WorldWideScience

Sample records for left brain damage

  1. Neglect severity after left and right brain damage.

    Science.gov (United States)

    Suchan, Julia; Rorden, Chris; Karnath, Hans-Otto

    2012-05-01

    While unilateral spatial neglect after left brain damage is undoubtedly less common than spatial neglect after a right hemisphere lesion, it is also assumed to be less severe. Here we directly test this latter hypothesis using a continuous measure of neglect severity: the so-called Center of Cancellation (CoC). Rorden and Karnath (2010) recently validated this index for right brain damaged neglect patients. A first aim of the present study was to evaluate this new measure for spatial neglect after left brain damage. In a group of 48 left-sided stroke patients with and without neglect, a score greater than -0.086 on the Bells Test and greater than -0.024 on the Letter Cancellation Task turned out to indicate neglect behavior for acute left brain damaged patients. A second aim was to directly compare the severity of spatial neglect after left versus right brain injury by using the new CoC measure. While neglect is less frequent following left than right hemisphere injury, we found that when this symptom occurs it is of similar severity in acute left brain injury as in patients after acute right brain injury. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    Science.gov (United States)

    Tyler, Lorraine K; Wright, Paul; Randall, Billi; Marslen-Wilson, William D; Stamatakis, Emmanuel A

    2010-11-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to be strongly left-lateralized, combining measures of tissue integrity, neural activation and behavioural performance. In a functional neuroimaging study participants heard spoken sentences that differentially loaded on syntactic and semantic information. While healthy controls activated a left-hemisphere network of correlated activity including Brodmann areas 45/47 and posterior middle temporal gyrus during syntactic processing, patients activated Brodmann areas 45/47 bilaterally and right middle temporal gyrus. However, voxel-based morphometry analyses showed that only tissue integrity in left Brodmann areas 45/47 was correlated with activity and performance; poor tissue integrity in left Brodmann area 45 was associated with reduced functional activity and increased syntactic deficits. Activity in the right-hemisphere was not correlated with damage in the left-hemisphere or with performance. Reduced neural integrity in the left-hemisphere through brain damage or healthy ageing results in increased right-hemisphere activation in homologous regions to those left-hemisphere regions typically involved in the young. However, these regions do not support the same linguistic functions as those in the left-hemisphere and only indirectly contribute to preserved syntactic capacity. This establishes the unique role of the left hemisphere in syntax, a core component in human language.

  3. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    OpenAIRE

    Tyler, Lorraine K.; Wright, Paul; Randall, Billi; Marslen-Wilson, William D.; Stamatakis, Emmanuel A.

    2010-01-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to b...

  4. Line and word bisection in right-brain-damaged patients with left spatial neglect.

    Science.gov (United States)

    Veronelli, Laura; Vallar, Giuseppe; Marinelli, Chiara V; Primativo, Silvia; Arduino, Lisa S

    2014-01-01

    Right-brain-damaged patients with left unilateral spatial neglect typically set the mid-point of horizontal lines to the right of the objective center. By contrast, healthy participants exhibit a reversed bias (pseudoneglect). The same effect has been described also when bisecting orthographic strings. In particular, for this latter kind of stimulus, some recent studies have shown that visuo-perceptual characteristics, like stimulus length, may contribute to both the magnitude and the direction bias of the bisection performance (Arduino et al. in Neuropsychologia 48:2140-2146, 2010). Furthermore, word stress was shown to modulate reading performances in both healthy participants, and patients with left spatial neglect and neglect dyslexia (Cubelli and Beschin in Brain Lang 95:319-326, 2005; Rusconi et al. in Neuropsychology 18:135-140, 2004). In Experiment I, 22 right-brain-damaged patients (11 with left visuo-spatial neglect) and 11 matched neurologically unimpaired control participants were asked to set the subjective mid-point of word letter strings, and of lines of comparable length. Most patients exhibited an overall disproportionate rightward bias, sensitive to stimulus length, and similar for words and lines. Importantly, in individual patients, biases differed according to stimulus type (words vs. lines), indicating that at least partly different mechanisms may be involved. In Experiment II, the putative effects on the bisection bias of ortho-phonological information (i.e., word stress endings), arising from the non-neglected right hand side of the stimulus were investigated. The orthographic cue induced a rightward shift of the perceived mid-point in both patients and controls, with short words stressed on the antepenultimate final sequence inducing a smaller rightward deviation with respect to short words stressed on the penultimate final sequence. In conclusion, partly different mechanisms, including both visuo-spatial and lexical factors, may support

  5. No inherent left and right side in human 'mental number line': evidence from right brain damage.

    Science.gov (United States)

    Aiello, Marilena; Jacquin-Courtois, Sophie; Merola, Sheila; Ottaviani, Teresa; Tomaiuolo, Francesco; Bueti, Domenica; Rossetti, Yves; Doricchi, Fabrizio

    2012-08-01

    Spatial reasoning has a relevant role in mathematics and helps daily computational activities. It is widely assumed that in cultures with left-to-right reading, numbers are organized along the mental equivalent of a ruler, the mental number line, with small magnitudes located to the left of larger ones. Patients with right brain damage can disregard smaller numbers while mentally setting the midpoint of number intervals. This has been interpreted as a sign of spatial neglect for numbers on the left side of the mental number line and taken as a strong argument for the intrinsic left-to-right organization of the mental number line. Here, we put forward the understanding of this cognitive disability by discovering that patients with right brain damage disregard smaller numbers both when these are mapped on the left side of the mental number line and on the right side of an imagined clock face. This shows that the right hemisphere supports the representation of small numerical magnitudes independently from their mapping on the left or the right side of a spatial-mental layout. In addition, the study of the anatomical correlates through voxel-based lesion-symptom mapping and the mapping of lesion peaks on the diffusion tensor imaging-based reconstruction of white matter pathways showed that the rightward bias in the imagined clock-face was correlated with lesions of high-level middle temporal visual areas that code stimuli in object-centred spatial coordinates, i.e. stimuli that, like a clock face, have an inherent left and right side. In contrast, bias towards higher numbers on the mental number line was linked to white matter damage in the frontal component of the parietal-frontal number network. These anatomical findings show that the human brain does not represent the mental number line as an object with an inherent left and right side. We conclude that the bias towards higher numbers in the mental bisection of number intervals does not depend on left side spatial

  6. Co-speech hand movements during narrations: What is the impact of right vs. left hemisphere brain damage?

    Science.gov (United States)

    Hogrefe, Katharina; Rein, Robert; Skomroch, Harald; Lausberg, Hedda

    2016-12-01

    Persons with brain damage show deviant patterns of co-speech hand movement behaviour in comparison to healthy speakers. It has been claimed by several authors that gesture and speech rely on a single production mechanism that depends on the same neurological substrate while others claim that both modalities are closely related but separate production channels. Thus, findings so far are contradictory and there is a lack of studies that systematically analyse the full range of hand movements that accompany speech in the condition of brain damage. In the present study, we aimed to fill this gap by comparing hand movement behaviour in persons with unilateral brain damage to the left and the right hemisphere and a matched control group of healthy persons. For hand movement coding, we applied Module I of NEUROGES, an objective and reliable analysis system that enables to analyse the full repertoire of hand movements independent of speech, which makes it specifically suited for the examination of persons with aphasia. The main results of our study show a decreased use of communicative conceptual gestures in persons with damage to the right hemisphere and an increased use of these gestures in persons with left brain damage and aphasia. These results not only suggest that the production of gesture and speech do not rely on the same neurological substrate but also underline the important role of right hemisphere functioning for gesture production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Post-stroke acquired amusia: A comparison between right- and left-brain hemispheric damages.

    Science.gov (United States)

    Jafari, Zahra; Esmaili, Mahdiye; Delbari, Ahmad; Mehrpour, Masoud; Mohajerani, Majid H

    2017-01-01

    Although extensive research has been published about the emotional consequences of stroke, most studies have focused on emotional words, speech prosody, voices, or facial expressions. The emotional processing of musical excerpts following stroke has been relatively unexplored. The present study was conducted to investigate the effects of chronic stroke on the recognition of basic emotions in music. Seventy persons, including 25 normal controls (NC), 25 persons with right brain damage (RBD) from stroke, and 20 persons with left brain damage (LBD) from stroke between the ages of 31-71 years were studied. The Musical Emotional Bursts (MEB) test, which consists of a set of short musical pieces expressing basic emotional states (happiness, sadness, and fear) and neutrality, was used to test musical emotional perception. Both stroke groups were significantly poorer than normal controls for the MEB total score and its subtests (p right hemisphere dominance in processing negative emotions.

  8. Atypical temporal activation pattern and central-right brain compensation during semantic judgment task in children with early left brain damage.

    Science.gov (United States)

    Chang, Yi-Tzu; Lin, Shih-Che; Meng, Ling-Fu; Fan, Yang-Teng

    In this study we investigated the event-related potentials (ERPs) during the semantic judgment task (deciding if the two Chinese characters were semantically related or unrelated) to identify the timing of neural activation in children with early left brain damage (ELBD). The results demonstrated that compared with the controls, children with ELBD had (1) competitive accuracy and reaction time in the semantic judgment task, (2) weak operation of the N400, (3) stronger, earlier and later compensational positivities (referred to the enhanced P200, P250, and P600 amplitudes) in the central and right region of the brain to successfully engage in semantic judgment. Our preliminary findings indicate that temporally postlesional reorganization is in accordance with the proposed right-hemispheric organization of speech after early left-sided brain lesion. During semantic processing, the orthography has a greater effect on the children with ELBD, and a later semantic reanalysis (P600) is required due to the less efficient N400 at the former stage for semantic integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Right-sided representational neglect after left brain damage in a case without visuospatial working memory deficits.

    Science.gov (United States)

    van Dijck, Jean-Philippe; Gevers, Wim; Lafosse, Christophe; Fias, Wim

    2013-10-01

    Brain damaged patients suffering from representational neglect (RN) fail to report, orient to, or verbally describe contra-lesional elements of imagined environments or objects. So far this disorder has only been reported after right brain damage, leading to the idea that only the right hemisphere is involved in this deficit. A widely accepted account attributes RN to a lateralized impairment in the visuospatial component of working memory. So far, however, this hypothesis has not been tested in detail. In the present paper, we describe, for the first time, the case of a left brain damaged patient suffering from right-sided RN while imagining both known and new environments and objects. An in-depth evaluation of her visuospatial working memory abilities, with special focus on the presence of a lateralized deficit, did not reveal any abnormality. In sharp contrast, her ability to memorize visual information was severely compromised. The implications of these results are discussed in the light of recent insights in the neglect syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. False memories to emotional stimuli are not equally affected in right- and left-brain-damaged stroke patients.

    Science.gov (United States)

    Buratto, Luciano Grüdtner; Zimmermann, Nicolle; Ferré, Perrine; Joanette, Yves; Fonseca, Rochele Paz; Stein, Lilian Milnitsky

    2014-10-01

    Previous research has attributed to the right hemisphere (RH) a key role in eliciting false memories to visual emotional stimuli. These results have been explained in terms of two right-hemisphere properties: (i) that emotional stimuli are preferentially processed in the RH and (ii) that visual stimuli are represented more coarsely in the RH. According to this account, false emotional memories are preferentially produced in the RH because emotional stimuli are both more strongly and more diffusely activated during encoding, leaving a memory trace that can be erroneously reactivated by similar but unstudied emotional items at test. If this right-hemisphere hypothesis is correct, then RH damage should result in a reduction in false memories to emotional stimuli relative to left-hemisphere lesions. To investigate this possibility, groups of right-brain-damaged (RBD, N=15), left-brain-damaged (LBD, N=15) and healthy (HC, N=30) participants took part in a recognition memory experiment with emotional (negative and positive) and non-emotional pictures. False memories were operationalized as incorrect responses to unstudied pictures that were similar to studied ones. Both RBD and LBD participants showed similar reductions in false memories for negative pictures relative to controls. For positive pictures, however, false memories were reduced only in RBD patients. The results provide only partial support for the right-hemisphere hypothesis and suggest that inter-hemispheric cooperation models may be necessary to fully account for false emotional memories. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Let thy left brain know what thy right brain doeth: Inter-hemispheric compensation of functional deficits after brain damage.

    Science.gov (United States)

    Bartolomeo, Paolo; Thiebaut de Schotten, Michel

    2016-12-01

    Recent evidence revealed the importance of inter-hemispheric communication for the compensation of functional deficits after brain damage. This review summarises the biological consequences observed using histology as well as the longitudinal findings measured with magnetic resonance imaging methods in brain damaged animals and patients. In particular, we discuss the impact of post-stroke brain hyperactivity on functional recovery in relation to time. The reviewed evidence also suggests that the proportion of the preserved functional network both in the lesioned and in the intact hemispheres, rather than the simple lesion location, determines the extent of functional recovery. Hence, future research exploring longitudinal changes in patients with brain damage may unveil potential biomarkers underlying functional recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The perception of peripersonal space in right and left brain damage hemiplegic patients

    Directory of Open Access Journals (Sweden)

    Angela eBartolo

    2014-01-01

    Full Text Available Peripersonal space, as opposed to extrapersonal space, is the space that contains reachable objects and in which multisensory and sensorimotor integration is enhanced. Thus, the perception of peripersonal space requires combining information on the spatial properties of the environment with information on the current capacity to act. In support of this, recent studies have provided converging evidences that perceiving objects in peripersonal space activates a neural network overlapping with that subtending voluntary motor action and motor imagery. Other studies have also underlined the dominant role of the right hemisphere in motor planning and of the left hemisphere in on-line motor guiding, respectively. In the present study, we investigated the effect of a right or left hemiplegia in the perception of peripersonal space. 16 hemiplegic patients with brain damage to the left (LH or right (RH hemisphere and 8 matched healthy controls (HC performed a colour discrimination, a motor imagery and a reachability judgment task. Analyses of response times and accuracy revealed no variation among the three groups in the colour discrimination task, suggesting the absence of any specific perceptual or decisional deficits in the patient groups. In contrast, the patient groups revealed longer response times in the motor imagery task when performed in reference to the hemiplegic arm (RH and LH or to the healthy arm (RH. Moreover, RH group showed longer response times in the reachability judgement task, but only for stimuli located at the boundary of peripersonal space, which was furthermore significantly reduced in size. Considered together, these results confirm the crucial role of the motor system in motor imagery task and the perception of peripersonal space. They also revealed that right hemisphere damage has a more detrimental effect on reachability estimates, suggesting that motor planning processes contribute specifically to the perception of

  13. Anatomical and spatial matching in imitation: Evidence from left and right brain-damaged patients.

    Science.gov (United States)

    Mengotti, Paola; Ripamonti, Enrico; Pesavento, Valentina; Rumiati, Raffaella Ida

    2015-12-01

    Imitation is a sensorimotor process whereby the visual information present in the model's movement has to be coupled with the activation of the motor system in the observer. This also implies that greater the similarity between the seen and the produced movement, the easier it will be to execute the movement, a process also known as ideomotor compatibility. Two components can influence the degree of similarity between two movements: the anatomical and the spatial component. The anatomical component is present when the model and imitator move the same body part (e.g., the right hand) while the spatial component is present when the movement of the model and that of the imitator occur at the same spatial position. Imitation can be achieved by relying on both components, but typically the model's and imitator's movements are matched either anatomically or spatially. The aim of this study was to ascertain the contribution of the left and right hemisphere to the imitation accomplished either with anatomical or spatial matching (or with both). Patients with unilateral left and right brain damage performed an ideomotor task and a gesture imitation task. Lesions in the left and right hemispheres gave rise to different performance deficits. Patients with lesions in the left hemisphere showed impaired imitation when anatomical matching was required, and patients with lesions in the right hemisphere showed impaired imitation when spatial matching was required. Lesion analysis further revealed a differential involvement of left and right hemispheric regions, such as the parietal opercula, in supporting imitation in the ideomotor task. Similarly, gesture imitation seemed to rely on different regions in the left and right hemisphere, such as parietal regions in the left hemisphere and premotor, somatosensory and subcortical regions in the right hemisphere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A Right Brain/Left Brain Model of Acting.

    Science.gov (United States)

    Bowlen, Clark

    Using current right brain/left brain research, this paper develops a model that explains acting's underlying quality--the actor is both himself and the character. Part 1 presents (1) the background of the right brain/left brain theory, (2) studies showing that propositional communication is a left hemisphere function while affective communication…

  15. Lesion characteristics driving right-hemispheric language reorganization in congenital left-hemispheric brain damage.

    Science.gov (United States)

    Lidzba, Karen; de Haan, Bianca; Wilke, Marko; Krägeloh-Mann, Ingeborg; Staudt, Martin

    2017-10-01

    Pre- or perinatally acquired ("congenital") left-hemispheric brain lesions can be compensated for by reorganizing language into homotopic brain regions in the right hemisphere. Language comprehension may be hemispherically dissociated from language production. We investigated the lesion characteristics driving inter-hemispheric reorganization of language comprehension and language production in 19 patients (7-32years; eight females) with congenital left-hemispheric brain lesions (periventricular lesions [n=11] and middle cerebral artery infarctions [n=8]) by fMRI. 16/17 patients demonstrated reorganized language production, while 7/19 patients had reorganized language comprehension. Lesions to the insular cortex and the temporo-parietal junction (predominantly supramarginal gyrus) were significantly more common in patients in whom both, language production and comprehension were reorganized. These areas belong to the dorsal stream of the language network, participating in the auditory-motor integration of language. Our data suggest that the integrity of this stream might be crucial for a normal left-lateralized language development. Copyright © 2017. Published by Elsevier Inc.

  16. Testing the Language of German Cerebral Palsy Patients with Right Hemispheric Language Organization after Early Left Hemispheric Damage

    Science.gov (United States)

    Schwilling, Eleonore; Krageloh-Mann, Ingeborg; Konietzko, Andreas; Winkler, Susanne; Lidzba, Karen

    2012-01-01

    Language functions are generally represented in the left cerebral hemisphere. After early (prenatally acquired or perinatally acquired) left hemispheric brain damage language functions may be salvaged by reorganization into the right hemisphere. This is different from brain lesions acquired in adulthood which normally lead to aphasia. Right…

  17. From the Left to the Right: How the Brain Compensates Progressive Loss of Language Function

    Science.gov (United States)

    Thiel, Alexander; Habedank, Birgit; Herholz, Karl; Kessler, Josef; Winhuisen, Lutz; Haupt, Walter F.; Heiss, Wolf-Dieter

    2006-01-01

    In normal right-handed subjects language production usually is a function of the left brain hemisphere. Patients with aphasia following brain damage to the left hemisphere have a considerable potential to compensate for the loss of this function. Sometimes, but not always, areas of the right hemisphere which are homologous to language areas of the…

  18. Right-Brained Kids in Left-Brained Schools

    Science.gov (United States)

    Hunter, Madeline

    1976-01-01

    Students who learn well through left hemisphere brain input (oral and written) have minimal practice in using the right hemisphere, while those who are more proficient in right hemisphere (visual) input processing are handicapped by having to use primarily their left brains. (MB)

  19. Left brain, right brain: facts and fantasies.

    Directory of Open Access Journals (Sweden)

    Michael C Corballis

    2014-01-01

    Full Text Available Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the "norm" of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal.

  20. Left brain, right brain: facts and fantasies.

    Science.gov (United States)

    Corballis, Michael C

    2014-01-01

    Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the "norm" of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal.

  1. The Neural Correlates of Abstract and Concrete Words: Evidence from Brain-Damaged Patients

    Directory of Open Access Journals (Sweden)

    Giorgia Martello

    2013-08-01

    Full Text Available Neuropsychological and activation studies on the neural correlates of abstract and concrete words have produced contrasting results. The present study explores the anatomical substrates of abstract/concrete words in 22 brain-damaged patients with a single vascular lesion either in the right or left hemisphere. One hundred and twenty (60 concrete and 60 abstract noun triplets were used for a semantic similarity judgment task. We found a significant interaction in word type × group since left temporal brain-damaged patients performed significantly better with concrete than abstract words. Lesion mapping of patients with predominant temporal damage showed that the left superior and middle temporal gyri and the insula were the areas of major overlapping, while the anterior portion of the left temporal lobe was generally spared. Errors on abstract words mainly concerned (although at a non-significant level semantically associate targets, while in the case of concrete words, coordinate targets were significantly more impaired than associate ones. Our results suggest that the left superior and middle temporal gyri and the insula are crucial regions in processing abstract words. They also confirm the hypothesis of a semantic similarity vs. associative organization of concrete and abstract concepts.

  2. [Dextrals and sinistrals (right-handers and left-handers): specificity of interhemispheric brain asymmetry and EEG coherence parameters].

    Science.gov (United States)

    Zhavoronkova, L A

    2007-01-01

    Data of literature about morphological, functional and biochemical specificity of the brain interhemispheric asymmetry of healthy right-handers and left-handers and about peculiarity of dynamics of cerebral pathology in patients with different individual asymmetry profiles are presented at the present article. Results of our investigation by using coherence parameters of electroencephalogram (EEG) in healthy right-handers and left-handers in state of rest, during functional tests and sleeping and in patients with different forms of the brain organic damage were analyzed too. EEG coherence analysis revealed the reciprocal changing of alpha-beta and theta-delta spectral bands in right-handers whilein left-handers synchronous changing of all EEG spectral bands were observed. Data about regional-frequent specificity of EEG coherence, peculiarity of EEG asymmetry in right-handers and left-handers, aslo about specificity of EEG spectral band genesis and point of view about a role of the brain regulator systems in forming of interhemispheric asymmetry in different functional states allowed to propose the conception about principle of interhermispheric brain asymmetry formation in left-handers and left-handers. Following this conception in dextrals elements of concurrent (summary-reciprocal) cooperation are predominant at the character of interhemispheric and cortical-subcortical interaction while in sinistrals a principle of concordance (supplementary) is preferable. These peculiarities the brain organization determine, from the first side, the quicker revovery of functions damaged after cranio-cerebral trauma in left-handers in comparison right-handers and from the other side - they determine the forming of the more expressed pathology in the remote terms after exposure the low dose of radiation.

  3. Association between right-to-left shunts and brain lesions in sport divers.

    Science.gov (United States)

    Gerriets, Tibo; Tetzlaff, Kay; Hutzelmann, Alfred; Liceni, Thomas; Kopiske, Gerrit; Struck, Niklas; Reuter, Michael; Kaps, Manfred

    2003-10-01

    Recent studies suggest that healthy sport divers may develop clinically silent brain damage, based on the association between a finding of multiple brain lesions on MRI and the presence of right-to-left shunt, a pathway for venous gas bubbles to enter the arterial system. We performed echocontrast transcranial Doppler sonography in 42 sport divers to determine the presence of a right-to-left shunt. Cranial MRI was carried out using a 1.5 T magnet. A lesion was counted if it was hyperintense on both T2-weighted and T2-weighted fluid attenuated inversion recovery sequences. To test the hypothesis that the occurrence of postdive arterial gas emboli is related to brain lesions on MRI, we measured postdive intravascular bubbles in a subset of 15 divers 30 min after open water scuba dives. Echocontrast transcranial Doppler sonography revealed a right-to-left shunt in 16 of the divers (38%). Only one hyperintensive lesion of the central white matter was found and that was in a diver with no evidence of a right-to-left shunt. Postdive arterial gas emboli were detected in 3 out of 15 divers; they had a right-to-left shunt, but no pathologic findings on cranial magnetic resonance imaging. Our data support the theory that right-to-left shunts can serve as a pathway for venous gas bubbles into the arterial circulation. However, we could not confirm an association between brain lesions and the presence of a right-to-left shunt in sport divers.

  4. Radial bisection of words and lines in right-brain-damaged patients with spatial neglect.

    Science.gov (United States)

    Veronelli, Laura; Arduino, Lisa S; Girelli, Luisa; Vallar, Giuseppe

    2017-09-01

    The bisection of lines positioned radially (with the two ends of the line close and far, with respect to the participant's body) has been less investigated than that of lines placed horizontally (with their two ends left and right, with respect to the body's midsagittal plane). In horizontal bisection, patients with left neglect typically show a rightward bias for both lines and words, greater with longer stimuli. As for radial bisection, available data indicate that neurologically unimpaired participants make a distal error, while results from right-brain-damaged patients with left spatial neglect are contradictory. We investigated the bisection of radially oriented words, with the prediction that, during bisection, linguistic material would be recoded to its canonical left-to-right format in reading, with the performance of neglect patients being similar to that for horizontal words. Thirteen right-brain-damaged patients (seven with left spatial neglect) and fourteen healthy controls were asked to manually bisect 40 radial and 40 horizontal words (5-10 letters), and 80 lines, 40 radial and 40 horizontal, of comparable length. Right-brain-damaged patients with spatial neglect exhibited a proximal bias in the bisection of short radial words, with the proximal part corresponding to the final right part of horizontally oriented words. This proximal error was not found in patients without neglect and healthy controls. For bisection, short radial words may be recoded to the canonical orthographic horizontal format, unveiling the impact of left neglect on radially oriented stimuli. © 2015 The British Psychological Society.

  5. Brain damage associated with apraxia of speech: evidence from case studies.

    Science.gov (United States)

    Moser, Dana; Basilakos, Alexandra; Fillmore, Paul; Fridriksson, Julius

    2016-08-01

    The site of crucial damage that causes acquired apraxia of speech (AOS) has been debated in the literature. This study presents five in-depth cases that offer insight into the role of brain areas involved in AOS. Four of the examined participants had a primary impairment of AOS either with (n = 2) or without concomitant mild aphasia (n = 2). The fifth participant presented with a lesion relatively isolated to the left anterior insula (AIns-L), damage that is rarely reported in the literature, but without AOS. Taken together, these cases challenge the role of the AIns-L and implicate the left motor regions in AOS.

  6. Left Brain/Right Brain Learning for Adult Education.

    Science.gov (United States)

    Garvin, Barbara

    1986-01-01

    Contrasts and compares the theory and practice of adult education as it relates to the issue of right brain/left brain learning. The author stresses the need for a whole-brain approach to teaching and suggests that adult educators, given their philosophical directions, are the perfect potential users of this integrated system. (Editor/CT)

  7. PREDICTING APHASIA TYPE FROM BRAIN DAMAGE MEASURED WITH STRUCTURAL MRI

    Science.gov (United States)

    Yourganov, Grigori; Smith, Kimberly G.; Fridriksson, Julius; Rorden, Chris

    2015-01-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca’s, Wernicke’s, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery. Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients’ aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. PMID:26465238

  8. Predicting aphasia type from brain damage measured with structural MRI.

    Science.gov (United States)

    Yourganov, Grigori; Smith, Kimberly G; Fridriksson, Julius; Rorden, Chris

    2015-12-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca's, Wernicke's, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery (WAB). Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients' aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine - SVM) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Teaching Creativity for Right Brain and Left Brain Thinkers.

    Science.gov (United States)

    Geske, Joel

    Right brain and left brain dominant people process information differently and need different techniques to learn how to become more creative. Various exercises can help students take advantage of both sides of their brains. Students must feel comfortable and unthreatened to reach maximal creativity, and a positive personal relationship with…

  10. Mechanical problem-solving strategies in left-brain damaged patients and apraxia of tool use.

    Science.gov (United States)

    Osiurak, François; Jarry, Christophe; Lesourd, Mathieu; Baumard, Josselin; Le Gall, Didier

    2013-08-01

    Left brain damage (LBD) can impair the ability to use familiar tools (apraxia of tool use) as well as novel tools to solve mechanical problems. Thus far, the emphasis has been placed on quantitative analyses of patients' performance. Nevertheless, the question still to be answered is, what are the strategies employed by those patients when confronted with tool use situations? To answer it, we asked 16 LBD patients and 43 healthy controls to solve mechanical problems by means of several potential tools. To specify the strategies, we recorded the time spent in performing four kinds of action (no manipulation, tool manipulation, box manipulation, and tool-box manipulation) as well as the number of relevant and irrelevant tools grasped. We compared LBD patients' performance with that of controls who encountered difficulties with the task (controls-) or not (controls+). Our results indicated that LBD patients grasped a higher number of irrelevant tools than controls+ and controls-. Concerning time allocation, controls+ and controls- spent significantly more time in performing tool-box manipulation than LBD patients. These results are inconsistent with the possibility that LBD patients could engage in trial-and-error strategies and, rather, suggest that they tend to be perplexed. These findings seem to indicate that the inability to reason about the objects' physical properties might prevent LBD patients from following any problem-solving strategy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Brain damage and addictive behavior: a neuropsychological and electroencephalogram investigation with pathologic gamblers.

    Science.gov (United States)

    Regard, Marianne; Knoch, Daria; Gütling, Eva; Landis, Theodor

    2003-03-01

    Gambling is a form of nonsubstance addiction classified as an impulse control disorder. Pathologic gamblers are considered healthy with respect to their cognitive status. Lesions of the frontolimbic systems, mostly of the right hemisphere, are associated with addictive behavior. Because gamblers are not regarded as "brain-lesioned" and gambling is nontoxic, gambling is a model to test whether addicted "healthy" people are relatively impaired in frontolimbic neuropsychological functions. Twenty-one nonsubstance dependent gamblers and nineteen healthy subjects underwent a behavioral neurologic interview centered on incidence, origin, and symptoms of possible brain damage, a neuropsychological examination, and an electroencephalogram. Seventeen gamblers (81%) had a positive medical history for brain damage (mainly traumatic head injury, pre- or perinatal complications). The gamblers, compared with the controls, were significantly more impaired in concentration, memory, and executive functions, and evidenced a higher prevalence of non-right-handedness (43%) and, non-left-hemisphere language dominance (52%). Electroencephalogram (EEG) revealed dysfunctional activity in 65% of the gamblers, compared with 26% of controls. This study shows that the "healthy" gamblers are indeed brain-damaged. Compared with a matched control population, pathologic gamblers evidenced more brain injuries, more fronto-temporo-limbic neuropsychological dysfunctions and more EEG abnormalities. The authors thus conjecture that addictive gambling may be a consequence of brain damage, especially of the frontolimbic systems, a finding that may well have medicolegal consequences.

  12. Brain abscesses associated with right-to-left shunts in adults.

    Science.gov (United States)

    Memon, Kashif A; Cleveland, Kerry O; Gelfand, Michael S

    2012-04-01

    Although brain abscesses are frequently cryptogenic in origin, bacteria must reach the brain either by direct or hematogenous spread. Right-to-left shunts, caused either by intrapulmonary vascular malformations or congenital heart defects, may allow microorganisms to evade the normal host defenses in the lungs and lead to development of brain abscesses. Two patients recently presented with brain abscesses and were found to have conditions associated with right-to-left shunts. The diagnosis of brain abscess should prompt the clinician to consider right-to-left shunts as a possible predisposing condition for brain abscess.

  13. The Neural Correlates of Abstract and Concrete Words: Evidence from Brain-Damaged Patients

    OpenAIRE

    Papagno, Costanza; Martello, Giorgia; Mattavelli, Giulia

    2013-01-01

    Neuropsychological and activation studies on the neural correlates of abstract and concrete words have produced contrasting results. The present study explores the anatomical substrates of abstract/concrete words in 22 brain-damaged patients with a single vascular lesion either in the right or left hemisphere. One hundred and twenty (60 concrete and 60 abstract) noun triplets were used for a semantic similarity judgment task. We found a significant interaction in word type × group since left ...

  14. Bisecting real and fake body parts: effects of prism adaptation after right brain damage

    Directory of Open Access Journals (Sweden)

    Nadia eBolognini

    2012-06-01

    Full Text Available The representation of body parts holds a special status in the brain, due to their prototypical shape and the contribution of multisensory (visual and somatosensory-proprioceptive information. In a previous study (Sposito et al., 2010, we showed that patients with left unilateral spatial neglect exhibit a rightward bias in setting the mid-point of their left forearm, which becomes larger when bisecting a cylindrical object comparable in size. This body part advantage, found also in control participants, suggests partly different processes for computing the extent of body parts and objects. In this study we tested 16 right-brain-damaged patients, and 10 unimpaired participants, on a manual bisection task of their own (real left forearm, or a size-matched fake forearm. We then explored the effects of adaptation to rightward displacing prism exposure, which brings about leftward aftereffects. We found that all participants showed prism adaptation and aftereffects, with right-brain-damaged patients exhibiting a reduction of the rightward bias for both real and fake forearm, with no overall differences between them. Second, correlation analyses highlighted the role of visual and proprioceptive information for the metrics of body parts. Third, single-patient analyses showed dissociations between real and fake forearm bisections, and the effects of prism adaptation, as well as a more frequent impairment with fake body parts. In sum, the rightward bias shown by right-brain-damaged patients in bisecting body parts is reduced by prism exposure, as other components of the neglect syndrome; discrete spatial representations for real and fake body parts, for which visual and proprioceptive codes play different roles, are likely to exist. Multisensory information seems to render self bodily segments more resistant to the disruption brought about by right-hemisphere injury.

  15. Objective instrumental memory and performance tests for evaluation of patients with brain damage: a search for a behavioral diagnostic tool.

    Science.gov (United States)

    Harness, B Z; Bental, E; Carmon, A

    1976-03-01

    Cognition and performance of patients with localized and diffuse brain damage was evaluated through the application of objective perceptual testing. A series of visual perceptual and verbal tests, memory tests, as well as reaction time tasks were administered to the patients by logic programming equipment. In order to avoid a bias due to communicative disorders, all responses were motor, and achievement was scored in terms of correct identification and latencies of response. Previously established norms based on a large sample of non-brain-damaged hospitalized patients served to standardize the performance of the brain-damaged patient since preliminary results showed that age and educational level constitute an important variable affecting performance of the control group. The achievement of brain-damaged patients, corrected for these factors, was impaired significantly in all tests with respect to both recognition and speed of performance. Lateralized effects of brain damage were not significantly demonstrated. However, when the performance was analyzed with respect to the locus of visual input, it was found that patients with right hemispheric lesions showed impairment mainly on perception of figurative material, and that this deficit was more apparent in the left visual field. Conversely, patients with left hemispheric lesions tended to show impairment on perception of visually presented verbal material when the input was delivered to the right visual field.

  16. Color Doppler ultrasound evaluation of asphyxial neonatal left ventricular function and its correlation with target organ damage

    Directory of Open Access Journals (Sweden)

    Cheng-Cai Chen

    2017-01-01

    Full Text Available Objective: To study the color Doppler ultrasound parameters of asphyxial neonatal left ventricular function and the correlation with target organ damage. Methods: Normal neonates, mildly asphyxial neonates and severely asphyxial neonates born in our hospital between January 2014 and December 2015 were selected as the control group (n = 46, mild asphyxia group (n = 37 and severe asphyxia group (n = 23 respectively. On the 1st day after birth, color Doppler ultrasound was used to evaluate left ventricular function, and serum was collected to determine myocardial tissue injury, brain tissue injury and brain tissue metabolism indexes. Results: Color Doppler ultrasound parameters cardiac output (CO, ejection fraction (EF and left ventricular fraction shortening (FS as well as serum folate and vitamin B12 content of mild asphyxia group and severe asphyxia group were significantly lower than those of control group (P<0.05 while serum creatine kinase isoenzyme (CK-MB, troponin I (cTnI, troponin T (cTnT, S100B, neuron-specific enolase (NSE, creatine kinase BB (CK-BB, glycogen phosphorylase BB (GPBB, and homocysteine (Hcy content were significantly higher than those of control group (P<0.05; CO, FS and EF as well as serum folate and vitamin B12 content of severe asphyxia group were significantly lower than those of mild asphyxia group (P<0.05 while serum CK-MB, cTnT, cTnI, S100B, NSE, CK-BB, GPBB and Hcy content were significantly higher than those of mild asphyxia group (P<0.05. Conclusions: Color Doppler ultrasound can accurately assess asphyxial neonatal left ventricular function damage degree and is closely related to myocardial tissue injury and brain tissue injury degree.

  17. Apraxia in left-handers.

    Science.gov (United States)

    Goldenberg, Georg

    2013-08-01

    In typical right-handed patients both apraxia and aphasia are caused by damage to the left hemisphere, which also controls the dominant right hand. In left-handed subjects the lateralities of language and of control of the dominant hand can dissociate. This permits disentangling the association of apraxia with aphasia from that with handedness. Pantomime of tool use, actual tool use and imitation of meaningless hand and finger postures were examined in 50 consecutive left-handed subjects with unilateral hemisphere lesions. There were three aphasic patients with pervasive apraxia caused by left-sided lesions. As the dominant hand is controlled by the right hemisphere, they constitute dissociations of apraxia from handedness. Conversely there were also three patients with pervasive apraxia caused by right brain lesions without aphasia. They constitute dissociations of apraxia from aphasia. Across the whole group of patients dissociations from handedness and from aphasia were observed for all manifestations of apraxia, but their frequency depended on the type of apraxia. Defective pantomime and defective tool use occurred rarely without aphasia, whereas defective imitation of hand, but not finger, postures was more frequent after right than left brain damage. The higher incidence of defective imitation of hand postures in right brain damage was mainly due to patients who had also hemi-neglect. This interaction alerts to the possibility that the association of right hemisphere damage with apraxia has to do with spatial aptitudes of the right hemisphere rather than with its control of the dominant left hand. Comparison with data from right-handed patients showed no differences between the severity of apraxia for imitation of hand or finger postures, but impairment on pantomime of tool use was milder in apraxic left-handers than in apraxic right-handers. This alleviation of the severity of apraxia corresponded with a similar alleviation of the severity of aphasia as

  18. Left Brain to Right Brain: Notes from the Human Laboratory.

    Science.gov (United States)

    Baumli, Francis

    1982-01-01

    Examines the implications of the left brain-right brain theory on communications styles in male-female relationships. The author contends that women tend to use the vagueness of their emotional responses manipulatively. Men need to apply rational approaches to increase clarity in communication. (AM)

  19. Can neuropsychological testing produce unequivocal evidence of brain damage? II. Testing for right vs. left differences.

    Science.gov (United States)

    Reitan, Ralph M; Wolfson, Deborah

    2008-01-01

    Sensation and perception, as well as motor functions, have played an important role in the history of psychology. Although tests of these abilities are sometimes included in neuropsychological assessments, comparisons of intraindividual performances on the two sides of the body (as a basis for drawing conclusions and comparisons about the functional status of the two cerebral hemispheres) are in many instances neglected or considered only casually. This study, utilizing several motor and sensory-perceptual tests, compared intraindividual differences on the two sides of the body in a group of controls and a group of persons with brain damage. The results indicated that the sensory-perceptual tests were particularly effective in differentiating the groups. More than 60% of the group with brain damage had greater differences on the two sides of the body than did any of the controls. These findings suggest that a substantial proportion of persons with cerebral disease or damage may be subject to unequivocal identification using sensory-perceptual tests that take only about 20 minutes to administer. These tests may serve a valuable role as an adjunct to comprehensive neuropsychological evaluation and should be further evaluated in this respect.

  20. Brain structural network topological alterations of the left prefrontal and limbic cortex in psychogenic erectile dysfunction.

    Science.gov (United States)

    Chen, Jianhuai; Chen, Yun; Gao, Qingqiang; Chen, Guotao; Dai, Yutian; Yao, Zhijian; Lu, Qing

    2018-05-01

    Despite increasing understanding of the cerebral functional changes and structural abnormalities in erectile dysfunction, alterations in the topological organization of brain networks underlying psychogenic erectile dysfunction remain unclear. Here, based on the diffusion tensor image data of 25 patients and 26 healthy controls, we investigated the topological organization of brain structural networks and its correlations with the clinical variables using the graph theoretical analysis. Patients displayed a preserved overall small-world organization and exhibited a less connectivity strength in the left inferior frontal gyrus, amygdale and the right inferior temporal gyrus. Moreover, an abnormal hub pattern was observed in patients, which might disturb the information interactions of the remaining brain network. Additionally, the clustering coefficient of the left hippocampus was positively correlated with the duration of patients and the normalized betweenness centrality of the right anterior cingulate gyrus and the left calcarine fissure were negatively correlated with the sum scores of the 17-item Hamilton Depression Rating Scale. These findings suggested that the damaged white matter and the abnormal hub distribution of the left prefrontal and limbic cortex might contribute to the pathogenesis of psychogenic erectile dysfunction and provided new insights into the understanding of the pathophysiological mechanisms of psychogenic erectile dysfunction.

  1. Right Brain/Left Brain President Barack Obama's Uncommon Leadership Ability and How We Can Each Develop It

    CERN Document Server

    Decosterd, Mary Lou

    2010-01-01

    Right Brain/Left Brain President: Barack Obama's Uncommon Leadership Ability and How We Can Each Develop It is an inspirational guide to leadership as it should be practiced, conveyed through an up-close look at the man who sets the new leadership bar. Author Mary Lou D'costerd uses her Right Brain/Left Brain Leadership Model to frame Barack Obama's leadership skill sets. Her book shows that Obama's unique brand of leadership is the result of his extraordinary ability to leverage full-brain potential in the ways he thinks, decides, and acts. ||Right Brain/Left Brain President examines Obama's

  2. Left Brain/Right Brain: Research and Learning. Focused Access to Selected Topics (FAST) Bibliography No. 12.

    Science.gov (United States)

    Eppele, Ruth

    This 27-item bibliography represents the variety of articles added to the ERIC database from 1983 through 1988 on left-brain/right-brain research, theory, and application as it relates to classroom incorporation. Included are conflicting opinions as to the usefulness of left-brain/right-brain studies and their application in the learning…

  3. Patterns of poststroke brain damage that predict speech production errors in apraxia of speech and aphasia dissociate.

    Science.gov (United States)

    Basilakos, Alexandra; Rorden, Chris; Bonilha, Leonardo; Moser, Dana; Fridriksson, Julius

    2015-06-01

    Acquired apraxia of speech (AOS) is a motor speech disorder caused by brain damage. AOS often co-occurs with aphasia, a language disorder in which patients may also demonstrate speech production errors. The overlap of speech production deficits in both disorders has raised questions on whether AOS emerges from a unique pattern of brain damage or as a subelement of the aphasic syndrome. The purpose of this study was to determine whether speech production errors in AOS and aphasia are associated with distinctive patterns of brain injury. Forty-three patients with history of a single left-hemisphere stroke underwent comprehensive speech and language testing. The AOS Rating Scale was used to rate speech errors specific to AOS versus speech errors that can also be associated with both AOS and aphasia. Localized brain damage was identified using structural magnetic resonance imaging, and voxel-based lesion-impairment mapping was used to evaluate the relationship between speech errors specific to AOS, those that can occur in AOS or aphasia, and brain damage. The pattern of brain damage associated with AOS was most strongly associated with damage to cortical motor regions, with additional involvement of somatosensory areas. Speech production deficits that could be attributed to AOS or aphasia were associated with damage to the temporal lobe and the inferior precentral frontal regions. AOS likely occurs in conjunction with aphasia because of the proximity of the brain areas supporting speech and language, but the neurobiological substrate for each disorder differs. © 2015 American Heart Association, Inc.

  4. MRI findings of brain damage due to neonatal hypoglycemia

    International Nuclear Information System (INIS)

    Wang Lu; Fan Guoguang; Ji Xu; Sun Baohai; Guo Qiyong

    2009-01-01

    Objective: To report the MRI findings of brain damage observed in neonatal patients who suffered from isolated hypoglycemia and to explore the value of diffusion-weighted imaging(DWI) in early detection of neonatal hypoglycemic brain injury. Methods: Twelve neonates with isolated hypoglycemia (10 of the 12 were diagnosed to suffer from hypoglycemic encephalopathy) were enrolled in this study. They were first scanned at age from 3 days to 10 days with T 1 WI, T 2 WI and DWI(b is 0 s/mm 2 , 1000 s/mm 2 ), and 4 of them were then scanned from 7 days to 10 days following the initial scan. All acquired MR images were retrospectively analysed. Results: First series of DWI images showed distinct hyperintense signal in 11 cases in several areas including bilateral occipital cortex (2 cases), right occipital cortex (1 case), left occipital cortex and subcortical white matter(1 case), bilateral occipital cortex and subcortical white matter (2 cases), bilateral parieto-occipital cortex (2 cases), bilateral parieto-occipital cortex and subcortical white matter(2 cases), the splenium of corpus callosum (4 cases), bilateral corona radiata( 2 cases), left caudate nucleus and globus pallidus (1 case), bilateral thalamus (1 case), bilaterally posterior limb of internal capsule (1 case). In the initial T 1 WI and T 2 WI images, there were subtle hypointensity in the damaged cortical areas (3 cases), hyperintensity in the bilaterally affected occipital cortex( 1 case) on T 1 weighted images, and hyperintensity in the affected cortex and subcortical white matter with poor differentiation on T 2 weighted images. The followed-up MRI of 4 cases showed regional encephalomalacia in the affected occipital lobes(4 cases), slightly hyperintensity on T 2 weighted images in the damaged occipital cortex (2 cases), extensive demyelination (1 case), disappearance of hyperintensity of the splenium of corpus callosum (1 case), and persistent hyperintensity in the splenium of corpus callosum (1 case

  5. Patterns of Post-Stroke Brain Damage that Predict Speech Production Errors in Apraxia of Speech and Aphasia Dissociate

    Science.gov (United States)

    Basilakos, Alexandra; Rorden, Chris; Bonilha, Leonardo; Moser, Dana; Fridriksson, Julius

    2015-01-01

    Background and Purpose Acquired apraxia of speech (AOS) is a motor speech disorder caused by brain damage. AOS often co-occurs with aphasia, a language disorder in which patients may also demonstrate speech production errors. The overlap of speech production deficits in both disorders has raised questions regarding if AOS emerges from a unique pattern of brain damage or as a sub-element of the aphasic syndrome. The purpose of this study was to determine whether speech production errors in AOS and aphasia are associated with distinctive patterns of brain injury. Methods Forty-three patients with history of a single left-hemisphere stroke underwent comprehensive speech and language testing. The Apraxia of Speech Rating Scale was used to rate speech errors specific to AOS versus speech errors that can also be associated with AOS and/or aphasia. Localized brain damage was identified using structural MRI, and voxel-based lesion-impairment mapping was used to evaluate the relationship between speech errors specific to AOS, those that can occur in AOS and/or aphasia, and brain damage. Results The pattern of brain damage associated with AOS was most strongly associated with damage to cortical motor regions, with additional involvement of somatosensory areas. Speech production deficits that could be attributed to AOS and/or aphasia were associated with damage to the temporal lobe and the inferior pre-central frontal regions. Conclusion AOS likely occurs in conjunction with aphasia due to the proximity of the brain areas supporting speech and language, but the neurobiological substrate for each disorder differs. PMID:25908457

  6. Protective effect of Kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat

    Directory of Open Access Journals (Sweden)

    Najmeh Kabiri

    2016-09-01

    Full Text Available The aim of study was to investigate the potential neuroprotective effects of Kombucha on cerebral damage induced by ischemia in rats (n=99. Cerebral infarct volume in the ischemic rats received Kombucha solution showed no significance alteration. However, the permeability of blood-brain barrier significantly decreased in both ischemic rats received 15 mg/kg Kombucha tea and Sham group. In addition, brain water content in the ischemic groups treated with Kombucha solution was significantly higher than the Sham group, although right hemispheres in all of the treated groups illustrated higher brain water content than the left ones. Brain anti-oxidant capacity elevated in the ischemic rats treated with Kombucha and in the Sham group. Brain and plasma malondialdehyde concentrations significantly decreased in both of the ischemic groups injected with Kombucha. The findings suggest that Kombucha tea could be useful for the prevention of cerebral damage.

  7. Neuroprotective actions of taurine on hypoxic-ischemic brain damage in neonatal rats.

    Science.gov (United States)

    Zhu, Xiao-Yun; Ma, Peng-Sheng; Wu, Wei; Zhou, Ru; Hao, Yin-Ju; Niu, Yang; Sun, Tao; Li, Yu-Xiang; Yu, Jian-Qiang

    2016-06-01

    Taurine is an abundant amino acid in the nervous system, which has been proved to possess antioxidation, osmoregulation and membrane stabilization. Previously it has been demonstrated that taurine exerts ischemic brain injury protective effect. This study was designed to investigate whether the protective effect of taurine has the possibility to be applied to treat neonatal hypoxic-ischemic brain damage. Seven-day-old Sprague-Dawley rats were treated with left carotid artery ligation followed by exposure to 8% oxygen to generate the experimental group. The cerebral damage area was measured after taurine post-treatment with 2,3,5-triphenyltetrazolium chloride (TTC) staining, Hematoxyline-Eosin (HE) staining and Nissl staining. The activities of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), myeloperoxtidase (MPO), ATP and Lactic Acid productions were assayed with ipsilateral hemisphere homogenates. Western-blot and immunofluorescence assay were processed to detect the expressions of AIF, Cyt C, Bax, Bcl-2 in brain. We found that taurine significantly reduced brain infarct volume and ameliorated morphological injury obviously reversed the changes of SOD, MDA, GSH-Px, T-AOC, ATP, MPO, and Lactic Acid levels. Compared with hypoxic-ischemic group, it showed marked reduction of AIF, Cyt C and Bax expressions and increase of Bcl-2 after post-treatment. We conclude that taurine possesses an efficacious neuroprotective effect after cerebral hypoxic-ischemic damage in neonatal rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Left-right subtraction of brain CT

    International Nuclear Information System (INIS)

    Ishiguchi, Tsuneo; Sakuma, Sadayuki

    1986-01-01

    A new image-processing method to obtain a left-right subtraction image of CT was designed for the automated detection of abnormalities in brain CT. An original CT image was divided in two by a centerline. Then the right half of the image was subtracted from the left half by calculating the absorption value of the pixels on the symmetrical positions against the centerline. The mean and the standard deviation of the absorption value of the pixels in the subtraction image were used as parameters for analysis, and the detectability of abnormal CT findings was evaluated in 100 cases - 50 cases each with normal and abnormal CT. The presence of abnormalities could be diagnosed with a sensitivity of 86 %, a specificity of 90 %, and an overall accuracy of 88 % when the borderline of these parameters between normal and abnormal CT was set at the mean + 2SD in the normal group. As a further analysis, the CT image was subdivided into several areas from a functional or anatomical viewpoint, such as cerebral vascular territories, and the left-right subtraction image of each area was obtained. The possibilities of diagnosing the location of an abnormality and of detecting smaller lesions with this method were shown. Left-right subtraction was considered to be a useful method for the detection of asymmetric abnormalities in the automated diagnosis of brain CT. (author)

  9. Left neglect dyslexia: Perseveration and reading error types.

    Science.gov (United States)

    Ronchi, Roberta; Algeri, Lorella; Chiapella, Laura; Gallucci, Marcello; Spada, Maria Simonetta; Vallar, Giuseppe

    2016-08-01

    Right-brain-damaged patients may show a reading disorder termed neglect dyslexia. Patients with left neglect dyslexia omit letters on the left-hand-side (the beginning, when reading left-to-right) part of the letter string, substitute them with other letters, and add letters to the left of the string. The aim of this study was to investigate the pattern of association, if any, between error types in patients with left neglect dyslexia and recurrent perseveration (a productive visuo-motor deficit characterized by addition of marks) in target cancellation. Specifically, we aimed at assessing whether different productive symptoms (relative to the reading and the visuo-motor domains) could be associated in patients with left spatial neglect. Fifty-four right-brain-damaged patients took part in the study: 50 out of the 54 patients showed left spatial neglect, with 27 of them also exhibiting left neglect dyslexia. Neglect dyslexic patients who showed perseveration produced mainly substitution neglect errors in reading. Conversely, omissions were the prevailing reading error pattern in neglect dyslexic patients without perseveration. Addition reading errors were much infrequent. Different functional pathological mechanisms may underlie omission and substitution reading errors committed by right-brain-damaged patients with left neglect dyslexia. One such mechanism, involving the defective stopping of inappropriate responses, may contribute to both recurrent perseveration in target cancellation, and substitution errors in reading. Productive pathological phenomena, together with deficits of spatial attention to events taking place on the left-hand-side of space, shape the manifestations of neglect dyslexia, and, more generally, of spatial neglect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Duration and numerical estimation in right brain-damaged patients with and without neglect: Lack of support for a mental time line.

    Science.gov (United States)

    Masson, Nicolas; Pesenti, Mauro; Dormal, Valérie

    2016-08-01

    Previous studies have shown that left neglect patients are impaired when they have to orient their attention leftward relative to a standard in numerical comparison tasks. This finding has been accounted for by the idea that numerical magnitudes are represented along a spatial continuum oriented from left to right with small magnitudes on the left and large magnitudes on the right. Similarly, it has been proposed that duration could be represented along a mental time line that shares the properties of the number continuum. By comparing directly duration and numerosity processing, this study investigates whether or not the performance of neglect patients supports the hypothesis of a mental time line. Twenty-two right brain-damaged patients (11 with and 11 without left neglect), as well as 11 age-matched healthy controls, had to judge whether a single dot presented visually lasted shorter or longer than 500 ms and whether a sequence of flashed dots was smaller or larger than 5. Digit spans were also assessed to measure verbal working memory capacities. In duration comparison, no spatial-duration bias was found in neglect patients. Moreover, a significant correlation between verbal working memory and duration performance was observed in right brain-damaged patients, irrespective of the presence or absence of neglect. In numerical comparison, only neglect patients showed an enhanced distance effect for numerical magnitude smaller than the standard. These results do not support the hypothesis of the existence of a mental continuum oriented from left to right for duration. We discuss an alternative account to explain the duration impairment observed in right brain-damaged patients. © 2015 The British Psychological Society.

  11. Is the Brain Stuff Still the Right (or Left) Stuff?

    Science.gov (United States)

    Lynch, Dudley

    1986-01-01

    The author presents evidence that supports the argument for the validity of right brain-left brain theories. Discusses the brain's "sense of the future," what the brain does with new information, and altering the brain's ability to process change. A bibliography of further readings is included. (CT)

  12. Body knowledge in brain-damaged children: a double-dissociation in self and other's body processing.

    Science.gov (United States)

    Frassinetti, Francesca; Fiori, Simona; D'Angelo, Valentina; Magnani, Barbara; Guzzetta, Andrea; Brizzolara, Daniela; Cioni, Giovanni

    2012-01-01

    Bodies are important element for self-recognition. In this respect, in adults it has been recently shown a self vs other advantage when small parts of the subjects' body are visible. This advantage is lost following a right brain lesion underlying a role of the right hemisphere in self body-parts processing. In order to investigate the bodily-self processing in children and the development of its neuronal bases, 57 typically developing healthy subjects and 17 subjects with unilateral brain damage (5 right and 12 left sided), aged 4-17 years, were submitted to a matching-to-sample task. In this task, three stimuli vertically aligned were simultaneously presented at the centre of the computer screen. Subjects were required which of two stimuli (the upper or the lower one) matched the central target stimulus, half stimuli representing self and half stimuli representing other people's body-parts and face-parts. The results showed that corporeal self recognition is present since at least 4 years of age and that self and others' body parts processing are different and sustained by separate cerebral substrates. Indeed, a double dissociation was found: right brain damaged patients were impaired in self but not in other people's body parts, showing a self-disadvantage, whereas left brain damaged patients were impaired in others' but not in self body parts processing. Finally, since the double dissociation self/other was found for body-parts but not for face parts, the corporal self seems to be dissociated for body and face-parts. This opens the possibility of independent and lateralized functional modules for the processing of self and other body parts during development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Damage to the Left Precentral Gyrus Is Associated With Apraxia of Speech in Acute Stroke.

    Science.gov (United States)

    Itabashi, Ryo; Nishio, Yoshiyuki; Kataoka, Yuka; Yazawa, Yukako; Furui, Eisuke; Matsuda, Minoru; Mori, Etsuro

    2016-01-01

    Apraxia of speech (AOS) is a motor speech disorder, which is clinically characterized by the combination of phonemic segmental changes and articulatory distortions. AOS has been believed to arise from impairment in motor speech planning/programming and differentiated from both aphasia and dysarthria. The brain regions associated with AOS are still a matter of debate. The aim of this study was to address this issue in a large number of consecutive acute ischemic stroke patients. We retrospectively studied 136 patients with isolated nonlacunar infarcts in the left middle cerebral artery territory (70.5±12.9 years old, 79 males). In accordance with speech and language assessments, the patients were classified into the following groups: pure form of AOS (pure AOS), AOS with aphasia (AOS-aphasia), and without AOS (non-AOS). Voxel-based lesion-symptom mapping analysis was performed on T2-weighted images or fluid-attenuated inversion recovery images. Using the Liebermeister method, group-wise comparisons were made between the all AOS (pure AOS plus AOS-aphasia) and non-AOS, pure AOS and non-AOS, AOS-aphasia and non-AOS, and pure AOS and AOS-aphasia groups. Of the 136 patients, 22 patients were diagnosed with AOS (7 patients with pure AOS and 15 patients with AOS-aphasia). The voxel-based lesion-symptom mapping analysis demonstrated that the brain regions associated with AOS were centered on the left precentral gyrus. Damage to the left precentral gyrus is associated with AOS in acute to subacute stroke patients, suggesting a role of this brain region in motor speech production. © 2015 American Heart Association, Inc.

  14. An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging.

    Science.gov (United States)

    Nielsen, Jared A; Zielinski, Brandon A; Ferguson, Michael A; Lainhart, Janet E; Anderson, Jeffrey S

    2013-01-01

    Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right-brained" network strength

  15. Poor Hand-Pointing to Sounds in Right Brain-Damaged Patients: Not Just a Problem of Spatial-Hearing

    Science.gov (United States)

    Pavani, Francesco; Farne, Alessandro; Ladavas, Elisabetta

    2005-01-01

    We asked 22 right brain-damaged (RBD) patients and 11 elderly healthy controls to perform hand-pointing movements to free-field unseen sounds, while modulating two non-auditory variables: the initial position of the responding hand (left, centre or right) and the presence or absence of task-irrelevant ambient vision. RBD patients suffering from…

  16. Damage to white matter bottlenecks contributes to language impairments after left hemispheric stroke

    Directory of Open Access Journals (Sweden)

    Joseph C. Griffis

    2017-01-01

    Full Text Available Damage to the white matter underlying the left posterior temporal lobe leads to deficits in multiple language functions. The posterior temporal white matter may correspond to a bottleneck where both dorsal and ventral language pathways are vulnerable to simultaneous damage. Damage to a second putative white matter bottleneck in the left deep prefrontal white matter involving projections associated with ventral language pathways and thalamo-cortical projections has recently been proposed as a source of semantic deficits after stroke. Here, we first used white matter atlases to identify the previously described white matter bottlenecks in the posterior temporal and deep prefrontal white matter. We then assessed the effects of damage to each region on measures of verbal fluency, picture naming, and auditory semantic decision-making in 43 chronic left hemispheric stroke patients. Damage to the posterior temporal bottleneck predicted deficits on all tasks, while damage to the anterior bottleneck only significantly predicted deficits in verbal fluency. Importantly, the effects of damage to the bottleneck regions were not attributable to lesion volume, lesion loads on the tracts traversing the bottlenecks, or damage to nearby cortical language areas. Multivariate lesion-symptom mapping revealed additional lesion predictors of deficits. Post-hoc fiber tracking of the peak white matter lesion predictors using a publicly available tractography atlas revealed evidence consistent with the results of the bottleneck analyses. Together, our results provide support for the proposal that spatially specific white matter damage affecting bottleneck regions, particularly in the posterior temporal lobe, contributes to chronic language deficits after left hemispheric stroke. This may reflect the simultaneous disruption of signaling in dorsal and ventral language processing streams.

  17. Building Creativity Training: Drawing with Left Hand to Stimulate Left Brain in Children Age 5-7 Years Old

    Science.gov (United States)

    Saputra, Yanty Hardi; Sabana, Setiawan

    2016-01-01

    Researcher and professionals that started researching about brains since 1930 believe that left brain is a rational brain, which is tightly related with the IO, rational thinking, arithmetic thinking, verbal, segmental, focus, serial (linear), finding the differences, and time management, Meanwhile right brain is the part of brain that controlled…

  18. An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Jared A Nielsen

    Full Text Available Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction and language regions (e.g., Broca Area and Wernicke Area, whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields. Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right-brained

  19. Lateralization of Egocentric and Allocentric Spatial Processing after Parietal Brain Lesions

    Science.gov (United States)

    Iachini, Tina; Ruggiero, Gennaro; Conson, Massimiliano; Trojano, Luigi

    2009-01-01

    The purpose of this paper was to verify whether left and right parietal brain lesions may selectively impair egocentric and allocentric processing of spatial information in near/far spaces. Two Right-Brain-Damaged (RBD), 2 Left-Brain-Damaged (LBD) patients (not affected by neglect or language disturbances) and eight normal controls were submitted…

  20. Emergence of realism: Enhanced visual artistry and high accuracy of visual numerosity representation after left prefrontal damage.

    Science.gov (United States)

    Takahata, Keisuke; Saito, Fumie; Muramatsu, Taro; Yamada, Makiko; Shirahase, Joichiro; Tabuchi, Hajime; Suhara, Tetsuya; Mimura, Masaru; Kato, Motoichiro

    2014-05-01

    Over the last two decades, evidence of enhancement of drawing and painting skills due to focal prefrontal damage has accumulated. It is of special interest that most artworks created by such patients were highly realistic ones, but the mechanism underlying this phenomenon remains to be understood. Our hypothesis is that enhanced tendency of realism was associated with accuracy of visual numerosity representation, which has been shown to be mediated predominantly by right parietal functions. Here, we report a case of left prefrontal stroke, where the patient showed enhancement of artistic skills of realistic painting after the onset of brain damage. We investigated cognitive, functional and esthetic characteristics of the patient׳s visual artistry and visual numerosity representation. Neuropsychological tests revealed impaired executive function after the stroke. Despite that, the patient׳s visual artistry related to realism was rather promoted across the onset of brain damage as demonstrated by blind evaluation of the paintings by professional art reviewers. On visual numerical cognition tasks, the patient showed higher performance in comparison with age-matched healthy controls. These results paralleled increased perfusion in the right parietal cortex including the precuneus and intraparietal sulcus. Our data provide new insight into mechanisms underlying change in artistic style due to focal prefrontal lesion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Improving ideomotor limb apraxia by electrical stimulation of the left posterior parietal cortex.

    Science.gov (United States)

    Bolognini, Nadia; Convento, Silvia; Banco, Elisabetta; Mattioli, Flavia; Tesio, Luigi; Vallar, Giuseppe

    2015-02-01

    Limb apraxia, a deficit of planning voluntary gestures, is most frequently caused by damage to the left hemisphere, where, according to an influential neurofunctional model, gestures are planned, before being executed through the motor cortex of the hemisphere contralateral to the acting hand. We used anodal transcranial direct current stimulation delivered to the left posterior parietal cortex (PPC), the right motor cortex (M1), and a sham stimulation condition, to modulate the ability of six left-brain-damaged patients with ideomotor apraxia, and six healthy control subjects, to imitate hand gestures, and to perform skilled hand movements using the left hand. Transcranial direct current stimulation delivered to the left PPC reduced the time required to perform skilled movements, and planning, but not execution, times in imitating gestures, in both patients and controls. In patients, the amount of decrease of planning times brought about by left PPC transcranial direct current stimulation was influenced by the size of the parietal lobe damage, with a larger parietal damage being associated with a smaller improvement. Of interest from a clinical perspective, left PPC stimulation also ameliorated accuracy in imitating hand gestures in patients. Instead, transcranial direct current stimulation to the right M1 diminished execution, but not planning, times in both patients and healthy controls. In conclusion, by using a transcranial stimulation approach, we temporarily improved ideomotor apraxia in the left hand of left-brain-damaged patients, showing a role of the left PPC in planning gestures. This evidence opens up novel perspectives for the use of transcranial direct current stimulation in the rehabilitation of limb apraxia. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Contextualizing aquired brain damage

    DEFF Research Database (Denmark)

    Nielsen, Charlotte Marie Bisgaard

    2014-01-01

    Contextualizing aquired brain damage Traditional approaches study ’communicational problems’ often in a discourse of disabledness or deficitness. With an ontology of communcation as something unique and a presupposed uniqueness of each one of us, how could an integrational approach (Integrational...... for people with aquired brain injuries will be presented and comparatively discussed in a traditional versus an integrational perspective. Preliminary results and considerations on ”methods” and ”participation” from this study will be presented along with an overview of the project's empirical data....

  3. An Evaluation of the Left-Brain vs. Right-Brain Hypothesis with Resting State Functional Connectivity Magnetic Resonance Imaging

    OpenAIRE

    Nielsen, Jared A.; Zielinski, Brandon A.; Ferguson, Michael A.; Lainhart, Janet E.; Anderson, Jeffrey S.

    2013-01-01

    Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from...

  4. Left and right brain-oriented hemisity subjects show opposite behavioral preferences.

    Science.gov (United States)

    Morton, Bruce E

    2012-01-01

    Recently, three independent, intercorrelated biophysical measures have provided the first quantitative measures of a binary form of behavioral laterality called "Hemisity," a term referring to inherent opposite right or left brain-oriented differences in thinking and behavioral styles. Crucially, the right or left brain-orientation of individuals assessed by these methods was later found to be essentially congruent with the thicker side of their ventral gyrus of the anterior cingulate cortex (vgACC) as revealed by a 3 min MRI procedure. Laterality of this putative executive structural element has thus become the primary standard defining individual hemisity. Here, the behavior of 150 subjects, whose hemisity had been calibrated by MRI, was assessed using five MRI-calibrated preference questionnaires, two of which were new. Right and left brain-oriented subjects selected opposite answers (p > 0.05) for 47 of the 107 "either-or," forced choice type preference questionnaire items. The resulting 30 hemisity subtype preference differences were present in several areas. These were: (1) in logical orientation, (2) in type of consciousness, (3) in fear level and sensitivity, (4) in social-professional orientation, and (5) in pair bonding-spousal dominance style. The right and left brain-oriented hemisity subtype subjects, sorted on the anatomical basis of upon which brain side their vgACC was thickest, showed 30 significant differences in their "either-or" type of behavioral preferences.

  5. Left and right brain-oriented hemisity subjects show opposite behavioral preferences

    Directory of Open Access Journals (Sweden)

    Bruce Eldine Morton

    2012-11-01

    Full Text Available Introduction: Recently, three independent, intercorrelated biophysical measures have provided the first quantitative measures of a binary form of behavioral laterality called Hemisity, a term referring to inherent opposite right or left brain-oriented differences in thinking and behavioral styles. Crucially, the right or left brain-orientation of individuals assessed by these methods was later found to be essentially congruent with the thicker side of their ventral gyrus of the anterior cingulate cortex (vgACC as revealed by a 3 minute MRI procedure. Laterality of this putative executive structural element has thus become the primary standard defining individual hemisity. Methods: Here, the behavior of 150 subjects, whose hemisity had been calibrated by MRI, was assessed using five MRI-calibrated preference questionnaires, two of which were new.Results: Right and left brain-oriented subjects selected opposite answers (p > 0.05 for 47 of the 107 either-or, forced choice type preference questionnaire items. Hemisity subtype preference differences were present in several areas. They were in: a. logical orientation, b. type of consciousness, c. fear level and sensitivity, d. social-professional orientation, and e. pair bonding-spousal dominance style.Conclusions: The right and left brain-oriented hemisity subtype subjects, sorted on the anatomical basis of upon which brain side their vgACC was thickest, showed numerous significant differences in their either-or type of behavioral preferences.

  6. Severity and Co-occurrence of Oral and Verbal Apraxias in Left Brain Damaged Adults

    Directory of Open Access Journals (Sweden)

    Fariba Yadegari

    2012-04-01

    Full Text Available Objective: Oral and verbal apraxias represent motor programming deficits of nonverbal and verbal movements respectively. Studying their properties may shed light on speech motor control processes. This study was focused on identifying cases with oral or verbal apraxia, their co–occurrences and severities. Materials & Methods: In this non-experimental study, 55 left adult subjects with left brain lesion including 22 women and 33 men with age range of 23 to 84 years, were examined and videotaped using oral apraxia and verbal apraxia tasks. Three speech and language pathologists independently scored apraxia severities. Data were analyzed by independent t test, Pearson, Phi and Contingency coefficients using SPSS 12. Results: Mean score of oral and verbal apraxias in patients with and without oral and verbal apraxias were significantly different (P<0.001. Forty- two patients had simultaneous oral and verbal apraxias, with significant correlation between their oral and verbal apraxia scores (r=0.75, P<0.001. Six patients showed no oral or verbal apraxia and 7 had just one type of apraxia. Comparison of co-occurrence of two disorders (Phi=0.59 and different oral and verbal intensities (C=0.68 were relatively high (P<0.001. Conclusion: The present research revealed co-occurrence of oral and verbal apraxias to a great extent. It appears that speech motor control is influenced by a more general verbal and nonverbal motor control.

  7. Performance of brain-damaged, schizophrenic, and normal subjects on a visual searching task.

    Science.gov (United States)

    Goldstein, G; Kyc, F

    1978-06-01

    Goldstein, Rennick, Welch, and Shelly (1973) reported on a visual searching task that generated 94.1% correct classifications when comparing brain-damaged and normal subjects, and 79.4% correct classifications when comparing brain-damaged and psychiatric patients. In the present study, representing a partial cross-validation with some modification of the test procedure, comparisons were made between brain-damaged and schizophrenic, and brain-damaged and normal subjects. There were 92.5% correct classifications for the brain-damaged vs normal comparison, and 82.5% correct classifications for the brain-damaged vs schizophrenic comparison.

  8. Game Utilization as a Media to Train the Balance of Left and Right Brain

    Directory of Open Access Journals (Sweden)

    Evan Wijaya

    2017-10-01

    Full Text Available Human have two brain hemispheres, left hemisphere and right hemisphere. Left hemisphere is used for processing language, words, numbers, equations, etc. Right hemisphere is used for processing creativity, imagination, music, color, etc. Every human should have balance between left and right hemisphere. One method that could be used for balancing brain hemispheres is to use left and right hands for using tools, writing, or typing. “Typing Rhythm” is a game for PC platform, the purpose of this game is for brain balancing exercise by typing lyric of a song while the song is played.

  9. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke

    Directory of Open Access Journals (Sweden)

    Melissa Zavaglia

    2015-01-01

    Full Text Available Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA, to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS. The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a ‘map of stroke’.

  10. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke.

    Science.gov (United States)

    Zavaglia, Melissa; Forkert, Nils D; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a 'map of stroke'.

  11. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke

    Science.gov (United States)

    Zavaglia, Melissa; Forkert, Nils D.; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C.

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a ‘map of stroke’. PMID:26448908

  12. Alteration of Interictal Brain Activity in Patients with Temporal Lobe Epilepsy in the Left Dominant Hemisphere: A Resting-State MEG Study

    Directory of Open Access Journals (Sweden)

    Haitao Zhu

    2014-01-01

    Full Text Available Resting MEG activities were compared between patients with left temporal lobe epilepsy (LTLE and normal controls. Using SAMg2, the activities of MEG data were reconstructed and normalized. Significantly elevated SAMg2 signals were found in LTLE patients in the left temporal lobe and medial structures. Marked decreases of SAMg2 signals were found in the wide extratemporal lobe regions, such as the bilateral visual cortex. The study also demonstrated a positive correlation between the seizure frequency and brain activities of the abnormal regions after the multiple linear regression analysis. These results suggested that the aberrant brain activities not only were related to the epileptogenic zones, but also existed in other extratemporal regions in patients with LTLE. The activities of the aberrant regions could be further damaged with the increase of the seizure frequency. Our findings indicated that LTLE could be a multifocal disease, including complex epileptic networks and brain dysfunction networks.

  13. The ischemic perinatal brain damage

    International Nuclear Information System (INIS)

    Crisi, G.; Mauri, C.; Canossi, G.; Della Giustina, E.

    1986-01-01

    The term ''hypoxic-ischemic encephalopathy'' covers a large part of neonatal neuropathology including the various forms of intracerebral haemorrhage. In the present work the term is confined to ischemic brain edema and actual infarction, be it diffuse or focal. Eighteen newborns with CT evidence of ischemic brain lesions and infarctual necrosis were selected. Emphasis is placed on current data on neuropathology of ischemic brain edema and its CT appearance. Particular entities such as periventricular leukomalacia and multicystic encephalopathy are discussed. Relationship between CT and temporal profile of cerebral damage is emphasized in order to predict the structural sequelae and the longterm prognosis

  14. On the Relationship between Right- brain and Left- brain Dominance and Reading Comprehension Test Performance of Iranian EFL Learners

    Directory of Open Access Journals (Sweden)

    Hassan Soleimani

    2012-05-01

    Full Text Available A tremendous amount of works have been conducted by psycholinguistics to identify hemisphere processing during second/ foreign language learning, or in other words to investigate the role of the brain hemisphere dominance in language performance of learners. Most of these researches have focused on single words and word pairs (e.g., Anaki et al., 1998; Arzouan et. al., 2007; Faust & Mahal, 2007 or simple sentences (Rapp et al., 2007; Kacinik & Chiarello, 2007, and it has been discovered that there is an advantage of right hemisphere for metaphors and an
    advantage of left hemisphere for literal text. But the present research was designed to study Iranian EFL learners' performance in different reading tasks, so there could be differences between the consequences of the former research and the results of the present study due to the context. Here left-brain and right-brain dominance was investigated in 60 individuals (20 right-handed and 10 left-handed male, 20 right-handed and 10 left-handed female via the Edinburg Handedness Questionnaire (EHQ. The research results suggested that the right-handed learners who are supposed to be left-brain outperformed the left-handed ones; and regarding participant's gender, male learners outperformed female learners on reading comprehension test tasks.

  15. Left-Deviating Prism Adaptation in Left Neglect Patient: Reflexions on a Negative Result

    Directory of Open Access Journals (Sweden)

    Jacques Luauté

    2012-01-01

    Full Text Available Adaptation to right-deviating prisms is a promising intervention for the rehabilitation of patients with left spatial neglect. In order to test the lateral specificity of prism adaptation on left neglect, the present study evaluated the effect of left-deviating prism on straight-ahead pointing movements and on several classical neuropsychological tests in a group of five right brain-damaged patients with left spatial neglect. A group of healthy subjects was also included for comparison purposes. After a single session of exposing simple manual pointing to left-deviating prisms, contrary to healthy controls, none of the patients showed a reliable change of the straight-ahead pointing movement in the dark. No significant modification of attentional paper-and-pencil tasks was either observed immediately or 2 hours after prism adaptation. These results suggest that the therapeutic effect of prism adaptation on left spatial neglect relies on a specific lateralized mechanism. Evidence for a directional effect for prism adaptation both in terms of the side of the visuomanual adaptation and therefore possibly in terms of the side of brain affected by the stimulation is discussed.

  16. Improving left spatial neglect through music scale playing.

    Science.gov (United States)

    Bernardi, Nicolò Francesco; Cioffi, Maria Cristina; Ronchi, Roberta; Maravita, Angelo; Bricolo, Emanuela; Zigiotto, Luca; Perucca, Laura; Vallar, Giuseppe

    2017-03-01

    The study assessed whether the auditory reference provided by a music scale could improve spatial exploration of a standard musical instrument keyboard in right-brain-damaged patients with left spatial neglect. As performing music scales involves the production of predictable successive pitches, the expectation of the subsequent note may facilitate patients to explore a larger extension of space in the left affected side, during the production of music scales from right to left. Eleven right-brain-damaged stroke patients with left spatial neglect, 12 patients without neglect, and 12 age-matched healthy participants played descending scales on a music keyboard. In a counterbalanced design, the participants' exploratory performance was assessed while producing scales in three feedback conditions: With congruent sound, no-sound, or random sound feedback provided by the keyboard. The number of keys played and the timing of key press were recorded. Spatial exploration by patients with left neglect was superior with congruent sound feedback, compared to both Silence and Random sound conditions. Both the congruent and incongruent sound conditions were associated with a greater deceleration in all groups. The frame provided by the music scale improves exploration of the left side of space, contralateral to the right hemisphere, damaged in patients with left neglect. Performing a scale with congruent sounds may trigger at some extent preserved auditory and spatial multisensory representations of successive sounds, thus influencing the time course of space scanning, and ultimately resulting in a more extensive spatial exploration. These findings offer new perspectives also for the rehabilitation of the disorder. © 2015 The British Psychological Society.

  17. Differences in Brain Adaptive Functional Reorganization in Right and Left Total Brachial Plexus Injury Patients.

    Science.gov (United States)

    Feng, Jun-Tao; Liu, Han-Qiu; Xu, Jian-Guang; Gu, Yu-Dong; Shen, Yun-Dong

    2015-09-01

    Total brachial plexus avulsion injury (BPAI) results in the total functional loss of the affected limb and induces extensive brain functional reorganization. However, because the dominant hand is responsible for more cognitive-related tasks, injuries on this side induce more adaptive changes in brain function. In this article, we explored the differences in brain functional reorganization after injuries in unilateral BPAI patients. We applied resting-state functional magnetic resonance imaging scanning to 10 left and 10 right BPAI patients and 20 healthy control subjects. The amplitude of low-frequency fluctuation (ALFF), which is a resting-state index, was calculated for all patients as an indication of the functional activity level of the brain. Two-sample t-tests were performed between left BPAI patients and controls, right BPAI patients and controls, and between left and right BPAI patients. Two-sample t-tests of the ALFF values revealed that right BPAIs induced larger scale brain reorganization than did left BPAIs. Both left and right BPAIs elicited a decreased ALFF value in the right precuneus (P right BPAI patients exhibited increased ALFF values in a greater number of brain regions than left BPAI patients, including the inferior temporal gyrus, lingual gyrus, calcarine sulcus, and fusiform gyrus. Our results revealed that right BPAIs induced greater extents of brain functional reorganization than left BPAIs, which reflected the relatively more extensive adaptive process that followed injuries of the dominant hand. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Brain uptake of C14-cycloleucine after damage to blood-brain barrier by mercuric ions

    Energy Technology Data Exchange (ETDEWEB)

    Steinwall, O; Synder, S H

    1969-01-01

    Comparisons were made as to extra vasalation of fluorescence Na and uptake of C14-cycloleucine between barrier damaged and undamaged rabbit brain hemispheres. The results show that mercury ions damage the blood-brain barrier and thus the uptake of C14-cycloleucine.

  19. Comparative analysis of brain EEG signals generated from the right and left hand while writing

    Science.gov (United States)

    Sardesai, Neha; Jamali Mahabadi, S. E.; Meng, Qinglei; Choa, Fow-Sen

    2016-05-01

    This paper provides a comparative analysis of right handed people and left handed people when they write with both their hands. Two left handed and one right handed subject were asked to write their respective names on a paper using both, their left and right handed, and their brain signals were measured using EEG. Similarly, they were asked to perform simple mathematical calculations using both their hand. The data collected from the EEG from writing with both hands is compared. It is observed that though it is expected that the right brain only would contribute to left handed writing and vice versa, it is not so. When a right handed person writes with his/her left hand, the initial instinct is to go for writing with the right hand. Hence, both parts of the brain are active when a subject writes with the other hand. However, when the activity is repeated, the brain learns to expect to write with the other hand as the activity is repeated and then only the expected part of the brain is active.

  20. The Lateralizer: A Tool for Students to Explore the Divided Brain

    Science.gov (United States)

    Motz, Benjamin A.; James, Karin H.; Busey, Thomas A.

    2012-01-01

    Despite a profusion of popular misinformation about the left brain and right brain, there are functional differences between the left and right cerebral hemispheres in humans. Evidence from split-brain patients, individuals with unilateral brain damage, and neuroimaging studies suggest that each hemisphere may be specialized for certain cognitive…

  1. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice.

    Directory of Open Access Journals (Sweden)

    Ralph Timaru-Kast

    Full Text Available After traumatic brain injury (TBI elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months and old (21 months male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2% compared to young (0%. This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral

  2. Intelligent Automatic Right-Left Sign Lamp Based on Brain Signal Recognition System

    Science.gov (United States)

    Winda, A.; Sofyan; Sthevany; Vincent, R. S.

    2017-12-01

    Comfort as a part of the human factor, plays important roles in nowadays advanced automotive technology. Many of the current technologies go in the direction of automotive driver assistance features. However, many of the driver assistance features still require physical movement by human to enable the features. In this work, the proposed method is used in order to make certain feature to be functioning without any physical movement, instead human just need to think about it in their mind. In this work, brain signal is recorded and processed in order to be used as input to the recognition system. Right-Left sign lamp based on the brain signal recognition system can potentially replace the button or switch of the specific device in order to make the lamp work. The system then will decide whether the signal is ‘Right’ or ‘Left’. The decision of the Right-Left side of brain signal recognition will be sent to a processing board in order to activate the automotive relay, which will be used to activate the sign lamp. Furthermore, the intelligent system approach is used to develop authorized model based on the brain signal. Particularly Support Vector Machines (SVMs)-based classification system is used in the proposed system to recognize the Left-Right of the brain signal. Experimental results confirm the effectiveness of the proposed intelligent Automatic brain signal-based Right-Left sign lamp access control system. The signal is processed by Linear Prediction Coefficient (LPC) and Support Vector Machines (SVMs), and the resulting experiment shows the training and testing accuracy of 100% and 80%, respectively.

  3. Left hemisphere regions are critical for language in the face of early left focal brain injury

    OpenAIRE

    Raja Beharelle, Anjali; Dick, Anthony Steven; Josse, Goulven; Solodkin, Ana; Huttenlocher, Peter R.; Levine, Susan C.; Small, Steven L.

    2010-01-01

    A predominant theory regarding early stroke and its effect on language development, is that early left hemisphere lesions trigger compensatory processes that allow the right hemisphere to assume dominant language functions, and this is thought to underlie the near normal language development observed after early stroke. To test this theory, we used functional magnetic resonance imaging to examine brain activity during category fluency in participants who had sustained pre- or perinatal left h...

  4. Bilirubin and its oxidation products damage brain white matter

    Science.gov (United States)

    Lakovic, Katarina; Ai, Jinglu; D'Abbondanza, Josephine; Tariq, Asma; Sabri, Mohammed; Alarfaj, Abdullah K; Vasdev, Punarjot; Macdonald, Robert Loch

    2014-01-01

    Brain injury after intracerebral hemorrhage (ICH) occurs in cortex and white matter and may be mediated by blood breakdown products, including hemoglobin and heme. Effects of blood breakdown products, bilirubin and bilirubin oxidation products, have not been widely investigated in adult brain. Here, we first determined the effect of bilirubin and its oxidation products on the structure and function of white matter in vitro using brain slices. Subsequently, we determined whether these compounds have an effect on the structure and function of white matter in vivo. In all, 0.5 mmol/L bilirubin treatment significantly damaged both the function and the structure of myelinated axons but not the unmyelinated axons in brain slices. Toxicity of bilirubin in vitro was prevented by dimethyl sulfoxide. Bilirubin oxidation products (BOXes) may be responsible for the toxicity of bilirubin. In in vivo experiments, unmyelinated axons were found more susceptible to damage from bilirubin injection. These results suggest that unmyelinated axons may have a major role in white-matter damage in vivo. Since bilirubin and BOXes appear in a delayed manner after ICH, preventing their toxic effects may be worth investigating therapeutically. Dimethyl sulfoxide or its structurally related derivatives may have a potential therapeutic value at antagonizing axonal damage after hemorrhagic stroke. PMID:25160671

  5. Differences in Information Mapping Strategies in Left and Right Brain Learners.

    Science.gov (United States)

    Hauck, LaVerne S., Jr.

    The Information Mapping technique was used to present a learning packet, and its usefulness in helping right-brain cerebrally dominant students to achieve the same level of subject mastery as their left-brain counterparts was examined. Reading level, grade point average, and gender were also analyzed. Torrance's "Your Style of Learning and…

  6. Neuroprotection of lamotrigine on hypoxic-ischemic brain damage in neonatal rats: Relations to administration time and doses

    Directory of Open Access Journals (Sweden)

    Yong-Hong Yi

    2008-06-01

    Full Text Available Yong-Hong Yi1, Wen-Chao Guo1, Wei-Wen Sun1, Tao Su1, Han Lin1, Sheng-Qiang Chen1, Wen-Yi Deng1, Wei Zhou2, Wei-Ping Liao11Department of Neurology, Institute of Neurosciences and the Second Affiliated Hospital, 2Department of Neonatology, Affiliated Guangzhou Children’s Hospital, Guangzhou Medical College, Guangzhou, Guangdong Province, P.R. ChinaAbstract: Lamotrigine (LTG, an antiepileptic drug, has been shown to be able to improve cerebral ischemic damage by limiting the presynaptic release of glutamate. The present study investigated further the neuroprotective effect of LTG on hypoxic-ischemic brain damage (HIBD in neonatal rats and its relations to administration time and doses. The HIBD model was produced in 7-days old SD rats by left common carotid artery ligation followed by 2 h hypoxic exposure (8% oxygen. LTG was administered intraperitoneally with the doses of 5, 10, 20, and 40 mg/kg 3 h after operation and the dose of 20 mg/kg 1 h before and 3 h, 6 h after operation. Blood and brain were sampled 24 h after operation. Nissl staining, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL, and neuron-specific enolase (NSE immunohistochemical staining were used for morphological studies. Water content in left cortex and NSE concentration in serum were determined. LTG significantly reduced water content in the cerebral cortex, as well as the number of TUNEL staining neurons in the dentate gyrus and cortex in hypoxic-ischemia (HI model. Furthermore, LTG significantly decreased the NSE level in serum and increased the number of NSE staining neurons in the cortex. These effects, except that on water content, were dose-dependent and were more remarkable in the pre-treated group than in the post-treated groups. These results demonstrate that LTG may have a neuroprotective effect on acute HIBD in neonates. The effect is more prominent when administrated with higher doses and before HI.Keywords: hypoxic-ischemic brain

  7. Cingulate neglect in humans: disruption of contralesional reward learning in right brain damage.

    Science.gov (United States)

    Lecce, Francesca; Rotondaro, Francesca; Bonnì, Sonia; Carlesimo, Augusto; Thiebaut de Schotten, Michel; Tomaiuolo, Francesco; Doricchi, Fabrizio

    2015-01-01

    Motivational valence plays a key role in orienting spatial attention. Nonetheless, clinical documentation and understanding of motivationally based deficits of spatial orienting in the human is limited. Here in a series of one group-study and two single-case studies, we have examined right brain damaged patients (RBD) with and without left spatial neglect in a spatial reward-learning task, in which the motivational valence of the left contralesional and the right ipsilesional space was contrasted. In each trial two visual boxes were presented, one to the left and one to the right of central fixation. In one session monetary rewards were released more frequently in the box on the left side (75% of trials) whereas in another session they were released more frequently on the right side. In each trial patients were required to: 1) point to each one of the two boxes; 2) choose one of the boxes for obtaining monetary reward; 3) report explicitly the position of reward and whether this position matched or not the original choice. Despite defective spontaneous allocation of attention toward the contralesional space, RBD patients with left spatial neglect showed preserved contralesional reward learning, i.e., comparable to ipsilesional learning and to reward learning displayed by patients without neglect. A notable exception in the group of neglect patients was L.R., who showed no sign of contralesional reward learning in a series of 120 consecutive trials despite being able of reaching learning criterion in only 20 trials in the ipsilesional space. L.R. suffered a cortical-subcortical brain damage affecting the anterior components of the parietal-frontal attentional network and, compared with all other neglect and non-neglect patients, had additional lesion involvement of the medial anterior cingulate cortex (ACC) and of the adjacent sectors of the corpus callosum. In contrast to his lateralized motivational learning deficit, L.R. had no lateral bias in the early phases of

  8. Sex Differences in the Effects of Unilateral Brain Damage on Intelligence

    Science.gov (United States)

    Inglis, James; Lawson, J. S.

    1981-05-01

    A sexual dimorphism in the functional asymmetry of the damaged human brain is reflected in a test-specific laterality effect in male but not in female patients. This sex difference explains some contradictions concerning the effects of unilateral brain damage on intelligence in studies in which the influence of sex was overlooked.

  9. The neuroimaging evidence for chronic brain damage due to boxing

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, I.F. [Lysholm Radiological Department, National Hospital for Neurology and Neurosurgery, London (United Kingdom)

    2000-01-01

    A number of imaging techniques have been used to investigate changes produced in the brain by boxing. Most morphological studies have failed to show significant correlations between putative abnormalities on imaging and clinical evidence of brain damage. Fenestration of the septum pellucidum, with formation of a cavum, one of the most frequent observations, does not appear to correlate with neurological or physiological evidence of brain damage. Serial studies on large groups may be more informative. Magnetic resonance spectroscopy and cerebral blood flow studies have been reported in only small numbers of boxers; serial studies are not available to date. (orig.)

  10. Brain Activation Associated with Practiced Left Hand Mirror Writing

    Science.gov (United States)

    Kushnir, T.; Arzouan, Y.; Karni, A.; Manor, D.

    2013-01-01

    Mirror writing occurs in healthy children, in various pathologies and occasionally in healthy adults. There are only scant experimental data on the underlying brain processes. Eight, right-handed, healthy young adults were scanned (BOLD-fMRI) before and after practicing left-hand mirror-writing (lh-MW) over seven sessions. They wrote dictated…

  11. Effect of dexmedetomidine combined with propofol on brain tissue damage in brain glioma resection

    Institute of Scientific and Technical Information of China (English)

    2017-01-01

    Objective:To study the effect of dexmedetomidine combined with propofol on brain tissue damage in brain glioma resection.Methods: A total of 74 patients who received brain glioma resection in our hospital between May 2014 and December 2016 were selected and randomly divided into Dex group and control group who received dexmedetomidine intervention and saline intervention before induction respectively. Serum brain tissue damage marker, PI3K/AKT/iNOS and oxidation reaction molecule contents as well as cerebral oxygen metabolism index levels were determined before anesthesia (T0), at dura mater incision (T1), immediately after recovery (T2) and 24 h after operation (T3).Results: Serum NSE, S100B, MBP, GFAP, PI3K, AKT, iNOS and MDA contents as well as AVDO2 and CERO2 levels of both groups at T2 and T3 were significantly higher than those at T0 and T1 while serum SOD and CAT contents as well as SjvO2levels were significantly lower than those at T0 and T1, and serum NSE, S100B, MBP, GFAP, PI3K, AKT, iNOS and MDA contents as well as AVDO2 and CERO2 levels of Dex group at T2 and T3 were significantly lower than those of control group while serum SOD and CAT contents as well as SjvO2 levels were significantly higher than those of control group.Conclusions: Dexmedetomidine combined with propofol can reduce the brain tissue damage in brain glioma resection.

  12. Right brain, left brain in depressive disorders: Clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings.

    Science.gov (United States)

    Bruder, Gerard E; Stewart, Jonathan W; McGrath, Patrick J

    2017-07-01

    The right and left side of the brain are asymmetric in anatomy and function. We review electrophysiological (EEG and event-related potential), behavioral (dichotic and visual perceptual asymmetry), and neuroimaging (PET, MRI, NIRS) evidence of right-left asymmetry in depressive disorders. Recent electrophysiological and fMRI studies of emotional processing have provided new evidence of altered laterality in depressive disorders. EEG alpha asymmetry and neuroimaging findings at rest and during cognitive or emotional tasks are consistent with reduced left prefrontal activity in depressed patients, which may impair downregulation of amygdala response to negative emotional information. Dichotic listening and visual hemifield findings for non-verbal or emotional processing have revealed abnormal perceptual asymmetry in depressive disorders, and electrophysiological findings have shown reduced right-lateralized responsivity to emotional stimuli in occipitotemporal or parietotemporal cortex. We discuss models of neural networks underlying these alterations. Of clinical relevance, individual differences among depressed patients on measures of right-left brain function are related to diagnostic subtype of depression, comorbidity with anxiety disorders, and clinical response to antidepressants or cognitive behavioral therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Intrauterine infection/inflammation during pregnancy and offspring brain damages: Possible mechanisms involved

    Directory of Open Access Journals (Sweden)

    Golan Hava

    2004-04-01

    Full Text Available Abstract Intrauterine infection is considered as one of the major maternal insults during pregnancy. Intrauterine infection during pregnancy could lead to brain damage of the developmental fetus and offspring. Effects on the fetal, newborn, and adult central nervous system (CNS may include signs of neurological problems, developmental abnormalities and delays, and intellectual deficits. However, the mechanisms or pathophysiology that leads to permanent brain damage during development are complex and not fully understood. This damage may affect morphogenic and behavioral phenotypes of the developed offspring, and that mice brain damage could be mediated through a final common pathway, which includes over-stimulation of excitatory amino acid receptor, over-production of vascularization/angiogenesis, pro-inflammatory cytokines, neurotrophic factors and apoptotic-inducing factors.

  14. Neuropragmatics: Extralinguistic Pragmatic Ability is Better Preserved in Left-Hemisphere-Damaged Patients than in Right-Hemisphere-Damaged Patients

    Science.gov (United States)

    Cutica, Ilaria; Bucciarelli, Monica; Bara, Bruno G.

    2006-01-01

    The aim of the present study is to compare the pragmatic ability of right- and left-hemisphere-damaged patients excluding the possible interference of linguistic deficits. To this aim, we study extralinguistic communication, that is communication performed only through gestures. The Cognitive Pragmatics Theory provides the theoretical framework:…

  15. Air pollution and brain damage.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Azzarelli, Biagio; Acuna, Hilda; Garcia, Raquel; Gambling, Todd M; Osnaya, Norma; Monroy, Sylvia; DEL Tizapantzi, Maria Rosario; Carson, Johnny L; Villarreal-Calderon, Anna; Rewcastle, Barry

    2002-01-01

    Exposure to complex mixtures of air pollutants produces inflammation in the upper and lower respiratory tract. Because the nasal cavity is a common portal of entry, respiratory and olfactory epithelia are vulnerable targets for toxicological damage. This study has evaluated, by light and electron microscopy and immunohistochemical expression of nuclear factor-kappa beta (NF-kappaB) and inducible nitric oxide synthase (iNOS), the olfactory and respiratory nasal mucosae, olfactory bulb, and cortical and subcortical structures from 32 healthy mongrel canine residents in Southwest Metropolitan Mexico City (SWMMC), a highly polluted urban region. Findings were compared to those in 8 dogs from Tlaxcala, a less polluted, control city. In SWMMC dogs, expression of nuclear neuronal NF-kappaB and iNOS in cortical endothelial cells occurred at ages 2 and 4 weeks; subsequent damage included alterations of the blood-brain barrier (BBB), degenerating cortical neurons, apoptotic glial white matter cells, deposition of apolipoprotein E (apoE)-positive lipid droplets in smooth muscle cells and pericytes, nonneuritic plaques, and neurofibrillary tangles. Persistent pulmonary inflammation and deteriorating olfactory and respiratory barriers may play a role in the neuropathology observed in the brains of these highly exposed canines. Neurodegenerative disorders such as Alzheimer's may begin early in life with air pollutants playing a crucial role.

  16. Categorization skills and recall in brain damaged children: a multiple case study.

    Science.gov (United States)

    Mello, Claudia Berlim de; Muszkat, Mauro; Xavier, Gilberto Fernando; Bueno, Orlando Francisco Amodeo

    2009-09-01

    During development, children become capable of categorically associating stimuli and of using these relationships for memory recall. Brain damage in childhood can interfere with this development. This study investigated categorical association of stimuli and recall in four children with brain damages. The etiology, topography and timing of the lesions were diverse. Tasks included naming and immediate recall of 30 perceptually and semantically related figures, free sorting, delayed recall, and cued recall of the same material. Traditional neuropsychological tests were also employed. Two children with brain damage sustained in middle childhood relied on perceptual rather than on categorical associations in making associations between figures and showed deficits in delayed or cued recall, in contrast to those with perinatal lesions. One child exhibited normal performance in recall despite categorical association deficits. The present results suggest that brain damaged children show deficits in categorization and recall that are not usually identified in traditional neuropsychological tests.

  17. Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy.

    Science.gov (United States)

    de Campos, Brunno Machado; Coan, Ana Carolina; Lin Yasuda, Clarissa; Casseb, Raphael Fernandes; Cendes, Fernando

    2016-09-01

    Mesial temporal lobe epilepsy (MTLE) with hippocampus sclerosis (HS) is associated with functional and structural alterations extending beyond the temporal regions and abnormal pattern of brain resting state networks (RSNs) connectivity. We hypothesized that the interaction of large-scale RSNs is differently affected in patients with right- and left-MTLE with HS compared to controls. We aimed to determine and characterize these alterations through the analysis of 12 RSNs, functionally parceled in 70 regions of interest (ROIs), from resting-state functional-MRIs of 99 subjects (52 controls, 26 right- and 21 left-MTLE patients with HS). Image preprocessing and statistical analysis were performed using UF(2) C-toolbox, which provided ROI-wise results for intranetwork and internetwork connectivity. Intranetwork abnormalities were observed in the dorsal default mode network (DMN) in both groups of patients and in the posterior salience network in right-MTLE. Both groups showed abnormal correlation between the dorsal-DMN and the posterior salience, as well as between the dorsal-DMN and the executive-control network. Patients with left-MTLE also showed reduced correlation between the dorsal-DMN and visuospatial network and increased correlation between bilateral thalamus and the posterior salience network. The ipsilateral hippocampus stood out as a central area of abnormalities. Alterations on left-MTLE expressed a low cluster coefficient, whereas the altered connections on right-MTLE showed low cluster coefficient in the DMN but high in the posterior salience regions. Both right- and left-MTLE patients with HS have widespread abnormal interactions of large-scale brain networks; however, all parameters evaluated indicate that left-MTLE has a more intricate bihemispheric dysfunction compared to right-MTLE. Hum Brain Mapp 37:3137-3152, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by

  18. [Total dream loss secondary to left temporo-occipital brain injury].

    Science.gov (United States)

    Poza, J J; Martí Massó, J F

    2006-04-01

    Recently the case of a woman who reported cessation of dreaming after a bilateral PCA stroke but without REM sleep loss has been reported, suggesting that deep bilateral occipital lobe damage including the right inferior lingual gyrus may represent the "minimal lesion extension" necessary for dream loss. We report the case of a 24-year-old man who ceased dreaming after a unilateral left temporo- occipital hematoma. The polysomnographic characteristics in rapid eyes movements (REM) sleep were otherwise normal. Our patient demonstrates that a unilateral left temporo-occipital injury could be sufficient for losing dreams.

  19. Assessment of brain damage in a geriatric population through use of a visual-searching task.

    Science.gov (United States)

    Turbiner, M; Derman, R M

    1980-04-01

    This study was designed to assess the discriminative capacity of a visual-searching task for brain damage, as described by Goldstein and Kyc (1978), for 10 hospitalized male, brain-damaged patients, 10 hospitalized male schizophrenic patients, and 10 normal subjects in a control group, all of whom were approximately 65 yr. old. The derived data indicated, at a statistically significant level, that the visual-searching task was effective in successfully classifying 80% of the brain-damaged sample when compared to the schizophrenic patients and discriminating 90% of the brain-damaged patients from normal subjects.

  20. Mechanical knowledge does matter to tool use even when assessed with a non-production task: Evidence from left brain-damaged patients.

    Science.gov (United States)

    Lesourd, Mathieu; Budriesi, Carla; Osiurak, François; Nichelli, Paolo F; Bartolo, Angela

    2017-12-20

    In the literature on apraxia of tool use, it is now accepted that using familiar tools requires semantic and mechanical knowledge. However, mechanical knowledge is nearly always assessed with production tasks, so one may assume that mechanical knowledge and familiar tool use are associated only because of their common motor mechanisms. This notion may be challenged by demonstrating that familiar tool use depends on an alternative tool selection task assessing mechanical knowledge, where alternative uses of tools are assumed according to their physical properties but where actual use of tools is not needed. We tested 21 left brain-damaged patients and 21 matched controls with familiar tool use tasks (pantomime and single tool use), semantic tasks and an alternative tool selection task. The alternative tool selection task accounted for a large amount of variance in the single tool use task and was the best predictor among all the semantic tasks. Concerning the pantomime of tool use task, group and individual results suggested that the integrity of the semantic system and preserved mechanical knowledge are neither necessary nor sufficient to produce pantomimes. These results corroborate the idea that mechanical knowledge is essential when we use tools, even when tasks assessing mechanical knowledge do not require the production of any motor action. Our results also confirm the value of pantomime of tool use, which can be considered as a complex activity involving several cognitive abilities (e.g., communicative skills) rather than the activation of gesture engrams. © 2017 The British Psychological Society.

  1. Overweight worsens apoptosis, neuroinflammation and blood-brain barrier damage after hypoxic ischemia in neonatal brain through JNK hyperactivation

    Directory of Open Access Journals (Sweden)

    Wu Hsin-Chieh

    2011-04-01

    Full Text Available Abstract Background Apoptosis, neuroinflammation and blood-brain barrier (BBB damage affect the susceptibility of the developing brain to hypoxic-ischemic (HI insults. c-Jun N-terminal kinase (JNK is an important mediator of insulin resistance in obesity. We hypothesized that neonatal overweight aggravates HI brain damage through JNK hyperactivation-mediated upregulation of neuronal apoptosis, neuroinflammation and BBB leakage in rat pups. Methods Overweight (OF pups were established by reducing the litter size to 6, and control (NF pups by keeping the litter size at 12 from postnatal (P day 1 before HI on P7. Immunohistochemistry and immunoblotting were used to determine the TUNEL-(+ cells and BBB damage, cleaved caspase-3 and poly (ADP-ribose polymerase (PARP, and phospho-JNK and phospho-BimEL levels. Immunofluorescence was performed to determine the cellular distribution of phospho-JNK. Results Compared with NF pups, OF pups had a significantly heavier body-weight and greater fat deposition on P7. Compared with the NF-HI group, the OF-HI group showed significant increases of TUNEL-(+ cells, cleaved levels of caspase-3 and PARP, and ED1-(+ activated microglia and BBB damage in the cortex 24 hours post-HI. Immunofluorescence of the OF-HI pups showed that activated-caspase 3 expression was found mainly in NeuN-(+ neurons and RECA1-(+ vascular endothelial cells 24 hours post-HI. The OF-HI group also had prolonged escape latency in the Morris water maze test and greater brain-volume loss compared with the NF-HI group when assessed at adulthood. Phospho-JNK and phospho-BimEL levels were higher in OF-HI pups than in NF-HI pups immediately post-HI. JNK activation in OF-HI pups was mainly expressed in neurons, microglia and vascular endothelial cells. Inhibiting JNK activity by AS601245 caused more attenuation of cleaved caspase-3 and PARP, a greater reduction of microglial activation and BBB damage post-HI, and significantly reduced brain damage in

  2. FGF signaling is required for brain left-right asymmetry and brain midline formation.

    Science.gov (United States)

    Neugebauer, Judith M; Yost, H Joseph

    2014-02-01

    Early disruption of FGF signaling alters left-right (LR) asymmetry throughout the embryo. Here we uncover a role for FGF signaling that specifically disrupts brain asymmetry, independent of normal lateral plate mesoderm (LPM) asymmetry. When FGF signaling is inhibited during mid-somitogenesis, asymmetrically expressed LPM markers southpaw and lefty2 are not affected. However, asymmetrically expressed brain markers lefty1 and cyclops become bilateral. We show that FGF signaling controls expression of six3b and six7, two transcription factors required for repression of asymmetric lefty1 in the brain. We found that Z0-1, atypical PKC (aPKC) and β-catenin protein distribution revealed a midline structure in the forebrain that is dependent on a balance of FGF signaling. Ectopic activation of FGF signaling leads to overexpression of six3b, loss of organized midline adherins junctions and bilateral loss of lefty1 expression. Reducing FGF signaling leads to a reduction in six3b and six7 expression, an increase in cell boundary formation in the brain midline, and bilateral expression of lefty1. Together, these results suggest a novel role for FGF signaling in the brain to control LR asymmetry, six transcription factor expressions, and a midline barrier structure. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Brain parenchymal damage in neuromyelitis optica spectrum disorder - A multimodal MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Pache, F.; Paul, F. [Max Delbrueck Center for Molecular Medicine and Charite Universitaetsmedizin Berlin, NeuroCure Clinical Research Center and Experimental and Clinical Research Center, Berlin (Germany); Charite Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Zimmermann, H.; Lacheta, A.; Papazoglou, S.; Kuchling, J.; Wuerfel, J.; Brandt, A.U. [Max Delbrueck Center for Molecular Medicine and Charite Universitaetsmedizin Berlin, NeuroCure Clinical Research Center and Experimental and Clinical Research Center, Berlin (Germany); Finke, C. [Charite Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Humboldt-Universitaet zu Berlin, Berlin School of Mind and Brain, Berlin (Germany); Hamm, B. [Charite Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Ruprecht, K. [Charite Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Scheel, M. [Max Delbrueck Center for Molecular Medicine and Charite Universitaetsmedizin Berlin, NeuroCure Clinical Research Center and Experimental and Clinical Research Center, Berlin (Germany); Charite Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany)

    2016-12-15

    To investigate different brain regions for grey (GM) and white matter (WM) damage in a well-defined cohort of neuromyelitis optica spectrum disorder (NMOSD) patients and compare advanced MRI techniques (VBM, Subcortical and cortical analyses (Freesurfer), and DTI) for their ability to detect damage in NMOSD. We analyzed 21 NMOSD patients and 21 age and gender matched control subjects. VBM (GW/WM) and DTI whole brain (TBSS) analyses were performed at different statistical thresholds to reflect different statistical approaches in previous studies. In an automated atlas-based approach, Freesurfer and DTI results were compared between NMOSD and controls. DTI TBSS and DTI atlas based analysis demonstrated microstructural impairment only within the optic radiation or in regions associated with the optic radiation (posterior thalamic radiation p < 0.001, 6.9 % reduction of fractional anisotropy). VBM demonstrated widespread brain GM and WM reduction, but only at exploratory statistical thresholds, with no differences remaining after correction for multiple comparisons. Freesurfer analysis demonstrated no group differences. NMOSD specific parenchymal brain damage is predominantly located in the optic radiation, likely due to a secondary degeneration caused by ON. In comparison, DTI appears to be the most reliable and sensitive technique for brain damage detection in NMOSD. (orig.)

  4. Brain parenchymal damage in neuromyelitis optica spectrum disorder - A multimodal MRI study

    International Nuclear Information System (INIS)

    Pache, F.; Paul, F.; Zimmermann, H.; Lacheta, A.; Papazoglou, S.; Kuchling, J.; Wuerfel, J.; Brandt, A.U.; Finke, C.; Hamm, B.; Ruprecht, K.; Scheel, M.

    2016-01-01

    To investigate different brain regions for grey (GM) and white matter (WM) damage in a well-defined cohort of neuromyelitis optica spectrum disorder (NMOSD) patients and compare advanced MRI techniques (VBM, Subcortical and cortical analyses (Freesurfer), and DTI) for their ability to detect damage in NMOSD. We analyzed 21 NMOSD patients and 21 age and gender matched control subjects. VBM (GW/WM) and DTI whole brain (TBSS) analyses were performed at different statistical thresholds to reflect different statistical approaches in previous studies. In an automated atlas-based approach, Freesurfer and DTI results were compared between NMOSD and controls. DTI TBSS and DTI atlas based analysis demonstrated microstructural impairment only within the optic radiation or in regions associated with the optic radiation (posterior thalamic radiation p < 0.001, 6.9 % reduction of fractional anisotropy). VBM demonstrated widespread brain GM and WM reduction, but only at exploratory statistical thresholds, with no differences remaining after correction for multiple comparisons. Freesurfer analysis demonstrated no group differences. NMOSD specific parenchymal brain damage is predominantly located in the optic radiation, likely due to a secondary degeneration caused by ON. In comparison, DTI appears to be the most reliable and sensitive technique for brain damage detection in NMOSD. (orig.)

  5. Pathophysiology of repetitive head injury in sports. Prevention against catastrophic brain damage

    International Nuclear Information System (INIS)

    Mori, Tatsuro; Kawamata, Tatsuro; Katayama, Yoichi

    2008-01-01

    The most common head injury in sports is concussion and experiencing multiple concussions in a short period of time sometimes can cause severe brain damage. In this paper, we investigate severe brain damage due to repeated head injury in sports and discuss the pathophysiology of repeated sports injury. The majority of these severe cases are usually male adolescents or young adults that suffer a second head injury before they have recovered from the first head injury. All cases that could be confirmed by brain CT scan after the second injury revealed brain swelling associated with a thin subdural hematoma. We suggested that the existence of subdural hematoma is one of the major causes of brain swelling after repeated head injury in sports. Since repeated concussions occurring within a short period may have a risk for severe brain damage, the diagnosis for initial cerebral concussion should be done appropriately. To prevent catastrophic brain damage, the player who suffered from concussion should not engage in any sports before recovery. The american Academy of Neurology and Colorado Medical Society set a guideline to return to play after cerebral concussion. An international conference on concussion in sports was held at Prague in 2004. The summary and agreement of this meeting was published and the Sports Concussion Assessment Tool (SCAT) was introduced to treat sports-related concussion. In addition, a number of computerized cognitive assessment tests and test batteries have been developed to allow athletes to return to play. It is important that coaches, as well as players and trainers, understand the medical issues involved in concussion. (author)

  6. Patterns of damage in the mature neonatal brain

    International Nuclear Information System (INIS)

    Triulzi, Fabio; Parazzini, Cecilia; Righini, Andrea

    2006-01-01

    Patterns of damage in the mature neonatal brain can be subdivided into focal, multifocal and diffuse. The main cause of diffuse brain damage in the term newborn is hypoxic-ischaemic encephalopathy (HIE). HIE is still the major recognized perinatal cause of neurological morbidity in full-term newborns. MRI offers today the highest sensitivity in detecting acute anoxic injury of the neonatal brain. Conventional acquisition techniques together with modern diffusion techniques can identify typical patterns of HIE injury, even in the early course of the disease. However, even though highly suggestive, these patterns cannot be considered as pathognomonic. Perinatal metabolic disease such as kernicterus and severe hypoglycaemia should be differentiated from classic HIE. Other conditions, such as infections, non-accidental injury and rarer metabolic diseases can be misinterpreted as HIE in their early course when diffuse brain swelling is still the predominant MRI feature. Diffusion techniques can help to differentiate different types of diffuse brain oedema. Typical examples of focal injuries are arterial or venous infarctions. In arterial infarction, diffusion techniques can define more precisely than conventional imaging the extent of focal infarction, even in the hyperacute phase. Moreover, diffusion techniques provide quantitative data of acute corticospinal tract injury, especially at the level of the cerebral peduncles. Venous infarction should be suspected in every case of unexplained cerebral haematoma in the full-term newborn. In the presence of spontaneous bleeding, venous structures should always be evaluated by MR angiography. (orig.)

  7. Patterns of damage in the mature neonatal brain

    Energy Technology Data Exchange (ETDEWEB)

    Triulzi, Fabio; Parazzini, Cecilia; Righini, Andrea [Children' s Hospital ' ' Vittore Buzzi' ' , Departments of Radiology and Neuroradiology, Milan (Italy)

    2006-07-15

    Patterns of damage in the mature neonatal brain can be subdivided into focal, multifocal and diffuse. The main cause of diffuse brain damage in the term newborn is hypoxic-ischaemic encephalopathy (HIE). HIE is still the major recognized perinatal cause of neurological morbidity in full-term newborns. MRI offers today the highest sensitivity in detecting acute anoxic injury of the neonatal brain. Conventional acquisition techniques together with modern diffusion techniques can identify typical patterns of HIE injury, even in the early course of the disease. However, even though highly suggestive, these patterns cannot be considered as pathognomonic. Perinatal metabolic disease such as kernicterus and severe hypoglycaemia should be differentiated from classic HIE. Other conditions, such as infections, non-accidental injury and rarer metabolic diseases can be misinterpreted as HIE in their early course when diffuse brain swelling is still the predominant MRI feature. Diffusion techniques can help to differentiate different types of diffuse brain oedema. Typical examples of focal injuries are arterial or venous infarctions. In arterial infarction, diffusion techniques can define more precisely than conventional imaging the extent of focal infarction, even in the hyperacute phase. Moreover, diffusion techniques provide quantitative data of acute corticospinal tract injury, especially at the level of the cerebral peduncles. Venous infarction should be suspected in every case of unexplained cerebral haematoma in the full-term newborn. In the presence of spontaneous bleeding, venous structures should always be evaluated by MR angiography. (orig.)

  8. Aggravated brain damage after hypoxic ischemia in immature adenosine A2A knockout mice.

    Science.gov (United States)

    Adén, Ulrika; Halldner, Linda; Lagercrantz, Hugo; Dalmau, Ishar; Ledent, Catherine; Fredholm, Bertil B

    2003-03-01

    Cerebral hypoxic ischemia (HI) is an important cause of brain injury in the newborn infant. Adenosine is believed to protect against HI brain damage. However, the roles of the different adenosine receptors are unclear, particularly in young animals. We examined the role of adenosine A2A receptors (A2AR) using 7-day-old A2A knockout (A2AR(-/-)) mice in a model of HI. HI was induced in 7-day-old CD1 mice by exposure to 8% oxygen for 30 minutes after occlusion of the left common carotid artery. The resulting unilateral focal lesion was evaluated with the use of histopathological scoring and measurements of residual brain areas at 5 days, 3 weeks, and 3 months after HI. Behavioral evaluation of brain injury by locomotor activity, rotarod, and beam-walking test was made 3 weeks and 3 months after HI. Cortical cerebral blood flow, assessed by laser-Doppler flowmetry, and rectal temperature were measured during HI. Reduction in cortical cerebral blood flow during HI and rectal temperature did not differ between wild-type (A2AR(+/+)) and knockout mice. In the A2AR(-/-) animals, brain injury was aggravated compared with wild-type mice. The A2AR(-/-) mice subjected to HI displayed increased forward locomotion and impaired rotarod performance in adulthood compared with A2AR(+/+) mice subjected to HI, whereas beam-walking performance was similarly defective in both groups. These results suggest that, in contrast to the situation in adult animals, A2AR play an important protective role in neonatal HI brain injury.

  9. Prevention of Severe Hypoglycemia-Induced Brain Damage and Cognitive Impairment with Verapamil.

    Science.gov (United States)

    Jackson, David A; Michael, Trevin; Vieira de Abreu, Adriana; Agrawal, Rahul; Bortolato, Marco; Fisher, Simon J

    2018-05-03

    People with insulin-treated diabetes are uniquely at risk for severe hypoglycemia-induced brain damage. Since calcium influx may mediate brain damage, we tested the hypothesis that the calcium channel blocker, verapamil, would significantly reduce brain damage and cognitive impairment caused by severe hypoglycemia. Ten-week-old Sprague-Dawley rats were randomly assigned to one of three treatments; 1) control hyperinsulinemic (200 mU.kg -1 min -1 ) euglycemic (80-100mg/dl) clamps (n=14), 2) hyperinsulinemic hypoglycemic (10-15mg/dl) clamps (n=16), or 3) hyperinsulinemic hypoglycemic clamps followed by a single treatment with verapamil (20mg/kg) (n=11). As compared to euglycemic controls, hypoglycemia markedly increased dead/dying neurons in the hippocampus and cortex, by 16-fold and 14-fold, respectively. Verapamil treatment strikingly decreased hypoglycemia-induced hippocampal and cortical damage, by 87% and 94%, respectively. Morris Water Maze probe trial results demonstrated that hypoglycemia induced a retention, but not encoding, memory deficit (noted by both abolished target quadrant preference and reduced target quadrant time). Verapamil treatment significantly rescued spatial memory as noted by restoration of target quadrant preference and target quadrant time. In summary, a one-time treatment with verapamil following severe hypoglycemia prevented neural damage and memory impairment caused by severe hypoglycemia. For people with insulin treated diabetes, verapamil may be a useful drug to prevent hypoglycemia-induced brain damage. © 2018 by the American Diabetes Association.

  10. Computerized axial tomography in the detection of brain damage

    International Nuclear Information System (INIS)

    Cala, L.A.; Mastaglia, F.L.

    1980-01-01

    The cranial computerized axial tomography (CAT) findings in groups of patients with epilepsy, migraine, hypertension, and other general medical disorders have been reviewed to assess the frequency and patterns of focal and diffuse brain damage. In addition to demonstrating focal lesions in a proportion of patients with seizures and in patients presenting with a stroke, the CAT scan showed a premature degree of cerebral atrophy in an appreciable proportion of patients with long-standing epilepsy, hypertension and diabetes, and in some patients with migraine, valvular and ischaemic heart disease, chronic obstructive airways disease, and chronic renal failure. The value of CAT as a means of screening for brain damage in groups of individuals at risk is discussed

  11. Functionality predictors in acquired brain damage.

    Science.gov (United States)

    Huertas Hoyas, E; Pedrero Pérez, E J; Águila Maturana, A M; García López-Alberca, S; González Alted, C

    2015-01-01

    Most individuals who have survived an acquired brain injury present consequences affecting the sensorimotor, cognitive, affective or behavioural components. These deficits affect the proper performance of daily living activities. The aim of this study is to identify functional differences between individuals with unilateral acquired brain injury using functional independence, capacity, and performance of daily activities. Descriptive cross-sectional design with a sample of 58 people, with right-sided injury (n=14 TBI; n=15 stroke) or left-sided injury (n = 14 TBI, n = 15 stroke), right handed, and with a mean age of 47 years and time since onset of 4 ± 3.65 years. The functional assessment/functional independence measure (FIM/FAM) and the International Classification of Functioning (ICF) were used for the study. The data showed significant differences (P<.000), and a large size effect (dr=0.78) in the cross-sectional estimates, and point to fewer restrictions for patients with a lesion on their right side. The major differences were in the variables 'speaking' and 'receiving spoken messages' (ICF variables), and 'Expression', 'Writing' and 'intelligible speech' (FIM/FAM variables). In the linear regression analysis, the results showed that only 4 FIM/FAM variables, taken together, predict 44% of the ICF variance, which measures the ability of the individual, and up to 52% of the ICF, which measures the individual's performance. Gait alone predicts a 28% of the variance. It seems that individuals with acquired brain injury in the left hemisphere display important differences regarding functional and communication variables. The motor aspects are an important prognostic factor in functional rehabilitation. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  12. Dental deafferentation and brain damage: A review and a hypothesis

    Directory of Open Access Journals (Sweden)

    Yi-Tai Jou

    2018-04-01

    Full Text Available In the last few decades, neurobiological and human brain imaging research have greatly advanced our understanding of brain mechanisms that support perception and memory, as well as their function in daily activities. Knowledge of the neurobiological mechanisms behind the deafferentation of stomatognathic systems has also expanded greatly in recent decades. In particular, current studies reveal that the peripheral deafferentations of stomatognathic systems may be projected globally into the central nervous system (CNS and become an associated critical factor in triggering and aggravating neurodegenerative diseases.This review explores basic neurobiological mechanisms associated with the deafferentation of stomatognathic systems. Further included is a discussion on tooth loss and other dental deafferentation (DD mechanisms, with a focus on dental and masticatory apparatuses associated with brain functions and which may underlie the changes observed in the aging brain. A new hypothesis is presented where DD and changes in the functionality of teeth and the masticatory apparatus may cause brain damage as a result of altered cerebral circulation and dysfunctional homeostasis. Furthermore, multiple recurrent reorganizations of the brain may be a triggering or contributing risk factor in the onset and progression of neurodegenerative conditions such as Alzheimer's disease (AD. A growing understanding of the association between DD and brain aging may lead to solutions in treating and preventing cognitive decline and neurodegenerative diseases. Keywords: Dental deafferentation, Alzheimer's disease, Brain damage, Temporal-mandibular joint

  13. Perioperative brain damage after cardiovascular surgery; Clinical evaluation including CT scans

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Michiyuki; Kuriyama, Yoshihiro; Sawada, Toru; Fujita, Tsuyoshi; Omae, T. (National Cardiovascular Center, Suita, Osaka (Japan))

    1989-08-01

    We examined 39 cases (1.6%) of post-operative brain damages out of 2,445 sequential cases of cardiovascular surgery in NCVC during past three years. In this study, we investigated clinical course and CT findings of each patient in details and analyzed the causes of the post operative brain damages. Of 39 cases, 23 (59%) were complicated with cerebral ischemia, 8 (21%) with subdural hematoma (SDH), 2 (5%) with intracranial hemorrhage (ICH) and 1 (2%) with subarachnoid hemorrhage (SAH), respectively. 5 cases (13%) had unclassified brain damages. In 23 cases of cerebral ischemia there were 5 cases of hypotension-induced ischemia, 4 cases of hypoxic encephalopathy, 3 cases of ischemia induced by intra-operative maneuvers, 3 cases of embolism after operation and a single case of 'microembolism'. Seven cases could not be classified into any of these categories. Duration of ECC was 169.9 {plus minus} 48.5 min on the average in patients with such brain damages as SDH, ICH, SAH and cardiogenic embolism, which were thought not to be related with ECC. On the other hand, that of the patients hypotensive ischemia or 'microembolism' gave an average value of 254.5 {plus minus} 96.8 min. And these patients were thought to have occurred during ECC. There was a statistically significant difference between these two mean values. (J.P.N.).

  14. A comparison of brain activity associated with language production in brain tumor patients with left and right sided language laterality.

    Science.gov (United States)

    Jansma, J M; Ramsey, N; Rutten, G J

    2015-12-01

    Language dominance is an important factor for clinical decision making in brain tumor surgery. Functional MRI can provide detailed information about the organization of language in the brain. One often used measure derived from fMRI data is the laterality index (LI). The LI is typically based on the ratio between left and right brain activity in a specific region associated with language. Nearly all fMRI language studies show language-related activity in both hemispheres, and as a result the LI shows a large range of values. The clinical significance of the variation in language laterality as measured with the LI is still under debate. In this study, we tested two hypotheses in relation to the LI, measured in Broca's region, and it's right hemisphere homologue: 1: the level of activity in Broca's and it's right hemisphere homologue is mirrored for subjects with an equal but opposite LI; 2: the whole brain language activation pattern differs between subjects with an equal but opposite LI. One hundred sixty-three glioma and meningioma patients performed a verb generation task as part of a standard clinical protocol. We calculated the LI in the pars orbitalis, pars triangularis and pars opercularis of the left inferior frontal gyrus, referred to as Broca's region from here on. In our database, 21 patients showed right lateralized activity, with a moderate average level (-0.32). A second group of 21 patients was selected from the remaining group, for equal but opposite LI (0.32). We compared the level and distribution of activity associated with language production in the left and right hemisphere in these two groups. Patients with left sided laterality showed a significantly higher level of activity in Broca's region than the patients with right sided laterality. However, both groups showed no difference in level of activity in Broca's homologue region in the right hemisphere. Also, we did not see any difference in the pattern of activity between patients with left

  15. Ischemic perinatal brain damage. Neuropathologic and CT correlations

    Energy Technology Data Exchange (ETDEWEB)

    Crisi, G; Mauri, C; Canossi, G; Della Giustina, E

    1986-01-01

    The term ''hypoxic-ischemic encephalopathy'' covers a large part of neonatal neuropathology including the various forms of intracerebral haemorrhage. In the present work the term is confined to ischemic brain edema and actual infarction, be it diffuse or focal. Eighteen newborns with CT evidence of ischemic brain lesions and infarctual necrosis were selected. Emphasis is placed on current data on neuropathology of ischemic brain edema and its CT appearance. Particular entities such as periventricular leukomalacia and multicystic encephalopathy are discussed. Relationship between CT and temporal profile of cerebral damage is emphasized in order to predict the structural sequelae and the longterm prognosis. 31 refs.

  16. Systems approach to the study of brain damage in the very preterm newborn

    Science.gov (United States)

    Leviton, Alan; Gressens, Pierre; Wolkenhauer, Olaf; Dammann, Olaf

    2015-01-01

    Background: A systems approach to the study of brain damage in very preterm newborns has been lacking. Methods: In this perspective piece, we offer encephalopathy of prematurity as an example of the complexity and interrelatedness of brain-damaging molecular processes that can be initiated inflammatory phenomena. Results: Using three transcription factors, nuclear factor-kappa B (NF-κB), Notch-1, and nuclear factor erythroid 2 related factor 2 (NRF2), we show the inter-connectedness of signaling pathways activated by some antecedents of encephalopathy of prematurity. Conclusions: We hope that as biomarkers of exposures and processes leading to brain damage in the most immature newborns become more readily available, those who apply a systems approach to the study of neuroscience can be persuaded to study the pathogenesis of brain disorders in the very preterm newborn. PMID:25926780

  17. The findings of Tc-99m ECD brain perfusion SPECT in the patients with left anterior thalamic infarction

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y. A.; Kim, S. H.; Sohn, H. S.; Jeong, S. G. [The Catholic University of Korea, Seoul (Korea, Republic of)

    2005-07-01

    The thalamus has multiple connections with areas of the cerebral cortex involved in arousal and cognition. Thalamic damage has been reported to be associated with variable neuropsychological dysfunctions and dementia. This study evaluates the changes of regional cerebral blood flow (rCBF) by using SPM analysis of brain perfusion SPECT and examining the neuropsychological abnormalities of 4 patients with anterior thalamic infarctions. Four patients with left anterior thalamic infarctions and eleven normal controls were evaluated. K-MMSE and the Seoul Neuropsychological Screening Battery were performed within 2 days after stroke. The normalized SPECT data of 4 patients were compared to those of 11 controls for the detection of areas with decreased rCBF by SPM analysis. All 4 patients showed anterograde amnesia in their verbal memory, which was not improved by recognition. Dysexecutive features were occasionally present, such as decreased word fluency and impaired Stroop test results. SPM analysis revealed decreased rCBF in the left supra marginal gyrus, the superior temporal gyrus, the middle and inferior frontal gyrus, the medial dorsal and anterior nucleus of the left thalamus. The changes of rCBF in patients with left anterior thalamic infarctions may be due to the remote suppression on metabolism by the interruption of the cortico-subcortical circuit, which connects the anterior thalamic nucleus and various cortical areas. The executive dysfunction and dysnomia may be caused by the left dorsolateral frontal dysfunction of the thalamo-cortical circuit. Anterograde amnesia with storage deficit may be caused by the disruption of mamillothalamic tract.

  18. The findings of Tc-99m ECD brain perfusion SPECT in the patients with left anterior thalamic infarction

    International Nuclear Information System (INIS)

    Jeong, Y. A.; Kim, S. H.; Sohn, H. S.; Jeong, S. G.

    2005-01-01

    The thalamus has multiple connections with areas of the cerebral cortex involved in arousal and cognition. Thalamic damage has been reported to be associated with variable neuropsychological dysfunctions and dementia. This study evaluates the changes of regional cerebral blood flow (rCBF) by using SPM analysis of brain perfusion SPECT and examining the neuropsychological abnormalities of 4 patients with anterior thalamic infarctions. Four patients with left anterior thalamic infarctions and eleven normal controls were evaluated. K-MMSE and the Seoul Neuropsychological Screening Battery were performed within 2 days after stroke. The normalized SPECT data of 4 patients were compared to those of 11 controls for the detection of areas with decreased rCBF by SPM analysis. All 4 patients showed anterograde amnesia in their verbal memory, which was not improved by recognition. Dysexecutive features were occasionally present, such as decreased word fluency and impaired Stroop test results. SPM analysis revealed decreased rCBF in the left supra marginal gyrus, the superior temporal gyrus, the middle and inferior frontal gyrus, the medial dorsal and anterior nucleus of the left thalamus. The changes of rCBF in patients with left anterior thalamic infarctions may be due to the remote suppression on metabolism by the interruption of the cortico-subcortical circuit, which connects the anterior thalamic nucleus and various cortical areas. The executive dysfunction and dysnomia may be caused by the left dorsolateral frontal dysfunction of the thalamo-cortical circuit. Anterograde amnesia with storage deficit may be caused by the disruption of mamillothalamic tract

  19. Left Brain. Right Brain. Whole Brain

    Science.gov (United States)

    Farmer, Lesley S. J.

    2004-01-01

    As the United States student population is becoming more diverse, library media specialists need to find ways to address these distinctive needs. However, some of these differences transcend culture, touching on variations in the brain itself. Most people have a dominant side of the brain, which can affect their personality and learning style.…

  20. Brain damages in ketamine addicts as revealed by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Chunmei eWang

    2013-07-01

    Full Text Available Ketamine, a known antagonist of N-methyl-D-aspartic (NMDA glutamate receptors, had been used as an anesthetic particularly for pediatric or for cardiac patients. Unfortunately, ketamine has become an abusive drug in many parts of the world while chronic and prolonged usage led to damages of many organs including the brain. However, no studies on possible damages in the brains induced by chronic ketamine abuse have been documented in the human via neuroimaging. This paper described for the first time via employing magnetic resonance imaging (MRI the changes in ketamine addicts of 0.5 to 12 years and illustrated the possible brain regions susceptible to ketamine abuse. Twenty-one ketamine addicts were recruited and the results showed that the lesions in the brains of ketamine addicts were located in many regions which appeared 2-4 years after ketamine addiction. Cortical atrophy was usually evident in the frontal, parietal or occipital cortices of addicts. Such study confirmed that many brain regions in the human were susceptible to chronic ketamine injury and presented a diffuse effect of ketamine on the brain which might differ from other central nervous system (CNS drugs, such as cocaine, heroin and methamphetamine.

  1. The use of computed tomography in brain damage testing

    International Nuclear Information System (INIS)

    De Villiers, J.F.K.

    1980-01-01

    The article deals with the diagnosis of brain damage by the use of computerized tomography - especially referring to the injuries of boxers. Three conditions may be evaluated with computerized tomography: i) fenestration of the septum pellucidum; ii) cortical atrophy; and, iii) cerebral atrophy. It also appears that computerized tomography has a place in the evaluation of injuries sustained in the ring, as well as the detection of accelerated ageing of the brain or atrophy

  2. Differences in trace element concentrations between the right and left hemispheres of human brain using INAA

    International Nuclear Information System (INIS)

    Panayi, A.E.; Surrey Univ.; Spyrou, N.M.; Akanle, O.A.; Ubertalli, L.C.; Part, P.

    2000-01-01

    Very few publications have quoted differences between the same regions in both the right and left hemispheres of the human brain. It may be possible that the two hemispheres have different trace elemental concentrations, since it is known that they both have different functions. In this study, three brain regions from both the right and left hemispheres of the cortex have been sampled from five elderly individuals (three 'normal' and two Alzheimer's disease) and their elemental concentrations have been determined by instrumental neutron activation analysis (INAA). (author)

  3. Communication Impairments in Patients with Right Hemisphere Damage

    Directory of Open Access Journals (Sweden)

    Abusamra, Valeria

    2009-06-01

    Full Text Available Right brain damages can manifest deficits of communicative skills, which sometimes cause an important inability.The communication impairments following a right hemisphere damage are distinct from those in aphasia and may affect discursive, lexico-semantic, pragmatic, and prosodic components of communication. It is calculated that this troubles affect almost a 50% of this patients.However, these impairments have essentially been studied separately and their possible coexistence in a same individual is still unknown. Moreover, the clinical profiles of communication impairments following a right hemisphere damage, including their correlation with underlying cognitive deficits, are still unreported. The goal of this article is to offer an overview of the verbal communication deficits that can be found in right-hemisphere-damaged individuals. These deficits can interfere, at different levels, with prosody, the semantic processing of words and discourse and pragmatic abilities. In spite of the incapability that they produce, communicational impairments in right brain damaged are usually neglected. Probably, the sub-diagnostic is due to the lack of an appropriate classification or to the absent of adequate assessment tools. In fact, patients with right brain damages might present harsh communicational deficits but perform correctly on aphasia tests because the last ones are not designed to detect this kind of deficit but left brain damaged impairments. Increasing our knowledge about the role of the right-hemisphere in verbal communication will have major theoretical and clinical impacts; it could facilitate the diagnosis of right brain patients in the clinical circle and it will help to lay the foundations to elaborate methods and strategies of intervention.

  4. Brain Abscess Associated with Isolated Left Superior Vena Cava Draining into the Left Atrium in the Absence of Coronary Sinus and Atrial Septal Defect

    International Nuclear Information System (INIS)

    Erol, Ilknur; Cetin, I. Ilker; Alehan, Fuesun; Varan, Birguel; Ozkan, Sueleyman; Agildere, A. Muhtesem; Tokel, Kursad

    2006-01-01

    A previously healthy 12-year-old girl presented with severe headache for 2 weeks. On physical examination, there was finger clubbing without apparent cyanosis. Neurological examination revealed only papiledema without focal neurologic signs. Cerebral magnetic resonance imaging showed the characteristic features of brain abscess in the left frontal lobe. Cardiologic workup to exclude a right-to-left shunt showed an abnormality of the systemic venous drainage: presence of isolated left superior vena cava draining into the left atrium in the absence of coronary sinus and atrial septal defect. This anomaly is rare, because only a few other cases have been reported

  5. [Neuroendocrine dysfunction and brain damage. A consensus statement].

    Science.gov (United States)

    Leal-Cerro, Alfonso; Rincón, María Dolores; Domingo, Manel Puig

    2009-01-01

    This consensus statement aims to enhance awareness of the incidence and risks of hypopituitarism in patients with traumatic brain injury (TBI) and/or brain hemorrhages among physicians treating patients with brain damage. The importance of this problem is related not only to the frequency of TBI but also to its prevalence in younger populations. The consequences of TBI are characterized by a series of symptoms that depend on the type of sequels related to neuroendocrine dysfunction. The signs and symptoms of hypopituitarism are often confused with those of other sequels of TBI. Consequently, patients with posttraumatic hypopituitarism may receive suboptimal rehabilitation unless the underlying hormone deficiency is identified and treated. This consensus is based on the recommendation supported by expert opinion that patients with a TBI and/or brain hemorrhage should undergo endocrine evaluation in order to assess pituitary function and, if deficiency is detected, should receive hormone replacement therapy.

  6. Effect of alcohol exposure on fetal brain development

    Science.gov (United States)

    Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.

    2013-02-01

    Alcohol consumption during pregnancy can be severely damage to the brain development in fetuses. This study investigates the effects of maternal ethanol consumption on brain development in mice embryos. Pregnant mice at gestational day 12.5 were intragastrically gavaged with ethanol (3g/Kg bwt) twice daily for three consecutive days. On gestational day 14.5, fetuses were collected and fixed in 4% paraformaldehyde and imaged using a swept-source optical coherence tomography (SSOCT) system. 3D images of the mice embryo brain were obtained and the volumes of the left and right ventricles of the brain were measured. The average volumes of the left and the right volumes of 5 embryos each alcohol-exposed and control embryos were measured to be 0.35 and 0.15 mm3, respectively. The results suggest that the left and right ventricle volumes of brain are much larger in the alcohol-exposed embryos as compared to control embryos indicating alcohol-induced developmental delay.

  7. Zingiber officinale Mitigates Brain Damage and Improves Memory Impairment in Focal Cerebral Ischemic Rat

    Science.gov (United States)

    Wattanathorn, Jintanaporn; Jittiwat, Jinatta; Tongun, Terdthai; Muchimapura, Supaporn; Ingkaninan, Kornkanok

    2011-01-01

    Cerebral ischemia is known to produce brain damage and related behavioral deficits including memory. Recently, accumulating lines of evidence showed that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, possible protective effect of Zingiber officinale, a medicinal plant reputed for neuroprotective effect against oxidative stress-related brain damage, on brain damage and memory deficit induced by focal cerebral ischemia was elucidated. Male adult Wistar rats were administrated an alcoholic extract of ginger rhizome orally 14 days before and 21 days after the permanent occlusion of right middle cerebral artery (MCAO). Cognitive function assessment was performed at 7, 14, and 21 days after MCAO using the Morris water maze test. The brain infarct volume and density of neurons in hippocampus were also determined. Furthermore, the level of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in cerebral cortex, striatum, and hippocampus was also quantified at the end of experiment. The results showed that cognitive function and neurons density in hippocampus of rats receiving ginger rhizome extract were improved while the brain infarct volume was decreased. The cognitive enhancing effect and neuroprotective effect occurred partly via the antioxidant activity of the extract. In conclusion, our study demonstrated the beneficial effect of ginger rhizome to protect against focal cerebral ischemia. PMID:21197427

  8. Zingiber officinale Mitigates Brain Damage and Improves Memory Impairment in Focal Cerebral Ischemic Rat

    Directory of Open Access Journals (Sweden)

    Jintanaporn Wattanathorn

    2011-01-01

    Full Text Available Cerebral ischemia is known to produce brain damage and related behavioral deficits including memory. Recently, accumulating lines of evidence showed that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, possible protective effect of Zingiber officinale, a medicinal plant reputed for neuroprotective effect against oxidative stress-related brain damage, on brain damage and memory deficit induced by focal cerebral ischemia was elucidated. Male adult Wistar rats were administrated an alcoholic extract of ginger rhizome orally 14 days before and 21 days after the permanent occlusion of right middle cerebral artery (MCAO. Cognitive function assessment was performed at 7, 14, and 21 days after MCAO using the Morris water maze test. The brain infarct volume and density of neurons in hippocampus were also determined. Furthermore, the level of malondialdehyde (MDA, superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px in cerebral cortex, striatum, and hippocampus was also quantified at the end of experiment. The results showed that cognitive function and neurons density in hippocampus of rats receiving ginger rhizome extract were improved while the brain infarct volume was decreased. The cognitive enhancing effect and neuroprotective effect occurred partly via the antioxidant activity of the extract. In conclusion, our study demonstrated the beneficial effect of ginger rhizome to protect against focal cerebral ischemia.

  9. Moral judgement by the disconnected left and right cerebral hemispheres: a split-brain investigation.

    Science.gov (United States)

    Steckler, Conor M; Hamlin, J Kiley; Miller, Michael B; King, Danielle; Kingstone, Alan

    2017-07-01

    Owing to the hemispheric isolation resulting from a severed corpus callosum, research on split-brain patients can help elucidate the brain regions necessary and sufficient for moral judgement. Notably, typically developing adults heavily weight the intentions underlying others' moral actions, placing greater importance on valenced intentions versus outcomes when assigning praise and blame. Prioritization of intent in moral judgements may depend on neural activity in the right hemisphere's temporoparietal junction, an area implicated in reasoning about mental states. To date, split-brain research has found that the right hemisphere is necessary for intent-based moral judgement. When testing the left hemisphere using linguistically based moral vignettes, split-brain patients evaluate actions based on outcomes, not intentions. Because the right hemisphere has limited language ability relative to the left, and morality paradigms to date have involved significant linguistic demands, it is currently unknown whether the right hemisphere alone generates intent-based judgements. Here we use nonlinguistic morality plays with split-brain patient J.W. to examine the moral judgements of the disconnected right hemisphere, demonstrating a clear focus on intent. This finding indicates that the right hemisphere is not only necessary but also sufficient for intent-based moral judgement, advancing research into the neural systems supporting the moral sense.

  10. Gender differences in alcohol-induced neurotoxicity and brain damage.

    Science.gov (United States)

    Alfonso-Loeches, Silvia; Pascual, María; Guerri, Consuelo

    2013-09-06

    Considerable evidence has demonstrated that women are more vulnerable than men to the toxic effects of alcohol, although the results as to whether gender differences exist in ethanol-induced brain damage are contradictory. We have reported that ethanol, by activating the neuroimmune system and Toll-like receptors 4 (TLR4), can cause neuroinflammation and brain injury. However, whether there are gender differences in alcohol-induced neuroinflammation and brain injury are currently controversial. Using the brains of TLR4(+/+) and TLR4(-/-) (TLR4-KO) mice, we report that chronic ethanol treatment induces inflammatory mediators (iNOS and COX-2), cytokines (IL-1β, TNF-α), gliosis processes, caspase-3 activation and neuronal loss in the cerebral cortex of both female and male mice. Conversely, the levels of these parameters tend to be higher in female than in male mice. Using an in vivo imaging technique, our results further evidence that ethanol treatment triggers higher GFAP levels and lower MAP-2 levels in female than in male mice, suggesting a greater effect of ethanol-induced astrogliosis and less MAP-2(+) neurons in female than in male mice. Our results further confirm the pivotal role of TLR4 in alcohol-induced neuroinflammation and brain damage since the elimination of TLR4 protects the brain of males and females against the deleterious effects of ethanol. In short, the present findings demonstrate that, during the same period of ethanol treatment, females are more vulnerable than males to the neurotoxic/neuroinflammatory effects of ethanol, thus supporting the view that women are more susceptible than men to the medical consequences of alcohol abuse. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Neglecting the Left Side of a City Square but Not the Left Side of Its Clock: Prevalence and Characteristics of Representational Neglect

    Science.gov (United States)

    Guariglia, Cecilia; Palermo, Liana; Piccardi, Laura; Iaria, Giuseppe; Incoccia, Chiara

    2013-01-01

    Representational neglect, which is characterized by the failure to report left-sided details of a mental image from memory, can occur after a right hemisphere lesion. In this study, we set out to verify the hypothesis that two distinct forms of representational neglect exist, one involving object representation and the other environmental representation. As representational neglect is considered rare, we also evaluated the prevalence and frequency of its association with perceptual neglect. We submitted a group of 96 unselected, consecutive, chronic, right brain-damaged patients to an extensive neuropsychological evaluation that included two representational neglect tests: the Familiar Square Description Test and the O'Clock Test. Representational neglect, as well as perceptual neglect, was present in about one-third of the sample. Most patients neglected the left side of imagined familiar squares but not the left side of imagined clocks. The present data show that representational neglect is not a rare disorder and also support the hypothesis that two different types of mental representations (i.e. topological and non-topological images) may be selectively damaged in representational neglect. PMID:23874416

  12. Susceptibility to social pressure following ventromedial prefrontal cortex damage.

    Science.gov (United States)

    Chen, Kuan-Hua; Rusch, Michelle L; Dawson, Jeffrey D; Rizzo, Matthew; Anderson, Steven W

    2015-11-01

    Social pressure influences human behavior including risk taking, but the psychological and neural underpinnings of this process are not well understood. We used the human lesion method to probe the role of ventromedial prefrontal cortex (vmPFC) in resisting adverse social pressure in the presence of risk. Thirty-seven participants (11 with vmPFC damage, 12 with brain damage outside the vmPFC and 14 without brain damage) were tested in driving simulator scenarios requiring left-turn decisions across oncoming traffic with varying time gaps between the oncoming vehicles. Social pressure was applied by a virtual driver who honked aggressively from behind. Participants with vmPFC damage were more likely to select smaller and potentially unsafe gaps under social pressure, while gap selection by the comparison groups did not change under social pressure. Participants with vmPFC damage also showed prolonged elevated skin conductance responses (SCR) under social pressure. Comparison groups showed similar initial elevated SCR, which then declined prior to making left-turn decisions. The findings suggest that the vmPFC plays an important role in resisting explicit and immediately present social pressure with potentially negative consequences. The vmPFC appears to contribute to the regulation of emotional responses and the modulation of decision making to optimize long-term outcomes. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. Inferencing Processes after Right Hemisphere Brain Damage: Effects of Contextual Bias

    Science.gov (United States)

    Blake, Margaret Lehman

    2009-01-01

    Purpose: Comprehension deficits associated with right hemisphere brain damage (RHD) have been attributed to an inability to use context, but there is little direct evidence to support the claim. This study evaluated the effect of varying contextual bias on predictive inferencing by adults with RHD. Method: Fourteen adults with no brain damage…

  14. Intertemporal Decision Making After Brain Injury: Amount-Dependent Steeper Discounting after Frontal Cortex Damage

    Directory of Open Access Journals (Sweden)

    Białaszek Wojciech

    2017-12-01

    Full Text Available Traumatic brain injuries to the frontal lobes are associated with many maladaptive forms of behavior. We investigated the association between brain damage and impulsivity, as measured by the rate of delay discounting (i.e., the extent to which future outcomes are devalued in time. The main aim of this study was to test the hypothesis of steeper discounting of different amounts in a group of patients with frontal lobe damage. We used a delay discounting task in the form of a structured interview. A total of 117 participants were divided into five groups: three neurological groups and two groups without brain damage. Our analyses showed that patients with focal damage to the frontal lobes demonstrated steeper delay discounting than other participants. Other clinical groups demonstrated similar discounting rates. The data pattern related to the magnitude effect on the group level suggested that the magnitude effect is absent in the group of patients with damage to the frontal lobes; however, results were less consistent on an individual level. Amount-dependent discounting was observed in only two groups, the healthy control group and the neurological group with other cortical areas damaged.

  15. Glibenclamide reduces secondary brain damage after experimental traumatic brain injury.

    Science.gov (United States)

    Zweckberger, K; Hackenberg, K; Jung, C S; Hertle, D N; Kiening, K L; Unterberg, A W; Sakowitz, O W

    2014-07-11

    Following traumatic brain injury (TBI) SUR1-regulated NCCa-ATP (SUR1/TRPM4) channels are transcriptionally up-regulated in ischemic astrocytes, neurons, and capillaries. ATP depletion results in depolarization and opening of the channel leading to cytotoxic edema. Glibenclamide is an inhibitor of SUR-1 and, thus, might prevent cytotoxic edema and secondary brain damage following TBI. Anesthetized adult Sprague-Dawley rats underwent parietal craniotomy and were subjected to controlled cortical impact injury (CCI). Glibenclamide was administered as a bolus injection 15min after CCI injury and continuously via osmotic pumps throughout 7days. In an acute trial (180min) mean arterial blood pressure, heart rate, intracranial pressure, encephalographic activity, and cerebral metabolism were monitored. Brain water content was assessed gravimetrically 24h after CCI injury and contusion volumes were measured by MRI scanning technique at 8h, 24h, 72h, and 7d post injury. Throughout the entire time of observation neurological function was quantified using the "beam-walking" test. Glibenclamide-treated animals showed a significant reduction in the development of brain tissue water content(80.47%±0.37% (glibenclamide) vs. 80.83%±0.44% (control); pbeam-walking test throughout 7days. In accordance to these results and the available literature, glibenclamide seems to have promising potency in the treatment of TBI. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Independent effects of both right and left ventricular function on plasma brain natriuretic peptide

    DEFF Research Database (Denmark)

    Vogelsang, Thomas Wiis; Jensen, Ruben J; Monrad, Astrid L

    2007-01-01

    BACKGROUND: Brain natriuretic peptide (BNP) is increased in heart failure; however, the relative contribution of the right and left ventricles is largely unknown. AIM: To investigate if right ventricular function has an independent influence on plasma BNP concentration. METHODS: Right (RVEF), left......, which is a strong prognostic marker in heart failure, independently depends on both left and right ventricular systolic function. This might, at least in part, explain why BNP holds stronger prognostic value than LVEF alone....... ventricular ejection fraction (LVEF), and left ventricular end-diastolic volume index (LVEDVI) were determined in 105 consecutive patients by first-pass radionuclide ventriculography (FP-RNV) and multiple ECG-gated equilibrium radionuclide ventriculography (ERNV), respectively. BNP was analyzed by immunoassay...

  17. Independent effects of both right and left ventricular function on plasma brain natriuretic peptide.

    Science.gov (United States)

    Vogelsang, Thomas Wiis; Jensen, Ruben J; Monrad, Astrid L; Russ, Kaspar; Olesen, Uffe H; Hesse, Birger; Kjaer, Andreas

    2007-09-01

    Brain natriuretic peptide (BNP) is increased in heart failure; however, the relative contribution of the right and left ventricles is largely unknown. To investigate if right ventricular function has an independent influence on plasma BNP concentration. Right (RVEF), left ventricular ejection fraction (LVEF), and left ventricular end-diastolic volume index (LVEDVI) were determined in 105 consecutive patients by first-pass radionuclide ventriculography (FP-RNV) and multiple ECG-gated equilibrium radionuclide ventriculography (ERNV), respectively. BNP was analyzed by immunoassay. Mean LVEF was 0.51 (range 0.10-0.83) with 36% having a reduced LVEF (left and right ventricular systolic function. This might, at least in part, explain why BNP holds stronger prognostic value than LVEF alone.

  18. Disrupted topological properties of brain white matter networks in left temporal lobe epilepsy: a diffusion tensor imaging study.

    Science.gov (United States)

    Xu, Y; Qiu, S; Wang, J; Liu, Z; Zhang, R; Li, S; Cheng, L; Liu, Z; Wang, W; Huang, R

    2014-10-24

    Mesial temporal lobe epilepsy (mTLE) is the most common drug-refractory focal epilepsy in adults. Although previous functional and morphological studies have revealed abnormalities in the brain networks of mTLE, the topological organization of the brain white matter (WM) networks in mTLE patients is still ambiguous. In this study, we constructed brain WM networks for 14 left mTLE patients and 22 age- and gender-matched normal controls using diffusion tensor tractography and estimated the alterations of network properties in the mTLE brain networks using graph theoretical analysis. We found that networks for both the mTLE patients and the controls exhibited prominent small-world properties, suggesting a balanced topology of integration and segregation. However, the brain WM networks of mTLE patients showed a significant increased characteristic path length but significant decreased global efficiency, which indicate a disruption in the organization of the brain WM networks in mTLE patients. Moreover, we found significant between-group differences in the nodal properties in several brain regions, such as the left superior temporal gyrus, left hippocampus, the right occipital and right temporal cortices. The robustness analysis showed that the results were likely to be consistent for the networks constructed with different definitions of node and edge weight. Taken together, our findings may suggest an adverse effect of epileptic seizures on the organization of large-scale brain WM networks in mTLE patients. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Left and Right Hemisphere Brain Functions and Symbolic vs. Spontaneous Communication Processes.

    Science.gov (United States)

    Buck, Ross

    Recent findings on the communicative functions of the left versus the right hemisphere of the brain may suggest that there is a distinction between the intentional use of symbols for the sending of specific messages or propositions (language, signing, pantomime) and spontaneous expressive behaviors that signal their meaning through a natural…

  20. Vasoparalysis associated with brain damage in asphyxiated term infants

    International Nuclear Information System (INIS)

    Pryds, O.; Greisen, G.; Lou, H.; Friis-Hansen, B.

    1990-01-01

    The relationship of cerebral blood flow to acute changes in arterial carbon dioxide and mean arterial blood pressure (MABP) was determined during the first day of life in 19 severely asphyxiated term infants supported by mechanical ventilation. For comparison, 12 infants without perinatal asphyxia were also investigated. Global cerebral blood flow (CBF infinity) was determined by xenon 133 clearance two or three times within approximately 2 hours. During the cerebral blood flow measurement, the amplitude-integrated electroencephalogram and visual-evoked potential were recorded. Changes in arterial carbon dioxide pressure followed adjustments of the ventilator settings, whereas MABP fluctuated spontaneously. Arterial oxygen pressure and blood glucose concentration were in the normal range. Five of the asphyxiated infants had isoelectric electroencephalograms and died subsequently with severe brain damage. They had a high CBF infinity (mean 30.6 ml/100 gm/min) and abolished carbon dioxide and MABP reactivity. Lower CBF infinity (mean 14.7 ml/100 gm/min) and abolished MABP reactivity were found in another five asphyxiated infants with burst-suppression electroencephalograms in whom computed tomographic or clinical signs of brain lesions developed. The carbon dioxide reactivity was preserved in these infants. In the remaining nine asphyxiated infants without signs of central nervous system abnormality, carbon dioxide and MABP reactivity were preserved, as was also the case in the control group. We conclude that abolished autoregulation is associated with cerebral damage in asphyxiated infants and that the combination of isoelectric electroencephalograms and cerebral hyperperfusion is an early indicator of very severe brain damage

  1. Vasoparalysis associated with brain damage in asphyxiated term infants

    Energy Technology Data Exchange (ETDEWEB)

    Pryds, O.; Greisen, G.; Lou, H.; Friis-Hansen, B. (Rigshospitalet, Copenhagen (Denmark))

    1990-07-01

    The relationship of cerebral blood flow to acute changes in arterial carbon dioxide and mean arterial blood pressure (MABP) was determined during the first day of life in 19 severely asphyxiated term infants supported by mechanical ventilation. For comparison, 12 infants without perinatal asphyxia were also investigated. Global cerebral blood flow (CBF infinity) was determined by xenon 133 clearance two or three times within approximately 2 hours. During the cerebral blood flow measurement, the amplitude-integrated electroencephalogram and visual-evoked potential were recorded. Changes in arterial carbon dioxide pressure followed adjustments of the ventilator settings, whereas MABP fluctuated spontaneously. Arterial oxygen pressure and blood glucose concentration were in the normal range. Five of the asphyxiated infants had isoelectric electroencephalograms and died subsequently with severe brain damage. They had a high CBF infinity (mean 30.6 ml/100 gm/min) and abolished carbon dioxide and MABP reactivity. Lower CBF infinity (mean 14.7 ml/100 gm/min) and abolished MABP reactivity were found in another five asphyxiated infants with burst-suppression electroencephalograms in whom computed tomographic or clinical signs of brain lesions developed. The carbon dioxide reactivity was preserved in these infants. In the remaining nine asphyxiated infants without signs of central nervous system abnormality, carbon dioxide and MABP reactivity were preserved, as was also the case in the control group. We conclude that abolished autoregulation is associated with cerebral damage in asphyxiated infants and that the combination of isoelectric electroencephalograms and cerebral hyperperfusion is an early indicator of very severe brain damage.

  2. Clinical peculiarities of the brain damage in the liquidators of the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Zozulya, Y A; Vinnitsky, A R; Stepanenko, I V [Institute of Neurosurgery, Academy of Medical Sciences, Kiev (Ukraine)

    1997-09-01

    Investigation into the features of the brain damage by the liquidators of the Chernobyl accident has become an urgent issue of today due to a number of circumstances. According to the classical concept dominating radiobiology until recently, the brain being composed of highly - differentiated nerve cells, present a radioresistant structure responsive to radiation injury induced by high and very high radiation doses (10000 rem and higher) only. The results of clinical examinations given to the Chernobyl accident recovery workers at Kiev Institute of Neurosurgery, Academy of Medical Sciences of Ukraine, show that even the so - called ``small - dose`` radiation, when consumed continuously, produces neurological sings of brain damage. 6 figs.

  3. Clinical peculiarities of the brain damage in the liquidators of the Chernobyl accident

    International Nuclear Information System (INIS)

    Zozulya, Y.A.; Vinnitsky, A.R.; Stepanenko, I.V.

    1997-01-01

    Investigation into the features of the brain damage by the liquidators of the Chernobyl accident has become an urgent issue of today due to a number of circumstances. According to the classical concept dominating radiobiology until recently, the brain being composed of highly - differentiated nerve cells, present a radioresistant structure responsive to radiation injury induced by high and very high radiation doses (10000 rem and higher) only. The results of clinical examinations given to the Chernobyl accident recovery workers at Kiev Institute of Neurosurgery, Academy of Medical Sciences of Ukraine, show that even the so - called ''small - dose'' radiation, when consumed continuously, produces neurological sings of brain damage. 6 figs

  4. DNA damage in the oligodendrocyte lineage and its role in brain aging.

    Science.gov (United States)

    Tse, Kai-Hei; Herrup, Karl

    2017-01-01

    Myelination is a recent evolutionary addition that significantly enhances the speed of transmission in the neural network. Even slight defects in myelin integrity impair performance and enhance the risk of neurological disorders. Indeed, myelin degeneration is an early and well-recognized neuropathology that is age associated, but appears before cognitive decline. Myelin is only formed by fully differentiated oligodendrocytes, but the entire oligodendrocyte lineage are clear targets of the altered chemistry of the aging brain. As in neurons, unrepaired DNA damage accumulates in the postmitotic oligodendrocyte genome during normal aging, and indeed may be one of the upstream causes of cellular aging - a fact well illustrated by myelin co-morbidity in premature aging syndromes arising from deficits in DNA repair enzymes. The clinical and experimental evidence from Alzheimer's disease, progeroid syndromes, ataxia-telangiectasia and other conditions strongly suggest that oligodendrocytes may in fact be uniquely vulnerable to oxidative DNA damage. If this damage remains unrepaired, as is increasingly true in the aging brain, myelin gene transcription and oligodendrocyte differentiation is impaired. Delineating the relationships between early myelin loss and DNA damage in brain aging will offer an additional dimension outside the neurocentric view of neurodegenerative disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Defective imitation of finger configurations in patients with damage in the right or left hemispheres: An integration disorder of visual and somatosensory information?

    Science.gov (United States)

    Okita, Manabu; Yukihiro, Takashi; Miyamoto, Kenzo; Morioka, Shu; Kaba, Hideto

    2017-04-01

    To explore the mechanism underlying the imitation of finger gestures, we devised a simple imitation task in which the patients were instructed to replicate finger configurations in two conditions: one in which they could see their hand (visual feedback: VF) and one in which they could not see their hand (non-visual feedback: NVF). Patients with left brain damage (LBD) or right brain damage (RBD), respectively, were categorized into two groups based on their scores on the imitation task in the NVF condition: the impaired imitation groups (I-LBD and I-RBD) who failed two or more of the five patterns and the control groups (C-LBD and C-RBD) who made one or no errors. We also measured the movement-production times for imitation. The I-RBD group performed significantly worse than the C-RBD group even in the VF condition. In contrast, the I-LBD group was selectively impaired in the NVF condition. The I-LBD group performed the imitations at a significantly slower rate than the C-LBD group in both the VF and NVF conditions. These results suggest that impaired imitation in patients with LBD is partly due to an abnormal integration of visual and somatosensory information based on the task specificity of the NVF condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Does brain injury impair speech and gesture differently?

    Directory of Open Access Journals (Sweden)

    Tilbe Göksun

    2016-09-01

    Full Text Available People often use spontaneous gestures when talking about space, such as when giving directions. In a recent study from our lab, we examined whether focal brain-injured individuals’ naming motion event components of manner and path (represented in English by verbs and prepositions, respectively are impaired selectively, and whether gestures compensate for impairment in speech. Left or right hemisphere damaged patients and elderly control participants were asked to describe motion events (e.g., walking around depicted in brief videos. Results suggest that producing verbs and prepositions can be separately impaired in the left hemisphere and gesture production compensates for naming impairments when damage involves specific areas in the left temporal cortex.

  7. Metric to quantify white matter damage on brain magnetic resonance images

    International Nuclear Information System (INIS)

    Valdes Hernandez, Maria del C.; Munoz Maniega, Susana; Anblagan, Devasuda; Bastin, Mark E.; Wardlaw, Joanna M.; Chappell, Francesca M.; Morris, Zoe; Sakka, Eleni; Dickie, David Alexander; Royle, Natalie A.; Armitage, Paul A.; Deary, Ian J.

    2017-01-01

    Quantitative assessment of white matter hyperintensities (WMH) on structural Magnetic Resonance Imaging (MRI) is challenging. It is important to harmonise results from different software tools considering not only the volume but also the signal intensity. Here we propose and evaluate a metric of white matter (WM) damage that addresses this need. We obtained WMH and normal-appearing white matter (NAWM) volumes from brain structural MRI from community dwelling older individuals and stroke patients enrolled in three different studies, using two automatic methods followed by manual editing by two to four observers blind to each other. We calculated the average intensity values on brain structural fluid-attenuation inversion recovery (FLAIR) MRI for the NAWM and WMH. The white matter damage metric is calculated as the proportion of WMH in brain tissue weighted by the relative image contrast of the WMH-to-NAWM. The new metric was evaluated using tissue microstructure parameters and visual ratings of small vessel disease burden and WMH: Fazekas score for WMH burden and Prins scale for WMH change. The correlation between the WM damage metric and the visual rating scores (Spearman ρ > =0.74, p =0.72, p < 0.0001). The repeatability of the WM damage metric was better than WM volume (average median difference between measurements 3.26% (IQR 2.76%) and 5.88% (IQR 5.32%) respectively). The follow-up WM damage was highly related to total Prins score even when adjusted for baseline WM damage (ANCOVA, p < 0.0001), which was not always the case for WMH volume, as total Prins was highly associated with the change in the intense WMH volume (p = 0.0079, increase of 4.42 ml per unit change in total Prins, 95%CI [1.17 7.67]), but not with the change in less-intense, subtle WMH, which determined the volumetric change. The new metric is practical and simple to calculate. It is robust to variations in image processing methods and scanning protocols, and sensitive to subtle and severe white

  8. Phonological decisions require both the left and right supramarginal gyri

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Baumgaertner, Annette; Price, Cathy J

    2010-01-01

    Recent functional imaging studies demonstrated that both the left and right supramarginal gyri (SMG) are activated when healthy right-handed subjects make phonological word decisions. However, lesion studies typically report difficulties with phonological processing after left rather than right...... the right or left SMG. Taken together, these findings provide converging evidence that the right SMG contributes to accurate and efficient phonological decisions in the healthy brain, with no evidence that the left and right SMG can compensate for one another during TMS. Our findings motivate detailed...... hemisphere damage. Here, we used a unique dual-site transcranial magnetic stimulation (TMS) approach to test whether the SMG in the right hemisphere contributes to modality-independent (i.e., auditory and visual) phonological decisions. To test task-specificity, we compared the effect of real or sham TMS...

  9. The differential effects of acute right- vs. left-sided vestibular failure on brain metabolism.

    Science.gov (United States)

    Becker-Bense, Sandra; Dieterich, Marianne; Buchholz, Hans-Georg; Bartenstein, Peter; Schreckenberger, Mathias; Brandt, Thomas

    2014-07-01

    The human vestibular system is represented in the brain bilaterally, but it has functional asymmetries, i.e., a dominance of ipsilateral pathways and of the right hemisphere in right-handers. To determine if acute right- or left-sided unilateral vestibular neuritis (VN) is associated with differential patterns of brain metabolism in areas representing the vestibular network and the visual-vestibular interaction, patients with acute VN (right n = 9; left n = 13) underwent resting state (18)F-FDG PET once in the acute phase and once 3 months later after central vestibular compensation. The contrast acute vs. chronic phase showed signal differences in contralateral vestibular areas and the inverse contrast in visual cortex areas, both more pronounced in VN right. In VN left additional regions were found in the cerebellar hemispheres and vermis bilaterally, accentuated in severe cases. In general, signal changes appeared more pronounced in patients with more severe vestibular deficits. Acute phase PET data of patients compared to that of age-matched healthy controls disclosed similarities to these patterns, thus permitting the interpretation that the signal changes in vestibular temporo-parietal areas reflect signal increases, and in visual areas, signal decreases. These data imply that brain activity in the acute phase of right- and left-sided VN exhibits different compensatory patterns, i.e., the dominant ascending input is shifted from the ipsilateral to the contralateral pathways, presumably due to the missing ipsilateral vestibular input. The visual-vestibular interaction patterns were preserved, but were of different prominence in each hemisphere and more pronounced in patients with right-sided failure and more severe vestibular deficits.

  10. Brain hemorrhage after electrical burn injury: Case report and probable mechanism.

    Science.gov (United States)

    Axayacalt, Gutierrez Aceves Guillermo; Alejandro, Ceja Espinosa; Marcos, Rios Alanis; Inocencio, Ruiz Flores Milton; Alfredo, Herrera Gonzalez Jose

    2016-01-01

    High-voltage electric injury may induce lesion in different organs. In addition to the local tissue damage, electrical injuries may lead to neurological deficits, musculoskeletal damage, and cardiovascular injury. Severe vascular damage may occur making the blood vessels involved prone to thrombosis and spontaneous rupture. Here, we present the case of a 39-year-old male who suffered an electrical burn with high tension wire causing intracranial bleeding. He presented with an electrical burn in the parietal area (entry zone) and the left forearm (exit zone). The head tomography scan revealed an intraparenchimatous bleeding in the left parietal area. In this case, the electric way was the scalp, cranial bone, blood vessels and brain, upper limb muscle, and skin. The damage was different according to the dielectric property in each tissue. The injury was in the scalp, cerebral blood vessel, skeletal muscle, and upper limb skin. The main damage was in brain's blood vessels because of the dielectric and geometric features that lead to bleeding, high temperature, and gas delivering. This is a report of a patient with an electric brain injury that can be useful to elucidate the behavior of the high voltage electrical current flow into the nervous system.

  11. Selective deficit of second language: a case study of a brain-damaged Arabic-Hebrew bilingual patient

    Directory of Open Access Journals (Sweden)

    Ibrahim Raphiq

    2009-03-01

    Full Text Available Abstract Background An understanding of how two languages are represented in the human brain is best obtained from studies of bilingual patients who have sustained brain damage. The primary goal of the present study was to determine whether one or both languages of an Arabic-Hebrew bilingual individual are disrupted following brain damage. I present a case study of a bilingual patient, proficient in Arabic and Hebrew, who had sustained brain damage as a result of an intracranial hemorrhage related to herpes encephalitis. Methods The patient's performance on several linguistic tasks carried out in the first language (Arabic and in the second language (Hebrew was assessed, and his performance in the two languages was compared. Results The patient displayed somewhat different symptomatologies in the two languages. The results revealed dissociation between the two languages in terms of both the types and the magnitude of errors, pointing to aphasic symptoms in both languages, with Hebrew being the more impaired. Further analysis disclosed that this dissociation was apparently caused not by damage to his semantic system, but rather by damage at the lexical level. Conclusion The results suggest that the principles governing the organization of lexical representations in the brain are not similar for the two languages.

  12. Magnetic resonance imaging and angiography of the brain in embolic left atrial myxoma

    International Nuclear Information System (INIS)

    Marazuela, M.; Yebra, M.; Diego, J.; Durantez, A.; Garcia-Merino, A.; Brasa, J.M.

    1989-01-01

    A case of left atrial myxoma presenting exclusively with neurological symptoms, studies with magnetic resonance imaging (MRI) combined with cerebral angiography and computed tomography (CT) is reported. Typical angiographic findings suggested the diagnosis of myxoma. MRI showed multiple ischemic lesions disseminated throughout the entire brain, some of which had been clinically asymptomatic. Because of its sensitivity in identifying small cerebral infarcts, MRI should prove in the future to be a first-choice technique in the evaluation of the presence of an extent of cerebral involvement in embolic left atrial myxoma. (orig.)

  13. Damage to the anterior arcuate fasciculus predicts non-fluent speech production in aphasia.

    Science.gov (United States)

    Fridriksson, Julius; Guo, Dazhou; Fillmore, Paul; Holland, Audrey; Rorden, Chris

    2013-11-01

    Non-fluent aphasia implies a relatively straightforward neurological condition characterized by limited speech output. However, it is an umbrella term for different underlying impairments affecting speech production. Several studies have sought the critical lesion location that gives rise to non-fluent aphasia. The results have been mixed but typically implicate anterior cortical regions such as Broca's area, the left anterior insula, and deep white matter regions. To provide a clearer picture of cortical damage in non-fluent aphasia, the current study examined brain damage that negatively influences speech fluency in patients with aphasia. It controlled for some basic speech and language comprehension factors in order to better isolate the contribution of different mechanisms to fluency, or its lack. Cortical damage was related to overall speech fluency, as estimated by clinical judgements using the Western Aphasia Battery speech fluency scale, diadochokinetic rate, rudimentary auditory language comprehension, and executive functioning (scores on a matrix reasoning test) in 64 patients with chronic left hemisphere stroke. A region of interest analysis that included brain regions typically implicated in speech and language processing revealed that non-fluency in aphasia is primarily predicted by damage to the anterior segment of the left arcuate fasciculus. An improved prediction model also included the left uncinate fasciculus, a white matter tract connecting the middle and anterior temporal lobe with frontal lobe regions, including the pars triangularis. Models that controlled for diadochokinetic rate, picture-word recognition, or executive functioning also revealed a strong relationship between anterior segment involvement and speech fluency. Whole brain analyses corroborated the findings from the region of interest analyses. An additional exploratory analysis revealed that involvement of the uncinate fasciculus adjudicated between Broca's and global aphasia

  14. Fetal brain damage following maternal carbon monoxide intoxication: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Ginsberg, M D; Myers, R E

    1974-01-01

    Techniques of fetal monitoring, including fetal blood sampling in utero, were employed to study the physiological effects of acute maternal carbon monoxide intoxication on nine term-pregnant female rhesus monkeys exposed to 0.1 to 0.3% inspired carbon monoxide over 1 to 3 hr. The mothers tolerated carboxyhemoglobin levels exceeding 60% without clinical sequelae, whereas the fetuses promptly developed profound hypoxia upon exposure of the mothers to CO. The fetal COHb levels rose only gradually over 1 to 3 hr, and thus contributed only slightly to the development of early fetal hypoxia. The fetal hypoxia was associated with bradycardia, hypotension, and metabolic and respiratory acidosis. Severity of intrauterine hypoxia was closely correlated with the appearance of brain damage. Brain swelling associated with hemorrhagic necrosis of the cerebral hemispheres (severe brain damage) appeared only in fetuses whose arterial oxygen content was reduced below 1.0 ml/100 ml for at least 45 min during the maternal CO intoxication.

  15. Auditory middle latency responses differ in right- and left-handed subjects: an evaluation through topographic brain mapping.

    Science.gov (United States)

    Mohebbi, Mehrnaz; Mahmoudian, Saeid; Alborzi, Marzieh Sharifian; Najafi-Koopaie, Mojtaba; Farahani, Ehsan Darestani; Farhadi, Mohammad

    2014-09-01

    To investigate the association of handedness with auditory middle latency responses (AMLRs) using topographic brain mapping by comparing amplitudes and latencies in frontocentral and hemispheric regions of interest (ROIs). The study included 44 healthy subjects with normal hearing (22 left handed and 22 right handed). AMLRs were recorded from 29 scalp electrodes in response to binaural 4-kHz tone bursts. Frontocentral ROI comparisons revealed that Pa and Pb amplitudes were significantly larger in the left-handed than the right-handed group. Topographic brain maps showed different distributions in AMLR components between the two groups. In hemispheric comparisons, Pa amplitude differed significantly across groups. A left-hemisphere emphasis of Pa was found in the right-handed group but not in the left-handed group. This study provides evidence that handedness is associated with AMLR components in frontocentral and hemispheric ROI. Handedness should be considered an essential factor in the clinical or experimental use of AMLRs.

  16. Leukotriene-mediated neuroinflammation, toxic brain damage, and neurodegeneration in acute methanol poisoning

    Czech Academy of Sciences Publication Activity Database

    Zakharov, S.; Kotíková, K.; Nurieva, O.; Hlušička, J.; Kačer, P.; Urban, P.; Vaněčková, M.; Seidl, Z.; Diblík, P.; Kuthan, P.; Navrátil, Tomáš; Pelclová, D.

    2017-01-01

    Roč. 55, č. 4 (2017), s. 249-259 ISSN 1556-3650 Institutional support: RVO:61388955 Keywords : brain damage * leukotrienes * methanol poisoning * Neuroinflammation * nontraumatic brain injury * sequelae of poisoning Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 3.677, year: 2016

  17. Stimulation of Functional Vision in Children with Perinatal Brain Damage

    OpenAIRE

    Alimović, Sonja; Mejaški-Bošnjak, Vlatka

    2011-01-01

    Cerebral visual impairment (CVI) is one of the most common causes of bilateral visual loss, which frequently occurs due to perinatal brain injury. Vision in early life has great impact on acquisition of basic comprehensions which are fundamental for further development. Therefore, early detection of visual problems and early intervention is necessary. The aim of the present study is to determine specific visual functioning of children with perinatal brain damage and the influence of visual st...

  18. Selection and application of familiar and novel tools in patients with left and right hemispheric stroke: Psychometrics and normative data.

    Science.gov (United States)

    Buchmann, Ilka; Randerath, Jennifer

    2017-09-01

    Frequently left brain damage (LBD) leads to limb apraxia, a disorder that can affect tool-use. Despite its impact on daily life, classical tests examining the pantomime of tool-use and imitation of gestures are seldom applied in clinical practice. The study's aim was to present a diagnostic approach which appears more strongly related to actions in daily life in order to sensitize applicants and patients about the relevance of the disorder before patients are discharged. Two tests were introduced that evaluate actual tool selection and tool-object-application: the Novel Tools (NTT) and the Familiar Tools (FTT) Test (parts of the DILA-S: Diagnostic Instrument for Limb Apraxia - Short Version). Normative data in healthy subjects (N = 82) was collected. Then the tests were applied in stroke patients with unilateral left brain damage (LBD: N = 33), a control right brain damage group (RBD: N = 20) as well as healthy age and gender matched controls (CL: N = 28, and CR, N = 18). The tests showed appropriate interrater-reliability and internal consistency as well as concurrent and divergent validity. To examine criterion validity based on the well-known left lateralization of limb apraxia, group comparisons were run. As expected, the LBD group demonstrated a high prevalence of tool-use apraxia (NTT: 36.4%, FTT: 48.5%) ranging from mild to severe impairment and scored worse than their control group (CL). A few RBD patients did demonstrate impairments in tool-use (NTT: 15%, FTT: 15%). On a group level they did not differ from their healthy controls (CR). Further, it was demonstrated that the selection and application of familiar and novel tools can be impaired selectively. Our study results suggest that real tool-use tests evaluating tool selection and tool application should be considered for standard diagnosis of limb apraxia in left as well as right brain damaged patients. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Animal imaging studies of potential brain damage

    Science.gov (United States)

    Gatley, S. J.; Vazquez, M. E.; Rice, O.

    To date, animal studies have not been able to predict the likelihood of problems in human neurological health due to HZE particle exposure during space missions outside the Earth's magnetosphere. In ongoing studies in mice, we have demonstrated that cocaine stimulated locomotor activity is reduced by a moderate dose (120 cGy) of 1 GeV 56Fe particles. We postulate that imaging experiments in animals may provide more sensitive and earlier indicators of damage due to HZE particles than behavioral tests. Since the small size of the mouse brain is not well suited to the spatial resolution offered by microPET, we are now repeating some of our studies in a rat model. We anticipate that this will enable us to identify imaging correlates of behavioral endpoints. A specific hypothesis of our studies is that changes in the metabolic rate for glucose in striatum of animals will be correlated with alterations in locomotor activity. We will also evaluate whether the neuroprotective drug L-deprenyl reduces the effect of radiation on locomotor activity. In addition, we will conduct microPET studies of brain monoamine oxidase A and monoamine oxidase B in rats before and at various times after irradiation with HZE particles. The hypothesis is that monoamine oxidase A, which is located in nerve terminals, will be unchanged or decreased after irradiation, while monoamine oxidase B, which is located in glial cells, will be increased after irradiation. Neurochemical effects that could be measured using PET could in principle be applied in astronauts, in terms of detecting and monitoring subtle neurological damage that might have occurred during long space missions. More speculative uses of PET are in screening candidates for prolonged space missions (for example, for adequate reserve in critical brain circuits) and in optimizing medications to treat impairments after missions.

  20. Psychopathology of Time in Brain Disease and Schizophrenia

    Directory of Open Access Journals (Sweden)

    John Cutting

    1990-01-01

    Full Text Available The literature on disturbance of time-sense in brain disease and schizophrenia is reviewed and the subjective experience of altered time-sense reported by 45 out of 350 personally interviewed schizophrenics is analyzed. A review of the literature on the effect of brain damage revealed that some phenomena (déjà vu, reduplication of time, altered tempo to events were linked with right hemisphere dysfunction, one phenomenon (incorrect sequencing of events was linked with left anterior brain damage, and others (disrupted “biological clock”, disturbed serise of rate of flow of current or past events could arise from subcortical as well as focal cortical damage. The sparse literature on disturbed time-sense in schizophrenia suggested that there was a shared psychopathology in this respect with right hemisphere dysfunction. The phenomena encountered in the 45 schizophrenics are described and classified.

  1. Task-based and resting-state fMRI reveal compensatory network changes following damage to left inferior frontal gyrus.

    Science.gov (United States)

    Hallam, Glyn P; Thompson, Hannah E; Hymers, Mark; Millman, Rebecca E; Rodd, Jennifer M; Lambon Ralph, Matthew A; Smallwood, Jonathan; Jefferies, Elizabeth

    2018-02-01

    Damage to left inferior prefrontal cortex in stroke aphasia is associated with semantic deficits reflecting poor control over conceptual retrieval, as opposed to loss of knowledge. However, little is known about how functional recruitment within the semantic network changes in patients with executive-semantic deficits. The current study acquired functional magnetic resonance imaging (fMRI) data from 14 patients with semantic aphasia, who had difficulty with flexible semantic retrieval following left prefrontal damage, and 16 healthy age-matched controls, allowing us to examine activation and connectivity in the semantic network. We examined neural activity while participants listened to spoken sentences that varied in their levels of lexical ambiguity and during rest. We found group differences in two regions thought to be good candidates for functional compensation: ventral anterior temporal lobe (vATL), which is strongly implicated in comprehension, and posterior middle temporal gyrus (pMTG), which is hypothesized to work together with left inferior prefrontal cortex to support controlled aspects of semantic retrieval. The patients recruited both of these sites more than controls in response to meaningful sentences. Subsequent analysis identified that, in control participants, the recruitment of pMTG to ambiguous sentences was inversely related to functional coupling between pMTG and anterior superior temporal gyrus (aSTG) at rest, while the patients showed the opposite pattern. Moreover, stronger connectivity between pMTG and aSTG in patients was associated with better performance on a test of verbal semantic association, suggesting that this temporal lobe connection supports comprehension in the face of damage to left inferior prefrontal cortex. These results characterize network changes in patients with executive-semantic deficits and converge with studies of healthy participants in providing evidence for a distributed system underpinning semantic control that

  2. Differences in visual vs. verbal memory impairments as a result of focal temporal lobe damage in patients with traumatic brain injury.

    Science.gov (United States)

    Ariza, Mar; Pueyo, Roser; Junqué, Carme; Mataró, María; Poca, María Antonia; Mena, Maria Pau; Sahuquillo, Juan

    2006-09-01

    The aim of the present study was to determine whether the type of lesion in a sample of moderate and severe traumatic brain injury (TBI) was related to material-specific memory impairment. Fifty-nine patients with TBI were classified into three groups according to whether the site of the lesion was right temporal, left temporal or diffuse. Six-months post-injury, visual (Warrington's Facial Recognition Memory Test and Rey's Complex Figure Test) and verbal (Rey's Auditory Verbal Learning Test) memories were assessed. Visual memory deficits assessed by facial memory were associated with right temporal lobe lesion, whereas verbal memory performance assessed with a list of words was related to left temporal lobe lesion. The group with diffuse injury showed both verbal and visual memory impairment. These results suggest a material-specific memory impairment in moderate and severe TBI after focal temporal lesions and a non-specific memory impairment after diffuse damage.

  3. Shock treatment, brain damage, and memory loss: a neurological perspective.

    Science.gov (United States)

    Friedberg, J

    1977-09-01

    The author reviews reports of neuropathology resulting from electroconvulsive therapy in experimental animals and humans. Although findings of petechial hemorrhage, gliosis, and neuronal loss were well established in the decade following the introduction of ECT, they have been generally ignored since then. ECT produces characteristic EEG changes and severe retrograde amnesia, as well as other more subtle effects on memory and learning. The author concludes that ECT results in brain disease and questions whether doctors should offer brain damage to their patients.

  4. Metric to quantify white matter damage on brain magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Valdes Hernandez, Maria del C.; Munoz Maniega, Susana; Anblagan, Devasuda; Bastin, Mark E.; Wardlaw, Joanna M. [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); UK Dementia Research Institute, Edinburgh Dementia Research Centre, London (United Kingdom); Chappell, Francesca M.; Morris, Zoe; Sakka, Eleni [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); UK Dementia Research Institute, Edinburgh Dementia Research Centre, London (United Kingdom); Dickie, David Alexander; Royle, Natalie A. [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); Armitage, Paul A. [University of Sheffield, Department of Cardiovascular Sciences, Sheffield (United Kingdom); Deary, Ian J. [University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); University of Edinburgh, Department of Psychology, Edinburgh (United Kingdom)

    2017-10-15

    Quantitative assessment of white matter hyperintensities (WMH) on structural Magnetic Resonance Imaging (MRI) is challenging. It is important to harmonise results from different software tools considering not only the volume but also the signal intensity. Here we propose and evaluate a metric of white matter (WM) damage that addresses this need. We obtained WMH and normal-appearing white matter (NAWM) volumes from brain structural MRI from community dwelling older individuals and stroke patients enrolled in three different studies, using two automatic methods followed by manual editing by two to four observers blind to each other. We calculated the average intensity values on brain structural fluid-attenuation inversion recovery (FLAIR) MRI for the NAWM and WMH. The white matter damage metric is calculated as the proportion of WMH in brain tissue weighted by the relative image contrast of the WMH-to-NAWM. The new metric was evaluated using tissue microstructure parameters and visual ratings of small vessel disease burden and WMH: Fazekas score for WMH burden and Prins scale for WMH change. The correlation between the WM damage metric and the visual rating scores (Spearman ρ > =0.74, p < 0.0001) was slightly stronger than between the latter and WMH volumes (Spearman ρ > =0.72, p < 0.0001). The repeatability of the WM damage metric was better than WM volume (average median difference between measurements 3.26% (IQR 2.76%) and 5.88% (IQR 5.32%) respectively). The follow-up WM damage was highly related to total Prins score even when adjusted for baseline WM damage (ANCOVA, p < 0.0001), which was not always the case for WMH volume, as total Prins was highly associated with the change in the intense WMH volume (p = 0.0079, increase of 4.42 ml per unit change in total Prins, 95%CI [1.17 7.67]), but not with the change in less-intense, subtle WMH, which determined the volumetric change. The new metric is practical and simple to calculate. It is robust to variations in

  5. Beyond Hemispheric Dominance: Brain Regions Underlying the Joint Lateralization of Language and Arithmetic to the Left Hemisphere

    Science.gov (United States)

    Pinel, Philippe; Dehaene, Stanislas

    2010-01-01

    Language and arithmetic are both lateralized to the left hemisphere in the majority of right-handed adults. Yet, does this similar lateralization reflect a single overall constraint of brain organization, such an overall "dominance" of the left hemisphere for all linguistic and symbolic operations? Is it related to the lateralization of specific…

  6. Multisensory speech perception without the left superior temporal sulcus.

    Science.gov (United States)

    Baum, Sarah H; Martin, Randi C; Hamilton, A Cris; Beauchamp, Michael S

    2012-09-01

    Converging evidence suggests that the left superior temporal sulcus (STS) is a critical site for multisensory integration of auditory and visual information during speech perception. We report a patient, SJ, who suffered a stroke that damaged the left tempo-parietal area, resulting in mild anomic aphasia. Structural MRI showed complete destruction of the left middle and posterior STS, as well as damage to adjacent areas in the temporal and parietal lobes. Surprisingly, SJ demonstrated preserved multisensory integration measured with two independent tests. First, she perceived the McGurk effect, an illusion that requires integration of auditory and visual speech. Second, her perception of morphed audiovisual speech with ambiguous auditory or visual information was significantly influenced by the opposing modality. To understand the neural basis for this preserved multisensory integration, blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) was used to examine brain responses to audiovisual speech in SJ and 23 healthy age-matched controls. In controls, bilateral STS activity was observed. In SJ, no activity was observed in the damaged left STS but in the right STS, more cortex was active in SJ than in any of the normal controls. Further, the amplitude of the BOLD response in right STS response to McGurk stimuli was significantly greater in SJ than in controls. The simplest explanation of these results is a reorganization of SJ's cortical language networks such that the right STS now subserves multisensory integration of speech. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. The functional organization of trial-related activity in lexical processing after early left hemispheric brain lesions: An event-related fMRI study.

    Science.gov (United States)

    Fair, Damien A; Choi, Alexander H; Dosenbach, Yannic B L; Coalson, Rebecca S; Miezin, Francis M; Petersen, Steven E; Schlaggar, Bradley L

    2010-08-01

    Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon is accepted, its neurobiological mechanisms are not well characterized. In this paper we examined the functional neuroanatomy of lexical processing in 13 children/adolescents with perinatal left hemispheric damage. In contrast to many previous perinatal infarct fMRI studies, we used an event-related design, which allowed us to isolate trial-related activity and examine correct and error trials separately. Using both group and single subject analysis techniques we attempt to address several methodological factors that may contribute to some discrepancies in the perinatal lesion literature. These methodological factors include making direct statistical comparisons, using common stereotactic space, using both single subject and group analyses, and accounting for performance differences. Our group analysis, investigating correct trial-related activity (separately from error trials), showed very few statistical differences in the non-involved right hemisphere between patients and performance matched controls. The single subject analysis revealed atypical regional activation patterns in several patients; however, the location of these regions identified in individual patients often varied across subjects. These results are consistent with the idea that alternative functional organization of trial-related activity after left hemisphere lesions is in large part unique to the individual. In addition, reported differences between results obtained with event-related designs and blocked designs may suggest diverging organizing principles for sustained and trial-related activity after early childhood brain injuries. 2009 Elsevier Inc. All rights reserved.

  8. Mapping neuroplastic potential in brain-damaged patients.

    Science.gov (United States)

    Herbet, Guillaume; Maheu, Maxime; Costi, Emanuele; Lafargue, Gilles; Duffau, Hugues

    2016-03-01

    It is increasingly acknowledged that the brain is highly plastic. However, the anatomic factors governing the potential for neuroplasticity have hardly been investigated. To bridge this knowledge gap, we generated a probabilistic atlas of functional plasticity derived from both anatomic magnetic resonance imaging results and intraoperative mapping data on 231 patients having undergone surgery for diffuse, low-grade glioma. The atlas includes detailed level of confidence information and is supplemented with a series of comprehensive, connectivity-based cluster analyses. Our results show that cortical plasticity is generally high in the cortex (except in primary unimodal areas and in a small set of neural hubs) and rather low in connective tracts (especially associative and projection tracts). The atlas sheds new light on the topological organization of critical neural systems and may also be useful in predicting the likelihood of recovery (as a function of lesion topology) in various neuropathological conditions-a crucial factor in improving the care of brain-damaged patients. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. White-matter microstructure and language lateralization in left-handers: a whole-brain MRI analysis.

    Science.gov (United States)

    Perlaki, Gabor; Horvath, Reka; Orsi, Gergely; Aradi, Mihaly; Auer, Tibor; Varga, Eszter; Kantor, Gyongyi; Altbäcker, Anna; John, Flora; Doczi, Tamas; Komoly, Samuel; Kovacs, Norbert; Schwarcz, Attila; Janszky, Jozsef

    2013-08-01

    Most people are left-hemisphere dominant for language. However the neuroanatomy of language lateralization is not fully understood. By combining functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), we studied whether language lateralization is associated with cerebral white-matter (WM) microstructure. Sixteen healthy, left-handed women aged 20-25 were included in the study. Left-handers were targeted in order to increase the chances of involving subjects with atypical language lateralization. Language lateralization was determined by fMRI using a verbal fluency paradigm. Tract-based spatial statistics analysis of DTI data was applied to test for WM microstructural correlates of language lateralization across the whole brain. Fractional anisotropy and mean diffusivity were used as indicators of WM microstructural organization. Right-hemispheric language dominance was associated with reduced microstructural integrity of the left superior longitudinal fasciculus and left-sided parietal lobe WM. In left-handed women, reduced integrity of the left-sided language related tracts may be closely linked to the development of right hemispheric language dominance. Our results may offer new insights into language lateralization and structure-function relationships in human language system. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Increasing Left and Right Brain Communication to Improve Learning for Tenth Grade Students in a Public School

    Science.gov (United States)

    Richardson, Jennifer J.

    2011-01-01

    The purpose of this exploratory correlation research study was to determine if students who engaged in exercises designed to increase left and right brain hemisphere connections would score higher on identical tests than those who did not perform the exercises. Because the 2001 No Child Left Behind Act requires students to reach benchmarks of…

  11. Altered spontaneous brain activity in patients with acute spinal cord injury revealed by resting-state functional MRI.

    Directory of Open Access Journals (Sweden)

    Ling Zhu

    Full Text Available Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI. However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo analysis based on resting-state functional magnetic resonance imaging.A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity.Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores.Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as potential biomarkers for

  12. Prenatal Brain Damage in Preeclamptic Animal Model Induced by Gestational Nitric Oxide Synthase Inhibition

    Directory of Open Access Journals (Sweden)

    Begoña Pellicer

    2011-01-01

    Full Text Available Cerebral palsy is a major neonatal handicap with unknown aetiology. There is evidence that prenatal brain injury is the leading cause of CP. Severe placental pathology accounts for a high percentage of cases. Several factors predispose to prenatal brain damage but when and how they act is unclear. The aim of this paper was to determine if hypoxia during pregnancy leads to damage in fetal brain and to evaluate the localization of this injury. An animal model of chronic hypoxia produced by chronic administration of a nitric oxide synthase inhibitor (L-NAME was used to evaluate apoptotic activity in fetal brains and to localize the most sensitive areas. L-NAME reproduces a preeclamptic-like condition with increased blood pressure, proteinuria, growth restriction and intrauterine mortality. Apoptotic activity was increased in L-NAME brains and the most sensitive areas were the subventricular and pallidum zone. These results may explain the clinical features of CP. Further studies are needed.

  13. Phonological decisions require both the left and right supramarginal gyri.

    Science.gov (United States)

    Hartwigsen, Gesa; Baumgaertner, Annette; Price, Cathy J; Koehnke, Maria; Ulmer, Stephan; Siebner, Hartwig R

    2010-09-21

    Recent functional imaging studies demonstrated that both the left and right supramarginal gyri (SMG) are activated when healthy right-handed subjects make phonological word decisions. However, lesion studies typically report difficulties with phonological processing after left rather than right hemisphere damage. Here, we used a unique dual-site transcranial magnetic stimulation (TMS) approach to test whether the SMG in the right hemisphere contributes to modality-independent (i.e., auditory and visual) phonological decisions. To test task-specificity, we compared the effect of real or sham TMS during phonological, semantic, and perceptual decisions. To test laterality and anatomical specificity, we compared the effect of TMS over the left, right, or bilateral SMG and angular gyri. The accuracy and reaction times of phonological decisions were selectively disrupted relative to semantic and perceptual decisions when real TMS was applied over the left, right, or bilateral SMG. These effects were not observed for TMS over the angular gyri. A follow-up experiment indicated that the threshold-intensity for inducing a disruptive effect on phonological decisions was identical for unilateral TMS over the right or left SMG. Taken together, these findings provide converging evidence that the right SMG contributes to accurate and efficient phonological decisions in the healthy brain, with no evidence that the left and right SMG can compensate for one another during TMS. Our findings motivate detailed studies of phonological processing in patients with acute or long-term damage of the right SMG.

  14. Assessment of outcome after severe brain damage.

    Science.gov (United States)

    Jennett, B; Bond, M

    1975-03-01

    Persisting disability after brain damage usually comprises both mental and physical handicap. The mental component is often the more important in contributing to overall social disability. Lack of an objective scale leads to vague and over-optimistic estimates of outcome, which obscure the ultimate results of early management. A five-point scale is described--death, persistent vegetative state, severe disability, moderate disability, and good recovery. Duration as well as intensity of disability should be included in an index of ill-health; this applies particularly after head injury, because many disabled survivors are young.

  15. Immediate, but Not Delayed, Microsurgical Skull Reconstruction Exacerbates Brain Damage in Experimental Traumatic Brain Injury Model

    Science.gov (United States)

    Lau, Tsz; Kaneko, Yuji; van Loveren, Harry; Borlongan, Cesario V.

    2012-01-01

    Moderate to severe traumatic brain injury (TBI) often results in malformations to the skull. Aesthetic surgical maneuvers may offer normalized skull structure, but inconsistent surgical closure of the skull area accompanies TBI. We examined whether wound closure by replacement of skull flap and bone wax would allow aesthetic reconstruction of the TBI-induced skull damage without causing any detrimental effects to the cortical tissue. Adult male Sprague-Dawley rats were subjected to TBI using the controlled cortical impact (CCI) injury model. Immediately after the TBI surgery, animals were randomly assigned to skull flap replacement with or without bone wax or no bone reconstruction, then were euthanized at five days post-TBI for pathological analyses. The skull reconstruction provided normalized gross bone architecture, but 2,3,5-triphenyltetrazolium chloride and hematoxylin and eosin staining results revealed larger cortical damage in these animals compared to those that underwent no surgical maneuver at all. Brain swelling accompanied TBI, especially the severe model, that could have relieved the intracranial pressure in those animals with no skull reconstruction. In contrast, the immediate skull reconstruction produced an upregulation of the edema marker aquaporin-4 staining, which likely prevented the therapeutic benefits of brain swelling and resulted in larger cortical infarcts. Interestingly, TBI animals introduced to a delay in skull reconstruction (i.e., 2 days post-TBI) showed significantly reduced edema and infarcts compared to those exposed to immediate skull reconstruction. That immediate, but not delayed, skull reconstruction may exacerbate TBI-induced cortical tissue damage warrants a careful consideration of aesthetic repair of the skull in TBI. PMID:22438975

  16. Effects of enriched uranium on developing brain damage of neonatal rats

    International Nuclear Information System (INIS)

    Gu Guixiong; Zhu Shoupeng; Wang Liuyi; Yang Shuqin; Zhu Lingli

    2001-01-01

    The model of irradiation-induced brain damage in vivo was settled first of all. The micro-auto-radiographic tracing showed that when the rat's brain at postnatal day after lateral ventricle injection with enriched uranium 235 U the radionuclides were mainly accumulated in the nucleus. At the same time autoradiographic tracks appeared in the cytoplasm and interval between cells. The effects of cerebrum exposure to alpha irradiation by enriched uranium on somatic growth and neuro-behavior development of neonatal rats were examined by determination of multiple parameters. In the growth and development of the neonatal rat's cerebrum exposure to enriched uranium, the somatic growth such as body weight and brain weight increase was lower significantly. The data indicated that the neonatal wistar rats having cerebrum exposure to alpha irradiation by enriched uranium showed delayed growth and abnormal neuro-behavior. The changes of neuron specific enolase (NSE), interleukin-1 β (IL- β), superoxide dismutase (SOD), and endothelin (ET) in cerebellum, cerebral cortex, hippocampus, diencephalons of the rat brain after expose to alpha irradiation by enriched uranium were examined with radioimmunoassay. The results showed that SOD and ET can be elevated by the low dose irradiation of enriched uranium, and can be distinctly inhibited by the high dose. The data in view of biochemistry indicated firstly that alpha irradiation from enriched uranium on the developing brain damage of neonatal rats were of sensibility, fragility and compensation in nervous cells

  17. Effects of enriched uranium on developing brain damage of neonatal rats

    Energy Technology Data Exchange (ETDEWEB)

    Guixiong, Gu; Shoupeng, Zhu; Liuyi, Wang; Shuqin, Yang; Lingli, Zhu [Suzhou Medical College, Suzhou (China)

    2001-04-01

    The model of irradiation-induced brain damage in vivo was settled first of all. The micro-auto-radiographic tracing showed that when the rat's brain at postnatal day after lateral ventricle injection with enriched uranium {sup 235}U the radionuclides were mainly accumulated in the nucleus. At the same time autoradiographic tracks appeared in the cytoplasm and interval between cells. The effects of cerebrum exposure to alpha irradiation by enriched uranium on somatic growth and neuro-behavior development of neonatal rats were examined by determination of multiple parameters. In the growth and development of the neonatal rat's cerebrum exposure to enriched uranium, the somatic growth such as body weight and brain weight increase was lower significantly. The data indicated that the neonatal wistar rats having cerebrum exposure to alpha irradiation by enriched uranium showed delayed growth and abnormal neuro-behavior. The changes of neuron specific enolase (NSE), interleukin-1 {beta} (IL- {beta}), superoxide dismutase (SOD), and endothelin (ET) in cerebellum, cerebral cortex, hippocampus, diencephalons of the rat brain after expose to alpha irradiation by enriched uranium were examined with radioimmunoassay. The results showed that SOD and ET can be elevated by the low dose irradiation of enriched uranium, and can be distinctly inhibited by the high dose. The data in view of biochemistry indicated firstly that alpha irradiation from enriched uranium on the developing brain damage of neonatal rats were of sensibility, fragility and compensation in nervous cells.

  18. Early (N170/M170 face-sensitivity despite right lateral occipital brain damage in acquired prosopagnosia

    Directory of Open Access Journals (Sweden)

    Esther eAlonso Prieto

    2011-12-01

    Full Text Available Compared to objects, pictures of faces elicit a larger early electromagnetic response at occipito-temporal sites on the human scalp, with an onset of 130 ms and a peak at about 170 ms. This N170 face effect is larger in the right than the left hemisphere and has been associated with the early categorization of the stimulus as a face. Here we tested whether this effect can be observed in the absence of some of the visual areas showing a preferential response to faces as typically identified in neuroimaging. Event related potentials were recorded in response to faces, cars and their phase-scrambled versions in a well-known brain-damaged case of prosopagnosia (PS. Despite the patient’s right inferior occipital gyrus lesion encompassing the most posterior cortical area showing preferential response to faces (occipital face area, OFA, we identified an early face-sensitive component over the right occipito-temporal hemisphere of the patient that was identified as the N170. A second experiment supported this conclusion, showing the typical N170 increase of latency and amplitude in response to inverted faces. In contrast, there was no N170 in the left hemisphere, where PS has a lesion to the middle fusiform gyrus and shows no evidence of face-preferential response in neuroimaging (no left fusiform face area, or lFFA. These results were replicated by a magneto-encephalographic (MEG investigation of the patient, disclosing a M170 component only in the right hemisphere. These observations indicate that face preferential activation in the inferior occipital cortex is not necessary to elicit early visual responses associated with face perception (N170/M170 on the human scalp. These results further suggest that when the right inferior occipital cortex is damaged, the integrity of the middle fusiform gyrus and/or the superior temporal sulcus – two areas showing face preferential responses in the patient’s right hemisphere - might be necessary to generate

  19. A neurocorrective approach for MMPI-2 use for brain-damaged patients

    NARCIS (Netherlands)

    Balen, H.G.G. van; Mey, H.R.A. De; Limbeek, J. van

    1999-01-01

    Conventional administration of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2) to aetiologically distinct brain-damaged out-patients (n = 137) revealed significant indications of psychological maladjustment. An adjustment for the endorsement of aetiology-specific items pertaining to

  20. Left temporal and temporoparietal brain activity depends on depth of word encoding: a magnetoencephalographic study in healthy young subjects.

    Science.gov (United States)

    Walla, P; Hufnagl, B; Lindinger, G; Imhof, H; Deecke, L; Lang, W

    2001-03-01

    Using a 143-channel whole-head magnetoencephalograph (MEG) we recorded the temporal changes of brain activity from 26 healthy young subjects (14 females) related to shallow perceptual and deep semantic word encoding. During subsequent recognition tests, the subjects had to recognize the previously encoded words which were interspersed with new words. The resulting mean memory performances across all subjects clearly mirrored the different levels of encoding. The grand averaged event-related fields (ERFs) associated with perceptual and semantic word encoding differed significantly between 200 and 550 ms after stimulus onset mainly over left superior temporal and left superior parietal sensors. Semantic encoding elicited higher brain activity than perceptual encoding. Source localization procedures revealed that neural populations of the left temporal and temporoparietal brain areas showed different activity strengths across the whole group of subjects depending on depth of word encoding. We suggest that the higher brain activity associated with deep encoding as compared to shallow encoding was due to the involvement of more neural systems during the processing of visually presented words. Deep encoding required more energy than shallow encoding but for all that led to a better memory performance. Copyright 2001 Academic Press.

  1. Clinical Relevance of Discourse Characteristics after Right Hemisphere Brain Damage

    Science.gov (United States)

    Blake, Margaret Lehman

    2006-01-01

    Purpose: Discourse characteristics of adults with right hemisphere brain damage are similar to those reported for healthy older adults, prompting the question of whether changes are due to neurological lesions or normal aging processes. The clinical relevance of potential differences across groups was examined through ratings by speech-language…

  2. Alcohol consumption during adolescence: A link between mitochondrial damage and ethanol brain intoxication.

    Science.gov (United States)

    Tapia-Rojas, Cheril; Mira, Rodrigo G; Torres, Angie K; Jara, Claudia; Pérez, María José; Vergara, Erick H; Cerpa, Waldo; Quintanilla, Rodrigo A

    2017-12-01

    Adolescence is a period of multiple changes where social behaviors influence interpersonal-relations. Adolescents live new experiences, including alcohol consumption which has become an increasing health problem. The age of onset for consumption has declined in the last decades, and additionally, the adolescents now uptake greater amounts of alcohol per occasion. Alcohol consumption is a risk factor for accidents, mental illnesses or other pathologies, as well as for the appearance of addictions, including alcoholism. An interesting topic to study is the damage that alcohol induces on the central nervous system (CNS) in the young population. The brain undergoes substantial modifications during adolescence, making brain cells more vulnerable to the ethanol toxicity. Over the last years, the brain mitochondria have emerged as a cell organelle which is particularly susceptible to alcohol. Mitochondria suffer severe alterations which can be exacerbated if the amount of alcohol or the exposure time is increased. In this review, we focus on the changes that the adolescent brain undergoes after drinking, placing particular emphasis on mitochondrial damage and their consequences against brain function. Finally, we propose the mitochondria as an important mediator in alcohol toxicity and a potential therapeutic target to reduce or treat brain conditions associated with excessive alcohol consumption. © 2017 Wiley Periodicals, Inc.

  3. Updating impairments and the failure to explore new hypotheses following right brain damage.

    Science.gov (United States)

    Stöttinger, Elisabeth; Guay, Carolyn Louise; Danckert, James; Anderson, Britt

    2018-06-01

    We have shown recently that damage to the right hemisphere impairs the ability to update mental models when evidence suggests an old model is no longer appropriate. We argue that this deficit is generic in the sense that it crosses multiple cognitive and perceptual domains. Here, we examined the nature of this updating impairment to determine more precisely the underlying mechanisms. We had right (RBD, N = 12) and left brain damaged (LBD, N = 10) patients perform versions of our picture-morphing task in which pictures gradually morph from one object (e.g., shark) to another (e.g., plane). Performance was contrasted against two groups of healthy older controls, one matched on age (HCO-age-matched, N = 9) and another matched on general level of cognitive ability (HCO-cognitively-matched, N = 9). We replicated our earlier findings showing that RBD patients took longer than LBD patients and HCOs to report seeing the second object in a sequence of morphing images. The groups did not differ when exposed to a morphing sequence a second time, or when responding to ambiguous images outside the morphing context. This indicates that RBD patients have little difficulty alternating between known representations or labeling ambiguous images. Instead, the difficulty lies in generating alternate hypotheses for ambiguous information. Lesion overlay analyses, although speculative given the sample size, are consistent with our fMRI work in healthy individuals in implicating the anterior insular cortex as critical for updating mental models.

  4. Prevalence, and Intellectual Outcome of Unilateral Focal Cortical Brain Damage as a Function of Age, Sex and Aetiology

    Directory of Open Access Journals (Sweden)

    C. M. J. Braun

    2002-01-01

    Full Text Available Neurologists and neuropsychologists are aware that aging men are more at risk than women for brain damage, principally because of the well known male-predominant risk for cardiovascular disease and related cerebrovascular accidents. However, a disproportion in prevalence of brain damage between the sexes in childhood may be less suspected. Furthermore, sex-specific risk for other aetiologies of brain damage may be little known, whether in the pediatric or adult populations. Proposals of a sex difference in cognitive recovery from brain damage have also been controversial. Six hundred and thirty five “consecutive” cases with cortical focal lesions including cases of all ages and both sexes were reviewed. Aetiology of the lesion was determined for each case as was postlesion IQ. Risk was highly male prevalent in all age groups, with a predominance of cardiovascular aetiology explaining much of the adult male prevalence. However, several other aetiological categories were significantly male prevalent in juveniles (mitotic, traumatic, dysplasic and adults (mitotic, traumatic. There was no sex difference in outcome (i.e., postlesion IQ of these cortical brain lesions for the cohort as a whole, after statistical removal of the influence of lesion extent, aetiology and presence of epilepsy. Mechanisms potentially responsible for sex differences in prevalence, aetiology of brain damage, and recovery, are reviewed and discussed.

  5. Noninvasive brain stimulation for treatment of right- and left-handed poststroke aphasics.

    Science.gov (United States)

    Heiss, Wolf-Dieter; Hartmann, Alexander; Rubi-Fessen, Ilona; Anglade, Carole; Kracht, Lutz; Kessler, Josef; Weiduschat, Nora; Rommel, Thomas; Thiel, Alexander

    2013-01-01

    Accumulating evidence from single case studies, small case series and randomized controlled trials seems to suggest that inhibitory noninvasive brain stimulation (NIBS) over the contralesional inferior frontal gyrus (IFG) of right-handers in conjunction with speech and language therapy (SLT) improves recovery from poststroke aphasia. Application of inhibitory NIBS to improve recovery in left-handed patients has not yet been reported. A total of 29 right-handed subacute poststroke aphasics were randomized to receive either 10 sessions of SLT following 20 min of inhibitory repetitive transcranial magnetic stimulation (rTMS) over the contralesional IFG or 10 sessions of SLT following sham stimulation; 2 left-handers were treated according to the same protocol with real rTMS. Language activation patterns were assessed with positron emission tomography prior to and after the treatment; 95% confidence intervals for changes in language performance scores and the activated brain volumes in both hemispheres were derived from TMS- and sham-treated right-handed patients and compared to the same parameters in left-handers. Right-handed patients treated with rTMS showed better recovery of language function in global aphasia test scores (t test, p right-handers. In treated right-handers, a shift of activation to the ipsilesional hemisphere was observed, while sham-treated patients consolidated network activity in the contralesional hemisphere (repeated-measures ANOVA, p = 0.009). Both left-handed patients also improved, with 1 patient within the confidence limits of TMS-treated right-handers (23 points, 15.9-28.9) and the other patient within the limits of sham-treated subjects (8 points, 2.8-14.5). Both patients exhibited only a very small interhemispheric shift, much less than expected in TMS-treated right-handers, and more or less consolidated initially active networks in both hemispheres. Inhibitory rTMS over the nondominant IFG appears to be a safe and effective treatment

  6. [Neuroprotective effect of naloxone in brain damage caused by repeated febrile seizure].

    Science.gov (United States)

    Shan, Ying; Qin, Jiong; Chang, Xing-zhi; Yang, Zhi-xian

    2004-04-01

    The brain damage caused by repeated febrile seizure (FS) during developing age is harmful to the intellectual development of children. So how to decrease the related damage is a very important issue. The main purpose of the present study was to find out whether the non-specific opiate antagonist naloxone at low dose has the neuroprotective effect on seizure-induced brain damage. Warm water induced rat FS model was developed in this study. Forty-seven rats were randomly divided into two groups: normal control group (n = 10) and hyperthermic seizure groups (n = 37). The latter was further divided into FS control group (n = 13) and naloxone-treated group (n = 24). The dose of naloxone is different in two naloxone-treated groups (12/each group), in one group the dose was 1 mg/kg, in the other one 2 mg/kg. Seven febrile seizures were induced in each rat of hyperthermic seizure groups with the interval of 2 days. The rats were weighed and injected intraperitoneally with naloxone once the FS occurred in naloxone-treated group, while the rats of the other groups were injected with 0.9% sodium chloride. Latency, duration and grade of FS in different groups were observed and compared. HE-staining and the electron microscopy (EM) were used to detect the morphologic and ultrastructural changes of hippocampal neurons. In naloxone-treated group, the rats' FS duration and FS grade (5.02 +/- 0.63, 2.63 +/- 0.72) were significantly lower (t = 5.508, P seizure, it could lighten the brain damage resulted from repeated FS to some extent.

  7. Psychotherapy of the child with true brain damage.

    Science.gov (United States)

    Christ, Adolph E

    1978-07-01

    Psychotherapy of the child with true brain damage presents special problems and requires special approaches. Those who are cognitively primitive--at the sensorimotor or preoperational stage of development--require a crisis approach; those at the concrete or formal operational stage can be treated with a modified insight-oriented approach. Development of a therapeutic alliance, establishment of workable defense mechanisms, identification and clarification of unalterable cognitive defects and issues of termination unique to this special population are discussed.

  8. Driving safety after brain damage: follow-up of twenty-two patients with matched controls.

    Science.gov (United States)

    Katz, R T; Golden, R S; Butter, J; Tepper, D; Rothke, S; Holmes, J; Sahgal, V

    1990-02-01

    Driving after brain damage is a vital issue, considering the large number of patients who suffer from cerebrovascular and traumatic encephalopathy. The ability to operate a motor vehicle is an integral part of independence for most adults and so should be preserved whenever possible. The physician may estimate a patient's ability to drive safely based on his own examination, the evaluation of a neuropsychologist, and a comprehensive driving evaluation--testing, driving simulation, behind-the-wheel observation--with a driving specialist. This study sought to evaluate the ability of brain-damaged individuals to operate a motor vehicle safely at follow-up. These patients had been evaluated (by a physician, a neuropsychologist, and a driving specialist) and were judged able to operate a motor vehicle safely after their cognitive insult. Twenty-two brain-damaged patients who were evaluated at our institution were successfully followed up to five years (mean interval of 2.67 years). Patients were interviewed by telephone. Their driving safely was compared with a control group consisting of a close friend or spouse of each patient. Statistical analysis revealed no difference between patient and control groups in the type of driving, the incidence of speeding tickets, near accidents, and accidents, and the cost of vehicle damage when accidents occurred. The patient group was further divided into those who had, and those who had not experienced driving difficulties so that initial neuropsychologic testing could be compared. No significant differences were noted in any aspect of the neuropsychologic test battery. We conclude that selected brain-damaged patients who have passed a comprehensive driving assessment as outlined were as fit to drive as were their normal matched controls.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Resveratrol Protects the Brain of Obese Mice from Oxidative Damage

    Directory of Open Access Journals (Sweden)

    Shraddha D. Rege

    2013-01-01

    Full Text Available Resveratrol (3,5,4′-trihydroxy-trans-stilbene is a polyphenolic phytoalexin that exerts cardioprotective, neuroprotective, and antioxidant effects. Recently it has been shown that obesity is associated with an increase in cerebral oxidative stress levels, which may enhance neurodegeneration. The present study evaluates the neuroprotective action of resveratrol in brain of obese (ob/ob mice. Resveratrol was administered orally at the dose of 25 mg kg−1 body weight daily for three weeks to lean and obese mice. Resveratrol had no effect on body weight or blood glucose levels in obese mice. Lipid peroxides were significantly increased in brain of obese mice. The enzymatic antioxidants superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and nonenzymatic antioxidants tocopherol, ascorbic acid, and glutathione were decreased in obese mice brain. Administration of resveratrol decreased lipid peroxide levels and upregulated the antioxidant activities in obese mice brain. Our findings indicate a neuroprotective effect of resveratrol by preventing oxidative damage in brain tissue of obese mice.

  10. "Happy Days Are Here Again": A Left and Right Brain 4MAT Approach to Teaching Depression-Era Presidential Elections.

    Science.gov (United States)

    Cantu, D. Antonio

    2001-01-01

    Provides a lesson plan that focuses on the 1932, 1936, and 1940 presidential election campaigns. Illustrates the use of the left and right brain 4MAT teaching model that considers individual learning styles associated with right and left hemisphere dominance. Includes a bibliography and eight handouts. (CMK)

  11. Edaravone attenuates neuronal apoptosis in hypoxic-ischemic brain damage rat model via suppression of TRAIL signaling pathway.

    Science.gov (United States)

    Li, Chunyi; Mo, Zhihuai; Lei, Junjie; Li, Huiqing; Fu, Ruying; Huang, Yanxia; Luo, Shijian; Zhang, Lei

    2018-06-01

    Edaravone is a new type of oxygen free radical scavenger and able to attenuate various brain damage including hypoxic-ischemic brain damage (HIBD). This study was aimed at investigating the neuroprotective mechanism of edaravone in rat hypoxic-ischemic brain damage model and its correlation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway. 75 seven-day-old Sprague-Dawley neonatal rats were equally divided into three groups: sham-operated group (sham), HIBD group and HIBD rats injected with edaravone (HIBD + EDA) group. Neurological severity and space cognitive ability of rats in each group were evaluated using Longa neurological severity score and Morris water maze testing. TUNEL assay and flow cytometry were used to determine brain cell apoptosis. Western blot was used to estimate the expression level of death receptor-5 (DR5), Fas-associated protein with death domain (FADD), caspase 8, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax). In addition, immunofluorescence was performed to detect caspase 3. Edaravone reduced neurofunctional damage caused by HIBD and improved the cognitive capability of rats. The above experiment results suggested that edaravone could down-regulate the expression of active caspase 3 protein, thereby relieving neuronal apoptosis. Taken together, edaravone could attenuate neuronal apoptosis in rat hypoxic-ischemic brain damage model via suppression of TRAIL signaling pathway, which also suggested that edaravone might be an effective therapeutic strategy for HIBD clinical treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Altered brain network topology in left-behind children: A resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Zhao, Youjin; Du, Meimei; Gao, Xin; Xiao, Yuan; Shah, Chandan; Sun, Huaiqiang; Chen, Fuqin; Yang, Lili; Yan, Zhihan; Fu, Yuchuan; Lui, Su

    2016-12-01

    Whether a lack of direct parental care affects brain function in children is an important question, particularly in developing countries where hundreds of millions of children are left behind when their parents migrate for economic or political reasons. In this study, we investigated changes in the topological architectures of brain functional networks in left-behind children (LBC). Resting-state functional magnetic resonance imaging data were obtained from 26 LBC and 21 children living within their nuclear family (non-LBC). LBC showed a significant increase in the normalized characteristic path length (λ), suggesting a decrease in efficiency in information access, and altered nodal centralities in the fronto-limbic regions and motor and sensory systems. Moreover, a decreased nodal degree and the nodal betweenness of the right rectus gyrus were positively correlated with annual family income. The present study provides the first empirical evidence that suggests that a lack of direct parental care could affect brain functional development in children, particularly involving emotional networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Imaging study of brain damage from methanol intoxication of wine

    International Nuclear Information System (INIS)

    Yu Chengfu; Liu Yimin; Yang Yi; Shi Jing; Wu Yihang; Zhang Weisen; Mao Xiaofen; Luo Jing

    2006-01-01

    Objective: To investigate the imaging of CT and MRI in brain damage caused by methanol intoxication from false wine, and to study the relations between imaging manifestation and different degrees of the methanol intoxication. Method: Thirty nine cases with methanol intoxication from false wine were retrospectively reported, The latent period of these patients was 0-4 days, and the average latent period of these patients was 0.5 days, All cases were performed by serology examination, brain CT scan, and four cases performed by MRI scan after average 2.5 days (range, 1-6 days) the onset of methanol intoxication. Results: Six cases showed hyperintense signals in bilateral putamen, two cases also showed hyperintense signals in biolateral subcortex white substance regions. Four cases showed hyperintense signals in unilateral internal capsule. One case showed hyperintense changess in subcortex white substance regions. Our study showed the positive correlation between CT features and the amount of methanol and stage of clinic manifestation(χ 2 =4.232, P 2 =0.001, P>0.05). Conclusions: MRI was better than CT in finding early brain damage caused by methanol intoxication from false wine. The characteristic finding changes of the patients was showed mainly in in bilateral putamen, Prognosis for the patients combined with subcortex white substance lesion wasn't hopeful. (authors)

  14. Vision restoration after brain and retina damage: the "residual vision activation theory".

    Science.gov (United States)

    Sabel, Bernhard A; Henrich-Noack, Petra; Fedorov, Anton; Gall, Carolin

    2011-01-01

    Vision loss after retinal or cerebral visual injury (CVI) was long considered to be irreversible. However, there is considerable potential for vision restoration and recovery even in adulthood. Here, we propose the "residual vision activation theory" of how visual functions can be reactivated and restored. CVI is usually not complete, but some structures are typically spared by the damage. They include (i) areas of partial damage at the visual field border, (ii) "islands" of surviving tissue inside the blind field, (iii) extrastriate pathways unaffected by the damage, and (iv) downstream, higher-level neuronal networks. However, residual structures have a triple handicap to be fully functional: (i) fewer neurons, (ii) lack of sufficient attentional resources because of the dominant intact hemisphere caused by excitation/inhibition dysbalance, and (iii) disturbance in their temporal processing. Because of this resulting activation loss, residual structures are unable to contribute much to everyday vision, and their "non-use" further impairs synaptic strength. However, residual structures can be reactivated by engaging them in repetitive stimulation by different means: (i) visual experience, (ii) visual training, or (iii) noninvasive electrical brain current stimulation. These methods lead to strengthening of synaptic transmission and synchronization of partially damaged structures (within-systems plasticity) and downstream neuronal networks (network plasticity). Just as in normal perceptual learning, synaptic plasticity can improve vision and lead to vision restoration. This can be induced at any time after the lesion, at all ages and in all types of visual field impairments after retinal or brain damage (stroke, neurotrauma, glaucoma, amblyopia, age-related macular degeneration). If and to what extent vision restoration can be achieved is a function of the amount of residual tissue and its activation state. However, sustained improvements require repetitive

  15. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age.

    Science.gov (United States)

    Sutherland, Greg T; Sheedy, Donna; Kril, Jillian J

    2014-01-01

    The New South Wales Tissue Resource Centre at the University of Sydney, Australia, is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency, and alcoholic neurodegeneration. The latter is also referred to as alcohol-related brain damage (ARBD). The study of postmortem brain tissue is ideally suited to determining the effects of long-term alcohol abuse, but it also makes an important contribution to understanding pathogenesis across the spectrum of alcohol misuse disorders and potentially other neurodegenerative diseases. Tissue from the bank has contributed to 330 peer-reviewed journal articles including 120 related to alcohol research. Using the results of these articles, this review chronicles advances in alcohol-related brain research since 2003, the so-called genomic age. In particular, it concentrates on transcriptomic approaches to the pathogenesis of ARBD and builds on earlier reviews of structural changes (Harper et al. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:951) and proteomics (Matsumoto et al. Expert Rev Proteomics 2007;4:539). Copyright © 2013 by the Research Society on Alcoholism.

  16. Conversation after Right Hemisphere Brain Damage: Motivations for Applying Conversation Analysis

    Science.gov (United States)

    Barnes, Scott; Armstrong, Elizabeth

    2010-01-01

    Despite the well documented pragmatic deficits that can arise subsequent to Right Hemisphere Brain Damage (RHBD), few researchers have directly studied everyday conversations involving people with RHBD. In recent years, researchers have begun applying Conversation Analysis (CA) to the everyday talk of people with aphasia. This research programme…

  17. High-definition fiber tracking for assessment of neurological deficit in a case of traumatic brain injury: finding, visualizing, and interpreting small sites of damage.

    Science.gov (United States)

    Shin, Samuel S; Verstynen, Timothy; Pathak, Sudhir; Jarbo, Kevin; Hricik, Allison J; Maserati, Megan; Beers, Sue R; Puccio, Ava M; Boada, Fernando E; Okonkwo, David O; Schneider, Walter

    2012-05-01

    For patients with traumatic brain injury (TBI), current clinical imaging methods generally do not provide highly detailed information about the location of axonal injury, severity of injury, or expected recovery. In a case of severe TBI, the authors applied a novel high-definition fiber tracking (HDFT) to directly visualize and quantify the degree of axonal fiber damage and predict functional deficits due to traumatic axonal injury and loss of cortical projections. This 32-year-old man sustained a severe TBI. Computed tomography and MRI revealed an area of hemorrhage in the basal ganglia with mass effect, but no specific information on the location of axonal injury could be obtained from these studies. Examinations of the patient at Week 3 and Week 8 after TBI revealed motor weaknesses of the left extremities. Four months postinjury, 257-direction diffusion spectrum imaging and HDFT analysis was performed to evaluate the degree of axonal damage in the motor pathway and quantify asymmetries in the left and right axonal pathways. High-definition fiber tracking was used to follow corticospinal and corona radiata pathways from the cortical surface to the midbrain and quantify projections from motor areas. Axonal damage was then localized by assessing the number of descending fibers at the level of the cortex, internal capsule, and midbrain. The motor deficit apparent in the clinical examinations correlated with the axonal losses visualized using HDFT. Fiber loss estimates at 4 months postinjury accurately predicted the nature of the motor deficits (severe, focal left-hand weakness) when other standard clinical imaging modalities did not. A repeat scan at 10 months postinjury, when edema and hemorrhage had receded, replicated the fiber loss. Using HDFT, the authors accurately identified the presence and location of damage to the underlying white matter in this patient with TBI. Detailed information of injury provided by this novel technique holds future potential for

  18. Study on developing brain damage of neonatal rats induced by enriched uranium

    International Nuclear Information System (INIS)

    Gu Guixiong; Zhu Shoupeng; Yang Shuqin

    2000-01-01

    Objective: The injurious effects of enriched uranium 235 U on developing brain of neonatal Wistar pure bred rats were studied. Methods: The model of irradiation induced brain damage in vivo was settled. The effects of cerebrum exposure by 235 U on somatic growth and neuro-behavior development of neonatal rats were examined by thirteen index determination of multiple parameters. The dynamic retention of autoradiographic tracks of 235 U in cells of developing brain was observed. The changes of NSE, IL-1β, SOD, and ET in cerebral cortex, hippocampus, diencephalon, cerebellum after expose to 235 U were examined with radioimmunoassay. Results: The somatic growth such as increase of body weight and brain weight was lower significantly. The retardation of development was found such as eye opening, sensuous function as auditory startle, movement and coordination function and activity as swimming, physiological reflexes as negative geotaxis, surface righting, grasping reflex suspension and the tendency behavior. The data showed delayed growth and abnormal neuro-behavior. The micro-autoradiographic tracing showed that the tracks of 235 U were mainly accumulated in the nucleus of developing brain. At the same time only few tracks appeared in the cytoplasm and interval between cells. Experimental study showed that when the dose of 235 U irradiation was increased, the level of NSE was decreased and the IL-1β was increased. However, the results indicated that SOD and ET can be elevated by the low dose irradiation of 235 U, and can be inhibited by the high dose. Conclusion: The behavior of internal irradiation from 235 U on the developing brain damage of neonatal rats were of sensibility and compensation in nervous cells

  19. Functional asymmetry between the left and right human fusiform gyrus explored through electrical brain stimulation.

    Science.gov (United States)

    Rangarajan, Vinitha; Parvizi, Josef

    2016-03-01

    The ventral temporal cortex (VTC) contains several areas with selective responses to words, numbers, faces, and objects as demonstrated by numerous human and primate imaging and electrophysiological studies. Our recent work using electrocorticography (ECoG) confirmed the presence of face-selective neuronal populations in the human fusiform gyrus (FG) in patients implanted with intracranial electrodes in either the left or right hemisphere. Electrical brain stimulation (EBS) disrupted the conscious perception of faces only when it was delivered in the right, but not left, FG. In contrast to our previous findings, here we report both negative and positive EBS effects in right and left FG, respectively. The presence of right hemisphere language dominance in the first, and strong left-handedness and poor language processing performance in the second case, provide indirect clues about the functional architecture of the human VTC in relation to hemispheric asymmetries in language processing and handedness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Propagation of damage in the rat brain following sarin exposure: Differential progression of early processes

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, Shlomi; Egoz, Inbal; Brandeis, Rachel; Chapman, Shira; Bloch-Shilderman, Eugenia; Grauer, Ettie, E-mail: ettieg@iibr.gov.il

    2016-11-01

    Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic warfare agent. Following the overt, dose-dependent signs (e.g. tremor, hyper secretion, seizures, respiratory depression and eventually death), brain damage is often reported. The goal of the present study was to characterize the early histopathological and biochemical events leading to this damage. Rats were exposed to 1LD50 of sarin (80 μg/kg, i.m.). Brains were removed at 1, 2, 6, 24 and 48 h and processed for analysis. Results showed that TSPO (translocator protein) mRNA increased at 6 h post exposure while TSPO receptor density increased only at 24 h. In all brain regions tested, bax mRNA decreased 1 h post exposure followed by an increase 24 h later, with only minor increase in bcl2 mRNA. At this time point a decrease was seen in both anti-apoptotic protein Bcl2 and pro-apoptotic Bax, followed by a time and region specific increase in Bax. An immediate elevation in ERK1/2 activity with no change in JNK may indicate an endogenous “first response” mechanism used to attenuate the forthcoming apoptosis. The time dependent increase in the severity of brain damage included an early bi-phasic activation of astrocytes, a sharp decrease in intact neuronal cells, a time dependent reduction in MAP2 and up to 15% of apoptosis. Thus, neuronal death is mostly due to necrosis and severe astrocytosis. The data suggests that timing of possible treatments should be determined by early events following exposure. For example, the biphasic changes in astrocytes activity indicate a possible beneficial effects of delayed anti-inflammatory intervention. - Highlights: • The severity of brain damage post 1LD50 sarin exposure is time dependent. • Sarin induce differential progression of early processes in the rat brain. • Potential treatments should be timed according to early events following exposure. • The biphasic astrocytes activity suggests a delay in anti-inflammatory intervention.

  1. Propagation of damage in the rat brain following sarin exposure: Differential progression of early processes

    International Nuclear Information System (INIS)

    Lazar, Shlomi; Egoz, Inbal; Brandeis, Rachel; Chapman, Shira; Bloch-Shilderman, Eugenia; Grauer, Ettie

    2016-01-01

    Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic warfare agent. Following the overt, dose-dependent signs (e.g. tremor, hyper secretion, seizures, respiratory depression and eventually death), brain damage is often reported. The goal of the present study was to characterize the early histopathological and biochemical events leading to this damage. Rats were exposed to 1LD50 of sarin (80 μg/kg, i.m.). Brains were removed at 1, 2, 6, 24 and 48 h and processed for analysis. Results showed that TSPO (translocator protein) mRNA increased at 6 h post exposure while TSPO receptor density increased only at 24 h. In all brain regions tested, bax mRNA decreased 1 h post exposure followed by an increase 24 h later, with only minor increase in bcl2 mRNA. At this time point a decrease was seen in both anti-apoptotic protein Bcl2 and pro-apoptotic Bax, followed by a time and region specific increase in Bax. An immediate elevation in ERK1/2 activity with no change in JNK may indicate an endogenous “first response” mechanism used to attenuate the forthcoming apoptosis. The time dependent increase in the severity of brain damage included an early bi-phasic activation of astrocytes, a sharp decrease in intact neuronal cells, a time dependent reduction in MAP2 and up to 15% of apoptosis. Thus, neuronal death is mostly due to necrosis and severe astrocytosis. The data suggests that timing of possible treatments should be determined by early events following exposure. For example, the biphasic changes in astrocytes activity indicate a possible beneficial effects of delayed anti-inflammatory intervention. - Highlights: • The severity of brain damage post 1LD50 sarin exposure is time dependent. • Sarin induce differential progression of early processes in the rat brain. • Potential treatments should be timed according to early events following exposure. • The biphasic astrocytes activity suggests a delay in anti-inflammatory intervention.

  2. Edaravone Protects against Methylglyoxal-Induced Barrier Damage in Human Brain Endothelial Cells

    Science.gov (United States)

    Tóth, Andrea E.; Walter, Fruzsina R.; Bocsik, Alexandra; Sántha, Petra; Veszelka, Szilvia; Nagy, Lajos; Puskás, László G.; Couraud, Pierre-Olivier; Takata, Fuyuko; Dohgu, Shinya; Kataoka, Yasufumi; Deli, Mária A.

    2014-01-01

    Background Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line) treated with methylglyoxal. Methodology Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging. Principal Findings Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM) provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound. Conclusion These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases. PMID:25033388

  3. Edaravone protects against methylglyoxal-induced barrier damage in human brain endothelial cells.

    Directory of Open Access Journals (Sweden)

    Andrea E Tóth

    Full Text Available Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line treated with methylglyoxal.Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging.Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound.These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases.

  4. Contribution Of Brain Tissue Oxidative Damage In Hypothyroidism-associated Learning and Memory Impairments

    Directory of Open Access Journals (Sweden)

    Yousef Baghcheghi

    2017-01-01

    Full Text Available The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments.

  5. Inhibition of myeloperoxidase oxidant production by N-acetyl lysyltyrosylcysteine amide reduces brain damage in a murine model of stroke.

    Science.gov (United States)

    Yu, Guoliang; Liang, Ye; Huang, Ziming; Jones, Deron W; Pritchard, Kirkwood A; Zhang, Hao

    2016-05-24

    Oxidative stress plays an important and causal role in the mechanisms by which ischemia/reperfusion (I/R) injury increases brain damage after stroke. Accordingly, reducing oxidative stress has been proposed as a therapeutic strategy for limiting damage in the brain after stroke. Myeloperoxidase (MPO) is a highly potent oxidative enzyme that is capable of inducing both oxidative and nitrosative stress in vivo. To determine if and the extent to which MPO-generated oxidants contribute to brain I/R injury, we treated mice subjected to middle cerebral artery occlusion (MCAO) with N-acetyl lysyltyrosylcysteine amide (KYC), a novel, specific and non-toxic inhibitor of MPO. Behavioral testing, ischemic damage, blood-brain-barrier disruption, apoptosis, neutrophils infiltration, microglia/macrophage activation, and MPO oxidation were analyzed within a 7-day period after MCAO. Our studies show that KYC treatment significantly reduces neurological severity scores, infarct size, IgG extravasation, neutrophil infiltration, loss of neurons, apoptosis, and microglia/macrophage activation in the brains of MCAO mice. Immunofluorescence studies show that KYC treatment reduces the formation of chlorotyrosine (ClTyr), a fingerprint biomarker of MPO oxidation, nitrotyrosine (NO2Tyr), and 4-hydroxynonenal (4HNE) in MCAO mice. All oxidative products colocalized with MPO in the infarcted brains, suggesting that MPO-generated oxidants are involved in forming the oxidative products. MPO-generated oxidants play detrimental roles in causing brain damage after stroke which is effectively reduced by KYC.

  6. Neuroprotective effects of NAP against excitotoxic brain damage in the newborn mice: implications for cerebral palsy.

    Science.gov (United States)

    Sokolowska, P; Passemard, S; Mok, A; Schwendimann, L; Gozes, I; Gressens, P

    2011-01-26

    Activity-dependent neuroprotective protein (ADNP) was shown to be essential for embryogenesis and brain development while NAP, an active motif of ADNP, is neuroprotective in a broad range of neurodegenerative disorders. In the present study, we examined the protective potential of ADNP/NAP in a mouse model of excitotoxic brain lesion mimicking brain damage associated with cerebral palsy. We demonstrated that NAP had a potent neuroprotective effect against ibotenate-induced excitotoxic damage in the cortical plate and the white matter of P5 mice, and moderate against brain lesions of P0 mice. In contrast, endogenous ADNP appears not to be involved in the response to excitotoxic challenge in the studied model. Our findings further show that NAP reduced the number of apoptotic neurons through activation of PI-3K/Akt pathway in the cortical plate or both PI-3K/Akt and MAPK/MEK1 kinases in the white matter. In addition, NAP prevented ibotenate-induced loss of pre-oligodendrocytes without affecting the number of astrocytes or activated microglia around the site of injection. These findings indicate that protective actions of NAP are mediated by triggering transduction pathways that are crucial for neuronal and oligodendroglial survival, thus, NAP might be a promising therapeutic agent for treating developing brain damage. © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Sequestosome 1 Deficiency Delays, but Does Not Prevent Brain Damage Formation Following Acute Brain Injury in Adult Mice

    Directory of Open Access Journals (Sweden)

    Anne Sebastiani

    2017-12-01

    Full Text Available Neuronal degeneration following traumatic brain injury (TBI leads to intracellular accumulation of dysfunctional proteins and organelles. Autophagy may serve to facilitate degradation to overcome protein debris load and therefore be an important pro-survival factor. On the contrary, clearing may serve as pro-death factor by removal of essential or required proteins involved in pro-survival cascades. Sequestosome 1 (SQSTM1/p62 is a main regulator of the autophagic pathway that directs ubiquinated cargoes to autophagosomes for degradation. We show that SQSTM1 protein levels are suppressed 24 h and by trend 5 days after trauma. In line with these data the expression of Sqstm1 mRNA is reduced by 30% at day 3 after and stays depressed until day 5 after injury, indicating an impaired autophagy post controlled cortical impact (CCI. To determine the potential role of SQSTM1-dependent autophagy after TBI, mice lacking SQSTM1 (SQSTM1-KO and littermates (WT were subjected to CCI and brain lesion volume was determined 24 h and 5 days after insult. Lesion volume is 17% smaller at 24 h and immunoblotting reveals a reduction by trend of cell death marker αII-spectrin cleavage. But there is no effect on brain damage and cell death markers 5 days after trauma in SQSTM1-KO compared with WT. In line with these data neurofunctional testing does not reveal any differences. Additionally, gene expression of inflammatory (Tnf-α, iNos, Il-6, and Il-1β and protein degradation markers (Bag1 and Bag3 were quantified by real-time PCR. Protein levels of LC3, BAG1, and BAG3 were analyzed by immunoblotting. Real-time PCR reveals minor changes in inflammatory marker gene expression and reduced Bag3 mRNA levels 5 days after trauma. Immunoblotting of autophagy markers LC3, BAG1, and BAG3 does not show any difference between KO and WT 24 h and 5 days after TBI. In conclusion, genetic ablation of SQSTM1-dependent autophagy leads to a delay but shows no persistent effect on post

  8. Equivalent brain SPECT perfusion changes underlying therapeutic efficiency in pharmacoresistant depression using either high-frequency left or low-frequency right prefrontal rTMS.

    Science.gov (United States)

    Richieri, Raphaëlle; Boyer, Laurent; Padovani, Romain; Adida, Marc; Colavolpe, Cécile; Mundler, Olivier; Lançon, Christophe; Guedj, Eric

    2012-12-03

    Functional neuroimaging studies have suggested similar mechanisms underlying antidepressant effects of distinct therapeutics. This study aimed to determine and compare functional brain patterns underlying the antidepressant response of 2 distinct protocols of repetitive transcranial magnetic stimulation (rTMS). 99mTc-ECD SPECT was performed before and after rTMS of dorsolateral prefrontal cortex in 61 drug-resistant right-handed patients with major depression, using high frequency (10Hz) left-side stimulation in 33 patients, and low frequency (1Hz) right-side stimulation in 28 patients. Efficiency of rTMS response was defined as at least 50% reduction of the baseline Beck Depression Inventory score. We compared the whole-brain voxel-based brain SPECT changes in perfusion after rTMS, between responders and non-responders in the whole sample (pleft- and right-stimulation. Before rTMS, the left- and right-prefrontal stimulation groups did not differ from clinical data and brain SPECT perfusion. rTMS efficiency (evaluated on % of responders) was statistically equivalent in the two groups of patients. In the whole-group of responder patients, a perfusion decrease was found after rTMS, in comparison to non-responders, within the left perirhinal cortex (BA35, BA36). This result was secondarily confirmed separately in the two subgroups, i.e. after either left stimulation (p=0.017) or right stimulation (pbrain functional changes associated to antidepressive efficiency, consisting to a remote brain limbic activity decrease within the left perirhinal cortex. However, these results will have to be confirmed in a double-blind randomized trial using a sham control group. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Perspectives on Treatment for Communication Deficits Associated with Right Hemisphere Brain Damage

    Science.gov (United States)

    Blake, Margaret Lehman

    2007-01-01

    Purpose: To describe the current treatment research for communication (prosodic, discourse, and pragmatic) deficits associated with right hemisphere brain damage and to provide suggestions for treatment selection given the paucity of evidence specifically for this population. Method: The discussion covers (a) clinical decision processes and…

  10. Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain.

    Science.gov (United States)

    Al-Mashhadi, Sufana; Simpson, Julie E; Heath, Paul R; Dickman, Mark; Forster, Gillian; Matthews, Fiona E; Brayne, Carol; Ince, Paul G; Wharton, Stephen B

    2015-09-01

    White matter lesions (WML) are common in brain aging and are associated with dementia. We aimed to investigate whether oxidative DNA damage and occur in WML and in apparently normal white matter in cases with lesions. Tissue from WML and control white matter from brains with lesions (controls lesional) and without lesions (controls non-lesional) were obtained, using post-mortem magnetic resonance imaging-guided sampling, from the Medical Research Council Cognitive Function and Ageing Study. Oxidative damage was assessed by immunohistochemistry to 8-hydroxy-2'-deoxoguanosine (8-OHdG) and Western blotting for malondialdehyde. DNA response was assessed by phosphorylated histone H2AX (γH2AX), p53, senescence markers and by quantitative Reverse transcription polymerase chain reaction (RT-PCR) panel for candidate DNA damage-associated genes. 8-OHdG was expressed in glia and endothelium, with increased expression in both WML and controls lesional compared with controls non-lesional (P glial dysfunction. Their expression in apparently normal white matter in cases with WML suggests that white matter dysfunction is not restricted to lesions. The role of this field-effect lesion pathogenesis and cognitive impairment are areas to be defined. © 2014 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  11. Paradoxical false memory for objects after brain damage.

    Science.gov (United States)

    McTighe, Stephanie M; Cowell, Rosemary A; Winters, Boyer D; Bussey, Timothy J; Saksida, Lisa M

    2010-12-03

    Poor memory after brain damage is usually considered to be a result of information being lost or rendered inaccessible. It is assumed that such memory impairment must be due to the incorrect interpretation of previously encountered information as being novel. In object recognition memory experiments with rats, we found that memory impairment can take the opposite form: a tendency to treat novel experiences as familiar. This impairment could be rescued with the use of a visual-restriction procedure that reduces interference. Such a pattern of data can be explained in terms of a recent representational-hierarchical view of cognition.

  12. The Creative Brain.

    Science.gov (United States)

    Herrmann, Ned

    1982-01-01

    Outlines the differences between left-brain and right-brain functioning and between left-brain and right-brain dominant individuals, and concludes that creativity uses both halves of the brain. Discusses how both students and curriculum can become more "whole-brained." (Author/JM)

  13. A combination of experimental measurement, constitutive damage model, and diffusion tensor imaging to characterize the mechanical properties of the human brain.

    Science.gov (United States)

    Karimi, Alireza; Rahmati, Seyed Mohammadali; Razaghi, Reza

    2017-09-01

    Understanding the mechanical properties of the human brain is deemed important as it may subject to various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the frontal lobe of the human brain. The constrained nonlinear minimization method was employed to identify the brain coefficients according to the axial and transversal compressive data. The pseudo-elastic damage model data was also well compared with that of the experimental data and it not only up to the primary loading but also the discontinuous softening could well address the mechanical behavior of the brain tissue.

  14. Pathological and MRI study on experimental heroin-induced brain damage in rats

    International Nuclear Information System (INIS)

    Long Yu; Kong Xiangquan; Xu Haibo; Liu Dingxi; Yuan Ren; Yu Qun; Xiong Yin; Deng Xianbo

    2005-01-01

    Objective: To study the pathological characteristics of the heroin-induced brain damage in rats, and to assess the diagnostic value of MRI. Methods: A total of 40 adult Wistar rats were studied, 32 rats were used for injecting heroin as heroin group and 8 were used for injecting saline as control group. The heroin dependent rat model was established by administering heroin (ip) in the ascending dosage schedule (0.5 mg/kg), three times a day (at 8:00, 12:00, and 18:00). The control group was established by the same way by injection with saline. The withdrawal scores were evaluated with imp roved criterion in order to estimate the degree of addiction after administering naloxone. Based on the rat model of heroin dependence, the rat model of heroin-induced brain damage was established by the same way with increasing heroin dosage everyday. Two groups were examined by using MRI, light microscope, and electron microscope, respectively in different heroin accumulated dosage (918, 1580, 2686, 3064, 4336, and 4336 mg/kg withdrawal after 2 weeks). Results: There was statistically significant difference (t=9.737, P<0.01) of the withdrawal scores between the heroin dependent group and the saline group (23.0 ± 4.4 and 1.4 ± 0.5, respectively). It suggested that the heroin dependent rat model be established successfully. In different accumulated dosage ( from 1580 mg/kg to 4336 mg/kg), there were degeneration and death of nerve cells in cerebrum and cerebellum of heroin intoxicated rats, and it suggested that the rat model of heroin-induced brain damage was established successfully. The light microscope and electron microscope features of heroin-induced brain damage in rats included: (1) The nerve cells of cerebral cortex degenerated and died. According to the heroin accumulated dosage, there were statistically significant difference of the nerve cell deaths between 4336 mg/kg group and 1580 mg/kg group or control group (P=0.024 and P=0.032, respectively); (2) The main

  15. Choosing words: left hemisphere, right hemisphere, or both? Perspective on the lateralization of word retrieval

    Science.gov (United States)

    Ries, Stephanie K.; Dronkers, Nina F.; Knight, Robert T.

    2015-01-01

    Language is considered to be one of the most lateralized human brain functions. Left hemisphere dominance for language has been consistently confirmed in clinical and experimental settings and constitutes one of the main axioms of neurology and neuroscience. However, functional neuroimaging studies are finding that the right hemisphere also plays a role in diverse language functions. Critically, the right hemisphere may also compensate for the loss or degradation of language functions following extensive stroke-induced damage to the left hemisphere. Here, we review studies that focus on our ability to choose words as we speak. Although fluidly performed in individuals with intact language, this process is routinely compromised in aphasic patients. We suggest that parceling word retrieval into its sub-processes—lexical activation and lexical selection—and examining which of these can be compensated for after left hemisphere stroke can advance the understanding of the lateralization of word retrieval in speech production. In particular, the domain-general nature of the brain regions associated with each process may be a helpful indicator of the right hemisphere's propensity for compensation. PMID:26766393

  16. Temporal order processing of syllables in the left parietal lobe.

    Science.gov (United States)

    Moser, Dana; Baker, Julie M; Sanchez, Carmen E; Rorden, Chris; Fridriksson, Julius

    2009-10-07

    Speech processing requires the temporal parsing of syllable order. Individuals suffering from posterior left hemisphere brain injury often exhibit temporal processing deficits as well as language deficits. Although the right posterior inferior parietal lobe has been implicated in temporal order judgments (TOJs) of visual information, there is limited evidence to support the role of the left inferior parietal lobe (IPL) in processing syllable order. The purpose of this study was to examine whether the left inferior parietal lobe is recruited during temporal order judgments of speech stimuli. Functional magnetic resonance imaging data were collected on 14 normal participants while they completed the following forced-choice tasks: (1) syllable order of multisyllabic pseudowords, (2) syllable identification of single syllables, and (3) gender identification of both multisyllabic and monosyllabic speech stimuli. Results revealed increased neural recruitment in the left inferior parietal lobe when participants made judgments about syllable order compared with both syllable identification and gender identification. These findings suggest that the left inferior parietal lobe plays an important role in processing syllable order and support the hypothesized role of this region as an interface between auditory speech and the articulatory code. Furthermore, a breakdown in this interface may explain some components of the speech deficits observed after posterior damage to the left hemisphere.

  17. "Opening an emotional dimension in me": changes in emotional reactivity and emotion regulation in a case of executive impairment after left fronto-parietal damage.

    Science.gov (United States)

    Salas, Christian E; Radovic, Darinka; Yuen, Kenneth S L; Yeates, Giles N; Castro, O; Turnbull, Oliver H

    2014-01-01

    Dysexecutive impairment is a common problem after brain injury, particularly after damage to the lateral surface of the frontal lobes. There is a large literature describing the cognitive deficits associated with executive impairment after dorsolateral damage; however, little is known about its impact on emotional functioning. This case study describes changes in a 72-year-old man (Professor F) who became markedly dysexecutive after a left fron-to-parietal stroke. Professor F's case is remarkable in that, despite exhibiting typical executive impairments, abstraction and working memory capacities were spared. Such preservation of insight-related capacities allowed him to offer a detailed account of his emotional changes. Quantitative and qualitative tools were used to explore changes in several well-known emotional processes. The results suggest that Professor F's two main emotional changes were in the domain of emotional reactivity (increased experience of both positive and negative emotions) and emotion regulation (down-regulation of sadness). Professor F related both changes to difficulties in his thinking process, especially a difficulty generating and manipulating thoughts during moments of negative arousal. These results are discussed in relation to the literature on executive function and emotion regulation. The relevance of these findings for neuropsychological rehabilitation and for the debate on the neural basis of emotional processes is addressed.

  18. Different visual exploration of tool-related gestures in left hemisphere brain damaged patients is associated with poor gestural imitation.

    Science.gov (United States)

    Vanbellingen, Tim; Schumacher, Rahel; Eggenberger, Noëmi; Hopfner, Simone; Cazzoli, Dario; Preisig, Basil C; Bertschi, Manuel; Nyffeler, Thomas; Gutbrod, Klemens; Bassetti, Claudio L; Bohlhalter, Stephan; Müri, René M

    2015-05-01

    According to the direct matching hypothesis, perceived movements automatically activate existing motor components through matching of the perceived gesture and its execution. The aim of the present study was to test the direct matching hypothesis by assessing whether visual exploration behavior correlate with deficits in gestural imitation in left hemisphere damaged (LHD) patients. Eighteen LHD patients and twenty healthy control subjects took part in the study. Gesture imitation performance was measured by the test for upper limb apraxia (TULIA). Visual exploration behavior was measured by an infrared eye-tracking system. Short videos including forty gestures (20 meaningless and 20 communicative gestures) were presented. Cumulative fixation duration was measured in different regions of interest (ROIs), namely the face, the gesturing hand, the body, and the surrounding environment. Compared to healthy subjects, patients fixated significantly less the ROIs comprising the face and the gesturing hand during the exploration of emblematic and tool-related gestures. Moreover, visual exploration of tool-related gestures significantly correlated with tool-related imitation as measured by TULIA in LHD patients. Patients and controls did not differ in the visual exploration of meaningless gestures, and no significant relationships were found between visual exploration behavior and the imitation of emblematic and meaningless gestures in TULIA. The present study thus suggests that altered visual exploration may lead to disturbed imitation of tool related gestures, however not of emblematic and meaningless gestures. Consequently, our findings partially support the direct matching hypothesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Losing the left side of the world: rightward shift in human spatial attention with sleep onset.

    Science.gov (United States)

    Bareham, Corinne A; Manly, Tom; Pustovaya, Olga V; Scott, Sophie K; Bekinschtein, Tristan A

    2014-05-28

    Unilateral brain damage can lead to a striking deficit in awareness of stimuli on one side of space called Spatial Neglect. Patient studies show that neglect of the left is markedly more persistent than of the right and that its severity increases under states of low alertness. There have been suggestions that this alertness-spatial awareness link may be detectable in the general population. Here, healthy human volunteers performed an auditory spatial localisation task whilst transitioning in and out of sleep. We show, using independent electroencephalographic measures, that normal drowsiness is linked with a remarkable unidirectional tendency to mislocate left-sided stimuli to the right. The effect may form a useful healthy model of neglect and help in understanding why leftward inattention is disproportionately persistent after brain injury. The results also cast light on marked changes in conscious experience before full sleep onset.

  20. Overexpression of HIF-1α in mesenchymal stem cells contributes to repairing hypoxic-ischemic brain damage in rats.

    Science.gov (United States)

    Lin, Deju; Zhou, Liping; Wang, Biao; Liu, Lizhen; Cong, Li; Hu, Chuanqin; Ge, Tingting; Yu, Qin

    2017-01-01

    Preclinical researches on mesenchymal stem cells (MSCs) transplantation, which is used to treat hypoxic-ischemic (HI) brain damage, have received inspiring achievements. However, the insufficient migration of active cells to damaged tissues has limited their potential therapeutic effects. There are some evidences that hypoxia inducible factor-1 alpha (HIF-1α) promotes the viability and migration of the cells. Here, we aim to investigate whether overexpression of HIF-1α in MSCs could improve the viability and migration capacity of cells, and its therapeutic efficiency on HI brain damage. In the study, MSCs with HIF-1α overexpression was achieved by recombinant lentiviral vector and transplanted to the rats subsequent to HI. Our data indicated that overexpression of HIF-1α promoted the viability and migration of MSCs, HIF-1α overexpressed MSCs also had a stronger therapeutic efficiency on HI brain damaged treatment by mitigating the injury on behavioral and histological changes evoked by HI insults, accompanied with more MSCs migrating to cerebral damaged area. This study demonstrated that HIF-1α overexpression could increase the MSCs' therapeutic efficiency in HI and the promotion of the cells' directional migration to cerebral HI area by overexpression may be responsible for it, which showed that transplantation of MSCs with HIF-1α overexpression is an attractive therapeutic option to treat HI-induced brain injury in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  1. Abnormal baseline brain activity in patients with neuromyelitis optica: A resting-state fMRI study

    International Nuclear Information System (INIS)

    Liu Yaou; Liang Peipeng; Duan Yunyun; Jia Xiuqin; Wang Fei; Yu Chunshui; Qin Wen; Dong Huiqing; Ye Jing; Li Kuncheng

    2011-01-01

    Purpose: Recent immunopathologic and MRI findings suggest that tissue damage in neuromyelitis optica (NMO) is not limited to spinal cord and optic nerve, but also in brain. Baseline brain activity can reveal the brain functional changes to the tissue damages and give clues to the pathophysiology of NMO, however, it has never been explored by resting-state functional MRI (fMRI). We used regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI to investigate how baseline brain activity changes in patients with NMO. Methods: Resting-state fMRIs collected from seventeen NMO patients and seventeen age- and sex-matched normal controls were compared to investigate the ALFF difference between the two groups. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration were further explored. Results: Our results showed that NMO patients had significantly decreased ALFF in precuneus, posterior cingulate cortex (PCC) and lingual gyrus; and increased ALFF in middle frontal gyrus, caudate nucleus and thalamus, compared to normal controls. Moderate negative correlations were found between the EDSS and ALFF in the left middle frontal gyrus (r = -0.436, p = 0.040) and the left caudate (r = -0.542, p = 0.012). Conclusion: The abnormal baseline brain activity shown by resting-state fMRI in NMO is relevant to cognition, visual and motor systems. It implicates a complex baseline brain status of both functional impairments and adaptations caused by tissue damages in these systems, which gives clues to the pathophysiology of NMO.

  2. Abnormal baseline brain activity in patients with neuromyelitis optica: A resting-state fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yaou [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Liang Peipeng [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); International WIC institute, Beijing University of Technology, Beijing 100024 (China); Duan Yunyun; Jia Xiuqin; Wang Fei; Yu Chunshui; Qin Wen [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong Huiqing; Ye Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Li Kuncheng, E-mail: likuncheng1955@yahoo.com.cn [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2011-11-15

    Purpose: Recent immunopathologic and MRI findings suggest that tissue damage in neuromyelitis optica (NMO) is not limited to spinal cord and optic nerve, but also in brain. Baseline brain activity can reveal the brain functional changes to the tissue damages and give clues to the pathophysiology of NMO, however, it has never been explored by resting-state functional MRI (fMRI). We used regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI to investigate how baseline brain activity changes in patients with NMO. Methods: Resting-state fMRIs collected from seventeen NMO patients and seventeen age- and sex-matched normal controls were compared to investigate the ALFF difference between the two groups. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration were further explored. Results: Our results showed that NMO patients had significantly decreased ALFF in precuneus, posterior cingulate cortex (PCC) and lingual gyrus; and increased ALFF in middle frontal gyrus, caudate nucleus and thalamus, compared to normal controls. Moderate negative correlations were found between the EDSS and ALFF in the left middle frontal gyrus (r = -0.436, p = 0.040) and the left caudate (r = -0.542, p = 0.012). Conclusion: The abnormal baseline brain activity shown by resting-state fMRI in NMO is relevant to cognition, visual and motor systems. It implicates a complex baseline brain status of both functional impairments and adaptations caused by tissue damages in these systems, which gives clues to the pathophysiology of NMO.

  3. Stimulation of functional vision in children with perinatal brain damage.

    Science.gov (United States)

    Alimović, Sonja; Mejaski-Bosnjak, Vlatka

    2011-01-01

    Cerebral visual impairment (CVI) is one of the most common causes of bilateral visual loss, which frequently occurs due to perinatal brain injury. Vision in early life has great impact on acquisition of basic comprehensions which are fundamental for further development. Therefore, early detection of visual problems and early intervention is necessary. The aim of the present study is to determine specific visual functioning of children with perinatal brain damage and the influence of visual stimulation on development of functional vision at early age of life. We initially assessed 30 children with perinatal brain damage up to 3 years of age, who were reffered to our pediatric low vision cabinet in "Little house" from child neurologists, ophthalmologists Type and degree of visual impairment was determined according to functional vision assessment of each child. On the bases of those assessments different kind of visual stimulations were carried out with children who have been identified to have a certain visual impairment. Through visual stimulation program some of the children were stimulated with light stimulus, some with different materials under the ultraviolet (UV) light, and some with bright color and high contrast materials. Children were also involved in program of early stimulation of overall sensory motor development. Goals and methods of therapy were determined individually, based on observation of child's possibilities and need. After one year of program, reassessment was done. Results for visual functions and functional vision were compared to evaluate the improvement of the vision development. These results have shown that there was significant improvement in functional vision, especially in visual attention and visual communication.

  4. The endogenous regenerative capacity of the damaged newborn brain: boosting neurogenesis with mesenchymal stem cell treatment

    OpenAIRE

    Donega, Vanessa; van Velthoven, Cindy TJ; Nijboer, Cora H; Kavelaars, Annemieke; Heijnen, Cobi J

    2013-01-01

    Neurogenesis continues throughout adulthood. The neurogenic capacity of the brain increases after injury by, e.g., hypoxia–ischemia. However, it is well known that in many cases brain damage does not resolve spontaneously, indicating that the endogenous regenerative capacity of the brain is insufficient. Neonatal encephalopathy leads to high mortality rates and long-term neurologic deficits in babies worldwide. Therefore, there is an urgent need to develop more efficient therapeutic strategie...

  5. Delusional misidentifications and duplications: right brain lesions, left brain delusions.

    Science.gov (United States)

    Devinsky, Orrin

    2009-01-06

    When the delusional misidentification syndromes reduplicative paramnesia and Capgras syndromes result from neurologic disease, lesions are usually bifrontal and/or right hemispheric. The related disorders of confabulation and anosognosis share overlapping mechanisms and anatomic pathology. A dual mechanism is postulated for the delusional misidentification syndromes: negative effects from right hemisphere and frontal lobe dysfunction as well as positive effects from release (i.e., overactivity) of preserved left hemisphere areas. Negative effects of right hemisphere injury impair self-monitoring, ego boundaries, and attaching emotional valence and familiarity to stimuli. The unchecked left hemisphere unleashes a creative narrator from the monitoring of self, memory, and reality by the frontal and right hemisphere areas, leading to excessive and false explanations. Further, the left hemisphere's cognitive style of categorization, often into dual categories, leads it to invent a duplicate or impostor to resolve conflicting information. Delusions result from right hemisphere lesions. But it is the left hemisphere that is deluded.

  6. Maternal left ventricular hypertrophy and diastolic dysfunction and brain natriuretic peptide concentration in early- and late-onset pre-eclampsia.

    Science.gov (United States)

    Borges, V T M; Zanati, S G; Peraçoli, M T S; Poiati, J R; Romão-Veiga, M; Peraçoli, J C; Thilaganathan, B

    2018-04-01

    Pre-eclampsia (PE) is associated with maternal cardiac remodeling and diastolic dysfunction. The aim of this study was to assess and compare maternal left ventricular structure and diastolic function and levels of brain natriuretic peptide (BNP) in women with early-onset (< 34 weeks' gestation) vs those with late-onset (≥ 34 weeks' gestation) PE. This was a prospective, cross-sectional, observational study of 30 women with early-onset PE, 32 with late-onset PE and 23 normotensive controls. Maternal cardiac structure and diastolic function were assessed by echocardiography and plasma levels of BNP were measured by enzyme immunoassay. Early- and late-onset PE were associated with increased left ventricular mass index and relative wall thickness compared with normotensive controls. In women with early-onset PE, the prevalence of concentric hypertrophy (40%) and diastolic dysfunction (23%) was also significantly higher (both P < 0.05) compared with women with late-onset PE (16% for both). Maternal serum BNP levels were significantly higher (P < 0.05) in women with early-onset PE and correlated with relative wall thickness and left ventricular mass index. Early-onset PE is associated with more severe cardiac impairment than is late-onset PE, as evidenced by an increased prevalence of concentric hypertrophy, diastolic dysfunction and higher levels of BNP. These findings suggest that early-onset PE causes greater myocardial damage, increasing the risk of both peripartum and postpartum cardiovascular morbidity. Although these cardiovascular effects are easily identified by echocardiographic parameters and measuring BNP, further studies are needed to assess their clinical utility. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.

  7. Breaking symmetry: the zebrafish as a model for understanding left-right asymmetry in the developing brain.

    Science.gov (United States)

    Roussigne, Myriam; Blader, Patrick; Wilson, Stephen W

    2012-03-01

    How does left-right asymmetry develop in the brain and how does the resultant asymmetric circuitry impact on brain function and lateralized behaviors? By enabling scientists to address these questions at the levels of genes, neurons, circuitry and behavior,the zebrafish model system provides a route to resolve the complexity of brain lateralization. In this review, we present the progress made towards characterizing the nature of the gene networks and the sequence of morphogenetic events involved in the asymmetric development of zebrafish epithalamus. In an attempt to integrate the recent extensive knowledge into a working model and to identify the future challenges,we discuss how insights gained at a cellular/developmental level can be linked to the data obtained at a molecular/genetic level. Finally, we present some evolutionary thoughts and discuss how significant discoveries made in zebrafish should provide entry points to better understand the evolutionary origins of brain lateralization.

  8. [Features of adaptive responses in right-handers and left-handers, and their relationship to the functional activity of the brain].

    Science.gov (United States)

    Barkar, A A; Markina, L D

    2014-01-01

    In the article there is considered the relationship between adaptation state of the organism and features of bioelectric activity of the brain in right-handers and left-handers. Practically healthy persons of both genders, 23-45 years of age, with the chronic stress disorder were examined. Adaptation status was evaluated with a computer software "Anti-stress", features of bioelectric brain activity were detected by means of spectral and coherent EEG analysis, also the character of motor and sensory asymmetries was determined. The obtained data showed that the response of the organism to excitators of varying strength is a system one and manifested at different levels; adaptation status and bioelectrical activity in right-handers and left-handers have features.

  9. Reasoning by analogy requires the left frontal pole: lesion-deficit mapping and clinical implications.

    Science.gov (United States)

    Urbanski, Marika; Bréchemier, Marie-Laure; Garcin, Béatrice; Bendetowicz, David; Thiebaut de Schotten, Michel; Foulon, Chris; Rosso, Charlotte; Clarençon, Frédéric; Dupont, Sophie; Pradat-Diehl, Pascale; Labeyrie, Marc-Antoine; Levy, Richard; Volle, Emmanuelle

    2016-06-01

    SEE BURGESS DOI101093/BRAIN/AWW092 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE  : Analogical reasoning is at the core of the generalization and abstraction processes that enable concept formation and creativity. The impact of neurological diseases on analogical reasoning is poorly known, despite its importance in everyday life and in society. Neuroimaging studies of healthy subjects and the few studies that have been performed on patients have highlighted the importance of the prefrontal cortex in analogical reasoning. However, the critical cerebral bases for analogical reasoning deficits remain elusive. In the current study, we examined analogical reasoning abilities in 27 patients with focal damage in the frontal lobes and performed voxel-based lesion-behaviour mapping and tractography analyses to investigate the structures critical for analogical reasoning. The findings revealed that damage to the left rostrolateral prefrontal region (or some of its long-range connections) specifically impaired the ability to reason by analogies. A short version of the analogy task predicted the existence of a left rostrolateral prefrontal lesion with good accuracy. Experimental manipulations of the analogy tasks suggested that this region plays a role in relational matching or integration. The current lesion approach demonstrated that the left rostrolateral prefrontal region is a critical node in the analogy network. Our results also suggested that analogy tasks should be translated to clinical practice to refine the neuropsychological assessment of patients with frontal lobe lesions. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Deficiency of vasodilator-stimulated phosphoprotein (VASP increases blood-brain-barrier damage and edema formation after ischemic stroke in mice.

    Directory of Open Access Journals (Sweden)

    Peter Kraft

    2010-12-01

    Full Text Available Stroke-induced brain edema formation is a frequent cause of secondary infarct growth and deterioration of neurological function. The molecular mechanisms underlying edema formation after stroke are largely unknown. Vasodilator-stimulated phosphoprotein (VASP is an important regulator of actin dynamics and stabilizes endothelial barriers through interaction with cell-cell contacts and focal adhesion sites. Hypoxia has been shown to foster vascular leakage by downregulation of VASP in vitro but the significance of VASP for regulating vascular permeability in the hypoxic brain in vivo awaits clarification.Focal cerebral ischemia was induced in Vasp(-/- mice and wild-type (WT littermates by transient middle cerebral artery occlusion (tMCAO. Evan's Blue tracer was applied to visualize the extent of blood-brain-barrier (BBB damage. Brain edema formation and infarct volumes were calculated from 2,3,5-triphenyltetrazolium chloride (TTC-stained brain slices. Both mouse groups were carefully controlled for anatomical and physiological parameters relevant for edema formation and stroke outcome. BBB damage (p0.05 towards worse neurological outcomes.Our study identifies VASP as critical regulator of BBB maintenance during acute ischemic stroke. Therapeutic modulation of VASP or VASP-dependent signalling pathways could become a novel strategy to combat excessive edema formation in ischemic brain damage.

  11. Automated detection of unfilled pauses in speech of healthy and brain-damaged individuals

    NARCIS (Netherlands)

    Ossewaarde, Roelant; Jonkers, Roel; Jalvingh, Fedor; Bastiaanse, Yvonne

    Automated detection of un lled pauses in speech of healthy and brain-damaged individuals Roelant Ossewaardea,b, Roel Jonkersa, Fedor Jalvingha,c, Roelien Bastiaansea aCenter for Language and Cognition, University of Groningen; bInstitute for ICT, HU University of Applied Science, Utrecht; cSt.

  12. Thymoquinone ameliorates lead-induced brain damage in Sprague Dawley rats.

    Science.gov (United States)

    Radad, Khaled; Hassanein, Khaled; Al-Shraim, Mubarak; Moldzio, Rudolf; Rausch, Wolf-Dieter

    2014-01-01

    The present study aims to investigate the protective effects of thymoquinone, the major active ingredient of Nigella sativa seeds, against lead-induced brain damage in Sprague-Dawley rats. In which, 40 rats were divided into four groups (10 rats each). The first group served as control. The second, third and fourth groups received lead acetate, lead acetate and thymoquinone, and thymoquinone only, respectively, for one month. Lead acetate was given in drinking water at a concentration of 0.5 g/l (500 ppm). Thymoquinone was given daily at a dose of 20mg/kg b.w. in corn oil by gastric tube. Control and thymoquinone-treated rats showed normal brain histology. Treatment of rats with lead acetate was shown to produce degeneration of endothelial lining of brain blood vessels with peri-vascular cuffing of mononuclear cells consistent to lymphocytes, congestion of choroid plexus blood vessels, ischemic brain infarction, chromatolysis and neuronal degeneration, microglial reaction and neuronophagia, degeneration of hippocampal and cerebellar neurons, and axonal demyelination. On the other hand, co-administration of thymoquinone with lead acetate markedly decreased the incidence of lead acetate-induced pathological lesions. Thus the current study shed some light on the beneficial effects of thymoquinone against neurotoxic effects of lead in rats. Copyright © 2013 Elsevier GmbH. All rights reserved.

  13. Suppression of the endoplasmic reticulum calcium pump during zebrafish gastrulation affects left-right asymmetry of the heart and brain.

    Science.gov (United States)

    Kreiling, Jill A; Balantac, Zaneta L; Crawford, Andrew R; Ren, Yuexin; Toure, Jamal; Zchut, Sigalit; Kochilas, Lazaros; Creton, Robbert

    2008-01-01

    Vertebrate embryos generate striking Ca(2+) patterns, which are unique regulators of dynamic developmental events. In the present study, we used zebrafish embryos as a model system to examine the developmental roles of Ca(2+) during gastrulation. We found that gastrula stage embryos maintain a distinct pattern of cytosolic Ca(2+) along the dorsal-ventral axis, with higher Ca(2+) concentrations in the ventral margin and lower Ca(2+) concentrations in the dorsal margin and dorsal forerunner cells. Suppression of the endoplasmic reticulum Ca(2+) pump with 0.5 microM thapsigargin elevates cytosolic Ca(2+) in all embryonic regions and induces a randomization of laterality in the heart and brain. Affected hearts, visualized in living embryos by a subtractive imaging technique, displayed either a reversal or loss of left-right asymmetry. Brain defects include a left-right reversal of pitx2 expression in the dorsal diencephalon and a left-right reversal of the prominent habenular nucleus in the brain. Embryos are sensitive to inhibition of the endoplasmic reticulum Ca(2+) pump during early and mid gastrulation and lose their sensitivity during late gastrulation and early segmentation. Suppression of the endoplasmic reticulum Ca(2+) pump during gastrulation inhibits expression of no tail (ntl) and left-right dynein related (lrdr) in the dorsal forerunner cells and affects development of Kupffer's vesicle, a ciliated organ that generates a counter-clockwise flow of fluid. Previous studies have shown that Ca(2+) plays a role in Kupffer's vesicle function, influencing ciliary motility and translating the vesicle's counter-clockwise flow into asymmetric patterns of gene expression. The present results suggest that Ca(2+) plays an additional role in the formation of Kupffer's vesicle.

  14. Statistical parametric mapping for analyzing interictal magnetoencephalography in patients with left frontal lobe epilepsy.

    Science.gov (United States)

    Zhu, Haitao; Zhu, Jinlong; Bao, Forrest Sheng; Liu, Hongyi; Zhu, Xuchuang; Wu, Ting; Yang, Lu; Zou, Yuanjie; Zhang, Rui; Zheng, Gang

    2016-01-01

    Frontal lobe epilepsy is a common epileptic disorder and is characterized by recurring seizures that arise in the frontal lobes. The purpose of this study is to identify the epileptogenic regions and other abnormal regions in patients with left frontal lobe epilepsy (LFLE) based on the magnetoencephalogram (MEG), and to understand the effects of clinical variables on brain activities in patients with LFLE. Fifteen patients with LFLE (23.20 ± 8.68 years, 6 female and 9 male) and 16 healthy controls (23.13 ± 7.66 years, 6 female and 10 male) were included in resting-stage MEG examinations. Epileptogenic regions of LFLE patients were confirmed by surgery. Regional brain activations were quantified using statistical parametric mapping (SPM). The correlation between the activations of the abnormal brain regions and the clinical seizure parameters were computed for LFLE patients. Brain activations of LFLE patients were significantly elevated in left superior/middle/inferior frontal gyri, postcentral gyrus, inferior temporal gyrus, insula, parahippocampal gyrus and amygdala, including the epileptogenic regions. Remarkable decreased activations were found mainly in the left parietal gyrus and precuneus. There is a positive correlation between the duration of the epilepsy (in month) and activations of the abnormal regions, while no relation was found between age of seizure onset (year), seizure frequency and the regions of the abnormal activity of the epileptic patients. Our findings suggest that the aberrant brain activities of LFLE patients were not restricted to the epileptogenic zones. Long duration of epilepsy might induce further functional damage in patients with LFLE. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  15. Selected Gray Matter Volumes and Gender but Not Basal Ganglia nor Cerebellum Gyri Discriminate Left Versus Right Cerebral Hemispheres: Multivariate Analyses in human Brains at 3T.

    Science.gov (United States)

    Roldan-Valadez, Ernesto; Suarez-May, Marcela A; Favila, Rafael; Aguilar-Castañeda, Erika; Rios, Camilo

    2015-07-01

    Interest in the lateralization of the human brain is evident through a multidisciplinary number of scientific studies. Understanding volumetric brain asymmetries allows the distinction between normal development stages and behavior, as well as brain diseases. We aimed to evaluate volumetric asymmetries in order to select the best gyri able to classify right- versus left cerebral hemispheres. A cross-sectional study performed in 47 right-handed young-adults healthy volunteers. SPM-based software performed brain segmentation, automatic labeling and volumetric analyses for 54 regions involving the cerebral lobes, basal ganglia and cerebellum from each cerebral hemisphere. Multivariate discriminant analysis (DA) allowed the assembling of a predictive model. DA revealed one discriminant function that significantly differentiated left vs. right cerebral hemispheres: Wilks' λ = 0.008, χ(2) (9) = 238.837, P brain gyri are able to accurately classify left vs. right cerebral hemispheres by using a multivariate approach; the selected regions correspond to key brain areas involved in attention, internal thought, vision and language; our findings favored the concept that lateralization has been evolutionary favored by mental processes increasing cognitive efficiency and brain capacity. © 2015 Wiley Periodicals, Inc.

  16. Sensitivity of the Halstead and Wechsler Test Batteries to brain damage: Evidence from Reitan's original validation sample.

    Science.gov (United States)

    Loring, David W; Larrabee, Glenn J

    2006-06-01

    The Halstead-Reitan Battery has been instrumental in the development of neuropsychological practice in the United States. Although Reitan administered both the Wechsler-Bellevue Intelligence Scale and Halstead's test battery when evaluating Halstead's theory of biologic intelligence, the relative sensitivity of each test battery to brain damage continues to be an area of controversy. Because Reitan did not perform direct parametric analysis to contrast group performances, we reanalyze Reitan's original validation data from both Halstead (Reitan, 1955) and Wechsler batteries (Reitan, 1959a) and calculate effect sizes and probability levels using traditional parametric approaches. Eight of the 10 tests comprising Halstead's original Impairment Index, as well as the Impairment Index itself, statistically differentiated patients with unequivocal brain damage from controls. In addition, 13 of 14 Wechsler measures including Full-Scale IQ also differed statistically between groups (Brain Damage Full-Scale IQ = 96.2; Control Group Full Scale IQ = 112.6). We suggest that differences in the statistical properties of each battery (e.g., raw scores vs. standardized scores) likely contribute to classification characteristics including test sensitivity and specificity.

  17. Perceptual relearning of binocular fusion after hypoxic brain damage: four controlled single-case treatment studies.

    Science.gov (United States)

    Schaadt, Anna-Katharina; Schmidt, Lena; Kuhn, Caroline; Summ, Miriam; Adams, Michaela; Garbacenkaite, Ruta; Leonhardt, Eva; Reinhart, Stefan; Kerkhoff, Georg

    2014-05-01

    Hypoxic brain damage is characterized by widespread, diffuse-disseminated brain lesions, which may cause severe disturbances in binocular vision, leading to diplopia and loss of stereopsis, for which no evaluated treatment is currently available. The study evaluated the effects of a novel binocular vision treatment designed to improve binocular fusion and stereopsis as well as to reduce diplopia in patients with cerebral hypoxia. Four patients with severely reduced convergent fusion, stereopsis, and reading duration due to hypoxic brain damage were treated in a single-subject baseline design, with three baseline assessments before treatment to control for spontaneous recovery (pretherapy), an assessment immediately after a treatment period of 6 weeks (posttherapy), and two follow-up tests 3 and 6 months after treatment to assess stability of improvements. Patients received a novel fusion and dichoptic training using 3 different devices designed to slowly increase fusional and disparity angle. After the treatment, all 4 patients improved significantly in binocular fusion, subjective reading duration until diplopia emerged, and 2 of 4 patients improved significantly in local stereopsis. No significant changes were observed during the pretherapy baseline period and the follow-up period, thus ruling out spontaneous recovery and demonstrating long-term stability of treatment effects. This proof-of-principle study indicates a substantial treatment-induced plasticity after hypoxia in the relearning of binocular vision and offers a viable treatment option. Moreover, it provides new hope and direction for the development of effective rehabilitation strategies to treat neurovisual deficits resulting from hypoxic brain damage.

  18. Treatment for Alexia with Agraphia Following Left Ventral Occipito-Temporal Damage: Strengthening Orthographic Representations Common to Reading and Spelling

    Science.gov (United States)

    Kim, Esther S.; Rising, Kindle; Rapcsak, Steven Z.; Beeson, Pélagie M.

    2015-01-01

    Purpose: Damage to left ventral occipito-temporal cortex can give rise to written language impairment characterized by pure alexia/letter-by-letter (LBL) reading, as well as surface alexia and agraphia. The purpose of this study was to examine the therapeutic effects of a combined treatment approach to address concurrent LBL reading with surface…

  19. Effects of Acute Systemic Hypoxia and Hypercapnia on Brain Damage in a Rat Model of Hypoxia-Ischemia.

    Directory of Open Access Journals (Sweden)

    Wanchao Yang

    Full Text Available Therapeutic hypercapnia has the potential for neuroprotection after global cerebral ischemia. Here we further investigated the effects of different degrees of acute systemic hypoxia in combination with hypercapnia on brain damage in a rat model of hypoxia and ischemia. Adult wistar rats underwent unilateral common carotid artery (CCA ligation for 60 min followed by ventilation with normoxic or systemic hypoxic gas containing 11%O2,13%O2,15%O2 and 18%O2 (targeted to PaO2 30-39 mmHg, 40-49 mmHg, 50-59 mmHg, and 60-69 mmHg, respectively or systemic hypoxic gas containing 8% carbon dioxide (targeted to PaCO2 60-80 mmHg for 180 min. The mean artery pressure (MAP, blood gas, and cerebral blood flow (CBF were evaluated. The cortical vascular permeability and brain edema were examined. The ipsilateral cortex damage and the percentage of hippocampal apoptotic neurons were evaluated by Nissl staining and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL assay as well as flow cytometry, respectively. Immunofluorescence and western blotting were performed to determine aquaporin-4 (AQP4 expression. In rats treated with severe hypoxia (PaO2 50 mmHg, hypercapnia protected against these pathophysiological changes. Moreover, hypercapnia treatment significantly reduced brain damage in the ischemic ipsilateral cortex and decreased the percentage of apoptotic neurons in the hippocampus after the CCA ligated rats were exposed to mild or moderate hypoxemia (PaO2 > 50 mmHg; especially under mild hypoxemia (PaO2 > 60 mmHg, hypercapnia significantly attenuated the expression of AQP4 protein with brain edema (p < 0.05. Hypercapnia exerts beneficial effects under mild to moderate hypoxemia and augments detrimental effects under severe hypoxemia on brain damage in a rat model of hypoxia-ischemia.

  20. Functional Topography of Early Periventricular Brain Lesions in Relation to Cytoarchitectonic Probabilistic Maps

    Science.gov (United States)

    Staudt, Martin; Ticini, Luca F.; Grodd, Wolfgang; Krageloh-Mann, Ingeborg; Karnath, Hans-Otto

    2008-01-01

    Early periventricular brain lesions can not only cause cerebral palsy, but can also induce a reorganization of language. Here, we asked whether these different functional consequences can be attributed to topographically distinct portions of the periventricular white matter damage. Eight patients with pre- and perinatally acquired left-sided…

  1. Neuronal Rat Brain Damage Caused by Endogenous and Exogenous Hyperthermia

    Directory of Open Access Journals (Sweden)

    Mustafa Aydın

    2012-03-01

    Full Text Available OBJECTIVE: Hyperthermia may induce pathologic alterations within body systems and organs including brain. In this study, neuronal effects of endogenous and exogenous hyperthermia (41°C were studied in rats. METHODS: The endogenous hyperthermia (41°C was induced by lipopolysaccharide and the exogenous by an (electric heater. Possible neuronal damage was evaluated by examining healthy, apoptotic and necrotic cells, and heat shock proteins (HSP 27, HSP 70 in the cerebral cortex, cerebellum and hypothalamus RESULTS: At cellular level, when all neuronal tissues are taken into account; (i a significant increase in the necrotic cells was observed in the both groups (p0.05. CONCLUSION: The neural tissue of brain can show different degree of response to hyperthermia. But we can conclude that endogenous hyperthermia is more harmful to central nervous system than exogenous hyperthermia

  2. Patterns of regional brain hypometabolism associated with knowledge of semantic features and categories in alzheimer's disease

    DEFF Research Database (Denmark)

    Zahn, R.; Garrard, P.; Talazko, J.

    2006-01-01

    damage to distributed representations within nonspecialized brain areas. To our knowledge, there have been no direct correlations of neuroimaging of in vivo brain function in AD with performance on tasks differentially addressing visual and functional knowledge of living and nonliving concepts. We used...... properties of nonliving objects. Visual property verification of living objects was significantly correlated with left posterior fusiform gyrus metabolism (Brodmann's area [BA] 37/19). Effects of visual and functional property verification for nonliving objects largely overlapped in the left anterior...... and nonliving concepts, as well as visual feature knowledge of living objects, and against distributed accounts of semantic memory that view visual and functional features of living and nonliving objects as distributed across a common set of brain areas....

  3. Brain ischemia as initial sign of a left atrial myxoma Report of one case

    International Nuclear Information System (INIS)

    Osio, Luis F; Velasquez, Jorge E; Tobon, Gabriel J; Posada, Gloria; Contreras, Eduardo; Sanchez, Jairo; Gutierrez, Javier

    2008-01-01

    Primary heart tumors are rare; 75% of them are benign and almost half of the benign ones are myxomas that in most cases are located in the left cavities. Clinical manifestations of myxomas depend on its localization site. Nevertheless, it is accepted that brain ischemia is the initial clinical manifestation in a third of atrial myxomas. The case of a 65 years ald male patient in whom the first clinical manifestation of an atrial myxoma was an ischemic cerebrovascular event, is presented

  4. Ancillary procedure for early diagnosis of brain damage in children

    International Nuclear Information System (INIS)

    Sumi, Masatoshi; Sha, Tenei; Ryo, Fukko; Kagawa, Kotaro.

    1979-01-01

    CT scan of the head was performed on 14 patients with cerebral palsy, 16 with central coordination disorders, and 16 controls, and findings showing cerebral atrophy and enlargement of the cerebral ventricle were obtained in cases both of cerebral palsy and of central coordination disorders. To objectify these findings, 10 items were selected and evaluated according to 4 grades (0 - 3) and were compared. As a result, it was concluded that CT scan is an excellent ancillary procedure for early diagnosis of brain damages. (Tsunoda, M.)

  5. Bacterial cytolysin during meningitis disrupts the regulation of glutamate in the brain, leading to synaptic damage.

    Directory of Open Access Journals (Sweden)

    Carolin Wippel

    Full Text Available Streptococcus pneumoniae (pneumococcal meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage.

  6. Effect of hyperbaric oxygen on lipid peroxidation and visual development in neonatal rats with hypoxia-ischemia brain damage.

    Science.gov (United States)

    Chen, Jing; Chen, Yan-Hui; Lv, Hong-Yan; Chen, Li-Ting

    2016-07-01

    The aim of the present study was to investigate the effect of hyperbaric oxygen (HBO) on lipid peroxidation and visual development in a neonatal rat model of hypoxic-ischemic brain damage (HIBD). The rat models of HIBD were established by delayed uterus dissection and were divided randomly into two groups (10 rats each): HIBD and HBO-treated HIBD (HIBD+HBO) group. Another 20 rats that underwent sham-surgery were also divided randomly into the HBO-treated and control groups. The rats that underwent HBO treatment received HBO (0.02 MPa, 1 h/day) 24 h after the surgery and this continued for 14 days. When rats were 4 weeks old, their flash visual evoked potentials (F-VEPs) were monitored and the ultrastructures of the hippocampus were observed under transmission electron microscope. The levels of superoxide dismutase (SOD) and malonyldialdehyde (MDA) in the brain tissue homogenate were detected by xanthine oxidase and the thiobarbituric acid colorimetric method. Compared with the control group, the ultrastructures of the pyramidal neurons in the hippocampal CA3 area were distorted, the latencies of F-VEPs were prolonged (P0.05). HBO enhances antioxidant capacity and reduces the ultrastructural damage induced by hypoxic-ischemia, which may improve synaptic reconstruction and alleviate immature brain damage to promote the habilitation of brain function.

  7. Electroencephalographic (eeg coherence between visual and motor areas of the left and the right brain hemisphere while performing visuomotor task with the right and the left hand

    Directory of Open Access Journals (Sweden)

    Simon Brežan

    2007-09-01

    Full Text Available Background: Unilateral limb movements are based on the activation of contralateral primary motor cortex and the bilateral activation of premotor cortices. Performance of a visuomotor task requires a visuomotor integration between motor and visual cortical areas. The functional integration (»binding« of different brain areas, is probably mediated by the synchronous neuronal oscillatory activity, which can be determined by electroencephalographic (EEG coherence analysis. We introduced a new method of coherence analysis and compared coherence and power spectra in the left and right hemisphere for the right vs. left hand visuomotor task, hypothesizing that the increase in coherence and decrease in power spectra while performing the task would be greater in the contralateral hemisphere.Methods: We analyzed 6 healthy subjects and recorded their electroencephalogram during visuomotor task with the right or the left hand. For data analysis, a special Matlab computer programme was designed. The results were statistically analysed by a two-way analysis of variance, one-way analysis of variance and post-hoc t-tests with Bonferroni correction.Results: We demonstrated a significant increase in coherence (p < 0.05 for the visuomotor task compared to control tasks in alpha (8–13 Hz in beta 1 (13–20 Hz frequency bands between visual and motor electrodes. There were no significant differences in coherence nor power spectra depending on the hand used. The changes of coherence and power spectra between both hemispheres were symmetrical.Conclusions: In previous studies, a specific increase of coherence and decrease of power spectra for the visuomotor task was found, but we found no conclusive asymmetries when performing the task with right vs. left hand. This could be explained in a way that increases in coherence and decreases of power spectra reflect symmetrical activation and cooperation between more complex visual and motor brain areas.

  8. Hemispheric processing of vocal emblem sounds.

    Science.gov (United States)

    Neumann-Werth, Yael; Levy, Erika S; Obler, Loraine K

    2013-01-01

    Vocal emblems, such as shh and brr, are speech sounds that have linguistic and nonlinguistic features; thus, it is unclear how they are processed in the brain. Five adult dextral individuals with left-brain damage and moderate-severe Wernicke's aphasia, five adult dextral individuals with right-brain damage, and five Controls participated in two tasks: (1) matching vocal emblems to photographs ('picture task') and (2) matching vocal emblems to verbal translations ('phrase task'). Cross-group statistical analyses on items on which the Controls performed at ceiling revealed lower accuracy by the group with left-brain damage (than by Controls) on both tasks, and lower accuracy by the group with right-brain damage (than by Controls) on the picture task. Additionally, the group with left-brain damage performed significantly less accurately than the group with right-brain damage on the phrase task only. Findings suggest that comprehension of vocal emblems recruits more left- than right-hemisphere processing.

  9. Reflecting on Co-Creating a Smart Learning Ecosystem for Adolescents with Congenital Brain Damage

    DEFF Research Database (Denmark)

    Krummheuer, Antonia Lina; Rehm, Matthias; Lund, Maja K. L.

    2018-01-01

    . In this paper we present a first part of an ongoing collaboration with a special needs education facility for adolescents with congenital and acquired brain damage, that is interested in exploring the transformation of the institutional space into a smart learning ecosystem. We exemplify our research approach...

  10. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving.

    Directory of Open Access Journals (Sweden)

    Noriyuki Oka

    Full Text Available In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves, but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS.The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task. Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections.Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05, but cerebral oxygen exchange increased significantly more during left curves (p < 0.05 in the right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p < 0.05 only in the right frontal eye field.Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions.

  11. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving

    Science.gov (United States)

    Oka, Noriyuki; Yoshino, Kayoko; Yamamoto, Kouji; Takahashi, Hideki; Li, Shuguang; Sugimachi, Toshiyuki; Nakano, Kimihiko; Suda, Yoshihiro; Kato, Toshinori

    2015-01-01

    Objectives In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves), but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS). Research Design and Methods The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task). Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections. Results Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05), but cerebral oxygen exchange increased significantly more during left curves (p right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p right frontal eye field. Conclusions Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions

  12. Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation

    International Nuclear Information System (INIS)

    Jeon, Myounggun; Yoon, Eui-Sung; Cho, Il-Joo; Cho, Jeiwon; Jung, Dahee; Kim, Yun Kyung; Shin, Sehyun

    2014-01-01

    This paper presents a flexible microelectromechanical systems (MEMS) neural probe that minimizes neuron damage and immune response, suitable for chronic recording applications. MEMS neural probes with various features such as high electrode densities have been actively investigated for neuron stimulation and recording to study brain functions. However, successful recording of neural signals in chronic application using rigid silicon probes still remains challenging because of cell death and macrophages accumulated around the electrodes over time from continuous brain movement. Thus, in this paper, we propose a new flexible MEMS neural probe that consists of two segments: a polyimide-based, flexible segment for connection and a rigid segment composed of thin silicon for insertion. While the flexible connection segment is designed to reduce the long-term chronic neuron damage, the thin insertion segment is designed to minimize the brain damage during the insertion process. The proposed flexible neural probe was successfully fabricated using the MEMS process on a silicon on insulator wafer. For a successful insertion, a biodegradable sucrose gel is coated on the flexible segment to temporarily increase the probe stiffness to prevent buckling. After the insertion, the sucrose gel dissolves inside the brain exposing the polyimide probe. By performing an insertion test, we confirm that the flexible probe has enough stiffness. In addition, by monitoring immune responses and brain histology, we successfully demonstrate that the proposed flexible neural probe incurs fivefold less neural damage than that incurred by a conventional silicon neural probe. Therefore, the presented flexible neural probe is a promising candidate for recording stable neural signals for long-time chronic applications. (paper)

  13. Resolvin D1 Halts Remote Neuroinflammation and Improves Functional Recovery after Focal Brain Damage Via ALX/FPR2 Receptor-Regulated MicroRNAs.

    Science.gov (United States)

    Bisicchia, Elisa; Sasso, Valeria; Catanzaro, Giuseppina; Leuti, Alessandro; Besharat, Zein Mersini; Chiacchiarini, Martina; Molinari, Marco; Ferretti, Elisabetta; Viscomi, Maria Teresa; Chiurchiù, Valerio

    2018-01-22

    Remote damage is a secondary phenomenon that usually occurs after a primary brain damage in regions that are distant, yet functionally connected, and that is critical for determining the outcomes of several CNS pathologies, including traumatic brain and spinal cord injuries. The understanding of remote damage-associated mechanisms has been mostly achieved in several models of focal brain injury such as the hemicerebellectomy (HCb) experimental paradigm, which helped to identify the involvement of many key players, such as inflammation, oxidative stress, apoptosis and autophagy. Currently, few interventions have been shown to successfully limit the progression of secondary damage events and there is still an unmet need for new therapeutic options. Given the emergence of the novel concept of resolution of inflammation, mediated by the newly identified ω3-derived specialized pro-resolving lipid mediators, such as resolvins, we reported a reduced ability of HCb-injured animals to produce resolvin D1 (RvD1) and an increased expression of its target receptor ALX/FPR2 in remote brain regions. The in vivo administration of RvD1 promoted functional recovery and neuroprotection by reducing the activation of Iba-1+ microglia and GFAP+ astrocytes as well as by impairing inflammatory-induced neuronal cell death in remote regions. These effects were counteracted by intracerebroventricular neutralization of ALX/FPR2, whose activation by RvD1 also down-regulated miR-146b- and miR-219a-1-dependent inflammatory markers. In conclusion, we propose that innovative therapies based on RvD1-ALX/FPR2 axis could be exploited to curtail remote damage and enable neuroprotective effects after acute focal brain damage.

  14. Oxcarbazepine causes neurocyte apoptosis and developing brain damage by triggering Bax/Bcl-2 signaling pathway mediated caspase 3 activation in neonatal rats.

    Science.gov (United States)

    Song, Y; Zhong, M; Cai, F-C

    2018-01-01

    Anti-epileptic drugs (AEDs) are the main methods for treatment of neonatal seizures; however, a few AEDs may cause developing brain damage of neonate. This study aims to investigate effects of oxcarbazepine (OXC) on developing brain damage of neonatal rats. Both of neonatal and adult rats were divided into 6 groups, including Control, OXC 187.5 mg/kg, OXC 281.25 mg/kg, OXC 375 mg/kg group, LEV and PHT group. Body weight and brain weight were evaluated. Hematoxylin and eosin (HE) and Nissl staining were used to observe neurocyte morphology and Nissl bodies, respectively. Apoptosis was examined using TUNEL assay, and caspase 8 activity was evaluated using spectrophotometer method. Cytochrome C-release was evaluated using flow cytometry. Western blot was used to examine Bax and Bcl-2 expression. OXC 375 mg/kg treatment significantly decreased brain weight compared to Control group in neonatal rats (P5 rats) (pOxcarbazepine at a concentration of 281.25 mg/kg or more causes neurocyte apoptosis and developing brain damage by triggering Bax/Bcl-2 signaling pathway mediated caspase 3 activation in neonatal rats.

  15. Explorative investigation of biomarkers of brain damage and coagulation system activation in clinical stroke differentiation

    DEFF Research Database (Denmark)

    Undén, Johan; Strandberg, Karin; Malm, Jan

    2009-01-01

    INTRODUCTION: A simple and accurate method of differentiating ischemic stroke and intracerebral hemorrhage (ICH) is potentially useful to facilitate acute therapeutic management. Blood measurements of biomarkers of brain damage and activation of the coagulation system may potentially serve as nov...

  16. Various irrigation fluids affect postoperative brain edema and cellular damage during experimental neurosurgery in rats.

    Science.gov (United States)

    Doi, Kazuhisa; Kawano, Takeshi; Morioka, Yujiro; Fujita, Yasutaka; Nishimura, Masuhiro

    2006-12-01

    This study was conducted to investigate how various irrigation fluids used during neurosurgical procedures affect the degree of postoperative brain edema and cellular damage during experimental neurosurgery in rats. The cerebral cortex was exposed and incised crosswise with a surgical knife under irrigation with an artificial CSF, lactated Ringer's solution, or normal saline. Four hours after injury, irrigation was stopped and brain tissue samples were obtained from injured and uninjured sites. Specific gravity, cerebrovascular permeability, and TTC staining of the samples were evaluated. Incision and irrigation of the brain were not performed on the control group. At the injured site, specific gravities of the samples in the normal saline group and the lactated Ringer's solution group were significantly lower than the specific gravity in the artificial CSF group. The EB concentration was significantly higher in the lactated Ringer's solution group and relatively high in the normal saline group as compared with the artificial CSF group. TTC staining did not differ significantly between the artificial CSF group and the control group. It was significantly lower in the lactated Ringer's solution group and the normal saline group than in the control group and the artificial CSF group. As compared with normal saline and lactated Ringer's solution, artificial CSF reduced postoperative brain edema, cerebrovascular permeability, and cellular damage in sites injured by experimental neurosurgery in rats.

  17. The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair.

    Directory of Open Access Journals (Sweden)

    Davide Lecca

    Full Text Available Deciphering the mechanisms regulating the generation of new neurons and new oligodendrocytes, the myelinating cells of the central nervous system, is of paramount importance to address new strategies to replace endogenous damaged cells in the adult brain and foster repair in neurodegenerative diseases. Upon brain injury, the extracellular concentrations of nucleotides and cysteinyl-leukotrienes (cysLTs, two families of endogenous signaling molecules, are markedly increased at the site of damage, suggesting that they may act as "danger signals" to alert responses to tissue damage and start repair. Here we show that, in brain telencephalon, GPR17, a recently deorphanized receptor for both uracil nucleotides and cysLTs (e.g., UDP-glucose and LTD(4, is normally present on neurons and on a subset of parenchymal quiescent oligodendrocyte precursor cells. We also show that induction of brain injury using an established focal ischemia model in the rodent induces profound spatiotemporal-dependent changes of GPR17. In the lesioned area, we observed an early and transient up-regulation of GPR17 in neurons expressing the cellular stress marker heat shock protein 70. Magnetic Resonance Imaging in living mice showed that the in vivo pharmacological or biotechnological knock down of GPR17 markedly prevents brain infarct evolution, suggesting GPR17 as a mediator of neuronal death at this early ischemic stage. At later times after ischemia, GPR17 immuno-labeling appeared on microglia/macrophages infiltrating the lesioned area to indicate that GPR17 may also acts as a player in the remodeling of brain circuitries by microglia. At this later stage, parenchymal GPR17+ oligodendrocyte progenitors started proliferating in the peri-injured area, suggesting initiation of remyelination. To confirm a specific role for GPR17 in oligodendrocyte differentiation, the in vitro exposure of cortical pre-oligodendrocytes to the GPR17 endogenous ligands UDP-glucose and LTD(4

  18. Insights into Intrinsic Brain Networks based on Graph Theory and PET in right- compared to left-sided Temporal Lobe Epilepsy

    OpenAIRE

    Thomas Vanicek; Andreas Hahn; Tatjana Traub-Weidinger; Eva Hilger; Marie Spies; Wolfgang Wadsak; Rupert Lanzenberger; Ekaterina Pataraia; Susanne Asenbaum-Nan

    2016-01-01

    The human brain exhibits marked hemispheric differences, though it is not fully understood to what extent lateralization of the epileptic focus is relevant. Preoperative [18F]FDG-PET depicts lateralization of seizure focus in patients with temporal lobe epilepsy and reveals dysfunctional metabolic brain connectivity. The aim of the present study was to compare metabolic connectivity, inferred from inter-regional [18F]FDG PET uptake correlations, in right-sided (RTLE; n?=?30) and left-sided TL...

  19. Brain MRI signal abnormalities and right-to-left shunting in asymptomatic military divers.

    Science.gov (United States)

    Gempp, Emmanuel; Sbardella, Fabrice; Stephant, Eric; Constantin, Pascal; De Maistre, Sebastien; Louge, Pierre; Blatteau, Jean-Eric

    2010-11-01

    We conducted a controlled study to assess the prevalence of brain MRI hyperintense signals and their correlation with right-to-left shunting (RLS) in military divers. We prospectively enrolled 32 asymptomatic military divers under 41 yr of age and 32 non-diving healthy subjects matched with respect to age and vascular disease risk factors. We examined both groups with a 3-Tesla brain MRI; RLS was detected using transcranial pulsed Doppler in divers only. Hyperintense spots were observed in 43.7% of the divers and 21.8% of the control subjects. In particular, divers with significant shunting exhibited a higher prevalence of hyperintensities compared to those with slight or no RLS (75% vs. 25%, respectively). Linear trend analysis also revealed a positive correlation between focal white matter changes, determined using a validated visual rating scale and the RLS grade. Healthy military divers with a hemodynamically relevant RLS have an increased likelihood of cerebral hyperintense spots compared to age-matched normal subjects. The clinical relevance of these MRI signal abnormalities and their causal relationship with diving remain unclear.

  20. Serum S-100β protein as a biomarker for brain damage in patients with encephalopathy

    International Nuclear Information System (INIS)

    Takeda, Munekazu; Yaguchi, Arino; Yamada, Sou; Nagai, Atsushi; Yuzawa, Junji

    2008-01-01

    Cerebrospinal fluid concentrations of S-100β protein, an acidic calcium-binding protein found in astrocytes and Schwann cells, increase after central nervous system damage. Serum S-100β protein, thus, has been expected to be a biochemical marker of brain cell damage. Several reports show a relation between severity of head injury and serum S-100β protein levels, although, there are still not significant advances in the study of S-100β regarding the prediction of the clinical outcome in brain diseases. The objective of the present study was to verify S-100β as a marker for the clinical outcome in patients with encephalopathy. Serum S-100β protein concentrations (pg/ml) were measured daily using enzyme-linked immunosorbent assay (ELISA) until discharge from the intensive care unit (ICU) in 82 patients (54 men, 28 women; age 20-93 years [mean 61.0±19.2]) with moderate or severe encephalopathy. There were 50 survivors and 32 non-survivors. S-100β levels were significantly lower in survivors (240.2 pg/ml) than in non-survivors (1,594.8 pg/ml) from day 1 until ICU discharge. The electroencephalogram (EEG) and computed tomography (CT) abnormalities were correlated with S-100β levels. The optimal cut-off value at 451.2 pg/ml calculated from receiver operating characteristic (ROC) curve analysis showed the sensitivity of 80.2% and specificity of 78.1% for ICU mortality. Our results indicate that serum S-100β protein could be a useful biomarker to assess brain damage and predict prognosis in patients with encephalopathy. (author)

  1. Attenuating brain inflammation, ischemia, and oxidative damage by hyperbaric oxygen in diabetic rats after heat stroke

    Directory of Open Access Journals (Sweden)

    Kai-Li Lee

    2013-08-01

    Conclusion: Our results suggest that, in diabetic animals, HBO2 therapy may improve outcomes of HS in part by reducing heat-induced activated inflammation and ischemic and oxidative damage in the hypothalamus and other brain regions.

  2. Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage.

    Directory of Open Access Journals (Sweden)

    Kyeung Min Joo

    Full Text Available Radiation therapy is an indispensable therapeutic modality for various brain diseases. Though endogenous neural stem cells (NSCs would provide regenerative potential, many patients nevertheless suffer from radiation-induced brain damage. Accordingly, we tested beneficial effects of exogenous NSC supplementation using in vivo mouse models that received whole brain irradiation. Systemic supplementation of primarily cultured mouse fetal NSCs inhibited radiation-induced brain atrophy and thereby preserved brain functions such as short-term memory. Transplanted NSCs migrated to the irradiated brain and differentiated into neurons, astrocytes, or oligodendrocytes. In addition, neurotrophic factors such as NGF were significantly increased in the brain by NSCs, indicating that both paracrine and replacement effects could be the therapeutic mechanisms of NSCs. Interestingly, NSCs also differentiated into brain endothelial cells, which was accompanied by the restoration the cerebral blood flow that was reduced from the irradiation. Inhibition of the VEGF signaling reduced the migration and trans-differentiation of NSCs. Therefore, trans-differentiation of NSCs into brain endothelial cells by the VEGF signaling and the consequential restoration of the cerebral blood flow would also be one of the therapeutic mechanisms of NSCs. In summary, our data demonstrate that exogenous NSC supplementation could prevent radiation-induced functional loss of the brain. Therefore, successful combination of brain radiation therapy and NSC supplementation would provide a highly promising therapeutic option for patients with various brain diseases.

  3. Influence of a brief episode of anesthesia during the induction of experimental brain trauma on secondary brain damage and inflammation.

    Directory of Open Access Journals (Sweden)

    Clara Luh

    Full Text Available It is unclear whether a single, brief, 15-minute episode of background anesthesia already modulates delayed secondary processes after experimental brain injury. Therefore, this study was designed to characterize three anesthesia protocols for their effect on molecular and histological study endpoints. Mice were randomly separated into groups that received sevoflurane (sevo, isoflurane (iso or an intraperitoneal anesthetic combination (midazolam, fentanyl and medetomidine; comb prior to traumatic brain injury (controlled cortical impact, CCI; 8 m/s, 1 mm impact depth, 3 mm diameter. Twenty-four hours after insult, histological brain damage, neurological function (via neurological severity score, cerebral inflammation (via real-time RT-PCR for IL6, COX-2, iNOS and microglia (via immunohistochemical staining for Iba1 were determined. Fifteen minutes after CCI, the brain contusion volume did not differ between the anesthetic regimens (sevo = 17.9±5.5 mm(3; iso = 20.5±3.7 mm(3; comb = 19.5±4.6 mm(3. Within 24 hours after injury, lesion size increased in all groups (sevo = 45.3±9.0 mm(3; iso = 31.5±4.0 mm(3; comb = 44.2±6.2 mm(3. Sevo and comb anesthesia resulted in a significantly larger contusion compared to iso, which was in line with the significantly better neurological function with iso (sevo = 4.6±1.3 pts.; iso = 3.9±0.8 pts.; comb = 5.1±1.6 pts.. The expression of inflammatory marker genes was not significantly different at 15 minutes and 24 hours after CCI. In contrast, significantly more Iba1-positive cells were present in the pericontusional region after sevo compared to comb anesthesia (sevo = 181±48/mm(3; iso = 150±36/mm(3; comb = 113±40/mm(3. A brief episode of anesthesia, which is sufficient for surgical preparations of mice for procedures such as delivering traumatic brain injury, already has a significant impact on the extent of secondary brain damage.

  4. Rutin protects against cognitive deficits and brain damage in rats with chronic cerebral hypoperfusion.

    Science.gov (United States)

    Qu, Jie; Zhou, Qiong; Du, Ying; Zhang, Wei; Bai, Miao; Zhang, Zhuo; Xi, Ye; Li, Zhuyi; Miao, Jianting

    2014-08-01

    Chronic cerebral hypoperfusion is a critical causative factor for the development of cognitive decline and dementia in the elderly, which involves many pathophysiological processes. Consequently, inhibition of several pathophysiological pathways is an attractive therapeutic strategy for this disorder. Rutin, a biologically active flavonoid, protects the brain against several insults through its antioxidant and anti-inflammatory properties, but its effect on cognitive deficits and brain damage caused by chronic cerebral hypoperfusion remains unknown. Here, we investigated the neuroprotective effect of rutin on cognitive impairments and the potential mechanisms underlying its action in rats with chronic cerebral hypoperfusion. We used Sprague-Dawley rats with permanent bilateral common carotid artery occlusion (BCCAO), a well-established model of chronic cerebral hypoperfusion. After rutin treatment for 12 weeks, the neuroprotective effect of rutin in rats was evaluated by behavioural tests, biochemical and histopathological analyses. BCCAO rats showed marked cognitive deficits, which were improved by rutin treatment. Moreover, BCCAO rats exhibited central cholinergic dysfunction, oxidative damage, inflammatory responses and neuronal damage in the cerebral cortex and hippocampus, compared with sham-operated rats. All these effects were significantly alleviated by treatment with rutin. Our results provide new insights into the pharmacological actions of rutin and suggest that rutin has multi-targeted therapeutical potential on cognitive deficits associated with conditions with chronic cerebral hypoperfusion such as vascular dementia and Alzheimer's disease. © 2014 The British Pharmacological Society.

  5. The 2100MHz radiofrequency radiation of a 3G-mobile phone and the DNA oxidative damage in brain.

    Science.gov (United States)

    Sahin, Duygu; Ozgur, Elcin; Guler, Goknur; Tomruk, Arın; Unlu, Ilhan; Sepici-Dinçel, Aylin; Seyhan, Nesrin

    2016-09-01

    We aimed to evaluate the effect of 2100MHz radiofrequency radiation emitted by a generator, simulating a 3G-mobile phone on the brain of rats during 10 and 40 days of exposure. The female rats were randomly divided into four groups. Group I; exposed to 3G modulated 2100MHz RFR signal for 6h/day, 5 consecutive days/wk for 2 weeks, group II; control 10 days, were kept in an inactive exposure set-up for 6h/day, 5 consecutive days/wk for 2 weeks, group III; exposed to 3G modulated 2100MHz RFR signal for 6h/day, 5 consecutive days/wk for 8 weeks and group IV; control 40 days, were kept in an inactive exposure set-up for 6h/day, 5 consecutive days/wk for 8 weeks. After the genomic DNA content of brain was extracted, oxidative DNA damage (8-hydroxy-2'deoxyguanosine, pg/mL) and malondialdehyde (MDA, nmoL/g tissue) levels were determined. Our main finding was the increased oxidative DNA damage to brain after 10 days of exposure with the decreased oxidative DNA damage following 40 days of exposure compared to their control groups. Besides decreased lipid peroxidation end product, MDA, was observed after 40 days of exposure. The measured decreased quantities of damage during the 40 days of exposure could be the means of adapted and increased DNA repair mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effect of Shock-Induced Cavitation Bubble Collapse on the damage in the Simulated Perineuronal Net of the Brain.

    Science.gov (United States)

    Wu, Yuan-Ting; Adnan, Ashfaq

    2017-07-13

    The purpose of this study is to conduct modeling and simulation to understand the effect of shock-induced mechanical loading, in the form of cavitation bubble collapse, on damage to the brain's perineuronal nets (PNNs). It is known that high-energy implosion due to cavitation collapse is responsible for corrosion or surface damage in many mechanical devices. In this case, cavitation refers to the bubble created by pressure drop. The presence of a similar damage mechanism in biophysical systems has long being suspected but not well-explored. In this paper, we use reactive molecular dynamics (MD) to simulate the scenario of a shock wave induced cavitation collapse within the perineuronal net (PNN), which is the near-neuron domain of a brain's extracellular matrix (ECM). Our model is focused on the damage in hyaluronan (HA), which is the main structural component of PNN. We have investigated the roles of cavitation bubble location, shockwave intensity and the size of a cavitation bubble on the structural evolution of PNN. Simulation results show that the localized supersonic water hammer created by an asymmetrical bubble collapse may break the hyaluronan. As such, the current study advances current knowledge and understanding of the connection between PNN damage and neurodegenerative disorders.

  7. Subliminal and Supraliminal Processing of Facial Expression of Emotions: Brain Oscillation in the Left/Right Frontal Area

    OpenAIRE

    Balconi, Michela; Ferrari, Chiara

    2012-01-01

    The unconscious effects of an emotional stimulus have been highlighted by a vast amount of research, whereover it remains questionable whether it is possible to assign a specific function to cortical brain oscillations in the unconscious perception of facial expressions of emotions. Alpha band variation was monitored within the right- and left-cortical side when subjects consciously (supraliminal stimulation) or unconsciously (subliminal stimulation) processed facial patterns. Twenty subjects...

  8. [Effect of leptin on long-term spatial memory of rats with white matter damage in developing brain].

    Science.gov (United States)

    Feng, Er-Cui; Jiang, Li

    2017-12-01

    To investigate the neuroprotective effect of leptin by observing its effect on spatial memory of rats with white matter damage in developing brain. A total of 80 neonatal rats were randomly divided into 3 groups: sham-operation (n=27), model (n=27) and leptin intervention (n=27). The rats in the model and leptin intervention groups were used to prepare a model of white matter damage in developing brain, and the rats in the leptin intervention group were given leptin (100 μg/kg) diluted with normal saline immediately after modelling for 4 consecutive days. The survival rate of the rats was observed and the change in body weight was monitored. When the rats reached the age of 21 days, the Morris water maze test was used to evaluate spatial memory. There was no significant difference in the survival rate of rats between the three groups (P>0.05). Within 10 days after birth, the leptin intervention group had similar body weight as the sham-operation group and significantly lower body weight than the model group (P0.05). The results of place navigation showed that from the second day of experiment, there was a significant difference in the latency period between the three groups (Pmemory impairment of rats with white matter damage in developing brain. It thus exerts a neuroprotective effect, and is worthy of further research.

  9. Salvia officinalis l. (sage) Ameliorates Radiation-Induced Oxidative Brain Damage In Rats

    International Nuclear Information System (INIS)

    Osman, N. N.; Abd El Azime, A.Sh.

    2013-01-01

    The present study was designed to investigate the oxidative stress and the role of antioxidant system in the management of gamma irradiation induced whole brain damage in rats . Also, to elucidate the potential role of Salvia officinalis (sage) in alleviating such negative effects. Rats were subjected to gamma radiation (6 Gy). Sage extract was daily given to rats during 14 days before starting irradiation and continued after radiation exposure for another 14 days. The results revealed that the levels of thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC) and nitric oxide (NO) content were significantly increased, while the activities of superoxide dismutase (SOD) and catalase (CAT) as well as the reduced glutathione (GSH) content were significantly decreased in the brain homogenate of irradiated rats. Additionally, brain acetylcholinesterase (AChE) as well as alkaline phosphatase (ALP), acid phosphatase (ACP) and lactate dehydrogenase (LDH) activities were significantly increased. On the other hand, the results showed that, administration of sage extract to rats was able to ameliorate the mentioned parameters and the values returned close to the normal ones. It could be concluded that sage extract, by its antioxidant constituents, could modulate radiation induced oxidative stress and enzyme activities in the brain.

  10. Ipsilateral deficits in 1-handed shoe tying after left or right hemisphere stroke.

    Science.gov (United States)

    Poole, Janet L; Sadek, Joseph; Haaland, Kathleen Y

    2009-10-01

    Poole JL, Sadek J, Haaland KY. Ipsilateral deficits in 1-handed shoe tying after left or right hemisphere stroke. To examine 1-handed shoe tying performance and whether cognitive deficits more associated with left or right hemisphere damage differentially affect it after unilateral stroke. Observational cohort comparing ipsilesional shoe tying, spatial and language skills, and limb praxis. Primary care Veterans Affairs and private medical center. Not applicable. Volunteer right-handed sample of adults with left or right hemisphere damage and healthy demographically matched adults. The number of correct trials and the total time to complete 10 trials tying a shoe using the 1-handed method. Both stroke groups had fewer correct trials and were significantly slower tying the shoe than the control group. Spatial skills predicted accuracy and speed after right hemisphere damage. After left hemisphere damage, accuracy was predicted by spatial skills and limb praxis, while speed was predicted by limb praxis only. Ipsilesional shoe tying is similarly impaired after left or right hemisphere damage, but for different reasons. Spatial deficits had a greater influence after right hemisphere damage, and limb apraxia had a greater influence after left hemisphere damage. Language deficits did not affect performance, indicating that aphasia does not preclude using this therapy approach. These results suggest that rehabilitation professionals should consider assessment of limb apraxia and ipsilesional skill training in the performance of everyday tasks.

  11. Frontal White Matter Damage Impairs Response Inhibition in Children Following Traumatic Brain Injury

    Science.gov (United States)

    Lipszyc, Jonathan; Levin, Harvey; Hanten, Gerri; Hunter, Jill; Dennis, Maureen; Schachar, Russell

    2014-01-01

    Inhibition, the ability to suppress inappropriate cognitions or behaviors, can be measured using computer tasks and questionnaires. Inhibition depends on the frontal cortex, but the role of the underlying white matter (WM) is unclear. We assessed the specific impact of frontal WM damage on inhibition in 29 children with moderate-to-severe traumatic brain injury (15 with and 14 without frontal WM damage), 21 children with orthopedic injury, and 29 population controls. We used the Stop Signal Task to measure response inhibition, the Behavior Rating Inventory of Executive Function to assess everyday inhibition, and T2 fluid-attenuated inversion recovery magnetic resonance imaging to identify lesions. Children with frontal WM damage had impaired response inhibition compared with all other groups and poorer everyday inhibition than the orthopedic injury group. Frontal WM lesions most often affected the superior frontal gyrus. These results provide evidence for the critical role of frontal WM in inhibition. PMID:24618405

  12. Diffuse damage to central nervous system in progressive rheumatoid arthritis complicated by cerebral hermorrhage after radioisotope cisternography

    International Nuclear Information System (INIS)

    Tarnowska-Dziduszko, E.; Lazarowicz, J.

    1980-01-01

    Presented case reveals unusual reaction of central nervous system in the course of progressive rheumatoid arthritis and cerebral hemorrhage as a rare complication after radioisotope investigation of cerebro-spinal fluid spaces. Female, 58 years old which was treated for 22 years for progressive rheumatoid arthritis developed during last 3 years of life a psychoorganic syndrome with temporal epilepsy and slight left sided hemiparesis. After radioisotope cisternography appeared decerebration followed by death. On autopsy the hemorrhagic foci were found in left cerebral hemisphere and in the brain stem. Histological finding was generalized severe damage to interstitial vessels diagnosed as fibrinotic, necrotizing degeneration of capillary and arteriolar wall, significant proliferation of microglia in the white matter and brain stem. Chronic inflammatory infiltrates were present in leptomeninges. Pathogenesis of findings in connection with progressive rheumatoid arthritis and complications due to cisternography is discussed. (author)

  13. Switching Language Modes: Complementary Brain Patterns for Formulaic and Propositional Language.

    Science.gov (United States)

    Sidtis, John J; Van Lancker Sidtis, Diana; Dhawan, Vijay; Eidelberg, David

    2018-04-01

    Language has been modeled as a rule governed behavior for generating an unlimited number of novel utterances using phonological, syntactic, and lexical processes. This view of language as essentially propositional is expanding as a contributory role of formulaic expressions (e.g., you know, have a nice day, how are you?) is increasingly recognized. The basic features of the functional anatomy of this language system have been described by studies of brain damage: left lateralization for propositional language and greater right lateralization and basal ganglia involvement for formulaic expressions. Positron emission tomography (PET) studies of cerebral blood flow (CBF) have established a cortical-subcortical pattern of brain activity predictive of syllable rate during phonological/lexical repetition. The same analytic approach was applied to analyzing brain images obtained during spontaneous monologues. Sixteen normal, right-handed, native English speakers underwent PET scanning during several language tasks. Speech rate for the repetition of phonological/lexical items was predicted by increased CBF in the left inferior frontal region and decreased CBF in the head of the right caudate nucleus, replicating previous results. A complementary cortical-subcortical pattern (CBF increased in the right inferior frontal region and decreased in the left caudate) was predictive of the use of speech formulas during monologue speech. The use of propositional language during the monologues was associated with strong left lateralization (increased CBF at the left inferior frontal region and decreased CBF at the right inferior frontal region). Normal communication involves the integration of two language modes, formulaic and novel, that have different neural substrates.

  14. Effects of inhibitory theta burst TMS to different brain sites involved in visuospatial attention - a combined neuronavigated cTBS and behavioural study.

    Science.gov (United States)

    Platz, Thomas; Schüttauf, Johannes; Aschenbach, Julia; Mengdehl, Christine; Lotze, Martin

    2016-01-01

    The study sought to alter visual spatial attention in young healthy subjects by a neuronavigated inhibitory rTMS protocol (cTBS-600) to right brain areas thought to be involved in visual attentional processes, i.e. the temporoparietal junction (TPJ) and the posterior middle frontal gyrus (pMFG), and to test the reversibility of effects by an additional consecutive cTBS to the homologue left brain cortical areas. Healthy subjects showed a leftward bias of the egocentric perspective for both visual-perceptive and visual-exploratory tasks specifically for items presented in the left hemifield. cTBS to the right TPJ, and less systematically to the right pMFG reduced this bias for visuo-spatial and exploratory visuo-motor behaviour. Further, a consecutive cTBS to the left TPJ changed the bias again towards the left for a visual-perceptive task. The evidence supports the notion of an involvement of the right TPJ (and pMFG) in spatial visual attention. The observations further indicate that inhibitory non-invasive brain stimulation (cTBS) to the left TPJ has a potential for reversing a rightward bias of spatial attention when the right TPJ is dysfunctional. Accordingly, the findings could have implications for therapeutic rTMS development for right brain damaged patients with visual neglect.

  15. The significance of clumsy gestures in apraxia following a left hemisphere stroke.

    Science.gov (United States)

    Kangas, Maria; Tate, Robyn L

    2006-02-01

    Individuals who sustain a cerebrovascular accident (CVA) in the dominant (typically left) hemisphere, are at increased risk of developing motor skill deficits due to motor-sensory impairments, as well as cognitive impairments (e.g., apraxia). Clumsiness is a central component affecting motor skills in individuals with a left hemisphere CVA (LCVA). The term "clumsiness" however, has not been adequately operationalised in the apraxia literature in clinical terms, thereby making diagnosis difficult and its contribution to apraxic disorders uncertain. Accordingly, in this study "clumsiness" was explicitly defined by establishing a set of four criteria. The non-dominant (left) hand movements of three groups of participants were examined: 10 individuals with limb-apraxia (APX); 8 individuals without limb apraxia who had sustained a LCVA (NAPX); and 19 healthy individuals without a history of brain impairment (NBD). Performance was examined on four sets of motor tasks, including a conventional praxis test, basic perceptual-motor co-ordination and fine movement tasks, and a naturalistic actions test. A striking finding that emerged was that clumsy errors occurred frequently in all groups, including the NBD group, particularly on the praxis and fine motor tasks. In terms of quantity of clumsy errors emitted, the APX group made significantly more clumsy gestures across all four tasks in comparison to the NBD group. No differences emerged between the two clinical groups, however, in terms of total clumsy gestures emitted on the naturalistic action tasks, or the type of clumsy errors emitted on the fine motor tasks. Thus, frequency and types of clumsy gestures were partly determined by task demands. These results highlight the need to consider the contribution of clumsy gestures in limb functioning following hemispheric brain damage. In broad terms, these findings emphasise the importance of adopting more detailed analyses of movement errors in apraxia and assessments of

  16. Piezosurgery prevents brain tissue damage: an experimental study on a new rat model

    Czech Academy of Sciences Publication Activity Database

    Pavlíková, G.; Foltán, R.; Burian, M.; Horká, E.; Adámek, S.; Hejčl, Aleš; Hanzelka, T.; Šedý, Jiří

    2011-01-01

    Roč. 40, č. 8 (2011), s. 840-844 ISSN 0901-5027 R&D Projects: GA MŠk(CZ) LC554; GA ČR GAP304/10/0320 Grant - others:GA MŠk(CZ) 1M0538 Program:1M Institutional research plan: CEZ:AV0Z50390703 Keywords : piezosurgery * brain * tissue damage Subject RIV: FJ - Surgery incl. Transplants; FH - Neurology (UEM-P) Impact factor: 1.506, year: 2011

  17. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk.

    Directory of Open Access Journals (Sweden)

    Denis N Silachev

    Full Text Available BACKGROUND: Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. METHODOLOGY/PRINCIPAL FINDINGS: We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated

  18. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk.

    Science.gov (United States)

    Silachev, Denis N; Isaev, Nikolay K; Pevzner, Irina B; Zorova, Ljubava D; Stelmashook, Elena V; Novikova, Svetlana V; Plotnikov, Egor Y; Skulachev, Vladimir P; Zorov, Dmitry B

    2012-01-01

    Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β) in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s) which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated kidney cells with cortical neurons resulted in enchanced

  19. Dissociated repetition deficits in aphasia can reflect flexible interactions between left dorsal and ventral streams and gender-dimorphic architecture of the right dorsal stream.

    Science.gov (United States)

    Berthier, Marcelo L; Froudist Walsh, Seán; Dávila, Guadalupe; Nabrozidis, Alejandro; Juárez Y Ruiz de Mier, Rocío; Gutiérrez, Antonio; De-Torres, Irene; Ruiz-Cruces, Rafael; Alfaro, Francisco; García-Casares, Natalia

    2013-01-01

    Assessment of brain-damaged subjects presenting with dissociated repetition deficits after selective injury to either the left dorsal or ventral auditory pathways can provide further insight on their respective roles in verbal repetition. We evaluated repetition performance and its neural correlates using multimodal imaging (anatomical MRI, DTI, fMRI, and(18)FDG-PET) in a female patient with transcortical motor aphasia (TCMA) and in a male patient with conduction aphasia (CA) who had small contiguous but non-overlapping left perisylvian infarctions. Repetition in the TCMA patient was fully preserved except for a mild impairment in nonwords and digits, whereas the CA patient had impaired repetition of nonwords, digits and word triplet lists. Sentence repetition was impaired, but he repeated novel sentences significantly better than clichés. The TCMA patient had tissue damage and reduced metabolism in the left sensorimotor cortex and insula. DTI showed damage to the left temporo-frontal and parieto-frontal segments of the arcuate fasciculus (AF) and part of the left ventral stream together with well-developed right dorsal and ventral streams, as has been reported in more than one-third of females. The CA patient had tissue damage and reduced metabolic activity in the left temporoparietal cortex with additional metabolic decrements in the left frontal lobe. DTI showed damage to the left temporo-parietal and temporo-frontal segments of the AF, but the ventral stream was spared. The direct segment of the AF in the right hemisphere was also absent with only vestigial remains of the other dorsal subcomponents present, as is often found in males. fMRI during word and nonword repetition revealed bilateral perisylvian activation in the TCMA patient suggesting recruitment of spared segments of the left dorsal stream and right dorsal stream with propagation of signals to temporal lobe structures suggesting a compensatory reallocation of resources via the ventral streams. The

  20. Toxicological aspects of interesterified fat: Brain damages in rats.

    Science.gov (United States)

    D'avila, Lívia Ferraz; Dias, Verônica Tironi; Vey, Luciana Taschetto; Milanesi, Laura Hautrive; Roversi, Karine; Emanuelli, Tatiana; Bürger, Marilise Escobar; Trevizol, Fabíola; Maurer, H Luana

    2017-07-05

    In recent years, interesterified fat (IF) has been used to replace hydrogenated vegetable fat (HVF), rich in trans isomers, being found in processed foods. Studies involving IF have shown deleterious influences on the metabolic system, similarly to HVF, whereas no studies regarding its influence on the central nervous system (CNS) were performed. Rats from first generation born and maintained under supplementation (3g/Kg, p.o.) of soybean-oil or IF until adulthood were assessed on memory, biochemical and molecular markers in the hippocampus. IF group showed higher saturated fatty acids and linoleic acid and lower docosahexaenoic acid incorporation in the hippocampus. In addition, IF supplementation impaired short and long-term memory, which were related to increased reactive species generation and protein carbonyl levels, decreased catalase activity, BDNF and TrkB levels in the hippocampus. To the best of our knowledge, this is the first study to show that lifelong IF consumption may be related to brain oxidative damage, memory impairments and neurotrophins modifications, which collectively may be present indifferent neurological disorders. In fact, the use of IF in foods was intended to avoid damage from HVF consumption; however this substitute should be urgently reviewed, since this fat can be as harmful as trans fat. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Brain uptake of Se 75-selenomethionine after damage to blood-brain barrier by mercuric ions

    Energy Technology Data Exchange (ETDEWEB)

    Steinwall, O

    1969-01-01

    Previous experimental studies have indicated that perfusing the vessels of the brain with mercuric ions may not only cause damage to the blood-brain barrier in allowing the extravasation of acid dyes, but also have the ostensibly contrary effect of diminishing the uptake of radioactive tracers for important nutrients. These observations were based on the direct comparison of the two hemispheres of the same animal, one perfused with mercuric ions and the other serving as a control. The present paper reports the results of a corresponding investigation with Se75-L-selenomethionine. This methionine analogue seems to be transported and metabolized in much the same way as natural methionine and is conveniently assayed due to the labelling into a ..gamma..-emitting isotope. In addition, as in this study, a check as to whether or not the mercuric ions caused asymmetry of the blood flow was desired, and the similar ..gamma..-emitting I 131-iodoantipyrine was used for this purpose. The long half-life of Se75 made it easy to distinguish in the same specimens its activity from that of the blood flow indicator.

  2. Ang-(1-7) exerts protective role in blood-brain barrier damage by the balance of TIMP-1/MMP-9.

    Science.gov (United States)

    Wu, Jitao; Zhao, Duo; Wu, Shuang; Wang, Dan

    2015-02-05

    Cerebrovascular disease (CVD) ranks as the top three health risks, specially cerebral ischemia characterized with the damage of blood-brain barrier (BBB). The angiotensin Ang-(1-7) was proven to have a protective effect on cerebrovascular diseases. However, its role on blood-brain barrier and the underlying molecular mechanism remains unclear. In this study, Ang-(1-7) significantly relieved damage of ischemia reperfusion injury on blood-brain barrier in cerebral ischemia reperfusion injury (IRI) rats. Furthermore, its treatment attenuated BBB permeability and brain edema. Similarly, Ang-(1-7) also decreased the barrier permeability of brain endothelial cell line RBE4. Further analysis showed that Ang-(1-7) could effectively restore tight junction protein (claudin-5 and zonula occludens ZO-1) expression levels both in IRI-rats and hypoxia-induced RBE4 cells. Furthermore, Ang-(1-7) stimulation down-regulated hypoxia-induced matrix metalloproteinase-9 (MMP-9) levels, whose silencing with (matrix metalloproteinase-9 hemopexin domain) MMP9-PEX inhibitor significantly increased the expression of claudin-5 and ZO-1. Further mechanism analysis demonstrated that Ang-(1-7) might junction protein levels by tissue inhibitor of metalloproteinase 1 (TIMP1)-MMP9 pathway, because Ang-(1-7) enhanced TIMP1 expression, whose silencing obviously attenuated the inhibitor effect of Ang-(1-7) on MMP-9 levels and decreased Ang-(1-7)-triggered increase in claudin-5 and ZO-1. Together, this study demonstrated a protective role of Ang-(1-7) in IRI-induced blood-brain barrier damage by TIMP1-MMP9-regulated tight junction protein expression. Accordingly, Ang-(1-7) may become a promising therapeutic agent against IRI and its complications. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Damage to the medial motor system in stroke patients with motor neglect

    Directory of Open Access Journals (Sweden)

    Raffaella eMigliaccio

    2014-06-01

    Full Text Available Background and objectives. Motor neglect (MN is a clinically important condition whereby patients with unilateral brain lesions fail to move their contralateral limbs, despite normal muscle strength, reflexes, and sensation. MN has been associated with various lesion sites, including the parietal and frontal cortex, the internal capsule, the lenticulostriate nuclei, and the thalamus. In the present study, we explored the hypothesis that MN depends on a dysfunction of the medial motor system by performing a detailed anatomical analysis in four patients with MN.Methods. Ten patients participated in the study: four with MN, four with left visual neglect but without MN, and three patients with left hemiplegia without MN. We used specific scales for clinical and neuropsychological assessment. We drew the lesion borders directly onto the original brain images of each patient, and plotted the lesions on anatomical atlases for grey and white matter. Results. Lesion locations were highly heterogeneous in our MN patients, and included frontal and parietal sites, basal ganglia and white matter. The only consistently damaged structure across all MN patients was the cingulum bundle, a major pathway of the medial motor system important for motor initiative, and a key connection with limbic structures crucial for motivational aspects of actions. Three MN patients with additional damage to lateral fronto-parietal networks had also signs of contralesional visual neglect. The cingulum bundle was intact in all the control patients with visual neglect or hemiplegia.Conclusions. Cingulum damage may induce MN through unilateral dysfunction of the medial motor system. Additional lateral fronto-parietal dysfunction can result in the association with visual neglect.

  4. Protective effect of Kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat

    OpenAIRE

    Najmeh Kabiri; Mahbubeh Setorki

    2016-01-01

    The aim of study was to investigate the potential neuroprotective effects of Kombucha on cerebral damage induced by ischemia in rats (n=99). Cerebral infarct volume in the ischemic rats received Kombucha solution showed no significance alteration. However, the permeability of blood-brain barrier significantly decreased in both ischemic rats received 15 mg/kg Kombucha tea and Sham group. In addition, brain water content in the ischemic groups treated with Kombucha solution was significantly hi...

  5. EFFECTS OF CANNABIDIOL PLUS HYPOTHERMIA ON SHORT-TERM NEWBORN PIG BRAIN DAMAGE AFTER ACUTE HYPOXIA-ISCHEMIA

    Directory of Open Access Journals (Sweden)

    Hector Lafuente

    2016-07-01

    Full Text Available Background: Hypothermia is standard treatment for neonatal encephalopathy, but near 50% of treated infants have adverse outcomes. Pharmacological therapies can act through complementary mechanisms to hypothermia and would improve neuroprotection. Cannabidiol could be a good candidate.Objective: To test whether immediate treatment with cannabidiol and hypothermia act through complementary brain pathways in hypoxic-ischemic newborn piglets.Methods: Hypoxic-ischemic animals were randomized to receive 30 min after the insult: 1 normothermia- and vehicle-treated group; 2 normothermia- and cannabidiol-treated group; 3 hypothermia- and vehicle-treated group; and 4 hypothermia- and cannabidiol-treated group. Six hours after treatment, brains were processed to qualify the number of neurons by Nissl staining. Proton nuclear magnetic resonance spectra were obtained and analyzed for lactate, N-acetyl-aspartate and glutamate. Metabolite ratios were calculated to assess neuronal damage (lactate/N-acetyl-aspartate and excitotoxicity (glutamate/Nacetyl-aspartate. Western blot studies were performed to quantify protein nitrosylation (oxidative stress and expression of caspase-3 (apoptosis and TNFα (inflammation.Results: Individually, the hypothermia and the cannabidiol treatments reduced the glutamate/Nacetyl-aspartate ratio, as well as TNFα and oxidized protein levels. Also, both therapies reduced the number of necrotic neurons and prevented an increase in lactate/N-acetyl-aspartate ratio. The combined effect of hypothermia and cannabidiol on excitotoxicity, inflammation and oxidative stress, and on histological damage, was greater than either hypothermia or cannabidiol alone.Conclusion: Cannabidiol and hypothermia act complementarily and show additive effects on the main factors leading to hypoxic-ischemic brain damage.

  6. Left hemisphere structural connectivity abnormality in pediatric hydrocephalus patients following surgery

    Directory of Open Access Journals (Sweden)

    Weihong Yuan

    2016-01-01

    Edition (ABAS-II]. However, one global network measure (global efficiency and two regional network measures in the insula (local efficiency and between centrality tested at 3-month post-surgery were found to correlate with GAC score tested at 12-month post-surgery with statistical significance (all p < 0.05, corrected. Our data showed that the structural connectivity analysis based on DTI and graph theory was sensitive in detecting both global and regional network abnormality when the analysis was conducted in the left hemisphere only. This approach provides a new avenue enabling the application of advanced neuroimaging analysis methods in quantifying brain damage in children with hydrocephalus surgically treated with programmable shunts.

  7. Establishing a model for assessing DNA damage in murine brain cells as a molecular marker of chemotherapy-associated cognitive impairment.

    Science.gov (United States)

    Krynetskiy, Evgeny; Krynetskaia, Natalia; Rihawi, Diana; Wieczerzak, Katarzyna; Ciummo, Victoria; Walker, Ellen

    2013-10-17

    Chemotherapy-associated cognitive impairment often follows cancer chemotherapy. We explored chemotherapy-induced DNA damage in the brain cells of mice treated with 5-fluorouracil (5FU), an antineoplastic agent, to correlate the extent of DNA damage to behavioral functioning in an autoshaping-operant mouse model of chemotherapy-induced learning and memory deficits (Foley et al., 2008). Male, Swiss-Webster mice were injected once with saline or 75 mg/kg 5FU at 0, 12, and 24h and weighed every 24h. Twenty-four h after the last injection, the mice were tested in a two-day acquisition and the retention of a novel response task for food reinforcement. Murine brain cells were analyzed for the presence of single- and double-strand DNA breaks by the single cell gel electrophoresis assay (the Comet assay). We detected significant differences (p<0.0001) for all DNA damage characteristics (DNA "comet" tail shape, migration pattern, tail moment and olive moments) between control mice cohort and 5FU-treated mice cohort: tail length - 119 vs. 153; tail moment - 101 vs. 136; olive moment - 60 vs. 82, correspondingly. We found a positive correlation between increased response rates (r=0.52, p<0.05) and increased rate of errors (r=0.51, p<0.05), and DNA damage on day 1. For all 15 mice (saline-treated and 5FU-treated mice), we found negative correlations between DNA damage and weight (r=-0.75, p<0.02). Our results indicate that chemotherapy-induced DNA damage changes the physiological status of the brain cells and may provide insights to the mechanisms for cognitive impairment after cancer chemotherapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Using transcranial magnetic stimulation of the undamaged brain to identify lesion sites that predict language outcome after stroke.

    Science.gov (United States)

    Lorca-Puls, Diego L; Gajardo-Vidal, Andrea; Seghier, Mohamed L; Leff, Alexander P; Sethi, Varun; Prejawa, Susan; Hope, Thomas M H; Devlin, Joseph T; Price, Cathy J

    2017-06-01

    Transcranial magnetic stimulation focused on either the left anterior supramarginal gyrus or opercular part of the left inferior frontal gyrus has been reported to transiently impair the ability to perform phonological more than semantic tasks. Here we tested whether phonological processing abilities were also impaired following lesions to these regions in right-handed, English speaking adults, who were investigated at least 1 year after a left-hemisphere stroke. When our regions of interest were limited to 0.5 cm3 of grey matter centred around sites that had been identified with transcranial magnetic stimulation-based functional localization, phonological impairments were observed in 74% (40/54) of patients with damage to the regions and 21% (21/100) of patients sparing these regions. This classification accuracy was better than that observed when using regions of interest centred on activation sites in previous functional magnetic resonance imaging studies of phonological processing, or transcranial magnetic stimulation sites that did not use functional localization. New regions of interest were generated by redefining the borders of each of the transcranial magnetic stimulation sites to include areas that were consistently damaged in the patients with phonological impairments. This increased the incidence of phonological impairments in the presence of damage to 85% (46/54) and also reduced the incidence of phonological impairments in the absence of damage to 15% (15/100). The difference in phonological processing abilities between those with and without damage to these 'transcranial magnetic stimulation-guided' regions remained highly significant even after controlling for the effect of lesion size. The classification accuracy of the transcranial magnetic stimulation-guided regions was validated in a second sample of 108 patients and found to be better than that for (i) functional magnetic resonance imaging-guided regions; (ii) a region identified from an

  9. An Evidence-Based Systematic Review on Communication Treatments for Individuals with Right Hemisphere Brain Damage

    Science.gov (United States)

    Blake, Margaret Lehman; Frymark, Tobi; Venedictov, Rebecca

    2013-01-01

    Purpose: The purpose of this review is to evaluate and summarize the research evidence related to the treatment of individuals with right hemisphere communication disorders. Method: A comprehensive search of the literature using key words related to right hemisphere brain damage and communication treatment was conducted in 27 databases (e.g.,…

  10. Pure Left Neglect for Arabic Numerals

    Science.gov (United States)

    Priftis, Konstantinos; Albanese, Silvia; Meneghello, Francesca; Pitteri, Marco

    2013-01-01

    Arabic numerals are diffused and language-free representations of number magnitude. To be effectively processed, the digits composing Arabic numerals must be spatially arranged along a left-to-right axis. We studied one patient (AK) to show that left neglect, after right hemisphere damage, can selectively impair the computation of the spatial…

  11. The effects of vitamin E on brain derived neurotrophic factor, tissues oxidative damage and learning and memory of juvenile hypothyroid rats.

    Science.gov (United States)

    Baghcheghi, Yousef; Beheshti, Farimah; Shafei, Mohammad Naser; Salmani, Hossein; Sadeghnia, Hamid Reza; Soukhtanloo, Mohammad; Anaeigoudari, Akbar; Hosseini, Mahmoud

    2018-06-01

    The effects of vitamin E (Vit E) on brain derived neurotrophic factor (BDNF) and brain tissues oxidative damage as well as on learning and memory impairments in juvenile hypothyroid rats were examined. The rats were grouped as: (1) Control; (2) Propylthiouracil (PTU); (3) PTU-Vit E and (4) Vit E. PTU was added to their drinking water (0.05%) during 6 weeks. Vit E (20 mg/kg) was daily injected (IP). Morris water maze (MWM) and passive avoidance (PA) were carried out. The animals were deeply anesthetized and the brain tissues were removed for biochemical measurements. PTU increased the escape latency and traveled path in MWM (P E (P E improved BDNF, thiol, SOD and CAT while diminished MDA. The results of the present study showed that Vit E improved BDNF and prevented from brain tissues oxidative damage as well as learning and memory impairments in juvenile hypothyroid rats.

  12. Arctigenin Treatment Protects against Brain Damage through an Anti-Inflammatory and Anti-Apoptotic Mechanism after Needle Insertion

    Science.gov (United States)

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-feng; Kong, Liang; Yao, Ying-Jia; Jiao, Ya-Nan; Yan, Yu-Hui; Li, Shao-Heng; Tao, Zhen-Yu; Lian, Guan; Yang, Jing-Xian; Kang, Ting-Guo

    2016-01-01

    Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in a stab wound injury (SWI). Subsequent secondary injury involves the release of inflammatory and apoptotic cytokines, which have dramatic consequences on the integrity of damaged tissue, leading to the evolution of a pericontusional-damaged area minutes to days after in the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary brain injury and the determination of the underlying mechanism of action in a mouse model of SWI that mimics the process of CED. After CED, mice received a gavage of ARC from 30 min to 14 days. Neurological severity scores (NSS) and wound closure degree were assessed after the injury. Histological analysis and immunocytochemistry were used to evaluated the extent of brain damage and neuroinflammation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect universal apoptosis. Enzyme-linked immunosorbent assays (ELISA) was used to test the inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10) and lactate dehydrogenase (LDH) content. Gene levels of inflammation (TNF-α, IL-6, and IL-10) and apoptosis (Caspase-3, Bax and Bcl-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR). Using these, we analyzed ARC’s efficacy and mechanism of action. Results: ARC treatment improved neurological function by reducing brain water content and hematoma and accelerating wound closure relative to untreated mice. ARC treatment reduced the levels of TNF-α and IL-6 and the number of allograft inflammatory factor (IBA)- and myeloperoxidase (MPO)-positive cells and increased the levels of IL-10. ARC-treated mice had fewer TUNEL+ apoptotic neurons and activated caspase-3-positive neurons surrounding the lesion than controls, indicating increased neuronal survival. Conclusions: ARC treatment confers

  13. Protective effect of green tea polyphenol EGCG against neuronal damage and brain edema after unilateral cerebral ischemia in gerbils.

    Science.gov (United States)

    Lee, Hyung; Bae, Jae Hoon; Lee, Seong-Ryong

    2004-09-15

    Previous studies have demonstrated that a green tea polyphenol, (-)-epigallocatechine gallate (EGCG), has a potent free radical scavenging and antioxidant effect. Glutamate leads to excitotoxicity and oxidative stress, which are important pathophysiologic responses to cerebral ischemia resulting in brain edema and neuronal damage. We investigated the effect of EGCG on excitotoxic neuronal damage in a culture system and the effect on brain edema formation and lesion after unilateral cerebral ischemia in gerbils. In vitro, excitotoxicity was induced by 24-hr incubation with N-methyl-D-aspartate (NMDA; 10 microM), AMPA (10 microM), or kainate (20 microM). EGCG (5 microM) was added to the culture media alone or with excitotoxins. We examined malondialdehyde (MDA) level and neuronal viability to evaluate the effect of EGCG. In vivo, unilateral cerebral ischemia was induced by occlusion of the right common carotid artery for 30, 60, or 90 min and followed by reperfusion of 24 hr. Brain edema, MDA, and infarction were examined to evaluate the protective effect of EGCG. EGCG (25 or 50 mg/kg, intraperitoneally) was administered twice, at 30 min before and immediately after ischemia. EGCG reduced excitotoxin-induced MDA production and neuronal damage in the culture system. In the in vivo study, treatment of gerbils with the lower EGCG dose failed to show neuroprotective effects; however, the higher EGCG dose attenuated the increase in MDA level caused by cerebral ischemia. EGCG also reduced the formation of postischemic brain edema and infarct volume. These results demonstrate EGCG may have future possibilities as a neuroprotective agent against excitotoxicity-related neurologic disorders such as brain ischemia.

  14. NOX4-dependent neuronal autotoxicity and BBB breakdown explain the superior sensitivity of the brain to ischemic damage.

    Science.gov (United States)

    Casas, Ana I; Geuss, Eva; Kleikers, Pamela W M; Mencl, Stine; Herrmann, Alexander M; Buendia, Izaskun; Egea, Javier; Meuth, Sven G; Lopez, Manuela G; Kleinschnitz, Christoph; Schmidt, Harald H H W

    2017-11-14

    Ischemic injury represents the most frequent cause of death and disability, and it remains unclear why, of all body organs, the brain is most sensitive to hypoxia. In many tissues, type 4 NADPH oxidase is induced upon ischemia or hypoxia, converting oxygen to reactive oxygen species. Here, we show in mouse models of ischemia in the heart, brain, and hindlimb that only in the brain does NADPH oxidase 4 (NOX4) lead to ischemic damage. We explain this distinct cellular distribution pattern through cell-specific knockouts. Endothelial NOX4 breaks down the BBB, while neuronal NOX4 leads to neuronal autotoxicity. Vascular smooth muscle NOX4, the common denominator of ischemia within all ischemic organs, played no apparent role. The direct neuroprotective potential of pharmacological NOX4 inhibition was confirmed in an ex vivo model, free of vascular and BBB components. Our results demonstrate that the heightened sensitivity of the brain to ischemic damage is due to an organ-specific role of NOX4 in blood-brain-barrier endothelial cells and neurons. This mechanism is conserved in at least two rodents and humans, making NOX4 a prime target for a first-in-class mechanism-based, cytoprotective therapy in the unmet high medical need indication of ischemic stroke. Copyright © 2017 the Author(s). Published by PNAS.

  15. Piano training in youths with hand motor impairments after damage to the developing brain

    Science.gov (United States)

    Lampe, Renée; Thienel, Anna; Mitternacht, Jürgen; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana

    2015-01-01

    Damage to the developing brain may lead to impairment of the hand motor function and negatively impact on patients’ quality of life. Development of manual dexterity and finger and hand motor function may be promoted by learning to play the piano. The latter brings together music with the intensive training of hand coordination and fine finger mobility. We investigated if learning to play the piano helped to improve hand motor skills in 18 youths with hand motor disorders resulting from damage during early brain development. Participants trained 35–40 minutes twice a week for 18 months with a professional piano teacher. With the use of a Musical Instrument Digital Interface piano, the uniformity of finger strokes could be objectively assessed from the timing of keystrokes. The analysis showed a significant improvement in the uniformity of keystrokes during the training. Furthermore, the youths showed strong motivation and engagement during the study. This is nevertheless an open study, and further studies remain needed to exclude effects of growth and concomitant therapies on the improvements observed and clarify which patients will more likely benefit from learning to play the piano. PMID:26345312

  16. Four cases of small, traumatic hemorrhage in the deep midline portion of the brain

    International Nuclear Information System (INIS)

    Kim, Suho; Tsukahara, Tetsuya; Iwama, Mitsuru; Nishikawa, Michio

    1981-01-01

    Four cases recently encountered are presented in which computerized tomography (CT) demonstrated a small, traumatic hemorrhage in the deep midline portion of the brain. The lesions of hemorrhage revealed by CT were: Case 1, in the septum pellucidum and left lateral ventricle; Case 2, in the Monro's foramen and right lateral ventricle and Case 3, midbrain. These three cases had no other abnormal findings. In addition, a hemorrhage of the corpus callosum and diffuse brain damage were seen in Case 4. These small hemorrhages might be caused not only by the direct damage, but also by a local tendency to bleed due to hystoiogical fragility or the existence of a vascular anomaly, such as AVM or cryptic angioma. The prognoses quod vitam of our cases were relatively better than the previous reports of these hemorrhages, but the prognoses quod functionem were poor. The patients have shown prolonged psychoneurological disorder; these symptoms might be caused by damage to the limbic system. (author)

  17. Left insular cortex and left SFG underlie prismatic adaptation effects on time perception: evidence from fMRI.

    Science.gov (United States)

    Magnani, Barbara; Frassinetti, Francesca; Ditye, Thomas; Oliveri, Massimiliano; Costantini, Marcello; Walsh, Vincent

    2014-05-15

    Prismatic adaptation (PA) has been shown to affect left-to-right spatial representations of temporal durations. A leftward aftereffect usually distorts time representation toward an underestimation, while rightward aftereffect usually results in an overestimation of temporal durations. Here, we used functional magnetic resonance imaging (fMRI) to study the neural mechanisms that underlie PA effects on time perception. Additionally, we investigated whether the effect of PA on time is transient or stable and, in the case of stability, which cortical areas are responsible of its maintenance. Functional brain images were acquired while participants (n=17) performed a time reproduction task and a control-task before, immediately after and 30 min after PA inducing a leftward aftereffect, administered outside the scanner. The leftward aftereffect induced an underestimation of time intervals that lasted for at least 30 min. The left anterior insula and the left superior frontal gyrus showed increased functional activation immediately after versus before PA in the time versus the control-task, suggesting these brain areas to be involved in the executive spatial manipulation of the representation of time. The left middle frontal gyrus showed an increase of activation after 30 min with respect to before PA. This suggests that this brain region may play a key role in the maintenance of the PA effect over time. Copyright © 2014. Published by Elsevier Inc.

  18. Radiation-induced brain damage in children

    International Nuclear Information System (INIS)

    Oi, Shizuo; Kokunai, Takashi; Ijichi, Akihiro; Matsumoto, Satoshi; Raimondi, A.J.

    1990-01-01

    The nature and sequence of the radiation-induced changes in the brain were studied postmortem in 34 children with glioma, 22 of whom underwent central nervous system radiation therapy. Twenty received whole-brain or whole-neuroaxis radiation at a total mean dosage of 4063 cGy. Brain tissue alternations were analyzed histologically by means of various staining methods, including immunohistochemical techniques. The histological features of irradiated brains were compared with those of non-irradiated brains. Microscopic findings included demyelination (seven cases), focal necrosis (six cases), cortical atrophy (four cases), endothelial proliferation (four cases), and telangiectatic vascular proliferation with vascular thickening and oozing of a thick fluid (one case). Such findings were rare in non-irradiated patients. Demyelination was observed earliest in a patient who died 5 months after radiation therapy and was more common after 9 months. Focal necrosis was first observed 9 months post-irradiation but was more advanced and extensive after 1 year. Calcified foci were found only after 60 months. Various vascular changes such as vascular thickening and thrombosis suggested ischemic insult to the brain as a late effect of radiation injury. The results of this study suggest that the immature brain may be more sensitive to radiation than is the adult brain, and that the manifestations of radiation-induced injury depend on the time elapsed after irradiation. (author)

  19. Social isolation stress-induced oxidative damage in mouse brain and its modulation by majonoside-R2, a Vietnamese ginseng saponin.

    Science.gov (United States)

    Huong, Nguyen Thi Thu; Murakami, Yukihisa; Tohda, Michihisa; Watanabe, Hiroshi; Matsumoto, Kinzo

    2005-08-01

    Stressors with a physical factor such as immobilization, electric foot shock, cold swim, etc., have been shown to produce oxidative damage to membrane lipids in the brain. In this study, we investigated the effect of protracted social isolation stress on lipid peroxidation activity in the mouse brain and elucidated the protective effect of majonoside-R2, a major saponin component of Vietnamese ginseng, in mice exposed to social isolation stress. Thiobarbituric acid reactive substance levels, one of the end products of lipid peroxidation reaction, were increased in the brains of mice subjected to 6-8 weeks of social isolation stress. Measurements of nitric oxide (NO) metabolites (NO(x)(-)) also revealed a significant increase of NO production in the brains of socially isolated mice. Moreover, the depletion of brain glutathione content, an endogenous antioxidant, in socially isolated animals occurred in association with the rise in lipid peroxidation. The intraperitoneal administration of majonoside-R2 (10-50 mg/kg) had no effect on thiobarbituric acid reactive substances (TBARS), NO, or glutathione levels in the brains of group-housed control mice but it significantly suppressed the increase in TBARS and NO levels and the decrease in glutathione levels caused by social isolation stress. These results suggest that mice subjected to 6-8 weeks of social isolation stress produces oxidative damage in the brain partly via enhancement of NO production, and that majonoside-R2 exerts a protective effect by modulating NO and glutathione systems in the brain.

  20. Potential for thermal damage to the blood–brain barrier during craniotomy: implications for intracortical recording microelectrodes

    Science.gov (United States)

    Shoffstall, Andrew J.; Paiz, Jen E.; Miller, David M.; Rial, Griffin M.; Willis, Mitchell T.; Menendez, Dhariyat M.; Hostler, Stephen R.; Capadona, Jeffrey R.

    2018-06-01

    Objective. Our objective was to determine how readily disruption of the blood–brain barrier (BBB) occurred as a result of bone drilling during a craniotomy to implant microelectrodes in rat cortex. While the phenomenon of heat production during bone drilling is well known, practices to evade damage to the underlying brain tissue are inconsistently practiced and reported in the literature. Approach. We conducted a review of the intracortical microelectrode literature to summarize typical approaches to mitigate drill heating during rodent craniotomies. Post mortem skull-surface and transient brain-surface temperatures were experimentally recorded using an infrared camera and thermocouple, respectively. A number of drilling conditions were tested, including varying drill speed and continuous versus intermittent contact. In vivo BBB permeability was assayed 1 h after the craniotomy procedure using Evans blue dye. Main results. Of the reviewed papers that mentioned methods to mitigate thermal damage during craniotomy, saline irrigation was the most frequently cited (in six of seven papers). In post mortem tissues, we observed increases in skull-surface temperature ranging from  +3 °C to  +21 °C, dependent on drill speed. In vivo, pulsed-drilling (2 s-on/2 s-off) and slow-drilling speeds (1000 r.p.m.) were the most effective methods we studied to mitigate heating effects from drilling, while inconclusive results were obtained with saline irrigation. Significance. Neuroinflammation, initiated by damage to the BBB and perpetuated by the foreign body response, is thought to play a key role in premature failure of intracortical recording microelectrodes. This study demonstrates the extreme sensitivity of the BBB to overheating caused by bone drilling. To avoid damage to the BBB, the authors recommend that craniotomies be drilled with slow speeds and/or with intermittent drilling with complete removal of the drill from the skull during ‘off’ periods. While

  1. Effects of Cannabidiol and Hypothermia on Short-Term Brain Damage in New-Born Piglets after Acute Hypoxia-Ischemia

    Science.gov (United States)

    Lafuente, Hector; Pazos, Maria R.; Alvarez, Antonia; Mohammed, Nagat; Santos, Martín; Arizti, Maialen; Alvarez, Francisco J.; Martinez-Orgado, Jose A.

    2016-01-01

    Hypothermia is a standard treatment for neonatal encephalopathy, but nearly 50% of treated infants have adverse outcomes. Pharmacological therapies can act through complementary mechanisms with hypothermia improving neuroprotection. Cannabidiol could be a good candidate. Our aim was to test whether immediate treatment with cannabidiol and hypothermia act through complementary brain pathways in hypoxic-ischemic newborn piglets. Hypoxic-ischemic animals were randomly divided into four groups receiving 30 min after the insult: (1) normothermia and vehicle administration; (2) normothermia and cannabidiol administration; (3) hypothermia and vehicle administration; and (4) hypothermia and cannabidiol administration. Six hours after treatment, brains were processed to quantify the number of damaged neurons by Nissl staining. Proton nuclear magnetic resonance spectra were obtained and analyzed for lactate, N-acetyl-aspartate and glutamate. Metabolite ratios were calculated to assess neuronal damage (lactate/N-acetyl-aspartate) and excitotoxicity (glutamate/Nacetyl-aspartate). Western blot studies were performed to quantify protein nitrosylation (oxidative stress), content of caspase-3 (apoptosis) and TNFα (inflammation). Individually, the hypothermia and the cannabidiol treatments reduced the glutamate/Nacetyl-aspartate ratio, as well as TNFα and oxidized protein levels in newborn piglets subjected to hypoxic-ischemic insult. Also, both therapies reduced the number of necrotic neurons and prevented an increase in lactate/N-acetyl-aspartate ratio. The combined effect of hypothermia and cannabidiol on excitotoxicity, inflammation and oxidative stress, and on cell damage, was greater than either hypothermia or cannabidiol alone. The present study demonstrated that cannabidiol and hypothermia act complementarily and show additive effects on the main factors leading to hypoxic-ischemic brain damage if applied shortly after the insult. PMID:27462203

  2. Language development at 2 years is correlated to brain microstructure in the left superior temporal gyrus at term equivalent age: a diffusion tensor imaging study.

    Science.gov (United States)

    Aeby, Alec; De Tiège, Xavier; Creuzil, Marylise; David, Philippe; Balériaux, Danielle; Van Overmeire, Bart; Metens, Thierry; Van Bogaert, Patrick

    2013-09-01

    This study aims at testing the hypothesis that neurodevelopmental abilities at age 2 years are related with local brain microstructure of preterm infants at term equivalent age. Forty-one preterm infants underwent brain MRI with diffusion tensor imaging sequences to measure mean diffusivity (MD), fractional anisotropy (FA), longitudinal and transverse diffusivity (λ// and λ[perpendicular]) at term equivalent age. Neurodevelopment was assessed at 2 years corrected age using the Bayley III scale. A voxel-based analysis approach, statistical parametric mapping (SPM8), was used to correlate changes of the Bayley III scores with the regional distribution of MD, FA, λ// and λ[perpendicular]. We found that language abilities are negatively correlated to MD, λ// and λ[perpendicular] in the left superior temporal gyrus in preterm infants. These findings suggest that higher MD, λ// and λ[perpendicular] values at term-equivalent age in the left superior temporal gyrus are associated with poorer language scores in later childhood. Consequently, it highlights the key role of the left superior temporal gyrus for the development of language abilities in children. Further studies are needed to assess on an individual basis and on the long term the prognostic value of brain DTI at term equivalent age for the development of language. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Does any aspect of mind survive brain damage that typically leads to a persistent vegetative state? Ethical considerations.

    Science.gov (United States)

    Panksepp, Jaak; Fuchs, Thomas; Garcia, Victor Abella; Lesiak, Adam

    2007-12-17

    Recent neuroscientific evidence brings into question the conclusion that all aspects of consciousness are gone in patients who have descended into a persistent vegetative state (PVS). Here we summarize the evidence from human brain imaging as well as neurological damage in animals and humans suggesting that some form of consciousness can survive brain damage that commonly causes PVS. We also raise the issue that neuroscientific evidence indicates that raw emotional feelings (primary-process affects) can exist without any cognitive awareness of those feelings. Likewise, the basic brain mechanisms for thirst and hunger exist in brain regions typically not damaged by PVS. If affective feelings can exist without cognitive awareness of those feelings, then it is possible that the instinctual emotional actions and pain "reflexes" often exhibited by PVS patients may indicate some level of mentality remaining in PVS patients. Indeed, it is possible such raw affective feelings are intensified when PVS patients are removed from life-supports. They may still experience a variety of primary-process affective states that could constitute forms of suffering. If so, withdrawal of life-support may violate the principle of nonmaleficence and be tantamount to inflicting inadvertent "cruel and unusual punishment" on patients whose potential distress, during the process of dying, needs to be considered in ethical decision-making about how such individuals should be treated, especially when their lives are ended by termination of life-supports. Medical wisdom may dictate the use of more rapid pharmacological forms of euthanasia that minimize distress than the de facto euthanasia of life-support termination that may lead to excruciating feelings of pure thirst and other negative affective feelings in the absence of any reflective awareness.

  4. Pomegranate Alleviates Oxidative Damage and Neurotransmitter Alterations in Rats Brain Exposed to Aluminum Chloride and/or Gamma Radiation

    International Nuclear Information System (INIS)

    Said, U.Z.; EL-Tahawey, N.A.; Elassal, A.A.; Elsayed, E.M.; Shousha, W.Gh.

    2013-01-01

    Aluminum and gamma radiation, both are potent neurotoxins and have been implicated in many human neuro degenerative diseases. The present study was designed to investigate the role of pomegranate in alleviating oxidative damage and alteration of neurotransmitters in the brain of rats exposed to aluminum chloride (AlCl 3 ), and/or gamma radiation (IR). The results revealed that rats whole body exposed to γ- rays, (1 Gy/week up to 4 Gy), and/or administered aluminum chloride (35 mg/kg body weight), via gavages for 4 weeks, resulted in brain tissue damage, featuring by significant increase of the level of thiobarbituric acid reactive substances (TBARS), and advanced oxidation protein products (AOPP), associated with significant decrease of superoxide dismutase (SOD) and catalase (CAT) activities, as well as glutathione (GSH) content indicating occurrence of oxidative stress. A significant decrease of serotonin (5-HT) level associated with a significant increase of 5-hydroxyindole acetic acid (5-HIAA), in addition to a significant decrease in dopamine (DA), norepinephrine (NE) and epinephrine (EPI) contents recorded at the 1st, 7th and 14th day post-irradiation, indicating alterations in the metabolism of brain monoamines. On the other hand, the results exhibited that, supplementation of rats with pomegranate, via gavages, at a dose of 3 ml /kg body weight/ day, for 4 weeks along with AlCl 3 with or without radiation has significantly ameliorated the changes occurred in the mentioned parameters and the values returned close to the normal ones. It could be concluded that pomegranate, by its antioxidant constituents might antagonize brain oxidative damage and minimize the severity of aluminum (Al), and/or radiation-induced neurotransmitters disorders

  5. [Trauma induced left maxillary sinus dislocation of eyeball--a case report].

    Science.gov (United States)

    Chen, Yu; Liu, Cuiping; Cui, Liping

    2013-01-01

    Patient male, 27 year old. Left facial and head trauma for 6 hours, due to motor vehicle accident. Patient state of mind was clear at arrival to hospital. Body temperature: 36C; Pulse: 80 Time/Minute; Breath: 20 Time/Minute; Blood pressure: 120/80 mm Hg. An irregular, horizontal laceration at arch of left eyebrow, approximately 8-10 cm. A laceration on left wing of nose skin, approximately 1 cm. A laceration also under lower eyelid skin of right eye, approximately 2 cm. Left blepharedema and enophthalmos. Orbital and nasal sinuses CT indications:contusion and laceration of the left frontal lobe of brain; fracture of the left orbital frontal, ethmoid, sphenoid bone, left nasal, maxillary sinus and zygoma with soft tissue contusion and laceration; the left eyeball and optic nerve sunk into the maxillary sinus (See figure 1). (1) Multiple orbital fractures; (2) Left maxillary sinus dislocation of eyeball; (3) The left frontal lobe contusion and laceration of brain.

  6. Loud Noise Exposure Produces DNA, Neurotransmitter and Morphological Damage within Specific Brain Areas

    Directory of Open Access Journals (Sweden)

    Giada Frenzilli

    2017-06-01

    Full Text Available Exposure to loud noise is a major environmental threat to public health. Loud noise exposure, apart from affecting the inner ear, is deleterious for cardiovascular, endocrine and nervous systems and it is associated with neuropsychiatric disorders. In this study we investigated DNA, neurotransmitters and immune-histochemical alterations induced by exposure to loud noise in three major brain areas (cerebellum, hippocampus, striatum of Wistar rats. Rats were exposed to loud noise (100 dBA for 12 h. The effects of noise on DNA integrity in all three brain areas were evaluated by using Comet assay. In parallel studies, brain monoamine levels and morphology of nigrostriatal pathways, hippocampus and cerebellum were analyzed at different time intervals (24 h and 7 days after noise exposure. Loud noise produced a sudden increase in DNA damage in all the brain areas under investigation. Monoamine levels detected at 7 days following exposure were differently affected depending on the specific brain area. Namely, striatal but not hippocampal dopamine (DA significantly decreased, whereas hippocampal and cerebellar noradrenaline (NA was significantly reduced. This is in line with pathological findings within striatum and hippocampus consisting of a decrease in striatal tyrosine hydroxylase (TH combined with increased Bax and glial fibrillary acidic protein (GFAP. Loud noise exposure lasting 12 h causes immediate DNA, and long-lasting neurotransmitter and immune-histochemical alterations within specific brain areas of the rat. These alterations may suggest an anatomical and functional link to explain the neurobiology of diseases which prevail in human subjects exposed to environmental noise.

  7. Organotins in Neuronal Damage, Brain Function, and Behavior: A Short Review

    Directory of Open Access Journals (Sweden)

    Igor Ferraz da Silva

    2018-01-01

    Full Text Available The consequences of exposure to environmental contaminants have shown significant effects on brain function and behavior in different experimental models. The endocrine-disrupting chemicals (EDC present various classes of pollutants with potential neurotoxic actions, such as organotins (OTs. OTs have received special attention due to their toxic effects on the central nervous system, leading to abnormal mammalian neuroendocrine axis function. OTs are organometallic pollutants with a tin atom bound to one or more carbon atoms. OT exposure may occur through the food chain and/or contaminated water, since they have multiple applications in industry and agriculture. In addition, OTs have been used with few legal restrictions in the last decades, despite being highly toxic. In addition to their action as EDC, OTs can also cross the blood–brain barrier and show relevant neurotoxic effects, as observed in several animal model studies specifically involving the development of neurodegenerative processes, neuroinflammation, and oxidative stress. Thus, the aim of this short review is to summarize the toxic effects of the most common OT compounds, such as trimethyltin, tributyltin, triethyltin, and triphenyltin, on the brain with a focus on neuronal damage as a result of oxidative stress and neuroinflammation. We also aim to present evidence for the disruption of behavioral functions, neurotransmitters, and neuroendocrine pathways caused by OTs.

  8. Acquired dysgraphia in adults following right or left-hemisphere stroke

    Directory of Open Access Journals (Sweden)

    Jaqueline de Carvalho Rodrigues

    Full Text Available OBJECTIVE: This study aimed to assess the strengths and difficulties in word and pseudoword writing in adults with left- and right-hemisphere strokes, and discuss the profiles of acquired dysgraphia in these individuals.METHODS: The profiles of six adults with acquired dysgraphia in left- or right-hemisphere strokes were investigated by comparing their performance on word and pseudoword writing tasks against that of neurologically healthy adults. A case series analysis was performed on the patients whose impairments on the task were indicative of acquired dysgraphia.RESULTS: Two patients were diagnosed with lexical dysgraphia (one with left hemisphere damage, and the other with right hemisphere damage, one with phonological dysgraphia, another patient with peripheral dysgraphia, one patient with mixed dysgraphia and the last with dysgraphia due to damage to the graphemic buffer. The latter patients all had left-hemisphere damage (LHD. The patterns of impairment observed in each patient were discussed based on the dual-route model of writing.CONCLUSION: The fact that most patients had LHD rather than right-hemisphere damage (RHD highlights the importance of the former structure for word processing. However, the fact that lexical dysgraphia was also diagnosed in a patient with RHD suggests that these individuals may develop writing impairments due to damage to the lexical route, leading to heavier reliance on phonological processing. Our results are of significant importance to the planning of writing interventions in neuropsychology.

  9. Left Ventricular Hypertrophy in Pediatric Hypertension: A Mini Review

    Directory of Open Access Journals (Sweden)

    Robert P. Woroniecki

    2017-05-01

    Full Text Available Adults with arterial hypertension (HTN have stroke, myocardial infarction, end-stage renal disease (ESRD, or die at higher rates than those without. In children, HTN leads to target organ damage, which includes kidney, brain, eye, blood vessels, and heart, which precedes “hard outcomes” observed in adults. Left ventricular hypertrophy (LVH or an anatomic and pathologic increase in left ventricular mass (LVM in response to the HTN is a pediatric surrogate marker for HTN-induced morbidity and mortality in adults. This mini review discusses current definitions, clinically relevant methods of LVM measurements and normalization methods, its epidemiology, management, and issue of reversibility in children with HTN. Pediatric definition of LVH and abnormal LVM is not uniformed. With multiple definitions, prevalence of pediatric HTN-induced LVH is difficult to ascertain. In addition while in adults cardiac magnetic resonance imaging is considered “the gold standard” for LVM and LVH determination, pediatric data are limited to “special populations”: ESRD, transplant, and obese children. We summarize available data on pediatric LVH treatment and reversibility and offer future directions in addressing LVH in children with HTN.

  10. Different brain activation under left and right ventricular stimulation: an fMRI study in anesthetized rats.

    Science.gov (United States)

    Suzuki, Hideaki; Sumiyoshi, Akira; Kawashima, Ryuta; Shimokawa, Hiroaki

    2013-01-01

    Myocardial ischemia in the anterior wall of the left ventricule (LV) and in the inferior wall and/or right ventricle (RV) shows different manifestations that can be explained by the different innervations of cardiac afferent nerves. However, it remains unclear whether information from different areas of the heart, such as the LV and RV, are differently processed in the brain. In this study, we investigated the brain regions that process information from the LV or RV using cardiac electrical stimulation and functional magnetic resonance imaging (fMRI) in anesthetized rats because the combination of these two approaches cannot be used in humans. An electrical stimulation catheter was inserted into the LV or RV (n = 12 each). Brain fMRI scans were recorded during LV or RV stimulation (9 Hz and 0.3 ms width) over 10 blocks consisting of alternating periods of 2 mA for 30 sec followed by 0.2 mA for 60 sec. The validity of fMRI signals was confirmed by first and second-level analyses and temporal profiles. Increases in fMRI signals were observed in the anterior cingulate cortex and the right somatosensory cortex under LV stimulation. In contrast, RV stimulation activated the right somatosensory cortex, which was identified more anteriorly compared with LV stimulation but did not activate the anterior cingulate cortex. This study provides the first evidence for differences in brain activation under LV and RV stimulation. These different brain processes may be associated with different clinical manifestations between anterior wall and inferoposterior wall and/or RV myocardial ischemia.

  11. Moderately delayed post-insult treatment with normobaric hyperoxia reduces excitotoxin-induced neuronal degeneration but increases ischemia-induced brain damage

    Directory of Open Access Journals (Sweden)

    Haelewyn Benoit

    2011-04-01

    Full Text Available Abstract Background The use and benefits of normobaric oxygen (NBO in patients suffering acute ischemic stroke is still controversial. Results Here we show for the first time to the best of our knowledge that NBO reduces both NMDA-induced calcium influxes in vitro and NMDA-induced neuronal degeneration in vivo, but increases oxygen and glucose deprivation-induced cell injury in vitro and ischemia-induced brain damage produced by middle cerebral artery occlusion in vivo. Conclusions Taken together, these results indicate that NBO reduces excitotoxin-induced calcium influx and subsequent neuronal degeneration but favors ischemia-induced brain damage and neuronal death. These findings highlight the complexity of the mechanisms involved by the use of NBO in patients suffering acute ischemic stroke.

  12. Correlation between language function and the left arcuate fasciculus detected by diffusion tensor imaging tractography after brain tumor surgery.

    Science.gov (United States)

    Hayashi, Yutaka; Kinoshita, Masashi; Nakada, Mitsutoshi; Hamada, Jun-ichiro

    2012-11-01

    Disturbance of the arcuate fasciculus in the dominant hemisphere is thought to be associated with language-processing disorders, including conduction aphasia. Although the arcuate fasciculus can be visualized in vivo with diffusion tensor imaging (DTI) tractography, its involvement in functional processes associated with language has not been shown dynamically using DTI tractography. In the present study, to clarify the participation of the arcuate fasciculus in language functions, postoperative changes in the arcuate fasciculus detected by DTI tractography were evaluated chronologically in relation to postoperative changes in language function after brain tumor surgery. Preoperative and postoperative arcuate fasciculus area and language function were examined in 7 right-handed patients with a brain tumor in the left hemisphere located in proximity to part of the arcuate fasciculus. The arcuate fasciculus was depicted, and its area was calculated using DTI tractography. Language functions were measured using the Western Aphasia Battery (WAB). After tumor resection, visualization of the arcuate fasciculus was increased in 5 of the 7 patients, and the total WAB score improved in 6 of the 7 patients. The relative ratio of postoperative visualized area of the arcuate fasciculus to preoperative visualized area of the arcuate fasciculus was increased in association with an improvement in postoperative language function (p = 0.0039). The role of the left arcuate fasciculus in language functions can be evaluated chronologically in vivo by DTI tractography after brain tumor surgery. Because increased postoperative visualization of the fasciculus was significantly associated with postoperative improvement in language functions, the arcuate fasciculus may play an important role in language function, as previously thought. In addition, postoperative changes in the arcuate fasciculus detected by DTI tractography could represent a predicting factor for postoperative language

  13. Methylmercury Causes Blood-Brain Barrier Damage in Rats via Upregulation of Vascular Endothelial Growth Factor Expression.

    Directory of Open Access Journals (Sweden)

    Tetsuya Takahashi

    Full Text Available Clinical manifestations of methylmercury (MeHg intoxication include cerebellar ataxia, concentric constriction of visual fields, and sensory and auditory disturbances. The symptoms depend on the site of MeHg damage, such as the cerebellum and occipital lobes. However, the underlying mechanism of MeHg-induced tissue vulnerability remains to be elucidated. In the present study, we used a rat model of subacute MeHg intoxication to investigate possible MeHg-induced blood-brain barrier (BBB damage. The model was established by exposing the rats to 20-ppm MeHg for up to 4 weeks; the rats exhibited severe cerebellar pathological changes, although there were no significant differences in mercury content among the different brain regions. BBB damage in the cerebellum after MeHg exposure was confirmed based on extravasation of endogenous immunoglobulin G (IgG and decreased expression of rat endothelial cell antigen-1. Furthermore, expression of vascular endothelial growth factor (VEGF, a potent angiogenic growth factor, increased markedly in the cerebellum and mildly in the occipital lobe following MeHg exposure. VEGF expression was detected mainly in astrocytes of the BBB. Intravenous administration of anti-VEGF neutralizing antibody mildly reduced the rate of hind-limb crossing signs observed in MeHg-exposed rats. In conclusion, we demonstrated for the first time that MeHg induces BBB damage via upregulation of VEGF expression at the BBB in vivo. Further studies are required in order to determine whether treatment targeted at VEGF can ameliorate MeHg-induced toxicity.

  14. Brain abscess mimicking brain metastasis in breast cancer

    International Nuclear Information System (INIS)

    Khullar, P.; Datta, N.R.; Wahi, I.K.; Kataria, S.

    2016-01-01

    61 year old female presented with chief complaints of headache for 30 days, fever for 10 days, altered behavior for 10 days and convulsion for 2 days. She was diagnosed and treated as a case of carcinoma of left breast 5 years ago. MRI brain showed a lobulated lesion in the left frontal lobe. She came to our hospital for whole brain radiation as a diagnosed case of carcinoma of breast with brain metastasis. Review of MRI brain scan, revealed metastasis or query infective pathology. MR spectroscopy of the lesion revealed choline: creatinine and choline: NAA (N-Acety- laspartate) ratios of 1.6 and 1.5 respectively with the presence of lactate within the lesion suggestive of infective pathology. She underwent left fronto temporal craniotomy and evacuation of abscess and subdural empyema. Gram stain showed gram positive cocci. After 1 month of evacuation and treatment she was fine. This case suggested a note of caution in every case of a rapidly evolving space-occupying lesion independent of the patient’s previous history

  15. A cross-talk between brain-damage patients and infants on action and language.

    Science.gov (United States)

    Papeo, Liuba; Hochmann, Jean-Remy

    2012-06-01

    Sensorimotor representations in the brain encode the sensory and motor aspects of one's own bodily activity. It is highly debated whether sensorimotor representations are the core basis for the representation of action-related knowledge and, in particular, action words, such as verbs. In this review, we will address this question by bringing to bear insights from the study of brain-damaged patients exhibiting language disorders and from the study of the mechanisms for language acquisition in infants. Cognitive neuropsychology studies have assessed how damage to representations supporting action production impacts patients' ability to process action-related words. While correlations between verbal and nonverbal (motor) impairments are very common in patients, damage to the representations for action production can leave the ability to understand action-words unaffected; likewise, actions can still be produced successfully in cases of impaired action-word understanding. Studies with infants have evaluated the relevance of sensorimotor information when infants learn to map a novel word onto an action that they are performing or perceiving. These results demonstrate that sensorimotor information is insufficient to fully account for the complexity of verb learning: in this process, infants seem to privilege abstract constructs such as goal, intentionality and causality, as well as syntactic constraints, over the perceptual and motor dimensions of an action. Altogether, the empirical data suggest that, while not crucial for verb learning and understanding, sensorimotor processes can contribute to solving the problem of symbol grounding and/or serve as a primary mechanism in social cognition, to learn about others' goals and intentions. By assessing the relevance of sensorimotor representations in the way action-related words are acquired and represented, we aim to provide a useful set of criteria for testing specific predictions made by different theories of concepts

  16. Neurology of Affective Prosody and Its Functional-Anatomic Organization in Right Hemisphere

    Science.gov (United States)

    Ross, Elliott D.; Monnot, Marilee

    2008-01-01

    Unlike the aphasic syndromes, the organization of affective prosody in brain has remained controversial because affective-prosodic deficits may occur after left or right brain damage. However, different patterns of deficits are observed following left and right brain damage that suggest affective prosody is a dominant and lateralized function of…

  17. β2-Adrenergic Receptor-Mediated HIF-1α Upregulation Mediates Blood Brain Barrier Damage in Acute Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Yanyun Sun

    2017-08-01

    Full Text Available Disruption of the blood brain barrier (BBB within the thrombolytic time window is an antecedent event to intracerebral hemorrhage in ischemic stroke. Our recent studies showed that 2-h cerebral ischemia induced BBB damage in non-infarcted area and secreted matrix metalloproteinase-2 (MMP-2 accounted for this disruption. However, the factors that affect MMP-2 secretion and regulate BBB damage remains unknown. Since hypoxia-inducible factor-1 alpha (HIF-1α was discovered as a mater regulator in hypoxia, we sought to investigate the roles of HIF-1α in BBB damage as well as the factors regulating HIF-1α expression in the ischemic brain. in vivo rat middle cerebral artery occlusion (MCAO and in vitro oxygen glucose deprivation (OGD models were used to mimic ischemia. Pretreatment with HIF-1α inhibitor YC-1 significantly inhibited 2-h MCAO-induced BBB damage, which was accompanied by suppressed occludin degradation and vascular endothelial growth factor (VEGF mRNA upregulation. Interestingly, β2-adrenergic receptor (β2-AR antagonist ICI 118551 attenuated ischemia-induced BBB damage by regulating HIF-1α expression. Double immunostaining showed that HIF-1α was upregulated in ischemic neurons but not in astrocytes andendothelial cells. Of note, HIF-1α inhibition with inhibitor YC-1 or siRNA significantly prevented OGD-induced VEGF upregulation as well as the secretion of VEGF and MMP-2 in neurons. More importantly, blocking β2-AR with ICI 118551 suppressedHIF-1α upregulation in ischemic neurons and attenuated occludin degradation induced by the conditioned media of OGD-treatedneurons. Taken together, blockade of β2-AR-mediated HIF-1α upregulation mediates BBB damage during acute cerebral ischemia. These findings provide new mechanistic understanding of early BBB damage in ischemic stroke and may help reduce thrombolysis-related hemorrhagic complications.

  18. Correlation of right atrial appendage velocity with left atrial appendage velocity and brain natriuretic Peptide.

    Science.gov (United States)

    Kim, Bu-Kyung; Heo, Jung-Ho; Lee, Jae-Woo; Kim, Hyun-Soo; Choi, Byung-Joo; Cha, Tae-Joon

    2012-03-01

    Left atrial appendage (LAA) anatomy and function have been well characterized both in healthy and diseased people, whereas relatively little attention has been focused on the right atrial appendage (RAA). We sought to evaluate RAA flow velocity and to compare these parameters with LAA indices and with a study of biomarkers, such as brain natriuretic peptide, among patients with sinus rhythm (SR) and atrial fibrillation (AF). In a series of 79 consecutive patients referred for transesophageal echocardiography, 43 patients (23 with AF and 20 controls) were evaluated. AF was associated with a decrease in flow velocity for both LAA and RAA [LAA velocity-SR vs. AF: 61 ± 22 vs. 29 ± 18 m/sec (p vs. AF: 46 ± 20 vs. 19 ± 8 m/sec (p brain natriuretic peptide (BNP). AF was associated with decreased RAA and LAA flow velocities. RAA velocity was found to be positively correlated with LAA velocity and negatively correlated with BNP. The plasma BNP concentration may serve as a determinant of LAA and RAA functions.

  19. Does any aspect of mind survive brain damage that typically leads to a persistent vegetative state? Ethical considerations

    Directory of Open Access Journals (Sweden)

    Fuchs Thomas

    2007-12-01

    Full Text Available Abstract Recent neuroscientific evidence brings into question the conclusion that all aspects of consciousness are gone in patients who have descended into a persistent vegetative state (PVS. Here we summarize the evidence from human brain imaging as well as neurological damage in animals and humans suggesting that some form of consciousness can survive brain damage that commonly causes PVS. We also raise the issue that neuroscientific evidence indicates that raw emotional feelings (primary-process affects can exist without any cognitive awareness of those feelings. Likewise, the basic brain mechanisms for thirst and hunger exist in brain regions typically not damaged by PVS. If affective feelings can exist without cognitive awareness of those feelings, then it is possible that the instinctual emotional actions and pain "reflexes" often exhibited by PVS patients may indicate some level of mentality remaining in PVS patients. Indeed, it is possible such raw affective feelings are intensified when PVS patients are removed from life-supports. They may still experience a variety of primary-process affective states that could constitute forms of suffering. If so, withdrawal of life-support may violate the principle of nonmaleficence and be tantamount to inflicting inadvertent "cruel and unusual punishment" on patients whose potential distress, during the process of dying, needs to be considered in ethical decision-making about how such individuals should be treated, especially when their lives are ended by termination of life-supports. Medical wisdom may dictate the use of more rapid pharmacological forms of euthanasia that minimize distress than the de facto euthanasia of life-support termination that may lead to excruciating feelings of pure thirst and other negative affective feelings in the absence of any reflective awareness.

  20. Biological Signatures of Brain Damage Associated with High Serum Ferritin Levels in Patients with Acute Ischemic Stroke and Thrombolytic Treatment

    Directory of Open Access Journals (Sweden)

    Mónica Millán

    2008-01-01

    Full Text Available Background and purpose: Increased body iron stores have been related to greater oxidative stress and brain injury in clinical and experimental cerebral ischemia and reperfusion. We aimed to investigate the biological signatures of excitotoxicity, inflammation and blood brain barrier disruption potentially associated with high serum ferritin levels-related damage in acute stroke patients treated with i.v. t-PA.

  1. Accumulation of neuronal DNA damage as an early covariate of determinant of death after whole-brain irradiaton

    International Nuclear Information System (INIS)

    Wheeler, K.T.; Weinstein, R.E.

    1979-01-01

    The state of the DNA from cerebellar neurons of male Sprague-Dawley rats after whole-brain irradiation with 2000 rad of x rays was determined at various times by obtaining DNA sedimentation profiles using alkaline sucrose gradients in slow reorienting zonal rotors. It took more than 4 weeks after irradiation for the neuronal DNA distributions to return to those obtained from the unirradiated controls. At 7 weeks, the DNA from irradiated neurons sedimented more rapidly than that from unirradiated neurons. Accumulation of the neuronal DNA damage (degradation.) which led to slower sedimenting DNA species began by Week 10 and continued until the majority of the irradiated rats began to die at Week 20. We propose as a working hypothesis that the accumulation of neuronal DNA damage initially observed 10 weeks after 2000 rad of whole-brain irradiation may reflect or cause changes in the central nervous system that later result in the death of the animal

  2. Partial IGF-1 deficiency induces brain oxidative damage and edema, which are ameliorated by replacement therapy.

    Science.gov (United States)

    Puche, Juan E; Muñoz, Úrsula; García-Magariño, Mariano; Sádaba, María C; Castilla-Cortázar, Inma

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) induces multiple cytoprotective effects on every tissue, including the brain. Since the mechanisms by which IGF-1 produces neuroprotection are not fully understood, the aim of this work was to delve into the underlying mechanisms. IGF-1 deficient mice (Hz) were compared with wild type (WT) and Hz mice treated with low doses of IGF-1 (2 µg/100 g body weight/day) for 10 days (Hz + IGF). Gene expression, quantitative PCR, histology, and magnetic resonance imaging were performed in the three groups. IGF-1 deficiency induced increased oxidative damage determined by markers of lipid peroxidation and hypoxia, as well as gene expression of heat shock proteins, antioxidant enzymes, and molecules involved in inflammation, apoptosis, and mitochondrial protection. These changes correlated with edema and learning impairment in Hz mice. IGF-1 therapy improved all these alterations. In conclusion, IGF-1 deficiency is responsible for increased brain oxidative damage, edema, and impaired learning and memory capabilities which are rescued by IGF-1 replacement therapy. © 2016 International Union of Biochemistry and Molecular Biology.

  3. [Depersonalization syndrome after acquired brain damage. Overview based on 3 case reports and the literature and discussion of etiological models].

    Science.gov (United States)

    Paulig, M; Böttger, S; Sommer, M; Prosiegel, M

    1998-12-01

    Depersonalization after brain damage is still only rarely reported and poorly understood. We describe three patients between the ages of 21 and 25 who experienced depersonalization and derealization for periods of 6 weeks to 4 months, two after traumatic brain injury, the third after surgical and radiation treatment of a pineocytoma. Each one believed to be living in a nightmare and thought about committing suicide in order to wake up. One patient developed symptoms as described in Cotard delusion. Aspects of neuroanatomy, psychodynamics, and anthropology are discussed with reference to the literature. Frontal and temporal lesions seem only to play a facilitating role but not to be a necessary condition. There is evidence for additional influence of psychological and premorbid personality factors. Summarizing the current state of information we consider depersonalization with the experience of being in a dream or being dead as a heuristic reaction to brain damage. Similar models have already been discussed in neuropsychological disorders as for instance reduplicative paramnesias, neglect, and anosognosia.

  4. The Impact of Age and Cognitive Reserve on Resting-State Brain Connectivity

    Directory of Open Access Journals (Sweden)

    Jessica I. Fleck

    2017-12-01

    Full Text Available Cognitive reserve (CR is a protective mechanism that supports sustained cognitive function following damage to the physical brain associated with age, injury, or disease. The goal of the research was to identify relationships between age, CR, and brain connectivity. A sample of 90 cognitively normal adults, ages 45–64 years, had their resting-state brain activity recorded with electroencephalography (EEG and completed a series of memory and executive function assessments. CR was estimated using years of education and verbal IQ scores. Participants were divided into younger and older age groups and low- and high-CR groups. We observed greater left- than right-hemisphere coherence in younger participants, and greater right- than left-hemisphere coherence in older participants. In addition, greater coherence was observed under eyes-closed than eyes-open recording conditions for both low-CR and high-CR participants, with a more substantial difference between recording conditions in individuals high in CR regardless of age. Finally, younger participants low in CR exhibited greater mean coherence than younger participants high in CR, whereas the opposite pattern was observed in older participants, with greater coherence in older participants high in CR. Together, these findings suggest the possibility of a shift in the relationship between CR and brain connectivity during aging.

  5. Visual assessment of brain magnetic resonance imaging detects injury to cognitive regulatory sites in patients with heart failure.

    Science.gov (United States)

    Pan, Alan; Kumar, Rajesh; Macey, Paul M; Fonarow, Gregg C; Harper, Ronald M; Woo, Mary A

    2013-02-01

    Heart failure (HF) patients exhibit depression and executive function impairments that contribute to HF mortality. Using specialized magnetic resonance imaging (MRI) analysis procedures, brain changes appear in areas regulating these functions (mammillary bodies, hippocampi, and frontal cortex). However, specialized MRI procedures are not part of standard clinical assessment for HF (which is usually a visual evaluation), and it is unclear whether visual MRI examination can detect changes in these structures. Using brain MRI, we visually examined the mammillary bodies and frontal cortex for global and hippocampi for global and regional tissue changes in 17 HF and 50 control subjects. Significantly global changes emerged in the right mammillary body (HF 1.18 ± 1.13 vs control 0.52 ± 0.74; P = .024), right hippocampus (HF 1.53 ± 0.94 vs control 0.80 ± 0.86; P = .005), and left frontal cortex (HF 1.76 ± 1.03 vs control 1.24 ± 0.77; P = .034). Comparison of the visual method with specialized MRI techniques corroborates right hippocampal and left frontal cortical, but not mammillary body, tissue changes. Visual examination of brain MRI can detect damage in HF in areas regulating depression and executive function, including the right hippocampus and left frontal cortex. Visual MRI assessment in HF may facilitate evaluation of injury to these structures and the assessment of the impact of potential treatments for this damage. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. The effect of piracetam on brain damage and serum nitric oxide levels in dogs submitted to hemorrhagic shock.

    Science.gov (United States)

    Ozkan, Seda; Ikizceli, Ibrahim; Sözüer, Erdoğan Mütevelli; Avşaroğullari, Levent; Oztürk, Figen; Muhtaroğlu, Sebahattin; Akdur, Okhan; Küçük, Can; Durukan, Polat

    2008-10-01

    To demonstrate the effect of piracetam on changes in brain tissue and serum nitric oxide levels in dogs submitted to hemorrhagic shock. The subjects were randomized into four subgroups each consisting of 10 dogs. Hemorrhagic shock was induced in Group I for 1 hour and no treatment was given to this group. Blood and saline solutions were administered to Group II following 1 hour hemorrhagic shock. Blood and piracetam were given to Group III following 1 hour shock. No shock was induced and no treatment was applied to Group IV. Blood samples were obtained at the onset of the experiment and at 60, 120 and 180 minutes for nitric oxide analysis. For histopathological examination, brain tissue samples were obtained at the end of the experiment. The observed improvement in blood pressure and pulse rates in Group III was more than in Group II. Nitric oxide levels were increased in Group I; however, no correlation between piracetam and nitric oxide levels was determined. It was seen that recovery in brain damage in Group III was greater than in the control group. Piracetam, added to the treatment, may ecrease ischemic damage in hemorrhagic shock.

  7. Language learning and brain reorganization in a 3.5-year-old child with left perinatal stroke revealed using structural and functional connectivity.

    Science.gov (United States)

    François, Clément; Ripollés, Pablo; Bosch, Laura; Garcia-Alix, Alfredo; Muchart, Jordi; Sierpowska, Joanna; Fons, Carme; Solé, Jorgina; Rebollo, Monica; Gaitán, Helena; Rodriguez-Fornells, Antoni

    2016-04-01

    Brain imaging methods have contributed to shed light on the possible mechanisms of recovery and cortical reorganization after early brain insult. The idea that a functional left hemisphere is crucial for achieving a normalized pattern of language development after left perinatal stroke is still under debate. We report the case of a 3.5-year-old boy born at term with a perinatal ischemic stroke of the left middle cerebral artery, affecting mainly the supramarginal gyrus, superior parietal and insular cortex extending to the precentral and postcentral gyri. Neurocognitive development was assessed at 25 and 42 months of age. Language outcomes were more extensively evaluated at the latter age with measures on receptive vocabulary, phonological whole-word production and linguistic complexity in spontaneous speech. Word learning abilities were assessed using a fast-mapping task to assess immediate and delayed recall of newly mapped words. Functional and structural imaging data as well as a measure of intrinsic connectivity were also acquired. While cognitive, motor and language levels from the Bayley Scales fell within the average range at 25 months, language scores were below at 42 months. Receptive vocabulary fell within normal limits but whole word production was delayed and the child had limited spontaneous speech. Critically, the child showed clear difficulties in both the immediate and delayed recall of the novel words, significantly differing from an age-matched control group. Neuroimaging data revealed spared classical cortical language areas but an affected left dorsal white-matter pathway together with right lateralized functional activations. In the framework of the model for Social Communication and Language Development, these data confirm the important role of the left arcuate fasciculus in understanding and producing morpho-syntactic elements in sentences beyond two word combinations and, most importantly, in learning novel word-referent associations, a

  8. Minimal Brain Damage/Dysfunction (MBD) en de ontwikkeling van de wetenschappelijke kinderstudie in Nederland, ca. 1950-1990

    NARCIS (Netherlands)

    Bakker, Nelleke

    2014-01-01

    This paper discusses the reception in the Netherlands of Minimal Brain Damage/Dysfunction (MBD) and related labels for normally gifted children with learning disabilities and behavioural problems by child scientists of all sorts from the 1950s up to the late 1980s, when MBD was replaced with

  9. Inference Generation during Text Comprehension by Adults with Right Hemisphere Brain Damage: Activation Failure Versus Multiple Activation.

    Science.gov (United States)

    Tompkins, Connie A.; Fassbinder, Wiltrud; Blake, Margaret Lehman; Baumgaertner, Annette; Jayaram, Nandini

    2004-01-01

    ourse comprehensionEvidence conflicts as to whether adults with right hemisphere brain damage (RHD) generate inferences during text comprehension. M. Beeman (1993) reported that adults with RHD fail to activate the lexical-semantic bases of routine bridging inferences, which are necessary for comprehension. But other evidence indicates that adults…

  10. Chronic Broca's Aphasia Is Caused by Damage to Broca's and Wernicke's Areas.

    Science.gov (United States)

    Fridriksson, Julius; Fillmore, Paul; Guo, Dazhou; Rorden, Chris

    2015-12-01

    Despite being perhaps the most studied form of aphasia, the critical lesion location for Broca's aphasia has long been debated, and in chronic patients, cortical damage often extends far beyond Broca's area. In a group of 70 patients, we examined brain damage associated with Broca's aphasia using voxel-wise lesion-symptom mapping (VLSM). We found that damage to the posterior portion of Broca's area, the pars opercularis, is associated with Broca's aphasia. However, several individuals with other aphasic patterns had considerable damage to pars opercularis, suggesting that involvement of this region is not sufficient to cause Broca's aphasia. When examining only individuals with pars opercularis damage, we found that patients with Broca's aphasia had greater damage in the left superior temporal gyrus (STG; roughly Wernicke's area) than those with other aphasia types. Using discriminant function analysis and logistic regression, based on proportional damage to the pars opercularis and Wernicke's area, to predict whether individuals had Broca's or another types of aphasia, over 95% were classified correctly. Our findings suggest that persons with Broca's aphasia have damage to both Broca's and Wernicke's areas, a conclusion that is incongruent with classical neuropsychology, which has rarely considered the effects of damage to both areas. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Histological evaluation of brain damage caused by crude quinolizidine alkaloid extracts from lupines.

    Science.gov (United States)

    Bañuelos Pineda, J; Nolasco Rodríguez, G; Monteon, J A; García López, P M; Ruiz Lopez, M A; García Estrada, J

    2005-10-01

    The effects of the intracerebroventricular (ICV) administration of crude extracts of lupin quinolizidine alkaloids (LQAs) were studied in adult rat brain tissue. Mature L. exaltatus and L. montanus seeds were collected in western Mexico, and the LQAs from these seeds were extracted and analyzed by capillary gas chromatography. This LQA extract was administered to the right lateral ventricle of adult rats through a stainless steel cannula on five consecutive days. While control animals received 10 microl of sesame oil daily (vehicle), the experimental rats (10 per group) received 20 ng of LQA from either L. exaltatus or from L. montanus. All the animals were sacrificed 40 h after receiving the last dose of alkaloids, and their brains were removed, fixed and coronal paraffin sections were stained with haematoxylin and eosin. Immediately after the administration of LQA the animals began grooming and suffered tachycardia, tachypnea, piloerection, tail erection, muscular contractions, loss of equilibrium, excitation, and unsteady walk. In the brains of the animals treated with LQA damaged neurons were identified. The most frequent abnormalities observed in this brain tissue were "red neurons" with shrunken eosinophilic cytoplasm, strongly stained pyknotic nuclei, neuronal swelling, spongiform neuropil, "ghost cells" (hypochromasia), and abundant neuronophagic figures in numerous brain areas. While some alterations in neurons were observed in control tissues, unlike those found in the animals treated with LQA these were not significant. Thus, the histopathological changes observed can be principally attributed to the administration of sparteine and lupanine present in the alkaloid extracts.

  12. Subliminal and supraliminal processing of facial expression of emotions: brain oscillation in the left/right frontal area.

    Science.gov (United States)

    Balconi, Michela; Ferrari, Chiara

    2012-03-26

    The unconscious effects of an emotional stimulus have been highlighted by a vast amount of research, whereover it remains questionable whether it is possible to assign a specific function to cortical brain oscillations in the unconscious perception of facial expressions of emotions. Alpha band variation was monitored within the right- and left-cortical side when subjects consciously (supraliminal stimulation) or unconsciously (subliminal stimulation) processed facial patterns. Twenty subjects looked at six facial expressions of emotions (anger, fear, surprise, disgust, happiness, sadness, and neutral) under two different conditions: supraliminal (200 ms) vs. subliminal (30 ms) stimulation (140 target-mask pairs for each condition). The results showed that conscious/unconscious processing and the significance of the stimulus can modulate the alpha power. Moreover, it was found that there was an increased right frontal activity for negative emotions vs. an increased left response for positive emotion. The significance of facial expressions was adduced to elucidate cortical different responses to emotional types.

  13. Subliminal and Supraliminal Processing of Facial Expression of Emotions: Brain Oscillation in the Left/Right Frontal Area

    Directory of Open Access Journals (Sweden)

    Michela Balconi

    2012-03-01

    Full Text Available The unconscious effects of an emotional stimulus have been highlighted by a vast amount of research, whereover it remains questionable whether it is possible to assign a specific function to cortical brain oscillations in the unconscious perception of facial expressions of emotions. Alpha band variation was monitored within the right- and left-cortical side when subjects consciously (supraliminal stimulation or unconsciously (subliminal stimulation processed facial patterns. Twenty subjects looked at six facial expressions of emotions (anger, fear, surprise, disgust, happiness, sadness, and neutral under two different conditions: supraliminal (200 ms vs. subliminal (30 ms stimulation (140 target-mask pairs for each condition. The results showed that conscious/unconscious processing and the significance of the stimulus can modulate the alpha power. Moreover, it was found that there was an increased right frontal activity for negative emotions vs. an increased left response for positive emotion. The significance of facial expressions was adduced to elucidate cortical different responses to emotional types.

  14. Brain abscess mimicking brain metastasis in breast cancer.

    Science.gov (United States)

    Khullar, Pooja; Datta, Niloy R; Wahi, Inderjeet Kaur; Kataria, Sabeena

    2016-03-01

    61 year old female presented with chief complaints of headache for 30 days, fever for 10 days, altered behavior for 10 days and convulsion for 2 days. She was diagnosed and treated as a case of carcinoma of left breast 5 years ago. MRI brain showed a lobulated lesion in the left frontal lobe. She came to our hospital for whole brain radiation as a diagnosed case of carcinoma of breast with brain metastasis. Review of MRI brain scan, revealed metastasis or query infective pathology. MR spectroscopy of the lesion revealed choline: creatinine and choline: NAA (N-Acetylaspartate) ratios of ∼1.6 and 1.5 respectively with the presence of lactate within the lesion suggestive of infective pathology. She underwent left fronto temporal craniotomy and evacuation of abscess and subdural empyema. Gram stain showed gram positive cocci. After 1 month of evacuation and treatment she was fine. This case suggested a note of caution in every case of a rapidly evolving space-occupying lesion independent of the patient's previous history. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  15. Specific marker of feigned memory impairment: The activation of left superior frontal gyrus.

    Science.gov (United States)

    Chen, Zi-Xiang; Xue, Li; Liang, Chun-Yu; Wang, Li-Li; Mei, Wei; Zhang, Qiang; Zhao, Hu

    2015-11-01

    Faking memory impairment means normal people complain lots of memory problems without organic damage in forensic assessments. Using alternative forced-choice paradigm, containing digital or autobiographical information, previous neuroimaging studies have indicated that faking memory impairment could cause the activation in the prefrontal and parietal regions, and might involve a fronto-parietal-subcortical circuit. However, it is still unclear whether different memory types have influence on faking or not. Since different memory types, such as long-term memory (LTM) and short-term memory (STM), were found supported by different brain areas, we hypothesized that feigned STM or LTM impairment had distinct neural activation mapping. Besides that, some common neural correlates may act as the general characteristic of feigned memory impairment. To verify this hypothesis, the functional magnetic resonance imaging (fMRI) combined with an alternative word forced-choice paradigm were used in this study. A total of 10 right-handed participants, in this study, had to perform both STW and LTM tasks respectively under answering correctly, answering randomly and feigned memory impairment conditions. Our results indicated that the activation of the left superior frontal gyrus and the left medial frontal gyrus was associated with feigned LTM impairment, whereas the left superior frontal gyrus, the left precuneus and the right anterior cingulate cortex (ACC) were highly activated while feigning STM impairment. Furthermore, an overlapping was found in the left superior frontal gyrus, and it suggested that the activity of the left superior frontal gyrus might be acting as a specific marker of feigned memory impairment. Copyright © 2015. Published by Elsevier Ltd.

  16. An Attempt to Determine the Construct Validity of Measures Hypothesized to Represent an Orientation to Right, Left, or Integrated Hemispheric Brain Function for a Sample of Primary School Children.

    Science.gov (United States)

    Dumbrower, Jule; And Others

    1981-01-01

    This study attempts to obtain evidence of the construct validity of pupil ability tests hypothesized to represent orientation to right, left, or integrated hemispheric function, and of teacher observation subscales intended to reveal behaviors in school setting that were hypothesized to portray preference for right or left brain function. (Author)

  17. Oxidative stress and damage in liver, but not in brain, of Fischer 344 rats subjected to dietary iron supplementation with lipid-soluble[(3,5,5-Trimethylhexanoyl)ferrocene

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens; Morgan, Evan; Christen, Stephan

    2007-01-01

    Accumulation of iron probably predisposes the aging brain to progressive neuronal loss. We examined various markers of oxidative stress and damage in the brain and liver of 3- and 24-month old rats following supplementationwith the lipophilic iron derivative [(3,5,5-trimethylhexanoyl)ferrocene] (......, they also demonstrated that the brain is well protected against dietary iron overload by using iron in a lipid-soluble formulation.......Accumulation of iron probably predisposes the aging brain to progressive neuronal loss. We examined various markers of oxidative stress and damage in the brain and liver of 3- and 24-month old rats following supplementationwith the lipophilic iron derivative [(3,5,5-trimethylhexanoyl......)ferrocene] (TMHF), which is capable of crossing the blood-brain barrier. At both ages, iron concentration increased markedly in the liver but failed to increase in the brain. In the liver of TMHF-treated young rats, levels of a- and ¿-tocopherols and glutathione (GSH) were also higher. In contrast, the brain...

  18. The endogenous regenerative capacity of the damaged newborn brain: boosting neurogenesis with mesenchymal stem cell treatment.

    Science.gov (United States)

    Donega, Vanessa; van Velthoven, Cindy T J; Nijboer, Cora H; Kavelaars, Annemieke; Heijnen, Cobi J

    2013-05-01

    Neurogenesis continues throughout adulthood. The neurogenic capacity of the brain increases after injury by, e.g., hypoxia-ischemia. However, it is well known that in many cases brain damage does not resolve spontaneously, indicating that the endogenous regenerative capacity of the brain is insufficient. Neonatal encephalopathy leads to high mortality rates and long-term neurologic deficits in babies worldwide. Therefore, there is an urgent need to develop more efficient therapeutic strategies. The latest findings indicate that stem cells represent a novel therapeutic possibility to improve outcome in models of neonatal encephalopathy. Transplanted stem cells secrete factors that stimulate and maintain neurogenesis, thereby increasing cell proliferation, neuronal differentiation, and functional integration. Understanding the molecular and cellular mechanisms underlying neurogenesis after an insult is crucial for developing tools to enhance the neurogenic capacity of the brain. The aim of this review is to discuss the endogenous capacity of the neonatal brain to regenerate after a cerebral ischemic insult. We present an overview of the molecular and cellular mechanisms underlying endogenous regenerative processes during development as well as after a cerebral ischemic insult. Furthermore, we will consider the potential to use stem cell transplantation as a means to boost endogenous neurogenesis and restore brain function.

  19. The evolutionary psychology of left and right: costs and benefits of lateralization.

    Science.gov (United States)

    Vallortigara, Giorgio

    2006-09-01

    Why do the left and right sides of the vertebrate brain play different functions? Having a lateralized brain, in which each hemisphere carries out different functions, is ubiquitous among vertebrates. The different specialization of the left and right side of the brain may increase brain efficiency--and some evidence for that is reported here. However, lateral biases due to brain lateralization (such as preferences in the use of a limb or, in animals with laterally placed eyes, of a visual hemifield) usually occur at the population level, with most individuals showing similar direction of bias. Individual brain efficiency does not require the alignment of lateralization in the population. Why then are not left--and right-type individuals equally common? Not only humans, but most vertebrates show a similar pattern. For instance, in the paper I report evidence that most toads, chickens, and fish react faster when a predator approaches from the left. I argue that invoking individual brain efficiency (lateralization may increase fitness), evolutionary chance or direct genetic mechanisms cannot explain this widespread pattern. Instead, using concepts from mathematical theory of games, I show that alignment of lateralization at the population level may arise as an "evolutionarily stable strategy" when individually asymmetrical organisms must coordinate their behavior with that of other asymmetrical organisms. Thus, the population structure of lateralization may result from genes specifying the direction of asymmetries which have been selected under "social" pressures.

  20. Delayed radiation necrosis of the brain simulating a brain tumor

    International Nuclear Information System (INIS)

    Ikeda, Hiroya; Kanai, Nobuhiro; Kamikawa, Kiyoo

    1976-01-01

    Two cases of delayed radiation necrosis of the brain are reported. Case 1 was a 50-year-old man who had right hemiparesis and disorientation 26 months after Linac irradiation (5,000 rad), preceded by an operation for right maxillar carcinoma. A left carotid angiogram demonstrated a left temporal mass lesion, extending to the frontal lobe. Case 2 was a 41-year-old man who had previously had an operation for right intraorbital plasmocytoma, followed by two Co irradiations (6,400 rad, and 5,000 rad). He had the signs and symptoms of intracranial hypertension 36 months after his last irradiation. A left carotid angiogram demonstrated a left temporal mass lesion. Both cases were treated by administration of steroid hormone (which alleviated the signs and symptoms) and by temporal lobectomy. Microscopic examinations showed necrosis of the brain tissues associated with hyaline degeneration of blood vessel walls and perivascular cell infiltration. The signs and symptoms of intracranial hypertension subsided postoperatively. Thirteen other cases the same as ours were collected from literature. They showed the signs and symptoms simulating a brain tumor (like a metastatic brain tumor) after irradiation to extracranial malignant tumors. Diagnosis of radiation necrosis was made by operation or autopsy. A follow-up for a long time is necessary, because the pathological changes in the brain may be progressive and extending in some cases, although decompressive operations for mass lesions give excellent results. (auth.)

  1. Zero in the brain: A voxel-based lesion-symptom mapping study in right hemisphere damaged patients.

    Science.gov (United States)

    Benavides-Varela, Silvia; Passarini, Laura; Butterworth, Brian; Rolma, Giuseppe; Burgio, Francesca; Pitteri, Marco; Meneghello, Francesca; Shallice, Tim; Semenza, Carlo

    2016-04-01

    Transcoding numerals containing zero is more problematic than transcoding numbers formed by non-zero digits. However, it is currently unknown whether this is due to zeros requiring brain areas other than those traditionally associated with number representation. Here we hypothesize that transcoding zeros entails visuo-spatial and integrative processes typically associated with the right hemisphere. The investigation involved 22 right-brain-damaged patients and 20 healthy controls who completed tests of reading and writing Arabic numbers. As expected, the most significant deficit among patients involved a failure to cope with zeros. Moreover, a voxel-based lesion-symptom mapping (VLSM) analysis showed that the most common zero-errors were maximally associated to the right insula which was previously related to sensorimotor integration, attention, and response selection, yet for the first time linked to transcoding processes. Error categories involving other digits corresponded to the so-called Neglect errors, which however, constituted only about 10% of the total reading and 3% of the writing mistakes made by the patients. We argue that damage to the right hemisphere impairs the mechanism of parsing, and the ability to set-up empty-slot structures required for processing zeros in complex numbers; moreover, we suggest that the brain areas located in proximity to the right insula play a role in the integration of the information resulting from the temporary application of transcoding procedures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. That's Using Your Brain!

    Science.gov (United States)

    Visser, Dana R.

    1996-01-01

    Discusses new adult learning theories, including those of Roger Sperry (left brain/right brain), Paul McLean (triune brain), and Howard Gardner (multiple intelligences). Relates adult learning theory to training. (JOW)

  3. Study on CT changes in autistic children; Anatomical correlation of the damaged brain and delay of psychomotor development

    Energy Technology Data Exchange (ETDEWEB)

    Yaguchi, Katsumi [Juntendo Univ., Tokyo (Japan). School of Medicine

    1993-05-01

    Since 1979 we have performed CT examinations on 132 autistic children. Neurological diagnosis of the lesion was established by Dr. Segawa's group. On the CT of many autistic children, we found a small low density change located in the anterior wall of the temporal horn, or localized dilatation of the inferior horn near the damaged brain. We reviewed 96 of these patients who all had the obvious low density changes, or localized irregular dilatations in the anterior wall of the temporal horn. By measuring the distance of damage from the midline, we divided the 96 cases into two groups. Group 1 consisted of those with damage located laterally more than 30 mm line from the midline. Group 2 consisted of those with damage medially to the 30 mm line from the midline. Those cases with a large lesion both laterally and medially of the 30 mm line were categorized into group 1. In the adult brain the lateral border of the amygdaloid nucleus was never located laterally more than 30 mm from the midline. Laterally over the 30 mm line there were two marked fiber systems running near the anterior wall of the temporal horn: the fiber of the anterior commissure and the uncinate fascicle. Group 1 consisted of 62 patients and group 2 of 34 patients. The majority of the two group patients were pure autism children. This suggested that the main lesion in autism was in the amygdala. (author).

  4. Study on CT changes in autistic children; Anatomical correlation of the damaged brain and delay of psychomotor development

    Energy Technology Data Exchange (ETDEWEB)

    Yaguchi, Katsumi (Juntendo Univ., Tokyo (Japan). School of Medicine)

    1993-05-01

    Since 1979 we have performed CT examinations on 132 autistic children. Neurological diagnosis of the lesion was established by Dr. Segawa's group. On the CT of many autistic children, we found a small low density change located in the anterior wall of the temporal horn, or localized dilatation of the inferior horn near the damaged brain. We reviewed 96 of these patients who all had the obvious low density changes, or localized irregular dilatations in the anterior wall of the temporal horn. By measuring the distance of damage from the midline, we divided the 96 cases into two groups. Group 1 consisted of those with damage located laterally more than 30 mm line from the midline. Group 2 consisted of those with damage medially to the 30 mm line from the midline. Those cases with a large lesion both laterally and medially of the 30 mm line were categorized into group 1. In the adult brain the lateral border of the amygdaloid nucleus was never located laterally more than 30 mm from the midline. Laterally over the 30 mm line there were two marked fiber systems running near the anterior wall of the temporal horn: the fiber of the anterior commissure and the uncinate fascicle. Group 1 consisted of 62 patients and group 2 of 34 patients. The majority of the two group patients were pure autism children. This suggested that the main lesion in autism was in the amygdala. (author).

  5. Right-to-left shunt and subclinical ischemic brain lesions in Chinese migraineurs: a multicentre MRI study.

    Science.gov (United States)

    Jiang, Xiao-Han; Wang, Si-Bo; Tian, Qian; Zhong, Chi; Zhang, Guan-Ling; Li, Ya-Jie; Lin, Pan; You, Yong; Guo, Rong; Cui, Ying-Hua; Xing, Ying-Qi

    2018-02-14

    Migraine is considered as a risk factor for subclinical brain ischemic lesions, and right-to-left shunt (RLS) is more common among migraineurs. This cross-sectional study assessed the association of RLS with the increased prevalence of subclinical ischemic brain lesions in migraineurs. We enrolled 334 migraineurs from a multicentre study from June 2015 to August 2016. Participants were all evaluated using contrast-enhanced transcranial Doppler, magnetic resonance imaging (MRI), and completed a questionnaire covering demographics, the main risk factors of vascular disease, and migraine status. RLS was classified into four grades (Grade 0 = Negative; Grade I = 1 ≤ microbubbles (MBs) ≤ 10; Grade II = MBs > 10 and no curtain; Grade III = curtain). Silent brain ischemic infarctions (SBI) and white matter hyperintensities (WMHs) were evaluated on MRI. We found no significant differences between migraineurs with RLS and migraineurs without RLS in subclinical ischemic brain lesions.SBI and WMHs did not increase with the size of the RLS(p for trend for SBI = 0.066, p for trend for WMHs = 0.543). Furthermore, curtain RLS in migraineurs was a risk factor for the presence of SBI (p = 0.032, OR = 3.47; 95%CI: 1.12-10.76). There was no association between RLS and the presence of WMHs. Overall, RLS is not associated with increased SBI or WMHs in migraineurs. However, when RLS is present as a curtain pattern, it is likely to be a risk factor for SBIs in migraineurs. No. NCT02425696 ; registered on April 21, 2015.

  6. The distribution of N-isopropyl-p-iodoamphetamine in experimental ischemic brain of the mongolian gerbil

    International Nuclear Information System (INIS)

    Jinnouchi, Seishi; Hoshi, Hiroaki; Watanabe, Katsushi; Ueda, Takashi; Yamaguchi, Tadatoshi

    1988-01-01

    We studied the distribution of N-isopropyl-p-[I-131]-iodoamphetamine (IMP) in permanent and temporary ischemic brains of mongolian gerbils. For the permanent ischemic brain model, the right common carotid artery was ligated under ether anesthesia. For the temporary ischemic brain model, the right common carotid artery was clamped by a clip and recirculated at 3 hours thereafter. After given time intervals, 1.35 MBq (50 μCi) of IMP was injected intravenously into 17 gerbils (permanent ischemic brain model), 18 gerbils (temporary ischemic brain model) which had severe neurological symptoms, and 3 normal gerbils for controls. One minute, 10 minutes, 1 hour and 6 hours after the injection, gerbils were sacrified and autoradiography of the brain was performed. The activity of IMP in various parts of the brain was calculated from each autoradiogram. In permanent ischemic brains, low perfusion areas were observed in the right cerebral hemisphere, the brain stem (5 ∼ 20 % of normal value), and in the left hemisphere (40 ∼ 60 % of normal value). In temporary ischemic brains, focal areas of increased activity were observed in the right cerebral hemisphere and the thalamus from 10 minutes to 24 hours after recirculation. The high activity disappeared rapidly at 10 minutes after the injection. It seemed that this high activity represented luxury perfusion in the region with severe tissue damage. In the left hemisphere, almost complete recovery of perfusion occurred at 1 ∼ 3 days after recirculation. These results suggested the possibility of IMP to demonstrate cerebral ischemia, luxury perfusion and diaschisis. (author)

  7. Seeing left- or right-asymmetric tail wagging produces different emotional responses in dogs.

    Science.gov (United States)

    Siniscalchi, Marcello; Lusito, Rita; Vallortigara, Giorgio; Quaranta, Angelo

    2013-11-18

    Left-right asymmetries in behavior associated with asymmetries in the brain are widespread in the animal kingdom, and the hypothesis has been put forward that they may be linked to animals' social behavior. Dogs show asymmetric tail-wagging responses to different emotive stimuli-the outcome of different activation of left and right brain structures controlling tail movements to the right and left side of the body. A crucial question, however, is whether or not dogs detect this asymmetry. Here we report that dogs looking at moving video images of conspecifics exhibiting prevalent left- or right-asymmetric tail wagging showed higher cardiac activity and higher scores of anxious behavior when observing left- rather than right-biased tail wagging. The finding that dogs are sensitive to the asymmetric tail expressions of other dogs supports the hypothesis of a link between brain asymmetry and social behavior and may prove useful to canine animal welfare theory and practice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Are orchids left and dandelions right? Frontal brain activation asymmetry and its sensitivity to developmental context.

    Science.gov (United States)

    Fortier, Paz; Van Lieshout, Ryan J; Waxman, Jordana A; Boyle, Michael H; Saigal, Saroj; Schmidt, Louis A

    2014-08-01

    To clarify long-standing conceptual and empirical inconsistencies in models describing the relation between frontal brain asymmetry and emotion, we tested a theory of biological sensitivity to context. We examined whether asymmetry of alpha activation in frontal brain regions, as measured by resting electroencephalography, is sensitive to early developmental contexts. Specifically, we investigated whether frontal asymmetry moderates the association between birth weight and adult outcomes. Adults with left frontal asymmetry (LFA) who were born at extremely low birth weight exhibited high levels of attention problems and withdrawn behaviors in their 30s, whereas normal-birth-weight adults with LFA had low levels of these problem behaviors. Adults with right frontal asymmetry (RFA) displayed a relatively moderate amount of problem behavior regardless of birth weight. Our findings suggest that LFA is associated with sensitivity to developmental context and may help explain why LFA is associated with both positive and negative outcomes, whereas RFA seems to be associated with a more canalized process in some contexts. © The Author(s) 2014.

  9. Biological Signatures of Brain Damage Associated with High Serum Ferritin Levels in Patients with Acute Ischemic Stroke and Thrombolytic Treatment

    Science.gov (United States)

    Millán, Mónica; Sobrino, Tomás; Arenillas, Juan Francisco; Rodríguez-Yáñez, Manuel; García, María; Nombela, Florentino; Castellanos, Mar; de la Ossa, Natalia Pérez; Cuadras, Patricia; Serena, Joaquín; Castillo, José; Dávalos, Antoni

    2008-01-01

    Background and purpose: Increased body iron stores have been related to greater oxidative stress and brain injury in clinical and experimental cerebral ischemia and reperfusion. We aimed to investigate the biological signatures of excitotoxicity, inflammation and blood brain barrier disruption potentially associated with high serum ferritin levels-related damage in acute stroke patients treated with i.v. t-PA. Methods: Serum levels of ferritin (as index of increased cellular iron stores), glutamate, interleukin-6, matrix metalloproteinase-9 and cellular fibronectin were determined in 134 patients treated with i.v. t-PA within 3 hours from stroke onset in blood samples obtained before t-PA treatment, at 24 and 72 hours. Results: Serum ferritin levels before t-PA infusion correlated to glutamate (r = 0.59, p < 0.001) and interleukin-6 (r = 0.55, p <0.001) levels at baseline, and with glutamate (r = 0.57,p <0.001), interleukin-6 (r = 0.49,p <0.001), metalloproteinase-9 (r = 0.23, p = 0.007) and cellular fibronectin (r = 0.27, p = 0.002) levels measured at 24 hours and glutamate (r = 0.415, p < 0.001), interleukin-6 (r = 0.359, p < 0.001) and metalloproteinase-9 (r = 0.261, p = 0.004) at 72 hours. The association between ferritin and glutamate levels remained after adjustment for confounding factors in generalized linear models. Conclusions: Brain damage associated with increased iron stores in acute ischemic stroke patients treated with iv. tPA may be mediated by mechanisms linked to excitotoxic damage. The role of inflammation, blood brain barrier disruption and oxidative stress in this condition needs further research. PMID:19096131

  10. Brain Malformations

    Science.gov (United States)

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  11. Microstructural damage of the posterior corpus callosum contributes to the clinical severity of neglect.

    Directory of Open Access Journals (Sweden)

    Marco Bozzali

    Full Text Available One theory to account for neglect symptoms in patients with right focal damage invokes a release of inhibition of the right parietal cortex over the left parieto-frontal circuits, by disconnection mechanism. This theory is supported by transcranial magnetic stimulation studies showing the existence of asymmetric inhibitory interactions between the left and right posterior parietal cortex, with a right hemispheric advantage. These inhibitory mechanisms are mediated by direct transcallosal projections located in the posterior portions of the corpus callosum. The current study, using diffusion imaging and tract-based spatial statistics (TBSS, aims at assessing, in a data-driven fashion, the contribution of structural disconnection between hemispheres in determining the presence and severity of neglect. Eleven patients with right acute stroke and 11 healthy matched controls underwent MRI at 3T, including diffusion imaging, and T1-weighted volumes. TBSS was modified to account for the presence of the lesion and used to assess the presence and extension of changes in diffusion indices of microscopic white matter integrity in the left hemisphere of patients compared to controls, and to investigate, by correlation analysis, whether this damage might account for the presence and severity of patients' neglect, as assessed by the Behavioural Inattention Test (BIT. None of the patients had any macroscopic abnormality in the left hemisphere; however, 3 cases were discarded due to image artefacts in the MRI data. Conversely, TBSS analysis revealed widespread changes in diffusion indices in most of their left hemisphere tracts, with a predominant involvement of the corpus callosum and its projections on the parietal white matter. A region of association between patients' scores at BIT and brain FA values was found in the posterior part of the corpus callosum. This study strongly supports the hypothesis of a major role of structural disconnection between the

  12. Histological and elemental changes in the rat brain after local irradiation with carbon ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Sentaro; Sun, Xue-Zhi; Kubota, Yoshihisa; Takai, Nobuhiko; Nojima, Kumie [National Inst. of Radiological Sciences, Chiba (Japan)

    2002-06-01

    The left cerebral hemispheres of adult Sprague-Dawley rat brains were irradiated at doses of 30, 50, or 100 Gy with charged carbon particles (290 MeV/nucleon; 5 mm spread-out Bragg peak). The spread-out Bragg peak used here successfully and satisfactorily retained its high-dose localization in the defined region. A histological examination showed that necrotic tissue damage, hemorrhage in the thalamus, and vasodilatations around the necrotic region were induced at 8 weeks after 100 Gy irradiation. The regions with tissue damage correlated well with those expected from the radiation-dose distribution, indicating an advantage of charged carbon particles for irradiating restricted brain regions. An X-ray fluorescent analysis demonstrated a decrease in the concentrations of K and P, and an increase in the concentrations of Cl, Fe, Zn in the damaged region at 8 weeks post-irradiation, though no significant changes were observed before 4 weeks of post-irradiation. This may indicate that even the very high radiation doses used here did not induce acute and immediate neuronal cell death, in contrast with ischemic brain injury where acute neuronal cell death occurred and the elemental concentrations changed within a day after the induction of ischemia. (author)

  13. Behavior outcome after ischemic and hemorrhagic stroke, with similar brain damage, in rats.

    Science.gov (United States)

    Mestriner, Régis Gemerasca; Miguel, Patrícia Maidana; Bagatini, Pamela Brambilla; Saur, Lisiani; Boisserand, Lígia Simões Braga; Baptista, Pedro Porto Alegre; Xavier, Léder Leal; Netto, Carlos Alexandre

    2013-05-01

    Stroke causes disability and mortality worldwide and is divided into ischemic and hemorrhagic subtypes. Although clinical trials suggest distinct recovery profiles for ischemic and hemorrhagic events, this is not conclusive due to stroke heterogeneity. The aim of this study was to produce similar brain damage, using experimental models of ischemic (IS) and hemorrhagic (HS) stroke and evaluate the motor spontaneous recovery profile. We used 31 Wistar rats divided into the following groups: Sham (n=7), ischemic (IS) (n=12) or hemorrhagic (HS) (n=12). Brain ischemia or hemorrhage was induced by endotelin-1 (ET-1) and collagenase type IV-S (collagenase) microinjections, respectively. All groups were evaluated in the open field, cylinder and ladder walk behavioral tests at distinct time points as from baseline to 30 days post-surgery (30 PS). Histological and morphometric analyses were used to assess the volume of lost tissue and lesion length. Present results reveal that both forms of experimental stroke had a comparable long-term pattern of damage, since no differences were found in volume of tissue lost or lesion size 30 days after surgery. However, behavioral data showed that hemorrhagic rats were less impaired at skilled walking than ischemic ones at 15 and 30 days post-surgery. We suggest that experimentally comparable stroke design is useful because it reduces heterogeneity and facilitates the assessment of neurobiological differences related to stroke subtypes; and that spontaneous skilled walking recovery differs between experimental ischemic and hemorrhagic insults. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Brain and Behavioral Assessment of Executive Functions for Self-Regulating Levels of Language in Reading Brain.

    Science.gov (United States)

    Berninger, Virginia W; Richards, Todd L; Abbott, Robert D

    2017-11-01

    This brief research report examines brain-behavioral relationships specific to levels of language in the complex reading brain. The first specific aim was to examine prior findings for significant fMRI connectivity from four seeds (left precuneus, left occipital temporal, left supramarginal, left inferior frontal) for each of four levels of language-subword, word (word-specific spelling or affixed words), syntax (with and without homonym foils or affix foils), and multi-sentence text to identify significant fMRI connectivity (a) unique to the lower level of language when compared to the immediately higher adjacent level of language across subword-word, word-syntax, and syntax-text comparisons; and (b) involving a brain region associated with executive functions. The second specific aim was to correlate the magnitude of that connectivity with standard scores on tests of Focused Attention (D-K EFS Color Word Form Inhibition) and Switching Attention (Wolf & Denckla Rapid Automatic Switching). Seven correlations were significant. Focused Attention was significantly correlated with the word level (word-specific spellings of real words) fMRI task in left cingulum from left inferior frontal seed. Switching Attention was significantly correlated with the (a) subword level (grapheme-phoneme correspondence) fMRI task in left and right Cerebellum V from left supramarginal seed; (b) the word level (word-specific spelling) fMRI task in right Cerebellum V from left precuneus seed; (c) the syntax level (with and without homonym foils) fMRI task in right Cerebellum V from left precuneus seed and from left supramarginal seed; and (d) syntax level (with and without affix foils) fMRI task in right Cerebellum V from left precuneus seed. Results are discussed in reference to neuropsychological assessment of supervisory attention (focused and switching) for specific levels of language related to reading acquisition in students with and without language-related specific learning

  15. Investigation of left and right lateral fluid percussion injury in C57BL6/J mice: In vivo functional consequences.

    Science.gov (United States)

    Schurman, Lesley D; Smith, Terry L; Morales, Anthony J; Lee, Nancy N; Reeves, Thomas M; Phillips, Linda L; Lichtman, Aron H

    2017-07-13

    Although rodent models of traumatic brain injury (TBI) reliably produce cognitive and motor disturbances, behavioral characterization resulting from left and right hemisphere injuries remains unexplored. Here we examined the functional consequences of targeting the left versus right parietal cortex in lateral fluid percussion injury, on Morris water maze (MWM) spatial memory tasks (fixed platform and reversal) and neurological motor deficits (neurological severity score and rotarod). In the MWM fixed platform task, right lateral injury produced a small delay in acquisition rate compared to left. However, injury to either hemisphere resulted in probe trial deficits. In the MWM reversal task, left-right performance deficits were not evident, though left lateral injury produced mild acquisition and probe trial deficits compared to sham controls. Additionally, left and right injury produced similar neurological motor task deficits, impaired righting times, and lesion volumes. Injury to either hemisphere also produced robust ipsilateral, and modest contralateral, morphological changes in reactive microglia and astrocytes. In conclusion, left and right lateral TBI impaired MWM performance, with mild fixed platform acquisition rate differences, despite similar motor deficits, histological damage, and glial cell reactivity. Thus, while both left and right lateral TBI produce cognitive deficits, laterality in mouse MWM learning and memory merits consideration in the investigation of TBI-induced cognitive consequences. Copyright © 2017. Published by Elsevier B.V.

  16. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    Science.gov (United States)

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (pmicrowave exposed groups (pmicrowave exposed animal (pmicrowave exposed groups as compared to their corresponding values in sham exposed group (pmicrowave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect. The study also indicates that increased oxidative stress and inflammatory response might be the factors involved in DNA damage following low intensity microwave exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Extraction of water labeled with oxygen 15 during single-capillary transit. Influence of blood pressure, osmolarity, and blood-brain barrier damage

    International Nuclear Information System (INIS)

    Go, K.G.; Lammertsma, A.A.; Paans, A.M.; Vaalburg, W.; Woldring, M.G.

    1981-01-01

    By external detection, the influence of arterial blood pressure (BP), osmolarity, and cold-induced blood-brain barrier damage was assessed on the extraction of water labeled with oxygen 15 during single-capillary transit in the rat. There was an inverse relation between arterial BP and extraction that was attributable to the influence of arterial BP on cerebral blood flow (CBF) and the relation between CBF and extraction. Neither arterial BP nor osmolarity of the injected bolus had any direct effect on extraction of water 15O, signifying that the diffusional exchange component (determined by blood flow) of extraction greatly surpasses the convection flow contribution by hydrostatic or osmotic forces. Damage to the blood-brain barrier did not change its permeability to water

  18. Radiation-Induced Astrogliosis and Blood-Brain Barrier Damage Can Be Abrogated Using Anti-TNF Treatment

    International Nuclear Information System (INIS)

    Wilson, Christy M.; Gaber, M. Waleed; Sabek, Omaima M.; Zawaski, Janice A.; Merchant, Thomas E.

    2009-01-01

    Purpose: In this article, we investigate the role of tumor necrosis factor-alpha (TNF) in the initiation of acute damage to the blood-brain barrier (BBB) and brain tissue following radiotherapy (RT) for CNS tumors. Methods and Materials: Intravital microscopy and a closed cranial window technique were used to measure quantitatively BBB permeability to FITC-dextran 4.4-kDa molecules, leukocyte adhesion (Rhodamine-6G) and vessel diameters before and after 20-Gy cranial radiation with and without treatment with anti-TNF. Immunohistochemistry was used to quantify astrogliosis post-RT and immunofluorescence was used to visualize protein expression of TNF and ICAM-1 post-RT. Recombinant TNF (rTNF) was used to elucidate the role of TNF in leukocyte adhesion and vessel diameter. Results: Mice treated with anti-TNF showed significantly lower permeability and leukocyte adhesion at 24 and 48 h post-RT vs. RT-only animals. We observed a significant decrease in arteriole diameters at 48 h post-RT that was inhibited in TNF-treated animals. We also saw a significant increase in activated astrocytes following RT that was significantly lower in the anti-TNF-treated group. In addition, immunofluorescence showed protein expression of TNF and ICAM-1 in the cerebral cortex that was inhibited with anti-TNF treatment. Finally, administration of rTNF induced a decrease in arteriole diameter and a significant increase in leukocyte adhesion in venules and arterioles. Conclusions: TNF plays a significant role in acute changes in BBB permeability, leukocyte adhesion, arteriole diameter, and astrocyte activation following cranial radiation. Treatment with anti-TNF protects the brain's microvascular network from the acute damage following RT.

  19. Structural Brain Damage and Upper Limb Kinematics in Children with Unilateral Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Lisa Mailleux

    2017-12-01

    Full Text Available Background: In children with unilateral cerebral palsy (uCP virtually nothing is known on the relation between structural brain damage and upper limb (UL kinematics quantified with three-dimensional movement analysis (3DMA. This explorative study aimed to (1 investigate differences in UL kinematics between children with different lesion timings, i.e., periventricular white matter (PWM vs. cortical and deep gray matter (CDGM lesions and (2 to explore the relation between UL kinematics and lesion location and extent within each lesion timing group.Methods: Forty-eight children (age 10.4 ± 2.7 year; 29 boys; 21 right-sided; 33 PWM; 15 CDGM underwent an UL 3DMA during a reach-to-grasp task. Spatiotemporal parameters [movement duration, (timing of maximum velocity, trajectory straightness], the Arm Profile Score (APS and Arm Variable Scores (AVS were extracted. The APS and AVS refer to the total amount of movement pathology and movement deviations of the wrist, elbow, shoulder, scapula and trunk respectively. Brain lesion location and extent were scored based on FLAIR-images using a semi-quantitative MRI-scale.Results: Children with CDGM lesions showed more aberrant spatiotemporal parameters (p < 0.03 and more movement pathology (APS, p = 0.003 compared to the PWM group, mostly characterized by increased wrist flexion (p = 0.01. In the CDGM group, moderate to high correlations were found between lesion location and extent and duration, timing of maximum velocity and trajectory straightness (r = 0.53–0.90. Lesion location and extent were further moderately correlated with distal UL movement pathology (wrist flexion/extension, elbow pronation/supination, elbow flexion/extension; r = 0.50–0.65 and with the APS (r = 0.51–0.63. In the PWM group, only a few and low correlations were observed, mostly between damage to the PLIC and higher AVS of elbow flexion/extension, shoulder elevation and trunk rotation (r = 0.35–0.42. Regression analysis

  20. Effects of deferoxamine on blood-brain barrier disruption after subarachnoid hemorrhage.

    Directory of Open Access Journals (Sweden)

    Yanjiang Li

    Full Text Available Blood brain barrier (BBB disruption is a key mechanism of subarachnoid hemorrhage (SAH-induced brain injury. This study examined the mechanism of iron-induced BBB disruption after SAH and investigated the potential therapeutic effect of iron chelation on SAH. Male adult Sprague-Dawley rats had an endovascular perforation of left internal carotid artery bifurcation or sham operation. The rats were treated with deferoxamine (DFX or vehicle (100mg/kg for a maximum of 7 days. Brain edema, BBB leakage, behavioral and cognitive impairment were examined. In SAH rat, the peak time of brain edema and BBB impairment in the cortex was at day 3 after SAH. SAH resulted in a significant increase in ferritin expression in the cortex. The ferritin positive cells were colocalized with endothelial cells, pericytes, astrocytes, microglia and neurons. Compared with vehicle, DFX caused less ferritin upregulation, brain water content, BBB impairment, behavioral and cognitive deficits in SAH rats. The results suggest iron overload could be a therapeutic target for SAH induced BBB damage.

  1. Neuroprotection and enhanced neurogenesis by extract from the tropical plant Knema laurina after inflammatory damage in living brain tissue.

    Science.gov (United States)

    Häke, Ines; Schönenberger, Silvia; Neumann, Jens; Franke, Katrin; Paulsen-Merker, Katrin; Reymann, Klaus; Ismail, Ghazally; Bin Din, Laily; Said, Ikram M; Latiff, A; Wessjohann, Ludger; Zipp, Frauke; Ullrich, Oliver

    2009-01-03

    Inflammatory reactions in the CNS, resulting from a loss of control and involving a network of non-neuronal and neuronal cells, are major contributors to the onset and progress of several major neurodegenerative diseases. Therapeutic strategies should therefore keep or restore the well-controlled and finely-tuned balance of immune reactions, and protect neurons from inflammatory damage. In our study, we selected plants of the Malaysian rain forest by an ethnobotanic survey, and investigated them in cell-based-assay-systems and in living brain tissue cultures in order to identify anti-inflammatory and neuroprotective effects. We found that alcoholic extracts from the tropical plant Knema laurina (Black wild nutmeg) exhibited highly anti-inflammatory and neuroprotective effects in cell culture experiments, reduced NO- and IL-6-release from activated microglia cells dose-dependently, and protected living brain tissue from microglia-mediated inflammatory damage at a concentration of 30 microg/ml. On the intracellular level, the extract inhibited ERK-1/2-phosphorylation, IkB-phosphorylation and subsequently NF-kB-translocation in microglia cells. K. laurina belongs to the family of Myristicaceae, which have been used for centuries for treatment of digestive and inflammatory diseases and is also a major food plant of the Giant Hornbill. Moreover, extract from K. laurina promotes also neurogenesis in living brain tissue after oxygen-glucose deprivation. In conclusion, extract from K. laurina not only controls and limits inflammatory reaction after primary neuronal damage, it promotes moreover neurogenesis if given hours until days after stroke-like injury.

  2. BrainNetVis: analysis and visualization of brain functional networks.

    Science.gov (United States)

    Tsiaras, Vassilis; Andreou, Dimitris; Tollis, Ioannis G

    2009-01-01

    BrainNetVis is an application, written in Java, that displays and analyzes synchronization networks from brain signals. The program implements a number of network indices and visualization techniques. We demonstrate its use through a case study of left hand and foot motor imagery. The data sets were provided by the Berlin BCI group. Using this program we managed to find differences between the average left hand and foot synchronization networks by comparing them with the average idle state synchronization network.

  3. On the other hand: including left-handers in cognitive neuroscience and neurogenetics.

    Science.gov (United States)

    Willems, Roel M; Van der Haegen, Lise; Fisher, Simon E; Francks, Clyde

    2014-03-01

    Left-handers are often excluded from study cohorts in neuroscience and neurogenetics in order to reduce variance in the data. However, recent investigations have shown that the inclusion or targeted recruitment of left-handers can be informative in studies on a range of topics, such as cerebral lateralization and the genetic underpinning of asymmetrical brain development. Left-handed individuals represent a substantial portion of the human population and therefore left-handedness falls within the normal range of human diversity; thus, it is important to account for this variation in our understanding of brain functioning. We call for neuroscientists and neurogeneticists to recognize the potential of studying this often-discarded group of research subjects.

  4. Etiological aspect of left-handedness in adolescents.

    Science.gov (United States)

    Dragović, Milan; Milenković, Sanja; Kocijancić, Dusica; Zlatko, Sram

    2013-01-01

    Lateralization of brain functions such as language and manual dominance (hand preferences and fine motor control) are most likely under genetic control. However, this does not preclude the effect of various environmental factors on functional brain lateralization. A strong association of non-right-handedness (left- and mixed-handedness) with various neurodevelopmental conditions (e.g. schizophrenia, autism, Rett syndrome) implies that in some cases, non-right-handedness may be acquired rather than inherited (i.e., pathologically determined). The aim of the study was: (a) re-investigation of several known risk factors for left-handedness (age of mother and/or father, twin pregnancies, and birth order), and (b) examination of hitherto uninvestigated factors (type of birth, Apgar score, maternal smoking during pregnancy). Putative, causative environmental agents for this shift in manual distributions are explored in a sample of 1031 high school students (404 males and 627 females) from Belgrade. Both pre-existing (age of parents, twin pregnancy, and birth order) and new (Apgar score, maternal smoking, type of birth) putative agents are examined. We found that maternal smoking and low Apgar score (2-6) can significantly increase risk for left-handedness (p=0.046 and p=0.042, respectively).The remaining factors showed no significant association with left-handedness in adolescents. Our study clearly demonstrates that left-handedness may be related to maternal smoking during pregnancy and a low Apgar score on birth.

  5. Signs of long-term adaptation to permanent brain damage as revealed by prehension studies of children with spastic hemiparesis

    NARCIS (Netherlands)

    Steenbergen, B.; Meulenbroek, R.G.J.; Latash, M.L.; Levin, M.

    2003-01-01

    This chapter focusses on signs of long-term adaptation to permanent brain damage in children with spastic hemiparesis. First, we recognize that adaptation processes may occur at various time scales. Then, we formulate a tentative strategy to infer signs of adaptation from behavioral data.

  6. [Right extremities pain caused by a malacia lesion in the left putamen:a resting functional magnetic resonance imaging of the marginal division of the human brain].

    Science.gov (United States)

    Chen, Zhi-Ye; Ma, Lin

    2014-04-01

    To explore the role of marginal division of the human brain in the pain modulation. Resting functional magnetic resonance imaging was applied in a patient with right extremities pain caused by a malacia lesion in the left putamen and in 8 healthy volunteers. Marginal division was defined using manual drawing on structure images, and was applied to the computation of fuctional connectivity maps. The functional connectivities in the left marginal division showed an evident decrease in the patient when compared with healthy controls. These connectivities were mainly located in the bilateral head of caudate nucleus, putamen, and left globus pallidus. The marginal division may be involved in the pain modulation.

  7. Left hemisphere lateralization for lexical and acoustic pitch processing in Cantonese speakers as revealed by mismatch negativity.

    Science.gov (United States)

    Gu, Feng; Zhang, Caicai; Hu, Axu; Zhao, Guoping

    2013-12-01

    For nontonal language speakers, speech processing is lateralized to the left hemisphere and musical processing is lateralized to the right hemisphere (i.e., function-dependent brain asymmetry). On the other hand, acoustic temporal processing is lateralized to the left hemisphere and spectral/pitch processing is lateralized to the right hemisphere (i.e., acoustic-dependent brain asymmetry). In this study, we examine whether the hemispheric lateralization of lexical pitch and acoustic pitch processing in tonal language speakers is consistent with the patterns of function- and acoustic-dependent brain asymmetry in nontonal language speakers. Pitch contrast in both speech stimuli (syllable /ji/ in Experiment 1) and nonspeech stimuli (harmonic tone in Experiment 1; pure tone in Experiment 2) was presented to native Cantonese speakers in passive oddball paradigms. We found that the mismatch negativity (MMN) elicited by lexical pitch contrast was lateralized to the left hemisphere, which is consistent with the pattern of function-dependent brain asymmetry (i.e., left hemisphere lateralization for speech processing) in nontonal language speakers. However, the MMN elicited by acoustic pitch contrast was also left hemisphere lateralized (harmonic tone in Experiment 1) or showed a tendency for left hemisphere lateralization (pure tone in Experiment 2), which is inconsistent with the pattern of acoustic-dependent brain asymmetry (i.e., right hemisphere lateralization for acoustic pitch processing) in nontonal language speakers. The consistent pattern of function-dependent brain asymmetry and the inconsistent pattern of acoustic-dependent brain asymmetry between tonal and nontonal language speakers can be explained by the hypothesis that the acoustic-dependent brain asymmetry is the consequence of a carryover effect from function-dependent brain asymmetry. Potential evolutionary implication of this hypothesis is discussed. © 2013.

  8. Nuclear medicine in the detection of radiation associated normal tissue damage of kidney, brain and salivary glands

    International Nuclear Information System (INIS)

    Liu Xiaomei; Li Dongxue; Pan Liping

    2005-01-01

    The radiation induced damage of kidney, brain and salivary glands is an important complicating disease after limit radiotherapy. The routine technology of nuclear medicine, such as tracing and imaging technique conduce to dose-effect calculations used in the planning of modern radiotherapy to three major organ systems and early detection of irradiation induced organ dysfunctions, as well as increased availability of radiotherapy. (authors)

  9. Right inferior frontal gyrus activation is associated with memory improvement in patients with left frontal low-grade glioma resection.

    Directory of Open Access Journals (Sweden)

    Eliane C Miotto

    Full Text Available Patients with low-grade glioma (LGG have been studied as a model of functional brain reorganization due to their slow-growing nature. However, there is no information regarding which brain areas are involved during verbal memory encoding after extensive left frontal LGG resection. In addition, it remains unknown whether these patients can improve their memory performance after instructions to apply efficient strategies. The neural correlates of verbal memory encoding were investigated in patients who had undergone extensive left frontal lobe (LFL LGG resections and healthy controls using fMRI both before and after directed instructions were given for semantic organizational strategies. Participants were scanned during the encoding of word lists under three different conditions before and after a brief period of practice. The conditions included semantically unrelated (UR, related-non-structured (RNS, and related-structured words (RS, allowing for different levels of semantic organization. All participants improved on memory recall and semantic strategy application after the instructions for the RNS condition. Healthy subjects showed increased activation in the left inferior frontal gyrus (IFG and middle frontal gyrus (MFG during encoding for the RNS condition after the instructions. Patients with LFL excisions demonstrated increased activation in the right IFG for the RNS condition after instructions were given for the semantic strategies. Despite extensive damage in relevant areas that support verbal memory encoding and semantic strategy applications, patients that had undergone resections for LFL tumor could recruit the right-sided contralateral homologous areas after instructions were given and semantic strategies were practiced. These results provide insights into changes in brain activation areas typically implicated in verbal memory encoding and semantic processing.

  10. Right inferior frontal gyrus activation is associated with memory improvement in patients with left frontal low-grade glioma resection.

    Science.gov (United States)

    Miotto, Eliane C; Balardin, Joana B; Vieira, Gilson; Sato, Joao R; Martin, Maria da Graça M; Scaff, Milberto; Teixeira, Manoel J; Junior, Edson Amaro

    2014-01-01

    Patients with low-grade glioma (LGG) have been studied as a model of functional brain reorganization due to their slow-growing nature. However, there is no information regarding which brain areas are involved during verbal memory encoding after extensive left frontal LGG resection. In addition, it remains unknown whether these patients can improve their memory performance after instructions to apply efficient strategies. The neural correlates of verbal memory encoding were investigated in patients who had undergone extensive left frontal lobe (LFL) LGG resections and healthy controls using fMRI both before and after directed instructions were given for semantic organizational strategies. Participants were scanned during the encoding of word lists under three different conditions before and after a brief period of practice. The conditions included semantically unrelated (UR), related-non-structured (RNS), and related-structured words (RS), allowing for different levels of semantic organization. All participants improved on memory recall and semantic strategy application after the instructions for the RNS condition. Healthy subjects showed increased activation in the left inferior frontal gyrus (IFG) and middle frontal gyrus (MFG) during encoding for the RNS condition after the instructions. Patients with LFL excisions demonstrated increased activation in the right IFG for the RNS condition after instructions were given for the semantic strategies. Despite extensive damage in relevant areas that support verbal memory encoding and semantic strategy applications, patients that had undergone resections for LFL tumor could recruit the right-sided contralateral homologous areas after instructions were given and semantic strategies were practiced. These results provide insights into changes in brain activation areas typically implicated in verbal memory encoding and semantic processing.

  11. Left-right asymmetry of maturation rates in human embryonic neural development

    OpenAIRE

    De Kovel, C.; Lisgo, S.; Karlebach, G.; Ju, J.; Cheng, G.; Fisher, S.; Francks, C.

    2017-01-01

    Background Left-right asymmetry is a fundamental organizing feature of the human brain, and neuro-psychiatric disorders such as schizophrenia sometimes involve alterations of brain asymmetry. As early as 8 weeks post conception, the majority of human fetuses move their right arms more than their left arms, but because nerve fibre tracts are still descending from the forebrain at this stage, spinal-muscular asymmetries are likely to play an important developmental role. Methods We used RNA seq...

  12. Traces of vocabulary acquisition in the brain: Evidence from covert object naming.

    Science.gov (United States)

    Ellis, A W; Burani, C; Izura, C; Bromiley, A; Venneri, A

    2006-11-15

    One of the strongest predictors of the speed with which adults can name a pictured object is the age at which the object and its name are first learned. Age of acquisition also predicts the retention or loss of individual words following brain damage in conditions like aphasia and Alzheimer's disease. Functional Magnetic Resonance Imaging (fMRI) was used to reveal brain areas differentially involved in naming objects with early or late acquired names. A baseline task involved passive viewing of non-objects. The comparison between the silent object naming conditions (early and late) with baseline showed significant activation in frontal, parietal and mediotemporal regions bilaterally and in the lingual and fusiform gyri on the left. Direct comparison of early and late items identified clusters with significantly greater activation for early acquired items at the occipital poles (in the posterior parts of the middle occipital gyri) and at the left temporal pole. In contrast, the left middle occipital and fusiform gyri showed significantly greater activation for late than early acquired items. We propose that greater activation to early than late objects at the occipital poles and at the left temporal pole reflects the more detailed visual and semantic representations of early than late acquired items. We propose that greater activation to late than early objects in the left middle occipital and fusiform gyri occurs because those areas are involved in mapping visual onto semantic representations, which is more difficult, and demands more resource, for late than for early items.

  13. Potential Adverse Effects of Prolonged Sevoflurane Exposure on Developing Monkey Brain: From Abnormal Lipid Metabolism to Neuronal Damage.

    Science.gov (United States)

    Liu, Fang; Rainosek, Shuo W; Frisch-Daiello, Jessica L; Patterson, Tucker A; Paule, Merle G; Slikker, William; Wang, Cheng; Han, Xianlin

    2015-10-01

    Sevoflurane is a volatile anesthetic that has been widely used in general anesthesia, yet its safety in pediatric use is a public concern. This study sought to evaluate whether prolonged exposure of infant monkeys to a clinically relevant concentration of sevoflurane is associated with any adverse effects on the developing brain. Infant monkeys were exposed to 2.5% sevoflurane for 9 h, and frontal cortical tissues were harvested for DNA microarray, lipidomics, Luminex protein, and histological assays. DNA microarray analysis showed that sevoflurane exposure resulted in a broad identification of differentially expressed genes (DEGs) in the monkey brain. In general, these genes were associated with nervous system development, function, and neural cell viability. Notably, a number of DEGs were closely related to lipid metabolism. Lipidomic analysis demonstrated that critical lipid components, (eg, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol) were significantly downregulated by prolonged exposure of sevoflurane. Luminex protein analysis indicated abnormal levels of cytokines in sevoflurane-exposed brains. Consistently, Fluoro-Jade C staining revealed more degenerating neurons after sevoflurane exposure. These data demonstrate that a clinically relevant concentration of sevoflurane (2.5%) is capable of inducing and maintaining an effective surgical plane of anesthesia in the developing nonhuman primate and that a prolonged exposure of 9 h resulted in profound changes in gene expression, cytokine levels, lipid metabolism, and subsequently, neuronal damage. Generally, sevoflurane-induced neuronal damage was also associated with changes in lipid content, composition, or both; and specific lipid changes could provide insights into the molecular mechanism(s) underlying anesthetic-induced neurotoxicity and may be sensitive biomarkers for the early detection of anesthetic-induced neuronal damage. Published by Oxford University Press on behalf of the

  14. General and specialized brain correlates for analogical reasoning: A meta-analysis of functional imaging studies.

    Science.gov (United States)

    Hobeika, Lucie; Diard-Detoeuf, Capucine; Garcin, Béatrice; Levy, Richard; Volle, Emmanuelle

    2016-05-01

    Reasoning by analogy allows us to link distinct domains of knowledge and to transfer solutions from one domain to another. Analogical reasoning has been studied using various tasks that have generally required the consideration of the relationships between objects and their integration to infer an analogy schema. However, these tasks varied in terms of the level and the nature of the relationships to consider (e.g., semantic, visuospatial). The aim of this study was to identify the cerebral network involved in analogical reasoning and its specialization based on the domains of information and task specificity. We conducted a coordinate-based meta-analysis of 27 experiments that used analogical reasoning tasks. The left rostrolateral prefrontal cortex was one of the regions most consistently activated across the studies. A comparison between semantic and visuospatial analogy tasks showed both domain-oriented regions in the inferior and middle frontal gyri and a domain-general region, the left rostrolateral prefrontal cortex, which was specialized for analogy tasks. A comparison of visuospatial analogy to matrix problem tasks revealed that these two relational reasoning tasks engage, at least in part, distinct right and left cerebral networks, particularly separate areas within the left rostrolateral prefrontal cortex. These findings highlight several cognitive and cerebral differences between relational reasoning tasks that can allow us to make predictions about the respective roles of distinct brain regions or networks. These results also provide new, testable anatomical hypotheses about reasoning disorders that are induced by brain damage. Hum Brain Mapp 37:1953-1969, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Diagnostic and prognostic value of asphyxia, Sarnat's clinical classification, and CT-scan in perinatal brain damage

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Toshihide; Wakita, Yoshiharu; Kubonishi, Sakae; Yoshikawa, Seishi (Kochi Prefectural Central Hospital (Japan)); Ito, Toshiyuki; Okada, Yasusuke

    1990-11-01

    A retrospective review was made of 145 babies, excluding those with congenital heart disease or chromosome aberration, admitted for CT scanning. The study was done to determine the diagnostic and prognostic value of CT findings, as well as the presence of asphyxia and the clinical stage based on the Sarnat's classification, in perinatal brain damage. The patients had a minimum follow up of 2 years for the evaluation of neurologic manifestations, such as cerebral palsy, epilepsy and mental retardation. Among babies weighing 2,000 g or more at birth, neonatal asphyxia was significantly correlated with neurologic prognosis. In addition, both clinical stages and CT findings were significantly correlated with neurologic prognosis, irrespective of birth weight. The correlation between clinical stages and CT findings was significant, irrespective of body weight, however, a significant correlation between clinical stages and neonatal asphyxia was restricted to those weighing 2,000 g or more. These findings suggest that the presence of asphyxia, clinical stages and CT findings are complementary in the diagnosis and prognosis evaluation of perinatal brain damage. (N.K.).

  16. Correlation of behavior with brain damage after in utero exposure to toxic agents

    International Nuclear Information System (INIS)

    Norton, S.; Kimler, B.F.

    1987-01-01

    Early postnatal behaviors involving sensorimotor integration were measured along with thickness of the sensorimotor cortex in rats irradiated with 1.0 Gy on gestational day 11 or 17. Body weight and morphology of anterior pituitary cells were recorded. Irradiation on day 17 was more effective in reducing cortical thickness and body weight and performance on behavioral tests and less effective in altering pituitary cells than irradiation on day 11. Prediction of behavioral effects, using cortical layers, body weight and pituitary morphology as predictors in stepwise multiple regression, was measured in both irradiated and control rats. Cortical Layer V more than I more than IV and VI as significant predictors of behavior. The best predictions accounted for about half of the variance in the data. When behavioral data were used to predict brain damage, the best predictor was negative geotaxis. Significant association of behavior with Layers V and VI was found. These experiments show the difficulties in correlating complex behaviors with specific brain areas and, at the same time, implicate especially Layer V of the sensorimotor cortex in these behaviors

  17. Unleashing creativity: The role of left temporoparietal regions in evaluating and inhibiting the generation of creative ideas.

    Science.gov (United States)

    Mayseless, Naama; Aharon-Peretz, Judith; Shamay-Tsoory, Simone

    2014-11-01

    Human creativity is thought to entail two processes. One is idea generation, whereby ideas emerge in an associative manner, and the other is idea evaluation, whereby generated ideas are evaluated and screened. Thus far, neuroimaging studies have identified several brain regions as being involved in creativity, yet only a handful of studies have examined the neural basis underlying these two processes. We found that an individual with left temporoparietal hemorrhage who had no previous experience as an artist developed remarkable artistic creativity, which diminished as the hemorrhage receded. We thus hypothesized that damage to the evaluation network of creativity during the initial hematoma had a releasing effect on creativity by "freeing" the idea generation system. In line with this hypothesis, we conducted a subsequent fMRI study showing that decreased left temporal and parietal activations among healthy individuals as they evaluated creative ideas selectively predicted higher creativity. The current studies provide converging multi-method evidence suggesting that the left temporoparietal area is part of a neural network involved in evaluating creativity, and that as such may act as inhibitors of creativity. We propose an explanatory model of creativity centered upon the key role of the left temporoparietal regions in evaluating and inhibiting creativity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Traumatic Brain Injury

    Science.gov (United States)

    ... brain injury Some traumatic brain injuries have lasting effects, and some do not. You may be left with disabilities. These can be physical, behavioral, communicative, and/or mental. Customized treatment helps you to have as full ...

  19. Brain white matter damage in aging and cognitive ability in youth and older age☆

    Science.gov (United States)

    Valdés Hernández, Maria del C.; Booth, Tom; Murray, Catherine; Gow, Alan J.; Penke, Lars; Morris, Zoe; Maniega, Susana Muñoz; Royle, Natalie A.; Aribisala, Benjamin S.; Bastin, Mark E.; Starr, John M.; Deary, Ian J.; Wardlaw, Joanna M.

    2013-01-01

    Cerebral white matter hyperintensities (WMH) reflect accumulating white matter damage with aging and impair cognition. The role of childhood intelligence is rarely considered in associations between cognitive impairment and WMH. We studied community-dwelling older people all born in 1936, in whom IQ had been assessed at age 11 years. We assessed medical histories, current cognitive ability and quantified WMH on MR imaging. Among 634 participants, mean age 72.7 (SD 0.7), age 11 IQ was the strongest predictor of late life cognitive ability. After accounting for age 11 IQ, greater WMH load was significantly associated with lower late life general cognitive ability (β = −0.14, p cognitive ability, after accounting for prior ability, age 11IQ. Early-life IQ also influenced WMH in later life. Determining how lower IQ in youth leads to increasing brain damage with aging is important for future successful cognitive aging. PMID:23850341

  20. Electrical stunning and exsanguination decrease the extracellular volume in the broiler brain as studied with brain impedance recordings

    NARCIS (Netherlands)

    Savenije, B; Lambooij, E; Pieterse, C; Korf, J

    Electrical stunning in the process of slaughtering poultry is used to induce unconsciousness and immobilize the animal for easier processing. Unconsciousness is a function of brain damage. Brain damage has been studied with brain impedance recordings under ischemic conditions. This experiment

  1. Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke.

    Science.gov (United States)

    Xing, Shihui; Lacey, Elizabeth H; Skipper-Kallal, Laura M; Jiang, Xiong; Harris-Love, Michelle L; Zeng, Jinsheng; Turkeltaub, Peter E

    2016-01-01

    The neural mechanisms underlying recovery of language after left hemisphere stroke remain elusive. Although older evidence suggested that right hemisphere language homologues compensate for damage in left hemisphere language areas, the current prevailing theory suggests that right hemisphere engagement is ineffective or even maladaptive. Using a novel combination of support vector regression-based lesion-symptom mapping and voxel-based morphometry, we aimed to determine whether local grey matter volume in the right hemisphere independently contributes to aphasia outcomes after chronic left hemisphere stroke. Thirty-two left hemisphere stroke survivors with aphasia underwent language assessment with the Western Aphasia Battery-Revised and tests of other cognitive domains. High-resolution T1-weighted images were obtained in aphasia patients and 30 demographically matched healthy controls. Support vector regression-based multivariate lesion-symptom mapping was used to identify critical language areas in the left hemisphere and then to quantify each stroke survivor's lesion burden in these areas. After controlling for these direct effects of the stroke on language, voxel-based morphometry was then used to determine whether local grey matter volumes in the right hemisphere explained additional variance in language outcomes. In brain areas in which grey matter volumes related to language outcomes, we then compared grey matter volumes in patients and healthy controls to assess post-stroke plasticity. Lesion-symptom mapping showed that specific left hemisphere regions related to different language abilities. After controlling for lesion burden in these areas, lesion size, and demographic factors, grey matter volumes in parts of the right temporoparietal cortex positively related to spontaneous speech, naming, and repetition scores. Examining whether domain general cognitive functions might explain these relationships, partial correlations demonstrated that grey matter

  2. Herpes simplex encephalitis: increased retention of Tc-99m HMPAO on acetazolamide enhanced brain perfusion SPECT

    International Nuclear Information System (INIS)

    Choi, Yun Young; Kim, Kwon Hyung; Kim, Seung Hyun; Cho, Suk Shin

    1998-01-01

    We present an interesting case of herpes simplex encephalitis, which showed increased upta unilateral temporal cortex on brain perfusion SPECT using Tc-99m HMPAO, but in bilateral tem cortex after acetazolamide administration. A 42-year-old man was admitted via emergency room, due to rapidly progressing hea disorientation and mental changes. On neurologic examination, neck stiffness and Kernig sign noted. CSF examination showed pleocytosis with lymphcyte predominance. MRI showed swelling bilateral temporal lobe with left predominance, suggestive of herpes simplex encephalitis. Baseline/ Acetazolamide brain perfusion SPECT were acquired consecutively at the same position IV administration of 740MBq and additional 1480 MBq of Tc-99m HMPAO respectively. The temporal and inferior frontal cortex showed markedly increased perfusion on the baseline acetazolamide-enhanced SPECT images. The right temporal cortex showed normal uptake on the b SPECT images, and markedly increased uptake after acetazolamide administration, which seemed to the abundant vascularity at the acute inflammation site without marked brain damage. The fo brain perfusion SPECT after 6 months showed perfusion defect in left temporal cortex but norm perfusion in right temporal cortex. Therefore, we can conclude that baseline SPECT is helpful for the prediction of the prognosis acetazolamide SPECT for the evaluation of the extent of herpes simples encephalitis

  3. Attenuation of Oxidative Damage by Boerhaavia diffusa L. Against Different Neurotoxic Agents in Rat Brain Homogenate.

    Science.gov (United States)

    Ayyappan, Prathapan; Palayyan, Salin Raj; Kozhiparambil Gopalan, Raghu

    2016-01-01

    Due to a high rate of oxidative metabolic activity in the brain, intense production of reactive oxygen metabolite occurs, and the subsequent generation of free radicals is implicated in the pathogenesis of traumatic brain injury, epilepsy, and ischemia as well as chronic neurodegenerative diseases. In the present study, protective effects of polyphenol rich ethanolic extract of Boerhaavia diffusa (BDE), a neuroprotective edible medicinal plant against oxidative stress induced by different neurotoxic agents, were evaluated. BDE was tested against quinolinic acid (QA), 3-nitropropionic acid (NPA), sodium nitroprusside (SNP), and Fe (II)/EDTA complex induced oxidative stress in rat brain homogenates. QA, NPA, SNP, and Fe (II)/EDTA treatment caused an increased level of thiobarbituric acid reactive substances (TBARS) in brain homogenates along with a decline in the activities of antioxidant enzymes. BDE treatment significantly decreased the production of TBARS (p cerebral cortex. Inhibitory potential of BDE against deoxyribose degradation (IC50 value 38.91 ± 0.12 μg/ml) shows that BDE can protect hydroxyl radical induced DNA damage in the tissues. Therefore, B. diffusa had high antioxidant potential that could inhibit the oxidative stress induced by different neurotoxic agents in brain. Since many of the neurological disorders are associated with free radical injury, these data may imply that B. diffusa, functioning as an antioxidant agent, may be beneficial for reducing various neurodegenerative complications.

  4. Etiological aspect of left-handedness in adolescents

    Directory of Open Access Journals (Sweden)

    Dragović Milan

    2013-01-01

    Full Text Available Introduction. Lateralization of brain functions such as language and manual dominance (hand preferences and fine motor control are most likely under genetic control. However, this does not preclude the effect of various environmental factors on functional brain lateralization. A strong association of non-right-handedness (left- and mixed-handedness with various neurodevelopmental conditions (e.g. schizophrenia, autism, Rett syndrome implies that in some cases, non-right-handedness may be acquired rather than inherited (i.e., pathologically determined. Objective. The aim of the study was: (a re-investigation of several known risk factors for left-handedness (age of mother and/or father, twin pregnancies, and birth order, and (b examination of hitherto uninvestigated factors (type of birth, Apgar score, maternal smoking during pregnancy. Methods. Putative, causative environmental agents for this shift in manual distributions are explored in a sample of 1031 high school students (404 males and 627 females from Belgrade. Both pre-existing (age of parents, twin pregnancy, and birth order and new (Apgar score, maternal smoking, type of birth putative agents are examined. Results. We found that maternal smoking and low Apgar score (2-6 can significantly increase risk for left-handedness (p=0.046 and p=0.042, respectively. The remaining factors showed no significant association with left-handedness in adolescents. Conclusion. Our study clearly demonstrates that left-handedness may be related to maternal smoking during pregnancy and a low Apgar score on birth.

  5. Mathematical modelling of blood-brain barrier failure and edema

    Science.gov (United States)

    Waters, Sarah; Lang, Georgina; Vella, Dominic; Goriely, Alain

    2015-11-01

    Injuries such as traumatic brain injury and stroke can result in increased blood-brain barrier permeability. This increase may lead to water accumulation in the brain tissue resulting in vasogenic edema. Although the initial injury may be localised, the resulting edema causes mechanical damage and compression of the vasculature beyond the original injury site. We employ a biphasic mixture model to investigate the consequences of blood-brain barrier permeability changes within a region of brain tissue and the onset of vasogenic edema. We find that such localised changes can indeed result in brain tissue swelling and that the type of damage that results (stress damage or strain damage) depends on the ability of the brain to clear edema fluid.

  6. Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Quan-Guang Zhang

    Full Text Available BACKGROUND: Oxidative stress is known to play an important role in the pathology of traumatic brain injury. Mitochondria are thought to be the major source of the damaging reactive oxygen species (ROS following TBI. However, recent work has revealed that the membrane, via the enzyme NADPH oxidase can also generate the superoxide radical (O(2(-, and thereby potentially contribute to the oxidative stress following TBI. The current study thus addressed the potential role of NADPH oxidase in TBI. METHODOLOGY/PRINCIPAL FINDINGS: The results revealed that NADPH oxidase activity in the cerebral cortex and hippocampal CA1 region increases rapidly following controlled cortical impact in male mice, with an early peak at 1 h, followed by a secondary peak from 24-96 h after TBI. In situ localization using oxidized hydroethidine and the neuronal marker, NeuN, revealed that the O(2(- induction occurred in neurons at 1 h after TBI. Pre- or post-treatment with the NADPH oxidase inhibitor, apocynin markedly inhibited microglial activation and oxidative stress damage. Apocynin also attenuated TBI-induction of the Alzheimer's disease proteins β-amyloid and amyloid precursor protein. Finally, both pre- and post-treatment of apocynin was also shown to induce significant neuroprotection against TBI. In addition, a NOX2-specific inhibitor, gp91ds-tat was also shown to exert neuroprotection against TBI. CONCLUSIONS/SIGNIFICANCE: As a whole, the study demonstrates that NADPH oxidase activity and superoxide production exhibit a biphasic elevation in the hippocampus and cortex following TBI, which contributes significantly to the pathology of TBI via mediation of oxidative stress damage, microglial activation, and AD protein induction in the brain following TBI.

  7. Preserved speech abilities and compensation following prefrontal damage.

    Science.gov (United States)

    Buckner, R L; Corbetta, M; Schatz, J; Raichle, M E; Petersen, S E

    1996-02-06

    Lesions to left frontal cortex in humans produce speech production impairments (nonfluent aphasia). These impairments vary from subject to subject and performance on certain speech production tasks can be relatively preserved in some patients. A possible explanation for preservation of function under these circumstances is that areas outside left prefrontal cortex are used to compensate for the injured brain area. We report here a direct demonstration of preserved language function in a stroke patient (LF1) apparently due to the activation of a compensatory brain pathway. We used functional brain imaging with positron emission tomography (PET) as a basis for this study.

  8. A Genetic-Based Feature Selection Approach in the Identification of Left/Right Hand Motor Imagery for a Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Charles Yaacoub

    2017-01-01

    Full Text Available Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method that improves left/right hand movement identification of a motor imagery brain-computer interface, based on genetic algorithms and artificial neural networks used as classifiers. Raw electroencephalography signals are first preprocessed using appropriate filtering. Feature extraction is carried out afterwards, based on spectral and temporal signal components, and thus a feature vector is constructed. As various features might be inaccurate and mislead the classifier, thus degrading the overall system performance, the proposed approach identifies a subset of features from a large feature space, such that the classifier error rate is reduced. Experimental results show that the proposed method is able to reduce the number of features to as low as 0.5% (i.e., the number of ignored features can reach 99.5% while improving the accuracy, sensitivity, specificity, and precision of the classifier.

  9. A Genetic-Based Feature Selection Approach in the Identification of Left/Right Hand Motor Imagery for a Brain-Computer Interface.

    Science.gov (United States)

    Yaacoub, Charles; Mhanna, Georges; Rihana, Sandy

    2017-01-23

    Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method that improves left/right hand movement identification of a motor imagery brain-computer interface, based on genetic algorithms and artificial neural networks used as classifiers. Raw electroencephalography signals are first preprocessed using appropriate filtering. Feature extraction is carried out afterwards, based on spectral and temporal signal components, and thus a feature vector is constructed. As various features might be inaccurate and mislead the classifier, thus degrading the overall system performance, the proposed approach identifies a subset of features from a large feature space, such that the classifier error rate is reduced. Experimental results show that the proposed method is able to reduce the number of features to as low as 0.5% (i.e., the number of ignored features can reach 99.5%) while improving the accuracy, sensitivity, specificity, and precision of the classifier.

  10. High prevalence of brain pathology in violent prisoners: a qualitative CT and MRI scan study.

    Science.gov (United States)

    Schiltz, Kolja; Witzel, Joachim G; Bausch-Hölterhoff, Josef; Bogerts, Bernhard

    2013-10-01

    The aim of this study was to determine the frequency and extent of brain anomalies in a large sample of incarcerated violent offenders not previously considered neuropsychiatrically ill, in comparison with non-violent offenders and non-offending controls. MRI and CT brain scans from 287 male prison inmates (162 violent and 125 non-violent) not diagnosed as mentally ill before that were obtained due to headache, vertigo or psychological complaints during imprisonment were assessed and compared to 52 non-criminal controls. Brain scans were rated qualitatively with respect to evidence of structural brain damage. Each case received a semiquantitative rating of "normal" (=0), "questionably abnormal" (=1) or "definitely abnormal" (=2) for the lateral ventricles, frontal/parietal cortex and medial temporal structures bilaterally as well as third ventricle. Overall, offenders displayed a significantly higher rate of morphological abnormality, with the violent offenders scoring significantly higher than non-violent offenders and controls. This difference was statistically detectable for frontal/parietal cortex, medial temporal structures, third ventricle and the left but not the right lateral ventricle. The remarkable prevalence of brain pathology in convicted violent prisoners detectable by neuroradiological routine assessment not only highlights the importance of frontal and temporal structures in the control of social, and specifically of violent behaviour, but also raises questions on the legal culpability of violent offenders with brain abnormalities. The high proportion of undetected presence of structural brain damage emphasizes the need that in violent criminals, the comprehensive routine neuropsychiatric assessment usually performed in routine forensic psychiatric expertises should be complemented with brain imaging.

  11. Brain structure in post-traumatic stress disorder: A voxel-based morphometry analysis.

    Science.gov (United States)

    Tan, Liwen; Zhang, Li; Qi, Rongfeng; Lu, Guangming; Li, Lingjiang; Liu, Jun; Li, Weihui

    2013-09-15

    This study compared the difference in brain structure in 12 mine disaster survivors with chronic post-traumatic stress disorder, 7 cases of improved post-traumatic stress disorder symptoms, and 14 controls who experienced the same mine disaster but did not suffer post-traumatic stress disorder, using the voxel-based morphometry method. The correlation between differences in brain structure and post-traumatic stress disorder symptoms was also investigated. Results showed that the gray matter volume was the highest in the trauma control group, followed by the symptoms-improved group, and the lowest in the chronic post-traumatic stress disorder group. Compared with the symptoms-improved group, the gray matter volume in the lingual gyrus of the right occipital lobe was reduced in the chronic post-traumatic stress disorder group. Compared with the trauma control group, the gray matter volume in the right middle occipital gyrus and left middle frontal gyrus was reduced in the symptoms-improved group. Compared with the trauma control group, the gray matter volume in the left superior parietal lobule and right superior frontal gyrus was reduced in the chronic post-traumatic stress disorder group. The gray matter volume in the left superior parietal lobule was significantly positively correlated with the State-Trait Anxiety Inventory subscale score in the symptoms-improved group and chronic post-traumatic stress disorder group (r = 0.477, P = 0.039). Our findings indicate that (1) chronic post-traumatic stress disorder patients have gray matter structural damage in the prefrontal lobe, occipital lobe, and parietal lobe, (2) after post-traumatic stress, the disorder symptoms are improved and gray matter structural damage is reduced, but cannot recover to the trauma-control level, and (3) the superior parietal lobule is possibly associated with chronic post-traumatic stress disorder. Post-traumatic stress disorder patients exhibit gray matter abnormalities.

  12. Brain structure in post-traumatic stress disorder: A voxel-based morphometry analysis

    Science.gov (United States)

    Tan, Liwen; Zhang, Li; Qi, Rongfeng; Lu, Guangming; Li, Lingjiang; Liu, Jun; Li, Weihui

    2013-01-01

    This study compared the difference in brain structure in 12 mine disaster survivors with chronic post-traumatic stress disorder, 7 cases of improved post-traumatic stress disorder symptoms, and 14 controls who experienced the same mine disaster but did not suffer post-traumatic stress disorder, using the voxel-based morphometry method. The correlation between differences in brain structure and post-traumatic stress disorder symptoms was also investigated. Results showed that the gray matter volume was the highest in the trauma control group, followed by the symptoms-improved group, and the lowest in the chronic post-traumatic stress disorder group. Compared with the symptoms-improved group, the gray matter volume in the lingual gyrus of the right occipital lobe was reduced in the chronic post-traumatic stress disorder group. Compared with the trauma control group, the gray matter volume in the right middle occipital gyrus and left middle frontal gyrus was reduced in the symptoms-improved group. Compared with the trauma control group, the gray matter volume in the left superior parietal lobule and right superior frontal gyrus was reduced in the chronic post-traumatic stress disorder group. The gray matter volume in the left superior parietal lobule was significantly positively correlated with the State-Trait Anxiety Inventory subscale score in the symptoms-improved group and chronic post-traumatic stress disorder group (r = 0.477, P = 0.039). Our findings indicate that (1) chronic post-traumatic stress disorder patients have gray matter structural damage in the prefrontal lobe, occipital lobe, and parietal lobe, (2) after post-traumatic stress, the disorder symptoms are improved and gray matter structural damage is reduced, but cannot recover to the trauma-control level, and (3) the superior parietal lobule is possibly associated with chronic post-traumatic stress disorder. Post-traumatic stress disorder patients exhibit gray matter abnormalities. PMID:25206550

  13. Systemic right-to-left shunts, ischemic brain lesions, and persistent migraine activity.

    Science.gov (United States)

    Koppen, Hille; Palm-Meinders, Inge H; Mess, Werner H; Keunen, Ruud W; Terwindt, Gisela M; Launer, Lenore J; van Buchem, Mark A; Kruit, Mark C; Ferrari, Michel D

    2016-05-03

    To assess whether migraine in the general population is associated with increased risk of systemic right-to-left shunts (RLS) and whether RLS are associated with increased prevalence of brain infarcts and persistent recurrence of migraine attacks at older age. Brain MRI and transcranial Doppler with air contrast in 166 unselected migraineurs (mean age ± SD 56 ± 7.7 years; 70% women; n = 96 migraine with aura) and 69 controls (mean age ± SD 55 ± 7.6 years; 65% women) from the general population. Participants with migraine with aura more frequently had Valsalva-induced RLS (60%), in particular large-sized, compared to controls (42%; odds ratio [OR] 2.1; 95% confidence interval [CI] 1.1-3.9; p = 0.02) and participants with migraine without aura (40%; OR 2.3; 95% CI 1.2-4.3; p = 0.01). They also more frequently had spontaneous RLS (35%) than participants with migraine without aura (17%; OR 2.6; 95% CI 1.3-5.6; p = 0.01) but not compared to controls (26%; OR 1.6; 95% CI 0.8-3.1; p = 0.2). Participants with migraine with aura and spontaneous RLS more frequently had persistent migraine activity (85%) than participants with migraine without spontaneous RLS (63%; OR 3.4; 95% CI 1.2-10.1; p = 0.03). Nine percent of participants with RLS had silent posterior circulation infarcts compared to 3% of participants without RLS (OR 2.8; 95% CI 0.9-9.3; p = 0.08), independent of migraine status. RLS were not associated with white matter lesions. RLS are more prevalent in migraineurs with aura but do not explain the increased prevalence of silent posterior circulation infarcts or white matter lesions in migraineurs. Spontaneous RLS are associated with persistent migraine. © 2016 American Academy of Neurology.

  14. Risk of brain injury during diagnostic coronary angiography: comparison between right and left radial approach.

    Science.gov (United States)

    Pacchioni, Andrea; Versaci, Francesco; Mugnolo, Antonio; Penzo, Carlo; Nikas, Dimitrios; Saccà, Salvatore; Favero, Luca; Agostoni, Pier Francesco; Garami, Zsolt; Prati, Francesco; Reimers, Bernhard

    2013-09-10

    To assess the incidence of silent cerebral embolization when using the transradial approach for diagnostic coronary angiography (DCA). Compared to other vascular access sites, the right transradial approach (RTA) could reduce the amount of brain emboli by avoiding mechanical trauma to the aortic wall caused by catheters and wire, whereas it increases manipulation of catheters in the ascending aorta and has a higher risk of direct embolization into the right common carotid artery. A recent study showed an increased incidence of microembolic signals (MES) in RTA compared to femoral. However, left transradial approach (LTA) has never been assessed. 40 patients with suspected coronary artery disease were randomized to DCA via RTA (n=20) or LTA (n=20) with contemporaneous bilateral transcranial Doppler monitoring. MES were detected in all patients, with a significantly higher rate in the RTA group (median 61, interquartile range (IQR) 47-105, vs 48, IQR 31-60, p=0.035). MES generated during procedures needing >2 catheters (n=8), are higher than those detected during procedures performed with 2 catheters (n=32, 102, IQR 70-108, vs 48, IQR 33-60, p=0.001). At multivariate analysis increasing number of catheters was the only independent predictor of high incidence of MES (OR 16.4, 95% CI 1.23-219.9, p=0.034, -2LL=26.7). LTA has a lower risk of brain embolization because of the lower number of catheter exchange maneuvers. Since the degree of brain embolism depends on the magnitude of mechanical manipulation, catheter changes should be minimized to reduce the risk of cerebral embolization. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. CEREBRAL CORTEX DAMAGE INDUCED BY ACUTE ORAL ...

    African Journals Online (AJOL)

    2018-02-28

    Feb 28, 2018 ... This study examines alcohol-induced cerebral cortex damage and the association with oxidative ... alcohol has profound effects on the function ... Chronic use of ..... Alcohol induced brain damage and liver damage in young.

  16. Insights into Intrinsic Brain Networks based on Graph Theory and PET in right- compared to left-sided Temporal Lobe Epilepsy.

    Science.gov (United States)

    Vanicek, Thomas; Hahn, Andreas; Traub-Weidinger, Tatjana; Hilger, Eva; Spies, Marie; Wadsak, Wolfgang; Lanzenberger, Rupert; Pataraia, Ekaterina; Asenbaum-Nan, Susanne

    2016-06-28

    The human brain exhibits marked hemispheric differences, though it is not fully understood to what extent lateralization of the epileptic focus is relevant. Preoperative [(18)F]FDG-PET depicts lateralization of seizure focus in patients with temporal lobe epilepsy and reveals dysfunctional metabolic brain connectivity. The aim of the present study was to compare metabolic connectivity, inferred from inter-regional [(18)F]FDG PET uptake correlations, in right-sided (RTLE; n = 30) and left-sided TLE (LTLE; n = 32) with healthy controls (HC; n = 31) using graph theory based network analysis. Comparing LTLE and RTLE and patient groups separately to HC, we observed higher lobar connectivity weights in RTLE compared to LTLE for connections of the temporal and the parietal lobe of the contralateral hemisphere (CH). Moreover, especially in RTLE compared to LTLE higher local efficiency were found in the temporal cortices and other brain regions of the CH. The results of this investigation implicate altered metabolic networks in patients with TLE specific to the lateralization of seizure focus, and describe compensatory mechanisms especially in the CH of patients with RTLE. We propose that graph theoretical analysis of metabolic connectivity using [(18)F]FDG-PET offers an important additional modality to explore brain networks.

  17. When and Why Did Brains Break Symmetry?

    Directory of Open Access Journals (Sweden)

    Lesley J. Rogers

    2015-12-01

    Full Text Available Asymmetry of brain function is known to be widespread amongst vertebrates, and it seems to have appeared very early in their evolution. In fact, recent evidence of functional asymmetry in invertebrates suggests that even small brains benefit from the allocation of different functions to the left and right sides. This paper discusses the differing functions of the left and right sides of the brain, including the roles of the left and right antennae of bees (several species in both short- and long-term recall of olfactory memories and in social behaviour. It considers the likely advantages of functional asymmetry in small and large brains and whether functional asymmetry in vertebrates and invertebrates is analogous or homologous. Neural or cognitive capacity can be enhanced both by the evolution of a larger brain and by lateralization of brain function: a possible reason why both processes occur side-by-side is offered.

  18. MRI at 3 Tesla detects no evidence for ischemic brain damage in intensively treated patients with homozygous familial hypercholesterolemia

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Stephan A.; O' Regan, Declan P.; Fitzpatrick, Julie; Hajnal, Joseph V. [Hammersmith Hospital Campus, Imaging Sciences Department, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, London (United Kingdom); Neuwirth, Clare; Potter, Elizabeth; Tosi, Isabella; Naoumova, Rossi P. [MRC Clinical Sciences Centre, Clinical Research Facility, London (United Kingdom); Hammersmith Hospital, Lipid Clinic, London (United Kingdom)

    2007-11-15

    Homozygous familial hypercholesterolemia (FH) is considered a model disease for excessive plasma cholesterol levels. Patients with untreated homozygous FH have a markedly increased risk for premature atherosclerosis. The frequency and extent of ischemic brain damage detectable by high-field magnetic resonance imaging (MRI) after long-term intensive treatment are unknown. In a case control study, five patients with homozygous FH (one male and four females; mean age: 23.6 {+-} 9.2, range: 12-36 years; mean pre-treatment serum total cholesterol level: 26.9 {+-} 3.24 mmol/L; all patients with documented atherosclerotic plaques in the carotid arteries) and five age- and sex-matched healthy controls were studied. All patients had been on maximal lipid-lowering medication since early childhood, and four of them were also on treatment with low-density lipoprotein (LDL) apheresis at bi-weekly intervals. Brain MRI was performed at 3 Tesla field strength with fluid-attenuated T2-weighted inversion recovery and T1-weighted spin-echo MR pulse sequences and subsequently evaluated by two independent readers. The maximal lipid-lowering treatment reduced the total serum cholesterol by more than 50% in the patients, but their serum concentrations were still 3.6-fold higher than those found in the controls (11.9 {+-} 4.2 vs. 4.5 {+-} 0.5 mmol/L; p < 0.0047). No brain abnormality was observed in any of the patients with homozygous FH. Homozygous FH patients on intensive cholesterol-lowering therapy have no evidence of ischemic brain damage at 3 Tesla MRI despite the remaining high cholesterol levels. (orig.)

  19. MRI at 3 Tesla detects no evidence for ischemic brain damage in intensively treated patients with homozygous familial hypercholesterolemia

    International Nuclear Information System (INIS)

    Schmitz, Stephan A.; O'Regan, Declan P.; Fitzpatrick, Julie; Hajnal, Joseph V.; Neuwirth, Clare; Potter, Elizabeth; Tosi, Isabella; Naoumova, Rossi P.

    2007-01-01

    Homozygous familial hypercholesterolemia (FH) is considered a model disease for excessive plasma cholesterol levels. Patients with untreated homozygous FH have a markedly increased risk for premature atherosclerosis. The frequency and extent of ischemic brain damage detectable by high-field magnetic resonance imaging (MRI) after long-term intensive treatment are unknown. In a case control study, five patients with homozygous FH (one male and four females; mean age: 23.6 ± 9.2, range: 12-36 years; mean pre-treatment serum total cholesterol level: 26.9 ± 3.24 mmol/L; all patients with documented atherosclerotic plaques in the carotid arteries) and five age- and sex-matched healthy controls were studied. All patients had been on maximal lipid-lowering medication since early childhood, and four of them were also on treatment with low-density lipoprotein (LDL) apheresis at bi-weekly intervals. Brain MRI was performed at 3 Tesla field strength with fluid-attenuated T2-weighted inversion recovery and T1-weighted spin-echo MR pulse sequences and subsequently evaluated by two independent readers. The maximal lipid-lowering treatment reduced the total serum cholesterol by more than 50% in the patients, but their serum concentrations were still 3.6-fold higher than those found in the controls (11.9 ± 4.2 vs. 4.5 ± 0.5 mmol/L; p < 0.0047). No brain abnormality was observed in any of the patients with homozygous FH. Homozygous FH patients on intensive cholesterol-lowering therapy have no evidence of ischemic brain damage at 3 Tesla MRI despite the remaining high cholesterol levels. (orig.)

  20. An Investigation of the Differences and Similarities between Generated Small-World Networks for Right- and Left-Hand Motor Imageries.

    Science.gov (United States)

    Zhang, Jiang; Li, Yuyao; Chen, Huafu; Ding, Jurong; Yuan, Zhen

    2016-11-04

    In this study, small-world network analysis was performed to identify the similarities and differences between functional brain networks for right- and left-hand motor imageries (MIs). First, Pearson correlation coefficients among the nodes within the functional brain networks from healthy subjects were calculated. Then, small-world network indicators, including the clustering coefficient, the average path length, the global efficiency, the local efficiency, the average node degree, and the small-world index, were generated for the functional brain networks during both right- and left-hand MIs. We identified large differences in the small-world network indicators between the functional networks during MI and in the random networks. More importantly, the functional brain networks underlying the right- and left-hand MIs exhibited similar small-world properties in terms of the clustering coefficient, the average path length, the global efficiency, and the local efficiency. By contrast, the right- and left-hand MI brain networks showed differences in small-world characteristics, including indicators such as the average node degree and the small-world index. Interestingly, our findings also suggested that the differences in the activity intensity and range, the average node degree, and the small-world index of brain networks between the right- and left-hand MIs were associated with the asymmetry of brain functions.

  1. Impact of prenatal antimicrobial treatment on fetal brain damage due to autogenous fecal peritonitis in Wistar rats: A Histomorphometric Study

    Directory of Open Access Journals (Sweden)

    Neylane Gadelha

    2017-10-01

    Full Text Available Purpose: To investigate brain neuronal density in newborn rats whose mothers were subjected to fecal peritonitis and compare findings between rats born to mothers treated and not treated with antimicrobials. Methods: Peritonitis was induced with a 10% fecal suspension (4mL/kg in 2 pregnant rats. Of these, 1 received antimicrobial treatment 24 hours after peritonitis induction: moxifloxacin and dexamethasone plus 2 mL of the inner bark of the Schinus terebinthifolius raddi extract. One pregnant rat underwent no intervention and served as a control. Results: The newborn brains of rats born to mothers with fecal peritonitis were significantly smaller and of less firm consistency. Brain neuronal density was lower in the untreated group than in the control and treated groups (P<0.01. Conclusions: Untreated peritonitis caused brain damage in the offspring, which was averted by effective early antimicrobial treatment. This approach may provide an early avenue for translation of such therapy in humans. Keywords: peritonitis, brain injuries, rats

  2. Fluoro-Jade and TUNEL staining as useful tools to identify ischemic brain damage following moderate extradural compression of sensorimotor cortex.

    Science.gov (United States)

    Kundrotiene, Jurgita; Wägner, Anna; Liljequist, Sture

    2004-01-01

    Cerebral ischemia was produced by moderate compression for 30 min of a specific brain area in the sensorimotor cortex of Sprague-Dawley rats. On day 1, that is 24 h after the transient sensorimotor compression, ischemia-exposed animals displayed a marked focal neurological deficit documented as impaired beam walking performance. This functional disturbance was mainly due to contralateral fore- and hind-limb paresis. As assessed by daily beam walking tests it was shown that there was a spontaneous recovery of motor functions over a period of five to seven days after the ischemic event. Using histopathological analysis (Nissl staining) we have previously reported that the present experimental paradigm does not produce pannecrosis (tissue cavitation) despite the highly reproducible focal neurological deficit. We now show how staining with fluorescent markers for neuronal death, that is Fluoro-Jade and TUNEL, respectively, identifies regional patterns of selective neuronal death. These observations add further support to the working hypothesis that the brain damage caused by cortical compression-induced ischemia consists of scattered, degenerating neurons in specific brain regions. Postsurgical administration of the AMPA receptor specific antagonist, LY326325 (30 mg/kg; i.p., 70 min after compression), not only improved beam walking performance on day 1 to 3, respectively but also significantly reduced the number of Fluoro-Jade stained neurons on day 5. These results suggest that enhanced AMPA/glutamate receptor activity is at least partially responsible for the ischemia-produced brain damage detected by the fluorescent marker Fluoro-Jade.

  3. Damage to Broca’s area OR the anterior temporal lobe is implicated in stroke-induced agrammatic comprehension: it depends on the task

    Directory of Open Access Journals (Sweden)

    Corianne Rogalsky

    2015-04-01

    comprehension in each task. Agrammatic comprehension was indexed as the difference in performance of each patient between subject relative and object relative sentences. VLSMs using these indices identified that agrammatic comprehension in each task was associated with damage to different brain regions: In the sentence-picture matching task, agrammatic comprehension was associated with damage in the left putamen, external capsule and adjacent white matter underlying the left inferior frontal gyrus and left precentral gyrus. Conversely in the plausibility judgment task, agrammatic comprehension was associated with damage in the left anterior superior temporal gyrus. Thus agrammatic comprehension indexed using different tasks localized to different lesion patterns. Our findings suggest that the neurobiology of agrammatic comprehension is task-dependent. These results also provide possible neural bases for the behavioral dissociations between sentence comprehension and grammaticality judgment impairments that have been reported in patients with aphasia (Linebarger et al. 1983; Wulfeck, 1988, although grammaticality and plausibility judgments are certainly different computational tasks.

  4. Recovery of brain abscess-induced stuttering after neurosurgical intervention.

    Science.gov (United States)

    Sudo, Daisuke; Doutake, Youichi; Yokota, Hidenori; Watanabe, Eiju

    2018-05-12

    Stuttering occurs in approximately 5% of all children and 1% of adults. One type, neurogenic stuttering, is usually attributable to strokes or other structural damages to the brain areas that are responsible for language fluency. Here, we present the first case of neurogenic stuttering caused by a brain abscess. The patient was a 60-year-old man admitted for a seizure and administered an anticonvulsant, after which he began stuttering. MRI revealed a brain abscess in the left frontal lobe that extended to the dorsolateral prefrontal cortex (BA (Brodmann's area) 9 and 46), frontal eye field (BA 8) and premotor cortex and supplementary motor area (BA 6). After neurosurgical drainage and antibiotic treatment, the symptoms had resolved. This case is unique in that the therapeutic effects and localisation of the cause of stuttering were rapidly identified, allowing for a more accurate description of the neural circuitry related to stuttering. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. In Search of...Brain-Based Education.

    Science.gov (United States)

    Bruer, John T.

    1999-01-01

    Debunks two ideas appearing in brain-based education articles: the educational significance of brain laterality (right brain versus left brain) and claims for a sensitive period of brain development in young children. Brain-based education literature provides a popular but misleading mix of fact, misinterpretation, and fantasy. (47 references (MLH)

  6. Brain Research and Learning.

    Science.gov (United States)

    Claycomb, Mary

    Current research on brain activity has many implications for educators. The triune brain concept and the left and right hemisphere concepts are among the many complex theories evolving from experimentation and observation. The triune brain concept suggests that the human forebrain has expanded while retaining three structurally unique formations…

  7. [Arm Motor Function Recovery during Rehabilitation with the Use of Hand Exoskeleton Controlled by Brain-Computer Interface: a Patient with Severe Brain Damage].

    Science.gov (United States)

    Biryukova, E V; Pavlova, O G; Kurganskaya, M E; Bobrov, P D; Turbina, L G; Frolov, A A; Davydov, V I; Sil'tchenko, A V; Mokienko, O A

    2016-01-01

    We studied the dynamics of motor function recovery in a patient with severe brain damage in the course of neurorehabilitation using hand exoskeleton controlled by brain-computer interface. For estimating the motor function of paretic arm, we used the biomechanical analysis of movements registered during the course of rehabilitation. After 15 weekly sessions of hand exoskeleton control, the following results were obtained: a) the velocity profile of goal-directed movements of paretic hand became bell-shaped, b) the patient began to extend and abduct the hand which was flexed and adducted in the beginning of rehabilitation, and c) the patient began to supinate the forearm which was pronated in the beginning of rehabilitation. The first result is an evidence of the general improvement of the quality of motor control, while the second and third results prove that the spasticity of paretic arm has decreased.

  8. Maternal obesity increases inflammation and exacerbates damage following neonatal hypoxic-ischaemic brain injury in rats.

    Science.gov (United States)

    Teo, Jonathan D; Morris, Margaret J; Jones, Nicole M

    2017-07-01

    In humans, maternal obesity is associated with an increase in the incidence of birth related difficulties. However, the impact of maternal obesity on the severity of brain injury in offspring is not known. Recent studies have found evidence of increased glial response and inflammatory mediators in the brains as a result of obesity in humans and rodents. We hypothesised that hypoxic-ischaemic (HI) brain injury is greater in neonatal offspring from obese rat mothers compared to lean controls. Female Sprague Dawley rats were randomly allocated to high fat (HFD, n=8) or chow (n=4) diet and mated with lean male rats. On postnatal day 7 (P7), male and female pups were randomly assigned to HI injury or control (C) groups. HI injury was induced by occlusion of the right carotid artery followed by 3h exposure to 8% oxygen, at 37°C. Control pups were removed from the mother for the same duration under ambient conditions. Righting behaviour was measured on day 1 and 7 following HI. The extent of brain injury was quantified in brain sections from P14 pups using cresyl violet staining and the difference in volume between brain hemispheres was measured. Before mating, HFD mothers were 11% heavier than Chow mothers (pmaternal weight. Similar observations were made with neuronal staining showing a greater loss of neurons in the brain of offspring from HFD-mothers following HI compared to Chow. Astrocytes appeared to more hypertrophic and a greater number of microglia were present in the injured hemisphere in offspring from mothers on HFD. HI caused an increase in the proportion of amoeboid microglia and exposure to maternal HFD exacerbated this response. In the contralateral hemisphere, offspring exposed to maternal HFD displayed a reduced proportion of ramified microglia. Our data clearly demonstrate that maternal obesity can exacerbate the severity of brain damage caused by HI in neonatal offspring. Given that previous studies have shown enhanced inflammatory responses in

  9. Hemispheric side of damage influences sex-related differences in smoking cessation in neurological patients.

    Science.gov (United States)

    Gaznick, Natassia; Bechara, Antoine; Tranel, Daniel

    2014-01-01

    Patterns of smoking behavior vary between the sexes. There is evidence that decision making, which is one of the key "executive functions" necessary for making life-style modifications such as smoking cessation, is relatively lateralized to the right hemisphere in males and left hemisphere in females. In the current study, we examined whether the side of brain lesion has a differential effect on smoking behavior between the sexes. We hypothesized sex differences in smoking cessation based on lesion side. Participants were 49 males and 50 females who were smoking at the time of lesion onset. The outcome variable was abstinence from smoking (quit rate) at least one year post lesion. We found that in patients with left-hemisphere damage, quit rates were significantly higher in males than in females; however, in patients with right-hemisphere damage, quit rates were not statistically different. The findings support previous cognitive neuroscience literature showing that components of behavior responsible for maintaining addiction tend to be more strongly lateralized in males, whereas in females there is a more bilateral distribution. Our study provides further evidence for differences in lateralization of complex behavior between the sexes, which has significant implications for differences in treatment strategies between the sexes.

  10. Pragmatic and executive functions in traumatic brain injury and right brain damage: An exploratory comparative study

    Directory of Open Access Journals (Sweden)

    Nicolle Zimmermann

    Full Text Available Abstract Objective: To describe the frequency of pragmatic and executive deficits in right brain damaged (RBD and in traumatic brain injury (TBI patients, and to verify possible dissociations between pragmatic and executive functions in these two groups. Methods: The sample comprised 7 cases of TBI and 7 cases of RBD. All participants were assessed by means of tasks from the Montreal Communication Evaluation Battery and executive functions tests including the Trail Making Test, Hayling Test, Wisconsin Card Sorting Test, semantic and phonemic verbal fluency tasks, and working memory tasks from the Brazilian Brief Neuropsychological Assessment Battery NEUPSILIN. Z-score was calculated and a descriptive analysis of frequency of deficits (Z< -1.5 was carried out. Results: RBD patients presented with deficits predominantly on conversational and narrative discursive tasks, while TBI patients showed a wider spread pattern of pragmatic deficits. Regarding EF, RBD deficits included predominantly working memory and verbal initiation impairment. On the other hand, TBI individuals again exhibited a general profile of executive dysfunction, affecting mainly working memory, initiation, inhibition, planning and switching. Pragmatic and executive deficits were generally associated upon comparisons of RBD patients and TBI cases, except for two simple dissociations: two post-TBI cases showed executive deficits in the absence of pragmatic deficits. Discussion: Pragmatic and executive deficits can be very frequent following TBI or vascular RBD. There seems to be an association between these abilities, indicating that although they can co-occur, a cause-consequence relationship cannot be the only hypothesis.

  11. Brain volume reductions in adolescent heavy drinkers.

    Science.gov (United States)

    Squeglia, Lindsay M; Rinker, Daniel A; Bartsch, Hauke; Castro, Norma; Chung, Yoonho; Dale, Anders M; Jernigan, Terry L; Tapert, Susan F

    2014-07-01

    Brain abnormalities in adolescent heavy drinkers may result from alcohol exposure, or stem from pre-existing neural features. This longitudinal morphometric study investigated 40 healthy adolescents, ages 12-17 at study entry, half of whom (n=20) initiated heavy drinking over the 3-year follow-up. Both assessments included high-resolution magnetic resonance imaging. FreeSurfer was used to segment brain volumes, which were measured longitudinally using the newly developed quantitative anatomic regional change analysis (QUARC) tool. At baseline, participants who later transitioned into heavy drinking showed smaller left cingulate, pars triangularis, and rostral anterior cingulate volume, and less right cerebellar white matter volumes (pteens. Over time, participants who initiated heavy drinking showed significantly greater volume reduction in the left ventral diencephalon, left inferior and middle temporal gyrus, and left caudate and brain stem, compared to substance-naïve youth (pbrain regions in future drinkers and greater brain volume reduction in subcortical and temporal regions after alcohol use was initiated. This is consistent with literature showing pre-existing cognitive deficits on tasks recruited by frontal regions, as well as post-drinking consequences on brain regions involved in language and spatial tasks. Published by Elsevier Ltd.

  12. Evaluation of acute radiation damage of the human brain by 1H-MRS

    International Nuclear Information System (INIS)

    Matsushima, Shigeru; Kinosada, Yasutomi.

    1993-01-01

    Fourteen patients (17 cases) were treated with the whole brain irradiation. Physiological changes in white matter were measured by in vivo 1 H magnetic resonance spectroscopy ( 1 H-MRS). Phantom examination proved the accuracy of our 1 H-MRS method to be valid. The measurement was performed 2 or 3 times in each case at the radiation doses ranging from 0 to 40 Gy with 2 Gy daily fractionation. For the measurement of 1 H-MRS, 1.5 T whole body MR system was used and stimulated echo acquisition mode (STEAM) with chemical shift selective (CHESS) pulse was applied. Volume of the interest (VOI) was 2.5x2.5x2.5 cm 3 , and the repetition time and echo time were 2000 ms and 272 ms, respectively. Acute radiation damage of the brain was evaluated by the change of peak area ratio (PAR) of choline, creatine and N-acetyl aspartate (NAA). 1 H-MRS spectra before irradiation were different from those observed during irradiation. There were statistically significant (p 1 H-MRS is a powerful modality, detecting the subtle physiological change which is difficult to evaluate with conventional images. (author)

  13. A Quick Tour of the Brain.

    Science.gov (United States)

    Hart, Leslie

    1983-01-01

    Using a question-and-answer format, the author discusses brain research, its relationship to existing learning theory, left- and right-brain differences and their relationship to logical thinking, brain growth spurts, learning styles, and the effects of future brain knowledge on learning, especially on schools' development of brain-compatible…

  14. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure.

    Science.gov (United States)

    Cauley, Edmund; Wang, Xin; Dyavanapalli, Jhansi; Sun, Ke; Garrott, Kara; Kuzmiak-Glancy, Sarah; Kay, Matthew W; Mendelowitz, David

    2015-10-01

    Hypertension, cardiac hypertrophy, and heart failure (HF) are widespread and debilitating cardiovascular diseases that affect nearly 23 million people worldwide. A distinctive hallmark of these cardiovascular diseases is autonomic imbalance, with increased sympathetic activity and decreased parasympathetic vagal tone. Recent device-based approaches, such as implantable vagal stimulators that stimulate a multitude of visceral sensory and motor fibers in the vagus nerve, are being evaluated as new therapeutic approaches for these and other diseases. However, little is known about how parasympathetic activity to the heart is altered with these diseases, and this lack of knowledge is an obstacle in the goal of devising selective interventions that can target and selectively restore parasympathetic activity to the heart. To identify the changes that occur within the brain stem to diminish the parasympathetic cardiac activity, left ventricular hypertrophy was elicited in rats by aortic pressure overload using a transaortic constriction approach. Cardiac vagal neurons (CVNs) in the brain stem that generate parasympathetic activity to the heart were identified with a retrograde tracer and studied using patch-clamp electrophysiological recordings in vitro. Animals with left cardiac hypertrophy had diminished excitation of CVNs, which was mediated both by an augmented frequency of spontaneous inhibitory GABAergic neurotransmission (with no alteration of inhibitory glycinergic activity) as well as a diminished amplitude and frequency of excitatory neurotransmission to CVNs. Opportunities to alter these network pathways and neurotransmitter receptors provide future targets of intervention in the goal to restore parasympathetic activity and autonomic balance to the heart in cardiac hypertrophy and other cardiovascular diseases. Copyright © 2015 the American Physiological Society.

  15. Multi-tasking uncovers right spatial neglect and extinction in chronic left-hemisphere stroke patients.

    Science.gov (United States)

    Blini, Elvio; Romeo, Zaira; Spironelli, Chiara; Pitteri, Marco; Meneghello, Francesca; Bonato, Mario; Zorzi, Marco

    2016-11-01

    Unilateral Spatial Neglect, the most dramatic manifestation of contralesional space unawareness, is a highly heterogeneous syndrome. The presence of neglect is related to core spatially lateralized deficits, but its severity is also modulated by several domain-general factors (such as alertness or sustained attention) and by task demands. We previously showed that a computer-based dual-task paradigm exploiting both lateralized and non-lateralized factors (i.e., attentional load/multitasking) better captures this complex scenario and exacerbates deficits for the contralesional space after right hemisphere damage. Here we asked whether multitasking would reveal contralesional spatial disorders in chronic left-hemisphere damaged (LHD) stroke patients, a population in which impaired spatial processing is thought to be uncommon. Ten consecutive LHD patients with no signs of right-sided neglect at standard neuropsychological testing performed a computerized spatial monitoring task with and without concurrent secondary tasks (i.e., multitasking). Severe contralesional (right) space unawareness emerged in most patients under attentional load in both the visual and auditory modalities. Multitasking affected the detection of contralesional stimuli both when presented concurrently with an ipsilesional one (i.e., extinction for bilateral targets) and when presented in isolation (i.e., left neglect for right-sided targets). No spatial bias emerged in a control group of healthy elderly participants, who performed at ceiling, as well as in a second control group composed of patients with Mild Cognitive Impairment. We conclude that the pathological spatial asymmetry in LHD patients cannot be attributed to a global reduction of cognitive resources but it is the consequence of unilateral brain damage. Clinical and theoretical implications of the load-dependent lack of awareness for contralesional hemispace following LHD are discussed. Copyright © 2016. Published by Elsevier Ltd.

  16. Reversible left ventricular dysfunction - important clinical problem of contemporary cardiology

    International Nuclear Information System (INIS)

    Witkowski, A.

    1994-01-01

    An important clinical issue there is determination whether left ventricular damages are reversible or not single photon emission computed tomography and positron computed tomography techniques are shown to provide valuable data in this problem. Article describes basic syndromes connected with left ventricular dysfunction, namely: hibernating myocardium, stunned myocardium and ischemic myocardium preconditioning. (author). 18 refs

  17. Reshaping the brain after stroke: The effect of prismatic adaptation in patients with right brain damage.

    Science.gov (United States)

    Crottaz-Herbette, Sonia; Fornari, Eleonora; Notter, Michael P; Bindschaedler, Claire; Manzoni, Laura; Clarke, Stephanie

    2017-09-01

    Prismatic adaptation has been repeatedly reported to alleviate neglect symptoms; in normal subjects, it was shown to enhance the representation of the left visual space within the left inferior parietal cortex. Our study aimed to determine in humans whether similar compensatory mechanisms underlie the beneficial effect of prismatic adaptation in neglect. Fifteen patients with right hemispheric lesions and 11 age-matched controls underwent a prismatic adaptation session which was preceded and followed by fMRI using a visual detection task. In patients, the prismatic adaptation session improved the accuracy of target detection in the left and central space and enhanced the representation of this visual space within the left hemisphere in parts of the temporal convexity, inferior parietal lobule and prefrontal cortex. Across patients, the increase in neuronal activation within the temporal regions correlated with performance improvements in this visual space. In control subjects, prismatic adaptation enhanced the representation of the left visual space within the left inferior parietal lobule and decreased it within the left temporal cortex. Thus, a brief exposure to prismatic adaptation enhances, both in patients and in control subjects, the competence of the left hemisphere for the left space, but the regions extended beyond the inferior parietal lobule to the temporal convexity in patients. These results suggest that the left hemisphere provides compensatory mechanisms in neglect by assuming the representation of the whole space within the ventral attentional system. The rapidity of the change suggests that the underlying mechanism relies on uncovering pre-existing synaptic connections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Cortical damage following traumatic brain injury evaluated by iomazenil SPECT and in vivo microdialysis.

    Science.gov (United States)

    Koizumi, Hiroyasu; Fujisawa, Hirosuke; Suehiro, Eiichi; Iwanaga, Hideyuki; Nakagawara, Jyoji; Suzuki, Michiyasu

    2013-01-01

    [(123)I] iomazenil (IMZ) single photon emission computed tomography (SPECT) has been reported to be a useful marker of neuronal integrity. We evaluated cortical damage following traumatic brain injury (TBI) with IMZ SPECT at the acute stage. After conventional therapy for a cranial trauma, an IMZ SPECT re-evaluation was performed at the chronic stage. A reduction in IMZ uptake in the location of cerebral contusions was observed during the TBI acute phase; however, images of IMZ SPECT obtained during the chronic phase showed that areas with decreased IMZ distribution were remarkably reduced compared with those obtained during the acute phase. As a result of in vivo microdialysis study, the extracellular levels of glutamate in the cortex, where decreased IMZ distribution was shown during the acute phase, were increased during the 168-h monitoring period. During the chronic phase, IMZ uptake in the region with the microdialysis probes was recovered. The results suggest that this reduction in IMZ uptake might not be a sign of irreversible tissue damage in TBI.

  19. Piano training in youths with hand motor impairments after damage to the developing brain

    Directory of Open Access Journals (Sweden)

    Lampe R

    2015-08-01

    Full Text Available Renée Lampe,1,* Anna Thienel,2 Jürgen Mitternacht,1 Tobias Blumenstein,1 Varvara Turova,1 Ana Alves-Pinto1,* 1Research Unit for Paediatric Neuroorthopaedics and Cerebral Palsy, Orthopaedics Department, Klinikum Rechts der Isar, Technische Universität München, 2Department Sonderpädagogik, Ludwig Maximilians-Universität München, Munich, Germany *These authors contributed equally to this work Abstract: Damage to the developing brain may lead to impairment of the hand motor function and negatively impact on patients’ quality of life. Development of manual dexterity and finger and hand motor function may be promoted by learning to play the piano. The latter brings together music with the intensive training of hand coordination and fine finger mobility. We investigated if learning to play the piano helped to improve hand motor skills in 18 youths with hand motor disorders resulting from damage during early brain development. Participants trained 35–40 minutes twice a week for 18 months with a professional piano teacher. With the use of a Musical Instrument Digital Interface piano, the uniformity of finger strokes could be objectively assessed from the timing of keystrokes. The analysis showed a significant improvement in the uniformity of keystrokes during the training. Furthermore, the youths showed strong motivation and engagement during the study. This is nevertheless an open study, and further studies remain needed to exclude effects of growth and concomitant therapies on the improvements observed and clarify which patients will more likely benefit from learning to play the piano. Keywords: manual skill, cerebral palsy, neurodevelopmental disorder, music, rehabilitation

  20. Exercise preconditioning reduces brain damage and inhibits TNF-alpha receptor expression after hypoxia/reoxygenation: an in vivo and in vitro study.

    Science.gov (United States)

    Ding, Yun-Hong; Mrizek, Michael; Lai, Qin; Wu, Yimin; Reyes, Raul; Li, Jie; Davis, William W; Ding, Yuchuan

    2006-11-01

    Exercise reduces ischemia and reperfusion injury in rat stroke models. We investigated whether gradual increases in tumor necrosis factor-alpha (TNF-alpha) reported during exercise down-regulates expression of TNF-alpha receptors I and II (TNFRI and II) in stroke, leading to reduced brain damage. Adult male Sprague Dawley rats were subjected to 30 minutes of exercise on a treadmill each day for 3 weeks. Then, stroke was induced by a 2-hour middle cerebral artery (MCA) occlusion using an intra-luminal filament. Expressions of TNFRI and II mRNA in the brain were detected using a real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Protein expressions of TNFRI and II were determined by enzyme-linked immunoabsorbant assay (ELISA) in serum and brain homogenates. Spatial distribution of TNF-alpha receptors in brain regions was determined with immunocytochemistry. In human umbilical vein endothelial cells (HUVEC), we addressed the causal effect of TNF-alpha pretreatment on TNF I and II expression using ELISA and real-time PCR. In exercised rats after stroke, brain infarct was significantly (p<0.01) reduced in the entire MCA supplied regions, associated with a mild expression of TNFRI and II mRNA and protein. The TNF-alpha receptors were restricted to the ischemic core. In contrast, a robust expression of TNFRI and II molecules was found in non-exercised rats subjected to similar ischemia/reperfusion insults. An in vitro study revealed a causal link between TNF-alpha pretreatment and reduced cellular expression of TNF-alpha receptors under hypoxic/reoxygenated conditions. Our results suggest that reduced-brain damage in ischemic rats after exercise preconditioning may be attributable to the reduced expression of TNF-alpha receptors. Chronically increased TNF-alpha expression was also found to reduce TNFI and II responding to acute ischemia/reperfusion insult.

  1. Polydatin attenuates d-galactose-induced liver and brain damage through its anti-oxidative, anti-inflammatory and anti-apoptotic effects in mice.

    Science.gov (United States)

    Xu, Lie-Qiang; Xie, You-Liang; Gui, Shu-Hua; Zhang, Xie; Mo, Zhi-Zhun; Sun, Chao-Yue; Li, Cai-Lan; Luo, Dan-Dan; Zhang, Zhen-Biao; Su, Zi-Ren; Xie, Jian-Hui

    2016-11-09

    Accumulating evidence has shown that chronic injection of d-galactose (d-gal) can mimic natural aging, with accompanying liver and brain injury. Oxidative stress and apoptosis play a vital role in the aging process. In this study, the antioxidant ability of polydatin (PD) was investigated using four established in vitro systems. An in vivo study was also conducted to investigate the possible protective effect of PD on d-gal-induced liver and brain damage. The results showed that PD had remarkable in vitro free radical scavenging activity on 2,2-diphenyl-1-picryl-hydrazyl (DPPH˙), 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS + ˙) radical ions, and hydroxyl and superoxide anions. Results in vivo indicated that, in a group treated with d-gal plus PD, PD remarkably decreased the depression of body weight and organ indexes, reduced the levels of the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and alleviated alterations in liver and brain histopathology. PD also significantly decreased the level of MDA and elevated SOD, GSH-Px, CAT activity and T-AOC levels in the liver and brain. In addition, the levels of inflammatory mediators, such as TNF-α, IL-1β and IL-6 in serum were markedly reduced after PD treatment. Western blotting results revealed that PD treatment noticeably attenuated the d-gal-induced elevation of Bcl-2/Bax ratio and caspase-3 protein expression in liver and brain. Overall, our findings indicate that PD treatment could effectively attenuate d-gal-induced liver and brain damage, and the mechanism might be associated with decreasing the oxidative stress, inflammation and apoptosis caused by d-gal. PD holds good potential for further development into a promising pharmaceutical candidate for the treatment of age-associated diseases.

  2. Enhancing motor network activity using real-time functional MRI neurofeedback of left premotor cortex

    Directory of Open Access Journals (Sweden)

    Theo Ferreira Marins

    2015-12-01

    Full Text Available Neurofeedback by functional Magnetic Resonance Imaging (fMRI is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC, important for motor recovery after brain injury. We investigated (i whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI task while receiving continuous fMRI-neurofeedback, and (ii whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and motor imagery, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke.

  3. Radioimmunoassay of serum creatine kinase BB as index of brain damage after head injury

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J P; Jones, H M; Hitchcock, R; Adams, N; Thompson, R J [Addenbrooke' s Hospital, Cambridge (UK)

    1980-09-20

    Brain-type creatine kinase isoenzyme (CK-BB) was measured by radioimmunoassay in the serum of 54 patients with head injuries. CK-BB was not detectable in 476 out of 1006 controls, the remaining 530 normal samples containing a mean of 1.5 +- SDO.75 ..mu..g/l. The mean CK-BB concentrations in patients with mild, moderate, and fatal head injuries were all significantly higher than the control value (p<0.01 in each instance). Patients with serious head injury had serum concentrations many times the normal value, in two cases within 30 minutes after impact. Fatally injured patients continued to have high serum concentrations several days after injury. In less serious cases values approached normal within two or three days. Every patient with evidence of cerebral laceration, bruising, or swelling had a serum CK-BB concentration above normal. Raised concentrations were found in 14 out of 22 patients with concussion only. Thus the serum CK-BB concentration appears to be a sensitive index of brain damage and may prove useful in the management and follow-up of head-injured patients.

  4. Radioimmunoassay of serum creatine kinase BB as index of brain damage after head injury

    International Nuclear Information System (INIS)

    Phillips, J.P.; Jones, H.M.; Hitchcock, R.; Adams, N.; Thompson, R.J.

    1980-01-01

    Brain-type creatine kinase isoenzyme (CK-BB) was measured by radioimmunoassay in the serum of 54 patients with head injuries. CK-BB was not detectable in 476 out of 1006 controls, the remaining 530 normal samples containing a mean of 1.5 +- SDO.75 μg/l. The mean CK-BB concentrations in patients with mild, moderate, and fatal head injuries were all significantly higher than the control value (p<0.01 in each instance). Patients with serious head injury had serum concentrations many times the normal value, in two cases within 30 minutes after impact. Fatally injured patients continued to have high serum concentrations several days after injury. In less serious cases values approached normal within two or three days. Every patient with evidence of cerebral laceration, bruising, or swelling had a serum CK-BB concentration above normal. Raised concentrations were found in 14 out of 22 patients with concussion only. Thus the serum CK-BB concentration appears to be a sensitive index of brain damage and may prove useful in the management and follow-up of head-injured patients. (author)

  5. Topological Alterations and Symptom-Relevant Modules in the Whole-Brain Structural Network in Semantic Dementia.

    Science.gov (United States)

    Ding, Junhua; Chen, Keliang; Zhang, Weibin; Li, Ming; Chen, Yan; Yang, Qing; Lv, Yingru; Guo, Qihao; Han, Zaizhu

    2017-01-01

    Semantic dementia (SD) is characterized by a selective decline in semantic processing. Although the neuropsychological pattern of this disease has been identified, its topological global alterations and symptom-relevant modules in the whole-brain anatomical network have not been fully elucidated. This study aims to explore the topological alteration of anatomical network in SD and reveal the modules associated with semantic deficits in this disease. We first constructed the whole-brain white-matter networks of 20 healthy controls and 19 patients with SD. Then, the network metrics of graph theory were compared between these two groups. Finally, we separated the network of SD patients into different modules and correlated the structural integrity of each module with the severity of the semantic deficits across patients. The network of the SD patients presented a significantly reduced global efficiency, indicating that the long-distance connections were damaged. The network was divided into the following four distinctive modules: the left temporal/occipital/parietal, frontal, right temporal/occipital, and frontal/parietal modules. The first two modules were associated with the semantic deficits of SD. These findings illustrate the skeleton of the neuroanatomical network of SD patients and highlight the key role of the left temporal/occipital/parietal module and the left frontal module in semantic processing.

  6. Possible selves in patients with right- versus left-onset Parkinson's disease.

    Science.gov (United States)

    Harris, Erica; McNamara, Patrick; Durso, Raymon

    2017-03-01

    Possible selves can be used to self-regulate and guide behavior towards what is desired to be achieved or avoided in life. Previous work suggests laterality effects exist within the brain regarding approach and avoidance systems to achieve self-regulation. A modified version of the possible selves task was administered to 45 patients with PD (22 right-onset and 23 left-onset) and 25 community dwelling control subjects (CS). Only 11.1% of patients exhibited balance among their hoped-for and feared possible selves versus 28% of CS. More right-onset patients used a promotion strategy whereas more left-onset patients used a prevention strategy. Patients with left-onset PD thought more about their feared selves, exhibiting reduced goal-directed behavior. Findings among the left-onset group indicate relative dependence of self-regulation on right-sided avoidance brain systems. This may point to an inability to move away from negative outcomes and to work towards rewarding outcomes, which could affect psychological health.

  7. Childhood Brain Stem Glioma Treatment

    Science.gov (United States)

    ... The tentorium separates the supratentorium from the infratentorium (right panel). The skull and meninges protect the brain and spinal cord (left panel). Brain tumors are the second most common ...

  8. The brain basis of musicophilia: evidence from frontotemporal lobar degeneration

    Directory of Open Access Journals (Sweden)

    Phillip David Fletcher

    2013-06-01

    Full Text Available Musicophilia, or abnormal craving for music, is a poorly understood phenomenon that has been associated in particular with focal degeneration of the temporal lobes. Here we addressed the brain basis of musicophilia using voxel-based morphometry (VBM on MR volumetric brain images in a retrospectively ascertained cohort of patients meeting clinical consensus criteria for frontotemporal lobar degeneration: of 37 cases ascertained, 12 had musicophilia and 25 did not exhibit the phenomenon. The syndrome of semantic dementia was relatively over-represented among the musicophilic subgroup. A VBM analysis revealed significantly increased regional grey matter volume in left posterior hippocampus in the musicophilic subgroup relative to the non-musicophilic group (p<0.05 corrected for regional comparisons; at a relaxed significance threshold (P<0.001 uncorrected across the brain volume musicophilia was associated with additional relative sparing of regional grey matter in other temporal lobe and prefrontal areas and atrophy of grey matter in posterior parietal and orbitofrontal areas. The present findings suggest a candidate brain substrate for musicophilia as a signature of distributed network damage that may reflect a shift of hedonic processing toward more abstract (non-social stimuli, with some specificity for particular neurodegenerative pathologies.

  9. Brain size and urbanization in birds

    Institute of Scientific and Technical Information of China (English)

    Anders; Pape; M?ller; Johannes; Erritz?e

    2015-01-01

    Background: Brain size may affect the probability of invasion of urban habitats if a relatively larger brain entails superior ability to adapt to novel environments. However, once urbanized urban environments may provide poor quality food that has negative consequences for normal brain development resulting in an excess of individuals with small brains.Methods: Here we analyze the independent effects of mean, standard deviation and skewness in brain mass for invasion of urban habitats by 108 species of birds using phylogenetic multiple regression analyses weighted by sample size.Results: There was no significant difference in mean brain mass between urbanized and non-urbanized species or between urban and rural populations of the same species, and mean brain mass was not significantly correlated with time since urbanization. Bird species that became urbanized had a greater standard deviation in brain mass than non-urbanized species, and the standard deviation in brain mass increased with time since urbanization. Brain mass was significantly left skewed in species that remained rural, while there was no significant skew in urbanized species. The degree of left skew was greater in urban than in rural populations of the same species, and successfully urbanized species decreased the degree of left skew with time since urbanization. This is consistent with the hypothesis that sub-optimal brain development was more common in rural habitats resulting in disproportionately many individuals with very smal brains.Conclusions: These findings do not support the hypothesis that large brains promote urbanization, but suggest that skewness has played a role in the initial invasion of urban habitats, and that variance and skew in brain mass have increased as species have become urbanized.

  10. Brain size and urbanization in birds

    Institute of Scientific and Technical Information of China (English)

    Anders Pape Mller; Johannes Erritze

    2015-01-01

    Background:Brain size may affect the probability of invasion of urban habitats if a relatively larger brain entails superior ability to adapt to novel environments. However, once urbanized urban environments may provide poor quality food that has negative consequences for normal brain development resulting in an excess of individuals with small brains. Methods:Here we analyze the independent effects of mean, standard deviation and skewness in brain mass for invasion of urban habitats by 108 species of birds using phylogenetic multiple regression analyses weighted by sample size. Results:There was no significant difference in mean brain mass between urbanized and non-urbanized species or between urban and rural populations of the same species, and mean brain mass was not significantly correlated with time since urbanization. Bird species that became urbanized had a greater standard deviation in brain mass than non-urbanized species, and the standard deviation in brain mass increased with time since urbanization. Brain mass was significantly left skewed in species that remained rural, while there was no significant skew in urbanized species. The degree of left skew was greater in urban than in rural populations of the same species, and successfully urbanized species decreased the degree of left skew with time since urbanization. This is consistent with the hypothesis that sub-optimal brain development was more common in rural habitats resulting in disproportionately many individuals with very smal brains. Conclusions:These findings do not support the hypothesis that large brains promote urbanization, but suggest that skewness has played a role in the initial invasion of urban habitats, and that variance and skew in brain mass have increased as species have become urbanized.

  11. Left-side changes in thoracic X-ray follow-ups after cardiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Witte, G.; Buecheler, E.; Grabbe, E.; Darup, J.

    1983-03-01

    In routine thoracic X-ray follow-ups after cardiosurgical procedures, 93.2% of our patients (n=88) showed radiologically perceivable pathological changes, reduced ventilation being the most common phenomenon. 77.1% of the patients showed signs of reduced ventilation, mostly the left side. Limited motility of the diaphragm on the left side was visible in 69% of the cases studied. The defective motility of the left diaphragm is attributable to direct damage to the left nervus phrenicus caused by extracardial heart cooling during surgery.

  12. Left-side changes in thoracic X-ray follow-ups after cardiosurgery

    International Nuclear Information System (INIS)

    Witte, G.; Buecheler, E.; Grabbe, E.; Darup, J.

    1983-01-01

    In routine thoracic X-ray follow-ups after cardiosurgical procedures, 93.2% of our patients (n=88) showed radiologically perceivable pathological changes, reduced ventilation being the most common phenomenon. 77.1% of the patients showed signs of reduced ventilation, mostly the left side. Limited motility of the diaphragm on the left side was visible in 69% of the cases studied. The defective motility of the left diaphragm is attributable to direct damage to the left nervus phrenicus caused by extracardial heart cooling during surgery. (orig.) [de

  13. [Local brain activity in different motor subtypes of Parkinson's disease with fMRI].

    Science.gov (United States)

    Hou, Ya'nan; Zhang, Jiarong; Chen, Biao; Wu, Tao

    2015-02-17

    To explore the changes of local brain activity in motor subtypes of Parkinson's disease (PD) with functional magnetic resonance imaging (fMRI). A total of 60 idiopathic PD and 30 age- and gender-matched normal controls were examined with resting-state fMRI from January 2013 to March 2014. All subjects gave their written informed consent for the study. The amplitude of low-frequency fluctuation (ALFF) was calculated to measure local brain activity. The PD patients were divided into two groups of tremor dominant (TD) and postural instability/gait difficulty (PIGD) (n = 30 each). All subjects gave their written in formed consent for the study.One-way ANOVA and post-hoc t-test were performed to detect the differences of local brain activity between PD and normal subjects. And the correlations were examined between ALFF, scores and levodopa dose. Compared with normal subjects, the TD group showed increased activity in bilateral cerebellums (-37, -47, -38), thalamus (-18, -17,0), pons (-3, -23, -37) and left precentral gyrus (-41, -30, 46) versus decreased activity in bilateral frontal lobes (-13, 69, 6), temporal lobes (-42, 18, -21), left insula (-32, 22, 2) and left anterior cingulated (-7, 32, -5). The PIGD group showed increased activity in right postcentral gyrus (63, -18, 39) and decreased activity in bilateral putamens (-24, 12, 3), pre-supplementary motor area (10, 10, 58), frontal lobes (15, -15, 57), temporal lobes (-39, 18, -3) and left insula (-29, 20, 11). Compared with PIGD, the TD group showed increased activity in temporal lobes, but decreased activity in frontal lobes. Additionally, ALFF in bilateral cerebellums and frontal lobes was positively correlated with TD scores while ALFF in left precentral gyrus, bilateral putamens and temporal lobes negatively correlated with TD scores. ALFF in bilateral frontal lobes and left temporal lobe was positively correlated with PIGD scores.However, in right postcentral gyrus and bilateral putamens, ALFF was

  14. Ben's Plastic Brain

    Science.gov (United States)

    Kaplan, Susan L.

    2010-01-01

    This article shares a story of Ben who as a result of his premature birth, suffered a brain hemorrhage resulting in cerebral palsy, which affected his left side (left hemiparesis) and caused learning disabilities. Despite these challenges, he graduated from college and currently works doing information management for a local biotech start-up…

  15. The relationship between emotion regulation capacity, heart rate variability, and quality of life in individuals with alcohol-related brain damage

    Directory of Open Access Journals (Sweden)

    Steinmetz JP

    2016-08-01

    Full Text Available Jean-Paul Steinmetz,1,2 Claus Vögele,3,4 Christiane Theisen-Flies,5 Carine Federspiel,1,2 Stefan Sütterlin6,7 1Department of Research and Development, ZithaSenior, 2Centre for Memory and Mobility, ZithaSenior, 3Institute for Health and Behaviour, Integrative Research Unit on Social and Individual Development (INSIDE, University of Luxembourg, Luxembourg; 4Research Group Health Psychology, University of Leuven, Leuven, Belgium; 5Home St Joseph, ZithaSenior, Luxembourg; 6Department of Psychology, Lillehammer University College, Lillehammer, 7Division of Surgery and Clinical Neuroscience, Department of Psychosomatic Medicine, Oslo University Hospital – Rikshospitalet, Oslo, Norway Abstract: The reliable measurement of quality of life (QoL presents a challenge in individuals with alcohol-related brain damage. This study investigated vagally mediated heart rate variability (vmHRV as a physiological predictor of QoL. Self- and proxy ratings of QoL and dysexecutive symptoms were collected once, while vmHRV was repeatedly assessed over a 3-week period at weekly intervals in a sample of nine alcohol-related brain damaged patients. We provide robustness checks, bootstrapped correlations with confidence intervals, and standard errors for mean scores. We observed low to very low heart rate variability scores in our patients in comparison to norm values found in healthy populations. Proxy ratings of the QoL scale “subjective physical and mental performance” and everyday executive dysfunctions were strongly related to vmHRV. Better proxy-rated QoL and fewer dysexecutive symptoms were observed in those patients with higher vmHRV. Overall, patients showed low parasympathetic activation favoring the occurrence of dysfunctional emotion regulation strategies. Keywords: heart rate variability, emotion regulation, alcohol-related brain damage, quality of life

  16. Correlation of vocals and lyrics with left temporal musicogenic epilepsy.

    Science.gov (United States)

    Tseng, Wei-En J; Lim, Siew-Na; Chen, Lu-An; Jou, Shuo-Bin; Hsieh, Hsiang-Yao; Cheng, Mei-Yun; Chang, Chun-Wei; Li, Han-Tao; Chiang, Hsing-I; Wu, Tony

    2018-03-15

    Whether the cognitive processing of music and speech relies on shared or distinct neuronal mechanisms remains unclear. Music and language processing in the brain are right and left temporal functions, respectively. We studied patients with musicogenic epilepsy (ME) that was specifically triggered by popular songs to analyze brain hyperexcitability triggered by specific stimuli. The study included two men and one woman (all right-handed, aged 35-55 years). The patients had sound-triggered left temporal ME in response to popular songs with vocals, but not to instrumental, classical, or nonvocal piano solo versions of the same song. Sentimental lyrics, high-pitched singing, specificity/familiarity, and singing in the native language were the most significant triggering factors. We found that recognition of the human voice and analysis of lyrics are important causal factors in left temporal ME and provide observational evidence that sounds with speech structure are predominantly processed in the left temporal lobe. A literature review indicated that language-associated stimuli triggered ME in the left temporal epileptogenic zone at a nearly twofold higher rate compared with the right temporal region. Further research on ME may enhance understanding of the cognitive neuroscience of music. © 2018 New York Academy of Sciences.

  17. 47-year-old man with left leg numbness.

    Science.gov (United States)

    Mahta, Ali; Kim, Ryan Y; Saad, Ali G; Kesari, Santosh

    2013-03-01

    A 47-year-old white male with a history of uveitis, hypercalcemia and nephrolithiasis presented with acute onset partial seizure. On exam he had decreased sensation to light touch on his left lower extremity. A Brain MRI revealed a right frontal mass, which was initially thought to be a metastatic lesion or a primary brain tumor. However, biopsy of the lesion revealed it to be a non-caseating granulomatous lesion consistent with neurosarcoidosis.

  18. Associations of Blood Pressure Dipping Patterns With Left Ventricular Mass and Left Ventricular Hypertrophy in Blacks: The Jackson Heart Study.

    Science.gov (United States)

    Abdalla, Marwah; Caughey, Melissa C; Tanner, Rikki M; Booth, John N; Diaz, Keith M; Anstey, D Edmund; Sims, Mario; Ravenell, Joseph; Muntner, Paul; Viera, Anthony J; Shimbo, Daichi

    2017-04-05

    Abnormal diurnal blood pressure (BP), including nondipping patterns, assessed using ambulatory BP monitoring, have been associated with increased cardiovascular risk among white and Asian adults. We examined the associations of BP dipping patterns (dipping, nondipping, and reverse dipping) with cardiovascular target organ damage (left ventricular mass index and left ventricular hypertrophy), among participants from the Jackson Heart Study, an exclusively black population-based cohort. Analyses included 1015 participants who completed ambulatory BP monitoring and had echocardiography data from the baseline visit. Participants were categorized based on the nighttime to daytime systolic BP ratio into 3 patterns: dipping pattern (≤0.90), nondipping pattern (>0.90 to ≤1.00), and reverse dipping pattern (>1.00). The prevalence of dipping, nondipping, and reverse dipping patterns was 33.6%, 48.2%, and 18.2%, respectively. In a fully adjusted model, which included antihypertensive medication use and clinic and daytime systolic BP, the mean differences in left ventricular mass index between reverse dipping pattern versus dipping pattern was 8.3±2.1 g/m 2 ( P pattern versus dipping pattern was -1.0±1.6 g/m 2 ( P =0.536). Compared with participants with a dipping pattern, the prevalence ratio for having left ventricular hypertrophy was 1.65 (95% CI, 1.05-2.58) and 0.96 (95% CI, 0.63-1.97) for those with a reverse dipping pattern and nondipping pattern, respectively. In this population-based study of blacks, a reverse dipping pattern was associated with increased left ventricular mass index and a higher prevalence of left ventricular hypertrophy. Identification of a reverse dipping pattern on ambulatory BP monitoring may help identify black at increased risk for cardiovascular target organ damage. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  19. Brain-Heart Interaction: Cardiac Complications After Stroke.

    Science.gov (United States)

    Chen, Zhili; Venkat, Poornima; Seyfried, Don; Chopp, Michael; Yan, Tao; Chen, Jieli

    2017-08-04

    Neurocardiology is an emerging specialty that addresses the interaction between the brain and the heart, that is, the effects of cardiac injury on the brain and the effects of brain injury on the heart. This review article focuses on cardiac dysfunction in the setting of stroke such as ischemic stroke, brain hemorrhage, and subarachnoid hemorrhage. The majority of post-stroke deaths are attributed to neurological damage, and cardiovascular complications are the second leading cause of post-stroke mortality. Accumulating clinical and experimental evidence suggests a causal relationship between brain damage and heart dysfunction. Thus, it is important to determine whether cardiac dysfunction is triggered by stroke, is an unrelated complication, or is the underlying cause of stroke. Stroke-induced cardiac damage may lead to fatality or potentially lifelong cardiac problems (such as heart failure), or to mild and recoverable damage such as neurogenic stress cardiomyopathy and Takotsubo cardiomyopathy. The role of location and lateralization of brain lesions after stroke in brain-heart interaction; clinical biomarkers and manifestations of cardiac complications; and underlying mechanisms of brain-heart interaction after stroke, such as the hypothalamic-pituitary-adrenal axis; catecholamine surge; sympathetic and parasympathetic regulation; microvesicles; microRNAs; gut microbiome, immunoresponse, and systemic inflammation, are discussed. © 2017 American Heart Association, Inc.

  20. Individual structural differences in left inferior parietal area are associated with schoolchildrens’ arithmetic scores

    Directory of Open Access Journals (Sweden)

    Yongxin eLi

    2013-12-01

    Full Text Available Arithmetic skill is of critical importance for academic achievement, professional success and everyday life, and childhood is the key period to acquire this skill. Neuroimaging studies have identified that left parietal regions are a key neural substrate for representing arithmetic skill. Although the relationship between functional brain activity in left parietal regions and arithmetic skill has been studied in detail, it remains unclear about the relationship between arithmetic achievement and structural properties in left inferior parietal area in schoolchildren. The current study employed a combination of voxel-based morphometry (VBM for high-resolution T1-weighted images and fiber tracking on diffusion tensor imaging (DTI to examine the relationship between structural properties in the inferior parietal area and arithmetic achievement in 10-year-old schoolchildren. VBM of the T1-weighted images revealed that individual differences in arithmetic scores were significantly and positively correlated with the grey matter (GM volume in the left intraparietal sulcus (IPS. Fiber tracking analysis revealed that the forceps major, left superior longitudinal fasciculus (SLF, bilateral inferior longitudinal fasciculus (ILF and inferior fronto-occipital fasciculus (IFOF were the primary pathways connecting the left IPS with other brain areas. Furthermore, the regression analysis of the probabilistic pathways revealed a significant and positive correlation between the fractional anisotropy (FA values in the left SLF, ILF and bilateral IFOF and arithmetic scores. The brain structure-behavior correlation analyses indicated that the GM volumes in the left IPS and the FA values in the tract pathways connecting left IPS were both related to children’s arithmetic achievement. The present findings provide evidence that individual structural differences in the left IPS are associated with arithmetic scores in schoolchildren.

  1. Repairing the brain with physical exercise: Cortical thickness and brain volume increases in long-term pediatric brain tumor survivors in response to a structured exercise intervention

    Directory of Open Access Journals (Sweden)

    Kamila U. Szulc-Lerch

    Full Text Available There is growing evidence that exercise induced experience dependent plasticity may foster structural and functional recovery following brain injury. We examined the efficacy of exercise training for neural and cognitive recovery in long-term pediatric brain tumor survivors treated with radiation.We conducted a controlled clinical trial with crossover of exercise training (vs. no training in a volunteer sample of 28 children treated with cranial radiation for brain tumors (mean age = 11.5 yrs.; mean time since diagnosis = 5.7 yrs. The endpoints were anatomical T1 MRI data and multiple behavioral outcomes presenting a broader analysis of structural MRI data across the entire brain. This included an analysis of changes in cortical thickness and brain volume using automated, user unbiased approaches. A series of general linear mixed effects models evaluating the effects of exercise training on cortical thickness were performed in a voxel and vertex-wise manner, as well as for specific regions of interest. In exploratory analyses, we evaluated the relationship between changes in cortical thickness after exercise with multiple behavioral outcomes, as well as the relation of these measures at baseline.Exercise was associated with increases in cortical thickness within the right pre and postcentral gyri. Other notable areas of increased thickness related to training were present in the left pre and postcentral gyri, left temporal pole, left superior temporal gyrus, and left parahippocampal gyrus. Further, we observed that compared to a separate cohort of healthy children, participants displayed multiple areas with a significantly thinner cortex prior to training and fewer differences following training, indicating amelioration of anatomical deficits. Partial least squares analysis (PLS revealed specific patterns of relations between cortical thickness and various behavioral outcomes both after training and at baseline.Overall, our results

  2. Commentary: Left Hand, Right Hand and on the Other Hand

    Science.gov (United States)

    Parslow, Graham R.

    2011-01-01

    It was deeply ingrained in the author from his undergraduate studies of psychology and courses in learning theory that people have a rational left brain and a creative right brain. Learning theory suggested that activities needed to be tailored to develop both hemispheres. Handedness in relation to abilities has been commented on from the 1800s by…

  3. How the embryonic chick brain twists.

    Science.gov (United States)

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Forsch, Nickolas; Taber, Larry A

    2016-11-01

    During early development, the tubular embryonic chick brain undergoes a combination of progressive ventral bending and rightward torsion, one of the earliest organ-level left-right asymmetry events in development. Existing evidence suggests that bending is caused by differential growth, but the mechanism for the predominantly rightward torsion of the embryonic brain tube remains poorly understood. Here, we show through a combination of in vitro experiments, a physical model of the embryonic morphology and mechanics analysis that the vitelline membrane (VM) exerts an external load on the brain that drives torsion. Our theoretical analysis showed that the force is of the order of 10 micronewtons. We also designed an experiment to use fluid surface tension to replace the mechanical role of the VM, and the estimated magnitude of the force owing to surface tension was shown to be consistent with the above theoretical analysis. We further discovered that the asymmetry of the looping heart determines the chirality of the twisted brain via physical mechanisms, demonstrating the mechanical transfer of left-right asymmetry between organs. Our experiments also implied that brain flexure is a necessary condition for torsion. Our work clarifies the mechanical origin of torsion and the development of left-right asymmetry in the early embryonic brain. © 2016 The Author(s).

  4. The spiritual brain: selective cortical lesions modulate human self-transcendence.

    Science.gov (United States)

    Urgesi, Cosimo; Aglioti, Salvatore M; Skrap, Miran; Fabbro, Franco

    2010-02-11

    The predisposition of human beings toward spiritual feeling, thinking, and behaviors is measured by a supposedly stable personality trait called self-transcendence. Although a few neuroimaging studies suggest that neural activation of a large fronto-parieto-temporal network may underpin a variety of spiritual experiences, information on the causative link between such a network and spirituality is lacking. Combining pre- and post-neurosurgery personality assessment with advanced brain-lesion mapping techniques, we found that selective damage to left and right inferior posterior parietal regions induced a specific increase of self-transcendence. Therefore, modifications of neural activity in temporoparietal areas may induce unusually fast modulations of a stable personality trait related to transcendental self-referential awareness. These results hint at the active, crucial role of left and right parietal systems in determining self-transcendence and cast new light on the neurobiological bases of altered spiritual and religious attitudes and behaviors in neurological and mental disorders. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Classification of functional near-infrared spectroscopy signals corresponding to the right- and left-wrist motor imagery for development of a brain-computer interface.

    Science.gov (United States)

    Naseer, Noman; Hong, Keum-Shik

    2013-10-11

    This paper presents a study on functional near-infrared spectroscopy (fNIRS) indicating that the hemodynamic responses of the right- and left-wrist motor imageries have distinct patterns that can be classified using a linear classifier for the purpose of developing a brain-computer interface (BCI). Ten healthy participants were instructed to imagine kinesthetically the right- or left-wrist flexion indicated on a computer screen. Signals from the right and left primary motor cortices were acquired simultaneously using a multi-channel continuous-wave fNIRS system. Using two distinct features (the mean and the slope of change in the oxygenated hemoglobin concentration), the linear discriminant analysis classifier was used to classify the right- and left-wrist motor imageries resulting in average classification accuracies of 73.35% and 83.0%, respectively, during the 10s task period. Moreover, when the analysis time was confined to the 2-7s span within the overall 10s task period, the average classification accuracies were improved to 77.56% and 87.28%, respectively. These results demonstrate the feasibility of an fNIRS-based BCI and the enhanced performance of the classifier by removing the initial 2s span and/or the time span after the peak value. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Alpha1A-adrenergic receptor-directed autoimmunity induces left ventricular damage and diastolic dysfunction in rats.

    Directory of Open Access Journals (Sweden)

    Katrin Wenzel

    Full Text Available BACKGROUND: Agonistic autoantibodies to the alpha(1-adrenergic receptor occur in nearly half of patients with refractory hypertension; however, their relevance is uncertain. METHODS/PRINCIPAL FINDINGS: We immunized Lewis rats with the second extracellular-loop peptides of the human alpha(1A-adrenergic receptor and maintained them for one year. Alpha(1A-adrenergic antibodies (alpha(1A-AR-AB were monitored with a neonatal cardiomyocyte contraction assay by ELISA, and by ERK1/2 phosphorylation in human alpha(1A-adrenergic receptor transfected Chinese hamster ovary cells. The rats were followed with radiotelemetric blood pressure measurements and echocardiography. At 12 months, the left ventricles of immunized rats had greater wall thickness than control rats. The fractional shortening and dp/dt(max demonstrated preserved systolic function. A decreased E/A ratio in immunized rats indicated a diastolic dysfunction. Invasive hemodynamics revealed increased left ventricular end-diastolic pressures and decreased dp/dt(min. Mean diameter of cardiomyocytes showed hypertrophy in immunized rats. Long-term blood pressure values and heart rates were not different. Genes encoding sarcomeric proteins, collagens, extracellular matrix proteins, calcium regulating proteins, and proteins of energy metabolism in immunized rat hearts were upregulated, compared to controls. Furthermore, fibrosis was present in immunized hearts, but not in control hearts. A subset of immunized and control rats was infused with angiotensin (Ang II. The stressor raised blood pressure to a greater degree and led to more cardiac fibrosis in immunized, than in control rats. CONCLUSIONS/SIGNIFICANCE: We show that alpha(1A-AR-AB cause diastolic dysfunction independent of hypertension, and can increase the sensitivity to Ang II. We suggest that alpha(1A-AR-AB could contribute to cardiovascular endorgan damage.

  7. Brain plasticity and recovery of cognitive functions

    Directory of Open Access Journals (Sweden)

    Anja Čuš

    2011-10-01

    Full Text Available Through its capacity of plastic changes, the adult brain enables successful dealing with new demands of everyday life and recovery after an acquired brain damage either spontaneously or by the help of rehabilitation interventions. Studies which explored the effects of cognitive training in the normal population report on different types of changes in the performance of cognitive tasks as well as different types of changes in brain activation patterns.Following practice, brain activation can change in its extent, intensity or location, while cognitive processes can become more efficient or can be replaced by different processes.After acquired brain damage plastic changes are somewhat different. After the injury, the damaged brain area can either gradually regain its previous function, or different brain regions are recruited to perform that function.Studies of spontaneous and guided recovery of cognitive functions have revealed both types of plastic changes that follow each other, as well as significant correlations between these changes and improvement on the behavioural level.

  8. The brain network reflecting bodily self-consciousness: a functional connectivity study

    Science.gov (United States)

    Ionta, Silvio; Martuzzi, Roberto; Salomon, Roy

    2014-01-01

    Several brain regions are important for processing self-location and first-person perspective, two important aspects of bodily self-consciousness. However, the interplay between these regions has not been clarified. In addition, while self-location and first-person perspective in healthy subjects are associated with bilateral activity in temporoparietal junction (TPJ), disturbed self-location and first-person perspective result from damage of only the right TPJ. Identifying the involved brain network and understanding the role of hemispheric specializations in encoding self-location and first-person perspective, will provide important information on system-level interactions neurally mediating bodily self-consciousness. Here, we used functional connectivity and showed that right and left TPJ are bilaterally connected to supplementary motor area, ventral premotor cortex, insula, intraparietal sulcus and occipitotemporal cortex. Furthermore, the functional connectivity between right TPJ and right insula had the highest selectivity for changes in self-location and first-person perspective. Finally, functional connectivity revealed hemispheric differences showing that self-location and first-person perspective modulated the connectivity between right TPJ, right posterior insula, and right supplementary motor area, and between left TPJ and right anterior insula. The present data extend previous evidence on healthy populations and clinical observations in neurological deficits, supporting a bilateral, but right-hemispheric dominant, network for bodily self-consciousness. PMID:24396007

  9. How Children's Brains Think: Not Left or Right but Both Together

    Science.gov (United States)

    Geake, John

    2004-01-01

    The burgeoning interest over recent decades about the human brain, and possible implications for education, has, perhaps not surprisingly, fostered a suite of urban myths about brain functioning. The prize for the barmiest goes to the one about using only 10% of the brain, but there are plenty more that deserve dishonourable mention. The most…

  10. Narrative discourse in children with early focal brain injury.

    Science.gov (United States)

    Reilly, J S; Bates, E A; Marchman, V A

    1998-02-15

    Children with early brain damage, unlike adult stroke victims, often go on to develop nearly normal language. However, the route and extent of their linguistic development are still unclear, as is the relationship between lesion site and patterns of delay and recovery. Here we address these questions by examining narratives from children with early brain damage. Thirty children (ages 3:7-10:10) with pre- or perinatal unilateral focal brain damage and their matched controls participated in a storytelling task. Analyses focused on linguistic proficiency and narrative competence. Overall, children with brain damage scored significantly lower than their age-matched controls on both linguistic (morphological and syntactic) indices and those targeting broader narrative qualities. Rather than indicating that children with brain damage fully catch up, these data suggest that deficits in linguistic abilities reassert themselves as children face new linguistic challenges. Interestingly, after age 5, site of lesion does not appear to be a significant factor and the delays we have witnessed do not map onto the lesion profiles observed in adults with analogous brain injuries.

  11. Structural connectivity asymmetry in the neonatal brain.

    Science.gov (United States)

    Ratnarajah, Nagulan; Rifkin-Graboi, Anne; Fortier, Marielle V; Chong, Yap Seng; Kwek, Kenneth; Saw, Seang-Mei; Godfrey, Keith M; Gluckman, Peter D; Meaney, Michael J; Qiu, Anqi

    2013-07-15

    Asymmetry of the neonatal brain is not yet understood at the level of structural connectivity. We utilized DTI deterministic tractography and structural network analysis based on graph theory to determine the pattern of structural connectivity asymmetry in 124 normal neonates. We tracted white matter axonal pathways characterizing interregional connections among brain regions and inferred asymmetry in left and right anatomical network properties. Our findings revealed that in neonates, small-world characteristics were exhibited, but did not differ between the two hemispheres, suggesting that neighboring brain regions connect tightly with each other, and that one region is only a few paths away from any other region within each hemisphere. Moreover, the neonatal brain showed greater structural efficiency in the left hemisphere than that in the right. In neonates, brain regions involved in motor, language, and memory functions play crucial roles in efficient communication in the left hemisphere, while brain regions involved in emotional processes play crucial roles in efficient communication in the right hemisphere. These findings suggest that even at birth, the topology of each cerebral hemisphere is organized in an efficient and compact manner that maps onto asymmetric functional specializations seen in adults, implying lateralized brain functions in infancy. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Aetiological factors in left-handedness

    Directory of Open Access Journals (Sweden)

    Milenković Sanja M.

    2005-01-01

    Full Text Available Lateralisation associates the extremities and senses of one side of the body, which are connected by afferent and efferent pathways, with the primary motor and sensory areas of the hemisphere on the opposite side. Dominant laterality denotes the appearance of a dominant extremity or sense in the performance of complex psychomotor activities. Laterality is manifested both as right-handedness or left-handedness, which are functionally equivalent and symmetrical in the performance of activities. Right-handedness is significantly more common than left-handedness. Genetic theory is most widely accepted in explaining the onset of lateralisation. According to this theory, the models of brain organisation asymmetry (anatomical, functional, and biochemical are strongly, genetically determined. However, the inability to clearly demonstrate the association between genetic factors and left-handedness has led researchers to investigate the effects of the environment on left-handedness. Of particular interest are the intrauterine environment and the factors influencing foetal development, of which hormones and ultrasound exposure are the most significant. It has been estimated that an extra five cases of nonright-handed lateralisation can be expected in every 100 males who were exposed to ultrasound in utero compared to those who were not. Socio-cultural pressure on left-handed individuals was much more severe in the past, which is confirmed by scientific findings that left-handedness is present in 13% of individuals in their twenties, while in less than 1% of individuals in their eighties.

  13. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model.

    Science.gov (United States)

    Son, Seung-Wan; Lee, Jin-Seok; Kim, Hyeong-Geug; Kim, Dong-Woon; Ahn, Yo-Chan; Son, Chang-Gue

    2016-01-01

    Among sex hormones, estrogen is particularly well known to act as neuroprotective agent. Unlike estrogen, testosterone has not been well investigated in regard to its effects on the brain, especially under psychological stress. To investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. BALB/c mice were subjected to either an orchiectomy or sham operation. After allowing 15 days for recovery, mice were re-divided into four groups according to exposure of restraint stress: sham, sham plus stress, orchiectomy, and orchiectomy plus stress. Serum testosterone was undetectable in orchiectomized groups and restraint-induced stress significantly reduced testosterone levels in sham plus stress group. The serum levels of corticosterone and adrenaline were notably elevated by restraint stress, and these elevated hormones were markedly augmented by orchiectomy. Two oxidative stressors and biomarkers for lipid and protein peroxidation were significantly increased in the cerebral cortex and hippocampus by restraint stress, while the reverse pattern was observed in antioxidant enzymes. These results were supported by histopathological findings, with 4-hydroxynonenal staining for oxidative injury and Fluoro-Jade B staining showing the degenerating neurons. The aforementioned patterns of oxidative injury were accelerated by orchiectomy. These findings strongly suggest the conclusion that testosterone exerts a protective effect against oxidative brain damage, especially under stressed conditions. Unlike estrogen, the effects of testosterone on the brain have not been thoroughly investigated. In order to investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. Orchiectomy markedly augmented the restraint stress-induced elevation of serum corticosterone and adrenaline levels as well as oxidative alterations

  14. Right and Left Ventricular Function and Mass in Male Elite Master Athletes: A Controlled Contrast-Enhanced Cardiovascular Magnetic Resonance Study.

    Science.gov (United States)

    Bohm, Philipp; Schneider, Günther; Linneweber, Lutz; Rentzsch, Axel; Krämer, Nadine; Abdul-Khaliq, Hashim; Kindermann, Wilfried; Meyer, Tim; Scharhag, Jürgen

    2016-05-17

    It is under debate whether the cumulative effects of intensive endurance exercise induce chronic cardiac damage, mainly involving the right heart. The aim of this study was to examine the cardiac structure and function in long-term elite master endurance athletes with special focus on the right ventricle by contrast-enhanced cardiovascular magnetic resonance. Thirty-three healthy white competitive elite male master endurance athletes (age range, 30-60 years) with a training history of 29±8 years, and 33 white control subjects pair-matched for age, height, and weight underwent cardiopulmonary exercise testing, echocardiography including tissue-Doppler imaging and speckle tracking, and cardiovascular magnetic resonance. Indexed left ventricular mass and right ventricular mass (left ventricular mass/body surface area, 96±13 and 62±10 g/m(2); Pright ventricular mass/body surface area, 36±7 and 24±5 g/m(2); Pleft ventricular end-diastolic volume and right ventricular end-diastolic volume (left ventricular end-diastolic volume/body surface area, 104±13 and 69±18 mL/m(2); Pright ventricular end-diastolic volume/body surface area, 110±22 and 66±16 mL/m(2); PRight ventricular ejection fraction did not differ between athletes and control subjects (52±8 and 54±6%; P=0.26). Pathological late enhancement was detected in 1 athlete. No correlations were found for left ventricular and right ventricular volumes and ejection fraction with N-terminal pro-brain natriuretic peptide, and high-sensitive troponin was negative in all subjects. Based on our results, chronic right ventricular damage in elite endurance master athletes with lifelong high training volumes seems to be unlikely. Thus, the hypothesis of an exercise-induced arrhythmogenic right ventricular cardiomyopathy has to be questioned. © 2016 American Heart Association, Inc.

  15. [Resting-state functional magnetic resonance study of brain function changes after TIPS operation in patients with liver cirrhosis].

    Science.gov (United States)

    Liu, C; Wang, H B; Yu, Y Q; Wang, M Q; Zhang, G B; Xu, L Y; Wu, J M

    2016-12-20

    Objective: To investigate the brain function changes in cirrhosis patients after transjugular intrahepatic portosystemic shunt (TIPS), resting-state functional MRI (rs-fMRI) performed and fractional amplitude of low frequency fluctuation (fALFF) was analyzed. Methods: From January 2014 to February 2016, a total of 96 cirrhotic patients from invasive technology department and infection department in the First Affiliated Hospital of Anhui Medical University were selected , the blood ammonia data of 96 cirrhotic patients with TIPS operation in four groups were collected after 1, 3, 6 and 12 month, and all subjects performed rs-fMRI scans. The rs-fMRI data processed with DPARSF and SPM12 softwares, whole-brain fALFF values were calculated, and One-Way analysis of variance , multiple comparison analysis and correlation analysis were performed. Results: There were brain regions with significant function changes in four groups patients with TIPS operation after 1, 3, 6 and 12 month, including bilateral superior temporal gyrus, right middle temportal gyrus , right hippocampus, right island of inferior frontal gyrus, left fusiform gyrus, left olfactory cortex, left orbital superior frontal gyrus (all P brain function areas increased in left olfactory cortex, left inferior temporal gyrus, left fusiform gyrus, left orbital middle frontal gyrus, left putamen, left cerebelum, and decreased in left lingual gyrus; patients in the 6-month follow-up showed that brain function areas increased in left middle temportal gyrus, right supramarginal gyrus, right temporal pole, right central operculum, and decreased in left top edge of angular gyrus, left postcentral gyrus; patients in the 12-month follow-up showed that brain function areas increased in right hippocampus, right middle cingulate gyrus, and decreased in right middle temportal gyrus.Compared with patients in the 3-month follow-up, patients in the 6-month follow-up showed that brain function areas increased in left superior

  16. Protective effects of taurine in traumatic brain injury via mitochondria and cerebral blood flow.

    Science.gov (United States)

    Wang, Qin; Fan, Weijia; Cai, Ying; Wu, Qiaoli; Mo, Lidong; Huang, Zhenwu; Huang, Huiling

    2016-09-01

    In mammalian tissues, taurine is an important natural component and the most abundant free amino acid in the heart, retina, skeletal muscle, brain, and leukocytes. This study is to examine the taurine's protective effects on neuronal ultrastructure, the function of the mitochondrial respiratory chain complex, and on cerebral blood flow (CBF). The model of traumatic brain injury (TBI) was made for SD rats by a fluid percussion device, with taurine (200 mg/kg) administered by tail intravenous injection once daily for 7 days after TBI. It was found that CBF was improved for both left and right brain at 30 min and 7 days post-injury by taurine. Reaction time was prolonged relative to the TBI-only group. Neuronal damage was prevented by 7 days taurine. Mitochondrial electron transport chain complexes I and II showed greater activity with the taurine group. The improvement by taurine of CBF may alleviate edema and elevation in intracranial pressure. Importantly taurine improved the hypercoagulable state.

  17. Hyperglycemia can delay left ventricular dysfunction but not autonomic damage after myocardial infarction in rodents

    Directory of Open Access Journals (Sweden)

    Brum Patricia C

    2011-04-01

    Full Text Available Abstract Background Although clinical diabetes mellitus is obviously a high risk factor for myocardial infarction (MI, in experimental studies disagreement exists about the sensitivity to ischemic injury of an infarcted myocardium. Recently, our group demonstrated that diabetic animals presented better cardiac function recovery and cellular resistance to ischemic injury than nondiabetics. In the present study, we evaluated the chronic effects of MI on left ventricular (LV and autonomic functions in streptozotocin (STZ diabetic rats. Methods Male Wistar rats were divided into 4 groups: control (C, n = 15, diabetes (D, n = 16, MI (I, n = 21, and diabetes + MI (DI, n = 30. MI was induced 15 days after diabetes (STZ induction. Ninety days after MI, LV and autonomic functions were evaluated (8 animals each group. Left ventricular homogenates were analyzed by Western blotting to evaluate the expression of calcium handling proteins. Results MI area was similar in infarcted groups (~43%. Ejection fraction and +dP/dt were reduced in I compared with DI. End-diastolic pressure was additionally increased in I compared with DI. Compared with DI, I had increased Na+-Ca2+ exchange and phospholamban expression (164% and decreased phosphorylated phospholamban at serine16 (65% and threonine17 (70% expression. Nevertheless, diabetic groups had greater autonomic dysfunction, observed by baroreflex sensitivity and pulse interval variability reductions. Consequently, the mortality rate was increased in DI compared with I, D, and C groups. Conclusions LV dysfunction in diabetic animals was attenuated after 90 days of myocardial infarction and was associated with a better profile of calcium handling proteins. However, this positive adaptation was not able to reduce the mortality rate of DI animals, suggesting that autonomic dysfunction is associated with increased mortality in this group. Therefore, it is possible that the better cardiac function has been transitory

  18. Hemispheric lateralization of topological organization in structural brain networks.

    Science.gov (United States)

    Caeyenberghs, Karen; Leemans, Alexander

    2014-09-01

    The study on structural brain asymmetries in healthy individuals plays an important role in our understanding of the factors that modulate cognitive specialization in the brain. Here, we used fiber tractography to reconstruct the left and right hemispheric networks of a large cohort of 346 healthy participants (20-86 years) and performed a graph theoretical analysis to investigate this brain laterality from a network perspective. Findings revealed that the left hemisphere is significantly more "efficient" than the right hemisphere, whereas the right hemisphere showed higher values of "betweenness centrality" and "small-worldness." In particular, left-hemispheric networks displayed increased nodal efficiency in brain regions related to language and motor actions, whereas the right hemisphere showed an increase in nodal efficiency in brain regions involved in memory and visuospatial attention. In addition, we found that hemispheric networks decrease in efficiency with age. Finally, we observed significant gender differences in measures of global connectivity. By analyzing the structural hemispheric brain networks, we have provided new insights into understanding the neuroanatomical basis of lateralized brain functions. Copyright © 2014 Wiley Periodicals, Inc.

  19. Three-dimensional Speckle Tracking Echocardiography in Light Chain Cardiac Amyloidosis: Examination of Left and Right Ventricular Myocardial Mechanics Parameters.

    Science.gov (United States)

    Urbano-Moral, Jose Angel; Gangadharamurthy, Dakshin; Comenzo, Raymond L; Pandian, Natesa G; Patel, Ayan R

    2015-08-01

    The study of myocardial mechanics has a potential role in the detection of cardiac involvement in patients with amyloidosis. This study aimed to characterize 3-dimensional-speckle tracking echocardiography-derived left and right ventricular myocardial mechanics in light chain amyloidosis and examine their relationship with brain natriuretic peptide. In patients with light chain amyloidosis, left ventricular longitudinal and circumferential strain (n=40), and right ventricular longitudinal strain and radial displacement (n=26) were obtained by 3-dimensional-speckle tracking echocardiography. Brain natriuretic peptide levels were determined. All myocardial mechanics measurements showed differences when compared by brain natriuretic peptide level tertiles. Left and right ventricular longitudinal strain were highly correlated (r=0.95, P<.001). Left ventricular longitudinal and circumferential strain were reduced in patients with cardiac involvement (-9±4 vs -16±2; P<.001, and -24±6 vs -29±4; P=.01, respectively), with the most prominent impairment at the basal segments. Right ventricular longitudinal strain and radial displacement were diminished in patients with cardiac involvement (-9±3 vs -17±3; P<.001, and 2.7±0.8 vs 3.8±0.3; P=.002). On multivariate analysis, left ventricular longitudinal strain was associated with the presence of cardiac involvement (odds ratio = 1.6; 95% confidence interval, 1.04 to 2.37; P=.03) independent of the presence of brain natriuretic peptide and troponin I criteria for cardiac amyloidosis. Three-dimensional-speckle tracking echocardiography-derived left and right ventricular myocardial mechanics are increasingly altered as brain natriuretic peptide increases in light chain amyloidosis. There appears to be a strong association between left ventricular longitudinal strain and cardiac involvement, beyond biomarkers such as brain natriuretic peptide and troponin I. Copyright © 2015 Sociedad Española de Cardiología. Published by

  20. Implications of astrocytes in mediating the protective effects of Selective Estrogen Receptor Modulators upon brain damage

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-04-01

    Full Text Available Selective Estrogen Receptor Modulators (SERMs are steroidal or non-steroidal compounds that are already used in clinical practice for the treatment of breast cancer, osteoporosis and menopausal symptoms. While SERMs actions in the breast, bone, and uterus have been well characterized, their actions in the brain are less well understood. Previous works have demonstrated the beneficial effects of SERMs in different chronic neurodegenerative diseases like Alzheimer, Parkinson’s disease and Multiple sclerosis, as well as acute degeneration as stroke and traumatic brain injury. Moreover, these compounds exhibit similar protective actions as those of estradiol in the Central Nervous System, overt any secondary effect. For these reasons, in the past few years, there has been a growing interest in the neuroprotective effects exerted directly or indirectly by SERMs in the SNC. In this context, astrocytes play an important role in the maintenance of brain metabolism, and antioxidant support to neurons, thus indicating that better protection of astrocytes are an important asset targeting neuronal protection. Moreover, various clinical and experimental studies have reported that astrocytes are essential for the neuroprotective effects of SERMs during neuronal injuries, as these cells express different estrogen receptors in cell membrane, demonstrating that part of SERMs effects upon injury may be mediated by astrocytes. The present work highlights the current evidence on the protective mechanisms of SERMs, such as tamoxifen and raloxifene, in the SNC, and their modulation of astrocytic properties as promising therapeutic targets during brain damage.

  1. Developmental dyslexia: dysfunction of a left hemisphere reading network

    Directory of Open Access Journals (Sweden)

    Fabio eRichlan

    2012-05-01

    Full Text Available This mini-review summarizes and integrates findings from recent meta-analyses and original neuroimaging studies on functional brain abnormalities in dyslexic readers. Surprisingly, there is little empirical support for the standard neuroanatomical model of developmental dyslexia, which localizes the primary phonological decoding deficit in left temporo-parietal regions. Rather, recent evidence points to a dysfunction of a left hemisphere reading network, which includes occipito-temporal, inferior frontal, and inferior parietal regions.

  2. Effects of hyperbaric oxygen and nerve growth factor on the long-term neural behavior of neonatal rats with hypoxic ischemic brain damage.

    Science.gov (United States)

    Wei, Lixia; Ren, Qing; Zhang, Yongjun; Wang, Jiwen

    2017-04-01

    To evaluate the effects of HBO (Hyperbaric oxygen) and NGF (Nerve growth factor) on the long-term neural behavior of neonatal rats with HIBD (Neonatal hypoxic ischemic brain damage). The HIBD model was produced by ligating the right common carotid artery of 7 days old SD (Sprague-Dawley) rats followed by 8% O2 + 92% N2 for 2h. Totally 40 rats were randomly divided into 5 groups including sham-operated group, HIBD control group, HBO treated group, NGF treated group and NGF + HBO treated group. The learning and memory ability of these rats was evaluated by Morris water maze at 30 days after birth, and sensory motor function was assessed by experiments of foot error and limb placement at 42 days after birth. The escape latency of HBO treated group, NGF treated group and NGF + HBO treated group was shorter than that of HIBD control group (pmemory ability and sensory motor function in neonatal rats after hypoxic ischemic brain damage.

  3. Leptomeningeal angiomatosis of the left occipital surface detected by CT scan

    International Nuclear Information System (INIS)

    Niiro, Masaki; Mihara, Tadahiro; Maeda, Yoshiki; Awa, Hiroshi; Kadota, Koki; Asakura, Tetsuhiko

    1982-01-01

    A case of left occipital leptomeningeal angiomatosis was reported. The patient was a 12-year-old boy who had episodes of severe vascular type headache accompanied by transient right homonymous hemianopsia. CT scan showed localized superficial high density area in the left occipital pole. Remarkable enhancement of the lower and inner surface of the left occipital lobe was demonstrated. Angiography showed poor filling of the distal portion of the left posterior cerebral artery. Skull tomograms showed linear calcifications in the left occipital region. Brain scan showed increased RI uptake in the left occipital region. During operation, the surface of the left occipital lobe was covered by excessive, fine, vascular networks which extended over the arachnoid membrane. The abnormal vessels were cauterized by a CO 2 laser as throughly as possible. The occipital pole, felt gritty. Histologically, the abnormal vessels had spread into the subarachnoid space and were predominantly veins with thin and enlarged walls. The abnormal vessels followed the leptomeninges in the sulci of the cerebral cortex. Underneath the abnormal vessels, in the external layers of the cerebral cortex, calcium deposits were scattered and gliosis and degeneration of the ganglion cells were observed. The lesion was comparable with leptomeningeal angiomatosis. Though the pathological findings of the specimen, CT findings, and brain scan findings were extremely similar to those of Sturge-Weber disease, in this case, the typical clinical and roentgenographic findings of Sturge-Weber disease were all absent. (author)

  4. Speech Entrainment Compensates for Broca's Area Damage

    Science.gov (United States)

    Fridriksson, Julius; Basilakos, Alexandra; Hickok, Gregory; Bonilha, Leonardo; Rorden, Chris

    2015-01-01

    Speech entrainment (SE), the online mimicking of an audiovisual speech model, has been shown to increase speech fluency in patients with Broca's aphasia. However, not all individuals with aphasia benefit from SE. The purpose of this study was to identify patterns of cortical damage that predict a positive response SE's fluency-inducing effects. Forty-four chronic patients with left hemisphere stroke (15 female) were included in this study. Participants completed two tasks: 1) spontaneous speech production, and 2) audiovisual SE. Number of different words per minute was calculated as a speech output measure for each task, with the difference between SE and spontaneous speech conditions yielding a measure of fluency improvement. Voxel-wise lesion-symptom mapping (VLSM) was used to relate the number of different words per minute for spontaneous speech, SE, and SE-related improvement to patterns of brain damage in order to predict lesion locations associated with the fluency-inducing response to speech entrainment. Individuals with Broca's aphasia demonstrated a significant increase in different words per minute during speech entrainment versus spontaneous speech. A similar pattern of improvement was not seen in patients with other types of aphasia. VLSM analysis revealed damage to the inferior frontal gyrus predicted this response. Results suggest that SE exerts its fluency-inducing effects by providing a surrogate target for speech production via internal monitoring processes. Clinically, these results add further support for the use of speech entrainment to improve speech production and may help select patients for speech entrainment treatment. PMID:25989443

  5. Transient contribution of left posterior parietal cortex to cognitive restructuring.

    Science.gov (United States)

    Sutoh, Chihiro; Matsuzawa, Daisuke; Hirano, Yoshiyuki; Yamada, Makiko; Nagaoka, Sawako; Chakraborty, Sudesna; Ishii, Daisuke; Matsuda, Shingo; Tomizawa, Haruna; Ito, Hiroshi; Tsuji, Hiroshi; Obata, Takayuki; Shimizu, Eiji

    2015-03-17

    Cognitive restructuring is a fundamental method within cognitive behavioural therapy of changing dysfunctional beliefs into flexible beliefs and learning to react appropriately to the reality of an anxiety-causing situation. To clarify the neural mechanisms of cognitive restructuring, we designed a unique task that replicated psychotherapy during a brain scan. The brain activities of healthy male participants were analysed using functional magnetic resonance imaging. During the brain scan, participants underwent Socratic questioning aimed at cognitive restructuring regarding the necessity of handwashing after using the restroom. The behavioural result indicated that the Socratic questioning effectively decreased the participants' degree of belief (DOB) that they must wash their hands. Alterations in the DOB showed a positive correlation with activity in the left posterior parietal cortex (PPC) while the subject thought about and rated own belief. The involvement of the left PPC not only in planning and decision-making but also in conceptualization may play a pivotal role in cognitive restructuring.

  6. Towards a new analytical approach to the challenges of communication difficulties and aquired brain damage in everyday practices

    DEFF Research Database (Denmark)

    Klemmensen, Charlotte Marie Bisgaard

    part of where the participants mainly are persons with acquired brain damage and occupational therapists. I will discuss how a new approach to sense-making practice may be designed in order to study more closely a participants’ perspective in unique situations as they arise. I am interested......The approach of language psychology is grounded in the persons communicating; where as the approach of discursive psychology is grounded in social interaction. There is a lack of scientific knowledge on the social/communicative/interactional challenges of communication difficulties and brain injury...... in everyday life. A sense-making-in-practice approach may help form a new discourse. How may a new analytical approach be designed? May ‘communication’ be described as ‘participation abilities’, using the framework from language psychology combined with discursive psychology and the conventions...

  7. Assessment of Radiation-Attenuated Vaccine or Thyme Oil Treatment on Controlling DNA Damage and Nitric Oxide Synthesis in Brain of Rat Infected with Toxocara canis

    International Nuclear Information System (INIS)

    Amin, M.M.; Hafez, E.N.; Abd Raboo, M.A.

    2016-01-01

    Toxocara canis is a worldwide zoonotic roundworm that infects a number of hosts including humans. It exhibits marked affinity to the nervous tissues. This study deals with the changes in the brain of Toxocara canis infected rats regarding parasitological, nitric oxide (NO) level and DNA damage compared to the effect of vaccination with gamma radiation-attenuated embryonated egg or thyme oil treatment. Eighty rats were classified into four groups (twenty each): GI (normal control); GII infected with 2500 T. canis infective eggs/ml/rat (infected control); GIII vaccinated with 800 Gy gamma-attenuated embryonated eggs (vaccinated group) and GIV infected with 2500 T. canis eggs and treated with thyme oil (thyme treated group). At the 14th day post-infection, ten rats from each group were sacrificed and the remaining were re-infected (challenged) with the same number of eggs. At the 14th days post challenge, brain tissues were taken for larval recovery, nitric oxide level evaluation and DNA damage using fragmentation and comet assay. The results exhibited a significant decrease in larval count and nitric oxide level with less damage in brain cells in thyme treated and gamma radiation-attenuated vaccinated groups compared to control infected group. It is also, concluded that vaccination using γ- rays is more effective in protection compared to using thyme oil.

  8. Perturbation of the left inferior frontal gyrus triggers adaptive plasticity in the right homologous area during speech production

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Saur, Dorothee; Price, Cathy J

    2013-01-01

    The role of the right hemisphere in aphasia recovery after left hemisphere damage remains unclear. Increased activation of the right hemisphere has been observed after left hemisphere damage. This may simply reflect a release from transcallosal inhibition that does not contribute to language...... functions. Alternatively, the right hemisphere may actively contribute to language functions by supporting disrupted processing in the left hemisphere via interhemispheric connections. To test this hypothesis, we applied off-line continuous theta burst stimulation (cTBS) over the left inferior frontal gyrus...... (IFG) in healthy volunteers, then used functional MRI to investigate acute changes in effective connectivity between the left and right hemispheres during repetition of auditory and visual words and pseudowords. In separate sessions, we applied cTBS over the left anterior IFG (aIFG) or posterior IFG (p...

  9. Whole Brain Thinking : An Educational Alternative for Language Instructors

    OpenAIRE

    Ogawa,Ruby Toshimi

    2008-01-01

    Whole brain thinking offers new potentials in providing an educational alternative in teaching English as a Second Language (ESL). Prevailing research has shown that the right and the left sides of the brain function and process information differently according to Nobel Prize Winner Roger Sperry in his split-brain research on epileptics. While acknowledging these physical neurological differences, current research suggesting that in view of traditional teaching methods that rely on left-brai...

  10. Brain abscess mimicking lung cancer metastases; a case report.

    Science.gov (United States)

    Asano, Michiko; Fujimoto, Nobukazu; Fuchimoto, Yasuko; Ono, Katsuichiro; Ozaki, Shinji; Kimura, Fumiaki; Kishimoto, Takumi

    2013-01-01

    A 76-year-old woman came to us because of staggering, fever, dysarthria, and appetite loss. Magnetic resonance imaging (MRI) of the brain revealed multiple masses with surrounding edema. Chest X-ray and computed tomography demonstrated a mass-like lesion in the left lung and left pleural effusion. Lung cancer and multiple brain metastases were suspected. However, the brain lesions demonstrated a high intensity through diffusion-weighted MRI. The finding was an important key to differentiate brain abscesses from lung cancer metastases. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Perinatal brain damage : The term infant

    NARCIS (Netherlands)

    Hagberg, Henrik; David Edwards, A.; Groenendaal, Floris

    2016-01-01

    Perinatal brain injury at term is common and often manifests with neonatal encephalopathy including seizures. The most common aetiologies are hypoxic–ischaemic encephalopathy, intracranial haemorrhage and neonatal stroke. Besides clinical and biochemical assessment the diagnostic evaluation rely

  12. Macroscopic networks in the human brain: mapping connectivity in healthy and damaged brains

    NARCIS (Netherlands)

    Nijhuis, E.H.J.

    2013-01-01

    The human brain contains a network of interconnected neurons. Recent advances in functional and structural in-vivo magnetic resonance neuroimaging (MRI) techniques have provided opportunities to model the networks of the human brain on a macroscopic scale. This dissertation investigates the

  13. Urinary type IV collagen is related to left ventricular diastolic function and brain natriuretic peptide in hypertensive patients with prediabetes.

    Science.gov (United States)

    Iida, Masato; Yamamoto, Mitsuru; Ishiguro, Yuko S; Yamazaki, Masatoshi; Ueda, Norihiro; Honjo, Haruo; Kamiya, Kaichirou

    2014-01-01

    Urinary type IV collagen is an early biomarker of diabetic nephropathy. Concomitant prediabetes (the early stage of diabetes) was associated with left ventricular (LV) diastolic dysfunction and increased brain natriuretic peptide (BNP) in hypertensive patients. We hypothesized that urinary type IV collagen may be related to these cardiac dysfunctions. We studied hypertensive patients with early prediabetes (HbA1c 110, n=18), those with prediabetes (HbA1c 5.7-6.4, n=98), and those with diabetes (HbA1c>6.5 or on diabetes medications, n=92). The participants underwent echocardiography to assess left atrial volume/body surface area (BSA) and the ratio of early mitral flow velocity to mitral annular velocity (E/e'). Left ventricular diastolic dysfunction (LVDD) was defined if patients had E/e'≥15, or E/e'=9-14 accompanied by left atrial volume/BSA≥32ml/mm(2). Urinary samples were collected for type IV collagen and albumin, and blood samples were taken for BNP and HbA1c. Urinary type IV collagen and albumin increased in parallel with the deterioration of glycemic status. In hypertensive patients with prediabetes, subjects with LVDD had higher levels of BNP and urinary type IV collagen than those without LVDD. In contrast, in hypertensive patients with diabetes, subjects with LVDD had higher urinary albumin and BNP than those without LVDD. Urinary type IV collagen correlated positively with BNP in hypertensive patients with prediabetes, whereas it correlated with HbA1c in those with diabetes. In hypertensive patients with prediabetes, urinary type IV collagen was associated with LV diastolic dysfunction and BNP. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Overview of Optic Nerve Disorders

    Science.gov (United States)

    ... the other side. Because of this arrangement, the right side of the brain receives information from the left visual field of both eyes, and the left side of the brain receives information from the right visual field of both eyes. Damage to an ...

  15. Brain functional connectivity and cognition in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Xiong, K.L.; Zhang, Y.L.; Chen, H.; Zhang, J.N.; Zhang, Y.; Qiu, M.G.

    2016-01-01

    The aim of this study was to analyze brain functional connectivity and its relationship to cognition in patients with mild traumatic brain injury (mTBI). Twenty-five patients with mTBI and 25 healthy control subjects were studied using resting-state functional MRI (rs-fMRI). Amplitudes of low-frequency fluctuations (ALFFs) and functional connectivity (FC) were calculated and correlated with cognition. Compared with the normal control group, the mTBI patients showed a significant decrease in working memory index (WMI) and processing speed index (PSI), as well as significantly decreased ALFFs in the cingulate gyrus, the middle frontal gyrus and superior frontal gyrus. In contrast, the mTBI patients' ALFFs in the left middle occipital gyrus, the left precuneus, and lingual gyrus increased. Additionally, FC significantly decreased in the thalamus, caudate nucleus, and right hippocampus in the mTBI patients. Statistical analysis further showed a significant positive correlation between the ALFF in the cingulate gyrus and the WMI (R 2 = 0.423, P < 0.05) and a significant positive correlation between the FC in the left thalamus and left middle frontal gyrus and the WMI (R 2 = 0.381, P < 0.05). rs-fMRI can reveal the functional state of the brain in patients with mTBI. This finding differed from observations of the normal control group and was significantly associated with clinical cognitive dysfunction. Therefore, rs-fMRI offers an objective imaging modality for treatment planning and prognosis assessment in patients with mTBI. (orig.)

  16. Human-like brain hemispheric dominance in birdsong learning.

    Science.gov (United States)

    Moorman, Sanne; Gobes, Sharon M H; Kuijpers, Maaike; Kerkhofs, Amber; Zandbergen, Matthijs A; Bolhuis, Johan J

    2012-07-31

    Unlike nonhuman primates, songbirds learn to vocalize very much like human infants acquire spoken language. In humans, Broca's area in the frontal lobe and Wernicke's area in the temporal lobe are crucially involved in speech production and perception, respectively. Songbirds have analogous brain regions that show a similar neural dissociation between vocal production and auditory perception and memory. In both humans and songbirds, there is evidence for lateralization of neural responsiveness in these brain regions. Human infants already show left-sided dominance in their brain activation when exposed to speech. Moreover, a memory-specific left-sided dominance in Wernicke's area for speech perception has been demonstrated in 2.5-mo-old babies. It is possible that auditory-vocal learning is associated with hemispheric dominance and that this association arose in songbirds and humans through convergent evolution. Therefore, we investigated whether there is similar song memory-related lateralization in the songbird brain. We exposed male zebra finches to tutor or unfamiliar song. We found left-sided dominance of neuronal activation in a Broca-like brain region (HVC, a letter-based name) of juvenile and adult zebra finch males, independent of the song stimulus presented. In addition, juvenile males showed left-sided dominance for tutor song but not for unfamiliar song in a Wernicke-like brain region (the caudomedial nidopallium). Thus, left-sided dominance in the caudomedial nidopallium was specific for the song-learning phase and was memory-related. These findings demonstrate a remarkable neural parallel between birdsong and human spoken language, and they have important consequences for our understanding of the evolution of auditory-vocal learning and its neural mechanisms.

  17. Parcellating the neuroanatomical basis of impaired decision-making in traumatic brain injury.

    Science.gov (United States)

    Newcombe, Virginia F J; Outtrim, Joanne G; Chatfield, Doris A; Manktelow, Anne; Hutchinson, Peter J; Coles, Jonathan P; Williams, Guy B; Sahakian, Barbara J; Menon, David K

    2011-03-01

    Cognitive dysfunction is a devastating consequence of traumatic brain injury that affects the majority of those who survive with moderate-to-severe injury, and many patients with mild head injury. Disruption of key monoaminergic neurotransmitter systems, such as the dopaminergic system, may play a key role in the widespread cognitive dysfunction seen after traumatic axonal injury. Manifestations of injury to this system may include impaired decision-making and impulsivity. We used the Cambridge Gambling Task to characterize decision-making and risk-taking behaviour, outside of a learning context, in a cohort of 44 patients at least six months post-traumatic brain injury. These patients were found to have broadly intact processing of risk adjustment and probability judgement, and to bet similar amounts to controls. However, a patient preference for consistently early bets indicated a higher level of impulsiveness. These behavioural measures were compared with imaging findings on diffusion tensor magnetic resonance imaging. Performance in specific domains of the Cambridge Gambling Task correlated inversely and specifically with the severity of diffusion tensor imaging abnormalities in regions that have been implicated in these cognitive processes. Thus, impulsivity was associated with increased apparent diffusion coefficient bilaterally in the orbitofrontal gyrus, insula and caudate; abnormal risk adjustment with increased apparent diffusion coefficient in the right thalamus and dorsal striatum and left caudate; and impaired performance on rational choice with increased apparent diffusion coefficient in the bilateral dorsolateral prefrontal cortices, and the superior frontal gyri, right ventrolateral prefrontal cortex, the dorsal and ventral striatum, and left hippocampus. Importantly, performance in specific cognitive domains of the task did not correlate with diffusion tensor imaging abnormalities in areas not implicated in their performance. The ability to

  18. Repairing the brain with physical exercise: Cortical thickness and brain volume increases in long-term pediatric brain tumor survivors in response to a structured exercise intervention.

    Science.gov (United States)

    Szulc-Lerch, Kamila U; Timmons, Brian W; Bouffet, Eric; Laughlin, Suzanne; de Medeiros, Cynthia B; Skocic, Jovanka; Lerch, Jason P; Mabbott, Donald J

    2018-01-01

    There is growing evidence that exercise induced experience dependent plasticity may foster structural and functional recovery following brain injury. We examined the efficacy of exercise training for neural and cognitive recovery in long-term pediatric brain tumor survivors treated with radiation. We conducted a controlled clinical trial with crossover of exercise training (vs. no training) in a volunteer sample of 28 children treated with cranial radiation for brain tumors (mean age = 11.5 yrs.; mean time since diagnosis = 5.7 yrs). The endpoints were anatomical T1 MRI data and multiple behavioral outcomes presenting a broader analysis of structural MRI data across the entire brain. This included an analysis of changes in cortical thickness and brain volume using automated, user unbiased approaches. A series of general linear mixed effects models evaluating the effects of exercise training on cortical thickness were performed in a voxel and vertex-wise manner, as well as for specific regions of interest. In exploratory analyses, we evaluated the relationship between changes in cortical thickness after exercise with multiple behavioral outcomes, as well as the relation of these measures at baseline. Exercise was associated with increases in cortical thickness within the right pre and postcentral gyri. Other notable areas of increased thickness related to training were present in the left pre and postcentral gyri, left temporal pole, left superior temporal gyrus, and left parahippocampal gyrus. Further, we observed that compared to a separate cohort of healthy children, participants displayed multiple areas with a significantly thinner cortex prior to training and fewer differences following training, indicating amelioration of anatomical deficits. Partial least squares analysis (PLS) revealed specific patterns of relations between cortical thickness and various behavioral outcomes both after training and at baseline. Overall, our results indicate that

  19. Isoflurane Damages the Developing Brain of Mice and Induces Subsequent Learning and Memory Deficits through FASL-FAS Signaling

    Directory of Open Access Journals (Sweden)

    Xiuwen Yi

    2015-01-01

    Full Text Available Background. Isoflurane disrupts brain development of neonatal mice, but its mechanism is unclear. We explored whether isoflurane damaged developing hippocampi through FASL-FAS signaling pathway, which is a well-known pathway of apoptosis. Method. Wild type and FAS- or FASL-gene-knockout mice aged 7 days were exposed to either isoflurane or pure oxygen. We used western blotting to study expressions of caspase-3, FAS (CD95, and FAS ligand (FASL or CD95L proteins, TUNEL staining to count apoptotic cells in hippocampus, and Morris water maze (MWM to evaluate learning and memory. Result. Isoflurane increased expression of FAS and FASL proteins in wild type mice. Compared to isoflurane-treated FAS- and FASL-knockout mice, isoflurane-treated wild type mice had higher expression of caspase-3 and more TUNEL-positive hippocampal cells. Expression of caspase-3 in wild isoflurane group, wild control group, FAS/FASL-gene-knockout control group, and FAS/FASL-gene-knockout isoflurane group showed FAS or FASL gene knockout might attenuate increase of caspase-3 caused by isoflurane. MWM showed isoflurane treatment of wild type mice significantly prolonged escape latency and reduced platform crossing times compared with gene-knockout isoflurane-treated groups. Conclusion. Isoflurane induces apoptosis in developing hippocampi of wild type mice but not in FAS- and FASL-knockout mice and damages brain development through FASL-FAS signaling.

  20. Automated Damage Onset Analysis Techniques Applied to KDP Damage and the Zeus Small Area Damage Test Facility

    International Nuclear Information System (INIS)

    Sharp, R.; Runkel, M.

    1999-01-01

    Automated damage testing of KDP using LLNL's Zeus automated damage test system has allowed the statistics of KDP bulk damage to be investigated. Samples are now characterized by the cumulative damage probability curve, or S-curve, that is generated from hundreds of individual test sites per sample. A HeNe laser/PMT scatter diagnostic is used to determine the onset of damage at each test site. The nature of KDP bulk damage is such that each scatter signal may possess many different indicators of a damage event. Because of this, the determination of the initial onset for each scatter trace is not a straightforward affair and has required considerable manual analysis. The amount of testing required by crystal development for the National Ignition Facility (NIF) has made it impractical to continue analysis by hand. Because of this, we have developed and implemented algorithms for analyzing the scatter traces by computer. We discuss the signal cleaning algorithms and damage determination criteria that have lead to the successful implementation of a LabView based analysis code. For the typical R/1 damage data set, the program can find the correct damage onset in more than 80% of the cases, with the remaining 20% being left to operator determination. The potential time savings for data analysis is on the order of ∼ 100X over manual analysis and is expected to result in the savings of at least 400 man-hours over the next 3 years of NIF quality assurance testing

  1. The ability of left- and right-hemisphere damaged individuals to produce prosodic cues to disambiguate Korean idiomatic sentences

    Directory of Open Access Journals (Sweden)

    Seung-Yun Yang

    2014-05-01

    Three speech language pathologists with training in phonetics participated as raters for vocal qualities. Nasality was significantly salient vocal quality of idiomatic utterances. Conclusion The findings support that (1 LHD negatively affected the production of durational cues and RHD negatively affected the production of fundamental frequency cues in idiomatic-literal contrasts; (2 healthy listeners successfully identified idiomatic and literal versions of ambiguous sentences produced by healthy speakers but not by RHD speakers; (3 Productions in brain-damaged participants approximated HC’s measures in the repetition tasks, but not in the elicitation tasks; (4 Nasal voice quality was judged to be associated with idiomatic utterances in all groups of participants. Findings agree with previous studies indicating HC’s abilities to discriminate literal versus idiomatic meanings in ditropically ambiguous idioms, as well as deficient processing of pitch production and impaired pragmatic ability in RHD.

  2. ECT: its brain enabling effects. A review of electroconvulsive therapy-induced structural brain plasticity

    NARCIS (Netherlands)

    Bouckaert, F.; Sienaert, P.; Obbels, J.; Dols, A.; Vandenbulcke, M.; Stek, M.L.; Bolwig, T.

    2014-01-01

    BACKGROUND: Since the past 2 decades, new evidence for brain plasticity has caused a shift in both preclinical and clinical ECT research from falsifying the "brain damage hypothesis" toward exploring ECT's enabling brain (neuro)plasticity effects. METHODS: By reviewing the available animal and human

  3. A Plea for Right Brain Usage.

    Science.gov (United States)

    Lord, Thomas R.

    1984-01-01

    The visuo-spatial centers of the right brain are crucial to being able to problem solve or conceptualize (two abilities necessary for success in understanding science). Yet, current educational format is almost exclusively a left-brain undertaking. Reasons why educators should emphasize right-brain understanding in educational curricula at all…

  4. Migraine, the heart and the brain

    NARCIS (Netherlands)

    Koppen, H.

    2018-01-01

    The association between migraine and silent ischemic brain lesions was investigated. Also the occurence of right-to-left shunts in different migraine groups and controls. The functional consequences of silent ischemic brain lesions were investigated.

  5. Parkinson's disease brain mitochondria have impaired respirasome assembly, age-related increases in distribution of oxidative damage to mtDNA and no differences in heteroplasmic mtDNA mutation abundance

    Directory of Open Access Journals (Sweden)

    Keeney Paula M

    2009-09-01

    Full Text Available Abstract Background Sporadic Parkinson's disease (sPD is a nervous system-wide disease that presents with a bradykinetic movement disorder and is frequently complicated by depression and cognitive impairment. sPD likely has multiple interacting causes that include increased oxidative stress damage to mitochondrial components and reduced mitochondrial bioenergetic capacity. We analyzed mitochondria from postmortem sPD and CTL brains for evidence of oxidative damage to mitochondrial DNA (mtDNA, heteroplasmic mtDNA point mutations and levels of electron transport chain proteins. We sought to determine if sPD brains possess any mtDNA genotype-respiratory phenotype relationships. Results Treatment of sPD brain mtDNA with the mitochondrial base-excision repair enzyme 8-oxyguanosine glycosylase-1 (hOGG1 inhibited, in an age-dependent manner, qPCR amplification of overlapping ~2 kbase products; amplification of CTL brain mtDNA showed moderate sensitivity to hOGG1 not dependent on donor age. hOGG1 mRNA expression was not different between sPD and CTL brains. Heteroplasmy analysis of brain mtDNA using Surveyor nuclease® showed asymmetric distributions and levels of heteroplasmic mutations across mtDNA but no patterns that statistically distinguished sPD from CTL. sPD brain mitochondria displayed reductions of nine respirasome proteins (respiratory complexes I-V. Reduced levels of sPD brain mitochondrial complex II, III and V, but not complex I or IV proteins, correlated closely with rates of NADH-driven electron flow. mtDNA levels and PGC-1α expression did not differ between sPD and CTL brains. Conclusion PD brain mitochondria have reduced mitochondrial respiratory protein levels in complexes I-V, implying a generalized defect in respirasome assembly. These deficiencies do not appear to arise from altered point mutational burden in mtDNA or reduction of nuclear signaling for mitochondrial biogenesis, implying downstream etiologies. The origin of age

  6. Dynamics and heterogeneity of brain damage in multiple sclerosis

    KAUST Repository

    Kotelnikova, Ekaterina

    2017-10-26

    Multiple Sclerosis (MS) is an autoimmune disease driving inflammatory and degenerative processes that damage the central nervous system (CNS). However, it is not well understood how these events interact and evolve to evoke such a highly dynamic and heterogeneous disease. We established a hypothesis whereby the variability in the course of MS is driven by the very same pathogenic mechanisms responsible for the disease, the autoimmune attack on the CNS that leads to chronic inflammation, neuroaxonal degeneration and remyelination. We propose that each of these processes acts more or less severely and at different times in each of the clinical subgroups. To test this hypothesis, we developed a mathematical model that was constrained by experimental data (the expanded disability status scale [EDSS] time series) obtained from a retrospective longitudinal cohort of 66 MS patients with a long-term follow-up (up to 20 years). Moreover, we validated this model in a second prospective cohort of 120 MS patients with a three-year follow-up, for which EDSS data and brain volume time series were available. The clinical heterogeneity in the datasets was reduced by grouping the EDSS time series using an unsupervised clustering analysis. We found that by adjusting certain parameters, albeit within their biological range, the mathematical model reproduced the different disease courses, supporting the dynamic CNS damage hypothesis to explain MS heterogeneity. Our analysis suggests that the irreversible axon degeneration produced in the early stages of progressive MS is mainly due to the higher rate of myelinated axon degeneration, coupled to the lower capacity for remyelination. However, and in agreement with recent pathological studies, degeneration of chronically demyelinated axons is not a key feature that distinguishes this phenotype. Moreover, the model reveals that lower rates of axon degeneration and more rapid remyelination make relapsing MS more resilient than the

  7. Dynamics and heterogeneity of brain damage in multiple sclerosis

    KAUST Repository

    Kotelnikova, Ekaterina; Kiani, Narsis A.; Abad, Elena; Martinez-Lapiscina, Elena H.; Andorra, Magi; Zubizarreta, Irati; Pulido-Valdeolivas, Irene; Pertsovskaya, Inna; Alexopoulos, Leonidas G.; Olsson, Tomas; Martin, Roland; Paul, Friedemann; Tegner, Jesper; Garcia-Ojalvo, Jordi; Villoslada, Pablo

    2017-01-01

    Multiple Sclerosis (MS) is an autoimmune disease driving inflammatory and degenerative processes that damage the central nervous system (CNS). However, it is not well understood how these events interact and evolve to evoke such a highly dynamic and heterogeneous disease. We established a hypothesis whereby the variability in the course of MS is driven by the very same pathogenic mechanisms responsible for the disease, the autoimmune attack on the CNS that leads to chronic inflammation, neuroaxonal degeneration and remyelination. We propose that each of these processes acts more or less severely and at different times in each of the clinical subgroups. To test this hypothesis, we developed a mathematical model that was constrained by experimental data (the expanded disability status scale [EDSS] time series) obtained from a retrospective longitudinal cohort of 66 MS patients with a long-term follow-up (up to 20 years). Moreover, we validated this model in a second prospective cohort of 120 MS patients with a three-year follow-up, for which EDSS data and brain volume time series were available. The clinical heterogeneity in the datasets was reduced by grouping the EDSS time series using an unsupervised clustering analysis. We found that by adjusting certain parameters, albeit within their biological range, the mathematical model reproduced the different disease courses, supporting the dynamic CNS damage hypothesis to explain MS heterogeneity. Our analysis suggests that the irreversible axon degeneration produced in the early stages of progressive MS is mainly due to the higher rate of myelinated axon degeneration, coupled to the lower capacity for remyelination. However, and in agreement with recent pathological studies, degeneration of chronically demyelinated axons is not a key feature that distinguishes this phenotype. Moreover, the model reveals that lower rates of axon degeneration and more rapid remyelination make relapsing MS more resilient than the

  8. anomalous left anterior cerebral artery with hypoplastic right anterior ...

    African Journals Online (AJOL)

    2018-02-28

    Feb 28, 2018 ... We report an extremely rare anomalous variation of left anterior cerebral artery arising from the ... paraclinoid internal carotid artery and right ... Studies on the arteries of the brain: II-The anterior cerebral artery: Some anatomic ...

  9. Interpreting structural damage in masonry: Diagnostic tool and approach

    NARCIS (Netherlands)

    Vent, A.E. de; Rots, J.G.; Hees, R.P.J. van

    2013-01-01

    A sound diagnosis can only be reached starting from a correct interpretation of the damage. This is not always an easy task: symptoms may be misunderstood, alternative hypotheses overlooked, and the context of the damage left unconsidered. This paper aims to offer architects, contractors and

  10. Use of biomarker S100B for traumatic brain damage in the emergency department may change observation strategy

    DEFF Research Database (Denmark)

    Hansen-Schwartz, Jacob; Bouchelouche, Pierre Nourdine

    2014-01-01

    patients had their blood sampled for analysis. In all, 12 patients were excluded in pursuance of SNC guidelines, which left 27 patients for analysis. A total of 15 patients had abnormally high S100B levels. Using the SNC criteria, only eight of these qualified a priori for blood sampling. Furthermore...... evaluation. Using S100B as a screening tool may lead to an increase in the use of CTs of the brain. In relation to admission, measurement of S100B may contribute to the adoption of an appropriate observation strategy. FUNDING: not relevant. TRIAL REGISTRATION: not relevant....

  11. Spontaneous brain activity predicts learning ability of foreign sounds.

    Science.gov (United States)

    Ventura-Campos, Noelia; Sanjuán, Ana; González, Julio; Palomar-García, María-Ángeles; Rodríguez-Pujadas, Aina; Sebastián-Gallés, Núria; Deco, Gustavo; Ávila, César

    2013-05-29

    Can learning capacity of the human brain be predicted from initial spontaneous functional connectivity (FC) between brain areas involved in a task? We combined task-related functional magnetic resonance imaging (fMRI) and resting-state fMRI (rs-fMRI) before and after training with a Hindi dental-retroflex nonnative contrast. Previous fMRI results were replicated, demonstrating that this learning recruited the left insula/frontal operculum and the left superior parietal lobe, among other areas of the brain. Crucially, resting-state FC (rs-FC) between these two areas at pretraining predicted individual differences in learning outcomes after distributed (Experiment 1) and intensive training (Experiment 2). Furthermore, this rs-FC was reduced at posttraining, a change that may also account for learning. Finally, resting-state network analyses showed that the mechanism underlying this reduction of rs-FC was mainly a transfer in intrinsic activity of the left frontal operculum/anterior insula from the left frontoparietal network to the salience network. Thus, rs-FC may contribute to predict learning ability and to understand how learning modifies the functioning of the brain. The discovery of this correspondence between initial spontaneous brain activity in task-related areas and posttraining performance opens new avenues to find predictors of learning capacities in the brain using task-related fMRI and rs-fMRI combined.

  12. Studies on cerebral protection of digoxin against hypoxic-ischemic brain damage in neonatal rats.

    Science.gov (United States)

    Peng, Kaiwei; Tan, Danfeng; He, Miao; Guo, Dandan; Huang, Juan; Wang, Xia; Liu, Chentao; Zheng, Xiangrong

    2016-08-17

    Hypoxic-ischemic brain damage (HIBD) is a major cause of neonatal acute deaths and chronic nervous system damage. Our present study was designed to investigate the possible neuroprotective effect of digoxin-induced pharmacological preconditioning after hypoxia-ischemia and underlying mechanisms. Neonatal rats were assigned randomly to control, HIBD, or HIBD+digoxin groups. Pharmacological preconditioning was induced by administration of digoxin 72 h before inducing HIBD by carotid occlusion+hypoxia. Behavioral assays, and neuropathological and apoptotic assessments were performed to examine the effects; the expression of Na/K ATPase was also assessed. Rats in the HIBD group showed deficiencies on the T-maze, radial water maze, and postural reflex tests, whereas the HIBD+digoxin group showed significant improvements on all behavioral tests. The rats treated with digoxin showed recovery of pathological conditions, increased number of neural cells and proliferative cells, and decreased number of apoptotic cells. Meanwhile, an increased expression level of Na/K ATPase was observed after digoxin preconditioning treatment. The preconditioning treatment of digoxin contributed toward an improved functional recovery and exerted a marked neuroprotective effect including promotion of cell proliferation and reduction of apoptosis after HIBD, and the neuroprotective action was likely associated with increased expression of Na/K ATPase.

  13. Irreversible brain damage caused by methamphetamine

    Directory of Open Access Journals (Sweden)

    Sebastian Moeller

    2016-03-01

    Full Text Available Methamphetamine is an addictive scene substance usage of which is increasing rapidly. While methamphetamine often causes neuropsychiatric symptoms like anxiety, psychosis and hallucinations, reports of structural ongoing cerebral alterations are rare. We here report a case of this kind of damage caused through methamphetamine use.

  14. 99mTc HM-PAO brain perfusion SPECT in brain death

    International Nuclear Information System (INIS)

    Bonetti, M.G.; Ciritella, P.; Valle, G.; Perrone, E.

    1995-01-01

    We have easily carried out and interpreted 99m Tc HM-PAO SPECT in a consecutive series of 40 comatose patients with brain damage, without discontinuing therapy. Brain death was diagnosed in 7 patients, by recognising absence of brain perfusion, as shown by no intracranial radionuclide uptake. In patients in whom perfusion was seen on brain scans, HM-PAO SPECT improved assessment of the extent of injury, which in general was larger than suggested by CT. (orig.)

  15. Cerebrospinal fluid lactate levels and brain [18F]FDG PET hypometabolism within the default mode network in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Liguori, Claudio [University of Rome ' ' Tor Vergata' ' , Neurophysiopathology Unit, Department of Systems Medicine, Rome (Italy); University of Rome ' ' Tor Vergata' ' , Neurology Unit, Department of Systems Medicine, Rome (Italy); Chiaravalloti, Agostino; Schillaci, Orazio [University of Rome ' Tor Vergata' , Department of Biomedicine and Prevention, Rome (Italy); IRCSS Neuromed, Pozzilli (Italy); Sancesario, Giuseppe; Stefani, Alessandro [University of Rome ' ' Tor Vergata' ' , Neurology Unit, Department of Systems Medicine, Rome (Italy); IRCCS Fondazione Santa Lucia, Rome (Italy); Sancesario, Giulia Maria [IRCCS Fondazione Santa Lucia, Rome (Italy); Mercuri, Nicola Biagio [University of Rome ' ' Tor Vergata' ' , Neurophysiopathology Unit, Department of Systems Medicine, Rome (Italy); University of Rome ' ' Tor Vergata' ' , Neurology Unit, Department of Systems Medicine, Rome (Italy); IRCCS Fondazione Santa Lucia, Rome (Italy); Pierantozzi, Mariangela [University of Rome ' ' Tor Vergata' ' , Neurology Unit, Department of Systems Medicine, Rome (Italy)

    2016-10-15

    It has been suggested that neuronal energy metabolism may be involved in Alzheimer's disease (AD). In this view, the finding of increased cerebrospinal fluid (CSF) lactate levels in AD patients has been considered the result of energetic metabolism dysfunction. Here, we investigated the relationship between neuronal energy metabolism, as measured via CSF lactate levels, and cerebral glucose metabolism, as stated at the 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography ([18F]FDG PET) in AD patients. AD patients underwent lumbar puncture to measure CSF lactate levels and [18F]FDG PET to assess brain glucose metabolism. CSF and PET data were compared to controls. Since patients were studied at rest, we specifically investigated brain areas active in rest-condition owing to the Default Mode Network (DMN). We correlated the CSF lactate concentrations with the [18F]FDG PET data in brain areas owing to the DMN, using sex, age, disease duration, Mini Mental State Examination, and CSF levels of tau proteins and beta-amyloid as covariates. AD patients (n = 32) showed a significant increase of CSF lactate levels compared to Control 1 group (n = 28). They also showed brain glucose hypometabolism in the DMN areas compared to Control 2 group (n = 30). Within the AD group we found the significant correlation between increased CSF lactate levels and glucose hypometabolism in Broadman areas (BA) owing to left medial prefrontal cortex (BA10, mPFC), left orbitofrontal cortex (BA11, OFC), and left parahippocampal gyrus (BA 35, PHG). We found high CSF levels of lactate and glucose hypometabolism within the DMN in AD patients. Moreover, we found a relationship linking the increased CSF lactate and the reduced glucose consumption in the left mPFC, OFC and PHG, owing to the anterior hub of DMN. These findings could suggest that neural glucose hypometabolism may affect the DMN efficiency in AD, also proposing the possible role of damaged brain energetic machine in impairing

  16. Cerebrospinal fluid lactate levels and brain [18F]FDG PET hypometabolism within the default mode network in Alzheimer's disease

    International Nuclear Information System (INIS)

    Liguori, Claudio; Chiaravalloti, Agostino; Schillaci, Orazio; Sancesario, Giuseppe; Stefani, Alessandro; Sancesario, Giulia Maria; Mercuri, Nicola Biagio; Pierantozzi, Mariangela

    2016-01-01

    It has been suggested that neuronal energy metabolism may be involved in Alzheimer's disease (AD). In this view, the finding of increased cerebrospinal fluid (CSF) lactate levels in AD patients has been considered the result of energetic metabolism dysfunction. Here, we investigated the relationship between neuronal energy metabolism, as measured via CSF lactate levels, and cerebral glucose metabolism, as stated at the 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography ([18F]FDG PET) in AD patients. AD patients underwent lumbar puncture to measure CSF lactate levels and [18F]FDG PET to assess brain glucose metabolism. CSF and PET data were compared to controls. Since patients were studied at rest, we specifically investigated brain areas active in rest-condition owing to the Default Mode Network (DMN). We correlated the CSF lactate concentrations with the [18F]FDG PET data in brain areas owing to the DMN, using sex, age, disease duration, Mini Mental State Examination, and CSF levels of tau proteins and beta-amyloid as covariates. AD patients (n = 32) showed a significant increase of CSF lactate levels compared to Control 1 group (n = 28). They also showed brain glucose hypometabolism in the DMN areas compared to Control 2 group (n = 30). Within the AD group we found the significant correlation between increased CSF lactate levels and glucose hypometabolism in Broadman areas (BA) owing to left medial prefrontal cortex (BA10, mPFC), left orbitofrontal cortex (BA11, OFC), and left parahippocampal gyrus (BA 35, PHG). We found high CSF levels of lactate and glucose hypometabolism within the DMN in AD patients. Moreover, we found a relationship linking the increased CSF lactate and the reduced glucose consumption in the left mPFC, OFC and PHG, owing to the anterior hub of DMN. These findings could suggest that neural glucose hypometabolism may affect the DMN efficiency in AD, also proposing the possible role of damaged brain energetic machine in impairing

  17. Synergistic Utility of Brain Natriuretic Peptide and Left Ventricular Global Longitudinal Strain in Asymptomatic Patients With Significant Primary Mitral Regurgitation and Preserved Systolic Function Undergoing Mitral Valve Surgery.

    Science.gov (United States)

    Alashi, Alaa; Mentias, Amgad; Patel, Krishna; Gillinov, A Marc; Sabik, Joseph F; Popović, Zoran B; Mihaljevic, Tomislav; Suri, Rakesh M; Rodriguez, L Leonardo; Svensson, Lars G; Griffin, Brian P; Desai, Milind Y

    2016-07-01

    In asymptomatic patients with ≥3+ mitral regurgitation and preserved left ventricular (LV) ejection fraction who underwent mitral valve surgery, we sought to discover whether baseline LV global longitudinal strain (LV-GLS) and brain natriuretic peptide provided incremental prognostic utility. Four hundred and forty-eight asymptomatic patients (61±12 years and 69% men) with ≥3+ primary mitral regurgitation and preserved left ventricular ejection fraction, who underwent mitral valve surgery (92% repair) at our center between 2005 and 2008, were studied. Baseline clinical and echocardiographic data (including LV-GLS using Velocity Vector Imaging, Siemens, PA) were recorded. The Society of Thoracic Surgeons score was calculated. The primary outcome was death. Mean Society of Thoracic Surgeons score, left ventricular ejection fraction, mitral effective regurgitant orifice, indexed LV end-diastolic volume, and right ventricular systolic pressure were 4±1%, 62±3%, 0.55±0.2 cm(2), 58±13 cc/m(2), and 37±15 mm Hg, respectively. Forty-five percent of patients had flail. Median log-transformed BNP and LV-GLS were 4.04 (absolute brain natriuretic peptide: 60 pg/dL) and -20.7%. At 7.7±2 years, death occurred in 41 patients (9%; 0% at 30 days). On Cox analysis, a higher Society of Thoracic Surgeons score (hazard ratio 1.55), higher baseline right ventricular systolic pressure (hazard ratio 1.11), more abnormal LV-GLS (hazard ratio 1.17), and higher median log-transformed BNP (hazard ratio 2.26) were associated with worse longer-term survival (all Pright ventricular systolic pressure) provided incremental prognostic utility (χ(2) for longer-term mortality increased from 31-47 to 61; Pleft ventricular ejection fraction who underwent mitral valve surgery, brain natriuretic peptide and LV-GLS provided synergistic risk stratification, independent of established factors. © 2016 American Heart Association, Inc.

  18. Gender differences in functional connectivities between insular subdivisions and selective pain-related brain structures.

    Science.gov (United States)

    Dai, Yu-Jie; Zhang, Xin; Yang, Yang; Nan, Hai-Yan; Yu, Ying; Sun, Qian; Yan, Lin-Feng; Hu, Bo; Zhang, Jin; Qiu, Zi-Yu; Gao, Yi; Cui, Guang-Bin; Chen, Bi-Liang; Wang, Wen

    2018-03-14

    The incidence of pain disorders in women is higher than in men, making gender differences in pain a research focus. The human insular cortex is an important brain hub structure for pain processing and is divided into several subdivisions, serving different functions in pain perception. Here we aimed to examine the gender differences of the functional connectivities (FCs) between the twelve insular subdivisions and selected pain-related brain structures in healthy adults. Twenty-six healthy males and 11 age-matched healthy females were recruited in this cross-sectional study. FCs between the 12 insular subdivisions (as 12 regions of interest (ROIs)) and the whole brain (ROI-whole brain level) or 64 selected pain-related brain regions (64 ROIs, ROI-ROI level) were measured between the males and females. Significant gender differences in the FCs of the insular subdivisions were revealed: (1) The FCs between the dorsal dysgranular insula (dId) and other brain regions were significantly increased in males using two different techniques (ROI-whole brain and ROI-ROI analyses); (2) Based on the ROI-whole brain analysis, the FC increases in 4 FC-pairs were observed in males, including the left dId - the right median cingulate and paracingulate/ right posterior cingulate gyrus/ right precuneus, the left dId - the right median cingulate and paracingulate, the left dId - the left angular as well as the left dId - the left middle frontal gyrus; (3) According to the ROI-ROI analysis, increased FC between the left dId and the right rostral anterior cingulate cortex was investigated in males. In summary, the gender differences in the FCs of the insular subdivisions with pain-related brain regions were revealed in the current study, offering neuroimaging evidence for gender differences in pain processing. ClinicalTrials.gov, NCT02820974 . Registered 28 June 2016.

  19. MRI of fetal acquired brain lesions

    International Nuclear Information System (INIS)

    Prayer, Daniela; Brugger, Peter C.; Kasprian, Gregor; Witzani, Linde; Helmer, Hanns; Dietrich, Wolfgang; Eppel, Wolfgang; Langer, Martin

    2006-01-01

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images

  20. MRI of fetal acquired brain lesions

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela [Department of Radiodiagnostics, Medical University of Vienna (Austria)]. E-mail: daniela.prayer@meduniwien.ac.at; Brugger, Peter C. [Center of Anatomy and Cell Biology, Medical University of Vienna (Austria); Kasprian, Gregor [Department of Radiodiagnostics, Medical University of Vienna (Austria); Witzani, Linde [Department of Radiodiagnostics, Medical University of Vienna (Austria); Helmer, Hanns [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria); Dietrich, Wolfgang [Department of Neurosurgery, Medical University of Vienna (Austria); Eppel, Wolfgang [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria); Langer, Martin [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria)

    2006-02-15

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images.