Patients.

    Science.gov (United States)

    Piccardi, Laura; Matano, Alessandro; D'Antuono, Giovanni; Marin, Dario; Ciurli, Paola; Incoccia, Chiara; Verde, Paola; Guariglia, Paola

    2016-01-01

    The aim of the present study was to verify if gender differences in verbal and visuo-spatial working memory would persist following right cerebral lesions. To pursue our aim we investigated a large sample (n. 346) of right brain-damaged patients and healthy participants (n. 272) for the presence of gender effects in performing Corsi and Digit Test. We also assessed a subgroup of patients (n. 109) for the nature (active vs. passive) of working memory tasks. We tested working memory (WM) administering the Corsi Test (CBT) and the Digit Span (DS) using two different versions: forward (fCBT and fDS), subjects were required to repeat stimuli in the same order that they were presented; and backward (bCBT and bDS), subjects were required to repeat stimuli in the opposite order of presentation. In this way, passive storage and active processing of working memory were assessed. Our results showed the persistence of gender-related effects in spite of the presence of right brain lesions. We found that men outperformed women both in CBT and DS, regardless of active and passive processing of verbal and visuo-spatial stimuli. The presence of visuo-spatial disorders (i.e., hemineglect) can affect the performance on Corsi Test. In our sample, men and women were equally affected by hemineglect, therefore it did not mask the gender effect. Generally speaking, the persistence of the men's superiority in visuo-spatial tasks may be interpreted as a protective factor, at least for men, within other life factors such as level of education or kind of profession before retirement.

  3. A combination of P wave electrocardiography and plasma brain natriuretic peptide level for predicting the progression to persistent atrial fibrillation: comparisons of sympathetic activity and left atrial size.

    Science.gov (United States)

    Akutsu, Yasushi; Kaneko, Kyouichi; Kodama, Yusuke; Miyoshi, Fumito; Li, Hui-Ling; Watanabe, Norikazu; Asano, Taku; Tanno, Kaoru; Suyama, Jumpei; Namiki, Atsuo; Gokan, Takehiko; Kobayashi, Youichi

    2013-11-01

    Development of atrial fibrillation (AF) is complexly associated with electrical and structural remodeling and other factors every stage of AF development. We hypothesized that P wave electrocardiography with an elevated brain natriuretic peptide (BNP) level would be associated with the progression to persistence from paroxysmal AF. P wave electrocardiography such as a maximum P wave duration (MPWD) and dispersion by 12-leads ECG, heart/mediastinum (H/M) ratio by delayed iodine-123 metaiodobenzylguanidine scintigraphic imaging, left ventricular ejection fraction (LVEF), and left atrial dimension (LAD) by echocardiography, and plasma BNP level were measured to evaluate the electrical and structural properties and sympathetic activity in 71 patients (mean ± standard deviation, age: 67 ± 13 years, 63.4 % males) with idiopathic paroxysmal AF. Over a 12.9-year follow-up period, AF developed into persistent AF in 30 patients. A wider MPWD (>129 ms) (p = 0.001), wider P wave dispersion (>60 ms) (p = 0.001), LAD enlargement (>40 mm) (p = 0.001), higher BNP level (>72 pg/mL) (p = 0.002), lower H/M ratio (≤2.7) (p = 0.025), and lower LVEF (≤60 %) (p = 0.035) were associated with the progression to persistent AF, and the wide MPWD was an independently powerful predictor of the progression to persistent AF with a hazard ratio (HR) of 5.49 [95 % confidence interval (CI) 2.38-12.7, p < 0.0001] after adjusting for potential confounding variables, such as age and sex. The combination of wide MPWD and elevated BNP level was additive and incremental prognostic power with 13.3 [2.16-13, p < 0.0001]. The wide MPWD with elevated BNP level was associated with the progression to persistent AF.

  4. Early trends in N-terminal pro-brain natriuretic peptide values after left ventricular assist device implantation for chronic heart failure.

    Science.gov (United States)

    Hasin, Tal; Kushwaha, Sudhir S; Lesnick, Timothy G; Kremers, Walter; Boilson, Barry A; Schirger, John A; Clavell, Alfredo L; Rodeheffer, Richard J; Frantz, Robert P; Edwards, Brooks S; Pereira, Naveen L; Stulak, John M; Joyce, Lyle; Daly, Richard; Park, Soon J; Jaffe, Allan S

    2014-10-15

    Left ventricular assist devices (LVADs) acutely decrease left ventricular wall stress. Thus, early postoperative levels of N-terminal pro-brain natriuretic peptide (NT-proBNP) should decrease. This study investigated postoperative changes in NT-proBNP levels, the parameters related to changes, and the possible association with complications by performing a retrospective analysis of changes in daily NT-proBNP (pg/ml) levels from admission to discharge both before and after LVAD implantation in a tertiary referral center. For 72 patients implanted with HeartMate II LVADs, baseline NT-proBNP levels were elevated at 3,943 ng/ml (interquartile range 1,956 to 12,964). Preoperative stabilization led to marked decreases in NT-proBNP. Levels peaked 3 days after surgery and subsequently decreased. Patients with complicated postoperative courses had higher early postoperative elevations. By discharge, NT-proBNP decreased markedly but was still 2.83 (1.60 to 5.76) times the age-based upper limit of normal. The 26% reduction in NT-proBNP between admission and discharge was due mostly to the preoperative reductions and not those induced by the LVAD itself. The decrease was not associated with decreases in LV volume. In conclusion, preoperative treatment reduces NT-proBNP values. The magnitude of early postoperative changes is related to the clinical course. Levels at discharge remain markedly elevated and similar to values after preoperative stabilization despite presumptive acute LV unloading. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Induction of hemeoxygenase-1 expression after inhibition of hemeoxygenase activity promotes inflammation and worsens ischemic brain damage in mice.

    Science.gov (United States)

    Pérez-de-Puig, I; Martín, A; Gorina, R; de la Rosa, X; Martinez, E; Planas, A M

    2013-07-23

    Hemeoxygenase (HO) is an enzymatic system that degrades heme. HO-1 is an inducible isoform whereas HO-2 is constitutive. Stroke strongly induces HO-1 expression but the underlying mechanisms are not fully elucidated. Cytokines that are up-regulated after ischemia, like interleukin (IL)-10, can induce HO-1 gene expression, which is positively regulated by the transcriptional activator nuclear factor erythroid 2-related factor 2 (Nrf2) and negatively regulated by the transcriptional repressor breast cancer type 1 susceptibility protein (BRCA1) associated C-terminal helicase 1 (Bach-1). While Nrf2 is activated after ischemia and drugs promoting Nrf2 activation increase HO-1 and are beneficial, the involvement of Bach-1 is unknown. Here we investigated mechanisms involved in HO-1 induction and evaluated the effects of HO activity inhibition in mouse permanent middle cerebral artery occlusion (pMCAO). HO-1 was induced after ischemia in IL-10-deficient mice suggesting that post-ischemic HO-1 induction was IL-10-independent. Attenuation of Bach-1 gene repression after ischemia was associated to enhanced HO-1 induction. Administration of the HO activity inhibitor zinc proto-porphyrin IX (ZnPP) i.p. 24h before pMCAO exacerbated ischemia-induced tumor necrosis factor-α (TNF-α) and IL-1β, nitro-oxidative stress, and the presence of neutrophils at 8h, and increased infarct volume at day 4. However, ZnPP did not worsen ischemic damage when given 30min before pMCAO. ZnPP induced HO-1 expression in the cerebral vasculature at 24h, when it was still detected by high-performance liquid chromatography (HPLC) in plasma. While ZnPP was not found in brain tissue extracts of controls, it could be detected after ischemia, supporting that a small fraction of the injected drug can reach the tissue following blood-brain barrier breakdown. The deleterious effect of inhibiting HO activity in ischemia became apparent in the presence of ZnPP-induced HO-1, which is known to exert effects

  6. The impact of acquired brain damage in terms of epidemiology, economics and loss in quality of life

    Directory of Open Access Journals (Sweden)

    Larrañaga Isabel

    2011-04-01

    Full Text Available Abstract Background Patients with acquired brain damage (ABD have suffered a brain lesion that interrupts vital development in the physical, psychological and social spheres. Stroke and traumatic brain injury (TBI are the two main causes. The objectives of this study were to estimate the incidence and prevalence of ABD in the population of the Basque Country and Navarre in 2008, to calculate the associated cost of the care required and finally to assess the loss in health-related quality of life. Methods On the one hand, a cross-sectional survey was carried out, in order to estimate the incidence of ABD and its consequences in terms of costs and loss in quality of life from the evolution of a sample of patients diagnosed with stroke and TBI. On the other hand, a discrete event simulation model was built that enabled the prevalence of ABD to be estimated. Finally, a calculation was made of the formal and informal costs of ABD in the population of the Basque Country and Navarre (2,750,000 people. Results The cross-sectional study showed that the incidences of ABD caused by stroke and TBI were 61.8 and 12.5 cases per 100,000 per year respectively, while the overall prevalence was 657 cases per 100,000 people. The SF-36 physical and mental component scores were 28.9 and 44.5 respectively. The total economic burden was calculated to be 382.14 million euro per year, distributed between 215.27 and 166.87 of formal and informal burden respectively. The average cost per individual was 21,040 € per year. Conclusions The main conclusion of this study is that ABD has a high impact in both epidemiological and economic terms as well as loss in quality of life. The overall prevalence obtained is equivalent to 0.7% of the total population. The substantial economic burden is distributed nearly evenly between formal and informal costs. Specifically, it was found that the physical dimensions of quality of life are the most severely affected. The prevalence

  7. The impact of acquired brain damage in terms of epidemiology, economics and loss in quality of life.

    Science.gov (United States)

    Mar, Javier; Arrospide, Arantzazu; Begiristain, José María; Larrañaga, Isabel; Elosegui, Elena; Oliva-Moreno, Juan

    2011-04-18

    Patients with acquired brain damage (ABD) have suffered a brain lesion that interrupts vital development in the physical, psychological and social spheres. Stroke and traumatic brain injury (TBI) are the two main causes. The objectives of this study were to estimate the incidence and prevalence of ABD in the population of the Basque Country and Navarre in 2008, to calculate the associated cost of the care required and finally to assess the loss in health-related quality of life. On the one hand, a cross-sectional survey was carried out, in order to estimate the incidence of ABD and its consequences in terms of costs and loss in quality of life from the evolution of a sample of patients diagnosed with stroke and TBI. On the other hand, a discrete event simulation model was built that enabled the prevalence of ABD to be estimated. Finally, a calculation was made of the formal and informal costs of ABD in the population of the Basque Country and Navarre (2,750,000 people). The cross-sectional study showed that the incidences of ABD caused by stroke and TBI were 61.8 and 12.5 cases per 100,000 per year respectively, while the overall prevalence was 657 cases per 100,000 people. The SF-36 physical and mental component scores were 28.9 and 44.5 respectively. The total economic burden was calculated to be 382.14 million euro per year, distributed between 215.27 and 166.87 of formal and informal burden respectively. The average cost per individual was 21,040 € per year. The main conclusion of this study is that ABD has a high impact in both epidemiological and economic terms as well as loss in quality of life. The overall prevalence obtained is equivalent to 0.7% of the total population. The substantial economic burden is distributed nearly evenly between formal and informal costs. Specifically, it was found that the physical dimensions of quality of life are the most severely affected. The prevalence-based approach showed adequate to estimate the population impact of

  8. Protective effect of berberine chloride on secondary damage of bilateral thalami in traumatic brain injury model mice

    Directory of Open Access Journals (Sweden)

    Shu-xuan HUANG

    2017-07-01

    Full Text Available Objective To investigate the protective effect of berberine chloride on secondary damage (inflammation, oxidative damage and neuron loss in bilateral thalami of traumatic brain injury (TBI model mice.  Methods Mice were randomly divided into 3 groups: control group (N = 6, TBI group (N = 6 and berberine group (N = 6. TBI model was established by a free-falling hitting device. In control group, mice were not given free-falling hitting. Mice in berberine group were given a gavage of berberine chloride [50 mg/(kg·d] for 21 d, while mice in TBI group were given the same dosage of normal saline for 21 d. Immunohistochemistry was used to count the number of neurons or gliocytes positive for inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, 8-hydroxy deoxyguanosine (8-OHdG and neuronal nuclei (NeuN, the number of astrocytes positive for glial fibrillary acidic protein (GFAP and the number of microglias positive for ionized calcium-binding adaptor molecule 1 (Iba1.  Results The number of neurons or gliocytes positive for iNOS (P = 0.015, COX-2 (P = 0.022, 8-OHdG (P = 0.000 and NeuN (P = 0.000, the number of astrocytes positive for GFAP (P = 0.024 and microglias positive for Iba1 (P = 0.000 in TBI ipsilateral thalamus were significantly different among 3 groups. In TBI group, the number of neurons or gliocytes positive for iNOS (P = 0.005, COX-2 (P = 0.011 and 8-OHdG (P = 0.000, the number of astrocytes positive for GFAP (P = 0.011 and microglias positive for Iba1 (P = 0.000 were significantly higher than those in control group, while the number of neurons positive for NeuN (P = 0.000 was significantly lower than that in control group. In berberine group, the number of neurons or gliocytes positive for iNOS (P = 0.031, COX-2 (P = 0.024 and 8-OHdG (P = 0.008, the number of astrocytes positive for GFAP (P = 0.031 and microglias positive for Iba1 (P = 0.012 were significantly lower than those in TBI group, while the number of neurons

  9. Timosaponin B-II ameliorates scopolamine-induced cognition deficits by attenuating acetylcholinesterase activity and brain oxidative damage in mice.

    Science.gov (United States)

    Zhao, Xu; Liu, Chunmei; Qi, Yu; Fang, Lina; Luo, Jie; Bi, Kaishun; Jia, Ying

    2016-12-01

    Timosaponin B-II (TB-II) is a main active saponin isolated from the rhizome of Anemarrhena asphodeloides Bge., which is widely used in traditional Chinese medicine. In this study, the effect of TB-II on learning and memory was investigated in a scopolamine-induced mouse model of Alzheimer's disease. The results of behavioral tests indicated that TB-II significantly increased the spontaneous alternation in the Y-maze test, and reversed the shortening of step-through latency induced by scopolamine in the passive avoidance test, showing protective effects on short-term and working memory. In the Morris water maze test, TB-II reduced the escape latency time in the training trial, and increased the swimming time in the target quadrant in the probe trial. Biochemical data demonstrated that TB-II significantly inhibited acetylcholinesterase (AChE) activity in the cerebral cortex and hippocampus of mice. Moreover, TB-II markably attenuated the reduction in glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities, and decreased malondialdehyde (MDA) levels, which are key biomarkers of brain oxidative stress. These results indicated that TB-II offers protection against scopolamine-induced deficits in learning and memory, possibly by inhibiting AChE and preventing oxidative stress damage. The findings suggested that TB-II has a potential therapeutic effect on cognitive and behavioral impairment.

  10. New light on white matter damage of the premature brain: a neonatologist’s point of view

    Directory of Open Access Journals (Sweden)

    Maria Antonietta Marcialis

    2014-06-01

    Full Text Available Periventricular leucomalacia (PVL is traditionally considered a multifactorial lesion related to three main mechanisms: ischemia, inflammation and excitotoxicity. For years it was believed that hypoperfusion, associated with the peculiar vascular anatomy of the premature brain (border zones, was the conditio sine qua non in the pathogenesis of PVL. More recently this theory has been questioned. Many studies have stressed the importance of the association between inflammation/infection and white matter injury and have supported the multi hit hypothesis according to which several (genetic, hormonal, immune and nutritional factors may team up in a multi-hit fashion. The emerging concept is that the fetal white cell activation together with the interaction between the innate and adaptive immune system play a main role in white matter damage. Currently there are increasing evidence that PVL is a disease of connectivity. In this article we review the news in the basics of pathogenesis, the incidence, the definition and the diagnosis of PVL. Furthermore, recent follow-up studies and neuroprotective therapies are mentioned. Proceedings of the International Course on Perinatal Pathology (part of the 10th International Workshop on Neonatology · October 22nd-25th, 2014 · Cagliari (Italy · October 25th, 2014 · The role of the clinical pathological dialogue in problem solving Guest Editors: Gavino Faa, Vassilios Fanos, Peter Van Eyken

  11. Basic fibroblast growth factor enhances cell proliferation in the dentate gyrus of neonatal rats following hypoxic-ischemic brain damage.

    Science.gov (United States)

    Zhu, Huan; Qiao, Lixing; Sun, Yao; Yin, Liping; Huang, Li; Jiang, Li; Li, Jiaqing

    2018-04-23

    Perinatal hypoxic-ischemic insult is considered a major contributor to child mortality and morbidity and leads to neurological deficits in newborn infants. There has been a lack of promising neurotherapeutic interventions for hypoxic-ischemic brain damage (HIBD) for clinical application in infants. The present study aimed to investigate the correlation between neurogenesis and basic fibroblast growth factor (bFGF) in the hippocampal dentate gyrus (DG) region in neonatal rats following HIBD. Cell proliferation was examined by detecting BrdU signals, and the role of bFGF in cell proliferation in the DG region following neonatal HIBD was investigated. Cell proliferation was induced by HIBD in the hippocampal DG of neonatal rats. Furthermore, bFGF gene expression was upregulated in the hippocampus in neonatal rats, particularly between 7 and 14 days after HIBD. Moreover, intraperitoneal injection of exogenous bFGF enhanced cell proliferation in the hippocampal DG following neonatal HIBD. Taken together, these data indicate that cell proliferation in the DG could be induced by neonatal HIBD, and bFGF promotes proliferation following neonatal HIBD. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Effectiveness of a Computer-Based Training Program of Attention and Memory in Patients with Acquired Brain Damage.

    Science.gov (United States)

    Fernandez, Elizabeth; Bergado Rosado, Jorge A; Rodriguez Perez, Daymi; Salazar Santana, Sonia; Torres Aguilar, Maydane; Bringas, Maria Luisa

    2017-12-30

    Many training programs have been designed using modern software to restore the impaired cognitive functions in patients with acquired brain damage (ABD). The objective of this study was to evaluate the effectiveness of a computer-based training program of attention and memory in patients with ABD, using a two-armed parallel group design, where the experimental group ( n = 50) received cognitive stimulation using RehaCom software, and the control group ( n = 30) received the standard cognitive stimulation (non-computerized) for eight weeks. In order to assess the possible cognitive changes after the treatment, a post-pre experimental design was employed using the following neuropsychological tests: Wechsler Memory Scale (WMS) and Trail Making test A and B. The effectiveness of the training procedure was statistically significant ( p < 0.05) when it established the comparison between the performance in these scales, before and after the training period, in each patient and between the two groups. The training group had statistically significant ( p < 0.001) changes in focused attention (Trail A), two subtests (digit span and logical memory), and the overall score of WMS. Finally, we discuss the advantages of computerized training rehabilitation and further directions of this line of work.

  13. The effectiveness of training intellectual functions in adults with acquired brain damage. An evaluation of occupational therapy methods.

    Science.gov (United States)

    Söderback, I

    1988-01-01

    The purpose of this study was to evaluate the effectiveness and maintenance of occupational therapy training of intellectual functions. Gain in generalization, by which is meant the transfer of newly-learned skills to novel but appropriate tasks, was also studied. Sixty-seven patients with acquired brain damage underwent 14 weeks of training in one of the following four groups, to which selection was randomized: Intellectual Function Training (IFT) plus a regular rehabilitation programme (R) (n = 15), Intellectual Housework Training (IHT) plus R (n = 19), and IFT + IHT + R (n = 15). The fourth group, which received regular rehabilitation only (R) (n = 18) was the control. A four-group, pretest-posttest, follow-up, controlled experimental test design was adopted. The training result was assessed with the Intellectual Function Assessment (IFA), the Intellectual Housework Assessment (IHA) and 15 psychometric tests. Comparison between the IFT, the IHT and the IFT + IHT groups respectively and the R group indicated some areas of function where individualized intellectual training was more effective than a regular rehabilitation programme of occupational therapy. The development of intellectual functions within each group was obvious in most areas, but less so within the R group than in the others. The maintenance of training effects could not be demonstrated satisfactorily. Generalization gains were demonstrated in 4/5 "theoretical" intellectual functional areas assessed with IFA, and in 3/7 "practical" intellectual functional areas assessed with IHA.

  14. Elevated metals compromise repair of oxidative DNA damage via the base excision repair pathway: implications of pathologic iron overload in the brain on integrity of neuronal DNA.

    Science.gov (United States)

    Li, Hui; Swiercz, Rafal; Englander, Ella W

    2009-09-01

    Tissue-specific iron content is tightly regulated to simultaneously satisfy specialized metabolic needs and avoid cytotoxicity. In the brain, disruption of iron homeostasis may occur in acute as well as progressive injuries associated with neuronal dysfunction and death. We hypothesized that adverse effects of disrupted metal homeostasis on brain function may involve impairment of DNA repair processes. Because in the brain, the base excision repair (BER) pathway is central for handling oxidatively damaged DNA, we investigated effects of elevated iron and zinc on key BER enzymes. In vitro DNA repair assays revealed inhibitory effects of metals on BER activities, including the incision of abasic sites, 5'-flap cleavage, gap filling DNA synthesis and ligation. Using the comet assay, we showed that while metals at concentrations which inhibit BER activities in in vitro assays, did not induce direct genomic damage in cultured primary neurons, they significantly delayed repair of genomic DNA damage induced by sublethal exposure to H(2)O(2). Thus, in the brain even a mild transient metal overload, may adversely affect the DNA repair capacity and thereby compromise genomic integrity and initiate long-term deleterious sequelae including neuronal dysfunction and death.

  15. Elevated metals compromise repair of oxidative DNA damage via the base excision repair pathway: implications of pathologic iron-overload in the brain on integrity of neuronal DNA

    Science.gov (United States)

    Li, Hui; Swiercz, Rafal; Englander, Ella W.

    2009-01-01

    Tissue-specific iron content is tightly regulated to simultaneously satisfy specialized metabolic needs and avoid cytotoxicity. In the brain, disruption of iron homeostasis may occur in acute as well as progressive injuries associated with neuronal dysfunction and death. We hypothesized that adverse effects of disrupted metal homeostasis on brain function may involve impairment of DNA repair processes. Since in the brain, the base excision repair (BER) pathway is central for handling oxidatively damaged DNA, we investigated effects of elevated iron and zinc on key BER enzymes. In vitro DNA repair assays revealed inhibitory effects of metals on BER activities, including the incision of abasic sites, 5’-flap cleavage, gap filling DNA synthesis and ligation. Using the comet assay, we showed that while metals at concentrations, which inhibit BER activities in in vitro assays, do not induce direct genomic damage in cultured primary neurons, they significantly delay repair of genomic DNA damage induced by sub-lethal exposure to H2O2. Thus, in the brain even a mild transient metal overload, may adversely affect the DNA repair capacity and thereby compromise genomic integrity and initiate long-term deleterious sequelae including neuronal dysfunction and death. PMID:19619136

  16. Pharmacological targeting of secondary brain damage following ischemic or hemorrhagic stroke, traumatic brain injury, and bacterial meningitis - a systematic review and meta-analysis.

    Science.gov (United States)

    Beez, Thomas; Steiger, Hans-Jakob; Etminan, Nima

    2017-12-07

    The effectiveness of pharmacological strategies exclusively targeting secondary brain damage (SBD) following ischemic stroke, aneurysmal subarachnoid hemorrhage, aSAH, intracerebral hemorrhage (ICH), traumatic brain injury (TBI) and bacterial meningitis is unclear. This meta-analysis studied the effect of SBD targeted treatment on clinical outcome across the pathological entities. Randomized, controlled, double-blinded trials on aforementioned entities with 'death' as endpoint were identified. Effect sizes were analyzed and expressed as pooled risk ratio (RR) estimates with 95% confidence intervals (CI). 123 studies fulfilled the criteria, with data on 66,561 patients. In the pooled analysis, there was a minor reduction of mortality for aSAH [RR 0.93 (95% CI:0.85-1.02)], ICH [RR 0.92 (95% CI:0.82-1.03)] and bacterial meningitis [RR 0.86 (95% CI:0.68-1.09)]. No reduction of mortality was found for ischemic stroke [RR 1.05 (95% CI:1.00-1.11)] and TBI [RR 1.03 (95% CI:0.93-1.15)]. Additional analysis of "poor outcome" as endpoint gave similar results. Subgroup analysis with respect to effector mechanisms showed a tendency towards a reduced mortality for the effector mechanism category "oxidative metabolism/stress" for aSAH with a risk ratio of 0.86 [95% CI: 0.73-1.00]. Regarding specific medications, a statistically significant reduction of mortality and poor outcome was confirmed only for nimodipine for aSAH and dexamethasone for bacterial meningitis. Our results show that only a few selected SBD directed medications are likely to reduce the rate of death and poor outcome following aSAH, and bacterial meningitis, while no convincing evidence could be found for the usefulness of SBD directed medications in ischemic stroke, ICH and TBI. However, a subtle effect on good or excellent outcome might remain undetected. These results should lead to a new perspective of secondary reactions following cerebral injury. These processes should not be seen as suicide mechanisms

  17. The Effects of Wenxin Keli on Left Ventricular Ejection Fraction and Brain Natriuretic Peptide in Patients with Heart Failure: A Meta-Analysis of Randomized Controlled Trials

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2014-01-01

    Full Text Available Objective. To evaluate the beneficial and adverse effects of Wenxin Keli (WXKL, either alone or in combination with Western medicine, on the left ventricular ejection fraction (LVEF and plasma brain natriuretic peptide (BNP in the treatment of heart failure (HF. Methods. Seven major electronic databases were searched to retrieve potential randomized controlled trials (RCTs designed to evaluate the clinical effectiveness of WXKL, either alone or in combination with Western medicine, for HF, with the LVEF or BNP after eight weeks of treatment as main outcome measures. The methodological quality of the included studies was assessed using criteria from the Cochrane Handbook for Systematic Review of Interventions, Version 5.1.0, and analyzed using RevMan 5.1.0 software. Results. Eleven RCTs of WXKL were included. The methodological quality of the trials was generally evaluated as low. The risk of bias was high. The results of the meta-analysis showed that WXKL, either alone or in combination with Western medicine, was more effective in LVEF and BNP, compared with no medicine or Western medicine alone, in patients with HF or HF complicated by other diseases. Five of the trials reported adverse events, while the others did not mention them, indicating that the safety of WXKL remains uncertain. Conclusions. WXKL, either alone or in combination with Western medicine, appears to be more effective in improving the LVEF and BNP in patients with HF and HF complications.

  18. Asymmetry and symmetry in brain waves from dolphin left and right hemispheres: some observations after anesthesia, during quiescent hanging behavior, and during visual obstruction.

    Science.gov (United States)

    Ridgway, S H

    2002-01-01

    Studies of sleep in cetaceans (whales, dolphins, and porpoises), substantiated by electrophysiological data, are rare with the great majority of observations having been made by one group from Russia. This group employed hard-wired recording with low-noise cables for their EEG observations, whereas our report describes behavioral and EEG observations of dolphin sleep using telemetry. Marked asymmetry of the EEG was observed during behavioral sleep posture. At different times synchronized slow waves appeared in both left and right brain hemispheres concurrently with lower voltage, faster, desynchronized EEG activity in the opposite hemisphere. On the other hand, during one brief period of sleep behavior, sleep-like EEG activity appeared on leads from both hemispheres. When the animal was exposed to a loud sound, it woke with lower voltage, faster, relatively symmetrical, desynchronized EEG activity appearing from both hemispheres. Additionally, the EEG appeared relatively desynchronized and symmetrical between the two hemispheres when the animal was awake during recovery from pentothal-halothane anesthesia as well as during waking periods when one or both of the animal's eyes were covered by an opaque rubber suction cup. Copyright 2002 S. Karger AG, Basel

  19. Retinal nerve fibre layer thickness correlates with brain white matter damage in multiple sclerosis: a combined optical coherence tomography and diffusion tensor imaging study.

    Science.gov (United States)

    Scheel, Michael; Finke, Carsten; Oberwahrenbrock, Timm; Freing, Alina; Pech, Luisa-Maria; Schlichting, Jeremias; Sömmer, Carina; Wuerfel, Jens; Paul, Friedemann; Brandt, Alexander U

    2014-12-01

    We investigated the association of retinal nerve fibre layer thickness (RNFL) with white matter damage assessed by diffusion tensor imaging (DTI). Forty-four MS patients and 30 healthy subjects underwent optical coherence tomography. DTI was analysed with a voxel-based whole brain and region-based analysis of optic radiation, corpus callosum and further white matter. Correlations between RNFL, fractional anisotropy (FA) and other DTI-based parameters were assessed in patients and controls. RNFL correlated with optic radiation FA, but also with corpus callosum and remaining white matter FA. Our findings demonstrate that RNFL changes indicate white matter damage exceeding the visual pathway. © The Author(s), 2014.

  20. Efficient visual object and word recognition relies on high spatial frequency coding in the left posterior fusiform gyrus: evidence from a case-series of patients with ventral occipito-temporal cortex damage.

    Science.gov (United States)

    Roberts, Daniel J; Woollams, Anna M; Kim, Esther; Beeson, Pelagie M; Rapcsak, Steven Z; Lambon Ralph, Matthew A

    2013-11-01

    Recent visual neuroscience investigations suggest that ventral occipito-temporal cortex is retinotopically organized, with high acuity foveal input projecting primarily to the posterior fusiform gyrus (pFG), making this region crucial for coding high spatial frequency information. Because high spatial frequencies are critical for fine-grained visual discrimination, we hypothesized that damage to the left pFG should have an adverse effect not only on efficient reading, as observed in pure alexia, but also on the processing of complex non-orthographic visual stimuli. Consistent with this hypothesis, we obtained evidence that a large case series (n = 20) of patients with lesions centered on left pFG: 1) Exhibited reduced sensitivity to high spatial frequencies; 2) demonstrated prolonged response latencies both in reading (pure alexia) and object naming; and 3) were especially sensitive to visual complexity and similarity when discriminating between novel visual patterns. These results suggest that the patients' dual reading and non-orthographic recognition impairments have a common underlying mechanism and reflect the loss of high spatial frequency visual information normally coded in the left pFG.

  1. Attenuation of the bacterial load in blood by pretreatment with granulocyte-colony-stimulating factor protects rats from fatal outcome and brain damage during Streptococcus pneumoniae meningitis

    DEFF Research Database (Denmark)

    Brandt, Christian T; Lundgren, Jens D; Lund, Søren Peter

    2004-01-01

    boosting of the peripheral neutrophil count affected the outcome of the meningitis. The risk of terminal illness over the first 7 days after infection was significantly reduced for rats who had elevated peripheral white blood cell counts after receiving granulocyte-colony-stimulating factor (G-CSF) prior...... postinfection did not alter the clinical or histological outcome relative to that for non-G-CSF-treated rats. The magnitude of bacteremia and pretreatment with G-CSF were found to be prognostic factors for both outcome and brain damage. In summary, elevated neutrophil levels prior to the development...... of meningitis result in reduced risks of death and brain damage. This beneficial effect is most likely achieved through improved control of the systemic disease....

  2. Moderately delayed post-insult treatment with normobaric hyperoxia reduces excitotoxin-induced neuronal degeneration but increases ischemia-induced brain damage

    Directory of Open Access Journals (Sweden)

    Haelewyn Benoit

    2011-04-01

    Full Text Available Abstract Background The use and benefits of normobaric oxygen (NBO in patients suffering acute ischemic stroke is still controversial. Results Here we show for the first time to the best of our knowledge that NBO reduces both NMDA-induced calcium influxes in vitro and NMDA-induced neuronal degeneration in vivo, but increases oxygen and glucose deprivation-induced cell injury in vitro and ischemia-induced brain damage produced by middle cerebral artery occlusion in vivo. Conclusions Taken together, these results indicate that NBO reduces excitotoxin-induced calcium influx and subsequent neuronal degeneration but favors ischemia-induced brain damage and neuronal death. These findings highlight the complexity of the mechanisms involved by the use of NBO in patients suffering acute ischemic stroke.

  3. Attenuation of the bacterial load in blood by pretreatment with granulocyte-colony-stimulating factor protects rats from fatal outcome and brain damage during Streptococcus pneumoniae meningitis

    DEFF Research Database (Denmark)

    Brandt, Christian T; Lundgren, Jens D; Lund, Søren Peter

    2004-01-01

    A model of pneumococcal meningitis in young adult rats receiving antibiotics once the infection was established was developed. The intent was to mimic clinical and histopathological features of pneumococcal meningitis in humans. The primary aim of the present study was to evaluate whether medical...... of meningitis result in reduced risks of death and brain damage. This beneficial effect is most likely achieved through improved control of the systemic disease....

  4. Visualizing brain damage

    NARCIS (Netherlands)

    Korf, J

    Modern neuroimaging technology allows to Study degenerative processes in vivo and has been applied to several clinical conditions. The purpose of the present contribution is to summarize the potential of positron and single photon emission tomography (PET and SPECT, resp.), imaging, spectroscopy,

  5. Diminished experience-dependent neuroanatomical plasticity: evidence for an improved biomarker of subtle neurotoxic damage to the developing rat brain.

    OpenAIRE

    Wallace, Christopher S; Reitzenstein, Jonathon; Withers, Ginger S

    2003-01-01

    Millions of children are exposed to low levels of environmental neurotoxicants as their brains are developing. Conventional laboratory methods of neurotoxicology can detect maldevelopment of brain structure but are not designed to detect maldevelopment of the brain's capacity for plasticity that could impair learning throughout life. The environmental complexity (EC) paradigm has become classic for demonstrating the modifications in brain structure that occur in response to experience and thu...

  6. Assessment of Radiation-Attenuated Vaccine or Thyme Oil Treatment on Controlling DNA Damage and Nitric Oxide Synthesis in Brain of Rat Infected with Toxocara canis

    International Nuclear Information System (INIS)

    Amin, M.M.; Hafez, E.N.; Abd Raboo, M.A.

    2016-01-01

    Toxocara canis is a worldwide zoonotic roundworm that infects a number of hosts including humans. It exhibits marked affinity to the nervous tissues. This study deals with the changes in the brain of Toxocara canis infected rats regarding parasitological, nitric oxide (NO) level and DNA damage compared to the effect of vaccination with gamma radiation-attenuated embryonated egg or thyme oil treatment. Eighty rats were classified into four groups (twenty each): GI (normal control); GII infected with 2500 T. canis infective eggs/ml/rat (infected control); GIII vaccinated with 800 Gy gamma-attenuated embryonated eggs (vaccinated group) and GIV infected with 2500 T. canis eggs and treated with thyme oil (thyme treated group). At the 14th day post-infection, ten rats from each group were sacrificed and the remaining were re-infected (challenged) with the same number of eggs. At the 14th days post challenge, brain tissues were taken for larval recovery, nitric oxide level evaluation and DNA damage using fragmentation and comet assay. The results exhibited a significant decrease in larval count and nitric oxide level with less damage in brain cells in thyme treated and gamma radiation-attenuated vaccinated groups compared to control infected group. It is also, concluded that vaccination using γ- rays is more effective in protection compared to using thyme oil.

  7. Polydatin attenuates d-galactose-induced liver and brain damage through its anti-oxidative, anti-inflammatory and anti-apoptotic effects in mice.

    Science.gov (United States)

    Xu, Lie-Qiang; Xie, You-Liang; Gui, Shu-Hua; Zhang, Xie; Mo, Zhi-Zhun; Sun, Chao-Yue; Li, Cai-Lan; Luo, Dan-Dan; Zhang, Zhen-Biao; Su, Zi-Ren; Xie, Jian-Hui

    2016-11-09

    Accumulating evidence has shown that chronic injection of d-galactose (d-gal) can mimic natural aging, with accompanying liver and brain injury. Oxidative stress and apoptosis play a vital role in the aging process. In this study, the antioxidant ability of polydatin (PD) was investigated using four established in vitro systems. An in vivo study was also conducted to investigate the possible protective effect of PD on d-gal-induced liver and brain damage. The results showed that PD had remarkable in vitro free radical scavenging activity on 2,2-diphenyl-1-picryl-hydrazyl (DPPH˙), 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS + ˙) radical ions, and hydroxyl and superoxide anions. Results in vivo indicated that, in a group treated with d-gal plus PD, PD remarkably decreased the depression of body weight and organ indexes, reduced the levels of the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and alleviated alterations in liver and brain histopathology. PD also significantly decreased the level of MDA and elevated SOD, GSH-Px, CAT activity and T-AOC levels in the liver and brain. In addition, the levels of inflammatory mediators, such as TNF-α, IL-1β and IL-6 in serum were markedly reduced after PD treatment. Western blotting results revealed that PD treatment noticeably attenuated the d-gal-induced elevation of Bcl-2/Bax ratio and caspase-3 protein expression in liver and brain. Overall, our findings indicate that PD treatment could effectively attenuate d-gal-induced liver and brain damage, and the mechanism might be associated with decreasing the oxidative stress, inflammation and apoptosis caused by d-gal. PD holds good potential for further development into a promising pharmaceutical candidate for the treatment of age-associated diseases.

  8. Middle latency auditory-evoked potential index monitoring of cerebral function to predict functional outcome after emergency craniotomy in patients with brain damage.

    Science.gov (United States)

    Tsurukiri, Junya; Nagata, Katsuhiro; Hoshiai, Akira; Oomura, Taishi; Jimbo, Hiroyuki; Ikeda, Yukio

    2015-10-20

    At present, no satisfactory reports on the monitoring of cerebral function to predict functional outcomes after brain damage such as traumatic brain injury (TBI) and stroke. The middle latency auditory-evoked potential index (MLAEPi) monitor (aepEX plus®, Audiomex, UK) is a mobile MLAEP monitor measuring the degree of consciousness that is represented by numerical values. Hence, we hypothesized that MLAEPi predicts neurological outcome after emergency craniotomy among patients with disturbance of consciousness (DOC), which was caused by brain damage. The afore-mentioned patients who underwent emergency craniotomy within 12 h of brain damage and were subsequently monitored using MLAEPi were enrolled in this study. DOC was defined as an initial Glasgow Coma Scale score craniotomy. Neurological outcome was evaluated before discharge using a cerebral performance category (CPC) score and classified into three groups: favorable outcome group for a CPC score of 1 or 2, unfavorable outcome group for a score of 3 or 4, and brain dead (BD) group for a score of 5. Thirty-two patients were included in this study (17 with TBIs and 15 with acute stroke). Regarding outcome, 10 patients had a favorable outcome, 15 had an unfavorable outcome, and 7 were pronounced BD. MLAEPi was observed to be significantly higher on day 5 than that observed immediately after craniotomy in cases of favorable or unfavorable outcome (63 ± 3.5 vs. 36 ± 2.5 in favorable outcome; 63 ± 3.5 vs. 34 ± 1.8 in unfavorable outcome). MLAEPi was significantly lower in BD patients than in those with a favorable or unfavorable outcome on day 3 (24 ± 4.2 in BD vs. 52 ± 5.2 and 45 ± 2.7 in favorable and unfavorable outcome, respectively) and after day 4. MLAEPi was significantly higher in patients with a favorable outcome than in those with a favorable or unfavorable outcome after day 6 (68 ± 2.3 in favorable outcome vs. 48 ± 2.3 in unfavorable outcome). We believe that MLAEPi satisfactorily denotes

  9. Effects of Cannabidiol and Hypothermia on Short-Term Brain Damage in New-Born Piglets after Acute Hypoxia-Ischemia.

    Science.gov (United States)

    Lafuente, Hector; Pazos, Maria R; Alvarez, Antonia; Mohammed, Nagat; Santos, Martín; Arizti, Maialen; Alvarez, Francisco J; Martinez-Orgado, Jose A

    2016-01-01

    Hypothermia is a standard treatment for neonatal encephalopathy, but nearly 50% of treated infants have adverse outcomes. Pharmacological therapies can act through complementary mechanisms with hypothermia improving neuroprotection. Cannabidiol could be a good candidate. Our aim was to test whether immediate treatment with cannabidiol and hypothermia act through complementary brain pathways in hypoxic-ischemic newborn piglets. Hypoxic-ischemic animals were randomly divided into four groups receiving 30 min after the insult: (1) normothermia and vehicle administration; (2) normothermia and cannabidiol administration; (3) hypothermia and vehicle administration; and (4) hypothermia and cannabidiol administration. Six hours after treatment, brains were processed to quantify the number of damaged neurons by Nissl staining. Proton nuclear magnetic resonance spectra were obtained and analyzed for lactate, N-acetyl-aspartate and glutamate. Metabolite ratios were calculated to assess neuronal damage (lactate/N-acetyl-aspartate) and excitotoxicity (glutamate/Nacetyl-aspartate). Western blot studies were performed to quantify protein nitrosylation (oxidative stress), content of caspase-3 (apoptosis) and TNFα (inflammation). Individually, the hypothermia and the cannabidiol treatments reduced the glutamate/Nacetyl-aspartate ratio, as well as TNFα and oxidized protein levels in newborn piglets subjected to hypoxic-ischemic insult. Also, both therapies reduced the number of necrotic neurons and prevented an increase in lactate/N-acetyl-aspartate ratio. The combined effect of hypothermia and cannabidiol on excitotoxicity, inflammation and oxidative stress, and on cell damage, was greater than either hypothermia or cannabidiol alone. The present study demonstrated that cannabidiol and hypothermia act complementarily and show additive effects on the main factors leading to hypoxic-ischemic brain damage if applied shortly after the insult.

  10. Effects of Cannabidiol and Hypothermia on Short-Term Brain Damage in New-Born Piglets after Acute Hypoxia-Ischemia

    Science.gov (United States)

    Lafuente, Hector; Pazos, Maria R.; Alvarez, Antonia; Mohammed, Nagat; Santos, Martín; Arizti, Maialen; Alvarez, Francisco J.; Martinez-Orgado, Jose A.

    2016-01-01

    Hypothermia is a standard treatment for neonatal encephalopathy, but nearly 50% of treated infants have adverse outcomes. Pharmacological therapies can act through complementary mechanisms with hypothermia improving neuroprotection. Cannabidiol could be a good candidate. Our aim was to test whether immediate treatment with cannabidiol and hypothermia act through complementary brain pathways in hypoxic-ischemic newborn piglets. Hypoxic-ischemic animals were randomly divided into four groups receiving 30 min after the insult: (1) normothermia and vehicle administration; (2) normothermia and cannabidiol administration; (3) hypothermia and vehicle administration; and (4) hypothermia and cannabidiol administration. Six hours after treatment, brains were processed to quantify the number of damaged neurons by Nissl staining. Proton nuclear magnetic resonance spectra were obtained and analyzed for lactate, N-acetyl-aspartate and glutamate. Metabolite ratios were calculated to assess neuronal damage (lactate/N-acetyl-aspartate) and excitotoxicity (glutamate/Nacetyl-aspartate). Western blot studies were performed to quantify protein nitrosylation (oxidative stress), content of caspase-3 (apoptosis) and TNFα (inflammation). Individually, the hypothermia and the cannabidiol treatments reduced the glutamate/Nacetyl-aspartate ratio, as well as TNFα and oxidized protein levels in newborn piglets subjected to hypoxic-ischemic insult. Also, both therapies reduced the number of necrotic neurons and prevented an increase in lactate/N-acetyl-aspartate ratio. The combined effect of hypothermia and cannabidiol on excitotoxicity, inflammation and oxidative stress, and on cell damage, was greater than either hypothermia or cannabidiol alone. The present study demonstrated that cannabidiol and hypothermia act complementarily and show additive effects on the main factors leading to hypoxic-ischemic brain damage if applied shortly after the insult. PMID:27462203

  11. Dapsone improves functional deficit and diminishes brain damage evaluated by 3-Tesla magnetic resonance image after transient cerebral ischemia and reperfusion in rats.

    Science.gov (United States)

    Diaz-Ruiz, Araceli; Roldan-Valadez, Ernesto; Ortiz-Plata, Alma; Mondragón-Lozano, Rodrigo; Heras-Romero, Yessica; Mendez-Armenta, Marisela; Osorio-Rico, Laura; Nava-Ruiz, Concepción; Ríos, Camilo

    2016-09-01

    Stroke is a frequent cause of death and the first of disability in the world population. We have shown that dapsone acts as an antioxidant, antiinflammatory and antiapoptotic agent after brain Ischemia reperfusion (I/R) in rats; however, its therapeutic efficacy, measured by imaging has not been characterized. In this context, the aim of this study was to evaluate the neuroprotective effect of dapsone by magnetic resonance imaging (MRI) and to correlate imaging markers with motor function and oxidative stress after transient cerebral ischemia and reperfusion (I/R). We used male rats throughout the experiment. Functional deficit after I/R was assessed by using Longa scale. The area of brain tissue damage was measured by histology. The nuclear factor erythroid 2-related factor 2 (Nrf-2) and the amount of reactive oxygen species (ROS) were measured as biomarkers of oxidative stress. Finally, difussion tensor MRI was employed to measure the fractional anisotropy (FA), as a MRI marker of the pathophysiologic brain status. Results showed a better functional recovery and less damaged tissue in animals treated with dapsone vs control group. The values of FA were higher in animals receiving treatment, indicating a better preservation of brain structure. At early stages of the damage, dapsone was able to reduce both oxidative markers (Nrf-2 and ROS). Our findings provide new evidence for the efficacy of dapsone when administered during the acute phase after I/R and that quantitative sequences of MRI are useful for characterizing its potential therapeutic benefits after stroke. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. High prevalence of early hypothalamic-pituitary damage in childhood brain tumor survivors: need for standardized follow-up programs

    NARCIS (Netherlands)

    Clement, Sarah C.; Meeteren, Antoinette Y. N. Schouten-van; Kremer, Leontien C. M.; van Trotsenburg, A. S. Paul; Caron, Huib N.; van Santen, Hanneke M.

    2014-01-01

    Childhood brain tumor survivors (CBTS) are at increased risk to develop endocrine disorders. Alerted by two cases who experienced delay in diagnosis of endocrine deficiencies within the first 5 years after brain tumor diagnosis, our aim was to investigate the current screening strategy and the

  13. The relationship between emotion regulation capacity, heart rate variability, and quality of life in individuals with alcohol-related brain damage

    Directory of Open Access Journals (Sweden)

    Steinmetz JP

    2016-08-01

    Full Text Available Jean-Paul Steinmetz,1,2 Claus Vögele,3,4 Christiane Theisen-Flies,5 Carine Federspiel,1,2 Stefan Sütterlin6,7 1Department of Research and Development, ZithaSenior, 2Centre for Memory and Mobility, ZithaSenior, 3Institute for Health and Behaviour, Integrative Research Unit on Social and Individual Development (INSIDE, University of Luxembourg, Luxembourg; 4Research Group Health Psychology, University of Leuven, Leuven, Belgium; 5Home St Joseph, ZithaSenior, Luxembourg; 6Department of Psychology, Lillehammer University College, Lillehammer, 7Division of Surgery and Clinical Neuroscience, Department of Psychosomatic Medicine, Oslo University Hospital – Rikshospitalet, Oslo, Norway Abstract: The reliable measurement of quality of life (QoL presents a challenge in individuals with alcohol-related brain damage. This study investigated vagally mediated heart rate variability (vmHRV as a physiological predictor of QoL. Self- and proxy ratings of QoL and dysexecutive symptoms were collected once, while vmHRV was repeatedly assessed over a 3-week period at weekly intervals in a sample of nine alcohol-related brain damaged patients. We provide robustness checks, bootstrapped correlations with confidence intervals, and standard errors for mean scores. We observed low to very low heart rate variability scores in our patients in comparison to norm values found in healthy populations. Proxy ratings of the QoL scale “subjective physical and mental performance” and everyday executive dysfunctions were strongly related to vmHRV. Better proxy-rated QoL and fewer dysexecutive symptoms were observed in those patients with higher vmHRV. Overall, patients showed low parasympathetic activation favoring the occurrence of dysfunctional emotion regulation strategies. Keywords: heart rate variability, emotion regulation, alcohol-related brain damage, quality of life

  14. Metallic gold reduces TNFalpha expression, oxidative DNA damage and pro-apoptotic signals after experimental brain injury

    DEFF Research Database (Denmark)

    Pedersen, Mie Ostergaard; Larsen, Agnete; Pedersen, Dan Sonne

    2009-01-01

    -45 microm in size or the vehicle (placebo) were implanted in the cortical tissue followed by a cortical freeze-lesioning. At 1-2 weeks post-injury, brains were analyzed by using immunohistochemistry and markers of inflammation, oxidative stress and apoptosis. This study shows that gold treatment......Brain injury represents a major health problem and may result in chronic inflammation and neurodegeneration. Due to antiinflammatory effects of gold, we have investigated the cerebral effects of metallic gold particles following a focal brain injury (freeze-lesion) in mice. Gold particles 20...

  15. Brain Tissues Oxidative Damage as a Possible Mechanism of Deleterious Effects of Propylthiouracil- Induced Hypothyroidism on Learning and Memory in Neonatal and Juvenile Growth in Rats

    Directory of Open Access Journals (Sweden)

    Esmeil Farrokhi

    2014-11-01

    randomly selected and tested in the Morris water maze (MWM. Then, samples of blood were collected to measure thyroxine. Finally, the brains were removed and total thiol groups and molondialdehyde (MDA concentrations were determined. Results: Compared to the control group’s offspring, serum thyroxine levels in the PTU group’s off spring were significantly low (P<0.001. In MWM, the escape latency and traveled path in the PTU group were significantly higher than that in the control group (P<0.01- P<0.001. In PTU group, the total thiol concentrations in both cortical and hippocampal tissues were significantly lower and MDA concentrations were higher than control group (P<0.001. Discussion: It seems that deleterious effect of hypothyroidism during neonatal and juvenile growth on learning and memory is at least in part due to brain tissues oxidative damage.

  16. A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage

    DEFF Research Database (Denmark)

    Bach, Anders*; Clausen, Bettina H; Møller, Magda

    2012-01-01

    Inhibition of the ternary protein complex of the synaptic scaffolding protein postsynaptic density protein-95 (PSD-95), neuronal nitric oxide synthase (nNOS), and the N-methyl-d-aspartate (NMDA) receptor is a potential strategy for treating ischemic brain damage, but high-affinity inhibitors are ...... of Tat-N-dimer (3 nmol/g) to mice subjected to focal cerebral ischemia reduces infarct volume with 40% and restores motor functions. Thus, Tat-N-dimer is a highly efficacious neuroprotective agent with therapeutic potential in stroke....

  17. Assessment of functional and structural damage in brain parenchyma in patients with vitamin B12 deficiency: A longitudinal perfusion and diffusion tensor imaging study.

    Science.gov (United States)

    Roy, Bhaswati; Trivedi, Richa; Garg, Ravindra K; Gupta, Pradeep K; Tyagi, Ritu; Gupta, Rakesh K

    2015-06-01

    Vitamin B12 deficiency may cause neural tissue damage. Even in advanced stages, conventional imaging of brain usually appears normal in vitamin B12 deficient patients. The aim of this study was to assess the structural and functional changes in brain of patients with vitamin B12 deficiency before and after six weeks of vitamin B12 supplementation using diffusion tensor imaging and pseudo-continuous arterial spin labelling (PCASL). MR imaging including DTI and PCASL and neuropsychological tests (NPT) were performed in 16 patients with vitamin B12 deficiency and 16 controls before and after 6weeks of therapy. Cerebral blood flow (CBF) derived from PCASL and DTI indices was calculated in brain of patients with vitamin B12 deficiency and controls. Patient with vitamin B12 deficiency showed altered neuropsychological scores and altered CBF as well as fractional anisotropy (FA) values in various brain regions as compared with controls. Both CBF values and neuropsychological scores showed complete reversibility at 6weeks post therapy. Though FA values showed significant recovery, it failed to show complete recovery. Our results suggest that micro-structural recovery lags behind functional recovery in patients with vitamin B12 deficiency following therapy and CBF change may be used as an early predictor of complete recovery in patients with B12 deficiency. Copyright © 2015. Published by Elsevier Inc.

  18. Involvement of the JNK/FOXO3a/Bim Pathway in Neuronal Apoptosis after Hypoxic-Ischemic Brain Damage in Neonatal Rats.

    Directory of Open Access Journals (Sweden)

    Deyuan Li

    Full Text Available c-Jun N-terminal kinase (JNK plays a key role in the regulation of neuronal apoptosis. Previous studies have revealed that forkhead transcription factor (FOXO3a is a critical effector of JNK-mediated tumor suppression. However, it is not clear whether the JNK/FOXO3a pathway is involved in neuronal apoptosis in the developing rat brain after hypoxia-ischemia (HI. In this study, we generated an HI model using postnatal day 7 rats. Fluorescence immunolabeling and Western blot assays were used to detect the distribution and expression of total and phosphorylated JNK and FOXO3a and the pro-apoptotic proteins Bim and CC3. We found that JNK phosphorylation was accompanied by FOXO3a dephosphorylation, which induced FOXO3a translocation into the nucleus, resulting in the upregulation of levels of Bim and CC3 proteins. Furthermore, we found that JNK inhibition by AS601245, a specific JNK inhibitor, significantly increased FOXO3a phosphorylation, which attenuated FOXO3a translocation into the nucleus after HI. Moreover, JNK inhibition downregulated levels of Bim and CC3 proteins, attenuated neuronal apoptosis and reduced brain infarct volume in the developing rat brain. Our findings suggest that the JNK/FOXO3a/Bim pathway is involved in neuronal apoptosis in the developing rat brain after HI. Agents targeting JNK may offer promise for rescuing neurons from HI-induced damage.

  19. Nrf2-ARE activator carnosic acid decreases mitochondrial dysfunction, oxidative damage and neuronal cytoskeletal degradation following traumatic brain injury in mice.

    Science.gov (United States)

    Miller, Darren M; Singh, Indrapal N; Wang, Juan A; Hall, Edward D

    2015-02-01

    The importance of free radical-induced oxidative damage after traumatic brain injury (TBI) has been well documented. Despite multiple clinical trials with radical-scavenging antioxidants that are neuroprotective in TBI models, none is approved for acute TBI patients. As an alternative antioxidant target, Nrf2 is a transcription factor that activates expression of antioxidant and cytoprotective genes by binding to antioxidant response elements (AREs) within DNA. Previous research has shown that neuronal mitochondria are susceptible to oxidative damage post-TBI, and thus the current study investigates whether Nrf2-ARE activation protects mitochondrial function when activated post-TBI. It was hypothesized that administration of carnosic acid (CA) would reduce oxidative damage biomarkers in the brain tissue and also preserve cortical mitochondrial respiratory function post-TBI. A mouse controlled cortical impact (CCI) model was employed with a 1.0mm cortical deformation injury. Administration of CA at 15 min post-TBI reduced cortical lipid peroxidation, protein nitration, and cytoskeletal breakdown markers in a dose-dependent manner at 48 h post-injury. Moreover, CA preserved mitochondrial respiratory function compared to vehicle animals. This was accompanied by decreased oxidative damage to mitochondrial proteins, suggesting the mechanistic connection of the two effects. Lastly, delaying the initial administration of CA up to 8h post-TBI was still capable of reducing cytoskeletal breakdown, thereby demonstrating a clinically relevant therapeutic window for this approach. This study demonstrates that pharmacological Nrf2-ARE induction is capable of neuroprotective efficacy when administered after TBI. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Ginkgo biloba Extract Prevents Female Mice from Ischemic Brain Damage and the Mechanism Is Independent of the HO1/Wnt Pathway.

    Science.gov (United States)

    Tulsulkar, Jatin; Glueck, Bryan; Hinds, Terry D; Shah, Zahoor A

    2016-04-01

    It is well known that gender differences exist in experimental or clinical stroke with respect to brain damage and loss of functional outcome. We have previously reported neuroprotective properties of Ginkgo biloba/EGb 761® (EGb 761) in transient and permanent mouse models of brain ischemia using male mice, and the mechanism of action was attributed to the upregulation of the heme oxygenase 1 (HO1)/Wnt pathway. Here, we sought to investigate whether EGb 761's protective effect in ovariectomized female mice following stroke is also mediated by the HO1/Wnt pathway. Female mice were ovariectomized (OVX) to remove the protective effect of estrogen and were treated with EGb 761 for 7 days prior to inducing permanent middle cerebral artery occlusion (pMCAO) and allowed to survive for an additional 7 days. At day 8, animals were sacrificed, and the brains were harvested for infarct volume analysis, western blots, and immunohistochemistry. The OVX female mice treated with EGb 761 showed significantly lower infarct size as compared to Veh/OVX animals. EGb 761 treatment in female mice inhibited apoptosis by preventing caspase-3 cleavage and blocking the extrinsic apoptotic pathway. EGb 761 pretreatment significantly enhanced neurogenesis in OVX mice as compared to the Veh/OVX group and significantly upregulated androgen receptor expression with no changes in HO1/Wnt signaling. These results suggest that EGb 761 prevented brain damage in OVX female mice by improving grip strength and neurological deficits, and the mechanism of action is not through HO1/Wnt but via blocking the extrinsic apoptotic pathway.

  1. Bilateral cerebellar and brain stem infarction resulting from vertebral artery injury following cervical trauma without radiographic damage of the spinal column: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Mimata, Yoshikuni; Sato, Kotaro; Suzuki, Yoshiaki [Iwate Prefectural Chubu Hospital, Department of Orthopaedic Surgery, Kitakami (Japan); Murakami, Hideki [Iwate Medical University, Department of Orthopaedic Surgery, School of Medicine, Morioka (Japan)

    2014-01-15

    Vertebral artery injury can be a complication of cervical spine injury. Although most cases are asymptomatic, the rare case progresses to severe neurological impairment and fatal outcomes. We experienced a case of bilateral cerebellar and brain stem infarction with fatal outcome resulting from vertebral artery injury associated with cervical spine trauma. A 69-year-old male was admitted to our hospital because of tetraplegia after falling down the stairs and hitting his head on the floor. Marked bony damage of the cervical spine was not apparent on radiographs and CT scans, so the injury was initially considered to be a cervical cord injury without bony damage. However, an intensity change in the intervertebral disc at C5/C6, and a ventral epidural hematoma were observed on MRI. A CT angiogram of the neck showed the right vertebral artery was completely occluded at the C4 level of the spine. Forty-eight hours after injury, the patient lapsed into drowsy consciousness. The cranial CT scan showed a massive low-density area in the bilateral cerebellar hemispheres and brain stem. Anticoagulation was initiated after a diagnosis of the right vertebral artery injury, but the patient developed bilateral cerebellar and brain stem infarction. The patient's brain herniation progressed and the patient died 52 h after injury. We considered that not only anticoagulation but also treatment for thrombosis would have been needed to prevent cranial embolism. We fully realize that early and appropriate treatment are essential to improve the treatment results, and constructing a medical system with a team of orthopedists, radiologists, and neurosurgeons is also very important. (orig.)

  2. Bilateral cerebellar and brain stem infarction resulting from vertebral artery injury following cervical trauma without radiographic damage of the spinal column: a case report.

    Science.gov (United States)

    Mimata, Yoshikuni; Murakami, Hideki; Sato, Kotaro; Suzuki, Yoshiaki

    2014-01-01

    Vertebral artery injury can be a complication of cervical spine injury. Although most cases are asymptomatic, the rare case progresses to severe neurological impairment and fatal outcomes. We experienced a case of bilateral cerebellar and brain stem infarction with fatal outcome resulting from vertebral artery injury associated with cervical spine trauma. A 69-year-old male was admitted to our hospital because of tetraplegia after falling down the stairs and hitting his head on the floor. Marked bony damage of the cervical spine was not apparent on radiographs and CT scans, so the injury was initially considered to be a cervical cord injury without bony damage. However, an intensity change in the intervertebral disc at C5/C6, and a ventral epidural hematoma were observed on MRI. A CT angiogram of the neck showed the right vertebral artery was completely occluded at the C4 level of the spine. Forty-eight hours after injury, the patient lapsed into drowsy consciousness. The cranial CT scan showed a massive low-density area in the bilateral cerebellar hemispheres and brain stem. Anticoagulation was initiated after a diagnosis of the right vertebral artery injury, but the patient developed bilateral cerebellar and brain stem infarction. The patient's brain herniation progressed and the patient died 52 h after injury. We considered that not only anticoagulation but also treatment for thrombosis would have been needed to prevent cranial embolism. We fully realize that early and appropriate treatment are essential to improve the treatment results, and constructing a medical system with a team of orthopedists, radiologists, and neurosurgeons is also very important.

  3. Bilateral cerebellar and brain stem infarction resulting from vertebral artery injury following cervical trauma without radiographic damage of the spinal column: A case report

    International Nuclear Information System (INIS)

    Mimata, Yoshikuni; Sato, Kotaro; Suzuki, Yoshiaki; Murakami, Hideki

    2014-01-01

    Vertebral artery injury can be a complication of cervical spine injury. Although most cases are asymptomatic, the rare case progresses to severe neurological impairment and fatal outcomes. We experienced a case of bilateral cerebellar and brain stem infarction with fatal outcome resulting from vertebral artery injury associated with cervical spine trauma. A 69-year-old male was admitted to our hospital because of tetraplegia after falling down the stairs and hitting his head on the floor. Marked bony damage of the cervical spine was not apparent on radiographs and CT scans, so the injury was initially considered to be a cervical cord injury without bony damage. However, an intensity change in the intervertebral disc at C5/C6, and a ventral epidural hematoma were observed on MRI. A CT angiogram of the neck showed the right vertebral artery was completely occluded at the C4 level of the spine. Forty-eight hours after injury, the patient lapsed into drowsy consciousness. The cranial CT scan showed a massive low-density area in the bilateral cerebellar hemispheres and brain stem. Anticoagulation was initiated after a diagnosis of the right vertebral artery injury, but the patient developed bilateral cerebellar and brain stem infarction. The patient's brain herniation progressed and the patient died 52 h after injury. We considered that not only anticoagulation but also treatment for thrombosis would have been needed to prevent cranial embolism. We fully realize that early and appropriate treatment are essential to improve the treatment results, and constructing a medical system with a team of orthopedists, radiologists, and neurosurgeons is also very important. (orig.)

  4. Protective Effects of L-902,688, a Prostanoid EP4 Receptor Agonist, against Acute Blood-Brain Barrier Damage in Experimental Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Kelly M. DeMars

    2018-02-01

    Full Text Available Ischemic stroke occurs when a clot forms in the brain vasculature that starves downstream tissue of oxygen and nutrients resulting in cell death. The tissue immediately downstream of the blockage, the core, dies within minutes, but the surrounding tissue, the penumbra is potentially salvageable. Prostaglandin E2 binds to four different G-protein coupled membrane receptors EP1–EP4 mediating different and sometimes opposing responses. Pharmacological activation of the EP4 receptor has already been established as neuroprotective in stroke, but the mechanism(s of protection are not well-characterized. In this study, we hypothesized that EP4 receptor activation reduces ischemic brain injury by reducing matrix metalloproteinase (MMP-3/-9 production and blood-brain barrier (BBB damage. Rats underwent transient ischemic stroke for 90 min. Animals received an intravenous injection of either the vehicle or L-902,688, a highly specific EP4 agonist, at the onset of reperfusion. Brain tissue was harvested at 24 h. We established a dose-response curve and used the optimal dose that resulted in the greatest infarct reduction to analyze BBB integrity compared to vehicle-treated rats. The presence of IgG, a blood protein, in the brain parenchyma is a marker of BBB damage, and L-902,688 (1 mg/kg; i.v. dramatically reduced IgG extravasation (P < 0.05. Consistent with these data, we assessed zona occludens-1 and occludin, tight junction proteins integral to the maintenance of the BBB, and found reduced degradation with L-902,688 administration. With immunoblotting, qRT-PCR, and/or a fluorescence resonance energy transfer (FRET-based activity assay, we next measured MMP-3/-9 since they are key effectors of BBB breakdown in stroke. In the cerebral cortex, not only was MMP-3 activity significantly decreased (P < 0.05, but L-902,688 treatment also reduced MMP-9 mRNA, protein, and enzymatic activity (P < 0.001. In addition, post-ischemic administration of the EP4

  5. EEG Correlates of Preparatory Orienting, Contextual Updating, and Inhibition of Sensory Processing in Left Spatial Neglect.

    Science.gov (United States)

    Lasaponara, Stefano; D'Onofrio, Marianna; Pinto, Mario; Dragone, Alessio; Menicagli, Dario; Bueti, Domenica; De Lucia, Marzia; Tomaiuolo, Francesco; Doricchi, Fabrizio

    2018-04-11

    Studies with event-related potentials have highlighted deficits in the early phases of orienting to left visual targets in right-brain-damaged patients with left spatial neglect (N+). However, brain responses associated with preparatory orienting of attention, with target novelty and with the detection of a match/mismatch between expected and actual targets (contextual updating), have not been explored in N+. Here in a study in healthy humans and brain-damaged patients of both sexes we demonstrate that frontal activity that reflects supramodal mechanisms of attentional orienting (Anterior Directing Attention Negativity, ADAN) is entirely spared in N+. In contrast, posterior responses that mark the early phases of cued orienting (Early Directing Attention Negativity, EDAN) and the setting up of sensory facilitation over the visual cortex (Late Directing Attention Positivity, LDAP) are suppressed in N+. This uncoupling is associated with damage of parietal-frontal white matter. N+ also exhibit exaggerated novelty reaction to targets in the right side of space and reduced novelty reaction for those in the left side (P3a) together with impaired contextual updating (P3b) in the left space. Finally, we highlight a drop in the amplitude and latency of the P1 that over the left hemisphere signals the early blocking of sensory processing in the right space when targets occur in the left one: this identifies a new electrophysiological marker of the rightward attentional bias in N+. The heterogeneous effects and spatial biases produced by localized brain damage on the different phases of attentional processing indicate relevant functional independence among their underlying neural mechanisms and improve the understanding of the spatial neglect syndrome. SIGNIFICANCE STATEMENT Our investigation answers important questions: are the different components of preparatory orienting (EDAN, ADAN, LDAP) functionally independent in the healthy brain? Is preparatory orienting of

  6. Investigating the Functional Utility of the Left Parietal ERP Old/New Effect: Brain Activity Predicts within But Not between Participant Variance in Episodic Recollection

    Directory of Open Access Journals (Sweden)

    Catherine A. MacLeod

    2017-12-01

    Full Text Available A success story within neuroimaging has been the discovery of distinct neural correlates of episodic retrieval, providing insight into the processes that support memory for past life events. Here we focus on one commonly reported neural correlate, the left parietal old/new effect, a positive going modulation seen in event-related potential (ERP data that is widely considered to index episodic recollection. Substantial evidence links changes in the size of the left parietal effect to changes in remembering, but the precise functional utility of the effect remains unclear. Here, using forced choice recognition of verbal stimuli, we present a novel population level test of the hypothesis that the magnitude of the left parietal effect correlates with memory performance. We recorded ERPs during old/new recognition, source accuracy and Remember/Know/Guess tasks in two large samples of healthy young adults, and successfully replicated existing within participant modulations of the magnitude of the left parietal effect with recollection. Critically, however, both datasets also show that across participants the magnitude of the left parietal effect does not correlate with behavioral measures of memory – including both subjective and objective estimates of recollection. We conclude that in these tasks, and across this healthy young adult population, the generators of the left parietal ERP effect do not index performance as expected. Taken together, these novel findings provide important constraints on the functional interpretation of the left parietal effect, suggesting that between group differences in the magnitude of old/new effects cannot always safely be used to infer differences in recollection.

  7. The effects of captopril on lipopolysaccharide induced learning and memory impairments and the brain cytokine levels and oxidative damage in rats.

    Science.gov (United States)

    Abareshi, Azam; Hosseini, Mahmoud; Beheshti, Farimah; Norouzi, Fatemeh; Khazaei, Majid; Sadeghnia, Hamid Reza; Boskabady, Mohammad Hossein; Shafei, Mohammad Naser; Anaeigoudari, Akbar

    2016-12-15

    Renin-angiotensin system has a role in inflammation and also involves in learning and memory. In the present study, the effects of captopril on lipopolysaccharide (LPS) induced learning and memory impairments, hippocampal cytokine levels and brain tissues oxidative damage was investigated. The rats were divided and treated : [1] saline (Control), [2] LPS (1mg/kg), [3-5] 10, 50 or 100mg/kg captopril 30min before LPS. The treatment was started since six days before the behavioral experiments and continued during the behavioral tests (LPS injection two h before each behavioral experiment). Administration of LPS prolonged the escape latency and traveled path to find the platform in Morris water maze (MWM) test (Pcaptopril improved performances of the rats in MWM (Pcaptopril (Pcaptopril (Pcaptopril improved the LPS-induced learning and memory impairments in rats which were accompanied with attenuating hippocampal cytokine levels and improving the brain tissues oxidative damage criteria. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Repeatedly Heading a Soccer Ball Does Not Increase Serum Levels of S-100B, a Biochemical Marker of Brain Tissue Damage: an Experimental Study

    Directory of Open Access Journals (Sweden)

    Peter Sojka

    2008-01-01

    Full Text Available Objectives: The aim of the study was to analyse whether the controlled heading of soccer balls elicits increased serum concentrations of a biochemical marker of brain tissue damage S-100B.Methods: Nineteen male soccer players were randomly divided into two groups, A and B. Group A headed a soccer ball falling from 18 m five times, while group B served as controls (no heading. Blood samples were taken before and 0.5 h, 2 h and 4 h after the heading for analysis of S-100B.Results: No statistically significant (p > 0.05 increases in serum concentrations of S-100B were encountered in group A at 0.5 h (0.109 ± 0.024 μg/L, 2 h (0.098 ± 0.026 μg/L, and 4 h (0.113 ± 0.035 μg/L when the blood samples obtained before and after the heading were compared (0.157 ± 0.134 μg/L. No statistically significant difference was found when the serum concentrations of S-100B were compared between groups A and B either before or after heading.Conclusions: Heading a soccer ball dropped from a height of 18 m five times was not found to cause an increase in serum concentrations of S-100B, indicating that the impact was not sufficient to cause biochemically discernible damage of brain tissue.

  9. Studies on Auditory and Vestibular End Organs and Brain Stem Nuclei. [inner ear damage and hearing defects

    Science.gov (United States)

    Ades, H. W.

    1974-01-01

    Cats were exposed to tones of 125, 1000, 2000, and 4000 Hz at sound pressure levels in the range 120 to 157.5 db, and for durations of one hour (1000, 2000, 4000 Hz) or four hours (125 Hz). Pure tone audiograms were obtained for each animal before and after exposure. Cochleas of animals were examined by phase-contrast microscopy. Extent of inner ear damage and range of frequencies for which hearing loss occurred increased as exposure tone was decreased in frequency. For example, exposure to 4000 Hz produced damage in a restricted region of the cochlea and hearing loss for a relatively narrow range of frequencies; exposure to 125 Hz produced wide-spread inner ear damage and hearing loss throughout the frequency range 125 to 6000 Hz.

  10. Necrotizing Scleritis, Conjunctivitis, and Other Pathologic Findings in the Left Eye and Brain of an Ebola Virus-Infected Rhesus Macaque (Macaca mulatta) With Apparent Recovery and a Delayed Time of Death.

    Science.gov (United States)

    Alves, Derron A; Honko, Anna N; Kortepeter, Mark G; Sun, Mei; Johnson, Joshua C; Lugo-Roman, Luis A; Hensley, Lisa E

    2016-01-01

    A 3.5-year-old adult female rhesus macaque (Macaca mulatta) manifested swelling of the left upper eyelid and conjunctiva and a decline in clinical condition 18 days following intramuscular challenge with Ebola virus (EBOV; Kikwit-1995), after apparent clinical recovery. Histologic lesions with strong EBOV antigen staining were noted in the left eye (scleritis, conjunctivitis, and peri-optic neuritis), brain (choriomeningoencephalitis), stomach, proximal duodenum, and pancreas. Spleen, liver, and adrenal glands, common targets for acute infection, appeared histologically normal with no evidence of EBOV immunoreactivity. These findings may provide important insight for understanding sequelae seen in West African survivors of Ebola virus disease. Published by Oxford University Press for the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  11. Brain repair after stroke—a novel neurological model

    OpenAIRE

    Small, Steven L.; Buccino, Giovanni; Solodkin, Ana

    2013-01-01

    Following stroke, patients are commonly left with debilitating motor and speech impairments. This article reviews the state of the art in neurological repair for stroke and proposes a new model for the future. We suggest that stroke treatment—from the time of the ictus itself to living with the consequences—must be fundamentally neurological, from limiting the extent of injury at the outset, to repairing the consequent damage. Our model links brain and behaviour by targeting brain circuits, a...

  12. Orally Administrated Ascorbic Acid Suppresses Neuronal Damage and Modifies Expression of SVCT2 and GLUT1 in the Brain of Diabetic Rats with Cerebral Ischemia-Reperfusion

    Directory of Open Access Journals (Sweden)

    Naohiro Iwata

    2014-04-01

    Full Text Available Diabetes mellitus is known to exacerbate cerebral ischemic injury. In the present study, we investigated antiapoptotic and anti-inflammatory effects of oral supplementation of ascorbic acid (AA on cerebral injury caused by middle cerebral artery occlusion and reperfusion (MCAO/Re in rats with streptozotocin-induced diabetes. We also evaluated the effects of AA on expression of sodium-dependent vitamin C transporter 2 (SVCT2 and glucose transporter 1 (GLUT1 after MCAO/Re in the brain. The diabetic state markedly aggravated MCAO/Re-induced cerebral damage, as assessed by infarct volume and edema. Pretreatment with AA (100 mg/kg, p.o. for two weeks significantly suppressed the exacerbation of damage in the brain of diabetic rats. AA also suppressed the production of superoxide radical, activation of caspase-3, and expression of proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β in the ischemic penumbra. Immunohistochemical staining revealed that expression of SVCT2 was upregulated primarily in neurons and capillary endothelial cells after MCAO/Re in the nondiabetic cortex, accompanied by an increase in total AA (AA + dehydroascorbic acid in the tissue, and that these responses were suppressed in the diabetic rats. AA supplementation to the diabetic rats restored these responses to the levels of the nondiabetic rats. Furthermore, AA markedly upregulated the basal expression of GLUT1 in endothelial cells of nondiabetic and diabetic cortex, which did not affect total AA levels in the cortex. These results suggest that daily intake of AA attenuates the exacerbation of cerebral ischemic injury in a diabetic state, which may be attributed to anti-apoptotic and anti-inflammatory effects via the improvement of augmented oxidative stress in the brain. AA supplementation may protect endothelial function against the exacerbated ischemic oxidative injury in the diabetic state and improve AA transport through SVCT2 in the cortex.

  13. Correlation of hemorrhage, axonal damage and blood-tissue barrier disruption in brain and retina of Malawian children with fatal cerebral malaria

    Directory of Open Access Journals (Sweden)

    Jesse eGreiner

    2015-03-01

    Full Text Available Background: The retinal and brain histopathological findings in children who died from cerebral malaria (CM have been recently described. Similar changes occur in both structures, but the findings have not been directly compared in the same patients. In this study we compared clinical retinal findings and retinal and cerebral histopathological changes in a series of patients in Blantyre, Malawi, who died of CM.Methods: The features systematically compared in the same patient were: 1 clinical, gross and microscopic retinal hemorrhages with microscopic cerebral hemorrhages, 2 retinal and cerebral hemorrhage-associated and -unassociated axonal damage, and fibrinogen leakage, and 3 differences in the above features between the pathological categories of CM without microvascular pathology (CM1 and CM with microvascular pathology (CM2 in retina and brain. Results: Forty-seven patients were included: 7 CM1, 28 CM2 and 12 controls. In the 35 malaria cases retinal and cerebral pathology correlated in all features except for non-hemorrhage associated fibrinogen leakage. Regarding CM1 and CM2 cases, the only differences were in the proportion of patients with hemorrhage-associated cerebral pathology, and this was expected, based on the definitions of CM1 and CM2. The retina did not show this difference. Non-hemorrhage associated pathology was similar for the two groups. Comment: As postulated, histopathological features of hemorrhages, axonal damage and non-hemorrhage associated fibrinogen leakage correlated in the retina and brain of individual patients, although the difference in hemorrhages between the CM1 and CM2 groups was not consistently observed in the retina. These results help to underpin the utility of ophthalmoscopic examination and fundus findings to help in diagnosis and assessment of cerebral malaria patients, but may not help in distinguishing between CM1 and CM2 patients during life.

  14. Cobalt-57 as a SPET tracer in the visualization of ischaemic brain damage in patients with middle cerebral artery stroke

    NARCIS (Netherlands)

    Stevens, H; Knollema, S; Piers, DA; Van de Wiele, C; Jansen, HML; De Jager, AEJ; De Reuck, J; Dierckx, RA; Korf, J

    In PET studies we have shown the usefulness of cobalt radionuclides for the visualization and quantification of ischaemic damage in stroke. In the present study, we explored Co-57(2+) as a SPET tracer. Uptake of radioactivity was estimated by using a cobalt enhancement ratio defined as the ratio of

  15. The cycad genotoxin MAM modulates brain cellular pathways involved in neurodegenerative disease and cancer in a DNA damage-linked manner.

    Science.gov (United States)

    Kisby, Glen E; Fry, Rebecca C; Lasarev, Michael R; Bammler, Theodor K; Beyer, Richard P; Churchwell, Mona; Doerge, Daniel R; Meira, Lisiane B; Palmer, Valerie S; Ramos-Crawford, Ana-Luiza; Ren, Xuefeng; Sullivan, Robert C; Kavanagh, Terrance J; Samson, Leona D; Zarbl, Helmut; Spencer, Peter S

    2011-01-01

    Methylazoxymethanol (MAM), the genotoxic metabolite of the cycad azoxyglucoside cycasin, induces genetic alterations in bacteria, yeast, plants, insects and mammalian cells, but adult nerve cells are thought to be unaffected. We show that the brains of adult C57BL6 wild-type mice treated with a single systemic dose of MAM acetate display DNA damage (O⁶-methyldeoxyguanosine lesions, O⁶-mG) that remains constant up to 7 days post-treatment. By contrast, MAM-treated mice lacking a functional gene encoding the DNA repair enzyme O⁶-mG DNA methyltransferase (MGMT) showed elevated O⁶-mG DNA damage starting at 48 hours post-treatment. The DNA damage was linked to changes in the expression of genes in cell-signaling pathways associated with cancer, human neurodegenerative disease, and neurodevelopmental disorders. These data are consistent with the established developmental neurotoxic and carcinogenic properties of MAM in rodents. They also support the hypothesis that early-life exposure to MAM-glucoside (cycasin) has an etiological association with a declining, prototypical neurodegenerative disease seen in Guam, Japan, and New Guinea populations that formerly used the neurotoxic cycad plant for food or medicine, or both. These findings suggest environmental genotoxins, specifically MAM, target common pathways involved in neurodegeneration and cancer, the outcome depending on whether the cell can divide (cancer) or not (neurodegeneration). Exposure to MAM-related environmental genotoxins may have relevance to the etiology of related tauopathies, notably, Alzheimer's disease.

  16. Visual Field Function in School-Aged Children with Spastic Unilateral Cerebral Palsy Related to Different Patterns of Brain Damage

    Science.gov (United States)

    Jacobson, Lena; Rydberg, Agneta; Eliasson, Ann-Christin; Kits, Annika; Flodmark, Olof

    2010-01-01

    Aim: To relate visual field function to brain morphology in children with unilateral cerebral palsy (CP). Method: Visual field function was assessed using the confrontation technique and Goldmann perimetry in 29 children (15 males, 14 females; age range 7-17y, median age 11y) with unilateral CP classified at Gross Motor Function Classification…

  17. Mesenchymal stem cell transplantation attenuates blood brain barrier damage and neuroinflammation and protects dopaminergic neurons against MPTP toxicity in the substantia nigra in a model of Parkinson's disease.

    Science.gov (United States)

    Chao, Yin Xia; He, Bei Ping; Tay, Samuel Sam Wah

    2009-11-30

    Immunomodulatory effects of transplanted mesenchymal stem cells (MSCs) in the treatment of Parkinson's disease were studied in the MPTP-induced mouse model. MPTP treatment induced a significant loss of dopaminergic neurons, decreased expressions of claudin 1, claudin 5 and occludin in the substantia nigra compacta (SNc), and functional damage of the blood brain barrier (BBB). Our study further discovered that infiltration of MBLs into the brain to bind with microglia was detected in the SNc of MPTP-treated mice, suggesting that the BBB compromise and MBL infiltration might be involved in the pathogenesis of MPTP-induced PD. In addition, MPTP treatment also increased the expression of mannose-binding lectins (MBLs) in the liver tissue. Intravenous transplantation of MSCs into MPTP-treated mice led to recovery of BBB integrity, suppression of MBL infiltration at SNc and MBL expression in the liver, suppression of microglial activation and prevention of dopaminergic neuron death. No transplanted MSCs were observed to differentiate into dopaminergic neurons, while the MSCs migrated into the SNc and released TGF-beta1 there. Therefore, intravenous transplantation of MSCs which protect dopaminergic neurons from MPTP toxicity may be engaged in anyone or a combination of these mechanisms: repair of the BBB, reduction of MBL in the brain, inhibition of microglial cytotoxicity, and direct protection of dopaminergic neurons.

  18. Taurine reverses sodium fluoride-mediated increase in inflammation, caspase-3 activity, and oxidative damage along the brain-pituitary-gonadal axis in male rats.

    Science.gov (United States)

    Adedara, Isaac A; Olabiyi, Bolanle F; Ojuade, TeminiJesu D; Idris, Umar F; Onibiyo, Esther M; Farombi, Ebenezer O

    2017-09-01

    Excessive exposure to fluoride is associated with male reproductive dysfunction in humans and animals. Taurine (2-aminoethane sulfonic acid) is a free intracellular β-amino acid with antioxidant, anti-inflammatory, and neuroprotective properties. However, the effect of taurine on fluoride-induced reproductive toxicity has not been reported. The present study investigated the influence of taurine on sodium fluoride (NaF)-induced functional changes along the brain-pituitary-gonadal axis in male rats. NaF was administered singly in drinking water at 15 mg·L -1 alone or orally co-administered by gavage with taurine at 100 and 200 mg·(kg body mass) -1 for 45 consecutive days. Results showed that taurine significantly prevented NaF-induced increase in oxidative stress indices as well as augmented antioxidant enzymes activities and glutathione level in the brain, testes, and epididymis of the treated rats. Moreover, taurine reversed NaF-induced elevation in inflammatory biomarkers and caspase-3 activity as well as histological damage in the brain, testes, and epididymis of the treated rats. The significant reversal of NaF-induced decreases in testosterone level and testicular activities of acid phosphatase, alkaline phosphatase, and lactate dehydrogenase by taurine was accompanied by enhancement of sperm functional characteristics in the treated rats. Taurine may be a possible chemopreventive candidate against reproductive dysfunction resulting from fluoride exposure.

  19. Predictive value of S-100B protein and neuron specific-enolase as markers of traumatic brain damage in clinical use.

    Science.gov (United States)

    Naeimi, Zahra S; Weinhofer, Alexandra; Sarahrudi, Kambiz; Heinz, Thomas; Vécsei, Vilmos

    2006-05-01

    S-100B and NSE proteins are considered to be neurobiochemical markers for the brain damage. The aim of this study was to consider the diagnostic and prognostic validity of the initial serum levels of S-100B and NSE in clinical use. Forty-five patients with traumatic brain injury were included in this prospective study. Neurologic examination and CCT-scan were performed. S-100B and NSE were analysed. Patients were divided in two groups depending on the severity of injury. The results showed a significant difference between the S-100B serum concentration and the two groups-minor head injuries and severe head injuries. A statistically significant correlation was observed between an increase of S-100B and NSE serum values and a cerebral pathological finding in CT scans. The clear correlation between S-100B and NSE serum concentrations and CCT findings does not validate both markers as an independent predictor of diagnosis and prognosis of brain injury.

  20. N-terminal-pro-brain natriuretic peptide elevations in the course of septic and non-septic shock reflect systolic left ventricular dysfunction assessed by transpulmonary thermodilution

    Directory of Open Access Journals (Sweden)

    A.B. Johan Groeneveld

    2016-03-01

    Conclusions: In septic and non-septic shock, NT-proBNP elevations reflect systolic left ventricular dysfunction and are associated with a poor outcome. They may help recognition of cardiac dysfunction in shock and its management when invasive hemodynamic monitoring is not yet instituted.

  1. Long-term neuronal damage and recovery after a single dose of MDMA: expression and distribution of serotonin transporter in the rat brain.

    Science.gov (United States)

    Kirilly, Eszter

    2010-09-01

    "Ecstasy", 3,4-methylenedioxymethamphetamine (MDMA), an amphetamine analogue is one of the most widely used recreational drugs. In spite of the fact that neurotoxic effects of MDMA has been found in several species from rodents to non-human primates, and results increasingly point to damage also in human MDMA users, data about the sensitivity of different brain areas and the recovery after neuronal damage are scarce. Serotonin transporter (5-HTT) mRNA in the raphe nuclei also has not been examined. Humans with genetic predisposition for the slow metabolism of MDMA, the so-called "poor metabolizers" of debrisoquin are at higher risk. Five- 9% of the Caucasian population is considered to carry this phenotype. These studies were carried out in Dark Agouti rats, a special strain that show decreased microsomal CYP2D1 isoenzyme activity, and thus may serve as a model of vulnerable human users. These works were designed to characterize MDMA-induced damage and recovery of the serotonergic system including sleep and morphological changes within 180 days. In our experiments we investigated the 5-HTT mRNA expression in the brainstem and medullary raphe nuclei, 5-HTT immunoreactive (IR) fibre densities in several brain areas, and 16 functional measures of sleep in response to a single dose of +/- MDMA (15mg\\kg). Furthermore, behavioural experiments were performed 21 days after MDMA treatment. We found similar changes in 5-HTT mRNA expression in the examined raphe nuclei, namely transient increases 7 days after MDMA treatment followed by transient decreases at 21 days. Significant (20-40%), widespread reductions in 5-HTT-IR fibre density were detected in most brain areas at 7 and 21 days after MDMA administration. All cortical, but only some brainstem areas were damaged. Parallel to the neuronal damage we observed significant reductions in rapid eye movement (REM) sleep latency, increased fragmentation of sleep and increases in delta power spectra in non-REM sleep. At 180 days

  2. Cortical hypoxic-ischemic brain damage in shaken-baby (shaken impact) syndrome: value of diffusion-weighted MRI

    International Nuclear Information System (INIS)

    Parizel, Paul M.; Oezsarlak, Oezkan; Goethem, Johan W. van; Ceulemans, Berten; Laridon, Annick; Jorens, Philippe G.

    2003-01-01

    Shaken-baby syndrome (SBS) is a type of child abuse caused by violent shaking of an infant, with or without impact, and characterized by subdural hematomas, retinal hemorrhages, and occult bone fractures. Parenchymal brain lesions in SBS may be missed or underestimated on CT scans, but can be detected at an earlier stage with diffusion-weighted MRI (DW-MRI) as areas of restricted diffusion. We demonstrate the value of DW-MRI in a 2-month-old baby boy with suspected SBS. The pattern of diffusion abnormalities indicates that the neuropathology of parenchymal lesions in SBS is due to hypoxic-ischemic brain injuries, and not to diffuse axonal injury. (orig.)

  3. Cortical hypoxic-ischemic brain damage in shaken-baby (shaken impact) syndrome: value of diffusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Parizel, Paul M.; Oezsarlak, Oezkan; Goethem, Johan W. van [Department of Radiology, University of Antwerp, Wilrijkstraat 10, 2650, Edegem (Belgium); Ceulemans, Berten; Laridon, Annick [Department of Pediatric Neurology, University of Antwerp, Wilrijkstraat 10, 2650, Edegem (Belgium); Jorens, Philippe G. [Department of Pediatric Intensive Care Medicine, University of Antwerp, Wilrijkstraat 10, 2650, Edegem (Belgium)

    2003-12-01

    Shaken-baby syndrome (SBS) is a type of child abuse caused by violent shaking of an infant, with or without impact, and characterized by subdural hematomas, retinal hemorrhages, and occult bone fractures. Parenchymal brain lesions in SBS may be missed or underestimated on CT scans, but can be detected at an earlier stage with diffusion-weighted MRI (DW-MRI) as areas of restricted diffusion. We demonstrate the value of DW-MRI in a 2-month-old baby boy with suspected SBS. The pattern of diffusion abnormalities indicates that the neuropathology of parenchymal lesions in SBS is due to hypoxic-ischemic brain injuries, and not to diffuse axonal injury. (orig.)

  4. Harmful effect of kainic acid on brain ischemic damage is not related to duration of status epilepticus

    OpenAIRE

    Hasson, Henry; Malhotra, Samit; Giorgi, Filippo S.; Rosenbaum, Daniel M.; Moshé, Solomon L.

    2009-01-01

    Status epilepticus is common in infants and may have long-term consequences on the brain persisting into adulthood. Vascular ischemia is a common cause of stroke in adulthood. The extent of stroke in 15-day-old rats is larger when previously exposed to kainic acid-induced status epilepticus. In this paper, we assess whether shortening the duration of seizures modifies subsequent susceptibility to middle cerebral artery occlusion. We administered pentobarbital 50 mg/kg to abort seizures after ...

  5. Progressive and widespread brain damage in ALS: MRI voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Senda, Joe; Kato, Shigenori; Kaga, Tomotsugu; Ito, Mizuki; Atsuta, Naoki; Nakamura, Tomohiko; Watanabe, Hirohisa; Tanaka, Fumiaki; Naganawa, Shinji; Sobue, Gen

    2011-01-01

    We investigated 17 patients with sporadic amyotrophic lateral sclerosis (ALS) using voxel-based morphometry (VBM) and voxel-based analysis of diffusion tensor images (DTI) at baseline and after a six-month follow-up. Compared with 17 healthy controls, ALS patients at baseline showed only minimal white matter volume decreases in the inferior frontal gyrus but marked decreases in the gray matter of several regions, especially in the bilateral paracentral lobule of the premotor cortex. DTI revealed reduced fractional anisotropy in the bilateral corticospinal tracts, insula, ventrolateral premotor cortex, and parietal cortex. Increased mean diffusivity was noted bilaterally in the motor cortex, ventrolateral premotor cortex, insula, hippocampal formation, and temporal gyrus. At the six-month follow-up, ALS patients showed widespread volume decreases in gray matter, and DTI abnormalities extended mainly into the bilateral frontal lobes, while volume changes in the white matter remained minimal but more distinct. Our combined VBM and DTI techniques revealed extra-corticospinal tract neuronal degeneration mainly in the frontotemporal lobe of ALS patients. In particular, follow-up examinations in these patients showed that whole-brain DTI changes occurred predominantly in the regions of brain atrophy. These objective analyses can be used to assess the disease condition of the ALS brain.

  6. Endoplasmic reticulum stress-induced apoptosis in the penumbra aggravates secondary damage in rats with traumatic brain injury.

    Science.gov (United States)

    Sun, Guo-Zhu; Gao, Fen-Fei; Zhao, Zong-Mao; Sun, Hai; Xu, Wei; Wu, Li-Wei; He, Yong-Chang

    2016-08-01

    Neuronal apoptosis is mediated by intrinsic and extrinsic signaling pathways such as the membrane-mediated, mitochondrial, and endoplasmic reticulum stress pathways. Few studies have examined the endoplasmic reticulum-mediated apoptosis pathway in the penumbra after traumatic brain injury, and it remains unclear whether endoplasmic reticulum stress can activate the caspase-12-dependent apoptotic pathway in the traumatic penumbra. Here, we established rat models of fluid percussion-induced traumatic brain injury and found that protein expression of caspase-12, caspase-3 and the endoplasmic reticulum stress marker 78 kDa glucose-regulated protein increased in the traumatic penumbra 6 hours after injury and peaked at 24 hours. Furthermore, numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells in the traumatic penumbra also reached peak levels 24 hours after injury. These findings suggest that caspase-12-mediated endoplasmic reticulum-related apoptosis is activated in the traumatic penumbra, and may play an important role in the pathophysiology of secondary brain injury.

  7. Relative hypermetabolism of vermis cerebelli in traumatic brain injured patients studied with 18FDG PET: a descriptor of brain damage and a possible predictor of outcome.

    Science.gov (United States)

    Lupi, Andrea; Bertagnoni, Giannettore; Borghero, Anna; Salgarello, Matteo; Zanco, Pierluigi

    2011-04-01

    The almost constant presence of apparent metabolic hypermetabolism of cerebellar vermis seen on 18FDG PET in a population of injured brains has been reported in a previous paper. Aim of this paper is to determine a) whether there is a correlation between the entity of this sign, semi quantitatively determined, and the severity of the trauma at its onset, and b) whether the entity of the relative enhancement correlates with the medium and long term clinical outcome. A group of 45 consecutive patients admitted to the Acquired Brain Injury Unit of our Hospital for recent, major head trauma, underwent a basal 18FDG PET/CT scan of the brain; the presence of relative hypermetabolism of the vermis cerebelli was visually assessed and semi quantitatively determined (vermis/cerebellum ratio: V/C); the median V/C value was used as a divide between low V/C ratios (group A) and high V/C ratios (group B). During one year after trauma, every patient from both groups received an extensive testing to evaluate cognitive and behavioral performances and evolution: Disability Rating Scale (DRS) and Levels of Cognitive Function (LCF) were administered monthly from month 1 to month 6, and at 12 months from the trauma; Glasgow Outcome Scale (GOS) was administered at 3, 6 and 12 months from the head trauma. Numerical scores from each of these performance-testing protocols were cross-matched with values derived from the V/C 18FDG PET/CT determinations. A relative risk estimate via Chi-square testing was performed on the results of both groups for LCF and DRS scales at 1, 6 and 12 months from trauma. At one month after trauma, overall LCF (LCF1) values ranged from 2 to 8, avg. 3.77, SD ± 2.10; the average value in group A was 5.21, SD ± 2.09, in B group 2.47, SD ± 0.98 (F=17.5, P = 0). At this time, overall average DRS (DRS1) was 6.7, SD ± 2.05, ranging from 2 to 9; the average value was 5.52, SD ± 0.47 in group A, and 7.72, SD ± 0.30 in group B (F = 6.3, P = 0.01). Relative risk

  8. Left subclavian-carotid bypass in a 38-year old female with brain ischemic symptoms secondary to Takayasu's arteritis: A case report.

    Science.gov (United States)

    Hinojosa, Carlos A; Lizola, Rene; Anaya-Ayala, Javier E; Torres-Machorro, Adriana; Laparra-Escareno, Hugo

    2016-01-01

    Takayasu's arteritis (TA) is a rare form of vasculitis that affects the aorta, its branches and pulmonary arteries. TA is primarily treated by pharmacologic therapy; however revascularization procedures may be required to treat organ ischemia. Evidence-based consensus regarding the indications for surgical or endovascular therapy for patients with supra-aortic vessels lesions remains unclear. We herein present a female patient with known TA since 2000, who experienced progressive and frequent episodes of amaurosis fugax in the left eye for 4 months. Computed tomography angiography (CTA) revealed focal stenotic segments in the right common carotid artery (CCA) and internal carotid artery (ICA) and near occlusion of the proximal left CCA. We opted to treat the left side first with open revascularization, and a subclavian-carotid bypass was performed using a 6 millimeters (mm) externally supported ePTFE graft. Patient recovered well from the surgery, her neurological exam was normal and she was discharged home in stable condition in postoperative day three. At three months she remains symptoms-free and her bypass is patent. This case illustrates the clinical presentation of TA affecting both carotid arteries; open revascularization via carotid subclavian bypass grafting was successfully performed with minimal morbidity, complete resolution of symptoms and improvement of the patient's quality of life. Revascularization procedures when indicated should be performed while the disease is inactive and close surveillance is mandatory. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  9. A housework-based assessment of intellectual functions in patients with acquired brain damage. Development and evaluation of an occupational therapy method.

    Science.gov (United States)

    Söderback, I

    1988-01-01

    The purpose of the study was to develop and evaluate a housework-based method of selecting, from among adults with acquired brain damage, those who would benefit from housework-based training; and of assessing the effects of such training. The method presented--the Intellectual Housework Assessment (IHA)--consists of two parallel programmes of seven subtests, each including eight observation points. There is also a manual. The reliability of the IHA was tested in a group of cerebrovascular accident (CVA) patients. Construct validity was studied by calculating the mean IHA difference between the patient group and a group of nonclinical persons. Concurrent validity was studied through comparison with the Intellectual Function Assessment (IFA), with a psychometric test battery and with an ADL status. The results of the study indicate that IHA is an adequate instrument for the purposes specified.

  10. Cognitive rehabilitation for executive dysfunction in adults with stroke or other adult non-progressive acquired brain damage.

    Science.gov (United States)

    Chung, Charlie S Y; Pollock, Alex; Campbell, Tanya; Durward, Brian R; Hagen, Suzanne

    2013-04-30

    Executive functions are the controlling mechanisms of the brain and include the processes of planning, initiation, organisation, inhibition, problem solving, self monitoring and error correction. They are essential for goal-oriented behaviour and responding to new and novel situations. A high number of people with acquired brain injury, including around 75% of stroke survivors, will experience executive dysfunction. Executive dysfunction reduces capacity to regain independence in activities of daily living (ADL), particularly when alternative movement strategies are necessary to compensate for limb weakness. Improving executive function may lead to increased independence with ADL. There are various cognitive rehabilitation strategies for training executive function used within clinical practice and it is necessary to determine the effectiveness of these interventions. To determine the effects of cognitive rehabilitation on executive dysfunction for adults with stroke or other non-progressive acquired brain injuries. We searched the Cochrane Stroke Group Trials Register (August 2012), the Cochrane Central Register of Controlled Trials (The Cochrane Library, August 2012), MEDLINE (1950 to August 2012), EMBASE (1980 to August 2012), CINAHL (1982 to August 2012), PsycINFO (1806 to August 2012), AMED (1985 to August 2012) and 11 additional databases. We also searched reference lists and trials registers, handsearched journals and conference proceedings, and contacted experts. We included randomised trials in adults after non-progressive acquired brain injury, where the intervention was specifically targeted at improving cognition including separable executive function data (restorative interventions), where the intervention was aimed at training participants in methods to compensate for lost executive function (compensative interventions) or where the intervention involved the training in the use of an adaptive technique for improving independence with ADL (adaptive

  11. Traumatic Brain Injury

    Science.gov (United States)

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  12. Oxidative stress and damage in liver, but not in brain, of Fischer 344 rats subjected to dietary iron supplementation with lipid-soluble[(3,5,5-Trimethylhexanoyl)ferrocene

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens; Morgan, Evan; Christen, Stephan

    2007-01-01

    Accumulation of iron probably predisposes the aging brain to progressive neuronal loss. We examined various markers of oxidative stress and damage in the brain and liver of 3- and 24-month old rats following supplementationwith the lipophilic iron derivative [(3,5,5-trimethylhexanoyl)ferrocene] (......, they also demonstrated that the brain is well protected against dietary iron overload by using iron in a lipid-soluble formulation.......Accumulation of iron probably predisposes the aging brain to progressive neuronal loss. We examined various markers of oxidative stress and damage in the brain and liver of 3- and 24-month old rats following supplementationwith the lipophilic iron derivative [(3,5,5-trimethylhexanoyl......)ferrocene] (TMHF), which is capable of crossing the blood-brain barrier. At both ages, iron concentration increased markedly in the liver but failed to increase in the brain. In the liver of TMHF-treated young rats, levels of a- and ¿-tocopherols and glutathione (GSH) were also higher. In contrast, the brain...

  13. Cognitive reserve and TMEM106B genotype modulate brain damage in presymptomatic frontotemporal dementia: a GENFI study.

    Science.gov (United States)

    Premi, Enrico; Grassi, Mario; van Swieten, John; Galimberti, Daniela; Graff, Caroline; Masellis, Mario; Tartaglia, Carmela; Tagliavini, Fabrizio; Rowe, James B; Laforce, Robert; Finger, Elizabeth; Frisoni, Giovanni B; de Mendonça, Alexandre; Sorbi, Sandro; Gazzina, Stefano; Cosseddu, Maura; Archetti, Silvana; Gasparotti, Roberto; Manes, Marta; Alberici, Antonella; Cardoso, Manuel J; Bocchetta, Martina; Cash, David M; Ourselin, Sebastian; Padovani, Alessandro; Rohrer, Jonathan D; Borroni, Barbara

    2017-06-01

    Frontotemporal dementia is a heterogeneous neurodegenerative disorder with around a third of cases having autosomal dominant inheritance. There is wide variability in phenotype even within affected families, raising questions about the determinants of the progression of disease and age at onset. It has been recently demonstrated that cognitive reserve, as measured by years of formal schooling, can counteract the ongoing pathological process. The TMEM106B genotype has also been found to be a modifier of the age at disease onset in frontotemporal dementia patients with TDP-43 pathology. This study therefore aimed to elucidate the modulating effect of environment (i.e. cognitive reserve as measured by educational attainment) and genetic background (i.e. TMEM106B polymorphism, rs1990622 T/C) on grey matter volume in a large cohort of presymptomatic subjects bearing frontotemporal dementia-related pathogenic mutations. Two hundred and thirty-one participants from the GENFI study were included: 108 presymptomatic MAPT, GRN, and C9orf72 mutation carriers and 123 non-carriers. For each subject, cortical and subcortical grey matter volumes were generated using a parcellation of the volumetric T1-weighted magnetic resonance imaging brain scan. TMEM106B genotyping was carried out, and years of education recorded. First, we obtained a composite measure of grey matter volume by graph-Laplacian principal component analysis, and then fitted a linear mixed-effect interaction model, considering the role of (i) genetic status; (ii) educational attainment; and (iii) TMEM106B genotype on grey matter volume. The presence of a mutation was associated with a lower grey matter volume (P = 0.002), even in presymptomatic subjects. Education directly affected grey matter volume in all the samples (P = 0.02) with lower education attainment being associated with lower volumes. TMEM106B genotype did not influence grey matter volume directly on its own but in mutation carriers it modulated the

  14. Neuroprotective effect of Manasamitra vatakam against aluminium induced cognitive impairment and oxidative damage in the cortex and hippocampus of rat brain.

    Science.gov (United States)

    Thirunavukkarasu, Sathiravada Veerasamy; Venkataraman, Subramanium; Raja, Sundararajan; Upadhyay, Lokesh

    2012-01-01

    Manasamitra vatakam (MMV) has long been used as a traditional medicine in India for the treatment of psychosomatic diseases, anxiety neurosis, and stress. The present study was designed to examine the neuroprotective effect of MMV against aluminum (Al)-induced memory impairment and oxidative damage in rats. Neurotoxicity was induced by the administration of Al [100 mg/kg body weight (b.w.) per oral (p.o.)/day] to Wistar albino rats for 90 days. Al administration induced neurotoxicity as well as oxidative stress by affecting the active avoidance and memory impairment, as well as altering antioxidants, such as HSP70 protein, superoxide dismutase, catalase, reduced glutathione, glutathione peroxidase, and acetylcholinesterase. It was observed that the administration of MMV (100 mg/kg b.w./p.o./day) along with AlCl(3) improves memory performance and antioxidant activity against Al-induced neurotoxicity in rats. In conclusion, these data suggest that MMV can prevent brain damage from Al-induced neurotoxicity in rats and thus can be used as a neuroprotective agent.

  15. [Disorders in memorizing sentences and texts in local brain lesions].

    Science.gov (United States)

    Mikadze, Iu V

    1983-01-01

    Disturbances of memory for sentences and texts in patients with local brain damages are investigated. The peculiarities of reproducing the superficial (lexic) and deep (sense) structures of the sentences and texts are analyzed. On the basis of the analysis of errors in the reproduction of the "scheme" of the texts the peculiarities of the memory defects specific for the various localization of the brain damage were revealed. It is shown that in damages of the temporal and parietal divisions of the left hemisphere it is the superficial structure, while in damages of the frontal divisions of the same hemisphere it is the deep structure the reproduction of which is affected to the greatest degree. A comparison with the reproduction of both structures in patients with damages of the temporal and parietal divisions of the right hemisphere is presented. The results are discussed from the viewpoint of multi-channel coding of information being stored.

  16. CGP 35348, GABAB Receptor Antagonist, Has a Potential to Improve Neuromuscular Coordination and Spatial Learning in Albino Mouse following Neonatal Brain Damage

    Directory of Open Access Journals (Sweden)

    Q. Gillani

    2014-01-01

    Full Text Available To study the effect of CGP 35348 on learning and memory in albino mice following hypoxia ischemia insult, 10 days old albino mice were subjected to right common carotid artery ligation followed by 8% hypoxia for 25 minutes. Following brain damage, mice were fed on normal rodent diet till they were 13 week old. At this time point, mice were divided into two groups. Group 1 received saline and group 2 intrapertoneally CGP 35348 (1 mg/mL solvent/Kg body weight for 12 days. A battery of tests used to assess long term neurofunction (Morris water maze, Rota rod and open field along with brain infarct measurement. Overall CGP 35348 has improved the motor function in male and female albino mice but effects were more pronounced in female albino mice. In open field, CGP 35348 treated female albino mice had demonstrated poor exploratory behavior. During Morris water maze test, gender specific effects were observed as CGP 35348 had improved spatial learning and memory and swimming speed in male albino mice but had no effect in female albino mice following hypoxia ischemia encephalopathy (HIE. We concluded that GABAB receptor antagonists CGP 35348 can be used to improve gender based spatial memory.

  17. Melatonin protects against blood-brain barrier damage by inhibiting the TLR4/ NF-κB signaling pathway after LPS treatment in neonatal rats.

    Science.gov (United States)