WorldWideScience

Sample records for lef1 haploinsufficient mice

  1. Lef1 haploinsufficient mice display a low turnover and low bone mass phenotype in a gender- and age-specific manner.

    Directory of Open Access Journals (Sweden)

    Tommy Noh

    Full Text Available We investigated the role of Lef1, one of the four transcription factors that transmit Wnt signaling to the genome, in the regulation of bone mass. Microcomputed tomographic analysis of 13- and 17-week-old mice revealed significantly reduced trabecular bone mass in Lef1(+/- females compared to littermate wild-type females. This was attributable to decreased osteoblast activity and bone formation as indicated by histomorphometric analysis of bone remodeling. In contrast to females, bone mass was unaffected by Lef1 haploinsufficiency in males. Similarly, females were substantially more responsive than males to haploinsufficiency in Gsk3beta, a negative regulator of the Wnt pathway, displaying in this case a high bone mass phenotype. Lef1 haploinsufficiency also led to low bone mass in males lacking functional androgen receptor (AR (tfm mutants. The protective skeletal effect of AR against Wnt-related low bone mass is not necessarily a result of direct interaction between the AR and Wnt signaling pathways, because Lef1(+/- female mice had normal bone mass at the age of 34 weeks. Thus, our results indicate an age- and gender-dependent role for Lef1 in regulating bone formation and bone mass in vivo. The resistance to Lef1 haploinsufficiency in males with active AR and in old females could be due to the reduced bone turnover in these mice.

  2. Rai1 Haploinsufficiency Is Associated with Social Abnormalities in Mice

    Directory of Open Access Journals (Sweden)

    Nalini R. Rao

    2017-04-01

    Full Text Available Background: Autism is characterized by difficulties in social interaction, communication, and repetitive behaviors; with different degrees of severity in each of the core areas. Haploinsufficiency and point mutations of RAI1 are associated with Smith-Magenis syndrome (SMS, a genetic condition that scores within the autism spectrum range for social responsiveness and communication, and is characterized by neurobehavioral abnormalities, intellectual disability, developmental delay, sleep disturbance, and self-injurious behaviors. Methods: To investigate the relationship between Rai1 and social impairment, we evaluated the Rai1+/− mice with a battery of tests to address social behavior in mice. Results: We found that the mutant mice showed diminished interest in social odors, abnormal submissive tendencies, and increased repetitive behaviors when compared to wild type littermates. Conclusions: These findings suggest that Rai1 contributes to social behavior in mice, and prompt it as a candidate gene for the social behaviors observed in Smith-Magenis Syndrome patients.

  3. Dissociation of frontotemporal dementia-related deficits and neuroinflammation in progranulin haploinsufficient mice.

    Science.gov (United States)

    Filiano, Anthony J; Martens, Lauren Herl; Young, Allen H; Warmus, Brian A; Zhou, Ping; Diaz-Ramirez, Grisell; Jiao, Jian; Zhang, Zhijun; Huang, Eric J; Gao, Fen-Biao; Farese, Robert V; Roberson, Erik D

    2013-03-20

    Frontotemporal dementia (FTD) is a neurodegenerative disease with hallmark deficits in social and emotional function. Heterozygous loss-of-function mutations in GRN, the progranulin gene, are a common genetic cause of the disorder, but the mechanisms by which progranulin haploinsufficiency causes neuronal dysfunction in FTD are unclear. Homozygous progranulin knock-out (Grn(-/-)) mice have been studied as a model of this disorder and show behavioral deficits and a neuroinflammatory phenotype with robust microglial activation. However, homozygous GRN mutations causing complete progranulin deficiency were recently shown to cause a different neurological disorder, neuronal ceroid lipofuscinosis, suggesting that the total absence of progranulin may have effects distinct from those of haploinsufficiency. Here, we studied progranulin heterozygous (Grn(+/-)) mice, which model progranulin haploinsufficiency. We found that Grn(+/-) mice developed age-dependent social and emotional deficits potentially relevant to FTD. However, unlike Grn(-/-) mice, behavioral deficits in Grn(+/-) mice occurred in the absence of gliosis or increased expression of tumor necrosis factor-α. Instead, we found neuronal abnormalities in the amygdala, an area of selective vulnerability in FTD, in Grn(+/-) mice. Our findings indicate that FTD-related deficits resulting from progranulin haploinsufficiency can develop in the absence of detectable gliosis and neuroinflammation, thereby dissociating microglial activation from functional deficits and suggesting an important effect of progranulin deficiency on neurons.

  4. Dissociation of Frontotemporal Dementia–Related Deficits and Neuroinflammation in Progranulin Haploinsufficient Mice

    Science.gov (United States)

    Filiano, Anthony J.; Martens, Lauren Herl; Young, Allen H.; Warmus, Brian A.; Zhou, Ping; Diaz-Ramirez, Grisell; Jiao, Jian; Zhang, Zhijun; Huang, Eric J.; Gao, Fen-Biao; Farese, Robert V.; Roberson, Erik D.

    2013-01-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease with hallmark deficits in social and emotional function. Heterozygous loss-of-function mutations in GRN, the progranulin gene, are a common genetic cause of the disorder, but the mechanisms by which progranulin haploinsufficiency causes neuronal dysfunction in FTD are unclear. Homozygous progranulin knockout (Grn−/−) mice have been studied as a model of this disorder and show behavioral deficits and a neuroinflammatory phenotype with robust microglial activation. However, homozygous GRN mutations causing complete progranulin deficiency were recently shown to cause a different neurological disorder, neuronal ceroid lipofuscinosis, suggesting that the total absence of progranulin may have effects distinct from those of haploinsufficiency. Here, we studied progranulin heterozygous (Grn+/−) mice, which model progranulin haploinsufficiency. We found that Grn+/− mice developed age-dependent social and emotional deficits potentially relevant to FTD. However, unlike Grn−/− mice, behavioral deficits in Grn+/− mice occurred in the absence of gliosis or increased expression of tumor necrosis factor–α. Instead, we found neuronal abnormalities in the amygdala, an area of selective vulnerability in FTD, in Grn+/− mice. Our findings indicate that FTD-related deficits due to progranulin haploinsufficiency can develop in the absence of detectable gliosis and neuroinflammation, thereby dissociating microglial activation from functional deficits and suggesting an important effect of progranulin deficiency on neurons. PMID:23516300

  5. Lung matrix and vascular remodeling in mechanically ventilated elastin haploinsufficient newborn mice

    Science.gov (United States)

    Hilgendorff, Anne; Parai, Kakoli; Ertsey, Robert; Navarro, Edwin; Jain, Noopur; Carandang, Francis; Peterson, Joanna; Mokres, Lucia; Milla, Carlos; Preuss, Stefanie; Alcazar, Miguel Alejandre; Khan, Suleman; Masumi, Juliet; Ferreira-Tojais, Nancy; Mujahid, Sana; Starcher, Barry; Rabinovitch, Marlene

    2014-01-01

    Elastin plays a pivotal role in lung development. We therefore queried if elastin haploinsufficient newborn mice (Eln+/−) would exhibit abnormal lung structure and function related to modified extracellular matrix (ECM) composition. Because mechanical ventilation (MV) has been linked to dysregulated elastic fiber formation in the newborn lung, we also asked if elastin haploinsufficiency would accentuate lung growth arrest seen after prolonged MV of neonatal mice. We studied 5-day-old wild-type (Eln+/+) and Eln+/− littermates at baseline and after MV with air for 8–24 h. Lungs of unventilated Eln+/− mice contained ∼50% less elastin and ∼100% more collagen-1 and lysyl oxidase compared with Eln+/+ pups. Eln+/− lungs contained fewer capillaries than Eln+/+ lungs, without discernible differences in alveolar structure. In response to MV, lung tropoelastin and elastase activity increased in Eln+/+ neonates, whereas tropoelastin decreased and elastase activity was unchanged in Eln+/− mice. Fibrillin-1 protein increased in lungs of both groups during MV, more in Eln+/− than in Eln+/+ pups. In both groups, MV caused capillary loss, with larger and fewer alveoli compared with unventilated controls. Respiratory system elastance, which was less in unventilated Eln+/− compared with Eln+/+ mice, was similar in both groups after MV. These results suggest that elastin haploinsufficiency adversely impacts pulmonary angiogenesis and that MV dysregulates elastic fiber integrity, with further loss of lung capillaries, lung growth arrest, and impaired respiratory function in both Eln+/+ and Eln+/− mice. Paucity of lung capillaries in Eln+/− newborns might help explain subsequent development of pulmonary hypertension previously reported in adult Eln+/− mice. PMID:25539853

  6. Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment.

    Science.gov (United States)

    Celen, Cemre; Chuang, Jen-Chieh; Luo, Xin; Nijem, Nadine; Walker, Angela K; Chen, Fei; Zhang, Shuyuan; Chung, Andrew S; Nguyen, Liem H; Nassour, Ibrahim; Budhipramono, Albert; Sun, Xuxu; Bok, Levinus A; McEntagart, Meriel; Gevers, Evelien F; Birnbaum, Shari G; Eisch, Amelia J; Powell, Craig M; Ge, Woo-Ping; Santen, Gijs We; Chahrour, Maria; Zhu, Hao

    2017-07-11

    Sequencing studies have implicated haploinsufficiency of ARID1B , a SWI/SNF chromatin-remodeling subunit, in short stature (Yu et al., 2015), autism spectrum disorder (O'Roak et al., 2012), intellectual disability (Deciphering Developmental Disorders Study, 2015), and corpus callosum agenesis (Halgren et al., 2012). In addition, ARID1B is the most common cause of Coffin-Siris syndrome, a developmental delay syndrome characterized by some of the above abnormalities (Santen et al., 2012; Tsurusaki et al., 2012; Wieczorek et al., 2013). We generated Arid1b heterozygous mice, which showed social behavior impairment, altered vocalization, anxiety-like behavior, neuroanatomical abnormalities, and growth impairment. In the brain, Arid1b haploinsufficiency resulted in changes in the expression of SWI/SNF-regulated genes implicated in neuropsychiatric disorders. A focus on reversible mechanisms identified Insulin-like growth factor (IGF1) deficiency with inadequate compensation by Growth hormone-releasing hormone (GHRH) and Growth hormone (GH), underappreciated findings in ARID1B patients. Therapeutically, GH supplementation was able to correct growth retardation and muscle weakness. This model functionally validates the involvement of ARID1B in human disorders, and allows mechanistic dissection of neurodevelopmental diseases linked to chromatin-remodeling.

  7. Evidence of Aortopathy in Mice with Haploinsufficiency of Notch1 in Nos3-Null Background

    Directory of Open Access Journals (Sweden)

    Sara N. Koenig

    2015-03-01

    Full Text Available Thoracic aortic aneurysms (TAA are a significant cause of morbidity and mortality in humans. While the exact etiology is unknown, genetic factors play an important role. Mutations in NOTCH1 have been linked to bicuspid aortic valve (BAV and aortopathy in humans. The aim of this study was to determine if haploinsufficiency of Notch1 contributes to aortopathy using Notch1+/−; Nos3−/− mice. Echocardiographic analysis of Notch1+/−; Nos3−/− mice reveals effacement of the sinotubular junction and a trend toward dilation of the aortic sinus. Furthermore, examination of the proximal aorta of Notch1+/−; Nos3−/− mice reveals elastic fiber degradation, a trend toward increased matrix metalloproteinase 2 expression, and increased smooth muscle cell apoptosis, features characteristic of aneurysmal disease. Although at a lower penetrance, we also found features consistent with aortopathic changes in Notch1 heterozygote mice and in Nos3-null mice. Our findings implicate a novel role for Notch1 in aortopathy of the proximal aorta.

  8. Impaired spatial learning strategies and novel object recognition in mice haploinsufficient for the dual specificity tyrosine-regulated kinase-1A (Dyrk1A.

    Directory of Open Access Journals (Sweden)

    Glòria Arqué

    Full Text Available BACKGROUND: Pathogenic aneuploidies involve the concept of dosage-sensitive genes leading to over- and underexpression phenotypes. Monosomy 21 in human leads to mental retardation and skeletal, immune and respiratory function disturbances. Most of the human condition corresponds to partial monosomies suggesting that critical haploinsufficient genes may be responsible for the phenotypes. The DYRK1A gene is localized on the human chromosome 21q22.2 region, and has been proposed to participate in monosomy 21 phenotypes. It encodes a dual-specificity kinase involved in neuronal development and in adult brain physiology, but its possible role as critical haploinsufficient gene in cognitive function has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: We used mice heterozygous for a Dyrk1A targeted mutation (Dyrk1A+/- to investigate the implication of this gene in the cognitive phenotypes of monosomy 21. Performance of Dyrk1A+/- mice was assayed 1/ in a navigational task using the standard hippocampally related version of the Morris water maze, 2/ in a swimming test designed to reveal potential kinesthetic and stress-related behavioral differences between control and heterozygous mice under two levels of aversiveness (25 degrees C and 17 degrees C and 3/ in a long-term novel object recognition task, sensitive to hippocampal damage. Dyrk1A+/- mice showed impairment in the development of spatial learning strategies in a hippocampally-dependent memory task, they were impaired in their novel object recognition ability and were more sensitive to aversive conditions in the swimming test than euploid control animals. CONCLUSIONS/SIGNIFICANCE: The present results are clear examples where removal of a single gene has a profound effect on phenotype and indicate that haploinsufficiency of DYRK1A might contribute to an impairment of cognitive functions and stress coping behavior in human monosomy 21.

  9. TCF1 and LEF1 act as T-cell intrinsic HTLV-1 antagonists by targeting Tax.

    Science.gov (United States)

    Ma, Guangyong; Yasunaga, Jun-ichirou; Akari, Hirofumi; Matsuoka, Masao

    2015-02-17

    Human T-cell leukemia virus type 1 (HTLV-1) is a delta-type retrovirus that induces malignant and inflammatory diseases during its long persistence in vivo. HTLV-1 can infect various kinds of cells; however, HTLV-1 provirus is predominantly found in peripheral CD4 T cells in vivo. Here we find that TCF1 and LEF1, two Wnt transcription factors that are specifically expressed in T cells, inhibit viral replication through antagonizing Tax functions. TCF1 and LEF1 can each interact with Tax and inhibit Tax-dependent viral expression and activation of NF-κB and AP-1. As a result, HTLV-1 replication is suppressed in the presence of either TCF1 or LEF1. On the other hand, T-cell activation suppresses the expression of both TCF1 and LEF1, and this suppression enables Tax to function as an activator. We analyzed the thymus of a simian T-cell leukemia virus type 1 (STLV-1) infected Japanese macaque, and found a negative correlation between proviral load and TCF1/LEF1 expression in various T-cell subsets, supporting the idea that TCF1 and LEF1 negatively regulate HTLV-1 replication and the proliferation of infected cells. Thus, this study identified TCF1 and LEF1 as Tax antagonistic factors in vivo, a fact which may critically influence the peripheral T-cell tropism of this virus.

  10. Intermittent fasting uncovers and rescues cognitive phenotypes in PTEN neuronal haploinsufficient mice.

    Science.gov (United States)

    Cabral-Costa, J V; Andreotti, D Z; Mello, N P; Scavone, C; Camandola, S; Kawamoto, E M

    2018-06-05

    Phosphatase and tensin homolog (PTEN) is an important protein with key modulatory functions in cell growth and survival. PTEN is crucial during embryogenesis and plays a key role in the central nervous system (CNS), where it directly modulates neuronal development and synaptic plasticity. Loss of PTEN signaling function is associated with cognitive deficits and synaptic plasticity impairment. Accordingly, Pten mutations have a strong link with autism spectrum disorder. In this study, neuronal Pten haploinsufficient male mice were subjected to a long-term environmental intervention - intermittent fasting (IF) - and then evaluated for alterations in exploratory, anxiety and learning and memory behaviors. Although no significant effects on spatial memory were observed, mutant mice showed impaired contextual fear memory in the passive avoidance test - an outcome that was effectively rescued by IF. In this study, we demonstrated that IF modulation, in addition to its rescue of the memory deficit, was also required to uncover behavioral phenotypes otherwise hidden in this neuronal Pten haploinsufficiency model.

  11. LEF-1 and TCF4 expression correlate inversely with survival in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Kirchner Thomas

    2010-11-01

    Full Text Available Abstract Background Most colorectal carcinomas are driven by an activation of the canonical Wnt signalling pathway, which promotes the expression of multiple target genes mediating proliferation inavasion and invasion. Upon activation of the Wnt signalling pathway its key player β-catenin translocates from the cytoplasm to the nucleus and binds to members of the T-cell factor (TCF/lymphoid enhancer factor (LEF-1 family namely LEF-1 and TCF4 which are central mediators of transcription. In this study we investigated the expression of β-Catenin, LEF1 and TCF4 in colorectal carcinomas and their prognostic significance. Methods Immunohistochemical analyses of LEF-1, TCF4 and nuclear β-Catenin were done using a tissue microarray with 214 colorectal cancer specimens. The expression patterns were compared with each other and the results were correlated with clinicopathologic variables and overall survival in univariate and multivariate analysis. Results LEF-1 expression was found in 56 (26% and TCF4 expression in 99 (46% of colorectal carcinomas and both were heterogenously distributed throughout the tumours. Comparing LEF-1, TCF4 and β-catenin expression patterns we found no correlation. In univariate analysis, TCF4 expression turned out to be a negative prognostic factor being associated with shorter overall survival (p = 0.020, whereas LEF-1 expression as well as a LEF-1/TCF4 ratio were positive prognostic factors and correlated with longer overall survival (p = 0.015 respectively p = 0.001. In multivariate analysis, LEF-1 and TCF4 expression were confirmed to be independent predictors of longer respectively shorter overall survival, when considered together with tumour stage, gender and age (risk ratio for LEF-1: 2.66; p = 0.027 risk ratio for TCF4: 2.18; p = 0.014. Conclusions This study demonstrates different prognostic values of LEF-1 and TCF4 expression in colorectal cancer patients indicating different regulation of these transcription

  12. dcc Haploinsufficiency results in blunted sensitivity to cocaine enhancement of reward seeking.

    Science.gov (United States)

    Reynolds, Lauren M; Gifuni, Anthony J; McCrea, E Tess; Shizgal, Peter; Flores, Cecilia

    2016-02-01

    Mesocortical dopamine connectivity continues to mature during adolescence. This protracted development confers increased vulnerability for environmental and genetic factors to disrupt mesocortical wiring and subsequently influence responses to drugs of abuse in adulthood. The netrin-1 receptor, DCC, orchestrates medial prefrontal cortex dopamine input during adolescence and dictates the functional organization of local circuitry. Haploinsufficiency of dcc results in increased dopamine innervation to the medial prefrontal cortex, which in turn leads to resilience against the behavioral activating effects of stimulant drugs. However, whether sensitivity to the rewarding effects of drugs of abuse is also altered in dcc haploinsufficiency remains to be resolved. Here, we used the curve-shift method to measure cocaine-induced facilitation of intracranial self-stimulation (ICSS) in adult dcc haploinsufficient mice and wild-type littermates. We found that dcc haploinsufficient mice acquire ICSS behavior at comparable stimulation parameters to wild-type controls. However, cocaine-induced potentiation of ICSS is significantly blunted in dcc haploinsufficient mice. These results are consistent with decreased sensitivity to the rewarding effects of cocaine and/or decreased proclivity to invest effort in the pursuit of reward in dcc haploinsufficient mice. Moreover, these findings suggest that DCC signaling determines adult susceptibility to drug abuse most likely by controlling prefrontal cortex development in adolescence. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Haplo-insufficiency of both BubR1 and SGO1 accelerates cellular senescence

    Directory of Open Access Journals (Sweden)

    Sung-Hyun Park

    2016-02-01

    Full Text Available Abstract Background Spindle assembly checkpoint components BubR1 and Sgo1 play a key role in the maintenance of chromosomal instability during cell division. These proteins function to block the anaphase entry until all condensed chromosomes have been attached by the microtubules emanating from both spindle poles. Haplo-insufficiency of either BubR1 or SGO1 results in enhanced chromosomal instability and tumor development in the intestine. Recent studies show that spindle checkpoint proteins also have a role in slowing down the ageing process. Therefore, we want to study whether haplo-insufficiency of both BubR1 and SGO1 accelerates cellular senescence in mice. Methods We took advantage of the availability of BubR1 and SGO1 knockout mice and generated primary murine embryonic fibroblasts (MEFs with mutations in either BubR1, SGO1, or both and analyzed cellular senescence of the MEFs of various genetic backgrounds. Results We observed that BubR1 +/− SGO +/− MEFs had an accelerated cellular senescence characterized by morphological changes and expressed senescence-associated β-galactosidase. In addition, compared with wild-type MEFs or MEFs with a single gene deficiency, BubR1 +/− SGO1 +/− MEFs expressed enhanced levels of p21 but not p16. Conclusions Taken together, our observations suggest that combined deficiency of BubR1 and Sgo1 accelerates cellular senescence.

  14. Role of MCT1 and CAII in skeletal muscle pH homeostasis, energetics, and function: in vivo insights from MCT1 haploinsufficient mice

    KAUST Repository

    Chatel, Benjamin; Bendahan, David; Hourdé , Christophe; Pellerin, Luc; Lengacher, Sylvain; Magistretti, Pierre J.; Le Fur, Yann; Vilmen, Christophe; Bernard, Monique; Messonnier, Laurent A.

    2017-01-01

    The purpose of this study was to investigate the effects of a partial suppression of monocarboxylate transporter (MCT)-1 on skeletal muscle pH, energetics, and function (MCT1(+/-) mice). Twenty-four MCT1(+/-) and 13 wild-type (WT) mice were subjected to a rest-exercise-recovery protocol, allowing assessment of muscle energetics (by magnetic resonance spectroscopy) and function. The study included analysis of enzyme activities and content of protein involved in pH regulation. Skeletal muscle of MCT1(+/-) mice had lower MCT1 (-61%; P < 0.05) and carbonic anhydrase (CA)-II (-54%; P < 0.05) contents. Although intramuscular pH was higher in MCT1(+/-) mice at rest (P < 0.001), the mice showed higher acidosis during the first minute of exercise (P < 0.01). Then, the pH time course was similar among groups until exercise completion. MCT1(+/-) mice had higher specific peak (P < 0.05) and maximum tetanic (P < 0.01) forces and lower fatigability (P < 0.001) when compared to WT mice. We conclude that both MCT1 and CAII are involved in the homeostatic control of pH in skeletal muscle, both at rest and at the onset of exercise. The improved muscle function and resistance to fatigue in MCT1(+/-) mice remain unexplained.-Chatel, B., Bendahan, D., Hourdé, C., Pellerin, L., Lengacher, S., Magistretti, P., Fur, Y. L., Vilmen, C., Bernard, M., Messonnier, L. A. Role of MCT1 and CAII in skeletal muscle pH homeostasis, energetics, and function: in vivo insights from MCT1 haploinsufficient mice.

  15. Role of MCT1 and CAII in skeletal muscle pH homeostasis, energetics, and function: in vivo insights from MCT1 haploinsufficient mice

    KAUST Repository

    Chatel, Benjamin

    2017-03-03

    The purpose of this study was to investigate the effects of a partial suppression of monocarboxylate transporter (MCT)-1 on skeletal muscle pH, energetics, and function (MCT1(+/-) mice). Twenty-four MCT1(+/-) and 13 wild-type (WT) mice were subjected to a rest-exercise-recovery protocol, allowing assessment of muscle energetics (by magnetic resonance spectroscopy) and function. The study included analysis of enzyme activities and content of protein involved in pH regulation. Skeletal muscle of MCT1(+/-) mice had lower MCT1 (-61%; P < 0.05) and carbonic anhydrase (CA)-II (-54%; P < 0.05) contents. Although intramuscular pH was higher in MCT1(+/-) mice at rest (P < 0.001), the mice showed higher acidosis during the first minute of exercise (P < 0.01). Then, the pH time course was similar among groups until exercise completion. MCT1(+/-) mice had higher specific peak (P < 0.05) and maximum tetanic (P < 0.01) forces and lower fatigability (P < 0.001) when compared to WT mice. We conclude that both MCT1 and CAII are involved in the homeostatic control of pH in skeletal muscle, both at rest and at the onset of exercise. The improved muscle function and resistance to fatigue in MCT1(+/-) mice remain unexplained.-Chatel, B., Bendahan, D., Hourdé, C., Pellerin, L., Lengacher, S., Magistretti, P., Fur, Y. L., Vilmen, C., Bernard, M., Messonnier, L. A. Role of MCT1 and CAII in skeletal muscle pH homeostasis, energetics, and function: in vivo insights from MCT1 haploinsufficient mice.

  16. Impaired associative fear learning in mice with complete loss or haploinsufficiency of AMPA GluR1 receptors

    Directory of Open Access Journals (Sweden)

    Michael Feyder

    2007-12-01

    Full Text Available There is compelling evidence that L-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA glutamate receptors containing the GluR1 subunit contribute to the molecular mechanisms associated with learning. AMPA GluR1 glutamate receptor knockout mice (KO exhibit abnormal hippocampal and amygdala plasticity, and deficits on various assays for cognition including Pavlovian fear conditioning. Here we examined associative fear learning in mice with complete absence (KO or partial loss (heterozygous mutant, HET of GluR1 on multiple fear conditioning paradigms. After multi-trial delay or trace conditioning, KO displayed impaired tone and context fear recall relative to WT, whereas HET were normal. After one-trial delay conditioning, both KO and HET showed impaired tone and context recall. HET and KO showed normal nociceptive sensitivity in the hot plate and tail flick tests. These data demonstrate that the complete absence of GluR1 subunit-containing receptors prevents the formation of associative fear memories, while GluR1 haploinsufficiency is sufficient to impair one-trial fear learning. These findings support growing evidence of a major role for GluR1-containing AMPA receptors in amygdalamediated forms of learning and memory.

  17. Differential binding of Lef1 and Msx1/2 transcription factors to Dkk1 CNEs correlates with reporter gene expression in vivo.

    Directory of Open Access Journals (Sweden)

    Oliver Lieven

    Full Text Available Besides the active Wnt signalling itself, the extracellular inhibition by Dkk1 is important for various embryonic developmental processes, such as optic vesicle differentiation and facial outgrowth. Although a feedback crosstalk of the active Wnt/β-catenin signaling and Dkk1 regulation has been suggested, the control of Dkk1 transcription by the Tcf/Lef1 mediated Wnt signalling and its connection to additional signalling factors has not been elucidated in vivo. Here, we used a combination of transgenic mouse approaches and biochemical analyses to unravel the direct Dkk1 transcriptional regulation via Tcf/Lefs. By using site directed mutagenesis, we tested several conserved Tcf/Lef1 binding sites within Dkk1 conserved non-coding elements (CNEs and found that these are required for tissue specific reporter expression. In addition a conserved Msx1/2 binding site is required for retinal reporter expression and Msx2 but not Msx1 binds its conserved binding site within CNE195 in the optic cups. Within craniofacial expression domains, Lef1 interferes with Dkk1 directly via two conserved Tcf/Lef1 binding sites in the craniofacial enhancer CNE114, both of which are required for the general craniofacial Dkk1 reporter activation. Furthermore, these Tcf/Lef1 sites are commonly bound in the whisker hair bud mesenchyme but specifically Tcf/Lef1 (no. 2 is required for mandibular activation and repression of maxillar Dkk1 activation. Lastly, we tested the Tcf/Lef1 binding capacities of the Dkk1 promoter and found that although Lef1 binds the Dkk1 promoter, these sites are not sufficient for tissue specific Dkk1 activation. Together, we here present the importance of conserved Tcf/Lef1 and Msx1/2 sites that are required for differential Dkk1 transcriptional reporter activation in vivo. This requirement directly correlates with Lef1 and Msx1/2 interaction with these genomic loci.

  18. The transcription factor LEF-1 induces an epithelial–mesenchymal transition in MDCK cells independent of β-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Wakako; Ozawa, Masayuki, E-mail: mozawa@m.kufm.kagoshima-u.ac.jp

    2013-12-06

    Highlights: •The transcription factor LEF-1 induces an EMT in MDCK cells. •A mutant LEF-1 that cannot interact with β-catenin retained the ability. •The nuclear function of β-catenin was not necessary for the LEF-1-induced EMT. •The mRNA levels of Slug, ZEB1, and ZEB2 increased significantly in these cells. -- Abstract: The epithelial–mesenchymal transition (EMT), a key process in the tumor metastatic cascade, is characterized by the loss of cell–cell junctions and cell polarity, as well as the acquisition of migratory and invasive properties. LEF-1 is a member of the lymphoid enhancer-binding factor/T-cell factor (LEF/TCF) family of DNA-binding transcription factors, which interact with nuclear β-catenin and act as central transcriptional mediators of Wnt signaling. To investigate the role of LEF-1 in EMT, we generated stable LEF-1 transfectants using MDCK cells. The transfectants had a spindle-shaped mesenchymal morphology, and enhanced migration and invasiveness relative to control cells. These EMT changes were accompanied by the downregulation of an epithelial marker protein, E-cadherin, and the upregulation of mesenchymal marker proteins, vimentin and N-cadherin. Consistent with these observations, the mRNA levels of Slug, ZEB1, and ZEB2—EMT-related transcription factors—increased significantly. Although the N-terminally deleted mutant LEF-1 cannot interact with β-catenin, it retained the ability to induce EMT. Consistent with these observations, neither the expression of a dominant negative β-catenin/engrailed chimera, nor the expression of a cytoplasmic domain of E-cadherin that sequesters β-catenin from binding to LEF/TCF, reversed LEF-1-induced EMT. Together, these data indicated that the nuclear function of β-catenin was not necessary for the induction of Slug, ZEB1, and ZEB2 expression leading to EMT.

  19. Adiponectin haploinsufficiency promotes mammary tumor development in MMTV-PyVT mice by modulation of phosphatase and tensin homolog activities.

    Directory of Open Access Journals (Sweden)

    Janice B B Lam

    Full Text Available Adiponectin is an adipokine possessing beneficial effects on obesity-related medical complications. A negative association of adiponectin levels with breast cancer development has been demonstrated. However, the precise role of adiponectin deficiency in mammary carcinogenesis remains elusive.In the present study, MMTV-polyomavirus middle T antigen (MMTV-PyVT transgenic mice with reduced adiponectin expressions were established and the stromal effects of adiponectin haploinsufficiency on mammary tumor development evaluated. In mice from both FVB/N and C57BL/6J backgrounds, insufficient adiponectin production promoted mammary tumor onset and development. A distinctive basal-like subtype of tumors, with a more aggressive phenotype, was derived from adiponectin haplodeficient MMTV-PyVT mice. Comparing with those from control MMTV-PyVT mice, the isolated mammary tumor cells showed enhanced tumor progression in re-implanted nude mice, accelerated proliferation in primary cultures, and hyperactivated phosphatidylinositol-3-kinase (PI3K/Akt/beta-catenin signaling, which at least partly attributed to the decreased phosphatase and tensin homolog (PTEN activities. Further analysis revealed that PTEN was inactivated by a redox-regulated mechanism. Increased association of PTEN-thioredoxin complexes was detected in tumors derived from mice with reduced adiponectin levels. The activities of thioredoxin (Trx1 and thioredoxin reductase (TrxR1 were significantly elevated, whereas treatment with either curcumin, an irreversible inhibitor of TrxR1, or adiponectin largely attenuated their activities and resulted in the re-activation of PTEN in these tumor cells. Moreover, adiponectin could inhibit TrxR1 promoter-mediated transcription and restore the mRNA expressions of TrxR1.Adiponectin haploinsufficiency facilitated mammary tumorigenesis by down-regulation of PTEN activity and activation of PI3K/Akt signalling pathway through a mechanism involving Trx1/TrxR1

  20. IGF-1 receptor haploinsufficiency leads to age-dependent development of metabolic syndrome.

    Science.gov (United States)

    Thakur, Sachin; Garg, Neha; Zhang, Ning; Hussey, Sophie E; Musi, Nicolas; Adamo, Martin L

    2017-05-13

    Individuals born small for gestational age (SGA) are at a higher risk of developing the metabolic syndrome later in life. IGF-1 resistance has been reported in placentae from SGA births and mutations in the Igf1 receptor gene have been reported in several cohorts of SGA subjects. We have used the Igf1r heterozygous (Igf1r +/- ) male mouse as a model to investigate the mechanisms by which Igf1r haploinsufficiency leads to insulin resistance. Despite exhibiting IGF-1 resistance, insulin signaling is enhanced in young Igf1r +/- mice but is attenuated in the muscle of old Igf1r +/- mice. Although smaller than WT (wild type) mice, old-aged Igf1r +/- had increased adiposity and exhibit increased lipogenesis. We hypothesize that IGF-1 resistance initially causes a transient increase in insulin signaling thereby promoting a lipogenic phenotype, which subsequently leads to insulin resistance. Copyright © 2017. Published by Elsevier Inc.

  1. Differential binding of Lef1 and Msx1/2 transcription factors to Dkk1 CNEs correlates with reporter gene expression in vivo

    DEFF Research Database (Denmark)

    Dr Lieven, Oliver Wilm; Dronka, Julia; Burmühl, Stephan

    2014-01-01

    Besides the active Wnt signalling itself, the extracellular inhibition by Dkk1 is important for various embryonic developmental processes, such as optic vesicle differentiation and facial outgrowth. Although a feedback crosstalk of the active Wnt/β-catenin signaling and Dkk1 regulation has been...... Dkk1 reporter activation. Furthermore, these Tcf/Lef1 sites are commonly bound in the whisker hair bud mesenchyme but specifically Tcf/Lef1 (no. 2) is required for mandibular activation and repression of maxillar Dkk1 activation. Lastly, we tested the Tcf/Lef1 binding capacities of the Dkk1 promoter...

  2. Dkk1 haploinsufficiency requires expression of Bmp2 for bone anabolic activity

    Science.gov (United States)

    Intini, Giuseppe; Nyman, Jeffry S.

    2015-01-01

    Bone fractures remain a serious health burden and prevention and enhanced healing of fractures has been obtained by augmenting either BMP or Wnt signaling. However, whether BMP and Wnt signaling are both required or are self-sufficient for anabolic and fracture healing activities has never been fully elucidated. Mice haploinsufficient for Dkk1 (Dkk1+/−) exhibit a high bone mass phenotype due to an up-regulation of canonical Wnt signaling while mice lacking Bmp2 expression in the limbs (Bmp2c/c;Prx1::cre) succumb to spontaneous fracture and are unable to initiate fracture healing; combined, these mice offer an opportunity to examine the requirement for activated BMP signaling on the anabolic and fracture healing activity of Wnts. When Dkk1+/− mice were crossed with Bmp2c/c;Prx1::cre mice, the offspring bearing both genetic alterations were unable to increase bone mass and heal fractures, indicating that increased canonical Wnt signaling is unable to exploit its activity in absence of Bmp2. Thus, our data suggest that BMP signaling is required for Wnt-mediated anabolic activity and that therapies aimed at preventing fractures and fostering fracture repair may need to target both pathways for maximal efficacy. PMID:25603465

  3. Genetic and biochemical evidence that haploinsufficiency of the Nf1 tumor suppressor gene modulates melanocyte and mast cell fates in vivo.

    Science.gov (United States)

    Ingram, D A; Yang, F C; Travers, J B; Wenning, M J; Hiatt, K; New, S; Hood, A; Shannon, K; Williams, D A; Clapp, D W

    2000-01-03

    Neurofibromatosis type 1 (NF1) is a common autosomal-dominant disorder characterized by cutaneous neurofibromas infiltrated with large numbers of mast cells, melanocyte hyperplasia, and a predisposition to develop malignant neoplasms. NF1 encodes a GTPase activating protein (GAP) for Ras. Consistent with Knudson's "two hit" model of tumor suppressor genes, leukemias and malignant solid tumors in NF1 patients frequently demonstrate somatic loss of the normal NF1 allele. However, the phenotypic and biochemical consequences of heterozygous inactivation of Nf1 are largely unknown. Recently neurofibromin, the protein encoded by NF1, was shown to negatively regulate Ras activity in Nf1-/- murine myeloid hematopoietic cells in vitro through the c-kit receptor tyrosine kinase (dominant white spotting, W). Since the W and Nf1 locus appear to function along a common developmental pathway, we generated mice with mutations at both loci to examine potential interactions in vivo. Here, we show that haploinsufficiency at Nf1 perturbs cell fates in mast cells in vivo, and partially rescues coat color and mast cell defects in W(41) mice. Haploinsufficiency at Nf1 also increased mast cell proliferation, survival, and colony formation in response to Steel factor, the ligand for c-kit. Furthermore, haploinsufficiency was associated with enhanced Ras-mitogen-activated protein kinase activity, a major downstream effector of Ras, via wild-type and mutant (W(41)) c-kit receptors. These observations identify a novel interaction between c-kit and neurofibromin in vivo, and offer experimental evidence that haploinsufficiency of Nf1 alters both cellular and biochemical phenotypes in two cell lineages that are affected in individuals with NF1. Collectively, these data support the emerging concept that heterozygous inactivation of tumor suppressor genes may have profound biological effects in multiple cell types.

  4. Endothelial cells promote the proliferation of lymphocytes partly through the Wnt pathway via LEF-1

    International Nuclear Information System (INIS)

    Wang, Shu-Hong; Nan, Ke-Jun; Wang, Yao-Chun

    2009-01-01

    The function of T cells and B cells is to recognize specific 'non-self' antigens, during a process known as antigen presentation. Once they have identified an invader, the cells generate specific responses that are tailored to maximally eliminate specific pathogens or pathogen-infected cells. Endothelial cells (ECs) can trigger the activation of T cells through their class I and class II MHC molecules. In this study, we examined the effect of ECs on the proliferation of lymphocytes. We report that the proliferation of T and B cells can be improved by interaction with ECs. LEF-1 is one of the main molecular mediators in this process, and the inhibition of LEF-1 induces apoptosis. These results suggest that LEF-1 modulates positively the proliferation of lymphocytes induced by their interaction with ECs.

  5. Haploinsufficiency of the insulin-like growth factor-1 receptor enhances endothelial repair and favorably modifies angiogenic progenitor cell phenotype.

    Science.gov (United States)

    Yuldasheva, Nadira Y; Rashid, Sheikh Tawqeer; Haywood, Natalie J; Cordell, Paul; Mughal, Romana; Viswambharan, Hema; Imrie, Helen; Sukumar, Piruthivi; Cubbon, Richard M; Aziz, Amir; Gage, Matthew; Mbonye, Kamatamu Amanda; Smith, Jessica; Galloway, Stacey; Skromna, Anna; Scott, D Julian A; Kearney, Mark T; Wheatcroft, Stephen B

    2014-09-01

    Defective endothelial regeneration predisposes to adverse arterial remodeling and is thought to contribute to cardiovascular disease in type 2 diabetes mellitus. We recently demonstrated that the type 1 insulin-like growth factor receptor (IGF1R) is a negative regulator of insulin sensitivity and nitric oxide bioavailability. In this report, we examined partial deletion of the IGF1R as a potential strategy to enhance endothelial repair. We assessed endothelial regeneration after wire injury in mice and abundance and function of angiogenic progenitor cells in mice with haploinsufficiency of the IGF1R (IGF1R(+/-)). Endothelial regeneration after arterial injury was accelerated in IGF1R(+/-) mice. Although the yield of angiogenic progenitor cells was lower in IGF1R(+/-) mice, these angiogenic progenitor cells displayed enhanced adhesion, increased secretion of insulin-like growth factor-1, and enhanced angiogenic capacity. To examine the relevance of IGF1R manipulation to cell-based therapy, we transfused IGF1R(+/-) bone marrow-derived CD117(+) cells into wild-type mice. IGF1R(+/-) cells accelerated endothelial regeneration after arterial injury compared with wild-type cells and did not alter atherosclerotic lesion formation. Haploinsufficiency of the IGF1R is associated with accelerated endothelial regeneration in vivo and enhanced tube forming and adhesive potential of angiogenic progenitor cells in vitro. Partial deletion of IGF1R in transfused bone marrow-derived CD117(+) cells enhanced their capacity to promote endothelial regeneration without altering atherosclerosis. Our data suggest that manipulation of the IGF1R could be exploited as novel therapeutic approach to enhance repair of the arterial wall after injury. © 2014 American Heart Association, Inc.

  6. Crif1 Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice

    Science.gov (United States)

    Ryu, Min Jeong; Kim, Soung Jung; Kim, Yong Kyung; Choi, Min Jeong; Tadi, Surendar; Lee, Min Hee; Lee, Seong Eun; Chung, Hyo Kyun; Jung, Saet Byel; Kim, Hyun-Jin; Jo, Young Suk; Kim, Koon Soon; Lee, Sang-Hee; Kim, Jin Man; Kweon, Gi Ryang; Park, Ki Cheol; Lee, Jung Uee; Kong, Young Yun; Lee, Chul-Ho; Chung, Jongkyeong; Shong, Minho

    2013-01-01

    Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance. PMID:23516375

  7. Baculovirus proteins IE-1, LEF-3, and P143 interact with DNA in vivo: a formaldehyde cross-linking study

    International Nuclear Information System (INIS)

    Ito, Emma; Sahri, Daniela; Knippers, Rolf; Carstens, Eric B.

    2004-01-01

    IE-1, LEF-3, and P143 are three of six proteins encoded by Autographa californica nucleopolyhedrovirus (AcMNPV) essential for baculovirus DNA replication in transient replication assays. IE-1 is the major baculovirus immediate early transcription regulator. LEF-3 is a single-stranded DNA binding protein (SSB) and P143 is a DNA helicase protein. To investigate their interactions in vivo, we treated AcMNPV-infected Spodoptera frugiperda cells with formaldehyde and separated soluble proteins from chromatin by cell fractionation and cesium chloride equilibrium centrifugation. Up to 70% of the total LEF-3 appeared in the fraction of soluble, probably nucleoplasmic proteins, while almost all P143 and IE-1 were associated with viral chromatin in the nucleus. This suggests that LEF-3 is produced in quantities that are higher than needed for the coverage of single stranded regions that arise during viral DNA replication and is consistent with the hypothesis that LEF-3 has other functions such as the localization of P143 to the nucleus. Using a chromatin immunoprecipitation procedure, we present the first direct evidence of LEF-3, P143, and IE-1 proteins binding to closely linked sites on viral chromatin in vivo, suggesting that they may form replication complexes on viral DNA in infected cells

  8. Tyrosine kinase receptor c-ros-oncogene 1 inhibition alleviates aberrant bone formation of TWIST-1 haploinsufficient calvarial cells from Saethre-Chotzen syndrome patients.

    Science.gov (United States)

    Camp, Esther; Anderson, Peter J; Zannettino, Andrew C W; Glackin, Carlotta A; Gronthos, Stan

    2018-09-01

    Saethre-Chotzen syndrome (SCS), associated with TWIST-1 mutations, is characterized by premature fusion of cranial sutures. TWIST-1 haploinsufficiency, leads to alterations in suture mesenchyme cellular gene expression patterns, resulting in aberrant osteogenesis and craniosynostosis. We analyzed the expression of the TWIST-1 target, Tyrosine kinase receptor c-ros-oncogene 1 (C-ROS-1) in TWIST-1 haploinsufficient calvarial cells derived from SCS patients and calvaria of Twist-1 del/+ mutant mice and found it to be highly expressed when compared to TWIST-1 wild-type controls. Knock-down of C-ROS-1 expression in TWIST-1 haploinsufficient calvarial cells derived from SCS patients was associated with decreased capacity for osteogenic differentiation in vitro. Furthermore, treatment of human SCS calvarial cells with the tyrosine kinase chemical inhibitor, Crizotinib, resulted in reduced C-ROS-1 activity and the osteogenic potential of human SCS calvarial cells with minor effects on cell viability or proliferation. Cultured human SCS calvarial cells treated with Crizotinib exhibited a dose-dependent decrease in alkaline phosphatase activity and mineral deposition, with an associated decrease in expression levels of Runt-related transcription factor 2 and OSTEOPONTIN, with reduced PI3K/Akt signalling in vitro. Furthermore, Crizotinib treatment resulted in reduced BMP-2 mediated bone formation potential of whole Twist-1 del/+ mutant mouse calvaria organotypic cultures. Collectively, these results suggest that C-ROS-1 promotes osteogenic differentiation of TWIST-1 haploinsufficient calvarial osteogenic progenitor cells. Furthermore, the aberrant osteogenic potential of these cells is inhibited by the reduction of C-ROS-1. Therefore, targeting C-ROS-1 with a pharmacological agent, such as Crizotinib, may serve as a novel therapeutic strategy to alleviate craniosynostosis associated with aberrant TWIST-1 function. © 2018 Wiley Periodicals, Inc.

  9. Detection of anthrax lef with DNA-based photonic crystal sensors

    Science.gov (United States)

    Zhang, Bailin; Dallo, Shatha; Peterson, Ralph; Hussain, Syed; Weitao, Tao; Ye, Jing Yong

    2011-12-01

    Bacillus anthracis has posed a threat of becoming biological weapons of mass destruction due to its virulence factors encoded by the plasmid-borne genes, such as lef for lethal factor. We report the development of a fast and sensitive anthrax DNA biosensor based on a photonic crystal structure used in a total-internal-reflection configuration. For the detection of the lef gene, a single-stranded DNA lef probe was biotinylated and immobilized onto the sensor via biotin-streptavidin interactions. A positive control, lef-com, was the complementary strand of the probe, while a negative control was an unrelated single-stranded DNA fragment from the 16S rRNA gene of Acinetobacter baumannii. After addition of the biotinylated lef probe onto the sensor, significant changes in the resonance wavelength of the sensor were observed, resulting from binding of the probe to streptavidin on the sensor. The addition of lef-com led to another significant increase as a result of hybridization between the two DNA strands. The detection sensitivity for the target DNA reached as low as 0.1 nM. In contrast, adding the unrelated DNAs did not cause an obvious shift in the resonant wavelength. These results demonstrate that detection of the anthrax lef by the photonic crystal structure in a total-internal-reflection sensor is highly specific and sensitive.

  10. Pregnane and Xenobiotic Receptor gene expression in liver cells is modulated by Ets-1 in synchrony with transcription factors Pax5, LEF-1 and c-jun

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Sangeeta; Saradhi, Mallampati; Rana, Manjul; Chatterjee, Swagata [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Aumercier, Marc [IRI, CNRS USR 3078, Université de Lille-Nord de France, Parc CNRS de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq Cedex (France); Mukhopadhyay, Gauranga [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Tyagi, Rakesh K., E-mail: rktyagi@yahoo.com [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India)

    2015-01-15

    Nuclear receptor PXR is predominantly expressed in liver and intestine. Expression of PXR is observed to be dysregulated in various metabolic disorders indicating its involvement in disease development. However, information available on mechanisms of PXR self-regulation is fragmentary. The present investigation identifies some of the regulatory elements responsible for its tight regulation and low cellular expression. Here, we report that the PXR-promoter is a target for some key transcription factors like PU.1/Ets-1, Pax5, LEF-1 and c-Jun. Interestingly, we observed that PXR-promoter responsiveness to Pax5, LEF-1 and c-Jun, is considerably enhanced by Ets transcription factors (PU.1 and Ets-1). Co-transfection of cells with Ets-1, LEF-1 and c-Jun increased PXR-promoter activity by 5-fold and also induced expression of endogenous human PXR. Site-directed mutagenesis and transfection studies revealed that two Ets binding sites and two of the three LEF binding sites in the PXR-promoter are functional and have a positive effect on PXR transcription. Results suggest that expression of Ets family members, in conjunction with Pax5, LEF-1 and c-Jun, lead to coordinated up-regulation of PXR gene transcription. Insights obtained on the regulation of PXR gene have relevance in offering important cues towards normal functioning as well as development of several metabolic disorders via PXR signaling. - Highlights: • The study identified cis-regulatory elements in the nuclear receptor PXR promoter. • Several trans-acting factors modulating the PXR-promoter have been identified. • PU.1/Ets-1, Pax5, LEF-1, c-Jun, LyF-VI and NF-1 act as modulators of the PXR-promoter. • Ets-1 in conjunction with LEF-1 and c-Jun exhibit 5-fold activation of the PXR-promoter. • Insights into PXR-regulation have relevance in normal and pathological conditions.

  11. Gad67 haploinsufficiency reduces amyloid pathology and rescues olfactory memory deficits in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Wang, Yue; Wu, Zheng; Bai, Yu-Ting; Wu, Gang-Yi; Chen, Gong

    2017-10-10

    Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder, affecting millions of people worldwide. Although dysfunction of multiple neurotransmitter systems including cholinergic, glutamatergic and GABAergic systems has been associated with AD progression the underlying mechanisms remain elusive. We and others have recently found that GABA content is elevated in AD brains and linked to cognitive deficits in AD mouse models. The glutamic acid decarboxylase 67 (GAD67) is the major enzyme converting glutamate into GABA and has been implied in a number of neurological disorders such as epilepsy and schizophrenia. However, whether Gad67 is involved in AD pathology has not been well studied. Here, we investigate the functional role of GAD67 in an AD mouse model with Gad67 haploinsufficiency that is caused by replacing one allele of Gad67 with green fluorescent protein (GFP) gene during generation of GAD67-GFP mice. To genetically reduce GAD67 in AD mouse brains, we crossed the Gad67 haploinsufficient mice (GAD67-GFP +/- ) with 5xFAD mice (harboring 5 human familial AD mutations in APP and PS1 genes) to generate a new line of bigenic mice. Immunostaining, ELISA, electrophysiology and behavior test were applied to compare the difference between groups. We found that reduction of GAD67 resulted in a significant decrease of amyloid β production in 5xFAD mice. Concurrently, the abnormal astrocytic GABA and tonic GABA currents, as well as the microglial reactivity were significantly reduced in the 5xFAD mice with Gad67 haploinsufficiency. Importantly, the olfactory memory deficit of 5xFAD mice was rescued by Gad67 haploinsufficiency. Our results demonstrate that GAD67 plays an important role in AD pathology, suggesting that GAD67 may be a potential drug target for modulating the progress of AD.

  12. Prevalence of SHOX Haploinsufficiency among Short Statured Children

    DEFF Research Database (Denmark)

    Marstrand-Joergensen, Maja Rou; Beck Jensen, Rikke; Aksglaede, Lise

    2017-01-01

    were recorded for patients with SHOX haploinsufficiency. RESULTS: Thirty-two patients were excluded due to Turner syndrome (n=28), SRY-positive 46,XX male karyotype (n=1), or lacked clinical follow-up information (n=3).The prevalence of SHOX haploinsufficiency was nine out of 542 (1.7%). The nine......=0.046, after one year of GH treatment. CONCLUSION: The prevalence of SHOX haploinsufficiency was 1.7%. The clinical findings indicating SHOX haploinsufficiency among the nine children were disproportionate short stature and forearm anomalies....

  13. YY1 Haploinsufficiency Causes an Intellectual Disability Syndrome Featuring Transcriptional and Chromatin Dysfunction

    DEFF Research Database (Denmark)

    Gabriele, Michele; Vulto-van Silfhout, Anneke T; Germain, Pierre-Luc

    2017-01-01

    that define a syndrome of cognitive impairment, behavioral alterations, intrauterine growth restriction, feeding problems, and various congenital malformations. Our combined clinical and molecular data define "YY1 syndrome" as a haploinsufficiency syndrome. Through immunoprecipitation of YY1-bound chromatin...... on the YY1-bound enhancers, underscoring a crucial role for YY1 in enhancer regulation. Collectively, these results define a clinical syndrome caused by haploinsufficiency of YY1 through dysregulation of key transcriptional regulators....

  14. Ligand-independent canonical Wnt activity in canine mammary tumor cell lines associated with aberrant LEF1 expression.

    Directory of Open Access Journals (Sweden)

    Ana Gracanin

    Full Text Available Pet dogs very frequently develop spontaneous mammary tumors and have been suggested as a good model organism for breast cancer research. In order to obtain an insight into underlying signaling mechanisms during canine mammary tumorigenesis, in this study we assessed the incidence and the mechanism of canonical Wnt activation in a panel of 12 canine mammary tumor cell lines. We show that a subset of canine mammary cell lines exhibit a moderate canonical Wnt activity that is dependent on Wnt ligands, similar to what has been described in human breast cancer cell lines. In addition, three of the tested canine mammary cell lines have a high canonical Wnt activity that is not responsive to inhibitors of Wnt ligand secretion. Tumor cell lines with highly active canonical Wnt signaling often carry mutations in key members of the Wnt signaling cascade. These cell lines, however, carry no mutations in the coding regions of intracellular Wnt pathway components (APC, β-catenin, GSK3β, CK1α and Axin1 and have a functional β-catenin destruction complex. Interestingly, however, the cell lines with high canonical Wnt activity specifically overexpress LEF1 mRNA and the knock-down of LEF1 significantly inhibits TCF-reporter activity. In addition, LEF1 is overexpressed in a subset of canine mammary carcinomas, implicating LEF1 in ligand-independent activation of canonical Wnt signaling in canine mammary tumors. We conclude that canonical Wnt activation may be a frequent event in canine mammary tumors both through Wnt ligand-dependent and novel ligand-independent mechanisms.

  15. Heterozygous Lmna(delK32) mice develop dilated cardiomyopathy through a combined pathomechanism of haploinsufficiency and peptide toxicity

    DEFF Research Database (Denmark)

    Cattin, M. E.; Bertrand, A. T.; Schlossarek, S.

    2013-01-01

    itself has a clear deleterious effect on engineered heart tissues force of contraction, it also leads to the nuclear aggregation of viral-mediated expression of K32-lamin. In conclusion, Het mice are the first knock-in Lmna model with cardiac-specific phenotype at the heterozygous state. Altogether, our....... The pathomechanisms linking mutations to DCM remain to be elucidated. We investigated the phenotype and associated pathomechanisms of heterozygous Lmna(K32/) (Het) knock-in mice, which carry a human mutation. Het mice developed a cardiac-specific phenotype. Two phases, with two different pathomechanisms, could...... be observed that lead to the development of cardiac dysfunction, DCM and death between 35 and 70 weeks of age. In young Het hearts, there was a clear reduction in lamin A/C level, mainly due to the degradation of toxic K32-lamin. As a side effect, lamin A/C haploinsufficiency probably triggers the cardiac...

  16. SERCA2 Haploinsufficiency in a Mouse Model of Darier Disease Causes a Selective Predisposition to Heart Failure

    Directory of Open Access Journals (Sweden)

    Vikram Prasad

    2015-01-01

    Full Text Available Null mutations in one copy of ATP2A2, the gene encoding sarco/endoplasmic reticulum Ca2+-ATPase isoform 2 (SERCA2, cause Darier disease in humans, a skin condition involving keratinocytes. Cardiac function appears to be unimpaired in Darier disease patients, with no evidence that SERCA2 haploinsufficiency itself causes heart disease. However, SERCA2 deficiency is widely considered a contributing factor in heart failure. We therefore analyzed Atp2a2 heterozygous mice to determine whether SERCA2 haploinsufficiency can exacerbate specific heart disease conditions. Despite reduced SERCA2a levels in heart, Atp2a2 heterozygous mice resembled humans in exhibiting normal cardiac physiology. When subjected to hypothyroidism or crossed with a transgenic model of reduced myofibrillar Ca2+-sensitivity, SERCA2 deficiency caused no enhancement of the disease state. However, when combined with a transgenic model of increased myofibrillar Ca2+-sensitivity, SERCA2 haploinsufficiency caused rapid onset of hypertrophy, decompensation, and death. These effects were associated with reduced expression of the antiapoptotic Hax1, increased levels of the proapoptotic genes Chop and Casp12, and evidence of perturbations in energy metabolism. These data reveal myofibrillar Ca2+-sensitivity to be an important determinant of the cardiac effects of SERCA2 haploinsufficiency and raise the possibility that Darier disease patients are more susceptible to heart failure under certain conditions.

  17. Progranulin haploinsufficiency causes biphasic social dominance abnormalities in the tube test.

    Science.gov (United States)

    Arrant, A E; Filiano, A J; Warmus, B A; Hall, A M; Roberson, E D

    2016-07-01

    Loss-of-function mutations in progranulin (GRN) are a major autosomal dominant cause of frontotemporal dementia (FTD), a neurodegenerative disorder in which social behavior is disrupted. Progranulin-insufficient mice, both Grn(+/-) and Grn(-/-) , are used as models of FTD due to GRN mutations, with Grn(+/-) mice mimicking the progranulin haploinsufficiency of FTD patients with GRN mutations. Grn(+/-) mice have increased social dominance in the tube test at 6 months of age, although this phenotype has not been reported in Grn(-/-) mice. In this study, we investigated how the tube test phenotype of progranulin-insufficient mice changes with age, determined its robustness under several testing conditions, and explored the associated cellular mechanisms. We observed biphasic social dominance abnormalities in Grn(+/-) mice: at 6-8 months, Grn(+/-) mice were more dominant than wild-type littermates, while after 9 months of age, Grn(+/-) mice were less dominant. In contrast, Grn(-/-) mice did not exhibit abnormal social dominance, suggesting that progranulin haploinsufficiency has distinct effects from complete progranulin deficiency. The biphasic tube test phenotype of Grn(+/-) mice was associated with abnormal cellular signaling and neuronal morphology in the amygdala and prefrontal cortex. At 6-9 months, Grn(+/-) mice exhibited increased mTORC2/Akt signaling in the amygdala and enhanced dendritic arbors in the basomedial amygdala, and at 9-16 months Grn(+/-) mice exhibited diminished basal dendritic arbors in the prelimbic cortex. These data show a progressive change in tube test dominance in Grn(+/-) mice and highlight potential underlying mechanisms by which progranulin insufficiency may disrupt social behavior. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  18. Partial Tmem106b reduction does not correct abnormalities due to progranulin haploinsufficiency.

    Science.gov (United States)

    Arrant, Andrew E; Nicholson, Alexandra M; Zhou, Xiaolai; Rademakers, Rosa; Roberson, Erik D

    2018-06-22

    Loss of function mutations in progranulin (GRN) are a major cause of frontotemporal dementia (FTD). Progranulin is a secreted glycoprotein that localizes to lysosomes and is critical for proper lysosomal function. Heterozygous GRN mutation carriers develop FTD with TDP-43 pathology and exhibit signs of lysosomal dysfunction in the brain, with increased levels of lysosomal proteins and lipofuscin accumulation. Homozygous GRN mutation carriers develop neuronal ceroid lipofuscinosis (NCL), an earlier-onset lysosomal storage disorder caused by severe lysosomal dysfunction. Multiple genome-wide association studies have shown that risk of FTD in GRN mutation carriers is modified by polymorphisms in TMEM106B, which encodes a lysosomal membrane protein. Risk alleles of TMEM106B may increase TMEM106B levels through a variety of mechanisms. Brains from FTD patients with GRN mutations exhibit increased TMEM106B expression, and protective TMEM106B polymorphisms are associated with decreased TMEM106B expression. Together, these data raise the possibility that reduction of TMEM106B levels may protect against the pathogenic effects of progranulin haploinsufficiency. We crossed Tmem106b +/- mice with Grn +/- mice, which model the progranulin haploinsufficiency of GRN mutation carriers and develop age-dependent social deficits and lysosomal abnormalities in the brain. We tested whether partial Tmem106b reduction could normalize the social deficits and lysosomal abnormalities of Grn +/- mice. Partial reduction of Tmem106b levels did not correct the social deficits of Grn +/- mice. Tmem106b reduction also failed to normalize most lysosomal abnormalities of Grn +/- mice, except for β-glucuronidase activity, which was suppressed by Tmem106b reduction and increased by progranulin insufficiency. These data do not support the hypothesis that Tmem106b reduction protects against the pathogenic effects of progranulin haploinsufficiency, but do show that Tmem106b reduction normalizes some

  19. LEF1 is preferentially expressed in the tubal-peritoneal junctions and is a reliable marker of tubal intraepithelial lesions.

    Science.gov (United States)

    Schmoeckel, Elisa; Odai-Afotey, Ashley A; Schleißheimer, Michael; Rottmann, Miriam; Flesken-Nikitin, Andrea; Ellenson, Lora H; Kirchner, Thomas; Mayr, Doris; Nikitin, Alexander Yu

    2017-09-01

    Recently it has been reported that serous tubal intraepithelial carcinoma (STIC), the likely precursor of ovarian/extra-uterine high-grade serous carcinoma, are frequently located in the vicinity of tubal-peritoneal junctions, consistent with the cancer-prone features of many epithelial transitional regions. To test if p53 (aka TP53)-signatures and secretory cell outgrowths (SCOUTs) also localize to tubal-peritoneal junctions, we examined these lesions in the fallopian tubes of patients undergoing salpingo-oophorectomy for sporadic high-grade serous carcinomas or as a prophylactic procedure for carriers of familial BRCA1 or 2 mutations. STICs were located closest to the tubal-peritoneal junctions with an average distance of 1.31 mm, while SCOUTs were not detected in the fimbriated end of the fallopian tube. As many epithelial transitional regions contain stem cells, we also determined the expression of stem cell markers in the normal fallopian tube, tubal intraepithelial lesions and high-grade serous carcinomas. Of those, LEF1 was consistently expressed in the tubal-peritoneal junctions and all lesions, independent of p53 status. All SCOUTs demonstrated strong nuclear expression of β-catenin consistent with the LEF1 participation in the canonical WNT pathway. However, β-catenin was preferentially located in the cytoplasm of cells comprising STICs and p53 signatures, suggesting WNT-independent function of LEF1 in those lesions. Both frequency of LEF1 expression and β-catenin nuclear expression correlated with the worst 5-year patient survival, supporting important role of both proteins in high-grade serous carcinoma. Taken together, our findings suggest the existence of stem cell niche within the tubal-peritoneal junctions. Furthermore, they support the notion that the pathogenesis of SCOUTs is distinct from that of STICs and p53 signatures. The location and discrete patterns of LEF1 and β-catenin expression may serve as highly sensitive and reliable ancillary

  20. Baculovirus LEF-11 nuclear localization signal is important for viral DNA replication.

    Science.gov (United States)

    Chen, Tingting; Dong, Zhanqi; Hu, Nan; Hu, Zhigang; Dong, Feifan; Jiang, Yaming; Li, Jun; Chen, Peng; Lu, Cheng; Pan, Minhui

    2017-06-15

    Baculovirus LEF-11 is a small nuclear protein that is involved in viral late gene transcription and DNA replication. However, the characteristics of its nuclear localization signal and its impact on viral DNA replication are unknown. In the present study, systemic bioinformatics analysis showed that the baculovirus LEF-11 contains monopartite and bipartite classical nuclear localization signal sequences (cNLSs), which were also detected in a few alphabaculovirus species. Localization of representative LEF-11 proteins of four baculovirus genera indicated that the nuclear localization characteristics of baculovirus LEF-11 coincided with the predicted results. Moreover, Bombyx mori nucleopolyhedrovirus (BmNPV) LEF-11 could be transported into the nucleus during viral infection in the absence of a cNLSs. Further investigations demonstrated that the NLS of BmNPV LEF-11 is important for viral DNA replication. The findings of the present study indicate that the characteristics of the baculovirus LEF-11 protein and the NLS is essential to virus DNA replication and nuclear transport mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Papillion-Lefèvre Syndrome: Periodontists’ Perspective

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Biraggari

    2015-01-01

    Full Text Available Papillion-Lefèvre Syndrome is a very rare disorder of autosomal recessive inheritance distinguished by palmar plantar hyperkeratosis and early onset of periodontitis affecting the dentition. Genetic studies have identified a mutation in the major gene locus of chromosome 11q14 with loss of function. Cathepsin C gene is to be responsible for Papillion-Lefèvre Syndrome. The present case report describes a 13-year-old female, who visited the Department of Periodontology with the chief compliant of bleeding gums and loose teeth. She presented with the signs and symptoms of Papillion-Lefèvre Syndrome. The patient had premature shedding of her deciduous dentition. On clinical examination, extraorally, the patient presented with persistent thickening, flaking, and scaling of the skin of palms and soles. Her intraoral examination revealed gingival inflammation, abscess formation, and periodontal pockets. Her intraoral radiographs showed bone loss involving the central incisors and molars. The patient underwent periodontal therapy and is under maintenance.

  2. Professor Antonio Branco Lefèvre: the forefather of child neurology in Brazil Professor Antonio Branco Lefèvre o pai da neurologia infantil no Brasil

    Directory of Open Access Journals (Sweden)

    Rubens Reimão

    2008-09-01

    Full Text Available OBJECTIVE: To report on the life and works of Prof. Antonio Branco Lefèvre and the relevance that led him to be considered the Forefather of Child Neurology in Brazil. METHOD: The method utilized was the historical documents research; bibliographical. RESULTS: Antonio Branco Lefèvre (1916-1981 was born in São Paulo city; graduated in 1941 from the São Paulo Medical School. The date - 1950 - can be considered when Child Neurology took shape for a fully specialty, when Lefèvre presented his two internationally acclaimed thesis. Lefèvre was recognized as he founder of Child Neurology in Brazil since the early years of his brilliant academic activities. In 1967 achieved the title of professor in the Child Neurology Clinic. His numerous trainees and Residents - from -1950 to 1981 - held today key positions in Brazilian Child Neurology. CONCLUSION: The extension and importance of the Child Neurology School of which he is the legitimate founder is recognized.OBJETIVO: Relatar a vida e obra do Prof. Antonio Branco Lefèvre e a relevância que leva a ser denominado o Pai da Neurologia Infantil no Brasil. MÉTODO: Pesquisa de documentos históricos e bibliográfica. RESULTADOS: Antonio Branco Lefèvre (1916-1981 nascido em São Paulo; formou-se na Faculdade de Medicina de São Paulo em 1941. A data de 1950 pode ser considerada quando a Neurologia Infantil tornou-se uma especialidade completa quando Lefèvre defendeu suas duas teses aclamadas internacionalmente. Lefévre foi reconhecido como o Pai da Neurologia Infantil no Brasil desde os primeiros anos de sua carreira acadêmica brilhante. Em 1967 atingiu o título de Professor de Neurologia Clínica Infantil. Seus numerosos estagiários e Residentes - de 1950 a 1981 - têm hoje posições de destaque na Neurologia Infantil brasileira. CONCLUSÃO: É reconhecida a extensão e a relevância da escola de Neurologia Infantil da qual Lefèvre é o legítimo fundador.

  3. Meis1: effects on motor phenotypes and the sensorimotor system in mice

    Directory of Open Access Journals (Sweden)

    Aaro V. Salminen

    2017-08-01

    Full Text Available MEIS1 encodes a developmental transcription factor and has been linked to restless legs syndrome (RLS in genome-wide association studies. RLS is a movement disorder leading to severe sleep reduction and has a substantial impact on the quality of life of patients. In genome-wide association studies, MEIS1 has consistently been the gene with the highest effect size and functional studies suggest a disease-relevant downregulation. Therefore, haploinsufficiency of Meis1 could be the system with the most potential for modeling RLS in animals. We used heterozygous Meis1-knockout mice to study the effects of Meis1 haploinsufficiency on mouse behavioral and neurological phenotypes, and to relate the findings to human RLS. We exposed the Meis1-deficient mice to assays of motor, sensorimotor and cognitive ability, and assessed the effect of a dopaminergic receptor 2/3 agonist commonly used in the treatment of RLS. The mutant mice showed a pattern of circadian hyperactivity, which is compatible with human RLS. Moreover, we discovered a replicable prepulse inhibition (PPI deficit in the Meis1-deficient animals. In addition, these mice were hyposensitive to the PPI-reducing effect of the dopaminergic receptor agonist, highlighting a role of Meis1 in the dopaminergic system. Other reported phenotypes include enhanced social recognition at an older age that was not related to alterations in adult olfactory bulb neurogenesis previously shown to be implicated in this behavior. In conclusion, the Meis1-deficient mice fulfill some of the hallmarks of an RLS animal model, and revealed the role of Meis1 in sensorimotor gating and in the dopaminergic systems modulating it.

  4. Toxicology and carcinogenesis study of senna in C3B6.129F1-Trp53 tm1Brd N12 haploinsufficient mice.

    Science.gov (United States)

    Surh, Inok; Brix, Amy; French, John E; Collins, Bradley J; Sanders, J Michael; Vallant, Molly; Dunnick, June K

    2013-07-01

    Senna is a pod or leaf of Senna alexandrina P. Mill and is used as a stimulant laxative. In the large intestine, bacterial enzymes reduce sennosides to rhein-9-anthrone, the active form for the laxative effect. To determine the potential toxic effects of senna, a 5-week dose range finding study in the C57BL/6N mouse and a 40-week toxicology and carcinogenesis study in the C3B6.129F1-Trp53 (tm1Brd) N12 haploinsufficient (p53(+/-)) mouse were conducted. In the 5-week study, C57BL/6N mice were exposed to up to 10,000 ppm senna in feed. Increased incidences of epithelial hyperplasia of the cecum and colon were observed in males and females exposed to 5,000 or 10,000 ppm senna. These intestinal lesions were not considered to be of sufficient severity to cause mortality and, thus, in the p53(+/-) mouse 40-week study, the high dose of 10,000 ppm was selected. Significant increases in the incidences of epithelial hyperplasia of the colon and cecum were observed at 10,000 ppm in p53(+/-) males and females, and the incidence of hyperplasia of the colon was significantly increased at 3,000 ppm in females. In conclusion, the large intestine was the major target of senna-induced toxicity in both wild-type and the p53(+/-) mouse model. There was no neoplastic change when senna was administered to p53(+/-) mouse.

  5. Haploinsufficiency of BAZ1B contributes to Williams syndrome through transcriptional dysregulation of neurodevelopmental pathways.

    Science.gov (United States)

    Lalli, Matthew A; Jang, Jiwon; Park, Joo-Hye C; Wang, Yidi; Guzman, Elmer; Zhou, Hongjun; Audouard, Morgane; Bridges, Daniel; Tovar, Kenneth R; Papuc, Sorina M; Tutulan-Cunita, Andreea C; Huang, Yadong; Budisteanu, Magdalena; Arghir, Aurora; Kosik, Kenneth S

    2016-04-01

    Williams syndrome (WS) is a neurodevelopmental disorder caused by a genomic deletion of ∼28 genes that results in a cognitive and behavioral profile marked by overall intellectual impairment with relative strength in expressive language and hypersocial behavior. Advancements in protocols for neuron differentiation from induced pluripotent stem cells allowed us to elucidate the molecular circuitry underpinning the ontogeny of WS. In patient-derived stem cells and neurons, we determined the expression profile of the Williams-Beuren syndrome critical region-deleted genes and the genome-wide transcriptional consequences of the hemizygous genomic microdeletion at chromosome 7q11.23. Derived neurons displayed disease-relevant hallmarks and indicated novel aberrant pathways in WS neurons including over-activated Wnt signaling accompanying an incomplete neurogenic commitment. We show that haploinsufficiency of the ATP-dependent chromatin remodeler, BAZ1B, which is deleted in WS, significantly contributes to this differentiation defect. Chromatin-immunoprecipitation (ChIP-seq) revealed BAZ1B target gene functions are enriched for neurogenesis, neuron differentiation and disease-relevant phenotypes. BAZ1B haploinsufficiency caused widespread gene expression changes in neural progenitor cells, and together with BAZ1B ChIP-seq target genes, explained 42% of the transcriptional dysregulation in WS neurons. BAZ1B contributes to regulating the balance between neural precursor self-renewal and differentiation and the differentiation defect caused by BAZ1B haploinsufficiency can be rescued by mitigating over-active Wnt signaling in neural stem cells. Altogether, these results reveal a pivotal role for BAZ1B in neurodevelopment and implicate its haploinsufficiency as a likely contributor to the neurological phenotypes in WS. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Toxicology study of senna (CAS No. 8013-11-4) in C57BL/6NTAC Mice and toxicology and carcinogenesis study of senna in genetically modified C3B6.129F1/Tac-Trp53tm1Brd haploinsufficient mice (Feed Studies).

    Science.gov (United States)

    2012-04-01

    Senna is used as a stimulant laxative in the management of constipation resulting from opioid use or when treatment with bulking or osmotic agents has failed. Increased use of senna was expected due to the removal of the stimulant laxatives danthron and phenolphthalein from the market. Senna was nominated for study by the Center for Drug Evaluation and Research, United States Food and Drug Administration (FDA) due to the wide use of laxative preparations, positive genotoxicity in vitro for some senna components or metabolites, and unknown carcinogenic potential. Because a 2-year rat study was ongoing by the manufacturer, the FDA requested that the NTP conduct a senna study in the p53(+/-) mouse. In this study, the potential for carcinogenic effects of senna was studied in the C3B6.129F1/Tac-Trp53tm1Brd N12 haploinsufficient (heterozygous F1 p53(+/-)) mouse model as an ongoing goal of the NTP to develop and test model systems for toxicology and carcinogenesis studies, especially those that can provide mechanistic information relative to understanding an agents mode of action. C57BL/6NTac mice were exposed to senna in feed for 5 weeks; heterozygous F1 p53(+/-) mice were exposed to senna in feed for 40 weeks. Genetic toxicology studies were conducted in Salmonella typhimurium, Escherichia coli, and mouse peripheral blood erythrocytes.

  7. Depletion of Tcf3 and Lef1 maintains mouse embryonic stem cell self-renewal

    OpenAIRE

    Ye, Shoudong; Zhang, Tao; Tong, Chang; Zhou, Xingliang; He, Kan; Ban, Qian; Liu, Dahai; Ying, Qi-Long

    2017-01-01

    ABSTRACT Mouse and rat embryonic stem cell (ESC) self-renewal can be maintained by dual inhibition of glycogen synthase kinase 3 (GSK3) and mitogen-activated protein kinase kinase (MEK). Inhibition of GSK3 promotes ESC self-renewal by abrogating T-cell factor 3 (TCF3)-mediated repression of the pluripotency network. How inhibition of MEK mediates ESC self-renewal, however, remains largely unknown. Here, we show that inhibition of MEK can significantly suppress lymphoid enhancer factor 1 (LEF1...

  8. Toxicology and Carcinogenesis Study of Senna in the C3B6.129F1-Trp53tm1Brd N12 haploinsufficient mice

    Science.gov (United States)

    Surh, Inok; Brix, Amy; French, John E.; Collins, Bradley J.; Sanders, J. Michael; Vallant, Molly; Dunnick, June K.

    2013-01-01

    Senna is a pod or leaf of Senna alexandrina P. Mill and is used as a stimulant laxative. In the large intestine, bacterial enzymes break sennosides and release rhein-9-anthrone, the active form for the laxative effect. To determine potential toxic effects of senna, a 5-week dose range finding study in the C57BL/6N mouse and a 40-week toxicology and carcinogenesis study in the C3B6.129F1-Trp53tm1Brd N12 haploinsufficient (p53+/−) mouse were conducted. In the 5-week study, C57BL/6N mice were exposed up to 10,000 ppm senna in feed. Increased incidences of epithelial hyperplasia of the cecum and colon were observed in males and females exposed to 5,000 or 10,000 ppm senna. These intestinal lesions were not considered to be of sufficient severity to cause mortality and, thus, in the p53+/− mouse 40-week study, the high dose of 10,000 ppm was selected. Significant increases in the incidences of epithelial hyperplasia of the colon and cecum were observed at 10,000 ppm in p53(+/−) males and females, and the incidence of hyperplasia of the colon was significantly increased at 3,000 ppm in females. In conclusion, the large intestine was the major target of senna-induced toxicity in both wild-type and the p53+/− mouse model. There was no neoplastic change, when senna was administered to p53 +/− mouse. PMID:23125117

  9. Resistance to diet-induced obesity and associated metabolic perturbations in haploinsufficient monocarboxylate transporter 1 mice.

    OpenAIRE

    Lengacher Sylvain; Nehiri-Sitayeb Touria; Steiner Nadia; Carneiro Lionel; Favrod Céline; Preitner Frédéric; Thorens Bernard; Stehle Jean-Christophe; Dix Laure; Pralong François; Magistretti Pierre J; Pellerin Luc

    2013-01-01

    The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1(+/-) mice developed normally. However, when fed high fat diet (HFD), MCT1(+/-) mice displayed resistance to development of diet-induced obesity ...

  10. Tsc2 Haploinsufficiency Has Limited Effects on Fetal Brain Cytokine Levels during Gestational Immune Activation

    Directory of Open Access Journals (Sweden)

    Dan Ehninger

    2014-01-01

    Full Text Available Dysregulated TSC/mTOR signaling may play a pathogenetic role in forms of syndromic autism, such as autism associated with tuberous sclerosis, a genetic disorder caused by heterozygous TSC1 or TSC2 mutations. Environmental risk factors, such as gestational viral infections, may, in some cases, also contribute to the pathogenesis of autism and related neuropsychiatric disorders. We have recently found that a heterozygous Tsc2 mutation and the poly I:C model of maternal immune activation (MIA interactively perturb fetal development and adult social behavior in mice, suggesting that these factors converge on shared pathways. TSC/mTOR signaling plays an important role in the modulation of immune responses, raising the possibility that the damage caused by MIA was greater in Tsc2+/− than in wildtype fetuses because of an exacerbated immune response in the mutants. Here, cytokine antibody arrays were employed to measure relative cytokine abundances in the fetal brain and the placenta during MIA. Cytokines were induced by gestational poly I:C but there was no obvious modulatory effect of Tsc2 haploinsufficiency. The data indicate that cytokine exposure during MIA is comparable in Tsc2 haploinsufficient and wildtype control fetuses, suggesting that downstream molecular and cellular processes may account for the interactive effects of Tsc2 haploinsufficiency and MIA.

  11. Autistic-like behaviour in Scn1a+/- mice and rescue by enhanced GABA-mediated neurotransmission.

    Science.gov (United States)

    Han, Sung; Tai, Chao; Westenbroek, Ruth E; Yu, Frank H; Cheah, Christine S; Potter, Gregory B; Rubenstein, John L; Scheuer, Todd; de la Iglesia, Horacio O; Catterall, William A

    2012-09-20

    Haploinsufficiency of the SCN1A gene encoding voltage-gated sodium channel Na(V)1.1 causes Dravet's syndrome, a childhood neuropsychiatric disorder including recurrent intractable seizures, cognitive deficit and autism-spectrum behaviours. The neural mechanisms responsible for cognitive deficit and autism-spectrum behaviours in Dravet's syndrome are poorly understood. Here we report that mice with Scn1a haploinsufficiency exhibit hyperactivity, stereotyped behaviours, social interaction deficits and impaired context-dependent spatial memory. Olfactory sensitivity is retained, but novel food odours and social odours are aversive to Scn1a(+/-) mice. GABAergic neurotransmission is specifically impaired by this mutation, and selective deletion of Na(V)1.1 channels in forebrain interneurons is sufficient to cause these behavioural and cognitive impairments. Remarkably, treatment with low-dose clonazepam, a positive allosteric modulator of GABA(A) receptors, completely rescued the abnormal social behaviours and deficits in fear memory in the mouse model of Dravet's syndrome, demonstrating that they are caused by impaired GABAergic neurotransmission and not by neuronal damage from recurrent seizures. These results demonstrate a critical role for Na(V)1.1 channels in neuropsychiatric functions and provide a potential therapeutic strategy for cognitive deficit and autism-spectrum behaviours in Dravet's syndrome.

  12. Wnt signaling positively regulates endothelial cell fate specification in the Fli1a-positive progenitor population via Lef1.

    Science.gov (United States)

    Hübner, Kathleen; Grassme, Kathrin S; Rao, Jyoti; Wenke, Nina K; Zimmer, Cordula L; Korte, Laura; Mu Ller, Katja; Sumanas, Saulius; Greber, Boris; Herzog, Wiebke

    2017-10-01

    During vertebrate embryogenesis, vascular endothelial cells (ECs) and primitive erythrocytes become specified within close proximity in the posterior lateral plate mesoderm (LPM) from a common progenitor. However, the signaling cascades regulating the specification into either lineage remain largely elusive. Here, we analyze the contribution of β-catenin dependent Wnt signaling to EC and erythrocyte specification during zebrafish embryogenesis. We generated novel β-catenin dependent Wnt signaling reporters which, by using destabilized fluorophores (Venus-Pest, dGFP), specifically allow us to detect Wnt signaling responses in narrow time windows as well as in spatially restricted domains, defined by Cre recombinase expression (Tg(axin2 BAC :Venus-Pest) mu288 ; Tg(14TCF:loxP-STOP-loxP-dGFP) mu202 ). We therefore can detect β-catenin dependent Wnt signaling activity in a subset of the Fli1a-positive progenitor population. Additionally, we show that mesodermal Wnt3a-mediated signaling via the transcription factor Lef1 positively regulates EC specification (defined by kdrl expression) at the expense of primitive erythrocyte specification (defined by gata1 expression) in zebrafish embryos. Using mesoderm derived from human embryonic stem cells, we identified the same principle of Wnt signaling dependent EC specification in conjunction with auto-upregulation of LEF1. Our data indicate a novel role of β-catenin dependent Wnt signaling in regulating EC specification during vasculogenesis. Copyright © 2017. Published by Elsevier Inc.

  13. High-calorie diet exacerbates prostate neoplasia in mice with haploinsufficiency of Pten tumor suppressor gene

    Directory of Open Access Journals (Sweden)

    Jehnan Liu

    2015-03-01

    Conclusion: High-calorie diet promotes prostate cancer progression in the genetically susceptible Pten haploinsufficient mouse while preserving insulin sensitivity. This appears to be partly due to increased inflammatory response to high-caloric intake in addition to increased ability of insulin to promote lipogenesis.

  14. Glycogen synthase kinase 3 beta inhibits microRNA-183-96-182 cluster via the β-Catenin/TCF/LEF-1 pathway in gastric cancer cells.

    Science.gov (United States)

    Tang, Xiaoli; Zheng, Dong; Hu, Ping; Zeng, Zongyue; Li, Ming; Tucker, Lynne; Monahan, Renee; Resnick, Murray B; Liu, Manran; Ramratnam, Bharat

    2014-03-01

    Glycogen synthase kinase 3 beta (GSK3β) is a critical protein kinase that phosphorylates numerous proteins in cells and thereby impacts multiple pathways including the β-Catenin/TCF/LEF-1 pathway. MicroRNAs (miRs) are a class of noncoding small RNAs of ∼22 nucleotides in length. Both GSK3β and miR play myriad roles in cell functions including stem cell development, apoptosis, embryogenesis and tumorigenesis. Here we show that GSK3β inhibits the expression of miR-96, miR-182 and miR-183 through the β-Catenin/TCF/LEF-1 pathway. Knockout of GSK3β in mouse embryonic fibroblast cells increases expression of miR-96, miR-182 and miR-183, coinciding with increases in the protein level and nuclear translocation of β-Catenin. In addition, overexpression of β-Catenin enhances the expression of miR-96, miR-182 and miR-183 in human gastric cancer AGS cells. GSK3β protein levels are decreased in human gastric cancer tissue compared with surrounding normal gastric tissue, coinciding with increases of β-Catenin protein, miR-96, miR-182, miR-183 and primary miR-183-96-182 cluster (pri-miR-183). Furthermore, suppression of miR-183-96-182 cluster with miRCURY LNA miR inhibitors decreases the proliferation and migration of AGS cells. Knockdown of GSK3β with siRNA increases the proliferation of AGS cells. Mechanistically, we show that β-Catenin/TCF/LEF-1 binds to the promoter of miR-183-96-182 cluster gene and thereby activates the transcription of the cluster. In summary, our findings identify a novel role for GSK3β in the regulation of miR-183-96-182 biogenesis through β-Catenin/TCF/LEF-1 pathway in gastric cancer cells.

  15. Future vital prospect of gene expression factors of lef-7 (baculovirus expression: Old body, young cherub

    Directory of Open Access Journals (Sweden)

    Md. Reyad-ul-ferdous

    2018-04-01

    Full Text Available Background Baculovirus; late expression factors (Lef-7 have potential roles for protein expression in insect and mammalian cells; Efficient expression of recombinant proteins to facilitate the practical and structural investigation. Aims Lef-7 might play crucial roles in transcription and translation reactions of insect cell lines. Methods Materials and Methods: All required information regards Lef-7 was generated by exploring the internet search engine like as (PubMed, Wiley, ScienceDirect, CNKI, ACS, Google Scholar, Web of Science, SciFinder, and Baidu Scholar and libraries. Results These properties issue crucial scope for DNA cloning and act as a vital vector for insect and mammalian cells. Left-7 could be the significant site in the development of the vaccine for a couple of chronic diseases. Further investigation needs to study on therapeutic vaccines with few immunologic advantages over proteins derived from mammalian sources, and animal sources. Lef-7 demonstrates the significant impact in the fields of DNA immunology research to insight into the mechanistic and utilitarian link between autoimmunity, infectious diseases, and cancer. Conclusion This review reveals Lef-7 gene function offers a workable strategy for the expression of whole viral protomers as the future prospect of Lef-7.

  16. Mice haploinsufficient for Map2k7, a gene involved in neurodevelopment and risk for schizophrenia, show impaired attention, a vigilance decrement deficit and unstable cognitive processing in an attentional task: impact of minocycline.

    Science.gov (United States)

    Openshaw, R L; Thomson, D M; Penninger, J M; Pratt, J A; Morris, B J

    2017-01-01

    Members of the c-Jun N-terminal kinase (JNK) family of mitogen-activated protein (MAP) kinases, and the upstream kinase MKK7, have all been strongly linked with synaptic plasticity and with the development of the neocortex. However, the impact of disruption of this pathway on cognitive function is unclear. In the current study, we test the hypothesis that reduced MKK7 expression is sufficient to cause cognitive impairment. Attentional function in mice haploinsufficient for Map2k7 (Map2k7 +/- mice) was investigated using the five-choice serial reaction time task (5-CSRTT). Once stable performance had been achieved, Map2k7 +/- mice showed a distinctive attentional deficit, in the form of an increased number of missed responses, accompanied by a more pronounced decrement in performance over time and elevated intra-individual reaction time variability. When performance was reassessed after administration of minocycline-a tetracycline antibiotic currently showing promise for the improvement of attentional deficits in patients with schizophrenia-signs of improvement in attentional performance were detected. Overall, Map2k7 haploinsufficiency causes a distinctive pattern of cognitive impairment strongly suggestive of an inability to sustain attention, in accordance with those seen in psychiatric patients carrying out similar tasks. This may be important for understanding the mechanisms of cognitive dysfunction in clinical populations and highlights the possibility of treating some of these deficits with minocycline.

  17. MTH1 and RGT1 demonstrate combined haploinsufficiency in regulation of the hexose transporter genes in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Dietzel Kevin L

    2012-12-01

    Full Text Available Abstract Background The SNF3 gene in the yeast Saccharomyces cerevisiae encodes a low glucose sensor that regulates expression of an important subset of the hexose transporter (HXT superfamily. Null mutations of snf3 result in a defect in growth on low glucose concentrations due to the inability to relieve repression of a subset of the HXT genes. The snf3 null mutation phenotype is suppressed by the loss of either one of the downstream co-repressor proteins Rgt1p or Mth1p. The relief of repression allows expression of HXT transporter proteins, the resumption of glucose uptake and therefore of growth in the absence of a functional Snf3 sensor. Results Strains heterozygous for both the RGT1 and MTH1 genes (RGT1/rgt1Δ MTH1/mth1Δ snf3Δ/snf3Δ but homozygous for the snf3∆ were found to grow on low glucose. Since null alleles in the heterozygous state lead to suppression, MTH1 and RGT1 display the phenomenon of combined haploinsufficiency. This observed haploinsufficiency is consistent with the finding of repressor titration as a mechanism of suppression of snf3. Mutants of the STD1 homolog of MTH1 did not display haploinsufficiency singly or in combination with mutations in RGT1. HXT gene reporter fusion assays indicated that the presence of heterozygosity at the MTH1 and RGT1 alleles leads to increased expression of the HXT2 gene. Deletion of the HXT2 gene in a heterozygous diploid, RGT1/rgt1Δ MTH1/mth1Δ snf3Δ/snf3Δ hxt2Δ/hxt2Δ, prevented the suppression of snf3Δ. Conclusions These findings support the model of relief of repression as the mechanism of restoration of growth on low glucose concentrations in the absence of functional Snf3p. Further, the observation that HXT2 is the gene responsible for restoration of growth under these conditions suggests that the numbers of repressor binding domains found in the regulatory regions of members of the HXT family may have biological relevance and enable differential regulation.

  18. Genetic interactions between neurofibromin and endothelin receptor B in mice.

    Directory of Open Access Journals (Sweden)

    Mugdha Deo

    Full Text Available When mutations in two different genes produce the same mutant phenotype, it suggests that the encoded proteins either interact with each other, or act in parallel to fulfill a similar purpose. Haploinsufficiency of Neurofibromin and over-expression of Endothelin 3 both cause increased numbers of melanocytes to populate the dermis during mouse development, and thus we are interested in how these two signaling pathways might intersect. Neurofibromin is mutated in the human genetic disease, neurofibromatosis type 1, which is characterized by the development of Schwann cell based tumors and skin hyper-pigmentation. Neurofibromin is a GTPase activating protein, while the Endothelin 3 ligand activates Endothelin receptor B, a G protein coupled receptor. In order to study the genetic interactions between endothelin and neurofibromin, we defined the deletion breakpoints of the classical Ednrb piebald lethal allele (Ednrb(s-l and crossed these mice to mice with a loss-of-function mutation in neurofibromin, Dark skin 9 (Dsk9. We found that Neurofibromin haploinsufficiency requires Endothelin receptor B to darken the tail dermis. In contrast, Neurofibromin haploinsufficiency increases the area of the coat that is pigmented in Endothelin receptor B null mice. We also found an oncogenic mutation in the G protein alpha subunit, GNAQ, which couples to Endothelin receptor B, in a uveal melanoma from a patient with neurofibromatosis type 1. Thus, this data suggests that there is a complex relationship between Neurofibromin and Endothelin receptor B.

  19. Attenuated hypertrophic response to pressure overload in a lamin A/C haploinsufficiency mouse.

    Science.gov (United States)

    Cupesi, Mihaela; Yoshioka, Jun; Gannon, Joseph; Kudinova, Anastacia; Stewart, Colin L; Lammerding, Jan

    2010-06-01

    Inherited mutations cause approximately 30% of all dilated cardiomyopathy cases, with autosomal dominant mutations in the LMNA gene accounting for more than one third of these. The LMNA gene encodes the nuclear envelope proteins lamins A and C, which provide structural support to the nucleus and also play critical roles in transcriptional regulation. Functional deletion of a single allele is sufficient to trigger dilated cardiomyopathy in humans and mice. However, whereas Lmna(-/-) mice develop severe muscular dystrophy and dilated cardiomyopathy and die by 8 weeks of age, heterozygous Lmna(+/-) mice have a much milder phenotype, with changes in ventricular function and morphology only becoming apparent at 1 year of age. Here, we studied 8- to 20-week-old Lmna(+/-) mice and wild-type littermates in a pressure overload model to examine whether increased mechanical load can accelerate or exacerbate myocardial dysfunction in the heterozygotes. While overall survival was similar between genotypes, Lmna(+/-) animals had a significantly attenuated hypertrophic response to pressure overload as evidenced by reduced ventricular mass and myocyte size. Analysis of pressure overload-induced transcriptional changes suggested that the reduced hypertrophy in the Lmna(+/-) mice was accompanied by impaired activation of the mechanosensitive gene Egr-1. In conclusion, our findings provide further support for a critical role of lamins A and C in regulating the cellular response to mechanical stress in cardiomyocytes and demonstrate that haploinsufficiency of lamins A and C alone is sufficient to alter hypertrophic responses and cardiac function in the face of pressure overload in the heart. (c) 2009 Elsevier Ltd. All rights reserved.

  20. Visual impairment in FOXG1-mutated individuals and mice.

    Science.gov (United States)

    Boggio, E M; Pancrazi, L; Gennaro, M; Lo Rizzo, C; Mari, F; Meloni, I; Ariani, F; Panighini, A; Novelli, E; Biagioni, M; Strettoi, E; Hayek, J; Rufa, A; Pizzorusso, T; Renieri, A; Costa, M

    2016-06-02

    The Forkead Box G1 (FOXG1 in humans, Foxg1 in mice) gene encodes for a DNA-binding transcription factor, essential for the development of the telencephalon in mammalian forebrain. Mutations in FOXG1 have been reported to be involved in the onset of Rett Syndrome, for which sequence alterations of MECP2 and CDKL5 are known. While visual alterations are not classical hallmarks of Rett syndrome, an increasing body of evidence shows visual impairment in patients and in MeCP2 and CDKL5 animal models. Herein we focused on the functional role of FOXG1 in the visual system of animal models (Foxg1(+/Cre) mice) and of a cohort of subjects carrying FOXG1 mutations or deletions. Visual physiology of Foxg1(+/Cre) mice was assessed by visually evoked potentials, which revealed a significant reduction in response amplitude and visual acuity with respect to wild-type littermates. Morphological investigation showed abnormalities in the organization of excitatory/inhibitory circuits in the visual cortex. No alterations were observed in retinal structure. By examining a cohort of FOXG1-mutated individuals with a panel of neuro-ophthalmological assessments, we found that all of them exhibited visual alterations compatible with high-level visual dysfunctions. In conclusion our data show that Foxg1 haploinsufficiency results in an impairment of mouse and human visual cortical function. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Reliability and validity of the Persian lower extremity functional scale (LEFS) in a heterogeneous sample of outpatients with lower limb musculoskeletal disorders.

    Science.gov (United States)

    Negahban, Hossein; Hessam, Masumeh; Tabatabaei, Saeid; Salehi, Reza; Sohani, Soheil Mansour; Mehravar, Mohammad

    2014-01-01

    The aim was to culturally translate and validate the Persian lower extremity functional scale (LEFS) in a heterogeneous sample of outpatients with lower extremity musculoskeletal disorders (n = 304). This is a prospective methodological study. After a standard forward-backward translation, psychometric properties were assessed in terms of test-retest reliability, internal consistency, construct validity, dimensionality, and ceiling or floor effects. The acceptable level of intraclass correlation coefficient >0.70 and Cronbach's alpha coefficient >0.70 was obtained for the Persian LEFS. Correlations between Persian LEFS and Short-Form 36 Health Survey (SF-36) subscales of Physical Health component (rs range = 0.38-0.78) were higher than correlations between Persian LEFS and SF-36 subscales of Mental Health component (rs range = 0.15-0.39). A corrected item--total correlation of >0.40 (Spearman's rho) was obtained for all items of the Persian LEFS. Horn's parallel analysis detected a total of two factors. No ceiling or floor effects were detected for the Persian LEFS. The Persian version of the LEFS is a reliable and valid instrument that can be used to measure functional status in Persian-speaking patients with different musculoskeletal disorders of the lower extremity. Implications for Rehabilitation The Persian lower extremity functional scale (LEFS) is a reliable, internally consistent and valid instrument, with no ceiling or floor effects, to determine functional status of heterogeneous patients with musculoskeletal disorders of the lower extremity. The Persian version of the LEFS can be used in clinical and research settings to measure function in Iranian patients with different musculoskeletal disorders of the lower extremity.

  2. Wnt signaling pathway involvement in genotypic and phenotypic variations in Waardenburg syndrome type 2 with MITF mutations.

    Science.gov (United States)

    Wang, Xue-Ping; Liu, Ya-Lan; Mei, Ling-Yun; He, Chu-Feng; Niu, Zhi-Jie; Sun, Jie; Zhao, Yu-Lin; Feng, Yong; Zhang, Hua

    2018-05-01

    Mutation in the gene encoding microphthalmia-associated transcription factor (MITF) lead to Waardenburg syndrome 2 (WS2), an autosomal dominantly inherited syndrome with auditory-pigmentary abnormalities, which is clinically and genetically heterogeneous. Haploinsufficiency may be the underlying mechanism for WS2. However, the mechanisms explaining the genotypic and phenotypic variations in WS2 caused by MITF mutations are unclear. A previous study revealed that MITF interacts with LEF-1, an important factor in the Wnt signaling pathway, to regulate its own transcription through LEF-1-binding sites on the MITF promoter. In this study, four different WS2-associated MITF mutations (p.R217I, p.R217G, p.R255X, p.R217del) that are associated with highly variable clinical features were chosen. According to the results, LEF-1 can activate the expression of MITF on its own, but MITF proteins inhibited the activation. This inhibition weakens when the dosage of MITF is reduced. Except for p.R217I, p.R255X, p.R217G, and p.R217del lose the ability to activate TYR completely and do not inhibit the LEF-1-mediated activation of the MITF-M promoter, and the haploinsufficiency created by mutant MITF can be overcome; correspondingly, the mutants' associated phenotypes are less severe than that of p.R217I. The dominant negative of p.R217del made it have a second-most severe phenotype. This study's data imply that MITF has a negative feedback loop of regulation to stabilize MITF gene dosage that involves the Wnt signaling pathway and that the interaction of MITF mutants with this pathway drives the genotypic and phenotypic differences observed in Waardenburg syndrome type 2 associated with MITF mutations.

  3. Effects of Exercise on Progranulin Levels and Gliosis in Progranulin-Insufficient Mice1,2,3

    Science.gov (United States)

    Arrant, Andrew E.; Patel, Aashka R.

    2015-01-01

    Abstract Loss-of-function mutations in progranulin (GRN) are one of the most common genetic causes of frontotemporal dementia (FTD), a progressive, fatal neurodegenerative disorder with no available disease-modifying treatments. Through haploinsufficiency, these mutations reduce levels of progranulin, a protein that has neurotrophic and anti-inflammatory effects. Increasing progranulin expression from the intact allele is therefore a potential approach for treating individuals with GRN mutations. Based on the well-known effects of physical exercise on other neurotrophic factors, we hypothesized that exercise might increase brain progranulin levels. We tested this hypothesis in progranulin heterozygous (Grn+/−) mice, which model progranulin haploinsufficiency. We housed wild-type and progranulin-insufficient mice in standard cages or cages with exercise wheels for 4 or 7.5 weeks, and then measured brain and plasma progranulin levels. Although exercise modestly increased progranulin in very young (2-month-old) wild-type mice, this effect was limited to the hippocampus. Exercise did not increase brain progranulin mRNA or protein in multiple regions, nor did it increase plasma progranulin, in 4- to 8-month-old wild-type or Grn+/− mice, across multiple experiments and under conditions that increased hippocampal BDNF and neurogenesis. Grn−/−mice were included in the study to test for progranulin-independent benefits of exercise on gliosis. Exercise attenuated cortical microgliosis in 8-month-old Grn−/−mice, consistent with a progranulin-independent, anti-inflammatory effect of exercise. These results suggest that exercise may have some modest, nonspecific benefits for FTD patients with progranulin mutations, but do not support exercise as a strategy to raise progranulin levels. PMID:26361634

  4. Haploinsufficiency for Core Exon Junction Complex Components Disrupts Embryonic Neurogenesis and Causes p53-Mediated Microcephaly.

    Directory of Open Access Journals (Sweden)

    Hanqian Mao

    2016-09-01

    Full Text Available The exon junction complex (EJC is an RNA binding complex comprised of the core components Magoh, Rbm8a, and Eif4a3. Human mutations in EJC components cause neurodevelopmental pathologies. Further, mice heterozygous for either Magoh or Rbm8a exhibit aberrant neurogenesis and microcephaly. Yet despite the requirement of these genes for neurodevelopment, the pathogenic mechanisms linking EJC dysfunction to microcephaly remain poorly understood. Here we employ mouse genetics, transcriptomic and proteomic analyses to demonstrate that haploinsufficiency for each of the 3 core EJC components causes microcephaly via converging regulation of p53 signaling. Using a new conditional allele, we first show that Eif4a3 haploinsufficiency phenocopies aberrant neurogenesis and microcephaly of Magoh and Rbm8a mutant mice. Transcriptomic and proteomic analyses of embryonic brains at the onset of neurogenesis identifies common pathways altered in each of the 3 EJC mutants, including ribosome, proteasome, and p53 signaling components. We further demonstrate all 3 mutants exhibit defective splicing of RNA regulatory proteins, implying an EJC dependent RNA regulatory network that fine-tunes gene expression. Finally, we show that genetic ablation of one downstream pathway, p53, significantly rescues microcephaly of all 3 EJC mutants. This implicates p53 activation as a major node of neurodevelopmental pathogenesis following EJC impairment. Altogether our study reveals new mechanisms to help explain how EJC mutations influence neurogenesis and underlie neurodevelopmental disease.

  5. Haploinsufficiency of the retinoblastoma protein gene reduces diet-induced obesity, insulin resistance, and hepatosteatosis in mice

    DEFF Research Database (Denmark)

    Mercader, Josep; Ribot, Joan; Murano, Incoronata

    2009-01-01

    Brown adipose tissue activity dissipates energy as heat, and there is evidence that lack of the retinoblastoma protein (pRb) may favor the development of the brown adipocyte phenotype in adipose cells. In this work we assessed the impact of germ-line haploinsufficiency of the pRb gene (Rb) on the...... first evidence that partial deficiency in the Rb gene protects against the development of obesity and associated metabolic disturbances. Key words: brown adipose tissue, white adipose tissue, energy metabolism, genetic animal model....

  6. Homeobox protein MSX-1 inhibits expression of bone morphogenetic protein 2, bone morphogenetic protein 4, and lymphoid enhancer-binding factor 1 via Wnt/β-catenin signaling to prevent differentiation of dental mesenchymal cells during the late bell stage.

    Science.gov (United States)

    Feng, Xiao-Yu; Wu, Xiao-Shan; Wang, Jin-Song; Zhang, Chun-Mei; Wang, Song-Lin

    2018-02-01

    Homeobox protein MSX-1 (hereafter referred to as MSX-1) is essential for early tooth-germ development. Tooth-germ development is arrested at bud stage in Msx1 knockout mice, which prompted us to study the functions of MSX-1 beyond this stage. Here, we investigated the roles of MSX-1 during late bell stage. Mesenchymal cells of the mandibular first molar were isolated from mice at embryonic day (E)17.5 and cultured in vitro. We determined the expression levels of β-catenin, bone morphogenetic protein 2 (Bmp2), Bmp4, and lymphoid enhancer-binding factor 1 (Lef1) after knockdown or overexpression of Msx1. Our findings suggest that knockdown of Msx1 promoted expression of Bmp2, Bmp4, and Lef1, resulting in elevated differentiation of odontoblasts, which was rescued by blocking the expression of these genes. In contrast, overexpression of Msx1 decreased the expression of Bmp2, Bmp4, and Lef1, leading to a reduction in odontoblast differentiation. The regulation of Bmp2, Bmp4, and Lef1 by Msx1 was mediated by the Wnt/β-catenin signaling pathway. Additionally, knockdown of Msx1 impaired cell proliferation and slowed S-phase progression, while overexpression of Msx1 also impaired cell proliferation and prolonged G1-phase progression. We therefore conclude that MSX-1 maintains cell proliferation by regulating transition of cells from G1-phase to S-phase and prevents odontoblast differentiation by inhibiting expression of Bmp2, Bmp4, and Lef1 at the late bell stage via the Wnt/β-catenin signaling pathway. © 2017 Eur J Oral Sci.

  7. 1p13.2 deletion displays clinical features overlapping Noonan syndrome, likely related to NRAS gene haploinsufficiency

    Directory of Open Access Journals (Sweden)

    Natália Duarte Linhares

    Full Text Available Abstract Deletion-induced hemizygosity may unmask deleterious autosomal recessive variants and be a cause of the phenotypic variability observed in microdeletion syndromes. We performed complete exome sequencing (WES analysis to examine this possibility in a patient with 1p13.2 microdeletion. Since the patient displayed clinical features suggestive of Noonan Syndrome (NS, we also used WES to rule out the presence of pathogenic variants in any of the genes associated with the different types of NS. We concluded that the clinical findings could be attributed solely to the 1p13.2 haploinsufficiency. Retrospective analysis of other nine reported patients with 1p13.2 microdeletions showed that six of them also presented some characteristics of NS. In all these cases, the deleted segment included the NRAS gene. Gain-of-function mutations of NRAS gene are causally related to NS type 6. Thus, it is conceivable that NRAS haploinsufficiency and gain-of-function mutations may have similar clinical consequences. The same phenomenon has been described for two other genes belonging to the Ras/MAPK pathway: MAP2K2 and SHOC2. In conclusion, we here report genotype-phenotype correlations in patients with chromosome 1p13.2 microdeletions and we propose that NRAS may be a critical gene for the NS characteristics in the patients.

  8. Heterozygous disruption of activin receptor-like kinase 1 is associated with increased arterial pressure in mice

    Directory of Open Access Journals (Sweden)

    María González-Núñez

    2015-11-01

    Full Text Available The activin receptor-like kinase 1 (ALK-1 is a type I cell-surface receptor for the transforming growth factor-β (TGF-β family of proteins. Hypertension is related to TGF-β1, because increased TGF-β1 expression is correlated with an elevation in arterial pressure (AP and TGF-β expression is upregulated by the renin-angiotensin-aldosterone system. The purpose of this study was to assess the role of ALK-1 in regulation of AP using Alk1 haploinsufficient mice (Alk1+/−. We observed that systolic and diastolic AP were significantly higher in Alk1+/− than in Alk1+/+ mice, and all functional and structural cardiac parameters (echocardiography and electrocardiography were similar in both groups. Alk1+/− mice showed alterations in the circadian rhythm of AP, with higher AP than Alk1+/+ mice during most of the light period. Higher AP in Alk1+/− mice is not a result of a reduction in the NO-dependent vasodilator response or of overactivation of the peripheral renin-angiotensin system. However, intracerebroventricular administration of losartan had a hypotensive effect in Alk1+/− and not in Alk1+/+ mice. Alk1+/− mice showed a greater hypotensive response to the β-adrenergic antagonist atenolol and higher concentrations of epinephrine and norepinephrine in plasma than Alk1+/+ mice. The number of brain cholinergic neurons in the anterior basal forebrain was reduced in Alk1+/− mice. Thus, we concluded that the ALK-1 receptor is involved in the control of AP, and the high AP of Alk1+/− mice is explained mainly by the sympathetic overactivation shown by these animals, which is probably related to the decreased number of cholinergic neurons.

  9. Haploinsufficiency of the 22q11.2 microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium.

    Science.gov (United States)

    Devaraju, P; Yu, J; Eddins, D; Mellado-Lagarde, M M; Earls, L R; Westmoreland, J J; Quarato, G; Green, D R; Zakharenko, S S

    2017-09-01

    Hemizygous deletion of a 1.5- to 3-megabase region on chromosome 22 causes 22q11.2 deletion syndrome (22q11DS), which constitutes one of the strongest genetic risks for schizophrenia. Mouse models of 22q11DS have abnormal short-term synaptic plasticity that contributes to working-memory deficiencies similar to those in schizophrenia. We screened mutant mice carrying hemizygous deletions of 22q11DS genes and identified haploinsufficiency of Mrpl40 (mitochondrial large ribosomal subunit protein 40) as a contributor to abnormal short-term potentiation (STP), a major form of short-term synaptic plasticity. Two-photon imaging of the genetically encoded fluorescent calcium indicator GCaMP6, expressed in presynaptic cytosol or mitochondria, showed that Mrpl40 haploinsufficiency deregulates STP via impaired calcium extrusion from the mitochondrial matrix through the mitochondrial permeability transition pore. This led to abnormally high cytosolic calcium transients in presynaptic terminals and deficient working memory but did not affect long-term spatial memory. Thus, we propose that mitochondrial calcium deregulation is a novel pathogenic mechanism of cognitive deficiencies in schizophrenia.

  10. Exercise does not protect against MPTP-induced neurotoxicity in BDNF haploinsufficient mice.

    Directory of Open Access Journals (Sweden)

    Kim M Gerecke

    Full Text Available Exercise has been demonstrated to potently protect substantia nigra pars compacta (SN dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-induced neurotoxicity. One mechanism proposed to account for this neuroprotection is the upregulation of neurotrophic factors. Several neurotrophic factors, including Brain Derived Neurotrophic Factor (BDNF, have been shown to upregulate in response to exercise. In order to determine if exercise-induced neuroprotection is dependent upon BDNF, we compared the neuroprotective effects of voluntary exercise in mice heterozygous for the BDNF gene (BDNF+/- with strain-matched wild-type (WT mice. Stereological estimates of SNpc DA neurons from WT mice allowed 90 days exercise via unrestricted running demonstrated complete protection against the MPTP-induced neurotoxicity. However, BDNF+/- mice allowed 90 days of unrestricted exercise were not protected from MPTP-induced SNpc DA neuron loss. Proteomic analysis comparing SN and striatum from 90 day exercised WT and BDNF+/- mice showed differential expression of proteins related to energy regulation, intracellular signaling and trafficking. These results suggest that a full genetic complement of BDNF is critical for the exercise-induced neuroprotection of SNpc DA neurons.

  11. MicroRNA-mediated Th2 bias in methimazole-induced acute liver injury in mice

    International Nuclear Information System (INIS)

    Uematsu, Yasuaki; Akai, Sho; Tochitani, Tomoaki; Oda, Shingo; Yamada, Toru; Yokoi, Tsuyoshi

    2016-01-01

    MicroRNA (miRNA) is a class of small non-coding RNAs containing approximately 20 nucleotides that negatively regulate target gene expression. Little is known about the role of individual miRNAs and their targets in immune- and inflammation-related responses in drug-induced liver injury. In the present study, involvement of miRNAs in the T helper (Th) 2-type immune response was investigated using a methimazole (MTZ)-induced liver injury mouse model. Co-administration of L-buthionine-S,R-sulfoximine and MTZ induced acute hepatocellular necrosis and elevated plasma levels of alanine aminotransferase (ALT) from 4 h onward in female Balb/c mice. The hepatic mRNA expression of Th2 promotive factors was significantly increased concomitantly with plasma ALT levels. In contrast, the hepatic mRNA expression of Th2 suppressive factors was significantly decreased during the early phase of liver injury. Comprehensive profiling of hepatic miRNA expression was analyzed before the onset of MTZ-induced liver injury. Using in silico prediction of miRNAs that possibly regulate Th2-related genes and subsequent quantification, we identified up-regulation of expression of miR-29b-1-5p and miR-449a-5p. Among targets of these miRNAs, down-regulation of Th2 suppressive transcription factors, such as SRY-related HMG-box 4 (SOX4) and lymphoid enhancer factor-1 (LEF1), were observed from the early phase of liver injury. In conclusion, negative regulation of the expression of SOX4 by miR-29b-1-5p and that of LEF1 by miR-449a-5p is suggested to play an important role in the development of Th2 bias in MTZ-induced liver injury. - Highlights: • Methimazole induced hepatic Th2 bias in the pathogenesis of liver injury in mice. • Rapid down-regulation of SOX4 and LEF1 may initiate and/or maintain hepatic Th2 bias. • Negative regulation of SOX4 by miR-29b-1-5p and LEF1 by miR-449a-5p was suggested.

  12. MicroRNA-mediated Th2 bias in methimazole-induced acute liver injury in mice

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Yasuaki, E-mail: yasuaki-uematsu@ds-pharma.co.jp [Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 1-98 Kasugade-naka, 3-chome, Konohana-ku, Osaka (Japan); Akai, Sho [Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Tochitani, Tomoaki [Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 1-98 Kasugade-naka, 3-chome, Konohana-ku, Osaka (Japan); Oda, Shingo [Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Yamada, Toru [Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 1-98 Kasugade-naka, 3-chome, Konohana-ku, Osaka (Japan); Yokoi, Tsuyoshi [Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan)

    2016-09-15

    MicroRNA (miRNA) is a class of small non-coding RNAs containing approximately 20 nucleotides that negatively regulate target gene expression. Little is known about the role of individual miRNAs and their targets in immune- and inflammation-related responses in drug-induced liver injury. In the present study, involvement of miRNAs in the T helper (Th) 2-type immune response was investigated using a methimazole (MTZ)-induced liver injury mouse model. Co-administration of L-buthionine-S,R-sulfoximine and MTZ induced acute hepatocellular necrosis and elevated plasma levels of alanine aminotransferase (ALT) from 4 h onward in female Balb/c mice. The hepatic mRNA expression of Th2 promotive factors was significantly increased concomitantly with plasma ALT levels. In contrast, the hepatic mRNA expression of Th2 suppressive factors was significantly decreased during the early phase of liver injury. Comprehensive profiling of hepatic miRNA expression was analyzed before the onset of MTZ-induced liver injury. Using in silico prediction of miRNAs that possibly regulate Th2-related genes and subsequent quantification, we identified up-regulation of expression of miR-29b-1-5p and miR-449a-5p. Among targets of these miRNAs, down-regulation of Th2 suppressive transcription factors, such as SRY-related HMG-box 4 (SOX4) and lymphoid enhancer factor-1 (LEF1), were observed from the early phase of liver injury. In conclusion, negative regulation of the expression of SOX4 by miR-29b-1-5p and that of LEF1 by miR-449a-5p is suggested to play an important role in the development of Th2 bias in MTZ-induced liver injury. - Highlights: • Methimazole induced hepatic Th2 bias in the pathogenesis of liver injury in mice. • Rapid down-regulation of SOX4 and LEF1 may initiate and/or maintain hepatic Th2 bias. • Negative regulation of SOX4 by miR-29b-1-5p and LEF1 by miR-449a-5p was suggested.

  13. Expanding the phenotypic spectrum of ARID1B-mediated disorders and identification of altered cell-cycle dynamics due to ARID1B haploinsufficiency.

    Science.gov (United States)

    Sim, Joe C H; White, Susan M; Fitzpatrick, Elizabeth; Wilson, Gabrielle R; Gillies, Greta; Pope, Kate; Mountford, Hayley S; Torring, Pernille M; McKee, Shane; Vulto-van Silfhout, Anneke T; Jhangiani, Shalini N; Muzny, Donna M; Leventer, Richard J; Delatycki, Martin B; Amor, David J; Lockhart, Paul J

    2014-03-27

    Mutations in genes encoding components of the Brahma-associated factor (BAF) chromatin remodeling complex have recently been shown to contribute to multiple syndromes characterised by developmental delay and intellectual disability. ARID1B mutations have been identified as the predominant cause of Coffin-Siris syndrome and have also been shown to be a frequent cause of nonsyndromic intellectual disability. Here, we investigate the molecular basis of a patient with an overlapping but distinctive phenotype of intellectual disability, plantar fat pads and facial dysmorphism. High density microarray analysis of the patient demonstrated a heterozygous deletion at 6q25.3, which resulted in the loss of four genes including AT Rich Interactive Domain 1B (ARID1B). Subsequent quantitative real-time PCR analysis revealed ARID1B haploinsufficiency in the patient. Analysis of both patient-derived and ARID1B knockdown fibroblasts after serum starvation demonstrated delayed cell cycle re-entry associated with reduced cell number in the S1 phase. Based on the patient's distinctive phenotype, we ascertained four additional patients and identified heterozygous de novo ARID1B frameshift or nonsense mutations in all of them. This study broadens the spectrum of ARID1B associated phenotypes by describing a distinctive phenotype including plantar fat pads but lacking the hypertrichosis or fifth nail hypoplasia associated with Coffin-Siris syndrome. We present the first direct evidence in patient-derived cells that alterations in cell cycle contribute to the underlying pathogenesis of syndromes associated with ARID1B haploinsufficiency.

  14. [Premature immunosenescence in catecholamines syntesis deficient mice. Effect of social environment].

    Science.gov (United States)

    Garrido, Antonio; Cruces, Julia; Iriarte, Idoia; Hernández-Sánchez, Catalina; de Pablo, Flora; de la Fuente, Mónica

    Healthy state depends on the appropriate function of the homeostatic systems (nervous, endocrine and immune systems) and the correct communication between them. The functional and redox state of the immune system is an excellent marker of health, and animals with premature immunosenescence show a shorter lifespan. Since catecholamines modulate the function of immune cells, the alteration in their synthesis could provoke immunosenescence. The social environment could be a strategy for modulating this immunosenescence. To determine if an haploinsufficiency of tyrosine hydroxylase (TH), the limiting enzyme of synthesis of catecholamines, may produce a premature immunosenescence and if this immunosenescence could be modulated by the social environment. Adult (9±1 months) male ICR-CD1 mice with deletion of a single allele (hemi-zygotic: HZ) of the tyrosine hydroxylase enzyme (TH-HZ) and wild-type (WT) mice were used. Animals were housed in four subgroups: WT>50% (in the cage, the proportion of WT mice was higher than 50% in relation to TH-HZ), WT50%. Peritoneal leukocytes were collected and phagocytosis, chemotaxis and proliferation of lymphocytes in the presence of lipopolysaccharide were analyzed. Glutathione reductase and glutathione peroxidase activities as well as oxidized/reduced glutathione ratio were studied. TH-HZ>50% mice showed a deteriorated function and redox state in leukocytes respect to WT>50% and similar to old mice. However, TH-HZ<50% animals had similar values to those found in WT<50% mice. The haploinsufficiency of TH generates premature immunosenescence, which appears to be compensated by living together with an appropriate number of WT animals. Copyright © 2016 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Endoglin haploinsufficiency attenuates radiation-induced deterioration of kidney function in mice

    International Nuclear Information System (INIS)

    Scharpfenecker, Marion; Floot, Ben; Russell, Nicola S.; Coppes, Rob P.; Stewart, Fiona A.

    2013-01-01

    Background and Purpose: Endoglin is a transforming growth receptor beta (TGF-β) co-receptor, which plays a crucial role in the development of late normal tissue damage. Mice with halved endoglin levels (Eng +/- mice) develop less inflammation, vascular damage and fibrosis after kidney irradiation compared to their wild type littermates (Eng +/+ mice). This study was aimed at investigating whether reduced tissue damage in Eng +/- mice also results in superior kidney function. Material and Methods: Kidneys of Eng +/+ and Eng +/- mice were irradiated with a single dose of 14 Gy. Functional kidney parameters and kidney histology were analysed at 20, 30 and 40 weeks after irradiation. Results: Eng +/- mice displayed improved kidney parameters (haematocrit, BUN) compared to Eng +/+ mice at 40 weeks after irradiation. Irradiation of Eng +/+ kidneys damaged the vascular network and led to an increase in PDGFR-β positive cells, indicative of fibrosis-promoting myofibroblasts. Compared to Eng +/+ kidneys, vascular perfusion and number of PDGFR-β positive cells were reduced in Eng +/- control mice; however, this did not further deteriorate after irradiation. Conclusions: Taken together, we show that not only kidney morphology, but also kidney function is improved after irradiation in Eng +/- compared to Eng +/+ mice

  16. A novel ENU-mutation in ankyrin-1 disrupts malaria parasite maturation in red blood cells of mice.

    Directory of Open Access Journals (Sweden)

    Andreas Greth

    Full Text Available The blood stage of the plasmodium parasite life cycle is responsible for the clinical symptoms of malaria. Epidemiological studies have identified coincidental malarial endemicity and multiple red blood cell (RBC disorders. Many RBC disorders result from mutations in genes encoding cytoskeletal proteins and these are associated with increased protection against malarial infections. However the mechanisms underpinning these genetic, host responses remain obscure. We have performed an N-ethyl-N-nitrosourea (ENU mutagenesis screen and have identified a novel dominant (haploinsufficient mutation in the Ank-1 gene (Ank1(MRI23420 of mice displaying hereditary spherocytosis (HS. Female mice, heterozygous for the Ank-1 mutation showed increased survival to infection by Plasmodium chabaudi adami DS with a concomitant 30% decrease in parasitemia compared to wild-type, isogenic mice (wt. A comparative in vivo red cell invasion and parasite growth assay showed a RBC-autonomous effect characterised by decreased proportion of infected heterozygous RBCs. Within approximately 6-8 hours post-invasion, TUNEL staining of intraerythrocytic parasites, showed a significant increase in dead parasites in heterozygotes. This was especially notable at the ring and trophozoite stages in the blood of infected heterozygous mutant mice compared to wt (p<0.05. We conclude that increased malaria resistance due to ankyrin-1 deficiency is caused by the intraerythrocytic death of P. chabaudi parasites.

  17. Fibroblast growth factor 10 haploinsufficiency causes chronic obstructive pulmonary disease.

    Science.gov (United States)

    Klar, Joakim; Blomstrand, Peter; Brunmark, Charlott; Badhai, Jitendra; Håkansson, Hanna Falk; Brange, Charlotte Sollie; Bergendal, Birgitta; Dahl, Niklas

    2011-10-01

    Genetic factors influencing lung function may predispose to chronic obstructive pulmonary disease (COPD). The fibroblast growth factor 10 (FGF10) signalling pathway is critical for lung development and lung epithelial renewal. The hypothesis behind this study was that constitutive FGF10 insufficiency may lead to pulmonary disorder. Therefore investigation of the pulmonary functions of patients heterozygous for loss of function mutations in the FGF10 gene was performed. The spirometric measures of lung function from patients and non-carrier siblings were compared and both groups were related to matched reference data for normal human lung function. The patients show a significant decrease in lung function parameters when compared to control values. The average FEV1/IVC quota (FEV1%) for the patients is 0.65 (80% of predicted) and reversibility test using Terbutalin resulted in a 3.7% increase in FEV1. Patients with FGF10 haploinsufficiency have lung function parameters indicating COPD. A modest response to Terbutalin confirms an irreversible obstructive lung disease. These findings support the idea that genetic variants affecting the FGF10 signalling pathway are important determinants of lung function that may ultimately contribute to COPD. Specifically, the results show that FGF10 haploinsufficiency affects lung function measures providing a model for a dosage sensitive effect of FGF10 in the development of COPD.

  18. Telomere Elongation and Naive Pluripotent Stem Cells Achieved from Telomerase Haplo-Insufficient Cells by Somatic Cell Nuclear Transfer

    Directory of Open Access Journals (Sweden)

    Li-Ying Sung

    2014-12-01

    Full Text Available Summary: Haplo-insufficiency of telomerase genes in humans leads to telomere syndromes such as dyskeratosis congenital and idiopathic pulmonary fibrosis. Generation of pluripotent stem cells from telomerase haplo-insufficient donor cells would provide unique opportunities toward the realization of patient-specific stem cell therapies. Recently, pluripotent human embryonic stem cells (ntESCs have been efficiently achieved by somatic cell nuclear transfer (SCNT. We tested the hypothesis that SCNT could effectively elongate shortening telomeres of telomerase haplo-insufficient cells in the ntESCs with relevant mouse models. Indeed, telomeres of telomerase haplo-insufficient (Terc+/− mouse cells are elongated in ntESCs. Moreover, ntESCs derived from Terc+/− cells exhibit naive pluripotency as evidenced by generation of Terc+/− ntESC clone pups by tetraploid embryo complementation, the most stringent test of naive pluripotency. These data suggest that SCNT could offer a powerful tool to reprogram telomeres and to discover the factors for robust restoration of telomeres and pluripotency of telomerase haplo-insufficient somatic cells. : Sung et al. demonstrate in a mouse model that telomeres of telomerase haplo-insufficient cells can be elongated by somatic cell nuclear transfer. Moreover, ntESCs derived from Terc+/− cells exhibit pluripotency evidenced by generation of Terc+/−ntESC clone pups by tetraploid embryo complementation, the most stringent test of naive pluripotency.

  19. Further confirmation of the MED13L haploinsufficiency syndrome

    NARCIS (Netherlands)

    van Haelst, M.M.; Monroe, G.R.; Duran, K.J.; van Binsbergen, E.; Breur, J.M.P.J.; Giltay, J.C.; van Haaften, G.W.

    MED13L haploinsufficiency syndrome has been described in two patients and is characterized by moderate intellectual disability (ID), conotruncal heart defects, facial abnormalities and hypotonia. Missense mutations in MED13L are linked to transposition of the great arteries and non-syndromal

  20. Expression of wild-type Rp1 protein in Rp1 knock-in mice rescues the retinal degeneration phenotype.

    Directory of Open Access Journals (Sweden)

    Qin Liu

    Full Text Available Mutations in the retinitis pigmentosa 1 (RP1 gene are a common cause of autosomal dominant retinitis pigmentosa (adRP, and have also been found to cause autosomal recessive RP (arRP in a few families. The 33 dominant mutations and 6 recessive RP1 mutations identified to date are all nonsense or frameshift mutations, and almost exclusively (38 out of 39 are located in the 4(th and final exon of RP1. To better understand the underlying disease mechanisms of and help develop therapeutic strategies for RP1 disease, we performed a series of human genetic and animal studies using gene targeted and transgenic mice. Here we report that a frameshift mutation in the 3(rd exon of RP1 (c.686delC; p.P229QfsX35 found in a patient with recessive RP1 disease causes RP in the homozygous state, whereas the heterozygous carriers are unaffected, confirming that haploinsufficiency is not the causative mechanism for RP1 disease. We then generated Rp1 knock-in mice with a nonsense Q662X mutation in exon 4, as well as Rp1 transgenic mice carrying a wild-type BAC Rp1 transgene. The Rp1-Q662X allele produces a truncated Rp1 protein, and homozygous Rp1-Q662X mice experience a progressive photoreceptor degeneration characterized disorganization of photoreceptor outer segments. This phenotype could be prevented by expression of a normal amount of Rp1 protein from the BAC transgene without removal of the mutant Rp1-Q662X protein. Over-expression of Rp1 protein in additional BAC Rp1 transgenic lines resulted in retinal degeneration. These findings suggest that the truncated Rp1-Q662X protein does not exert a toxic gain-of-function effect. These results also imply that in principle gene augmentation therapy could be beneficial for both recessive and dominant RP1 patients, but the levels of RP1 protein delivered for therapy will have to be carefully controlled.

  1. Sensitized mutagenesis screen in Factor V Leiden mice identifies thrombosis suppressor loci.

    Science.gov (United States)

    Westrick, Randal J; Tomberg, Kärt; Siebert, Amy E; Zhu, Guojing; Winn, Mary E; Dobies, Sarah L; Manning, Sara L; Brake, Marisa A; Cleuren, Audrey C; Hobbs, Linzi M; Mishack, Lena M; Johnston, Alexander J; Kotnik, Emilee; Siemieniak, David R; Xu, Jishu; Li, Jun Z; Saunders, Thomas L; Ginsburg, David

    2017-09-05

    Factor V Leiden ( F5 L ) is a common genetic risk factor for venous thromboembolism in humans. We conducted a sensitized N -ethyl- N -nitrosourea (ENU) mutagenesis screen for dominant thrombosuppressor genes based on perinatal lethal thrombosis in mice homozygous for F5 L ( F5 L/L ) and haploinsufficient for tissue factor pathway inhibitor ( Tfpi +/- ). F8 deficiency enhanced the survival of F5 L/L Tfpi +/- mice, demonstrating that F5 L/L Tfpi +/- lethality is genetically suppressible. ENU-mutagenized F5 L/L males and F5 L/+ Tfpi +/- females were crossed to generate 6,729 progeny, with 98 F5 L/L Tfpi +/- offspring surviving until weaning. Sixteen lines, referred to as "modifier of Factor 5 Leiden ( MF5L1-16 )," exhibited transmission of a putative thrombosuppressor to subsequent generations. Linkage analysis in MF5L6 identified a chromosome 3 locus containing the tissue factor gene ( F3 ). Although no ENU-induced F3 mutation was identified, haploinsufficiency for F3 ( F3 +/- ) suppressed F5 L/L Tfpi +/- lethality. Whole-exome sequencing in MF5L12 identified an Actr2 gene point mutation (p.R258G) as the sole candidate. Inheritance of this variant is associated with suppression of F5 L/L Tfpi +/- lethality ( P = 1.7 × 10 -6 ), suggesting that Actr2 p.R258G is thrombosuppressive. CRISPR/Cas9 experiments to generate an independent Actr2 knockin/knockout demonstrated that Actr2 haploinsufficiency is lethal, supporting a hypomorphic or gain-of-function mechanism of action for Actr2 p.R258G Our findings identify F8 and the Tfpi/F3 axis as key regulators in determining thrombosis balance in the setting of F5 L and also suggest a role for Actr2 in this process.

  2. Craniosynostosis of coronal suture in Twist1+/- mice occurs through endochondral ossification recapitulating the physiological closure of posterior frontal suture

    Directory of Open Access Journals (Sweden)

    Bjorn eBehr

    2011-07-01

    Full Text Available Craniosynostosis, the premature closure of cranial suture, is a pathologic condition that affects 1/2000 live births. Saethre-Chotzen syndrome is a genetic condition characterized by craniosynostosis. The Saethre-Chotzen syndrome, which is defined by loss-of-function mutations in the TWIST gene, is the second most prevalent craniosynostosis. Although much of the genetics and phenotypes in craniosynostosis syndromes is understood, less is known about the underlying ossification mechanism during suture closure. We have previously demonstrated that physiological closure of the posterior frontal (PF suture occurs through endochondral ossification. Moreover, we revealed that antagonizing canonical Wnt signaling in the sagittal suture leads to endochondral ossification of the suture mesenchyme and sagittal synostosis, presumably by inhibiting Twist1. Classic Saethre-Chotzen syndrome is characterized by coronal synostosis, and the haploinsufficient Twist1+/- mice represents a suitable model for studying this syndrome. Thus, we seeked to understand the underlying ossification process in coronal craniosynostosis in Twist1+/- mice. Our data indicate that coronal suture closure in Twist1+/- mice occurs between postnatal day 9 to 13 by endochondral ossification, as shown by histology, gene expression analysis and immunohistochemistry. In conclusion, this study reveals that coronal craniosynostosis in Twist1+/- mice occurs through endochondral ossification. Moreover, it suggests that haploinsufficency of Twist1 gene, a target of canonical Wnt-signaling, and inhibitor of chondrogenesis, mimics conditions of inactive canonical Wnt-signaling leading to craniosynostosis.

  3. Papillon-Lefévre Syndrome: Report of Two Cases in a Family

    Directory of Open Access Journals (Sweden)

    C Vani

    2010-01-01

    Full Text Available This report presents two cases of Papillon-Lefévre syndrome (PLS affecting two girls among five siblings belonging to a south Indian Muslim family. The patients were 12 and 14 years old. The patients presented with palmar-plantar hyperkeratosis which started around the age of two years. The elder patient was edentulous due to severe destructive periodontitis causing premature loss of teeth. The younger patient had severe destructive periodontitis with multiple periodontal abscess and loose teeth.

  4. Human NF-κB1 Haploinsufficiency and Epstein-Barr Virus-Induced Disease-Molecular Mechanisms and Consequences.

    Science.gov (United States)

    Hoeger, Birgit; Serwas, Nina Kathrin; Boztug, Kaan

    2017-01-01

    Nuclear factor kappa-light-chain-enhancer of activated B cells 1 (NF-κB1)-related human primary immune deficiencies have initially been characterized as defining a subgroup of common variable immunodeficiencies (CVIDs), representing intrinsic B-cell disorders with antibody deficiency and recurrent infections of various kind. Recent evidence indicates that NF-κB1 haploinsufficiency underlies a variable type of combined immunodeficiency (CID) affecting both B and T lymphocyte compartments, with a broadened spectrum of disease manifestations, including Epstein-Barr virus (EBV)-induced lymphoproliferative disease and immediate life-threatening consequences. As part of this review series focused on EBV-related primary immunodeficiencies, we discuss the current clinical and molecular understanding of monoallelic NFKB1 germline mutations with special focus on the emerging context of EBV-associated disease. We outline mechanistic implications of dysfunctional NF-κB1 in B and T cells and discuss the fatal relation of impaired T-cell function with the inability to clear EBV infections. Finally, we compare common and suggested treatment angles in the context of this complex disease.

  5. c-Fms signaling mediates neurofibromatosis Type-1 osteoclast gain-in-functions.

    Directory of Open Access Journals (Sweden)

    Yongzheng He

    Full Text Available Skeletal abnormalities including osteoporosis and osteopenia occur frequently in both pediatric and adult neurofibromatosis type 1 (NF1 patients. NF1 (Nf1 haploinsufficient osteoclasts and osteoclast progenitors derived from both NF1 patients and Nf1(+/- mice exhibit increased differentiation, migration, and bone resorptive capacity in vitro, mediated by hyperactivation of p21(Ras in response to limiting concentrations of macrophage-colony stimulating factor (M-CSF. Here, we show that M-CSF binding to its receptor, c-Fms, results in increased c-Fms activation in Nf1(+/ (- osteoclast progenitors, mediating multiple gain-in-functions through the downstream effectors Erk1/2 and p90RSK. PLX3397, a potent and selective c-Fms inhibitor, attenuated M-CSF mediated Nf1(+/- osteoclast migration by 50%, adhesion by 70%, and pit formation by 60%. In vivo, we administered PLX3397 to Nf1(+/- osteoporotic mice induced by ovariectomy (OVX and evaluated changes in bone mass and skeletal architecture. We found that PLX3397 prevented bone loss in Nf1(+/--OVX mice by reducing osteoclast differentiation and bone resorptive activity in vivo. Collectively, these results implicate the M-CSF/c-Fms signaling axis as a critical pathway underlying the aberrant functioning of Nf1 haploinsufficient osteoclasts and may provide a potential therapeutic target for treating NF1 associated osteoporosis and osteopenia.

  6. Effects of Exercise on Progranulin Levels and Gliosis in Progranulin-Insufficient Mice.

    Science.gov (United States)

    Arrant, Andrew E; Patel, Aashka R; Roberson, Erik D

    2015-01-01

    Loss-of-function mutations in progranulin ( GRN ) are one of the most common genetic causes of frontotemporal dementia (FTD), a progressive, fatal neurodegenerative disorder with no available disease-modifying treatments. Through haploinsufficiency, these mutations reduce levels of progranulin, a protein that has neurotrophic and anti-inflammatory effects. Increasing progranulin expression from the intact allele is therefore a potential approach for treating individuals with GRN mutations. Based on the well-known effects of physical exercise on other neurotrophic factors, we hypothesized that exercise might increase brain progranulin levels. We tested this hypothesis in progranulin heterozygous ( Grn + / - ) mice, which model progranulin haploinsufficiency. We housed wild-type and progranulin-insufficient mice in standard cages or cages with exercise wheels for 4 or 7.5 weeks, and then measured brain and plasma progranulin levels. Although exercise modestly increased progranulin in very young (2-month-old) wild-type mice, this effect was limited to the hippocampus. Exercise did not increase brain progranulin mRNA or protein in multiple regions, nor did it increase plasma progranulin, in 4- to 8-month-old wild-type or Grn + / - mice, across multiple experiments and under conditions that increased hippocampal BDNF and neurogenesis. Grn - / - mice were included in the study to test for progranulin-independent benefits of exercise on gliosis. Exercise attenuated cortical microgliosis in 8-month-old Grn - / - mice, consistent with a progranulin-independent, anti-inflammatory effect of exercise. These results suggest that exercise may have some modest, nonspecific benefits for FTD patients with progranulin mutations, but do not support exercise as a strategy to raise progranulin levels.

  7. Induction of B-cell lymphoma by UVB Radiation in p53 Haploinsufficient Mice

    International Nuclear Information System (INIS)

    Puebla-Osorio, Nahum; Miyahara, Yasuko; Coimbatore, Sreevidya; Limón-Flores, Alberto Y; Kazimi, Nasser; Ullrich, Stephen E; Zhu, Chengming

    2011-01-01

    The incidence of non-Hodgkin's lymphoma has increased over recent years. The exact etiology of lymphoma remains unknown. Ultraviolet light exposure has been associated with the development of internal lymphoid malignancies and some reports suggest that it may play a role in the development of lymphoma in humans. Here we describe the characterization and progression of lymphoma in p53 heterozygous mice exposed to UVB irradiation. UVB-irradiated p53 +/- mice developed enlargement of the spleen. Isolated spleen cells were transplanted into Rag deficient hosts. The UV-induced tumor cells were analyzed by flow cytometry. The tumor cells were tagged with GFP to study their metastatic potential. SKY and karyotypic analysis were carried out for the detection of chromosomal abnormalities. Functional assays included in vitro class switch recombination assay, immunoglobulin rearrangement assay, as well as cytokine profiling. UVB-exposed mice showed enlargement of the spleen and lymph nodes. Cells transplanted into Rag deficient mice developed aggressive tumors that infiltrated the lymph nodes, the spleen and the bone marrow. The tumor cells did not grow in immune competent syngeneic C57Bl/6 mice yet showed a modest growth in UV-irradiated B6 mice. Phenotypic analysis of these tumor cells revealed these cells are positive for B cell markers CD19 + , CD5 + , B220 + , IgM + and negative for T cell, NK or dendritic cell markers. The UV-induced tumor cells underwent robust in vitro immunoglobulin class switch recombination in response to lipopolysaccharide. Cytogenetic analysis revealed a t(14;19) translocation and trisomy of chromosome 6. These tumor cells secret IL-10, which can promote tumor growth and cause systemic immunosuppression. UV-irradiated p53 +/- mice developed lymphoid tumors that corresponded to a mature B cell lymphoma. Our results suggest that an indirect mechanism is involved in the development of internal tumors after chronic exposure to UV light. The

  8. Induction of B-cell lymphoma by UVB Radiation in p53 Haploinsufficient Mice

    Directory of Open Access Journals (Sweden)

    Ullrich Stephen E

    2011-01-01

    Full Text Available Abstract Background The incidence of non-Hodgkin's lymphoma has increased over recent years. The exact etiology of lymphoma remains unknown. Ultraviolet light exposure has been associated with the development of internal lymphoid malignancies and some reports suggest that it may play a role in the development of lymphoma in humans. Here we describe the characterization and progression of lymphoma in p53 heterozygous mice exposed to UVB irradiation. Methods UVB-irradiated p53+/- mice developed enlargement of the spleen. Isolated spleen cells were transplanted into Rag deficient hosts. The UV-induced tumor cells were analyzed by flow cytometry. The tumor cells were tagged with GFP to study their metastatic potential. SKY and karyotypic analysis were carried out for the detection of chromosomal abnormalities. Functional assays included in vitro class switch recombination assay, immunoglobulin rearrangement assay, as well as cytokine profiling. Results UVB-exposed mice showed enlargement of the spleen and lymph nodes. Cells transplanted into Rag deficient mice developed aggressive tumors that infiltrated the lymph nodes, the spleen and the bone marrow. The tumor cells did not grow in immune competent syngeneic C57Bl/6 mice yet showed a modest growth in UV-irradiated B6 mice. Phenotypic analysis of these tumor cells revealed these cells are positive for B cell markers CD19+, CD5+, B220+, IgM+ and negative for T cell, NK or dendritic cell markers. The UV-induced tumor cells underwent robust in vitro immunoglobulin class switch recombination in response to lipopolysaccharide. Cytogenetic analysis revealed a t(14;19 translocation and trisomy of chromosome 6. These tumor cells secret IL-10, which can promote tumor growth and cause systemic immunosuppression. Conclusion UV-irradiated p53+/- mice developed lymphoid tumors that corresponded to a mature B cell lymphoma. Our results suggest that an indirect mechanism is involved in the development of internal

  9. Papillon-Lefèvre syndrome: a successful outcome.

    Science.gov (United States)

    Ahuja, Vanita; Shin, Richard Hochul; Mudgil, Adarsh; Nanda, Veena; Schoor, Robert

    2005-11-01

    Papillon-Lefèvre syndrome (PLS) is a rare autosomal recessive condition manifested clinically by hyperkeratosis of the palms and soles and rapidly progressive periodontitis resulting in loss of deciduous and permanent teeth. This case report describes the clinical periodontal findings and treatment of a 10-year-old male patient with PLS. The patient provided informed consent, and the study was conducted in accordance with the Helsinki Declaration of 1975, as revised in 2000. Upon initial presentation, a full periodontal examination was completed. Conventional probing depths, clinical attachment levels (CAL), gingival index (GI), and plaque index (PI) were measured prior to initial therapy, which involved oral hygiene instruction and scaling and root planing. At reevaluation, initial treatment proved unsuccessful, and a surgical approach with concomitant systemic antibiotic therapy was implemented. In addition, the patient's dermatologist treated his palmoplantar keratoderma with systemic retinoids. Subsequently, the patient was placed on a strict 3-month maintenance protocol and was evaluated over a period of 1 year. Initial treatment with mechanical therapy, oral hygiene instruction, frequent recalls, and systemic antibiotics did not yield efficacious results. However, with the addition of surgical treatment, a favorable clinical outcome was obtained. Numerous treatment regimens for the periodontal disease seen in PLS can be found in the literature. We demonstrate successful treatment of the periodontal disease seen in this condition using mechanical therapy, systemic antibiotics, and surgical modalities; over a period of 1 year, we were able to achieve significant reductions in gingival inflammation and erythema.

  10. Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators

    Directory of Open Access Journals (Sweden)

    Lara J. Duffney

    2015-06-01

    Full Text Available Haploinsufficiency of the Shank3 gene, which encodes a scaffolding protein at glutamatergic synapses, is a highly prevalent and penetrant risk factor for autism. Using combined behavioral, electrophysiological, biochemical, imaging, and molecular approaches, we find that Shank3-deficient mice exhibit autism-like social deficits and repetitive behaviors, as well as the significantly diminished NMDA receptor (NMDAR synaptic function and synaptic distribution in prefrontal cortex. Concomitantly, Shank3-deficient mice have a marked loss of cortical actin filaments, which is associated with the reduced Rac1/PAK activity and increased activity of cofilin, the major actin depolymerizing factor. The social deficits and NMDAR hypofunction are rescued by inhibiting cofilin or activating Rac1 in Shank3-deficient mice and are induced by inhibiting PAK or Rac1 in wild-type mice. These results indicate that the aberrant regulation of synaptic actin filaments and loss of synaptic NMDARs contribute to the manifestation of autism-like phenotypes. Thus, targeting actin regulators provides a strategy for autism treatment.

  11. Genetic Modifiers of Cardiovascular Phenotype Caused by Elastin Haploinsufficiency Act by Extrinsic Noncomplementation*

    Science.gov (United States)

    Kozel, Beth A.; Knutsen, Russell H.; Ye, Li; Ciliberto, Christopher H.; Broekelmann, Thomas J.; Mecham, Robert P.

    2011-01-01

    Elastin haploinsufficiency causes the cardiovascular complications associated with Williams-Beuren syndrome and isolated supravalvular aortic stenosis. Significant variability exists in the vascular pathology in these individuals. Using the Eln+/− mouse, we sought to identify the source of this variability. Following outcrossing of C57Bl/6J Eln+/−, two backgrounds were identified whose cardiovascular parameters deviated significantly from the parental strain. F1 progeny of the C57Bl/6J; Eln+/−x129X1/SvJ were more hypertensive and their arteries less compliant. In contrast, Eln+/− animals crossed to DBA/2J were protected from the pathologic changes associated with elastin insufficiency. Among the crosses, aortic elastin and collagen content did not correlate with quantitative vasculopathy traits. Quantitative trait locus analysis performed on F2 C57; Eln+/−x129 intercrosses identified highly significant peaks on chromosome 1 (LOD 9.7) for systolic blood pressure and on chromosome 9 (LOD 8.7) for aortic diameter. Additional peaks were identified that affect only Eln+/−, including a region upstream of Eln on chromosome 5 (LOD 4.5). Bioinformatic analysis of the quantitative trait locus peaks revealed several interesting candidates, including Ren1, Ncf1, and Nos1; genes whose functions are unrelated to elastic fiber assembly, but whose effects may synergize with elastin insufficiency to predispose to hypertension and stiffer blood vessels. Real time RT-PCR studies show background-specific increased expression of Ncf1 (a subunit of the NOX2 NAPDH oxidase) that parallel the presence of increased oxidative stress in Eln+/− aortas. This finding raises the possibility that polymorphisms in genes affecting the generation of reactive oxygen species alter cardiovascular function in individuals with elastin haploinsufficiency through extrinsic noncomplementation. PMID:22049077

  12. Absence of strong strain effects in behavioral analyses of Shank3-deficient mice

    Directory of Open Access Journals (Sweden)

    Elodie Drapeau

    2014-06-01

    Full Text Available Haploinsufficiency of SHANK3, caused by chromosomal abnormalities or mutations that disrupt one copy of the gene, leads to a neurodevelopmental syndrome called Phelan-McDermid syndrome, symptoms of which can include absent or delayed speech, intellectual disability, neurological changes and autism spectrum disorders. The SHANK3 protein forms a key structural part of the post-synaptic density. We previously generated and characterized mice with a targeted disruption of Shank3 in which exons coding for the ankyrin-repeat domain were deleted and expression of full-length Shank3 was disrupted. We documented specific deficits in synaptic function and plasticity, along with reduced reciprocal social interactions, in Shank3 heterozygous mice. Changes in phenotype owing to a mutation at a single locus are quite frequently modulated by other loci, most dramatically when the entire genetic background is changed. In mice, each strain of laboratory mouse represents a distinct genetic background and alterations in phenotype owing to gene knockout or transgenesis are frequently different across strains, which can lead to the identification of important modifier loci. We have investigated the effect of genetic background on phenotypes of Shank3 heterozygous, knockout and wild-type mice, using C57BL/6, 129SVE and FVB/Ntac strain backgrounds. We focused on observable behaviors with the goal of carrying out subsequent analyses to identify modifier loci. Surprisingly, there were very modest strain effects over a large battery of analyses. These results indicate that behavioral phenotypes associated with Shank3 haploinsufficiency are largely strain-independent.

  13. Autosomal dominant inheritance of Williams-Beuren syndrome in a father and son with haploinsufficiency for FKBP6.

    Science.gov (United States)

    Metcalfe, Kay; Simeonov, Emil; Beckett, William; Donnai, Dian; Tassabehji, May

    2005-04-01

    Williams-Beuren syndrome (WBS) is a neurodevelopmental microdeletion disorder that usually occurs sporadically due to its location within a highly repetitive genomic region that is unstable and prone to unequal cross-over during meiosis. The consequential loss of chromosomal material includes approximately 1.5 Mb of DNA at 7q11.23. Whilst cases of dominant inheritance have been described in the literature, there have been few reports of molecular confirmation and none have carried out detailed genotyping. We describe a Bulgarian father and son with WBS detected by fluorescent in situ hybridisation (with an elastin gene probe) and loss of heterozygosity mapping using microsatellite markers located in the critical region. These individuals appear to have a common WBS heterozygous deletion, confirming the expected dominant transmission and adding to the few familial cases reported. The deletion includes the gene FKBP6 which has recently been shown to play a role in homologous chromosome pairing in meiosis and male fertility in mouse models. Homozygous Fkbp6 -/- male mice are infertile and our data suggests that haploinsufficiency for FKBP6 does not appear to preclude male fertility in WBS, although male infertility involving this gene has the potential to follow the mouse model as a human autosomal recessive condition.

  14. Rac1 and Cdc42 GTPases regulate shear stress-driven β-catenin signaling in osteoblasts

    International Nuclear Information System (INIS)

    Wan, Qiaoqiao; Cho, Eunhye; Yokota, Hiroki; Na, Sungsoo

    2013-01-01

    Highlights: •Shear stress increased TCF/LEF activity and stimulated β-catenin nuclear localization. •Rac1, Cdc42, and RhoA displayed distinct dynamic activity patterns under flow. •Rac1 and Cdc42, but not RhoA, regulate shear stress-driven TCF/LEF activation. •Cytoskeleton did not significantly affect shear stress-induced TCF/LEF activation. -- Abstract: Beta-catenin-dependent TCF/LEF (T-cell factor/lymphocyte enhancing factor) is known to be mechanosensitive and an important regulator for promoting bone formation. However, the functional connection between TCF/LEF activity and Rho family GTPases is not well understood in osteoblasts. Herein we investigated the molecular mechanisms underlying oscillatory shear stress-induced TCF/LEF activity in MC3T3-E1 osteoblast cells using live cell imaging. We employed fluorescence resonance energy transfer (FRET)-based and green fluorescent protein (GFP)-based biosensors, which allowed us to monitor signal transduction in living cells in real time. Oscillatory (1 Hz) shear stress (10 dynes/cm 2 ) increased TCF/LEF activity and stimulated translocation of β-catenin to the nucleus with the distinct activity patterns of Rac1 and Cdc42. The shear stress-induced TCF/LEF activity was blocked by the inhibition of Rac1 and Cdc42 with their dominant negative mutants or selective drugs, but not by a dominant negative mutant of RhoA. In contrast, constitutively active Rac1 and Cdc42 mutants caused a significant enhancement of TCF/LEF activity. Moreover, activation of Rac1 and Cdc42 increased the basal level of TCF/LEF activity, while their inhibition decreased the basal level. Interestingly, disruption of cytoskeletal structures or inhibition of myosin activity did not significantly affect shear stress-induced TCF/LEF activity. Although Rac1 is reported to be involved in β-catenin in cancer cells, the involvement of Cdc42 in β-catenin signaling in osteoblasts has not been identified. Our findings in this study demonstrate

  15. Rac1 and Cdc42 GTPases regulate shear stress-driven β-catenin signaling in osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Qiaoqiao; Cho, Eunhye [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Yokota, Hiroki [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Na, Sungsoo, E-mail: sungna@iupui.edu [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States)

    2013-04-19

    Highlights: •Shear stress increased TCF/LEF activity and stimulated β-catenin nuclear localization. •Rac1, Cdc42, and RhoA displayed distinct dynamic activity patterns under flow. •Rac1 and Cdc42, but not RhoA, regulate shear stress-driven TCF/LEF activation. •Cytoskeleton did not significantly affect shear stress-induced TCF/LEF activation. -- Abstract: Beta-catenin-dependent TCF/LEF (T-cell factor/lymphocyte enhancing factor) is known to be mechanosensitive and an important regulator for promoting bone formation. However, the functional connection between TCF/LEF activity and Rho family GTPases is not well understood in osteoblasts. Herein we investigated the molecular mechanisms underlying oscillatory shear stress-induced TCF/LEF activity in MC3T3-E1 osteoblast cells using live cell imaging. We employed fluorescence resonance energy transfer (FRET)-based and green fluorescent protein (GFP)-based biosensors, which allowed us to monitor signal transduction in living cells in real time. Oscillatory (1 Hz) shear stress (10 dynes/cm{sup 2}) increased TCF/LEF activity and stimulated translocation of β-catenin to the nucleus with the distinct activity patterns of Rac1 and Cdc42. The shear stress-induced TCF/LEF activity was blocked by the inhibition of Rac1 and Cdc42 with their dominant negative mutants or selective drugs, but not by a dominant negative mutant of RhoA. In contrast, constitutively active Rac1 and Cdc42 mutants caused a significant enhancement of TCF/LEF activity. Moreover, activation of Rac1 and Cdc42 increased the basal level of TCF/LEF activity, while their inhibition decreased the basal level. Interestingly, disruption of cytoskeletal structures or inhibition of myosin activity did not significantly affect shear stress-induced TCF/LEF activity. Although Rac1 is reported to be involved in β-catenin in cancer cells, the involvement of Cdc42 in β-catenin signaling in osteoblasts has not been identified. Our findings in this study demonstrate

  16. Bmi1 overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation

    Directory of Open Access Journals (Sweden)

    Hourinaz Behesti

    2013-01-01

    BMI1 is a potent inducer of neural stem cell self-renewal and neural progenitor cell proliferation during development and in adult tissue homeostasis. It is overexpressed in numerous human cancers – including medulloblastomas, in which its functional role is unclear. We generated transgenic mouse lines with targeted overexpression of Bmi1 in the cerebellar granule cell lineage, a cell type that has been shown to act as a cell of origin for medulloblastomas. Overexpression of Bmi1 in granule cell progenitors (GCPs led to a decrease in cerebellar size due to decreased GCP proliferation and repression of the expression of cyclin genes, whereas Bmi1 overexpression in postmitotic granule cells improved cell survival in response to stress by altering the expression of genes in the mitochondrial cell death pathway and of Myc and Lef-1. Although no medulloblastomas developed in ageing cohorts of transgenic mice, crosses with Trp53−/− mice resulted in a low incidence of medulloblastoma formation. Furthermore, analysis of a large collection of primary human medulloblastomas revealed that tumours with a BMI1high TP53low molecular profile are significantly enriched in Group 4 human medulloblastomas. Our data suggest that different levels and timing of Bmi1 overexpression yield distinct cellular outcomes within the same cellular lineage. Importantly, Bmi1 overexpression at the GCP stage does not induce tumour formation, suggesting that BMI1 overexpression in GCP-derived human medulloblastomas probably occurs during later stages of oncogenesis and might serve to enhance tumour cell survival.

  17. Tcf4 Regulates Synaptic Plasticity, DNA Methylation, and Memory Function

    Directory of Open Access Journals (Sweden)

    Andrew J. Kennedy

    2016-09-01

    Full Text Available Human haploinsufficiency of the transcription factor Tcf4 leads to a rare autism spectrum disorder called Pitt-Hopkins syndrome (PTHS, which is associated with severe language impairment and development delay. Here, we demonstrate that Tcf4 haploinsufficient mice have deficits in social interaction, ultrasonic vocalization, prepulse inhibition, and spatial and associative learning and memory. Despite learning deficits, Tcf4(+/− mice have enhanced long-term potentiation in the CA1 area of the hippocampus. In translationally oriented studies, we found that small-molecule HDAC inhibitors normalized hippocampal LTP and memory recall. A comprehensive set of next-generation sequencing experiments of hippocampal mRNA and methylated DNA isolated from Tcf4-deficient and WT mice before or shortly after experiential learning, with or without administration of vorinostat, identified “memory-associated” genes modulated by HDAC inhibition and dysregulated by Tcf4 haploinsufficiency. Finally, we observed that Hdac2 isoform-selective knockdown was sufficient to rescue memory deficits in Tcf4(+/− mice.

  18. A dominant-negative mutation of mouse Lmx1b causes glaucoma and is semi-lethal via LDB1-mediated dimerization [corrected].

    Directory of Open Access Journals (Sweden)

    Sally H Cross

    2014-05-01

    Full Text Available Mutations in the LIM-homeodomain transcription factor LMX1B cause nail-patella syndrome, an autosomal dominant pleiotrophic human disorder in which nail, patella and elbow dysplasia is associated with other skeletal abnormalities and variably nephropathy and glaucoma. It is thought to be a haploinsufficient disorder. Studies in the mouse have shown that during development Lmx1b controls limb dorsal-ventral patterning and is also required for kidney and eye development, midbrain-hindbrain boundary establishment and the specification of specific neuronal subtypes. Mice completely deficient for Lmx1b die at birth. In contrast to the situation in humans, heterozygous null mice do not have a mutant phenotype. Here we report a novel mouse mutant Icst, an N-ethyl-N-nitrosourea-induced missense substitution, V265D, in the homeodomain of LMX1B that abolishes DNA binding and thereby the ability to transactivate other genes. Although the homozygous phenotypic consequences of Icst and the null allele of Lmx1b are the same, heterozygous Icst elicits a phenotype whilst the null allele does not. Heterozygous Icst causes glaucomatous eye defects and is semi-lethal, probably due to kidney failure. We show that the null phenotype is rescued more effectively by an Lmx1b transgene than is Icst. Co-immunoprecipitation experiments show that both wild-type and Icst LMX1B are found in complexes with LIM domain binding protein 1 (LDB1, resulting in lower levels of functional LMX1B in Icst heterozygotes than null heterozygotes. We conclude that Icst is a dominant-negative allele of Lmx1b. These findings indicate a reassessment of whether nail-patella syndrome is always haploinsufficient. Furthermore, Icst is a rare example of a model of human glaucoma caused by mutation of the same gene in humans and mice.

  19. Effects of the antitumor drug OSI-906, a dual inhibitor of IGF-1 receptor and insulin receptor, on the glycemic control, β-cell functions, and β-cell proliferation in male mice.

    Science.gov (United States)

    Shirakawa, Jun; Okuyama, Tomoko; Yoshida, Eiko; Shimizu, Mari; Horigome, Yuka; Tuno, Takayuki; Hayasaka, Moe; Abe, Shiori; Fuse, Masahiro; Togashi, Yu; Terauchi, Yasuo

    2014-06-01

    The IGF-1 receptor has become a therapeutic target for the treatment of cancer. The efficacy of OSI-906 (linstinib), a dual inhibitor of IGF-1 receptor and insulin receptor, for solid cancers has been examined in clinical trials. The effects of OSI-906, however, on the blood glucose levels and pancreatic β-cell functions have not yet been reported. We investigated the impact of OSI-906 on glycemic control, insulin secretion, β-cell mass, and β-cell proliferation in male mice. Oral administration of OSI-906 worsened glucose tolerance in a dose-dependent manner in the wild-type mice. OSI-906 at a dose equivalent to the clinical daily dose (7.5 mg/kg) transiently evoked glucose intolerance and hyperinsulinemia. Insulin receptor substrate (IRS)-2-deficient mice and mice with diet-induced obesity, both models of peripheral insulin resistance, exhibited more severe glucose intolerance after OSI-906 administration than glucokinase-haploinsufficient mice, a model of impaired insulin secretion. Phloridzin improved the hyperglycemia induced by OSI-906 in mice. In vitro, OSI-906 showed no effect on insulin secretion from isolated islets. After daily administration of OSI-906 for a week to mice, the β-cell mass and β-cell proliferation rate were significantly increased. The insulin signals in the β-cells were apparently unaffected in those mice. Taken together, the results suggest that OSI-906 could exacerbate diabetes, especially in patients with insulin resistance. On the other hand, the results suggest that the β-cell mass may expand in response to chemotherapy with this drug.

  20. Conserved regulatory modules in the Sox9 testis-specific enhancer predict roles for SOX, TCF/LEF, Forkhead, DMRT, and GATA proteins in vertebrate sex determination.

    Science.gov (United States)

    Bagheri-Fam, Stefan; Sinclair, Andrew H; Koopman, Peter; Harley, Vincent R

    2010-03-01

    While the primary sex determining switch varies between vertebrate species, a key downstream event in testicular development, namely the male-specific up-regulation of Sox9, is conserved. To date, only two sex determining switch genes have been identified, Sry in mammals and the Dmrt1-related gene Dmy (Dmrt1bY) in the medaka fish Oryzias latipes. In mice, Sox9 expression is evidently up-regulated by SRY and maintained by SOX9 both of which directly activate the core 1.3 kb testis-specific enhancer of Sox9 (TESCO). How Sox9 expression is up-regulated and maintained in species without Sry (i.e. non-mammalian species) is not understood. In this study, we have undertaken an in-depth comparative genomics approach and show that TESCO contains an evolutionarily conserved region (ECR) of 180 bp which is present in marsupials, monotremes, birds, reptiles and amphibians. The ECR contains highly conserved modules that predict regulatory roles for SOX, TCF/LEF, Forkhead, DMRT, and GATA proteins in vertebrate sex determination/differentiation. Our data suggest that tetrapods share common aspects of Sox9 regulation in the testis, despite having different sex determining switch mechanisms. They also suggest that Sox9 autoregulation is an ancient mechanism shared by all tetrapods, raising the possibility that in mammals, SRY evolved by mimicking this regulation. The validation of ECR regulatory sequences conserved from human to frogs will provide new insights into vertebrate sex determination. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Haploinsufficiency of the Sec7 guanine nucleotide exchange factor gea1 impairs septation in fission yeast.

    Directory of Open Access Journals (Sweden)

    Alan M Eckler

    Full Text Available Membrane trafficking is essential to eukaryotic life and is controlled by a complex network of proteins that regulate movement of proteins and lipids between organelles. The GBF1/GEA family of Guanine nucleotide Exchange Factors (GEFs regulates trafficking between the endoplasmic reticulum and Golgi by catalyzing the exchange of GDP for GTP on ADP Ribosylation Factors (Arfs. Activated Arfs recruit coat protein complex 1 (COP-I to form vesicles that ferry cargo between these organelles. To further explore the function of the GBF1/GEA family, we have characterized a fission yeast mutant lacking one copy of the essential gene gea1 (gea1+/-, the Schizosaccharomyces pombe ortholog of GBF1. The haploinsufficient gea1+/- strain was shown to be sensitive to the GBF1 inhibitor brefeldin A (BFA and was rescued from BFA sensitivity by gea1p overexpression. No overt defects in localization of arf1p or arf6p were observed in gea1+/- cells, but the fission yeast homolog of the COP-I cargo sac1 was mislocalized, consistent with impaired COP-I trafficking. Although Golgi morphology appeared normal, a slight increase in vacuolar size was observed in the gea1+/- mutant strain. Importantly, gea1+/- cells exhibited dramatic cytokinesis-related defects, including disorganized contractile rings, an increased septation index, and alterations in septum morphology. Septation defects appear to result from altered secretion of enzymes required for septum dynamics, as decreased secretion of eng1p, a β-glucanase required for septum breakdown, was observed in gea1+/- cells, and overexpression of eng1p suppressed the increased septation phenotype. These observations implicate gea1 in regulation of septum breakdown and establish S. pombe as a model system to explore GBF1/GEA function in cytokinesis.

  2. Trehalose upregulates progranulin expression in human and mouse models of GRN haploinsufficiency: a novel therapeutic lead to treat frontotemporal dementia.

    Science.gov (United States)

    Holler, Christopher J; Taylor, Georgia; McEachin, Zachary T; Deng, Qiudong; Watkins, William J; Hudson, Kathryn; Easley, Charles A; Hu, William T; Hales, Chadwick M; Rossoll, Wilfried; Bassell, Gary J; Kukar, Thomas

    2016-06-24

    Progranulin (PGRN) is a secreted growth factor important for neuronal survival and may do so, in part, by regulating lysosome homeostasis. Mutations in the PGRN gene (GRN) are a common cause of frontotemporal lobar degeneration (FTLD) and lead to disease through PGRN haploinsufficiency. Additionally, complete loss of PGRN in humans leads to neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disease. Importantly, Grn-/- mouse models recapitulate pathogenic lysosomal features of NCL. Further, GRN variants that decrease PGRN expression increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Together these findings demonstrate that insufficient PGRN predisposes neurons to degeneration. Therefore, compounds that increase PGRN levels are potential therapeutics for multiple neurodegenerative diseases. Here, we performed a cell-based screen of a library of known autophagy-lysosome modulators and identified multiple novel activators of a human GRN promoter reporter including several common mTOR inhibitors and an mTOR-independent activator of autophagy, trehalose. Secondary cellular screens identified trehalose, a natural disaccharide, as the most promising lead compound because it increased endogenous PGRN in all cell lines tested and has multiple reported neuroprotective properties. Trehalose dose-dependently increased GRN mRNA as well as intracellular and secreted PGRN in both mouse and human cell lines and this effect was independent of the transcription factor EB (TFEB). Moreover, trehalose rescued PGRN deficiency in human fibroblasts and neurons derived from induced pluripotent stem cells (iPSCs) generated from GRN mutation carriers. Finally, oral administration of trehalose to Grn haploinsufficient mice significantly increased PGRN expression in the brain. This work reports several novel autophagy-lysosome modulators that enhance PGRN expression and identifies trehalose as a promising therapeutic for raising PGRN levels to treat

  3. MEF2C Haploinsufficiency features consistent hyperkinesis, variable epilepsy, and has a role in dorsal and ventral neuronal developmental pathways

    Science.gov (United States)

    Paciorkowski, Alex R.; Traylor, Ryan N.; Rosenfeld, Jill A.; Hoover, Jacqueline M.; Harris, Catharine J.; Winter, Susan; Lacassie, Yves; Bialer, Martin; Lamb, Allen N.; Schultz, Roger A.; Berry-Kravis, Elizabeth; Porter, Brenda E.; Falk, Marni; Venkat, Anu; Vanzo, Rena J.; Cohen, Julie S.; Fatemi, Ali; Dobyns, William B.; Shaffer, Lisa G.; Ballif, Blake C.; Marsh, Eric D.

    2013-01-01

    MEF2C haploinsufficiency syndrome is an emerging neurodevelopmental disorder associated with intellectual disability, autistic features, epilepsy, and abnormal movements. We report 16 new patients with MEF2C haploinsufficiency, including the oldest reported patient with MEF2C deletion at 5q14.3. We detail the neurobehavioral phenotype, epilepsy, and abnormal movements, and compare our subjects with those previously reported in the literature. We also investigate Mef2c expression in the developing mouse forebrain. A spectrum of neurofunctional deficits emerges, with hyperkinesis a consistent finding. Epilepsy varied from absent to severe, and included intractable myoclonic seizures and infantile spasms. Subjects with partial MEF2C deletion were statistically less likely to have epilepsy. Finally, we confirm that Mef2c is present both in dorsal primary neuroblasts and ventral gamma-aminobutyric acid(GABA)ergic interneurons in the forebrain of the developing mouse. Given interactions with several key neurodevelopmental genes such as ARX, FMR1, MECP2, and TBR1, it appears that MEF2C plays a role in several developmental stages of both dorsal and ventral neuronal cell types. PMID:23389741

  4. Tcf4 Regulates Synaptic Plasticity, DNA Methylation, and Memory Function.

    Science.gov (United States)

    Kennedy, Andrew J; Rahn, Elizabeth J; Paulukaitis, Brynna S; Savell, Katherine E; Kordasiewicz, Holly B; Wang, Jing; Lewis, John W; Posey, Jessica; Strange, Sarah K; Guzman-Karlsson, Mikael C; Phillips, Scott E; Decker, Kyle; Motley, S Timothy; Swayze, Eric E; Ecker, David J; Michael, Todd P; Day, Jeremy J; Sweatt, J David

    2016-09-06

    Human haploinsufficiency of the transcription factor Tcf4 leads to a rare autism spectrum disorder called Pitt-Hopkins syndrome (PTHS), which is associated with severe language impairment and development delay. Here, we demonstrate that Tcf4 haploinsufficient mice have deficits in social interaction, ultrasonic vocalization, prepulse inhibition, and spatial and associative learning and memory. Despite learning deficits, Tcf4(+/-) mice have enhanced long-term potentiation in the CA1 area of the hippocampus. In translationally oriented studies, we found that small-molecule HDAC inhibitors normalized hippocampal LTP and memory recall. A comprehensive set of next-generation sequencing experiments of hippocampal mRNA and methylated DNA isolated from Tcf4-deficient and WT mice before or shortly after experiential learning, with or without administration of vorinostat, identified "memory-associated" genes modulated by HDAC inhibition and dysregulated by Tcf4 haploinsufficiency. Finally, we observed that Hdac2 isoform-selective knockdown was sufficient to rescue memory deficits in Tcf4(+/-) mice. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Papillon-Lefèvre syndrome patient reveals species-dependent requirements for neutrophil defenses

    DEFF Research Database (Denmark)

    Sørensen, Ole E.; Clemmensen, Stine N; Dahl, Sara L

    2014-01-01

    immunodeficiency. Here, we characterized a 24-year-old woman who had suffered from severe juvenile periodontal disease, but was otherwise healthy, and identified a homozygous missense mutation in CTSC indicative of PLS. Proteome analysis of patient neutrophil granules revealed that several proteins that normally......Papillon-Lefèvre syndrome (PLS) results from mutations that inactivate cysteine protease cathepsin C (CTSC), which processes a variety of serine proteases considered essential for antimicrobial defense. Despite serine protease-deficient immune cell populations, PLS patients do not exhibit marked......CAP-18 into the antibacterial peptide LL-37 in response to ionomycin. In immature myeloid cells from patient bone marrow, biosynthesis of CTSC and neutrophil serine proteases appeared normal along with initial processing and sorting to cellular storage. In contrast, these proteins were completely absent...

  6. BMI1 loss delays photoreceptor degeneration in Rd1 mice. Bmi1 loss and neuroprotection in Rd1 mice.

    Science.gov (United States)

    Zencak, Dusan; Crippa, Sylvain V; Tekaya, Meriem; Tanger, Ellen; Schorderet, Daniel E; Munier, Francis L; van Lohuizen, Maarten; Arsenijevic, Yvan

    2006-01-01

    Retinitis pigmentosa (RP) is a heterogeneous group of genetic disorders leading to blindness, which remain untreatable at present. Rd1 mice represent a recognized model of RP, and so far only GDNF treatment provided a slight delay in the retinal degeneration in these mice. Bmi1, a transcriptional repressor, has recently been shown to be essential for neural stem cell (NSC) renewal in the brain, with an increased appearance of glial cells in vivo in Bmi1 knockout (Bmi1-/-) mice. One of the roles of glial cells is to sustain neuronal function and survival. In the view of a role of the retinal Miller glia as a source of neural protection in the retina, the increased astrocytic population in the Bmi1-/- brain led us to investigate the effect of Bmi1 loss in Rd1 mice. We observed an increase of Müller glial cells in Rd1-Bmi1-/- retinas compared to Rd1. Moreover, Rd1-Bmi1-/- mice showed 7-8 rows of photoreceptors at 30 days of age (P30), while in Rd1 littermates there was a complete disruption of the outer nuclear layer (ONL). Preliminary ERG results showed a responsiveness of Rd1-Bmi1-/- mice in scotopic vision at P35. In conclusion, Bmi1 loss prevented, or rescued, photoreceptors from degeneration to an unanticipated extent in Rd1 mice. In this chapter, we will first provide a brief review of our work on the cortical NSCs and introduce the Bmi1 oncogene, thus offering a rational to our observations on the retina.

  7. Scaffold attachment factor B1 (SAFB1 heterozygosity does not influence Wnt-1 or DMBA-induced tumorigenesis

    Directory of Open Access Journals (Sweden)

    Lewis Michael T

    2009-03-01

    Full Text Available Abstract Background Scaffold Attachment Factor B1 (SAFB1 is a multifunctional protein which has been implicated in breast cancer previously. We recently generated SAFB1 knockout mice (SAFB1-/-, but pleiotropic phenotypes including high lethality, dwarfism associated with low IGF-I levels, and infertility and subfertility in male and female mice, respectively, do not allow for straightforward tumorigenesis studies in these mice. Therefore, we asked whether SAFB1 heterozygosity would influence tumor development and progression in MMTV-Wnt-1 oncomice or DMBA induced tumorigenicity, in a manner consistent with haploinsufficiency of the remaining allele. Methods We crossed female SAFB1+/- (C57B6/129 mice with male MMTV-Wnt-1 (C57B6/SJL mice to obtain SAFB1+/+/Wnt-1, SAFB1+/-/Wnt-1, and SAFB1+/- mice. For the chemical induced tumorigenesis study we treated 8 weeks old SAFB1+/- and SAFB+/+ BALB/c mice with 1 mg DMBA once per week for 6 weeks. Animals were monitored for tumor incidence and tumor growth. Tumors were characterized by performing H&E, and by staining for markers of proliferation and apoptosis. Results We did not detect significant differences in tumor incidence and growth between SAFB1+/+/Wnt-1 and SAFB1+/-/Wnt-1 mice, and between DMBA-treated SAFB1+/+ and SAFB1+/-mice. Histological evaluation of tumors showed that SAFB1 heterozygosity did not lead to changes in proliferation or apoptosis. There were, however, significant differences in the distribution of tumor histologies with an increase in papillary and cribriform tumors, and a decrease in squamous tumors in the SAFB1+/-/Wnt-1 compared to the SAFB1+/+/Wnt-1 tumors. Of note, DMBA treatment resulted in shortened survival of SAFB1+/- mice compared to their wildtype littermates, however this trend did not reach statistical significance. Conclusion Our data show that SAFB1 heterozygosity does not influence Wnt-1 or DMBA-induced mammary tumorigenesis.

  8. Hair Regenerative Mechanisms of Red Ginseng Oil and Its Major Components in the Testosterone-Induced Delay of Anagen Entry in C57BL/6 Mice.

    Science.gov (United States)

    Truong, Van-Long; Bak, Min Ji; Lee, Changook; Jun, Mira; Jeong, Woo-Sik

    2017-09-08

    Hair loss (alopecia) is a universal problem for numerous people in the world. The present study was conducted to investigate the effects of red ginseng oil (RGO) and its major components on hair re-growth using testosterone (TES)-induced delay of anagen entry in C57BL/6 mice and their mechanisms of action. Seven-week-old C57BL/6 mice were daily treated with TES for 1 h prior to topical application of 10% RGO, 1% linoleic acid (LA), 1% β-sitosterol (SITOS), or 1% bicyclo(10.1.0)tridec-1-ene (BICYCLO) once a day for 28 days. Hair regenerative capacity was significantly restored by treatment of RGO and its major compounds in the TES-treated mice. Histological analysis showed that RGO along with LA and SITOS but not BICYCLO promoted hair growth through early inducing anagen phase that was delayed by TES in mice. Treatment of mice with RGO, LA, or SITOS up-regulated Wnt/β-catenin and Shh/Gli pathways-mediated expression of genes such as β-catenin, Lef-1, Sonic hedgehog, Smoothened, Gli-1, Cyclin D1, and Cyclin E in the TES-treated mice. In addition, RGO and its major components reduced the protein level of TGF-β but enhanced the expression of anti-apoptotic protein Bcl-2. These results suggest that RGO is a potent novel therapeutic natural product for treatment of androgenic alopecia possibly through hair re-growth activity of its major components such as LA and SITOS.

  9. Haploinsufficiency of myostatin protects against aging-related declines in muscle function and enhances the longevity of mice.

    Science.gov (United States)

    Mendias, Christopher L; Bakhurin, Konstantin I; Gumucio, Jonathan P; Shallal-Ayzin, Mark V; Davis, Carol S; Faulkner, John A

    2015-08-01

    The molecular mechanisms behind aging-related declines in muscle function are not well understood, but the growth factor myostatin (MSTN) appears to play an important role in this process. Additionally, epidemiological studies have identified a positive correlation between skeletal muscle mass and longevity. Given the role of myostatin in regulating muscle size, and the correlation between muscle mass and longevity, we tested the hypotheses that the deficiency of myostatin would protect oldest-old mice (28-30 months old) from an aging-related loss in muscle size and contractility, and would extend the maximum lifespan of mice. We found that MSTN(+/-) and MSTN(-/-) mice were protected from aging-related declines in muscle mass and contractility. While no differences were detected between MSTN(+/+) and MSTN(-/-) mice, MSTN(+/-) mice had an approximately 15% increase in maximal lifespan. These results suggest that targeting myostatin may protect against aging-related changes in skeletal muscle and contribute to enhanced longevity. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  10. Hair Regenerative Mechanisms of Red Ginseng Oil and Its Major Components in the Testosterone-Induced Delay of Anagen Entry in C57BL/6 Mice

    Directory of Open Access Journals (Sweden)

    Van-Long Truong

    2017-09-01

    Full Text Available Hair loss (alopecia is a universal problem for numerous people in the world. The present study was conducted to investigate the effects of red ginseng oil (RGO and its major components on hair re-growth using testosterone (TES-induced delay of anagen entry in C57BL/6 mice and their mechanisms of action. Seven-week-old C57BL/6 mice were daily treated with TES for 1 h prior to topical application of 10% RGO, 1% linoleic acid (LA, 1% β-sitosterol (SITOS, or 1% bicyclo(10.1.0tridec-1-ene (BICYCLO once a day for 28 days. Hair regenerative capacity was significantly restored by treatment of RGO and its major compounds in the TES-treated mice. Histological analysis showed that RGO along with LA and SITOS but not BICYCLO promoted hair growth through early inducing anagen phase that was delayed by TES in mice. Treatment of mice with RGO, LA, or SITOS up-regulated Wnt/β-catenin and Shh/Gli pathways-mediated expression of genes such as β-catenin, Lef-1, Sonic hedgehog, Smoothened, Gli-1, Cyclin D1, and Cyclin E in the TES-treated mice. In addition, RGO and its major components reduced the protein level of TGF-β but enhanced the expression of anti-apoptotic protein Bcl-2. These results suggest that RGO is a potent novel therapeutic natural product for treatment of androgenic alopecia possibly through hair re-growth activity of its major components such as LA and SITOS.

  11. Reduction of the cholesterol sensor SCAP in the brains of mice causes impaired synaptic transmission and altered cognitive function.

    Directory of Open Access Journals (Sweden)

    Ryo Suzuki

    Full Text Available The sterol sensor SCAP is a key regulator of SREBP-2, the major transcription factor controlling cholesterol synthesis. Recently, we showed that there is a global down-regulation of cholesterol synthetic genes, as well as SREBP-2, in the brains of diabetic mice, leading to a reduction of cholesterol synthesis. We now show that in mouse models of type 1 and type 2 diabetes, this is, in part, the result of a decrease of SCAP. Homozygous disruption of the Scap gene in the brains of mice causes perinatal lethality associated with microcephaly and gliosis. Mice with haploinsufficiency of Scap in the brain show a 60% reduction of SCAP protein and ~30% reduction in brain cholesterol synthesis, similar to what is observed in diabetic mice. This results in impaired synaptic transmission, as measured by decreased paired pulse facilitation and long-term potentiation, and is associated with behavioral and cognitive changes. Thus, reduction of SCAP and the consequent suppression of cholesterol synthesis in the brain may play an important role in the increased rates of cognitive decline and Alzheimer disease observed in diabetic states.

  12. Combined orthodontic and periodontic treatment in a child with Papillon Lefèvre syndrome.

    Science.gov (United States)

    AlSarheed, Maha A; Al-Sehaibany, Fares S

    2015-08-01

    A 9-year-old girl with Papillon-Lefèvre syndrome (PLS) was treated orthodontically 24 months after the start of mechanical and antibiotic therapy in adjunct with periodontal treatment every 6 weeks. After achieving stable periodontal conditions, orthodontic treatment was commenced to correct the teeth position, facial profile, and maxillary protraction. Following the combination therapy and a failure to detect Actinobacillus actinomycetemcomitans from any site in the oral cavity, orthodontic treatment with a fixed appliance was performed aside from creating space for eruption of permanent teeth. We found that combined periodontal and orthodontic treatment of PLS may be successful with a complex interdisciplinary regimen and close follow up. This is a 2-year follow-up case report of a girl with PLS. Orthodontic and periodontic therapy were offered using combined treatments of orthodontic and periodontal with the benefit of prosthodontic consultation, resulting in a treatment plan.

  13. OBSCN Mutations Associated with Dilated Cardiomyopathy and Haploinsufficiency.

    Directory of Open Access Journals (Sweden)

    Steven Marston

    Full Text Available Studies of the functional consequences of DCM-causing mutations have been limited to a few cases where patients with known mutations had heart transplants. To increase the number of potential tissue samples for direct investigation we performed whole exon sequencing of explanted heart muscle samples from 30 patients that had a diagnosis of familial dilated cardiomyopathy and screened for potentially disease-causing mutations in 58 HCM or DCM-related genes.We identified 5 potentially disease-causing OBSCN mutations in 4 samples; one sample had two OBSCN mutations and one mutation was judged to be not disease-related. Also identified were 6 truncating mutations in TTN, 3 mutations in MYH7, 2 in DSP and one each in TNNC1, TNNI3, MYOM1, VCL, GLA, PLB, TCAP, PKP2 and LAMA4. The mean level of obscurin mRNA was significantly greater and more variable in healthy donor samples than the DCM samples but did not correlate with OBSCN mutations. A single obscurin protein band was observed in human heart myofibrils with apparent mass 960 ± 60 kDa. The three samples with OBSCN mutations had significantly lower levels of obscurin immunoreactive material than DCM samples without OBSCN mutations (45±7, 48±3, and 72±6% of control level.Obscurin levels in DCM controls, donor heart and myectomy samples were the same.OBSCN mutations may result in the development of a DCM phenotype via haploinsufficiency. Mutations in the obscurin gene should be considered as a significant causal factor of DCM, alone or in concert with other mutations.

  14. A rare case of recurrent pyogenic liver abscess since childhood: A case of Papillon-Lefèvre syndrome

    Directory of Open Access Journals (Sweden)

    Somak K Das

    2013-01-01

    Full Text Available Recurrent pyogenic liver abscess since childhood is an uncommon finding in clinical medicine. Papillon-Lefèvre syndrome (PLS is a rare disease characterized by skin lesions caused by palmar-plantar hyperkeratosis, and severe periodontal destruction involving both the primary and permanent dentitions. Till date, more than 200 cases have been reported worldwide. In addition to the skin and oral findings, patients may have immune suppression and an increased susceptibility to bacteria, associated with recurrent pyogenic infections of the skin. Pyogenic liver abscess is an uncommon presentation of this rare syndrome. We present a case of PLS presenting as recurrent pyogenic liver abscess since childhood.

  15. FoxO1 gain of function in the pancreas causes glucose intolerance, polycystic pancreas, and islet hypervascularization.

    Directory of Open Access Journals (Sweden)

    Osamu Kikuchi

    Full Text Available Genetic studies revealed that the ablation of insulin/IGF-1 signaling in the pancreas causes diabetes. FoxO1 is a downstream transcription factor of insulin/IGF-1 signaling. We previously reported that FoxO1 haploinsufficiency restored β cell mass and rescued diabetes in IRS2 knockout mice. However, it is still unclear whether FoxO1 dysregulation in the pancreas could be the cause of diabetes. To test this hypothesis, we generated transgenic mice overexpressing constitutively active FoxO1 specifically in the pancreas (TG. TG mice had impaired glucose tolerance and some of them indeed developed diabetes due to the reduction of β cell mass, which is associated with decreased Pdx1 and MafA in β cells. We also observed increased proliferation of pancreatic duct epithelial cells in TG mice and some mice developed a polycystic pancreas as they aged. Furthermore, TG mice exhibited islet hypervascularities due to increased VEGF-A expression in β cells. We found FoxO1 binds to the VEGF-A promoter and regulates VEGF-A transcription in β cells. We propose that dysregulation of FoxO1 activity in the pancreas could account for the development of diabetes and pancreatic cysts.

  16. Cortical Development Requires Mesodermal Expression of Tbx1, a Gene Haploinsufficient in 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Flore, Gemma; Cioffi, Sara; Bilio, Marchesa; Illingworth, Elizabeth

    2017-03-01

    In mammals, proper temporal control of neurogenesis and neural migration during embryonic development ensures correct formation of the cerebral cortex. Changes in the distribution of cortical projection neurons and interneurons are associated with behavioral disorders and psychiatric diseases, including schizophrenia and autism, suggesting that disrupted cortical connectivity contributes to the brain pathology. TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS), a chromosomal deletion disorder characterized by a greatly increased risk for schizophrenia. We have previously shown that Tbx1 heterozygous mice have reduced prepulse inhibition, a behavioral abnormality that is associated with 22q11.2DS and nonsyndromic schizophrenia. Here, we show that loss of Tbx1 disrupts corticogenesis in mice by promoting premature neuronal differentiation in the medio-lateral embryonic cortex, which gives rise to the somatosensory cortex (S1). In addition, we found altered polarity in both radially migrating excitatory neurons and tangentially migrating inhibitory interneurons. Together, these abnormalities lead to altered lamination in the S1 at the terminal stages of corticogenesis in Tbx1 null mice and similar anomalies in Tbx1 heterozygous adult mice. Finally, we show that mesoderm-specific inactivation of Tbx1 is sufficient to recapitulate the brain phenotype indicating that Tbx1 exerts a cell nonautonomous role in cortical development from the mesoderm. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Mutations in Mll2, an H3K4 Methyltransferase, Result in Insulin Resistance and Impaired Glucose Tolerance in Mice

    Science.gov (United States)

    Schröter, David; Matthews, Helen C.; Bogani, Debora; Moir, Lee; Long, Anna; Church, Christopher; Hugill, Alison; Anstee, Quentin M.; Goldin, Rob; Thursz, Mark; Hollfelder, Florian; Cox, Roger D.

    2013-01-01

    We employed a random mutagenesis approach to identify novel monogenic determinants of type 2 diabetes. Here we show that haplo-insufficiency of the histone methyltransferase myeloid-lineage leukemia (Mll2/Wbp7) gene causes type 2 diabetes in the mouse. We have shown that mice heterozygous for two separate mutations in the SET domain of Mll2 or heterozygous Mll2 knockout mice were hyperglycaemic, hyperinsulinaemic and developed non-alcoholic fatty liver disease. Consistent with previous Mll2 knockout studies, mice homozygous for either ENU mutation (or compound heterozygotes) died during embryonic development at 9.5–14.5 days post coitum. Heterozygous deletion of Mll2 induced in the adult mouse results in a normal phenotype suggesting that changes in chromatin methylation during development result in the adult phenotype. Mll2 has been shown to regulate a small subset of genes, a number of which Neurod1, Enpp1, Slc27a2, and Plcxd1 are downregulated in adult mutant mice. Our results demonstrate that histone H3K4 methyltransferase Mll2 is a component of the genetic regulation necessary for glucose homeostasis, resulting in a specific disease pattern linking chromatin modification with causes and progression of type 2 diabetes, providing a basis for its further understanding at the molecular level. PMID:23826075

  18. Mutations in Mll2, an H3K4 methyltransferase, result in insulin resistance and impaired glucose tolerance in mice.

    Directory of Open Access Journals (Sweden)

    Michelle Goldsworthy

    Full Text Available We employed a random mutagenesis approach to identify novel monogenic determinants of type 2 diabetes. Here we show that haplo-insufficiency of the histone methyltransferase myeloid-lineage leukemia (Mll2/Wbp7 gene causes type 2 diabetes in the mouse. We have shown that mice heterozygous for two separate mutations in the SET domain of Mll2 or heterozygous Mll2 knockout mice were hyperglycaemic, hyperinsulinaemic and developed non-alcoholic fatty liver disease. Consistent with previous Mll2 knockout studies, mice homozygous for either ENU mutation (or compound heterozygotes died during embryonic development at 9.5-14.5 days post coitum. Heterozygous deletion of Mll2 induced in the adult mouse results in a normal phenotype suggesting that changes in chromatin methylation during development result in the adult phenotype. Mll2 has been shown to regulate a small subset of genes, a number of which Neurod1, Enpp1, Slc27a2, and Plcxd1 are downregulated in adult mutant mice. Our results demonstrate that histone H3K4 methyltransferase Mll2 is a component of the genetic regulation necessary for glucose homeostasis, resulting in a specific disease pattern linking chromatin modification with causes and progression of type 2 diabetes, providing a basis for its further understanding at the molecular level.

  19. The Role of DN-GSK3b in Mammary Tumorigenesis

    Science.gov (United States)

    2007-07-01

    transcription factors and dramatically increases their transcriptional activity. Genes up- regulated by TCF/LEF include embryologic genes, such as siamois...in transgenic mice that overexpress Axin, the expression of cyclin D1 is attenuated and increased apoptosis occurs in the mammary epithelia (33

  20. Mice with a Mutation in the Mdm2 Gene That Interferes with MDM2/Ribosomal Protein Binding Develop a Defect in Erythropoiesis.

    Directory of Open Access Journals (Sweden)

    Takuya Kamio

    Full Text Available MDM2, an E3 ubiquitin ligase, is an important negative regulator of tumor suppressor p53. In turn the Mdm2 gene is a transcriptional target of p53, forming a negative feedback loop that is important in cell cycle control. It has recently become apparent that the ubiquitination of p53 by MDM2 can be inhibited when certain ribosomal proteins, including RPL5 and RPL11, bind to MDM2. This inhibition, and the resulting increase in p53 levels has been proposed to be responsible for the red cell aplasia seen in Diamond-Blackfan anemia (DBA and in 5q- myelodysplastic syndrome (MDS. DBA and 5q- MDS are associated with inherited (DBA or acquired (5q- MDS haploinsufficiency of ribosomal proteins. A mutation in Mdm2 causing a C305F amino acid substitution blocks the binding of ribosomal proteins. Mice harboring this mutation (Mdm2C305F, retain a normal p53 response to DNA damage, but lack the p53 response to perturbations in ribosome biogenesis. While studying the interaction between RP haploinsufficiency and the Mdm2C305F mutation we noticed that Mdm2C305F homozygous mice had altered hematopoiesis. These mice developed a mild macrocytic anemia with reticulocytosis. In the bone marrow (BM, these mice showed a significant decrease in Ter119hi cells compared to wild type (WT littermates, while no decrease in the number of mature erythroid cells (Ter119hiCD71low was found in the spleen, which showed compensated bone marrow hematopoiesis. In methylcellulose cultures, BFU-E colonies from the mutant mice were slightly reduced in number and there was a significant reduction in CFU-E colony numbers in mutant mice compared with WT controls (p < 0.01. This erythropoietic defect was abrogated by concomitant p53 deficiency (Trp53ko/ko. Further investigation revealed that in Mdm2C305F animals, there was a decrease in Lin-Sca-1+c-Kit+ (LSK cells, accompanied by significant decreases in multipotent progenitor (MPP cells (p < 0.01. Competitive BM repopulation experiments

  1. Daintain/AIF-1 (Allograft Inflammatory Factor-1) accelerates type 1 diabetes in NOD mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan-Ying, E-mail: biozyy@163.com [College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041 (China); Huang, Xin-Yuan [College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000 (China); Chen, Zheng-Wang [Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Daintain/AIF-1 is over-expressed in the blood of NOD mice suffering from insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 stimulates white blood cell proliferation in NOD mice. Black-Right-Pointing-Pointer Daintain/AIF-1 increases blood glucose levels and triggers type 1 diabetes. Black-Right-Pointing-Pointer Daintain/AIF-1 accelerates insulitis, while its antibody prevents insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 enhances the levels of nitric oxide in the pancreases of NOD mice. -- Abstract: A large body of experimental evidence suggests that cytokines trigger pancreatic {beta}-cell death in type 1 diabetes mellitus. Daintain/AIF-1 (Allograft Inflammatory Factor-1), a specific marker for activated macrophages, is accumulated in the pancreatic islets of pre-diabetic BB rats. In the present study, we demonstrate that daintain/AIF-1 is released into blood and the levels of daintain/AIF-1 in the blood of type 1 diabetes-prone non-obese diabetic (NOD) mice suffering from insulitis are significantly higher than that in healthy NOD mice. When injected intravenously into NOD mice, daintain/AIF-1 stimulates white blood cell proliferation, increases the concentrations of blood glucose, impairs insulin expression, up-regulates nitric oxide (NO) production in pancreases and accelerates diabetes in NOD mice, while the antibody against daintain/AIF-1 delays or prevents insulitis in NOD mice. These results imply daintain/AIF-1 triggers type 1 diabetes probably via arousing immune cells activation and induction of NO production in pancreas of NOD mice.

  2. Germline Mutations in Mtap Cooperate with Myc to Accelerate Tumorigenesis in Mice.

    Directory of Open Access Journals (Sweden)

    Yuwaraj Kadariya

    Full Text Available The gene encoding the methionine salvage pathway methylthioadenosine phosphorylase (MTAP is a tumor suppressor gene that is frequently inactivated in a wide variety of human cancers. In this study, we have examined if heterozygosity for a null mutation in Mtap (Mtap(lacZ could accelerate tumorigenesis development in two different mouse cancer models, Eμ-myc transgenic and Pten(+/- .Mtap Eμ-myc and Mtap Pten mice were generated and tumor-free survival was monitored over time. Tumors were also examined for a variety of histological and protein markers. In addition, microarray analysis was performed on the livers of Mtap(lacZ/+ and Mtap (+/+ mice.Survival in both models was significantly decreased in Mtap(lacZ/+ compared to Mtap(+/+ mice. In Eµ-myc mice, Mtap mutations accelerated the formation of lymphomas from cells in the early pre-B stage, and these tumors tended to be of higher grade and have higher expression levels of ornithine decarboxylase compared to those observed in control Eµ-myc Mtap(+/+ mice. Surprisingly, examination of Mtap status in lymphomas in Eµ-myc Mtap(lacZ/+ and Eµ-myc Mtap(+/+ animals did not reveal significant differences in the frequency of loss of Mtap protein expression, despite having shorter latency times, suggesting that haploinsufficiency of Mtap may be playing a direct role in accelerating tumorigenesis. Consistent with this idea, microarray analysis on liver tissue from age and sex matched Mtap(+/+ and Mtap(lacZ/+ animals found 363 transcripts whose expression changed at least 1.5-fold (P<0.01. Functional categorization of these genes reveals enrichments in several pathways involved in growth control and cancer.Our findings show that germline inactivation of a single Mtap allele alters gene expression and enhances lymphomagenesis in Eµ-myc mice.

  3. LETM1 haploinsufficiency causes mitochondrial defects in cells from humans with Wolf-Hirschhorn syndrome: implications for dissecting the underlying pathomechanisms in this condition

    Directory of Open Access Journals (Sweden)

    Lesley Hart

    2014-05-01

    Full Text Available Wolf-Hirschhorn syndrome (WHS represents an archetypical example of a contiguous gene deletion disorder – a condition comprising a complex set of developmental phenotypes with a multigenic origin. Epileptic seizures, intellectual disability, growth restriction, motor delay and hypotonia are major co-morbidities in WHS. Haploinsufficiency of LETM1, which encodes a mitochondrial inner-membrane protein functioning in ion transport, has been proposed as an underlying pathomechanism, principally for seizures but also for other core features of WHS, including growth and motor delay. Growing evidence derived from several model organisms suggests that reduced LETM1 expression is associated with some element of mitochondrial dysfunction. Surprisingly, LETM1-dependent mitochondrial functional deficits have not previously been described in cells from individuals with WHS. Here, using a unique panel of WHS-patient-derived cell lines with deletions of differing sizes, incorporating LETM1 or not, we show, for the first time, that LETM1 expression is reduced in mitochondria isolated from WHS-patient cells. Furthermore, we show that this is associated with distinct mitochondrial phenotypes, including altered intracellular [Ca2+] levels, dysfunctional mitochondrial transition-pore opening, hyperpolarization and superoxide leakage from resting mitochondria. Interestingly, we find that these phenotypes segregate with seizures in our WHS cohort. Our findings identify novel cellular phenotypes in WHS attributable to a 50% reduction in LETM1 expression level; these phenotypes could underlie and/or contribute to some of the core clinical features of this condition.

  4. LETM1 haploinsufficiency causes mitochondrial defects in cells from humans with Wolf-Hirschhorn syndrome: implications for dissecting the underlying pathomechanisms in this condition.

    Science.gov (United States)

    Hart, Lesley; Rauch, Anita; Carr, Antony M; Vermeesch, Joris R; O'Driscoll, Mark

    2014-05-01

    Wolf-Hirschhorn syndrome (WHS) represents an archetypical example of a contiguous gene deletion disorder - a condition comprising a complex set of developmental phenotypes with a multigenic origin. Epileptic seizures, intellectual disability, growth restriction, motor delay and hypotonia are major co-morbidities in WHS. Haploinsufficiency of LETM1, which encodes a mitochondrial inner-membrane protein functioning in ion transport, has been proposed as an underlying pathomechanism, principally for seizures but also for other core features of WHS, including growth and motor delay. Growing evidence derived from several model organisms suggests that reduced LETM1 expression is associated with some element of mitochondrial dysfunction. Surprisingly, LETM1-dependent mitochondrial functional deficits have not previously been described in cells from individuals with WHS. Here, using a unique panel of WHS-patient-derived cell lines with deletions of differing sizes, incorporating LETM1 or not, we show, for the first time, that LETM1 expression is reduced in mitochondria isolated from WHS-patient cells. Furthermore, we show that this is associated with distinct mitochondrial phenotypes, including altered intracellular [Ca(2+)] levels, dysfunctional mitochondrial transition-pore opening, hyperpolarization and superoxide leakage from resting mitochondria. Interestingly, we find that these phenotypes segregate with seizures in our WHS cohort. Our findings identify novel cellular phenotypes in WHS attributable to a 50% reduction in LETM1 expression level; these phenotypes could underlie and/or contribute to some of the core clinical features of this condition.

  5. Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells.

    Science.gov (United States)

    Kievit, Paul; Howard, Jane K; Badman, Michael K; Balthasar, Nina; Coppari, Roberto; Mori, Hiroyuki; Lee, Charlotte E; Elmquist, Joel K; Yoshimura, Akihiko; Flier, Jeffrey S

    2006-08-01

    Suppressor of cytokine signaling-3 (Socs-3) negatively regulates the action of various cytokines, as well as the metabolic hormones leptin and insulin. Mice with haploinsufficiency of Socs-3, or those with neuronal deletion of Socs-3, are lean and more leptin and insulin sensitive. To examine the role of Socs-3 within specific neurons critical to energy balance, we created mice with selective deletion of Socs-3 within pro-opiomelanocortin (POMC)-expressing cells. These mice had enhanced leptin sensitivity, measured by weight loss and food intake after leptin infusion. On chow diet, glucose homeostasis was improved despite normal weight gain. On a high-fat diet, the rate of weight gain was reduced, due to increased energy expenditure rather than decreased food intake; glucose homeostasis and insulin sensitivity were substantially improved. These studies demonstrate that Socs-3 within POMC neurons regulates leptin sensitivity and glucose homeostasis, and plays a key role in linking high-fat diet to disordered metabolism.

  6. Neurofibromin 1 Impairs Natural Killer T-Cell-Dependent Antitumor Immunity against a T-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Jianyun Liu

    2018-01-01

    Full Text Available Neurofibromin 1 (NF1 is a tumor suppressor gene encoding a Ras GTPase that negatively regulates Ras signaling pathways. Mutations in NF1 are linked to neurofibromatosis type 1, juvenile myelomonocytic leukemia and Watson syndrome. In terms of antitumor immunity, CD1d-dependent natural killer T (NKT cells play an important role in the innate antitumor immune response. Generally, Type-I NKT cells protect (and Type-II NKT cells impair host antitumor immunity. We have previously shown that CD1d-mediated antigen presentation to NKT cells is regulated by cell signaling pathways. To study whether a haploinsufficiency in NF1 would affect CD1d-dependent activation of NKT cells, we analyzed the NKT-cell population as well as the functional expression of CD1d in Nf1+/− mice. Nf1+/− mice were found to have similar levels of NKT cells as wildtype (WT littermates. Interestingly, however, reduced CD1d expression was observed in Nf1+/− mice compared with their WT littermates. When inoculated with a T-cell lymphoma in vivo, Nf1+/− mice survived longer than their WT littermates. Furthermore, blocking CD1d in vivo significantly enhanced antitumor activity in WT, but not in Nf1+/− mice. In contrast, a deficiency in Type-I NKT cells increased antitumor activity in Nf1+/− mice, but not in WT littermates. Therefore, these data suggest that normal NF1 expression impairs CD1d-mediated NKT-cell activation and antitumor activity against a T-cell lymphoma.

  7. EPHA4 haploinsufficiency is responsible for the short stature of a patient with 2q35-q36.2 deletion and Waardenburg syndrome.

    Science.gov (United States)

    Li, Chuan; Chen, Rongyu; Fan, Xin; Luo, Jingsi; Qian, Jiale; Wang, Jin; Xie, Bobo; Shen, Yiping; Chen, Shaoke

    2015-04-11

    Waardenburg syndrome type I (WS1), an auditory-pigmentary genetic disorder, is caused by heterozygous loss-of-function mutations in PAX3. Abnormal physical signs such as dystopia canthorum, patchy hypopigmentation and sensorineural hearing loss are common, but short stature is not associated with WS1. We reported a 4-year and 6 month-old boy with a rare combination of WS1 and severe short stature (83.5 cm (-5.8SD)). His facial features include dystopia canthorum, mild synophrys, slightly up-slanted palpebral fissure, posteriorly rotated ears, alae nasi hypoplasia and micrognathia. No heterochromia was noticed. He had a normal intelligence quotient and hearing. Insulin-like growth factor-1 (IGF-1) was 52.7 ng/ml, lower than the normal range (55 ~ 452 ng/ml) and the peak growth hormone level was 7.57 ng/ml at 90 minutes after taking moderate levodopa and pyridostigmine bromide. The patient exhibited a good response to human growth hormone (rhGH) replacement therapy, showing a 9.2 cm/year growth rate and an improvement of 1 standard deviation (SD) of height after one year treatment. CMA test of patient's DNA revealed a 4.46 Mb de novo deletion at 2q35-q36.2 (hg19; chr2:221,234,146-225,697,363). PAX3 haploinsufficiency is known to cause Waardenburg syndrome. Examining overlapping deletions in patients led to the conclusion that EPHA4 is a novel short stature gene. The finding is supported by the splotch-retarded and epha4 knockout mouse models which both showed growth retardation. We believe this rare condition is caused by the haploinsufficiency of both PAX3 and EPH4 genes. We further reported a growth response to recombinant human growth hormone treatment in this patient.

  8. Differential impact of Met receptor gene interaction with early-life stress on neuronal morphology and behavior in mice.

    Science.gov (United States)

    Heun-Johnson, Hanke; Levitt, Pat

    2018-02-01

    Early adversity in childhood increases the risk of anxiety, mood, and post-traumatic stress disorders in adulthood, and specific gene-by-environment interactions may increase risk further. A common functional variant in the promoter region of the gene encoding the human MET receptor tyrosine kinase (rs1858830 ' C' allele) reduces expression of MET and is associated with altered cortical circuit function and structural connectivity. Mice with reduced Met expression exhibit changes in anxiety-like and conditioned fear behavior, precocious synaptic maturation in the hippocampus, and reduced neuronal arbor complexity and synaptogenesis. These phenotypes also can be produced independently by early adversity in wild-type mice. The present study addresses the outcome of combining early-life stress and genetic influences that alter timing of maturation on enduring functional and structural phenotypes. Using a model of reduced Met expression ( Met +/- ) and early-life stress from postnatal day 2-9, social, anxiety-like, and contextual fear behaviors in later life were measured. Mice that experienced early-life stress exhibited impairments in social interaction, whereas alterations in anxiety-like behavior and fear learning were driven by Met haploinsufficiency, independent of rearing condition. Early-life stress or reduced Met expression decreased arbor complexity of ventral hippocampal CA1 pyramidal neurons projecting to basolateral amygdala. Paradoxically, arbor complexity in Met +/- mice was increased following early-life stress, and thus not different from arbors in wild-type mice raised in control conditions. The changes in dendritic morphology are consistent with the hypothesis that the physiological state of maturation of CA1 neurons in Met +/- mice influences their responsiveness to early-life stress. The dissociation of behavioral and structural changes suggests that there may be phenotype-specific sensitivities to early-life stress.

  9. Enhanced radiosensitivity in 1,25-dihydroxyvitamin D3 deficient mice

    International Nuclear Information System (INIS)

    Zhang Zengli; Ding Xiaofei; Tong Jian; Li Bingyan

    2011-01-01

    To investigate whether impaired osteogenesis resulting from vitamin D deficiency can influence hematopoiesis recovery after radiation, the 25-hydroxyvitamin D-1α-hydroxylase (1α-hydroxylase) gene knockout (KO) mice and wild type (WT) mice were subjected to different doses of gamma ray. The survival rates, peripheral blood cell counts and bone marrow cellularity were studied after irradiation (IR). The survival rates of the KO mice were significantly lower than that of WT mice after 6 or 8 Gy dose of radiation. The recovery of white blood cells in KO mice was significantly delayed compared with that in WT mice after radiation. The red blood cell number in WT mice was observed to increase more than that in KO mice at days 14 and 28 after radiation. The nadir platelet count in KO mice was nearly half of that in WT mice. Dramatically higher bone marrow cell numbers were found in WT mice compared with KO mice. Our findings demonstrate the enhanced radiosensitivity in 1,25-dihydroxyvitamin D3 (1,25-(OH) 2 D 3 ) deficient mice. (author)

  10. Sensorimotor Gating in Neurotensin-1 Receptor Null Mice

    Science.gov (United States)

    Feifel, D.; Pang, Z.; Shilling, P.D.; Melendez, G.; Schreiber, R.; Button, D.

    2009-01-01

    BACKGROUND Converging evidence has implicated endogenous neurotensin (NT) in the pathophysiology of brain processes relevant to schizophrenia. Prepulse inhibition of the startle reflex (PPI) is a measure of sensorimotor gating and considered to be of strong relevance to neuropsychiatric disorders associated with psychosis and cognitive dysfunction. Mice genetically engineered to not express NT display deficits in PPI that model the PPI deficits seen in schizophrenia patients. NT1 receptors have been most strongly implicated in mediating the psychosis relevant effects of NT such as attenuating PPI deficits. To investigate the role of NT1 receptors in the regulation of PPI, we measured baseline PPI in wildtype (WT) and NT1 knockout (KO) mice. We also tested the effects of amphetamine and dizocilpine, a dopamine agonist and NMDA antagonist, respectively, that reduce PPI as well as the NT1 selective receptor agonist, PD149163, known to increase PPI in rats. METHODS Baseline PPI and acoustic startle response were measured in WT and NT1 knockout KO mice. After baseline testing, mice were tested again after receiving intraperatoneal (IP) saline or one of three doses of amphetamine (1.0, 3.0 and 10.0 mg/kg), dizocilpine (0.3, 1.0 and 3.0 mg/kg) and PD149163 (0.5, 2.0 and 6.0 mg/kg) on separate test days. RESULTS Baseline PPI and acoustic startle response in NT1 KO mice were not significantly different from NT1 WT mice. WT and KO mice exhibited similar responses to the PPI-disrupting effects of dizocilpine and amphetamine. PD149163 significantly facilitated PPI (P < 0.004) and decreased the acoustic startle response (P < 0.001) in WT but not NT1 KO mice. CONCLUSIONS The data does not support the regulation of baseline PPI or the PPI disruptive effects of amphetamine or dizocilpine by endogenous NT acting at the NT1 receptor, although they support the antipsychotic potential of pharmacological activation of NT1 receptors by NT1 agonists. PMID:19596359

  11. Rac1 augments Wnt signaling by stimulating β-catenin–lymphoid enhancer factor-1 complex assembly independent of β-catenin nuclear import

    Science.gov (United States)

    Jamieson, Cara; Lui, Christina; Brocardo, Mariana G.; Martino-Echarri, Estefania; Henderson, Beric R.

    2015-01-01

    ABSTRACT β-Catenin transduces the Wnt signaling pathway and its nuclear accumulation leads to gene transactivation and cancer. Rac1 GTPase is known to stimulate β-catenin-dependent transcription of Wnt target genes and we confirmed this activity. Here we tested the recent hypothesis that Rac1 augments Wnt signaling by enhancing β-catenin nuclear import; however, we found that silencing/inhibition or up-regulation of Rac1 had no influence on nuclear accumulation of β-catenin. To better define the role of Rac1, we employed proximity ligation assays (PLA) and discovered that a significant pool of Rac1–β-catenin protein complexes redistribute from the plasma membrane to the nucleus upon Wnt or Rac1 activation. More importantly, active Rac1 was shown to stimulate the formation of nuclear β-catenin–lymphoid enhancer factor 1 (LEF-1) complexes. This regulation required Rac1-dependent phosphorylation of β-catenin at specific serines, which when mutated (S191A and S605A) reduced β-catenin binding to LEF-1 by up to 50%, as revealed by PLA and immunoprecipitation experiments. We propose that Rac1-mediated phosphorylation of β-catenin stimulates Wnt-dependent gene transactivation by enhancing β-catenin–LEF-1 complex assembly, providing new insight into the mechanism of cross-talk between Rac1 and canonical Wnt/β-catenin signaling. PMID:26403202

  12. Comment la bonne Ligue sauva la monarchie. 1593 selon Nicolas Lefèvre de Lezeau

    Directory of Open Access Journals (Sweden)

    Fabrice Micallef

    2011-11-01

    Full Text Available Le chapitre III de la Vie de Marillac par Lefèvre de Lezeau est consacré au passé ligueur du garde des sceaux. Justifier l’appartenance au parti catholique n’est pas une chose facile dans la France du milieu du xviie qui considère majoritairement les ligueurs comme des fanatiques violents ou comme des hypocrites, vendus aux puissances étrangères, notamment l’Espagne. La réhabilitation menée par l’auteur consiste à dire que Marillac faisait partie d’une « bonne ligue », représentée notamment au parlement de Paris. C’est cette bonne ligue parlementaire qui en juin 1593, sous l’impulsion de Marillac, aurait sauvé la monarchie en promulguant le célèbre arrêt Lemaître, cassant toutes les décisions que les états généraux étaient susceptibles de prendre pour transmettre la couronne de France à un prince étranger. Nous avons choisi d’étudier cette source en posant trois questions.1 Les événements rapportés par l’auteur sont-ils crédibles ? Ces faits semblent exacts dans l’ensemble. Mais le point central de la démonstration, à savoir le rôle essentiel de Marillac, n’est à ce jour étayé par aucune autre source. 2 Que nous apprend ce document sur les pratiques d’historien de Lefèvre de Lezeau ? Plusieurs indices nous laissent penser que ce texte pourrait être à l’origine autonome, et aurait été tardivement inséré par l’auteur dans sa Vie de Marillac.3 Quelle est la stratégie d’écriture de l’auteur ? La réhabilitation de la bonne Ligue est rendue acceptable car elle se fait au miroir du parti royaliste : comme le royaliste, le bon ligueur est modéré, courageux, il a le sens de l’état, et c’est un « bon français », gallican et opposé aux ambitions espagnoles. Mais derrière ces éléments consensuels, l’auteur ne remet pas en cause la légitimité de la Ligue ; il en fait même le premier instrument de la Providence pour pacifier la France. Subrepticement

  13. Podocyte changes upon induction of albuminuria in Thy-1.1 transgenic mice.

    NARCIS (Netherlands)

    Smeets, B.; Dijkman, H.B.P.M.; Loeke, N. te; Son, J.P.H.F. van; Steenbergen, E.; Assmann, K.J.M.; Wetzels, J.F.M.; Groenen, P.J.T.A.

    2003-01-01

    BACKGROUND: Thy-1.1 transgenic mice, characterized by ectopic expression of the Thy-1.1 protein on podocytes, spontaneously develop proteinuria and focal glomerulosclerosis (FGS). Injection of a monoclonal antibody (mAb) directed against the Thy-1.1 protein in young transgenic mice induces a massive

  14. Diacylglycerol lipase a knockout mice demonstrate metabolic and behavioral phenotypes similar to those of cannabinoid receptor 1 knockout mice

    Directory of Open Access Journals (Sweden)

    David R Powell

    2015-06-01

    Full Text Available After creating >4650 knockouts (KOs of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1 KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase a or b (Dagla or Daglb, which catalyze biosynthesis of the endocannabinoid (EC 2-Arachidonoylglycerol (2-AG, or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild type (WT littermates; when data from multiple cohorts of adult mice were combined, body fat was 47% and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. In contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride and total cholesterol levels, and after a glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: 1 the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; 2 in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and 3 small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower body weight and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric

  15. PPARgamma Deficiency Counteracts Thymic Senescence

    Directory of Open Access Journals (Sweden)

    David Ernszt

    2017-11-01

    Full Text Available Thymic senescence contributes to increased incidence of infection, cancer and autoimmunity at senior ages. This process manifests as adipose involution. As with other adipose tissues, thymic adipose involution is also controlled by PPARgamma. This is supported by observations reporting that systemic PPARgamma activation accelerates thymic adipose involution. Therefore, we hypothesized that decreased PPARgamma activity could prevent thymic adipose involution, although it may trigger metabolic adverse effects. We have confirmed that both human and murine thymic sections show marked staining for PPARgamma at senior ages. We have also tested the thymic lobes of PPARgamma haplo-insufficient and null mice. Supporting our working hypothesis both adult PPARgamma haplo-insufficient and null mice show delayed thymic senescence by thymus histology, thymocyte mouse T-cell recombination excision circle qPCR and peripheral blood naive T-cell ratio by flow-cytometry. Delayed senescence showed dose–response with respect to PPARgamma deficiency. Functional immune parameters were also evaluated at senior ages in PPARgamma haplo-insufficient mice (null mice do not reach senior ages due to metabolic adverse affects. As expected, sustained and elevated T-cell production conferred oral tolerance and enhanced vaccination efficiency in senior PPARgamma haplo-insufficient, but not in senior wild-type littermates according to ELISA IgG measurements. Of note, humans also show increased oral intolerance issues and decreased protection by vaccines at senior ages. Moreover, PPARgamma haplo-insufficiency also exists in human known as a rare disease (FPLD3 causing metabolic adverse effects, similar to the mouse. When compared to age- and metabolic disorder-matched other patient samples (FPLD2 not affecting PPARgamma activity, FPLD3 patients showed increased human Trec (hTrec values by qPCR (within healthy human range suggesting delayed thymic senescence, in accordance with

  16. Progranulin contributes to endogenous mechanisms of pain defense after nerve injury in mice.

    Science.gov (United States)

    Lim, Hee-Young; Albuquerque, Boris; Häussler, Annett; Myrczek, Thekla; Ding, Aihao; Tegeder, Irmgard

    2012-04-01

    Progranulin haploinsufficiency is associated with frontotemporal dementia in humans. Deficiency of progranulin led to exaggerated inflammation and premature aging in mice. The role of progranulin in adaptations to nerve injury and neuropathic pain are still unknown. Here we found that progranulin is up-regulated after injury of the sciatic nerve in the mouse ipsilateral dorsal root ganglia and spinal cord, most prominently in the microglia surrounding injured motor neurons. Progranulin knockdown by continuous intrathecal spinal delivery of small interfering RNA after sciatic nerve injury intensified neuropathic pain-like behaviour and delayed the recovery of motor functions. Compared to wild-type mice, progranulin-deficient mice developed more intense nociceptive hypersensitivity after nerve injury. The differences escalated with aging. Knockdown of progranulin reduced the survival of dissociated primary neurons and neurite outgrowth, whereas addition of recombinant progranulin rescued primary dorsal root ganglia neurons from cell death induced by nerve growth factor withdrawal. Thus, up-regulation of progranulin after neuronal injury may reduce neuropathic pain and help motor function recovery, at least in part, by promoting survival of injured neurons and supporting regrowth. A deficiency in this mechanism may increase the risk for injury-associated chronic pain. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  17. Increased anxiety-related behaviour in Hint1 knockout mice.

    Science.gov (United States)

    Varadarajulu, Jeeva; Lebar, Maria; Krishnamoorthy, Gurumoorthy; Habelt, Sonja; Lu, Jia; Bernard Weinstein, I; Li, Haiyang; Holsboer, Florian; Turck, Christoph W; Touma, Chadi

    2011-07-07

    Several reports have implicated a role for the histidine triad nucleotide-binding protein-1 (Hint1) in psychiatric disorders. We have studied the emotional behaviour of male Hint1 knockout (Hint1 KO) mice in a battery of tests and performed biochemical analyses on brain tissue. The behavioural analysis revealed that Hint1 KO mice exhibit an increased emotionality phenotype compared to wildtype (WT) mice, while no significant differences in locomotion or general exploratory activity were noted. In the elevated plus-maze (EPM) test, the Hint1 KO animals entered the open arms of the apparatus less often than WT littermates. Similarly, in the dark-light box test, Hint1 KO mice spent less time in the lit compartment and the number of entries were reduced, which further confirmed an increased anxiety-related behaviour. Moreover, the Hint1 KO animals showed significantly more struggling and less floating behaviour in the forced swim test (FST), indicating an increased emotional arousal in aversive situations. Hint1 is known as a protein kinase C (PKC) interacting protein. Western blot analysis showed that PKCγ expression was elevated in Hint1 KO compared to WT mice. Interestingly, PKCγ mRNA levels of the two groups did not show a significant difference, implying a post-transcriptional PKCγ regulation. In addition, PKC enzymatic activity was increased in Hint1 KO compared to WT mice. In summary, our results indicate a role for Hint1 and PKCγ in modulating anxiety-related and stress-coping behaviour in mice. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Metabolomics of the Wolfram Syndrome 1 Gene (Wfs1) Deficient Mice.

    Science.gov (United States)

    Porosk, Rando; Terasmaa, Anton; Mahlapuu, Riina; Soomets, Ursel; Kilk, Kalle

    2017-12-01

    Wolfram syndrome 1 is a rare autosomal recessive neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and deafness. Mutations in the WFS1 gene encoding the wolframin glycoprotein can lead to endoplasmic reticulum stress and unfolded protein responses in cells, but the pathophysiology at whole organism level is poorly understood. In this study, several organs (heart, liver, kidneys, and pancreas) and bodily fluids (trunk blood and urine) of 2- and 6-month old Wfs1 knockout (KO), heterozygote (HZ), and wild-type (WT) mice were analyzed by untargeted and targeted metabolomics using liquid chromatography-mass spectrometry. The key findings were significant perturbations in the metabolism of pancreas and heart before the onset of related clinical signs such as glycosuria that precedes hyperglycemia and thus implies a kidney dysfunction before the onset of classical diabetic nephropathy. The glucose use and gluconeogenesis in KO mice are intensified in early stages, but later the energetic needs are mainly covered by lipolysis. Furthermore, in young mice liver and trunk blood hypouricemia, which in time turns to hyperuricemia, was detected. In summary, we show that the metabolism in Wfs1-deficient mice markedly differs from the metabolism of WT mice in many aspects and discuss the future biological and clinical relevance of these observations.

  19. Enhanced Wnt signaling improves bone mass and strength, but not brittleness, in the Col1a1(+/mov13) mouse model of type I Osteogenesis Imperfecta.

    Science.gov (United States)

    Jacobsen, Christina M; Schwartz, Marissa A; Roberts, Heather J; Lim, Kyung-Eun; Spevak, Lyudmila; Boskey, Adele L; Zurakowski, David; Robling, Alexander G; Warman, Matthew L

    2016-09-01

    Osteogenesis Imperfecta (OI) comprises a group of genetic skeletal fragility disorders. The mildest form of OI, Osteogenesis Imperfecta type I, is frequently caused by haploinsufficiency mutations in COL1A1, the gene encoding the α1(I) chain of type 1 collagen. Children with OI type I have a 95-fold higher fracture rate compared to unaffected children. Therapies for OI type I in the pediatric population are limited to anti-catabolic agents. In adults with osteoporosis, anabolic therapies that enhance Wnt signaling in bone improve bone mass, and ongoing clinical trials are determining if these therapies also reduce fracture risk. We performed a proof-of-principle experiment in mice to determine whether enhancing Wnt signaling in bone could benefit children with OI type I. We crossed a mouse model of OI type I (Col1a1(+/Mov13)) with a high bone mass (HBM) mouse (Lrp5(+/p.A214V)) that has increased bone strength from enhanced Wnt signaling. Offspring that inherited the OI and HBM alleles had higher bone mass and strength than mice that inherited the OI allele alone. However, OI+HBM and OI mice still had bones with lower ductility compared to wild-type mice. We conclude that enhancing Wnt signaling does not make OI bone normal, but does improve bone properties that could reduce fracture risk. Therefore, agents that enhance Wnt signaling are likely to benefit children and adults with OI type 1. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Human Pluripotent Stem Cell-derived Cortical Neurons for High Throughput Medication Screening in Autism: A Proof of Concept Study in SHANK3 Haploinsufficiency Syndrome

    Directory of Open Access Journals (Sweden)

    Hélène Darville

    2016-07-01

    Full Text Available Autism spectrum disorders affect millions of individuals worldwide, but their heterogeneity complicates therapeutic intervention that is essentially symptomatic. A versatile yet relevant model to rationally screen among hundreds of therapeutic options would help improving clinical practice. Here we investigated whether neurons differentiated from pluripotent stem cells can provide such a tool using SHANK3 haploinsufficiency as a proof of principle. A library of compounds was screened for potential to increase SHANK3 mRNA content in neurons differentiated from control human embryonic stem cells. Using induced pluripotent stem cell technology, active compounds were then evaluated for efficacy in correcting dysfunctional networks of neurons differentiated from individuals with deleterious point mutations of SHANK3. Among 202 compounds tested, lithium and valproic acid showed the best efficacy at corrected SHANK3 haploinsufficiency associated phenotypes in cellulo. Lithium pharmacotherapy was subsequently provided to one patient and, after one year, an encouraging decrease in autism severity was observed. This demonstrated that pluripotent stem cell-derived neurons provide a novel cellular paradigm exploitable in the search for specific disease-modifying treatments.

  1. Outbred CD1 mice are as suitable as inbred C57BL/6J mice in performing social tasks.

    Science.gov (United States)

    Hsieh, Lawrence S; Wen, John H; Miyares, Laura; Lombroso, Paul J; Bordey, Angélique

    2017-01-10

    Inbred mouse strains have been used preferentially for behavioral testing over outbred counterparts, even though outbred mice reflect the genetic diversity in the human population better. Here, we compare the sociability of widely available outbred CD1 mice with the commonly used inbred C57BL/6J (C57) mice in the one-chamber social interaction test and the three-chamber sociability test. In the one-chamber task, intra-strain pairs of juvenile, non-littermate, male CD1 or C57 mice display a series of social and aggressive behaviors. While CD1 and C57 pairs spend equal amount of time socializing, CD1 pairs spend significantly more time engaged in aggressive behaviors than C57 mice. In the three-chamber task, sociability of C57 mice was less dependent on acclimation paradigms than CD1 mice. Following acclimation to all three chambers, both groups of age-matched male mice spent more time in the chamber containing a stranger mouse than in the empty chamber, suggesting that CD1 mice are sociable like C57 mice. However, the observed power suggests that it is easier to achieve statistical significance with C57 than CD1 mice. Because the stranger mouse could be considered as a novel object, we assessed for a novelty effect by adding an object. CD1 mice spend more time in the chamber with a stranger mouse than that a novel object, suggesting that their preference is social in nature. Thus, outbred CD1 mice are as appropriate as inbred C57 mice for studying social behavior using either the single or the three-chamber test using a specific acclimation paradigm. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Endogenous IL-1 in cognitive function and anxiety: a study in IL-1RI-/- mice.

    Directory of Open Access Journals (Sweden)

    Carol L Murray

    Full Text Available Interleukin-1 (IL-1 is a key pro-inflammatory cytokine, produced predominantly by peripheral immune cells but also by glia and some neuronal populations within the brain. Its signalling is mediated via the binding of IL-1α or IL-1β to the interleukin-1 type one receptor (IL-1RI. IL-1 plays a key role in inflammation-induced sickness behaviour, resulting in depressed locomotor activity, decreased exploration, reduced food and water intake and acute cognitive deficits. Conversely, IL-1 has also been suggested to facilitate hippocampal-dependent learning and memory: IL-1RI(-/- mice have been reported to show deficits on tasks of visuospatial learning and memory. We sought to investigate whether there is a generalised hippocampal deficit in IL-1RI(-/- animals. Therefore, in the current study we compared wildtype (WT mice to IL-1RI(-/- mice using a variety of hippocampal-dependent learning and memory tasks, as well as tests of anxiety and locomotor activity. We found no difference in performance of the IL-1RI(-/- mice compared to WT mice in a T-maze working memory task. In addition, the IL-1RI(-/- mice showed normal learning in various spatial reference memory tasks including the Y-maze and Morris mater maze, although there was a subtle deficit in choice behaviour in a spatial discrimination, beacon watermaze task. IL-1RI(-/- mice also showed normal memory for visuospatial context in the contextual fear conditioning paradigm. In the open field, IL-1RI(-/- mice showed a significant increase in distance travelled and rearing behaviour compared to the WT mice and in the elevated plus-maze spent more time in the open arms than did the WT animals. The data suggest that, contrary to prior studies, IL-1RI(-/- mice are not robustly impaired on hippocampal-dependent memory and learning but do display open field hyperactivity and decreased anxiety compared to WT mice. The results argue for a careful evaluation of the roles of endogenous IL-1 in hippocampal

  3. Behavioral and electrophysiological characterization of Dyt1 heterozygous knockout mice.

    Science.gov (United States)

    Yokoi, Fumiaki; Chen, Huan-Xin; Dang, Mai Tu; Cheetham, Chad C; Campbell, Susan L; Roper, Steven N; Sweatt, J David; Li, Yuqing

    2015-01-01

    DYT1 dystonia is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most of the patients have a trinucleotide deletion (ΔGAG) corresponding to a glutamic acid in the C-terminal region (torsinA(ΔE)). Dyt1 ΔGAG heterozygous knock-in (KI) mice, which mimic ΔGAG mutation in the endogenous gene, exhibit motor deficits and deceased frequency of spontaneous excitatory post-synaptic currents (sEPSCs) and normal theta-burst-induced long-term potentiation (LTP) in the hippocampal CA1 region. Although Dyt1 KI mice show decreased hippocampal torsinA levels, it is not clear whether the decreased torsinA level itself affects the synaptic plasticity or torsinA(ΔE) does it. To analyze the effect of partial torsinA loss on motor behaviors and synaptic transmission, Dyt1 heterozygous knock-out (KO) mice were examined as a model of a frame-shift DYT1 mutation in patients. Consistent with Dyt1 KI mice, Dyt1 heterozygous KO mice showed motor deficits in the beam-walking test. Dyt1 heterozygous KO mice showed decreased hippocampal torsinA levels lower than those in Dyt1 KI mice. Reduced sEPSCs and normal miniature excitatory post-synaptic currents (mEPSCs) were also observed in the acute hippocampal brain slices from Dyt1 heterozygous KO mice, suggesting that the partial loss of torsinA function in Dyt1 KI mice causes action potential-dependent neurotransmitter release deficits. On the other hand, Dyt1 heterozygous KO mice showed enhanced hippocampal LTP, normal input-output relations and paired pulse ratios in the extracellular field recordings. The results suggest that maintaining an appropriate torsinA level is important to sustain normal motor performance, synaptic transmission and plasticity. Developing therapeutics to restore a normal torsinA level may help to prevent and treat the symptoms in DYT1 dystonia.

  4. Behavioral and electrophysiological characterization of Dyt1 heterozygous knockout mice.

    Directory of Open Access Journals (Sweden)

    Fumiaki Yokoi

    Full Text Available DYT1 dystonia is an inherited movement disorder caused by mutations in DYT1 (TOR1A, which codes for torsinA. Most of the patients have a trinucleotide deletion (ΔGAG corresponding to a glutamic acid in the C-terminal region (torsinA(ΔE. Dyt1 ΔGAG heterozygous knock-in (KI mice, which mimic ΔGAG mutation in the endogenous gene, exhibit motor deficits and deceased frequency of spontaneous excitatory post-synaptic currents (sEPSCs and normal theta-burst-induced long-term potentiation (LTP in the hippocampal CA1 region. Although Dyt1 KI mice show decreased hippocampal torsinA levels, it is not clear whether the decreased torsinA level itself affects the synaptic plasticity or torsinA(ΔE does it. To analyze the effect of partial torsinA loss on motor behaviors and synaptic transmission, Dyt1 heterozygous knock-out (KO mice were examined as a model of a frame-shift DYT1 mutation in patients. Consistent with Dyt1 KI mice, Dyt1 heterozygous KO mice showed motor deficits in the beam-walking test. Dyt1 heterozygous KO mice showed decreased hippocampal torsinA levels lower than those in Dyt1 KI mice. Reduced sEPSCs and normal miniature excitatory post-synaptic currents (mEPSCs were also observed in the acute hippocampal brain slices from Dyt1 heterozygous KO mice, suggesting that the partial loss of torsinA function in Dyt1 KI mice causes action potential-dependent neurotransmitter release deficits. On the other hand, Dyt1 heterozygous KO mice showed enhanced hippocampal LTP, normal input-output relations and paired pulse ratios in the extracellular field recordings. The results suggest that maintaining an appropriate torsinA level is important to sustain normal motor performance, synaptic transmission and plasticity. Developing therapeutics to restore a normal torsinA level may help to prevent and treat the symptoms in DYT1 dystonia.

  5. Bex1 knock out mice show altered skeletal muscle regeneration

    International Nuclear Information System (INIS)

    Koo, Jae Hyung; Smiley, Mark A.; Lovering, Richard M.; Margolis, Frank L.

    2007-01-01

    Bex1 and Calmodulin (CaM) are upregulated during skeletal muscle regeneration. We confirm this finding and demonstrate the novel finding that they interact in a calcium-dependent manner. To study the role of Bex1 and its interaction with CaM in skeletal muscle regeneration, we generated Bex1 knock out (Bex1-KO) mice. These mice appeared to develop normally and are fertile, but displayed a functional deficit in exercise performance compared to wild type (WT) mice. After intramuscular injection of cardiotoxin, which causes extensive and reproducible myotrauma followed by recovery, regenerating muscles of Bex1-KO mice exhibited elevated and prolonged cell proliferation, as well as delayed cell differentiation, compared to WT mice. Thus, our results provide the first evidence that Bex1-KO mice show altered muscle regeneration, and allow us to propose that the interaction of Bex1 with Ca 2+ /CaM may be involved in skeletal muscle regeneration

  6. PER1 Phosphorylation Specifies Feeding Rhythm in Mice

    Directory of Open Access Journals (Sweden)

    Zhiwei Liu

    2014-06-01

    Full Text Available Organization of circadian behavior, physiology, and metabolism is important for human health. An S662G mutation in hPER2 has been linked to familial advanced sleep-phase syndrome (FASPS. Although the paralogous phosphorylation site S714 in PER1 is conserved in mice, its specific function in circadian organization remains unknown. Here, we find that the PER1S714G mutation accelerates the molecular feedback loop. Furthermore, hPER1S714G mice, but not hPER2S662G mice, exhibit peak time of food intake that is several hours before daily energy expenditure peaks. Both the advanced feeding behavior and the accelerated clock disrupt the phase of expression of several key metabolic regulators in the liver and adipose tissue. Consequently, hPER1S714G mice rapidly develop obesity on a high-fat diet. Our studies demonstrate that PER1 and PER2 are linked to different downstream pathways and that PER1 maintains coherence between the circadian clock and energy metabolism.

  7. Differentiation-inducing factor-1 suppresses gene expression of cyclin D1 in tumor cells

    International Nuclear Information System (INIS)

    Yasmin, Tania; Takahashi-Yanaga, Fumi; Mori, Jun; Miwa, Yoshikazu; Hirata, Masato; Watanabe, Yutaka; Morimoto, Sachio; Sasaguri, Toshiyuki

    2005-01-01

    To determine the mechanism by which differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium discoideum, inhibits tumor cell proliferation, we examined the effect of DIF-1 on the gene expression of cyclin D1. DIF-1 strongly reduced the expression of cyclin D1 mRNA and correspondingly decreased the amount of β-catenin in HeLa cells and squamous cell carcinoma cells. DIF-1 activated glycogen synthase kinase-3β (GSK-3β) and inhibition of GSK-3β attenuated the DIF-1-induced β-catenin degradation, indicating the involvement of GSK-3β in this effect. Moreover, DIF-1 reduced the activities of T-cell factor (TCF)/lymphoid enhancer factor (LEF) reporter plasmid and a reporter gene driven by the human cyclin D1 promoter. Eliminating the TCF/LEF consensus site from the cyclin D1 promoter diminished the effect of DIF-1. These results suggest that DIF-1 inhibits Wnt/β-catenin signaling, resulting in the suppression of cyclin D1 promoter activity

  8. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1.

    Directory of Open Access Journals (Sweden)

    Sandra J Feeney

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.

  9. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice.

    Science.gov (United States)

    Gaillard, Dany; Bowles, Spencer G; Salcedo, Ernesto; Xu, Mingang; Millar, Sarah E; Barlow, Linda A

    2017-08-01

    Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds.

  10. Wound Healing in Mac-1 Deficient Mice

    Science.gov (United States)

    2017-05-01

    Dentistry, University of Illinois at Chicago, Chicago, IL, USA. 2 Department of Defense Biotechnology High Performance Computing Software...study, we used a commercially available Mac-1 deficient strain to examine whether this deficit 5 extends to slightly smaller wounds and incisional...levels of Collagen I and Collagen III in wounds from the two strains of mice at any time point. Unwounded skin from both WT and Mac-1 -/- mice contained

  11. Reduced hepatic tumor incidence in cyclin G1-deficient mice

    DEFF Research Database (Denmark)

    Jensen, Michael Rugaard; Factor, Valentina M; Fantozzi, Anna

    2003-01-01

    found that the p53 levels in the cyclin G1-deficient mice are 2-fold higher that in wild-type mice. Moreover, we showed that treatment of mice with the alkylating agent 1,4-bis[N,N'-di(ethylene)-phosphamide]piperazine (Dipin), followed by partial hepatectomy, decreased G1-S transition in cyclin G1-null...

  12. Human Parvovirus B19 NS1 Protein Aggravates Liver Injury in NZB/W F1 Mice

    Science.gov (United States)

    Tsai, Chun-Chou; Chiu, Chun-Ching; Hsu, Jeng-Dong; Hsu, Huai-Sheng; Tzang, Bor-Show; Hsu, Tsai-Ching

    2013-01-01

    Human parvovirus B19 (B19) has been associated with a variety of diseases. However, the influence of B19 viral proteins on hepatic injury in SLE is still obscure. To elucidate the effects of B19 viral proteins on livers in SLE, recombinant B19 NS1, VP1u or VP2 proteins were injected subcutaneously into NZB/W F1 mice, respectively. Significant expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were detected in NZB/W F1 mice receiving B19 NS1 as compared to those mice receiving PBS. Markedly hepatocyte disarray and lymphocyte infiltration were observed in livers from NZB/WF 1 mice receiving B19 NS1 as compared to those mice receiving PBS. Additionally, significant increases of Tumor Necrosis Factor –α (TNF-α), TNF-α receptor, IκB kinase –α (IKK-α), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (IκB) and nuclear factor-kappa B (NF-κB) were detected in livers from NZB/W F1 mice receiving B19 NS1 as compared to those mice receiving PBS. Accordingly, significant increases of matrix metalloproteinase-9 (MMP9) and U-plasminogen activator (uPA) were also detected in livers from NZB/W F1 mice receiving B19 NS1 as compared to those mice receiving PBS. Contrarily, no significant variation on livers from NZB/W F1 mice receiving B19 VP1u or VP2 was observed as compared to those mice receiving PBS. These findings firstly demonstrated the aggravated effects of B19 NS1 but not VP1u or VP2 protein on hepatic injury and provide a clue in understanding the role of B19 NS1 on hepatic injury in SLE. PMID:23555760

  13. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    Science.gov (United States)

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  14. TAP1-deficiency does not alter atherosclerosis development in Apoe-/- mice.

    Directory of Open Access Journals (Sweden)

    Daniel Kolbus

    Full Text Available Antigen presenting cells (APC have the ability to present both extra-cellular and intra-cellular antigens via MHC class I molecules to CD8(+ T cells. The cross presentation of extra-cellular antigens is reduced in mice with deficient Antigen Peptide Transporter 1 (TAP1-dependent MHC class I antigen presentation, and these mice are characterized by a diminished CD8(+ T cell population. We have recently reported an increased activation of CD8(+ T cells in hypercholesterolemic Apoe(-/- mice. Therefore, this study included TAP1-deficient Apoe(-/- mice (Apoe(-/-Tap1(-/- to test the atherogenicity of CD8(+ T cells and TAP1-dependent cross presentation in a hypercholesterolemic environment. As expected the CD8(+ T cell numbers were low in Apoe(-/-Tap1(-/- mice in comparison to Apoe(-/- mice, constituting ~1% of the lymphocyte population. In spite of this there were no differences in the extent of atherosclerosis as assessed by en face Oil Red O staining of the aorta and cross-sections of the aortic root between Apoe(-/-Tap1(-/- and Apoe(-/- mice. Moreover, no differences were detected in lesion infiltration of macrophages or CD3(+ T cells in Apoe(-/-Tap1(-/- compared to Apoe(-/- mice. The CD3(+CD4(+ T cell fraction was increased in Apoe(-/-Tap1(-/- mice, suggesting a compensation for the decreased CD8(+ T cell population. Interestingly, the fraction of CD8(+ effector memory T cells was increased but this appeared to have little impact on the atherosclerosis development.In conclusion, Apoe(-/-Tap1(-/- mice develop atherosclerosis equal to Apoe(-/- mice, indicating a minor role for CD8(+ T cells and TAP1-dependent antigen presentation in the disease process.

  15. Altered Circadian Food Anticipatory Activity Rhythms in PACAP Receptor 1 (PAC1 Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Jens Hannibal

    Full Text Available Light signals from intrinsically photosensitive retinal ganglion cells (ipRGCs entrain the circadian clock and regulate negative masking. Two neurotransmitters, glutamate and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP, found in the ipRGCs transmit light signals to the brain via glutamate receptors and the specific PACAP type 1 (PAC1 receptor. Light entrainment occurs during the twilight zones and has little effect on clock phase during daytime. When nocturnal animals have access to food only for a few hours during the resting phase at daytime, they adapt behavior to the restricted feeding (RF paradigm and show food anticipatory activity (FAA. A recent study in mice and rats demonstrating that light regulates FAA prompted us to investigate the role of PACAP/PAC1 signaling in the light mediated regulation of FAA. PAC1 receptor knock out (PAC1-/- and wild type (PAC1+/+ mice placed in running wheels were examined in a full photoperiod (FPP of 12:12 h light/dark (LD and a skeleton photoperiod (SPP 1:11:1:11 h L:DD:L:DD at 300 and 10 lux light intensity. Both PAC1-/- mice and PAC1+/+ littermates entrained to FPP and SPP at both light intensities. However, when placed in RF with access to food for 4-5 h during the subjective day, a significant change in behavior was observed in PAC1-/- mice compared to PAC1+/+ mice. While PAC1-/- mice showed similar FAA as PAC1+/+ animals in FPP at 300 lux, PAC1-/- mice demonstrated an advanced onset of FAA with a nearly 3-fold increase in amplitude compared to PAC1+/+ mice when placed in SPP at 300 lux. The same pattern of FAA was observed at 10 lux during both FPP and SPP. The present study indicates a role of PACAP/PAC1 signaling during light regulated FAA. Most likely, PACAP found in ipRGCs mediating non-image forming light information to the brain is involved.

  16. p21WAF1/Cip1/Sdi1 knockout mice respond to doxorubicin with reduced cardiotoxicity

    International Nuclear Information System (INIS)

    Terrand, Jerome; Xu, Beibei; Morrissy, Steve; Dinh, Thai Nho; Williams, Stuart; Chen, Qin M.

    2011-01-01

    Doxorubicin (Dox) is an antineoplastic agent that can cause cardiomyopathy in humans and experimental animals. As an inducer of reactive oxygen species and a DNA damaging agent, Dox causes elevated expression of p21 WAF1/Cip1/Sdi1 (p21) gene. Elevated levels of p21 mRNA and p21 protein have been detected in the myocardium of mice following Dox treatment. With chronic treatment of Dox, wild type (WT) animals develop cardiomyopathy evidenced by elongated nuclei, mitochondrial swelling, myofilamental disarray, reduced cardiac output, reduced ejection fraction, reduced left ventricular contractility, and elevated expression of ANF gene. In contrast, p21 knockout (p21KO) mice did not show significant changes in the same parameters in response to Dox treatment. In an effort to understand the mechanism of the resistance against Dox induced cardiomyopathy, we measured levels of antioxidant enzymes and found that p21KO mice did not contain elevated basal or inducible levels of glutathione peroxidase and catalase. Measurements of 6 circulating cytokines indicated elevation of IL-6, IL-12, IFNγ and TNFα in Dox treated WT mice but not p21KO mice. Dox induced elevation of IL-6 mRNA was detected in the myocardium of WT mice but not p21KO mice. While the mechanism of the resistance against Dox induced cardiomyopathy remains unclear, lack of inflammatory response may contribute to the observed cardiac protection in p21KO mice. -- Highlights: ► Doxorubicin induces p21 elevation in the myocardium. ► Doxorubicin causes dilated cardiomyopathy in wild type mice. ► p21 Knockout mice are resistant against doxorubicin induced cardiomyopathy. ► Lack of inflammatory response correlates with the resistance in p21 knockout mice.

  17. A Transition Zone Showing Highly Discontinuous or Alternating Levels of Stem Cell and Proliferation Markers Characterizes the Development of PTEN-Haploinsufficient Colorectal Cancer.

    Science.gov (United States)

    Arvai, Kevin J; Hsu, Ya-Hsuan; Lee, Lobin A; Jones, Dan

    2015-01-01

    Stepwise acquisition of oncogene mutations and deletion/inactivation of tumor suppressor genes characterize the development of colorectal cancer (CRC). These genetic events interact with discrete morphologic transitions from hyperplastic mucosa to adenomatous areas, followed by in situ malignant transformation and finally invasive carcinoma. The goal of this study was to identify tissue markers of the adenoma-carcinoma morphogenetic transitions in CRC. We analyzed the patterns of expression of growth regulatory and stem cell markers across these distinct morphologic transition zones in 735 primary CRC tumors. In 202 cases with preserved adenoma-adenocarcinoma transition, we identified, in 37.1% of cases, a zone of adenomatous epithelium, located immediately adjacent to the invasive component, that showed rapidly alternating intraglandular stretches of PTEN+ and PTEN- epithelium. This zone exactly overlapped with similar alternating expression of Ki-67 and inversely with the transforming growth factor-beta (TGF-β) growth regulator SMAD4. These zones also show parallel alternating levels and/or subcellular localization of multiple cancer stem/progenitor cell (CSC) markers, including β-catenin/CTNNB1, ALDH1, and CD44. PTEN was always re-expressed in the invasive tumor in these cases, unlike those with complete loss of PTEN expression. Genomic microarray analysis of CRC with prominent CSC-like expansions demonstrated a high frequency of PTEN genomic deletion/haploinsufficiency in tumors with CSC-like transition zones (62.5%) but not in tumors with downregulated but non-alternating PTEN expression (14.3%). There were no significant differences in the levels of KRAS mutation or CTNNB1 mutation in CSC-like tumors as compared to unselected CRC cases. In conclusion, we have identified a distinctive CSC-like pre-invasive transition zone in PTEN-haploinsufficient CRC that shows convergent on-off regulation of the PTEN/AKT, TGF-β/SMAD and Wnt/β-catenin pathways. This

  18. A Transition Zone Showing Highly Discontinuous or Alternating Levels of Stem Cell and Proliferation Markers Characterizes the Development of PTEN-Haploinsufficient Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Kevin J Arvai

    Full Text Available Stepwise acquisition of oncogene mutations and deletion/inactivation of tumor suppressor genes characterize the development of colorectal cancer (CRC. These genetic events interact with discrete morphologic transitions from hyperplastic mucosa to adenomatous areas, followed by in situ malignant transformation and finally invasive carcinoma. The goal of this study was to identify tissue markers of the adenoma-carcinoma morphogenetic transitions in CRC.We analyzed the patterns of expression of growth regulatory and stem cell markers across these distinct morphologic transition zones in 735 primary CRC tumors. In 202 cases with preserved adenoma-adenocarcinoma transition, we identified, in 37.1% of cases, a zone of adenomatous epithelium, located immediately adjacent to the invasive component, that showed rapidly alternating intraglandular stretches of PTEN+ and PTEN- epithelium. This zone exactly overlapped with similar alternating expression of Ki-67 and inversely with the transforming growth factor-beta (TGF-β growth regulator SMAD4. These zones also show parallel alternating levels and/or subcellular localization of multiple cancer stem/progenitor cell (CSC markers, including β-catenin/CTNNB1, ALDH1, and CD44. PTEN was always re-expressed in the invasive tumor in these cases, unlike those with complete loss of PTEN expression. Genomic microarray analysis of CRC with prominent CSC-like expansions demonstrated a high frequency of PTEN genomic deletion/haploinsufficiency in tumors with CSC-like transition zones (62.5% but not in tumors with downregulated but non-alternating PTEN expression (14.3%. There were no significant differences in the levels of KRAS mutation or CTNNB1 mutation in CSC-like tumors as compared to unselected CRC cases.In conclusion, we have identified a distinctive CSC-like pre-invasive transition zone in PTEN-haploinsufficient CRC that shows convergent on-off regulation of the PTEN/AKT, TGF-β/SMAD and Wnt

  19. Short stature caused by isolated SHOX gene haploinsufficiency: update on the diagnosis and treatment.

    Science.gov (United States)

    Jorge, Alexander A L; Funari, Mariana Fa; Nishi, Mirian Y; Mendonca, Berenice B

    2010-12-01

    Heterozygous SHOX defects are observed in about 50 to 90% of patients with Leri-Weill dyschondrosteosis (LWD), a common dominant inherited skeletal dysplasia; and in 2 to 15% of children with idiopathic short stature (ISS), indicating that SHOX defects are the most important monogenetic cause of short stature. In addition, children selected by disproportionate idiopathic short stature had a higher frequency of SHOX mutations (22%). A careful clinical evaluation of family members with short stature is recommended since it usually revealed LWD patients in families first classified as having ISS or familial short stature. SHOX-molecular analysis is indicated in families with LWD and ISS children with disproportionate short stature. Treatment with recombinant human growth hormone is considered an accepted approach to treat short stature associated with isolated SHOX defect. Here we review clinical, molecular and therapeutic aspects of SHOX haploinsufficiency.

  20. Recql4 haploinsufficiency in mice leads to defects in osteoblast progenitors: Implications for low bone mass phenotype

    International Nuclear Information System (INIS)

    Yang Jieping; Murthy, Sreemala; Winata, Therry; Werner, Sean; Abe, Masumi; Prahalad, Agasanur K.; Hock, Janet M.

    2006-01-01

    The cellular and molecular mechanisms that underlie skeletal abnormalities in defective Recql4-related syndromes are poorly understood. Our objective in this study was to explore the function of Recql4 in osteoblast biology both in vitro and in vivo. Immunohistochemistry on adult mouse bone showed Recql4 protein localization in active osteoblasts around growth plate, but not in fully differentiated osteocytes. Consistent with this finding, Recql4 gene expression was high in proliferating mouse osteoblastic MC3T3.E1 cells and decreased as cells progressively lost their proliferation activity during differentiation. Recql4 overexpression in osteoblastic cells exhibited higher proliferation activity, while its depletion impeded cell growth. In addition, bone marrow stromal cells from male Recql4+/- mice had fewer progenitor cells, including osteoprogenitors, indicated by reduced total fibroblast colony forming units (CFU-f) and alkaline phosphatase-positive CFU-f colonies concomitant with reduced bone mass. These findings provide evidence that Recql4 functions as a regulatory protein during osteoprogenitor proliferation, a critical cellular event during skeleton development

  1. Rearrangement of RAG-1 recombinase gene in radiation-sensitive ''wasted'' mice

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Libertin, C.R.; Weaver, P.; Churchill, M.; Chang-Liu, C.M.

    1993-01-01

    Mice recessive for the autosomal gene ''wasted'' (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (RAG-1/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed expression of RAG-1 mRNA in spinal cord (but not brain) of control mice; no expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/· mice). In thymus tissue, a small RAG-1 transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/· mice, a two-fold increase in RAG-1 MRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/· and not from wst/wst or parental control BCF 1 mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage

  2. Rearrangement of RAG-1 recombinase gene in radiation-sensitive ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E. [Argonne National Lab., IL (United States)]|[Loyola Univ., Maywood, IL (United States); Libertin, C.R.; Weaver, P. [Loyola Univ., Maywood, IL (United States); Churchill, M.; Chang-Liu, C.M. [Argonne National Lab., IL (United States)

    1993-09-01

    Mice recessive for the autosomal gene ``wasted`` (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (RAG-1/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed expression of RAG-1 mRNA in spinal cord (but not brain) of control mice; no expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/{center_dot} mice). In thymus tissue, a small RAG-1 transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{center_dot} mice, a two-fold increase in RAG-1 MRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/{center_dot} and not from wst/wst or parental control BCF{sub 1} mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  3. Mice Lacking EGR1 Have Impaired Clock Gene (BMAL1) Oscillation, Locomotor Activity, and Body Temperature.

    Science.gov (United States)

    Riedel, Casper Schwartz; Georg, Birgitte; Jørgensen, Henrik L; Hannibal, Jens; Fahrenkrug, Jan

    2018-01-01

    Early growth response transcription factor 1 (EGR1) is expressed in the suprachiasmatic nucleus (SCN) after light stimulation. We used EGR1-deficient mice to address the role of EGR1 in the clock function and light-induced resetting of the clock. The diurnal rhythms of expression of the clock genes BMAL1 and PER1 in the SCN were evaluated by semi-quantitative in situ hybridization. We found no difference in the expression of PER1 mRNA between wildtype and EGR1-deficient mice; however, the daily rhythm of BMAL1 mRNA was completely abolished in the EGR1-deficient mice. In addition, we evaluated the circadian running wheel activity, telemetric locomotor activity, and core body temperature of the mice. Loss of EGR1 neither altered light-induced phase shifts at subjective night nor affected negative masking. Overall, circadian light entrainment was found in EGR1-deficient mice but they displayed a reduced locomotor activity and an altered temperature regulation compared to wild type mice. When placed in running wheels, a subpopulation of EGR1-deficient mice displayed a more disrupted activity rhythm with no measurable endogenous period length (tau). In conclusion, the present study provides the first evidence that the circadian clock in the SCN is disturbed in mice deficient of EGR1.

  4. Heme oxygenase-1 modulates degeneration of the intervertebral disc after puncture in Bach 1 deficient mice.

    Science.gov (United States)

    Ohta, Ryo; Tanaka, Nobuhiro; Nakanishi, Kazuyoshi; Kamei, Naosuke; Nakamae, Toshio; Izumi, Bunichiro; Fujioka, Yuki; Ochi, Mitsuo

    2012-09-01

    Intervertebral disc degeneration is considered to be a major feature of low back pain. Furthermore, oxidative stress has been shown to be an important factor in degenerative diseases such as osteoarthritis and is considered a cause of intervertebral disc degeneration. The purpose of this study was to clarify the correlation between oxidative stress and intervertebral disc degeneration using Broad complex-Tramtrack-Bric-a-brac and cap'n'collar homology 1 deficient (Bach 1-/-) mice which highly express heme oxygenase-1 (HO-1). HO-1 protects cells from oxidative stress. Caudal discs of 12-week-old and 1-year-old mice were evaluated as age-related models. Each group and period, 5 mice (a total of 20 mice, a total of 20 discs) were evaluated as age-related model. C9-C10 caudal discs in 12-week-old Bach 1-/- and wild-type mice were punctured using a 29-gauge needle as annulus puncture model. Each group and period, 5 mice (a total of 60 mice, a total of 60 discs) were evaluated. The progress of disc degeneration was evaluated at pre-puncture, 1, 2, 4, 8 and 12 weeks post-puncture. Radiographic, histologic and immunohistologic analysis were performed to compare between Bach 1-/- and wild-type mice. In the age-related model, there were no significant differences between Bach 1-/- and wild-type mice radiologically and histologically. However, in the annulus puncture model, histological scoring revealed significant difference at 8 and 12 weeks post-puncture. The number of HO-1 positive cells was significantly greater in Bach 1-/- mice at every period. The apoptosis rate was significantly lower at 1 and 2 weeks post-puncture in Bach 1-/- mice. Oxidative stress prevention may avoid the degenerative process of the intervertebral disc after puncture, reducing the number of apoptosis cells. High HO-1 expression may also inhibit oxidative stress and delay the process of intervertebral disc degeneration.

  5. Absence of Wip1 partially rescues Atm deficiency phenotypes in mice

    Science.gov (United States)

    Darlington, Yolanda; Nguyen, Thuy-Ai; Moon, Sung-Hwan; Herron, Alan; Rao, Pulivarthi; Zhu, Chengming; Lu, Xiongbin; Donehower, Lawrence A.

    2011-01-01

    Wildtype p53-Induced Phosphatase 1 (WIP1) is a serine/threonine phosphatase that dephosphorylates proteins in the ataxia telangiectasia mutated (ATM)-initiated DNA damage response pathway. WIP1 may play a homeostatic role in ATM signaling by returning the cell to a normal pre-stress state following completion of DNA repair. To better understand the effects of WIP1 on ATM signaling, we crossed Atm-deficient mice to Wip1-deficient mice and characterized phenotypes of the double knockout progeny. We hypothesized that the absence of Wip1 might rescue Atm deficiency phenotypes. Atm null mice, like ATM-deficient humans with the inherited syndrome ataxia telangiectasia, exhibit radiation sensitivity, fertility defects, and are T-cell lymphoma prone. Most double knockout mice were largely protected from lymphoma development and had a greatly extended lifespan compared to Atm null mice. Double knockout mice had increased p53 and H2AX phosphorylation and p21 expression compared to their Atm null counterparts, indicating enhanced p53 and DNA damage responses. Additionally, double knockout splenocytes displayed reduced chromosomal instability compared to Atm null mice. Finally, doubly null mice were partially rescued from infertility defects observed in Atm null mice. These results indicate that inhibition of WIP1 may represent a useful strategy for cancer treatment in general and A-T patients in particular. PMID:21765465

  6. SIX2 haploinsufficiency causes conductive hearing loss with ptosis in humans.

    Science.gov (United States)

    Guan, Jing; Wang, Dayong; Cao, Wenjian; Zhao, Yali; Du, Renqian; Yuan, Hu; Liu, Qiong; Lan, Lan; Zong, Liang; Yang, Ju; Yin, Zifang; Han, Bing; Zhang, Feng; Wang, Qiuju

    2016-11-01

    The ossicles represent one of the most fundamental morphological features in evolutionary biology of the mammalians. The mobile ossicular morphology abnormalities result in the severe conductive hearing loss. Development and patterning of the middle ear malformation depend on genetic and environmental causes. However, the genetic basis for the risk of congenital ossicle malformation is poorly understood. We show here nine affected individuals in a Chinese pedigree who had bilateral conductive hearing loss with ptosis. We performed whole-genome sequencing and array comparative genomic hybridization (CGH) analysis on DNA samples from the Chinese pedigree. We confirmed the presence of a novel 60 kb heterozygous deletion in size, encompassing SIX2 in our family. Mutation screening in 169 sporadic cases with external ear and middle ear malformations identified no pathogenic variant or polymorphism. We suggest SIX2 haploinsufficiency as a potential congenital factor could be attributed to developmental malformation of the middle ear ossicles and upper eyelid. To the best of our knowledge, this is the first report to provide a description of copy number variation in the SIX2 gene resulting in syndromic conductive hearing loss.

  7. Mcph1-deficient mice reveal a role for MCPH1 in otitis media.

    Directory of Open Access Journals (Sweden)

    Jing Chen

    Full Text Available Otitis media is a common reason for hearing loss, especially in children. Otitis media is a multifactorial disease and environmental factors, anatomic dysmorphology and genetic predisposition can all contribute to its pathogenesis. However, the reasons for the variable susceptibility to otitis media are elusive. MCPH1 mutations cause primary microcephaly in humans. So far, no hearing impairment has been reported either in the MCPH1 patients or mouse models with Mcph1 deficiency. In this study, Mcph1-deficient (Mcph1(tm1a (/tm1a mice were produced using embryonic stem cells with a targeted mutation by the Sanger Institute's Mouse Genetics Project. Auditory brainstem response measurements revealed that Mcph1(tm1a (/tm1a mice had mild to moderate hearing impairment with around 70% penetrance. We found otitis media with effusion in the hearing-impaired Mcph1(tm1a (/tm1a mice by anatomic and histological examinations. Expression of Mcph1 in the epithelial cells of middle ear cavities supported its involvement in the development of otitis media. Other defects of Mcph1(tm1a (/tm1a mice included small skull sizes, increased micronuclei in red blood cells, increased B cells and ocular abnormalities. These findings not only recapitulated the defects found in other Mcph1-deficient mice or MCPH1 patients, but also revealed an unexpected phenotype, otitis media with hearing impairment, which suggests Mcph1 is a new gene underlying genetic predisposition to otitis media.

  8. PLAG1 deficiency impairs spermatogenesis and sperm motility in mice.

    Science.gov (United States)

    Juma, Almas R; Grommen, Sylvia V H; O'Bryan, Moira K; O'Connor, Anne E; Merriner, D Jo; Hall, Nathan E; Doyle, Stephen R; Damdimopoulou, Pauliina E; Barriga, Daniel; Hart, Adam H; Van de Ven, Wim J M; De Groef, Bert

    2017-07-13

    Deficiency in pleomorphic adenoma gene 1 (PLAG1) leads to reduced fertility in male mice, but the mechanism by which PLAG1 contributes to reproduction is unknown. To investigate the involvement of PLAG1 in testicular function, we determined (i) the spatial distribution of PLAG1 in the testis using X-gal staining; (ii) transcriptomic consequences of PLAG1 deficiency in knock-out and heterozygous mice compared to wild-type mice using RNA-seq; and (iii) morphological and functional consequences of PLAG1 deficiency by determining testicular histology, daily sperm production and sperm motility in knock-out and wild-type mice. PLAG1 was sparsely expressed in germ cells and in Sertoli cells. Genes known to be involved in spermatogenesis were downregulated in the testes of knock-out mice, as well as Hsd17b3, which encodes a key enzyme in androgen biosynthesis. In the absence of Plag1, a number of genes involved in immune processes and epididymis-specific genes were upregulated in the testes. Finally, loss of PLAG1 resulted in significantly lowered daily sperm production, in reduced sperm motility, and in several animals, in sloughing of the germinal epithelium. Our results demonstrate that the subfertility seen in male PLAG1-deficient mice is, at least in part, the result of significantly reduced sperm output and sperm motility.

  9. Rearrangement of RAG-1 recombinase gene in radiation-sensitive ''wasted'' mice

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Weaver, P.

    1994-01-01

    The recent cloning and characterization of recombinase genes (RAG- 1/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice (wst). Our results revealed expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/sm-bullet mice). In thymus tissue, a small RAG-1 transcript was detected in wst/wst mice that was not evident in thymus from control mice. In wst/lg-bullet mice, a two-fold increase in RAG-1 mRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/sm-bullet and not from wst;/wst or parental control BCF 1 mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage

  10. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    Science.gov (United States)

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Endogenous IL-1 in Cognitive Function and Anxiety: A Study in IL-1RI−/− Mice

    Science.gov (United States)

    Murray, Carol L.; Obiang, Pauline; Bannerman, David; Cunningham, Colm

    2013-01-01

    Interleukin-1 (IL-1) is a key pro-inflammatory cytokine, produced predominantly by peripheral immune cells but also by glia and some neuronal populations within the brain. Its signalling is mediated via the binding of IL-1α or IL-1β to the interleukin-1 type one receptor (IL-1RI). IL-1 plays a key role in inflammation-induced sickness behaviour, resulting in depressed locomotor activity, decreased exploration, reduced food and water intake and acute cognitive deficits. Conversely, IL-1 has also been suggested to facilitate hippocampal-dependent learning and memory: IL-1RI−/− mice have been reported to show deficits on tasks of visuospatial learning and memory. We sought to investigate whether there is a generalised hippocampal deficit in IL-1RI−/− animals. Therefore, in the current study we compared wildtype (WT) mice to IL-1RI−/− mice using a variety of hippocampal-dependent learning and memory tasks, as well as tests of anxiety and locomotor activity. We found no difference in performance of the IL-1RI−/− mice compared to WT mice in a T-maze working memory task. In addition, the IL-1RI−/− mice showed normal learning in various spatial reference memory tasks including the Y-maze and Morris mater maze, although there was a subtle deficit in choice behaviour in a spatial discrimination, beacon watermaze task. IL-1RI−/− mice also showed normal memory for visuospatial context in the contextual fear conditioning paradigm. In the open field, IL-1RI−/− mice showed a significant increase in distance travelled and rearing behaviour compared to the WT mice and in the elevated plus-maze spent more time in the open arms than did the WT animals. The data suggest that, contrary to prior studies, IL-1RI−/− mice are not robustly impaired on hippocampal-dependent memory and learning but do display open field hyperactivity and decreased anxiety compared to WT mice. The results argue for a careful evaluation of the roles of endogenous IL-1 in

  12. Neurobeachin, a Regulator of Synaptic Protein Targeting, Is Associated with Body Fat Mass and Feeding Behavior in Mice and Body-Mass Index in Humans

    Science.gov (United States)

    Olszewski, Pawel K.; Rozman, Jan; Jacobsson, Josefin A.; Rathkolb, Birgit; Strömberg, Siv; Hans, Wolfgang; Klockars, Anica; Alsiö, Johan; Risérus, Ulf; Becker, Lore; Hölter, Sabine M.; Elvert, Ralf; Ehrhardt, Nicole; Gailus-Durner, Valérie; Fuchs, Helmut; Fredriksson, Robert; Wolf, Eckhard; Klopstock, Thomas; Wurst, Wolfgang; Levine, Allen S.; Marcus, Claude; Hrabě de Angelis, Martin; Klingenspor, Martin; Schiöth, Helgi B.; Kilimann, Manfred W.

    2012-01-01

    Neurobeachin (Nbea) regulates neuronal membrane protein trafficking and is required for the development and functioning of central and neuromuscular synapses. In homozygous knockout (KO) mice, Nbea deficiency causes perinatal death. Here, we report that heterozygous KO mice haploinsufficient for Nbea have higher body weight due to increased adipose tissue mass. In several feeding paradigms, heterozygous KO mice consumed more food than wild-type (WT) controls, and this consumption was primarily driven by calories rather than palatability. Expression analysis of feeding-related genes in the hypothalamus and brainstem with real-time PCR showed differential expression of a subset of neuropeptide or neuropeptide receptor mRNAs between WT and Nbea+/− mice in the sated state and in response to food deprivation, but not to feeding reward. In humans, we identified two intronic NBEA single-nucleotide polymorphisms (SNPs) that are significantly associated with body-mass index (BMI) in adult and juvenile cohorts. Overall, data obtained in mice and humans suggest that variation of Nbea abundance or activity critically affects body weight, presumably by influencing the activity of feeding-related neural circuits. Our study emphasizes the importance of neural mechanisms in body weight control and points out NBEA as a potential risk gene in human obesity. PMID:22438821

  13. Delayed onset of experimental autoimmune encephalomyelitis in Olig1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Xiaoli Guo

    Full Text Available BACKGROUND: Olig1 is a basic helix-loop-helix (bHLH transcription factor that is essential for oligodendrogenesis and efficient remyelination. However, its role in neurodegenerative disorders has not been well-elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the effects of Olig1 deficiency on experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. We show that the mean disease onset of myelin oligodendrocyte glycoprotein (MOG-induced EAE in Olig1(-/- mice is significantly slower than wide-type (WT mice (19.8 ± 2.2 in Olig1(-/- mice and 9.5 ± 0.3 days in WT mice. In addition, 10% of Olig1(-/- mice did not develop EAE by the end of the observation periods (60 days. The severity of EAE, the extent of demyelination, and the activation of microglial cells and astrocytes in spinal cords, were significantly milder in Olig1(-/- mice compared with WT mice in the early stage. Moreover, the visual function, as assessed by the second-kernel of multifocal electroretinograms, was better preserved, and the number of degenerating axons in the optic nerve was significantly reduced in Olig1(-/- mice. Interestingly, Olig1 deficiency had no effect on T cell response capability, however, it reduced the expression of myelin proteins such as MOG, myelin basic protein (MBP and myelin-associated glycoprotein (MAG. The expression of Olig2 remained unchanged in the optic nerve and brain, and it was reduced in the spinal cord of Olig1(-/- mice. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the Olig1 signaling pathways may be involved in the incidence rate and the severity of neurological symptoms in MS.

  14. p21{sup WAF1/Cip1/Sdi1} knockout mice respond to doxorubicin with reduced cardiotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Terrand, Jerome; Xu, Beibei; Morrissy, Steve; Dinh, Thai Nho [Department of Pharmacology,College of Medicine, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724 (United States); Williams, Stuart [Biomedical Engineering Program, College of Medicine, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724 (United States); Chen, Qin M., E-mail: qchen@email.arizona.edu [Department of Pharmacology,College of Medicine, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724 (United States)

    2011-11-15

    Doxorubicin (Dox) is an antineoplastic agent that can cause cardiomyopathy in humans and experimental animals. As an inducer of reactive oxygen species and a DNA damaging agent, Dox causes elevated expression of p21{sup WAF1/Cip1/Sdi1} (p21) gene. Elevated levels of p21 mRNA and p21 protein have been detected in the myocardium of mice following Dox treatment. With chronic treatment of Dox, wild type (WT) animals develop cardiomyopathy evidenced by elongated nuclei, mitochondrial swelling, myofilamental disarray, reduced cardiac output, reduced ejection fraction, reduced left ventricular contractility, and elevated expression of ANF gene. In contrast, p21 knockout (p21KO) mice did not show significant changes in the same parameters in response to Dox treatment. In an effort to understand the mechanism of the resistance against Dox induced cardiomyopathy, we measured levels of antioxidant enzymes and found that p21KO mice did not contain elevated basal or inducible levels of glutathione peroxidase and catalase. Measurements of 6 circulating cytokines indicated elevation of IL-6, IL-12, IFN{gamma} and TNF{alpha} in Dox treated WT mice but not p21KO mice. Dox induced elevation of IL-6 mRNA was detected in the myocardium of WT mice but not p21KO mice. While the mechanism of the resistance against Dox induced cardiomyopathy remains unclear, lack of inflammatory response may contribute to the observed cardiac protection in p21KO mice. -- Highlights: Black-Right-Pointing-Pointer Doxorubicin induces p21 elevation in the myocardium. Black-Right-Pointing-Pointer Doxorubicin causes dilated cardiomyopathy in wild type mice. Black-Right-Pointing-Pointer p21 Knockout mice are resistant against doxorubicin induced cardiomyopathy. Black-Right-Pointing-Pointer Lack of inflammatory response correlates with the resistance in p21 knockout mice.

  15. Ethanol-related behaviors in mice lacking the sigma-1 receptor.

    Science.gov (United States)

    Valenza, Marta; DiLeo, Alyssa; Steardo, Luca; Cottone, Pietro; Sabino, Valentina

    2016-01-15

    The Sigma-1 receptor (Sig-1R) is a chaperone protein that has been implicated in drug abuse and addiction. Multiple studies have characterized the role the Sig-1R plays in psychostimulant addiction; however, fewer studies have specifically investigated its role in alcohol addiction. We have previously shown that antagonism of the Sig-1R reduces excessive drinking and motivation to drink, whereas agonism induces binge-like drinking in rodents. The objectives of these studies were to investigate the impact of Sig-1R gene deletion in C57Bl/6J mice on ethanol drinking and other ethanol-related behaviors. We used an extensive panel of behavioral tests to examine ethanol actions in male, adult mice lacking Oprs1, the gene encoding the Sig-1R. To compare ethanol drinking behavior, Sig-1 knockout (KO) and wild type (WT) mice were subject to a two-bottle choice, continuous access paradigm with different concentrations of ethanol (3-20% v/v) vs. water. Consumption of sweet and bitter solutions was also assessed in Sig-1R KO and WT mice. Finally, motor stimulant sensitivity, taste aversion and ataxic effects of ethanol were assessed. Sig-1R KO mice displayed higher ethanol intake compared to WT mice; the two genotypes did not differ in their sweet or bitter taste perception. Sig-1R KO mice showed lower sensitivity to ethanol stimulant effects, but greater sensitivity to its taste aversive effects. Ethanol-induced sedation was instead unaltered in the mutants. Our results prove that the deletion of the Sig-1R increases ethanol consumption, likely by decreasing its rewarding effects, and therefore indicating that the Sig-1R is involved in modulation of the reinforcing effects of alcohol. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Altered neurological function in mice immunized with early endosome antigen 1

    Directory of Open Access Journals (Sweden)

    Fritzler Marvin J

    2004-01-01

    Full Text Available Abstract Background Autoantibodies directed against the 160 kDa endosome protein early endosome antigen 1 (EEA1 are seen in patients with neurological diseases. To determine if antibodies to EEA1 have a neuropathological effect, mice from three major histocompatability haplotype backgrounds (H2q, H2b and H2d were immunized with EEA1 (amino acids 82–1411 that was previously shown to contain the target EEA1 epitopes. The mice were then subjected to five neuro-behavioural tests: grid walking, forelimb strength, open field, reaching and rotarod. Results The immunized SWR/J mice with sustained anti-EEA1 antibodies had significantly reduced forelimb strength than the control non-immune mice of the same strain, and BALB/CJ immune mice demonstrated significantly more forelimb errors on the grid walk test than the control group. Conclusions Antibodies to recombinant EEA1 in mice may mediate neurological deficits that are consistent with clinical features of some humans that spontaneously develop anti-EEA1 autoantibodies.

  17. Involvement of interleukin-1 in lead nitrate-induced hypercholesterolemia in mice.

    Science.gov (United States)

    Kojima, Misaki; Ashino, Takashi; Yoshida, Takemi; Iwakura, Yoichiro; Degawa, Masakuni

    2012-01-01

    Hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and cholesterol 7α-hydroxylase (Cyp7a1) are rate-limiting enzymes for cholesterol biosynthesis and catabolism, respectively. Involvement of inflammatory cytokines, particularly interleukin-1 (IL-1), in alterations of HMGR and Cyp7a1 gene expression during development of lead nitrate (LN)-induced hypercholesterolemia was examined in IL-1α/β-knockout (IL-1-KO) and wild-type (WT) mice. Lead nitrate treatment of WT mice led to not only a marked downregulation of the Cyp7a1 gene at 6-12 h, but also a significant upregulation of the HMGR gene at 12 h. However, such changes were not observed at significant levels in IL-1-KO mice, although a slight, transient downregulation of the Cyp7a1 gene and a minimal upregulation of the HMGR gene occurred at 6 h and 24 h, respectively. Consequently, LN treatment led to development of hypercholesterolemia at 24 h in WT mice, but not in IL-1-KO mice. Furthermore, in WT mice, significant LN-mediated increases were observed at 3-6 h in hepatic IL-1 levels, which can modulate gene expression of Cyp7a1 and HMGR. These findings indicate that, in mice, LN-mediated increases in hepatic IL-1 levels contribute, at least in part, to altered expressions of Cyp7a1 and HMGR genes, and eventually to hypercholesterolemia development.

  18. Lymphoma induction by heterocyclic amines in Eu-pim-1 transgenic mice

    DEFF Research Database (Denmark)

    Sørensen, Ilona Kryspin; Kristiansen, E.; Mortensen, Alicja

    1997-01-01

    The usefulness of transgenic E mu-pim-1 mice bearing in their genome the pim-1 oncogene supplemented with an upstream immunoglobulin enhancer and a downstream murine leukaemia virus long terminal repeat, as sensitive test organisms was studied in two short-term carcinogenicity studies. The mice...... to bacteria and cultured mammalian cells. PhIP is a potent mouse lymphomagen, while IQ is a liver, lung and forestomach carcinogen in mice. We found that transgenic E mu-pim-1 mice are highly susceptible to PhIP induced lymphomagenesis but do not respond to IQ treatment. PhIP feeding of E mu-pim-1 mice...... not only increased the total number of T-cell lymphomas but also decreased the latency time compared to either transgenic or wild-type controls. The effect was most pronounced in the treated female E mu-pim-1 mice, which showed a higher incidence of PhIP induced T-cell lymphomas than transgenic males...

  19. Sick sinus syndrome in HCN1-deficient mice.

    Science.gov (United States)

    Fenske, Stefanie; Krause, Stefanie C; Hassan, Sami I H; Becirovic, Elvir; Auer, Franziska; Bernard, Rebekka; Kupatt, Christian; Lange, Philipp; Ziegler, Tilman; Wotjak, Carsten T; Zhang, Henggui; Hammelmann, Verena; Paparizos, Christos; Biel, Martin; Wahl-Schott, Christian A

    2013-12-17

    Sinus node dysfunction (SND) is a major clinically relevant disease that is associated with sudden cardiac death and requires surgical implantation of electric pacemaker devices. Frequently, SND occurs in heart failure and hypertension, conditions that lead to electric instability of the heart. Although the pathologies of acquired SND have been studied extensively, little is known about the molecular and cellular mechanisms that cause congenital SND. Here, we show that the HCN1 protein is highly expressed in the sinoatrial node and is colocalized with HCN4, the main sinoatrial pacemaker channel isoform. To characterize the cardiac phenotype of HCN1-deficient mice, a detailed functional characterization of pacemaker mechanisms in single isolated sinoatrial node cells, explanted beating sinoatrial node preparation, telemetric in vivo electrocardiography, echocardiography, and in vivo electrophysiology was performed. On the basis of these experiments we demonstrate that mice lacking the pacemaker channel HCN1 display congenital SND characterized by bradycardia, sinus dysrhythmia, prolonged sinoatrial node recovery time, increased sinoatrial conduction time, and recurrent sinus pauses. As a consequence of SND, HCN1-deficient mice display a severely reduced cardiac output. We propose that HCN1 stabilizes the leading pacemaker region within the sinoatrial node and hence is crucial for stable heart rate and regular beat-to-beat variation. Furthermore, we suggest that HCN1-deficient mice may be a valuable genetic disease model for human SND.

  20. Deficiency in Poly(ADP-ribose Polymerase-1 (PARP-1 Accelerates Aging and Spontaneous Carcinogenesis in Mice

    Directory of Open Access Journals (Sweden)

    Tatiana S. Piskunova

    2008-01-01

    Full Text Available Genetic and biochemical studies have shown that PARP-1 and poly(ADP-ribosylation play an important role in DNA repair, genomic stability, cell death, inflammation, telomere maintenance, and suppressing tumorigenesis, suggesting that the homeostasis of poly(ADP-ribosylation and PARP-1 may also play an important role in aging. Here we show that PARP-1−/− mice exhibit a reduction of life span and a significant increase of population aging rate. Analysis of noninvasive parameters, including body weight gain, body temperature, estrous function, behavior, and a number of biochemical indices suggests the acceleration of biological aging in PARP-1−/− mice. The incidence of spontaneous tumors in both PARP-1−/− and PARP-1+/+ groups is similar; however, malignant tumors including uterine tumors, lung adenocarcinomas and hepatocellular carcinomas, develop at a significantly higher frequency in PARP-1−/− mice than PARP-1+/+ mice (72% and 49%, resp.; < .05. In addition, spontaneous tumors appear earlier in PARP-1−/− mice compared to the wild type group. Histopathological studies revealed a wide spectrum of tumors in uterus, ovaries, liver, lungs, mammary gland, soft tissues, and lymphoid organs in both groups of the mice. These results demonstrate that inactivation of DNA repair gene PARP-1 in mice leads to acceleration of aging, shortened life span, and increased spontaneous carcinogenesis.

  1. 200 area liquid effluent facility quality assurance program plan. Revision 1

    International Nuclear Information System (INIS)

    Sullivan, N.J.

    1995-01-01

    Direct revision of Supporting Document WHC-SD-LEF-QAPP-001, Rev. 0. 200 Area Liquid Effluent Facilities Quality Assurance Program Plan. Incorporates changes to references in tables. Revises test to incorporate WHC-SD-LEF-CSCM-001, Computer Software Configuration Management Plan for 200 East/West Liquid Effluent Facilities

  2. Deficiency in monocarboxylate transporter 1 (MCT1) in mice delays regeneration of peripheral nerves following sciatic nerve crush

    KAUST Repository

    Morrison, Brett M.; Tsingalia, Akivaga; Vidensky, Svetlana; Lee, Youngjin; Jin, Lin; Farah, Mohamed H.; Lengacher, Sylvain; Magistretti, Pierre J.; Pellerin, Luc; Rothsteinb, Jeffrey D.

    2015-01-01

    Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence in wild-type mice and tdTomato fluorescence in MCT1 BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves of MCT1 heterozygous mice are crushed and peripheral nerve regeneration was quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21. days in wild-type mice to greater than 38. days in MCT1 heterozygote mice. In fact, half of the MCT1 heterozygote mice have no recovery of CMAP at 42. days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42. days post-crush in the MCT1 heterozygote mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote mice at 4. weeks and tibial mixed sensory and motor nerve at 3. weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly due to failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush.

  3. Podocyte changes upon induction of albuminuria in Thy-1.1 transgenic mice.

    Science.gov (United States)

    Smeets, Bart; Dijkman, Henry B P M; te Loeke, Nathalie A J M; van Son, Jacco P H F; Steenbergen, Eric J; Assmann, Karel J M; Wetzels, Jack F M; Groenen, Patricia J T A

    2003-12-01

    Thy-1.1 transgenic mice, characterized by ectopic expression of the Thy-1.1 protein on podocytes, spontaneously develop proteinuria and focal glomerulosclerosis (FGS). Injection of a monoclonal antibody (mAb) directed against the Thy-1.1 protein in young transgenic mice induces a massive albuminuria that is followed by an accelerated FGS within 3 weeks. This albuminuria is complement and leukocyte independent. The time course of proteinuria, the pathogenesis of the acute proteinuria and the dose dependency of FGS are unknown. Albuminuria was measured in Thy-1.1 transgenic mice after injection of different doses of anti-Thy-1.1 mAb and at different time points within the first 24 h after injection. Podocytic foot processes and slit pore diameter were quantitated by electron microscopy. Changes in expression of slit pore constituents (podocin, CD2AP, nephrin and ZO-1), cytoskeleton-associated proteins (actin, alpha-actinin, ezrin and synaptopodin), the GDH-podocyte adhesion molecules alpha(3)-integrin, and heparan sulfate were studied by immunofluorescence. FGS was scored by light microscopy at 3 weeks after induction of albuminuria. Albuminuria in Thy-1.1 transgenic mice was observed within 10 min after anti-Thy-1.1 mAb injection. This rapid development of albuminuria was accompanied by a reduction in number of podocytic foot processes from 20.0 +/- 0.7/10 microm glomerular basement membrane (GBM) in saline-treated transgenic mice to 8.0 +/- 0.5 and 2.2 +/- 0.2 in anti-Thy-1.1-treated mice, at 10 min and 8 h after treatment, respectively. In addition, we observed a significant decrease in width of remaining slit pores, from 32.7 +/- 1.1 to 26.8 +/- 1.4 nm at 10 min after mAb injection. By immunofluorescence, we did not observe major changes in the expression pattern of any of the proteins studied. There was no correlation between the injected dose of the anti-Thy-1.1 mAb and the acute albuminuria. In contrast, the percentage of FGS at 3 weeks correlated with the

  4. Functional characterization of Bombyx mori nucleopolyhedrovirus mutant lacking late expression factor 9.

    Science.gov (United States)

    Zhang, Y; Shi, Y; Yu, H; Li, J; Quan, Y; Shu, T; Nie, Z; Zhang, Y; Yu, W

    Baculoviridae is a family of invertebrate viruses with large double-stranded DNA genomes. Proteins encoded by some late expression factor (lef ) genes are involved in the regulation of viral gene expression. Lef-9 is one of four transcription-specific Lefs, which are components of the virus-encoded RNA polymerase, and can initiate and transcribe late and very late genes. As a multifunctional protein encoded by the Bombyx mori nucleopolyhedrovirus (BmNPV), Lef-9 may be involved in the regulation of viral propagation. However, the underlying mechanism remains unclear. To determine the role of lef-9 in baculovirus infection, lef-9-knockout virus (lef-9-KO-Bacmid virus) was constructed using the Red recombination system, and the Bac-to-Bac system was used to prepare lef-9-repaired virus (lef-9-Re-Bacmid virus). The lef-9-KO virus did not produce infectious viruses or show infection activity, while the lef-9-repaired virus recovered both. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of the transcription levels in wild-type-Bacmid, lef-9-KO-Bacmid, and lef-9-Re-Bacmid viruses showed that the lef-9-KO bacmid had little effect on viral genome replication. However, the transcription levels of the early and late viral genes, lef-3, ie-1, vp39, and p10, were significantly lower in BmN cells transfected with lef-9-KO-Bacmids than in the controls. Electron microscopy showed no visible enveloped virions in cells transfected with lef-9-KO-Bacmids, while many mature virions in cells transfected with lef-9-Re-Bacmid and wt-Bacmid were present. Thus, lef-9 was not essential for viral genome replication, but significantly affected viral gene transcription and expression in all periods of cell life cycle.

  5. Atomoxetine reduces hyperactive/impulsive behaviours in neurokinin-1 receptor 'knockout' mice.

    Science.gov (United States)

    Pillidge, Katharine; Porter, Ashley J; Vasili, Temis; Heal, David J; Stanford, S Clare

    2014-12-01

    Mice with functional ablation of the neurokinin-1 receptor gene (NK1R(-/-)) display behavioural abnormalities which resemble the hyperactivity, inattention and impulsivity seen in Attention Deficit Hyperactivity Disorder (ADHD). Here, we investigated whether the established ADHD treatment, atomoxetine, alleviates these abnormalities when tested in the light/dark exploration box (LDEB) and 5-Choice Serial Reaction-Time Task (5-CSRTT). Separate cohorts of mice were tested in the 5-CSRTT and LDEB after treatment with no injection, vehicle or atomoxetine (5-CSRTT: 0.3, 3 or 10mg/kg; LDEB: 1, 3 or 10mg/kg). Atomoxetine reduced the hyperactivity displayed by NK1R(-/-) mice in the LDEB at a dose (3mg/kg) which did not affect the locomotor activity of wildtypes. Atomoxetine (10mg/kg) also reduced impulsivity in NK1R(-/-) mice, but not wildtypes, in the 5-CSRTT. No dose of drug affected attention in either genotype. This evidence that atomoxetine reduces hyperactive/impulsive behaviours in NK1R(-/-) mice consolidates the validity of using NK1R(-/-) mice in research of the aetiology and treatment of ADHD. Copyright © 2014. Published by Elsevier Inc.

  6. Rearrangement of RAG-1 recombinase gene in DNA-repair deficient ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Libertin, C.R.; Weaver, P. [Loyola Univ., Chicago, IL (United States); Churchill, M.; Chang-Liu, C.M. [Argonne National Lab., IL (United States)

    1993-11-01

    Mice recessive for the autosomal gene ``wasted`` wst display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (RAG-l/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed expression of RAG-1 mRNA in spinal cord (but not brain) of control mice; no expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/{center_dot}mice). In thymus tissue, a small RAG-1 transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{center_dot}mice, a two-fold increase in RAG-1 mRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/{center_dot} and not from wst/wst or parental control BCF{sub 1} mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  7. HTLV-1 Infection and Neuropathogenesis in the Context of Rag1-/-γc-/- (RAG1-Hu) and BLT Mice.

    Science.gov (United States)

    Ginwala, Rashida; Caruso, Breanna; Khan, Zafar K; Pattekar, Ajinkya; Chew, Glen M; Corley, Michael J; Loonawat, Ronak; Jacobson, Steven; Sreedhar, Sreesha; Ndhlovu, Lishomwa C; Jain, Pooja

    2017-09-01

    To date, the lack of a suitable small animal model has hindered our understanding of Human T-cell lymphotropic virus (HTLV)-1 chronic infection and associated neuropathogenesis defined as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The host immune response plays a critical role in the outcome of HTLV-1 infection, which could be better tested in the context of humanized (hu) mice. Thus, we employ here the Balb/c-Rag1 -/- γc -/- or Rag1 as well as Bone marrow-Liver-Thymic (BLT) mouse models for engraftment of human CD34 + hematopoietic stem cells. Flow cytometry and histological analyses confirmed reconstitution of Rag1 and BLT mice with human immune cells. Following HTLV-1 infection, proviral load (PVL) was detected in the blood of Rag-1 and BLT hu-mice as early as 2 weeks post-infection (wpi) with sustained elevation in the subsequent weeks followed by Tax expression. Additionally, infection was compared between adult and neonatal Rag1 mice with both PVL and Tax expression considerably higher in the adult Rag1 mice as compared to the neonates. Establishment of peripheral infection led to lymphocytic infiltration with concomitant Tax expression and resulting myelin disruption within the central nervous system of infected mice. In addition, up-regulation in the expression of several immune checkpoint mediators such as programmed cell death-1 (PD-1), T-cell Ig and ITIM domain (TIGIT), and T cell Ig and mucin domain-3 protein (Tim-3) were observed on CD8 + T cells in various organs including the CNS of infected hu-mice. Collectively, these studies represent the first attempt to establish HTLV-1 neuropathogenesis in the context of Rag-1 and BLT hu-mice as potential novel tools for understanding HTLV-1 neuropathogenesis and testing of novel therapies such as immune checkpoint blockade in the amelioration of chronic HTLV-1 infection.

  8. Transient activation of Wnt/β-catenin signaling reporter in fibrotic scar formation after compression spinal cord injury in adult mice.

    Science.gov (United States)

    Yamagami, Takashi; Pleasure, David E; Lam, Kit S; Zhou, Chengji J

    2018-02-19

    After traumatic spinal cord injury (SCI), a scar may form with a fibrotic core (fibrotic scar) and surrounding reactive astrocytes (glial scar) at the lesion site. The scar tissue is considered a major obstacle preventing regeneration both as a physical barrier and as a source for secretion of inhibitors of axonal regeneration. Understanding the mechanism of scar formation and how to control it may lead to effective SCI therapies. Using a compression-SCI model on adult transgenic mice, we demonstrate that the canonical Wnt/β-catenin signaling reporter TOPgal (TCF/Lef1-lacZ) positive cells appeared at the lesion site by 5 days, peaked on 7 days, and diminished by 14 days post injury. Using various representative cell lineage markers, we demonstrate that, these transiently TOPgal positive cells are a group of Fibronectin(+);GFAP(-) fibroblast-like cells in the core scar region. Some of them are proliferative. These results indicate that Wnt/β-catenin signaling may play a key role in fibrotic scar formation after traumatic spinal cord injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Distinct neurobehavioural effects of cannabidiol in transmembrane domain neuregulin 1 mutant mice.

    Directory of Open Access Journals (Sweden)

    Leonora E Long

    Full Text Available The cannabis constituent cannabidiol (CBD possesses anxiolytic and antipsychotic properties. We have previously shown that transmembrane domain neuregulin 1 mutant (Nrg1 TM HET mice display altered neurobehavioural responses to the main psychoactive constituent of cannabis, Δ(9-tetrahydrocannabinol. Here we investigated whether Nrg1 TM HET mice respond differently to CBD and whether CBD reverses schizophrenia-related phenotypes expressed by these mice. Adult male Nrg1 TM HET and wild type-like littermates (WT received vehicle or CBD (1, 50 or 100 mg/kg i.p. for 21 days. During treatment and 48 h after withdrawal we measured behaviour, whole blood CBD concentrations and autoradiographic receptor binding. Nrg1 HET mice displayed locomotor hyperactivity, PPI deficits and reduced 5-HT(2A receptor binding density in the substantia nigra, but these phenotypes were not reversed by CBD. However, long-term CBD (50 and 100 mg/kg selectively enhanced social interaction in Nrg1 TM HET mice. Furthermore, acute CBD (100 mg/kg selectively increased PPI in Nrg1 TM HET mice, although tolerance to this effect was manifest upon repeated CBD administration. Long-term CBD (50 mg/kg also selectively increased GABA(A receptor binding in the granular retrosplenial cortex in Nrg1 TM HET mice and reduced 5-HT(2A binding in the substantia nigra in WT mice. Nrg1 appears necessary for CBD-induced anxiolysis since only WT mice developed decreased anxiety-related behaviour with repeated CBD treatment. Altered pharmacokinetics in mutant mice could not explain our findings since no genotype differences existed in CBD blood concentrations. Here we demonstrate that Nrg1 modulates acute and long-term neurobehavioural effects of CBD, which does not reverse the schizophrenia-relevant phenotypes.

  10. Reduction in podocyte SIRT1 accelerates kidney injury in aging mice.

    Science.gov (United States)

    Chuang, Peter Y; Cai, Weijing; Li, Xuezhu; Fang, Lu; Xu, Jin; Yacoub, Rabi; He, John Cijiang; Lee, Kyung

    2017-09-01

    Both the incidence and prevalence of chronic kidney disease are increasing in the elderly population. Although aging is known to induce kidney injury, the underlying molecular mechanisms remain unclear. Sirtuin 1 (Sirt1), a longevity gene, is known to protect kidney cell injury from various cellular stresses. In previous studies, we showed that the podocyte-specific loss of Sirt1 aggravates diabetic kidney injury. However, the role of Sirt1 in aging-induced podocyte injury is not known. Therefore, in this study we sought to determine the effects of podocyte-specific reduction of Sirt1 in age-induced kidney injury. We employed the inducible podocyte-specific Sirt1 knockdown mice that express shRNA against Sirt1 (Pod-Sirt1 RNAi ) and control mice that express shRNA for luciferase (Pod-Luci RNAi ). We found that reduction of podocyte Sirt1 led to aggravated aging-induced glomerulosclerosis and albuminuria. In addition, urinary level of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidative stress, was markedly increased in aged Pod-Sirt1 RNAi mice compared with aged Pod-Luci RNAi mice. Although podocyte-specific markers decreased in aged mice compared with the young controls, the decrease was further exacerbated in aged Pod-Sirt1 RNAi compared with Pod-Luci RNAi mice. Interestingly, expression of cellular senescence markers was significantly higher in the glomeruli of Pod-Sirt1 RNAi mice than Pod-Luci RNAi mice, suggesting that cellular senescence may contribute to podocyte loss in aging kidneys. Finally, we confirmed that Pod-Sirt1 RNAi glomeruli were associated with reduced activation of the transcription factors peroxisome proliferator-activated receptor (PPAR)-α coactivador-1 (PGC1α)/PPARγ, forkhead box O (FOXO)3, FOXO4, and p65 NF-κB, through SIRT1-mediated deacetylation. Together, our data suggest that SIRT1 may be a potential therapeutic target to treat patients with aging-related kidney disease.

  11. Metabolic, Reproductive, and Neurologic Abnormalities in Agpat1-Null Mice.

    Science.gov (United States)

    Agarwal, Anil K; Tunison, Katie; Dalal, Jasbir S; Nagamma, Sneha S; Hamra, F Kent; Sankella, Shireesha; Shao, Xinli; Auchus, Richard J; Garg, Abhimanyu

    2017-11-01

    Defects in the biosynthesis of phospholipids and neutral lipids are associated with cell membrane dysfunction, disrupted energy metabolism, and diseases including lipodystrophy. In these pathways, the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) enzymes transfer a fatty acid to the sn-2 carbon of sn-1-acylglycerol-3-phosphate (lysophosphatidic acid) to form sn-1, 2-acylglycerol-3-phosphate [phosphatidic acid (PA)]. PA is a precursor for key phospholipids and diacylglycerol. AGPAT1 and AGPAT2 are highly homologous isoenzymes that are both expressed in adipocytes. Genetic defects in AGPAT2 cause congenital generalized lipodystrophy, indicating that AGPAT1 cannot compensate for loss of AGPAT2 in adipocytes. To further explore the physiology of AGPAT1, we characterized a loss-of-function mouse model (Agpat1-/-). The majority of Agpat1-/- mice died before weaning and had low body weight and low plasma glucose levels, independent of plasma insulin and glucagon levels, with reduced percentage of body fat but not generalized lipodystrophy. These mice also had decreased hepatic messenger RNA expression of Igf-1 and Foxo1, suggesting a decrease in gluconeogenesis. In male mice, sperm development was impaired, with a late meiotic arrest near the onset of round spermatid production, and gonadotropins were elevated. Female mice showed oligoanovulation yet retained responsiveness to gonadotropins. Agpat1-/- mice also demonstrated abnormal hippocampal neuron development and developed audiogenic seizures. In summary, Agpat1-/- mice developed widespread disturbances of metabolism, sperm development, and neurologic function resulting from disrupted phospholipid homeostasis. AGPAT1 appears to serve important functions in the physiology of multiple organ systems. The Agpat1-deficient mouse provides an important model in which to study the contribution of phospholipid and triacylglycerol synthesis to physiology and diseases. Copyright © 2017 Endocrine Society.

  12. In Vivo Measurements in Mice in the Bion-M 1 Mission

    Science.gov (United States)

    Andreev-Andrievskiy, Alexander; Custaud, Marc-Antoine; Popova, Anfisa; Borovik, Anatoliy; Dolgov, Oleg; Anokhin, Konstantin; Tsvirkun, Daria; Vinogradova, Olga

    The main aim of BION-M 1 mission was to reveal morphological, biochemical and molecular mechanisms of adaptation to prolonged exposure in microgravity. Besides that functional state and behavior were assessed in vivo using test battery, home cage observations and implantable telemetry in space-flown mice (SF), control mice from the ground replica of the flight experiment (GC) and in mice kept in vivarium (SFV and GCV). Blood pressure and heart rate were monitored continuously in a subgroup of mice using implantable telemetry throughout the flight as well as before and after it. After 30-days flight aboard BION-M 1 biosatellite SF mice have gained more weight than GC, SFV or GCV mice (11%). SF mice displayed pronounced motor impairment upon examination shortly after landing. 1 day after the flight mice were less active and more anxious in the open-field test, less coordinated in the Rotarod and aerial drop test and had less grip force compared to both control and pre-flight values. Exercise performance was greatly reduced after 30-days flight and recovered by day 7 post-flight. Before the flight mice were trained to perform a simple task using positively reinforced free operant conditioning approach. After the flight performance in the same task was preserved, however learning ability was impaired. Mice displayed drastic reduction of heart rate during launch and reentry acceleration periods. Heart rate (by 8-10%) and, to a lesser extent blood pressure (by 5%) were elevated during the 30-days flight. After return heart rate in SF mice remained elevated throughout the 7-days observation period with no apparent recovery. In summary, mice display pronounced disadaptation to 1g after 30-days exposure in microgravity with different physiological systems having different recovery dynamics. Of particular interest, hemodynamic reactions in mice closely resemble reactions in larger organisms, implying that factors that govern the cardiovascular system adaptation to

  13. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice.

    Directory of Open Access Journals (Sweden)

    Dany Gaillard

    2017-08-01

    Full Text Available Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds.

  14. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice

    Science.gov (United States)

    Gaillard, Dany; Xu, Mingang; Millar, Sarah E.

    2017-01-01

    Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds. PMID:28846687

  15. Hepatic steatosis in transgenic mice overexpressing human histone deacetylase 1

    International Nuclear Information System (INIS)

    Wang, Ai-Guo; Seo, Sang-Beom; Moon, Hyung-Bae; Shin, Hye-Jun; Kim, Dong Hoon; Kim, Jin-Man; Lee, Tae-Hoon; Kwon, Ho Jeong; Yu, Dae-Yeul; Lee, Dong-Seok

    2005-01-01

    It is generally thought that histone deacetylases (HDACs) play important roles in the transcriptional regulation of genes. However, little information is available concerning the specific functions of individual HDACs in disease states. In this study, two transgenic mice lines were established which harbored the human HDAC1 gene. Overexpressed HDAC1 was detected in the nuclei of transgenic liver cells, and HDAC1 enzymatic activity was significantly higher in the transgenic mice than in control littermates. The HDAC1 transgenic mice exhibited a high incidence of hepatic steatosis and nuclear pleomorphism. Molecular studies showed that HDAC1 may contribute to nuclear pleomorphism through the p53/p21 signaling pathway

  16. Generation and analysis of an improved Foxg1-IRES-Cre driver mouse line.

    Science.gov (United States)

    Kawaguchi, Daichi; Sahara, Setsuko; Zembrzycki, Andreas; O'Leary, Dennis D M

    2016-04-01

    Foxg1 expression is highly restricted to the telencephalon and other head structures in the early embryo. This expression pattern has been exploited to generate conditional knockout mice, based on a widely used Foxg1-Cre knock-in line (Foxg1(tm1(cre)Skm)), in which the Foxg1 coding region was replaced by the Cre gene. The utility of this line, however, is severely hampered for two reasons: (1) Foxg1-Cre mice display ectopic and unpredictable Cre activity, and (2) Foxg1 haploinsufficiency can produce neurodevelopmental phenotypes. To overcome these issues, we have generated a new Foxg1-IRES-Cre knock-in mouse line, in which an IRES-Cre cassette was inserted in the 3'UTR of Foxg1 locus, thus preserving the endogenous Foxg1 coding region and un-translated gene regulatory sequences in the 3'UTR, including recently discovered microRNA target sites. We further demonstrate that the new Foxg1-IRES-Cre line displays consistent Cre activity patterns that recapitulated the endogenous Foxg1 expression at embryonic and postnatal stages without causing defects in cortical development. We conclude that the new Foxg1-IRES-Cre mouse line is a unique and advanced tool for studying genes involved in the development of the telencephalon and other Foxg1-expressing regions starting from early embryonic stages. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Reversing hypomyelination in BACE1-null mice with Akt-DD overexpression.

    Science.gov (United States)

    Hu, Xiangyou; Schlanger, Rita; He, Wanxia; Macklin, Wendy B; Yan, Riqiang

    2013-05-01

    β-Site amyloid precursor protein convertase enzyme 1 (BACE1), a type I transmembrane aspartyl protease required to cleave amyloid precursor protein for releasing a toxic amyloid peptide, also cleaves type I and type III neuregulin-1 (Nrg-1). BACE1 deficiency in mice causes hypomyelination during development and impairs remyelination if injured. In BACE1-null mice, the abolished cleavage of neuregulin-1 by BACE1 is speculated to cause reduced myelin sheath thickness in both the central nervous system and peripheral nervous system because reduced cleavage of Nrg-1 correlates with reduced Akt phosphorylation, a downstream signaling molecule of the Nrg-1/ErbB pathway. Here we tested specifically whether increasing Akt activity alone in oligodendrocytes would be sufficient to reverse the hypomyelination phenotype in BACE1-null mice. BACE1-null mice were bred with transgenic mice expressing constitutively active Akt (Akt-DD; mutations with D(308)T and D(473)S) in oligodendrocytes. Relative to littermate BACE1-null controls, BACE1(-/-)/Akt-DD mice exhibited enhanced expression of myelin basic protein and promoter of proteolipid protein. The elevated expression of myelin proteins correlated with a thicker myelin sheath in optic nerves; comparison of quantified g ratios with statistic significance was used to confirm this reversion. However, it appeared that myelin sheath thickness in the sciatic nerves was not increased in BACE1(-/-)/Akt-DD mice, as the g ratio was not significantly different from the control. Hence, increased Akt activity in BACE1-null myelinating cells only compensates for the loss of BACE1 activity in the central nervous system, which is consistent with the observation that overexpression of Akt-DD in Schwann cells did not induce hypermyelination. Our results suggest that signaling activity other than Akt may also contribute to proper myelination in peripheral nerves.

  18. Mice in Bion-M 1 Space Mission: Training and Selection

    Science.gov (United States)

    Andreev-Andrievskiy, Alexander; Popova, Anfisa; Boyle, Richard; Alberts, Jeffrey; Shenkman, Boris; Vinogradova, Olga; Dolgov, Oleg; Anokhin, Konstantin; Tsvirkun, Darya; Soldatov, Pavel; Nemirovskaya, Tatyana; Ilyin, Eugeniy; Sychev, Vladimir

    2014-01-01

    After a 16-year hiatus, Russia has resumed its program of biomedical research in space, with the successful 30-day flight of the Bion-M 1 biosatellite (April 19–May 19, 2013). The principal species for biomedical research in this project was the mouse. This paper presents an overview of the scientific goals, the experimental design and the mouse training/selection program. The aim of mice experiments in the Bion-M 1 project was to elucidate cellular and molecular mechanisms, underlying the adaptation of key physiological systems to long-term exposure in microgravity. The studies with mice combined in vivo measurements, both in flight and post-flight (including continuous blood pressure measurement), with extensive in vitro studies carried out shortly after return of the mice and in the end of recovery study. Male C57/BL6 mice group housed in space habitats were flown aboard the Bion-M 1 biosatellite, or remained on ground in the control experiment that replicated environmental and housing conditions in the spacecraft. Vivarium control groups were used to account for housing effects and possible seasonal differences. Mice training included the co-adaptation in housing groups and mice adaptation to paste food diet. The measures taken to co-adapt aggressive male mice in housing groups and the peculiarities of “space” paste food are described. The training program for mice designated for in vivo studies was broader and included behavioral/functional test battery and continuous behavioral measurements in the home-cage. The results of the preliminary tests were used for the selection of homogenous groups. After the flight, mice were in good condition for biomedical studies and displayed signs of pronounced disadaptation to Earth's gravity. The outcomes of the training program for the mice welfare are discussed. We conclude that our training program was effective and that male mice can be successfully employed in space biomedical research. PMID:25133741

  19. PGC-1alpha mediates exercise-induced skeletal muscle VEGF expression in mice

    DEFF Research Database (Denmark)

    Leick, Lotte; Hellsten, Ylva; Fentz, Joachim

    2009-01-01

    The aim of the present study was to test the hypothesis that PGC-1alpha is required for exercise-induced VEGF expression in both young and old mice and that AMPK activation leads to increased VEGF expression through a PGC-1alpha-dependent mechanism. Whole body PGC-1alpha knockout (KO......) and littermate wild-type (WT) mice were submitted to either 1) 5 wk of exercise training, 2) lifelong (from 2 to 13 mo of age) exercise training in activity wheel, 3) a single exercise bout, or 4) 4 wk of daily subcutaneous AICAR or saline injections. In skeletal muscle of PGC-1alpha KO mice, VEGF protein...... expression was approximately 60-80% lower and the capillary-to-fiber ratio approximately 20% lower than in WT. Basal VEGF mRNA expression was similar in WT and PGC-1alpha KO mice, but acute exercise and AICAR treatment increased the VEGF mRNA content in WT mice only. Exercise training of young mice increased...

  20. Sociability Deficits and Altered Amygdala Circuits in Mice Lacking Pcdh10, an Autism Associated Gene.

    Science.gov (United States)

    Schoch, Hannah; Kreibich, Arati S; Ferri, Sarah L; White, Rachel S; Bohorquez, Dominique; Banerjee, Anamika; Port, Russell G; Dow, Holly C; Cordero, Lucero; Pallathra, Ashley A; Kim, Hyong; Li, Hongzhe; Bilker, Warren B; Hirano, Shinji; Schultz, Robert T; Borgmann-Winter, Karin; Hahn, Chang-Gyu; Feldmeyer, Dirk; Carlson, Gregory C; Abel, Ted; Brodkin, Edward S

    2017-02-01

    Behavioral symptoms in individuals with autism spectrum disorder (ASD) have been attributed to abnormal neuronal connectivity, but the molecular bases of these behavioral and brain phenotypes are largely unknown. Human genetic studies have implicated PCDH10, a member of the δ2 subfamily of nonclustered protocadherin genes, in ASD. PCDH10 expression is enriched in the basolateral amygdala, a brain region implicated in the social deficits of ASD. Previous reports indicate that Pcdh10 plays a role in axon outgrowth and glutamatergic synapse elimination, but its roles in social behaviors and amygdala neuronal connectivity are unknown. We hypothesized that haploinsufficiency of Pcdh10 would reduce social approach behavior and alter the structure and function of amygdala circuits. Mice lacking one copy of Pcdh10 (Pcdh10 +/- ) and wild-type littermates were assessed for social approach and other behaviors. The lateral/basolateral amygdala was assessed for dendritic spine number and morphology, and amygdala circuit function was studied using voltage-sensitive dye imaging. Expression of Pcdh10 and N-methyl-D-aspartate receptor (NMDAR) subunits was assessed in postsynaptic density fractions of the amygdala. Male Pcdh10 +/- mice have reduced social approach behavior, as well as impaired gamma synchronization, abnormal spine morphology, and reduced levels of NMDAR subunits in the amygdala. Social approach deficits in Pcdh10 +/- male mice were rescued with acute treatment with the NMDAR partial agonist d-cycloserine. Our studies reveal that male Pcdh10 +/- mice have synaptic and behavioral deficits, and establish Pcdh10 +/- mice as a novel genetic model for investigating neural circuitry and behavioral changes relevant to ASD. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Oxidative Stress Induced Age Dependent Meibomian Gland Dysfunction in Cu, Zn-Superoxide Dismutase-1 (Sod1) Knockout Mice

    Science.gov (United States)

    Ibrahim, Osama M. A.; Dogru, Murat; Matsumoto, Yukihiro; Igarashi, Ayako; Kojima, Takashi; Wakamatsu, Tais Hitomi; Inaba, Takaaki; Shimizu, Takahiko; Shimazaki, Jun; Tsubota, Kazuo

    2014-01-01

    Purpose The purpose of our study was to investigate alterations in the meibomian gland (MG) in Cu, Zn-Superoxide Dismutase-1 knockout (Sod1 −/−) mouse. Methods Tear function tests [Break up time (BUT) and cotton thread] and ocular vital staining test were performed on Sod1 −/− male mice (n = 24) aged 10 and 50 weeks, and age and sex matched wild–type (+/+) mice (n = 25). Tear and serum samples were collected at sacrifice for inflammatory cytokine assays. MG specimens underwent Hematoxylin and Eosin staining, Mallory staining for fibrosis, Oil Red O lipid staining, TUNEL staining, immunohistochemistry stainings for 4HNE, 8-OHdG and CD45. Transmission electron microscopic examination (TEM) was also performed. Results Corneal vital staining scores in the Sod1 −/− mice were significantly higher compared with the wild type mice throughout the follow-up. Tear and serum IL-6 and TNF-α levels also showed significant elevations in the 10 to 50 week Sod1 −/− mice. Oil Red O staining showed an accumulation of large lipid droplets in the Sod1 −/− mice at 50 weeks. Immunohistochemistry revealed both increased TUNEL and oxidative stress marker stainings of the MG acinar epithelium in the Sod1 −/− mice compared to the wild type mice. Immunohistochemistry staining for CD45 showed increasing inflammatory cell infiltrates from 10 to 50 weeks in the Sod1 −/− mice compared to the wild type mice. TEM revealed prominent mitochondrial changes in 50 week Sod1 −/− mice. Conclusions Our results suggest that reactive oxygen species might play a vital role in the pathogensis of meibomian gland dysfunction. The Sod1 −/− mouse appears to be a promising model for the study of reactive oxygen species associated MG alterations. PMID:25036096

  2. Mice lacking mPGES-1 are resistant to lithium-induced polyuria.

    Science.gov (United States)

    Jia, Zhanjun; Wang, Haiping; Yang, Tianxin

    2009-12-01

    Cyclooxygenase-2 activity is required for the development of lithium-induced polyuria. However, the involvement of a specific, terminal prostaglandin (PG) isomerase has not been evaluated. The present study was undertaken to assess lithium-induced polyuria in mice deficient in microsomal prostaglandin E synthase-1 (mPGES-1). A 2-wk administration of LiCl (4 mmol.kg(-1).day(-1) ip) in mPGES-1 +/+ mice led to a marked polyuria with hyposmotic urine. This was associated with elevated renal mPGES-1 protein expression and increased urine PGE(2) excretion. In contrast, mPGES-1 -/- mice were largely resistant to lithium-induced polyuria and a urine concentrating defect, accompanied by nearly complete blockade of high urine PGE(2) and cAMP output. Immunoblotting, immunohistochemistry, and quantitative (q) RT-PCR consistently detected a significant decrease in aquaporin-2 (AQP2) protein expression in both the renal cortex and medulla of lithium-treated +/+ mice. This decrease was significantly attenuated in the -/- mice. qRT-PCR detected similar patterns of changes in AQP2 mRNA in the medulla but not in the cortex. Similarly, the total protein abundance of the Na-K-2Cl cotransporter (NKCC2) in the medulla but not in the cortex of the +/+ mice was significantly reduced by lithium treatment. In contrast, the dowregulation of renal medullary NKCC2 expression was significantly attenuated in the -/- mice. We conclude that mPGES-1-derived PGE(2) mediates lithium-induced polyuria likely via inhibition of AQP2 and NKCC2 expression.

  3. Hepatic NPC1L1 overexpression ameliorates glucose metabolism in diabetic mice via suppression of gluconeogenesis.

    Science.gov (United States)

    Kurano, Makoto; Hara, Masumi; Satoh, Hiroaki; Tsukamoto, Kazuhisa

    2015-05-01

    Inhibition of intestinal NPC1L1 by ezetimibe has been demonstrated to improve glucose metabolism in rodent models; however, the role of hepatic NPC1L1 in glucose metabolism has not been elucidated. In this study, we analyzed the effects of hepatic NPC1L1 on glucose metabolism. We overexpressed NPC1L1 in the livers of lean wild type mice, diet-induced obesity mice and db/db mice with adenoviral gene transfer. We found that in all three mouse models, hepatic NPC1L1 overexpression lowered fasting blood glucose levels as well as blood glucose levels on ad libitum; in db/db mice, hepatic NPC1L1 overexpression improved blood glucose levels to almost the same as those found in lean wild type mice. A pyruvate tolerance test revealed that gluconeogenesis was suppressed by hepatic NPC1L1 overexpression. Further analyses revealed that hepatic NPC1L1 overexpression decreased the expression of FoxO1, resulting in the reduced expression of G6Pase and PEPCK, key enzymes in gluconeogenesis. These results indicate that hepatic NPC1L1 might have distinct properties of suppressing gluconeogenesis via inhibition of FoxO1 pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice

    Science.gov (United States)

    González-Rodríguez, Águeda; Gutierrez, Jose A. Mas; Sanz-González, Silvia; Ros, Manuel; Burks, Deborah J.; Valverde, Ángela M.

    2010-01-01

    OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2−/− mice. RESEARCH DESIGN AND METHODS We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2−/− and IRS2−/−/PTP1B−/− mice. Additionally, hepatic insulin signaling was assessed in control and IRS2−/− mice treated with resveratrol, an antioxidant present in red wine. RESULTS In livers of hyperglycemic IRS2−/− mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double-mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycemic IRS2−/− mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. CONCLUSIONS By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action. PMID:20028942

  5. Effects of exercise and enrichment on behaviour in CD-1 mice.

    Science.gov (United States)

    Aujnarain, Amiirah B; Luo, Owen D; Taylor, Natalie; Lai, Jonathan K Y; Foster, Jane A

    2018-04-16

    A host of scholarly work has characterized the positive effects of exercise and environmental enrichment on behaviour and cognition in animal studies. The purpose of this study was to investigate the uptake and longitudinal impact of exercise and enrichment on the behavioural phenotype of male and female CD-1 mice. CD-1 mice housed in standard (STD) or exercise and enrichment (EE) conditions post-weaning were tested in the 3-chamber sociability test, open field, and elevated plus maze and exercise activity was monitored throughout the enrichment protocol. Male and female EE mice both showed reduced anxiety and activity in the open field and elevated plus maze relative to sex-matched STD mice. EE altered social behaviours in a sex-specific fashion, with only female EE mice showing increased social preference relative to female STD mice and a preference for social novelty only present in male EE mice. This sexual dimorphism was not observed to be a product of exercise uptake, as CD-1 mice of both sexes demonstrated a consistent trend of wheel rotation frequencies. These findings suggest the importance of considering variables such as sex and strain on experimental design variables in future work on environmental enrichment. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Cytochrome P450 1A1 (CYP1A1) protects against nonalcoholic fatty liver disease caused by Western diet containing benzo[a]pyrene in mice.

    Science.gov (United States)

    Uno, Shigeyuki; Nebert, Daniel W; Makishima, Makoto

    2018-03-01

    The Western diet contributes to nonalcoholic fatty liver disease (NAFLD) pathogenesis. Benzo[a]pyrene (BaP), a prototypical environmental pollutant produced by combustion processes, is present in charcoal-grilled meat. Cytochrome P450 1A1 (CYP1A1) metabolizes BaP, resulting in either detoxication or metabolic activation in a context-dependent manner. To elucidate a role of CYP1A1-BaP in NAFLD pathogenesis, we compared the effects of a Western diet, with or without oral BaP treatment, on the development of NAFLD in Cyp1a1(-/-) mice versus wild-type mice. A Western diet plus BaP induced lipid-droplet accumulation in liver of Cyp1a1(-/-) mice, but not wild-type mice. The hepatic steatosis observed in Cyp1a1(-/-) mice was associated with increased cholesterol, triglyceride and bile acid levels. Cyp1a1(-/-) mice fed Western diet plus BaP had changes in expression of genes involved in bile acid and lipid metabolism, and showed no increase in Cyp1a2 expression but did exhibit enhanced Cyp1b1 mRNA expression, as well as hepatic inflammation. Enhanced BaP metabolic activation, oxidative stress and inflammation may exacerbate metabolic dysfunction in liver of Cyp1a1(-/-) mice. Thus, Western diet plus BaP induces NAFLD and hepatic inflammation in Cyp1a1(-/-) mice in comparison to wild-type mice, indicating a protective role of CYP1A1 against NAFLD pathogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Autophagy resolves early retinal inflammation in Igf1-deficient mice

    Directory of Open Access Journals (Sweden)

    Ana I. Arroba

    2016-09-01

    Full Text Available Insulin-like growth factor-1 (IGF-1 is a growth factor with differentiating, anti-apoptotic and metabolic functions in the periphery, and anti-inflammatory properties in the nervous system. Mice that have mutations in the Igf1 gene, rendering the gene product inactive (Igf1−/−, present with age-related visual loss accompanied by structural alterations in the first synapses of the retinal pathway. Recent advances have revealed a crucial role of autophagy in immunity and inflammation. Keeping in mind this close relationship, we aimed to decipher these processes in the context of the defects that occur during ageing in the retina of Igf1−/− mice. Tnfa and Il1b mRNAs, and phosphorylation of JNK and p38 MAPK were elevated in the retinas of 6- and 12-month old Igf1−/− mice compared to those in age-matched Igf1+/+ controls. In 6-month-old Igf1−/− retinas, increased mRNA levels of the autophagy mediators Becn1, Atg9, Atg5 and Atg4, decreased p62 (also known as SQSTM1 protein expression together with an increased LC3-II:LC3-I ratio reflected active autophagic flux. However, in retinas from 12-month-old Igf1−/− mice, Nlrp3 mRNA, processing of the IL1β pro-form and immunostaining of active caspase-1 were elevated compared to those in age-matched Igf1+/+ controls, suggesting activation of the inflammasome. This effect concurred with accumulation of autophagosomes and decreased autophagic flux in the retina. Microglia localization and status of activation in the retinas of 12-month-old Igf1+/+ and Igf1−/− mice, analyzed by immunostaining of Cd11b and Iba-1, showed a specific distribution pattern in the outer plexiform layer (OPL, inner plexiform layer (IPL and inner nuclear layer (INL, and revealed an increased number of activated microglia cells in the retina of 12-month-old blind Igf1−/− mice. Moreover, reactive gliosis was exclusively detected in the retinas from 12-month-old blind Igf1−/− mice. In conclusion, this study

  8. Hyperlipidemia and cutaneous abnormalities in transgenic mice overexpressing human apolipoprotein C1

    NARCIS (Netherlands)

    Jong, M. C.; Gijbels, M. J.; Dahlmans, V. E.; Gorp, P. J.; Koopman, S. J.; Ponec, M.; Hofker, M. H.; Havekes, L. M.

    1998-01-01

    Transgenic mice were generated with different levels of human apolipoprotein C1 (APOC1) expression in liver and skin. At 2 mo of age, serum levels of cholesterol, triglycerides (TG), and FFA were strongly elevated in APOC1 transgenic mice compared with wild-type mice. These elevated levels of serum

  9. Inducible targeting of CNS astrocytes in Aldh1l1-CreERT2 BAC transgenic mice.

    Science.gov (United States)

    Winchenbach, Jan; Düking, Tim; Berghoff, Stefan A; Stumpf, Sina K; Hülsmann, Swen; Nave, Klaus-Armin; Saher, Gesine

    2016-01-01

    Background: Studying astrocytes in higher brain functions has been hampered by the lack of genetic tools for the efficient expression of inducible Cre recombinase throughout the CNS, including the neocortex. Methods: Therefore, we generated BAC transgenic mice, in which CreERT2 is expressed under control of the Aldh1l1 regulatory region. Results: When crossbred to Cre reporter mice, adult Aldh1l1-CreERT2 mice show efficient gene targeting in astrocytes. No such Cre-mediated recombination was detectable in CNS neurons, oligodendrocytes, and microglia. As expected, Aldh1l1-CreERT2 expression was evident in several peripheral organs, including liver and kidney. Conclusions: Taken together, Aldh1l1-CreERT2 mice are a useful tool for studying astrocytes in neurovascular coupling, brain metabolism, synaptic plasticity and other aspects of neuron-glia interactions.

  10. Impaired angiogenesis during fracture healing in GPCR kinase 2 interacting protein-1 (GIT1 knock out mice.

    Directory of Open Access Journals (Sweden)

    Guoyong Yin

    Full Text Available G protein coupled receptor kinase 2 (GRK2 interacting protein-1 (GIT1, is a scaffold protein that plays an important role in angiogenesis and osteoclast activity. We have previously demonstrated that GIT1 knockout (GIT1 KO mice have impaired angiogenesis and dysregulated osteoclast podosome formation leading to a reduction in the bone resorbing ability of these cells. Since both angiogenesis and osteoclast-mediated bone remodeling are involved in the fracture healing process, we hypothesized that GIT1 participates in the normal progression of repair following bone injury. In the present study, comparison of fracture healing in wild type (WT and GIT1 KO mice revealed altered healing in mice with loss of GIT1 function. Alcian blue staining of fracture callus indicated a persistence of cartilagenous matrix in day 21 callus samples from GIT1 KO mice which was temporally correlated with increased type 2 collagen immunostaining. GIT1 KO mice also showed a decrease in chondrocyte proliferation and apoptosis at days 7 and 14, as determined by PCNA and TUNEL staining. Vascular microcomputed tomography analysis of callus samples at days 7, 14 and 21 revealed decreased blood vessel volume, number, and connection density in GIT1 KO mice compared to WT controls. Correlating with this, VEGF-A, phospho-VEGFR2 and PECAM1 (CD31 were decreased in GIT1 KO mice, indicating reduced angiogenesis with loss of GIT1. Finally, calluses from GIT1 KO mice displayed a reduced number of tartrate resistant acid phosphatase-positive osteoclasts at days 14 and 21. Collectively, these results indicate that GIT1 is an important signaling participant in fracture healing, with gene ablation leading to reduced callus vascularity and reduced osteoclast number in the healing callus.

  11. Characterizing haploinsufficiency of SHELL gene to improve fruit form prediction in introgressive hybrids of oil palm.

    Science.gov (United States)

    Teh, Chee-Keng; Muaz, Siti Dalila; Tangaya, Praveena; Fong, Po-Yee; Ong, Ai-Ling; Mayes, Sean; Chew, Fook-Tim; Kulaveerasingam, Harikrishna; Appleton, David

    2017-06-08

    The fundamental trait in selective breeding of oil palm (Eleais guineensis Jacq.) is the shell thickness surrounding the kernel. The monogenic shell thickness is inversely correlated to mesocarp thickness, where the crude palm oil accumulates. Commercial thin-shelled tenera derived from thick-shelled dura × shell-less pisifera generally contain 30% higher oil per bunch. Two mutations, sh MPOB (M1) and sh AVROS (M2) in the SHELL gene - a type II MADS-box transcription factor mainly present in AVROS and Nigerian origins, were reported to be responsible for different fruit forms. In this study, we have tested 1,339 samples maintained in Sime Darby Plantation using both mutations. Five genotype-phenotype discrepancies and eight controls were then re-tested with all five reported mutations (sh AVROS , sh MPOB , sh MPOB2 , sh MPOB3 and sh MPOB4 ) within the same gene. The integration of genotypic data, pedigree records and shell formation model further explained the haploinsufficiency effect on the SHELL gene with different number of functional copies. Some rare mutations were also identified, suggesting a need to further confirm the existence of cis-compound mutations in the gene. With this, the prediction accuracy of fruit forms can be further improved, especially in introgressive hybrids of oil palm. Understanding causative variant segregation is extremely important, even for monogenic traits such as shell thickness in oil palm.

  12. Characterisation of prostate cancer lesions in heterozygous Men1 mutant mice

    International Nuclear Information System (INIS)

    Seigne, Christelle; Fontanière, Sandra; Carreira, Christine; Lu, Jieli; Tong, Wei-Ming; Fontanière, Bernard; Wang, Zhao-Qi; Zhang, Chang Xian; Frappart, Lucien

    2010-01-01

    Mutations of the MEN1 gene predispose to multiple endocrine neoplasia type 1 (MEN1) syndrome. Our group and others have shown that Men1 disruption in mice recapitulates MEN1 pathology. Intriguingly, rare lesions in hormone-dependent tissues, such as prostate and mammary glands, were also observed in the Men1 mutant mice. To study the occurrence of prostate lesions, we followed a male mouse cohort of 47 Men1 +/- mice and 23 age-matched control littermates, starting at 18 months of age, and analysed the prostate glands from the cohort. Six Men1 +/- mice (12.8%) developed prostate cancer, including two adenocarcinomas and four in situ carcinomas, while none of the control mice developed cancerous lesions. The expression of menin encoded by the Men1 gene was found to be drastically reduced in all carcinomas, and partial LOH of the wild-type Men1 allele was detected in three of the five analysed lesions. Using immunostaining for the androgen receptor and p63, a basal epithelial cell marker, we demonstrated that the menin-negative prostate cancer cells did not display p63 expression and that the androgen receptor was expressed but more heterogeneous in these lesions. Furthermore, our data showed that the expression of the cyclin-dependent kinase inhibitor CDKN1B (p27), a Men1 target gene known to be inactivated during prostate cell tumorigenesis, was notably decreased in the prostate cancers that developed in the mutant mice. Our work suggests the possible involvement of Men1 inactivation in the tumorigenesis of the prostate gland

  13. Drp1-Dependent Mitochondrial Autophagy Plays a Protective Role Against Pressure Overload-Induced Mitochondrial Dysfunction and Heart Failure.

    Science.gov (United States)

    Shirakabe, Akihiro; Zhai, Peiyong; Ikeda, Yoshiyuki; Saito, Toshiro; Maejima, Yasuhiro; Hsu, Chiao-Po; Nomura, Masatoshi; Egashira, Kensuke; Levine, Beth; Sadoshima, Junichi

    2016-03-29

    Mitochondrial autophagy is an important mediator of mitochondrial quality control in cardiomyocytes. The occurrence of mitochondrial autophagy and its significance during cardiac hypertrophy are not well understood. Mice were subjected to transverse aortic constriction (TAC) and observed at multiple time points up to 30 days. Cardiac hypertrophy developed after 5 days, the ejection fraction was reduced after 14 days, and heart failure was observed 30 days after TAC. General autophagy was upregulated between 1 and 12 hours after TAC but was downregulated below physiological levels 5 days after TAC. Mitochondrial autophagy, evaluated by electron microscopy, mitochondrial content, and Keima with mitochondrial localization signal, was transiently activated at ≈3 to 7 days post-TAC, coinciding with mitochondrial translocation of Drp1. However, it was downregulated thereafter, followed by mitochondrial dysfunction. Haploinsufficiency of Drp1 abolished mitochondrial autophagy and exacerbated the development of both mitochondrial dysfunction and heart failure after TAC. Injection of Tat-Beclin 1, a potent inducer of autophagy, but not control peptide, on day 7 after TAC, partially rescued mitochondrial autophagy and attenuated mitochondrial dysfunction and heart failure induced by overload. Haploinsufficiency of either drp1 or beclin 1 prevented the rescue by Tat-Beclin 1, suggesting that its effect is mediated in part through autophagy, including mitochondrial autophagy. Mitochondrial autophagy is transiently activated and then downregulated in the mouse heart in response to pressure overload. Downregulation of mitochondrial autophagy plays an important role in mediating the development of mitochondrial dysfunction and heart failure, whereas restoration of mitochondrial autophagy attenuates dysfunction in the heart during pressure overload. © 2016 American Heart Association, Inc.

  14. Effects of prenatal hypoxia on schizophrenia-related phenotypes in heterozygous reeler mice: a gene × environment interaction study.

    Science.gov (United States)

    Howell, Kristy R; Pillai, Anilkumar

    2014-08-01

    Both genetic and environmental factors play important roles in the pathophysiology of schizophrenia. Although prenatal hypoxia is a potential environmental factor implicated in schizophrenia, very little is known about the consequences of combining models of genetic risk factor with prenatal hypoxia. Heterozygous reeler (haploinsufficient for reelin; HRM) and wild-type (WT) mice were exposed to prenatal hypoxia (9% oxygen for two hour) or normoxia at embryonic day 17 (E17). Behavioral (Prepulse inhibition, Y-maze and Open field) and functional (regional volume in frontal cortex and hippocampus as well as hippocampal blood flow) tests were performed at 3 months of age. The levels of hypoxia and stress-related molecules such as hypoxia-inducible factor-1 α (HIF-1α), vascular endothelial factor (VEGF), VEGF receptor-2 (VEGFR2/Flk1) and glucocorticoid receptor (GR) were examined in frontal cortex and hippocampus at E18, 1 month and 3 months of age. In addition, serum VEGF and corticosterone levels were also examined. Prenatal hypoxia induced anxiety-like behavior in both HRM and WT mice. A significant reduction in hippocampal blood flow, but no change in brain regional volume was observed following prenatal hypoxia. Significant age and region-dependent changes in HIF-1α, VEGF, Flk1 and GR were found following prenatal hypoxia. Serum VEGF and corticosterone levels were found decreased following prenatal hypoxia. None of the above prenatal hypoxia-induced changes were either diminished or exacerbated due to reelin deficiency. These results argue against any gene-environment interaction between hypoxia and reelin deficiency. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  15. Angiogenesis and Therapeutic Approaches to NF1 Tumors

    National Research Council Canada - National Science Library

    Muir, David F

    2007-01-01

    .... Invivo and in vitro models were used to firmly conclude that Nf1 haploinsufficiency in endothelial cells results inexaggerated proliferation and angiogenesis in response to key pro-angiogenic factors...

  16. Male mice with deleted Wolframin (Wfs1 gene have reduced fertility

    Directory of Open Access Journals (Sweden)

    Aunapuu Marina

    2009-08-01

    Full Text Available Abstract Background Wolfram Syndrome (WS is an autosomal recessive disorder characterised by non-autoimmune diabetes mellitus, optic atrophy, cranial diabetes insipidus and sensorineural deafness. Some reports have described hypogonadism in male WS patients. The aim of our study was to find out whether Wfs1 deficient (Wfs1KO male mice have reduced fertility and, if so, to examine possible causes. Methods Wfs1KO mice were generated by homologous recombination. Both Wfs1KO and wild type (wt male mice were mated with wt female mice. The number of litters and the number of pups were counted and pregnancy rates calculated. The motility and morphology of the sperm and the histology of testes were analysed. Serum testosterone and FSH concentrations were also measured. Results The pregnancy rate in wt females mated with Wfs1KO males was significantly lower than in the control group (15% vs. 32%; p Conclusion The impaired fertility of Wfs1KO male mice is most likely due to changes in sperm morphology and reduced number of spermatogenic cells. The exact mechanism through which the Wfs1 gene influences sperm morphology needs to be clarified in further studies.

  17. Intramuscular Immunization of Mice with the Live-Attenuated Herpes Simplex Virus 1 Vaccine Strain VC2 Expressing Equine Herpesvirus 1 (EHV-1) Glycoprotein D Generates Anti-EHV-1 Immune Responses in Mice.

    Science.gov (United States)

    Liu, Shiliang A; Stanfield, Brent A; Chouljenko, Vladimir N; Naidu, Shan; Langohr, Ingeborg; Del Piero, Fabio; Ferracone, Jacqueline; Roy, Alma A; Kousoulas, Konstantin G

    2017-06-15

    Vaccination remains the best option to combat equine herpesvirus 1 (EHV-1) infection, and several different strategies of vaccination have been investigated and developed over the past few decades. Herein, we report that the live-attenuated herpes simplex virus 1 (HSV-1) VC2 vaccine strain, which has been shown to be unable to enter into neurons and establish latency in mice, can be utilized as a vector for the heterologous expression of EHV-1 glycoprotein D (gD) and that the intramuscular immunization of mice results in strong antiviral humoral and cellular immune responses. The VC2-EHV-1-gD recombinant virus was constructed by inserting an EHV-1 gD expression cassette under the control of the cytomegalovirus immediate early promoter into the VC2 vector in place of the HSV-1 thymidine kinase (UL23) gene. The vaccines were introduced into mice through intramuscular injection. Vaccination with both the VC2-EHV-1-gD vaccine and the commercially available vaccine Vetera EHV XP 1/4 (Vetera; Boehringer Ingelheim Vetmedica) resulted in the production of neutralizing antibodies, the levels of which were significantly higher in comparison to those in VC2- and mock-vaccinated animals ( P < 0.01 or P < 0.001). Analysis of EHV-1-reactive IgG subtypes demonstrated that vaccination with the VC2-EHV-1-gD vaccine stimulated robust IgG1 and IgG2a antibodies after three vaccinations ( P < 0.001). Interestingly, Vetera-vaccinated mice produced significantly higher levels of IgM than mice in the other groups before and after challenge ( P < 0.01 or P < 0.05). Vaccination with VC2-EHV-1-gD stimulated strong cellular immune responses, characterized by the upregulation of both interferon- and tumor necrosis factor-positive CD4 + T cells and CD8 + T cells. Overall, the data suggest that the HSV-1 VC2 vaccine strain may be used as a viral vector for the vaccination of horses as well as, potentially, for the vaccination of other economically important animals. IMPORTANCE A novel virus

  18. Depletion of GGA1 and GGA3 mediates postinjury elevation of BACE1.

    Science.gov (United States)

    Walker, Kendall R; Kang, Eugene L; Whalen, Michael J; Shen, Yong; Tesco, Giuseppina

    2012-07-25

    Traumatic brain injury (TBI) is one of the most robust environmental risk factors for Alzheimer's disease (AD). Compelling evidence is accumulating that a single event of TBI is associated with increased levels of Aβ. However, the underlying molecular mechanisms remain unknown. We report here that the BACE1 interacting protein, GGA3, is depleted while BACE1 levels increase in the acute phase after injury (48 h) in a mouse model of TBI. We further demonstrated the role of GGA3 in the regulation of BACE1 in vivo by showing that BACE1 levels are increased in the brain of GGA3-null mice. We next found that head trauma potentiates BACE1 elevation in GGA3-null mice in the acute phase after TBI, and discovered that GGA1, a GGA3 homolog, is a novel caspase-3 substrate depleted at 48 h after TBI. Moreover, GGA1 silencing potentiates BACE1 elevation induced by GGA3 deletion in neurons in vitro, indicating that GGA1 and GGA3 synergistically regulate BACE1. Accordingly, we found that levels of both GGA1 and GGA3 are depleted while BACE1 levels are increased in a series of postmortem AD brains. Finally, we show that GGA3 haploinsufficiency results in sustained elevation of BACE1 and Aβ levels while GGA1 levels are restored in the subacute phase (7 d) after injury. In conclusion, our data indicate that depletion of GGA1 and GGA3 engender a rapid and robust elevation of BACE1 in the acute phase after injury. However, the efficient disposal of the acutely accumulated BACE1 solely depends on GGA3 levels in the subacute phase of injury.

  19. Biotin status affects nickel allergy via regulation of interleukin-1beta production in mice.

    Science.gov (United States)

    Kuroishi, Toshinobu; Kinbara, Masayuki; Sato, Naoki; Tanaka, Yukinori; Nagai, Yasuhiro; Iwakura, Yoichiro; Endo, Yasuo; Sugawara, Shunji

    2009-05-01

    Biotin, a water-soluble B complex vitamin, is possibly involved in chronic inflammatory diseases, although the detailed mechanisms are unclear. In this study, we investigated the effects of biotin status on nickel (Ni) allergy in mice. Mice were fed a basal or biotin-deficient (BD) diet for 8 wk and sensitized with an intraperitoneal injection of NiCl(2) and lipopolysaccharide. Ten days after sensitization, NiCl(2) was intradermally injected into pinnas and ear swelling was measured. For in vitro analysis, we cultured a murine macrophage cell line, J774.1, under a biotin-sufficient (C, meaning control) or BD condition for 4 wk and analyzed interleukin (IL)-1 production. Significantly higher ear swelling was induced in BD mice than C mice. Adaptive transfer of splenocytes from both C and BD mice induced Ni allergy in unsensitized mice. Regardless of donor mice, ear swelling was significantly higher in BD recipient mice than C recipient mice. Ni allergy was not induced in either C or BD IL-1(-/-) mice. Splenocytes from BD mice produced a significantly higher amount of IL-1beta than those from C mice. Production and mRNA expression of IL-1beta were significantly higher in BD J774.1 cells than in C cells. Biotin supplementation inhibited the augmentation of IL-1beta production in vitro. In vivo supplementation of biotin in drinking water dose-dependently decreased ear swelling in C and BD mice. These results indicate that biotin status affects Ni allergy in the elicitation phase via the upregulation of IL-1beta production in mice, suggesting that biotin supplementation may have therapeutic effects on human metal allergy.

  20. The dwarf phenotype in GH240B mice, haploinsufficient for the autism candidate gene Neurobeachin, is caused by ectopic expression of recombinant human growth hormone.

    Science.gov (United States)

    Nuytens, Kim; Tuand, Krizia; Fu, Quili; Stijnen, Pieter; Pruniau, Vincent; Meulemans, Sandra; Vankelecom, Hugo; Creemers, John W M

    2014-01-01

    Two knockout mouse models for the autism candidate gene Neurobeachin (Nbea) have been generated independently. Although both models have similar phenotypes, one striking difference is the dwarf phenotype observed in the heterozygous configuration of the GH240B model that is generated by the serendipitous insertion of a promoterless human growth hormone (hGH) genomic fragment in the Nbea gene. In order to elucidate this discrepancy, the dwarfism present in this Nbea mouse model was investigated in detail. The growth deficiency in Nbea+/- mice coincided with an increased percentage of fat mass and a decrease in bone mineral density. Low but detectable levels of hGH were detected in the pituitary and hypothalamus of Nbea+/- mice but not in liver, hippocampus nor in serum. As a consequence, several members of the mouse growth hormone (mGH) signaling cascade showed altered mRNA levels, including a reduction in growth hormone-releasing hormone mRNA in the hypothalamus. Moreover, somatotrope cells were less numerous in the pituitary of Nbea+/- mice and both contained and secreted significantly less mGH resulting in reduced levels of circulating insulin-like growth factor 1. These findings demonstrate that the random integration of the hGH transgene in this mouse model has not only inactivated Nbea but has also resulted in the tissue-specific expression of hGH causing a negative feedback loop, mGH hyposecretion and dwarfism.

  1. Melanocortin 1 Receptor Deficiency Promotes Atherosclerosis in Apolipoprotein E-/- Mice.

    Science.gov (United States)

    Rinne, Petteri; Kadiri, James J; Velasco-Delgado, Mauricio; Nuutinen, Salla; Viitala, Miro; Hollmén, Maija; Rami, Martina; Savontaus, Eriika; Steffens, Sabine

    2018-02-01

    The MC1-R (melanocortin 1 receptor) is expressed by monocytes and macrophages where it mediates anti-inflammatory actions. MC1-R also protects against macrophage foam cell formation primarily by promoting cholesterol efflux through the ABCA1 (ATP-binding cassette transporter subfamily A member 1) and ABCG1 (ATP-binding cassette transporter subfamily G member 1). In this study, we aimed to investigate whether global deficiency in MC1-R signaling affects the development of atherosclerosis. Apoe -/- (apolipoprotein E deficient) mice were crossed with recessive yellow (Mc1r e/e ) mice carrying dysfunctional MC1-R and fed a high-fat diet to induce atherosclerosis. Apoe -/- Mc1r e/e mice developed significantly larger atherosclerotic lesions in the aortic sinus and in the whole aorta compared with Apoe -/- controls. In terms of plaque composition, MC1-R deficiency was associated with less collagen and smooth muscle cells and increased necrotic core, indicative of more vulnerable lesions. These changes were accompanied by reduced Abca1 and Abcg1 expression in the aorta. Furthermore, Apoe -/- Mc1r e/e mice showed a defect in bile acid metabolism that aggravated high-fat diet-induced hypercholesterolemia and hepatic lipid accumulation. Flow cytometric analysis of leukocyte profile revealed that dysfunctional MC1-R enhanced arterial accumulation of classical Ly6C high monocytes and macrophages, effects that were evident in mice fed a normal chow diet but not under high-fat diet conditions. In support of enhanced arterial recruitment of Ly6C high monocytes, these cells had increased expression of L-selectin and P-selectin glycoprotein ligand 1. The present study highlights the importance of MC1-R in the development of atherosclerosis. Deficiency in MC1-R signaling exacerbates atherosclerosis by disturbing cholesterol handling and by increasing arterial monocyte accumulation. © 2017 The Authors.

  2. Atomoxetine reduces hyperactive/impulsive behaviours in neurokinin-1 receptor ‘knockout’ mice

    Science.gov (United States)

    Pillidge, Katharine; Porter, Ashley J.; Vasili, Temis; Heal, David J.; Stanford, S. Clare

    2014-01-01

    Background Mice with functional ablation of the neurokinin-1 receptor gene (NK1R−/−) display behavioural abnormalities which resemble the hyperactivity, inattention and impulsivity seen in Attention Deficit Hyperactivity Disorder (ADHD). Here, we investigated whether the established ADHD treatment, atomoxetine, alleviates these abnormalities when tested in the light/dark exploration box (LDEB) and 5-Choice Serial Reaction-Time Task (5-CSRTT). Methods Separate cohorts of mice were tested in the 5-CSRTT and LDEB after treatment with no injection, vehicle or atomoxetine (5-CSRTT: 0.3, 3 or 10 mg/kg; LDEB: 1, 3 or 10 mg/kg). Results Atomoxetine reduced the hyperactivity displayed by NK1R−/− mice in the LDEB at a dose (3 mg/kg) which did not affect the locomotor activity of wildtypes. Atomoxetine (10 mg/kg) also reduced impulsivity in NK1R−/− mice, but not wildtypes, in the 5-CSRTT. No dose of drug affected attention in either genotype. Conclusions This evidence that atomoxetine reduces hyperactive/impulsive behaviours in NK1R−/− mice consolidates the validity of using NK1R−/− mice in research of the aetiology and treatment of ADHD. PMID:25450119

  3. Beneficial Outcome of Losartan Therapy Depends on Type of FBN1 Mutation in Marfan Syndrome.

    Science.gov (United States)

    Franken, Romy; den Hartog, Alexander W; Radonic, Teodora; Micha, Dimitra; Maugeri, Alessandra; van Dijk, Fleur S; Meijers-Heijboer, Hanne E; Timmermans, Janneke; Scholte, Arthur J; van den Berg, Maarten P; Groenink, Maarten; Mulder, Barbara J M; Zwinderman, Aeilko H; de Waard, Vivian; Pals, Gerard

    2015-04-01

    It has been shown that losartan reduces aortic dilatation in patients with Marfan syndrome. However, treatment response is highly variable. This study investigates losartan effectiveness in genetically classified subgroups. In this predefined substudy of COMPARE, Marfan patients were randomized to daily receive losartan 100 mg or no losartan. Aortic root dimensions were measured by MRI at baseline and after 3 years. FBN1 mutations were classified based on fibrillin-1 protein effect into (1) haploinsufficiency, decreased amount of normal fibrillin-1, or (2) dominant negative, normal fibrillin-1 abundance with mutant fibrillin-1 incorporated in the matrix. A pathogenic FBN1 mutation was found in 117 patients, of whom 79 patients were positive for a dominant negative mutation (67.5%) and 38 for a mutation causing haploinsufficiency (32.5%). Baseline characteristics between treatment groups were similar. Overall, losartan significantly reduced aortic root dilatation rate (no losartan, 1.3±1.5 mm/3 years, n=59 versus losartan, 0.8±1.4 mm/3 years, n=58; P=0.009). However, losartan reduced only aortic root dilatation rate in haploinsufficient patients (no losartan, 1.8±1.5 mm/3 years, n=21 versus losartan 0.5±0.8 mm/3 years, n=17; P=0.001) and not in dominant negative patients (no losartan, 1.2±1.7 mm/3 years, n=38 versus losartan 0.8±1.3 mm/3 years, n=41; P=0.197). Marfan patients with haploinsufficient FBN1 mutations seem to be more responsive to losartan therapy for inhibition of aortic root dilatation rate compared with dominant negative patients. Additional treatment strategies are needed in Marfan patients with dominant negative FBN1 mutations. http://www.trialregister.nl/trialreg/index.asp; Unique Identifier: NTR1423. © 2015 American Heart Association, Inc.

  4. Comparison of the acute ultraviolet photoresponse in congenic albino hairless C57BL/6J mice relative to outbred SKH1 hairless mice

    Science.gov (United States)

    Konger, Raymond L.; Derr-Yellin, Ethel; Hojati, Delaram; Lutz, Cathleen; Sundberg, John P.

    2016-01-01

    Hairless albino Crl:SKH1-Hrhr mice are commonly utilized for studies in which hair or pigmentation would introduce an impediment to observational studies. Being an outbred strain, the SKH1 model suffers from key limitations that are not seen with congenic mouse strains. Inbred and congenic C57BL/6J mice are commonly utilized for modified genetic mouse models. We compare the acute UV-induced photoresponse between outbred SKH1 mice and an immune competent, hairless, albino C57BL/6J congenic mouse line [B6.Cg-Tyrc-2J Hrhr/J]. Histologically, B6.Cg-Tyrc-2J Hrhr/J skin is indistinguishable from that of SKH1 mice. The skin of both SKH1 and B6.Cg-Tyrc-2J Hrhr/J mice exhibited a reduction in hypodermal adipose tissue, the presence of utricles and dermal cystic structures, the presence of dermal granulomas, and epidermal thickening. In response to a single 1500 J/m2 UVB dose, the edema and apoptotic response was equivalent in both mouse strains. However, B6.Cg-Tyrc-2J Hrhr/J mice exhibited a more robust delayed sunburn reaction, with an increase in epidermal erosion, scab formation, and myeloperoxidase activity relative to SKH1 mice. Compared with SKH1 mice, B6.Cg-Tyrc-2J Hrhr/J also exhibited an aberrant proliferative response to this single UV exposure. Epidermal Ki67 immunopositivity was significantly suppressed in B6.Cg-Tyrc-2J Hrhr/J mice at 24 hours post-UV. A smaller non-significant reduction in Ki67 labeling was observed in SKH1 mice. Finally, at 72 hours post-UV, SKH1 mice, but not B6.Cg-Tyrc-2J Hrhr/J mice, exhibited a significant increase in Ki67 immunolabeling relative to non-irradiated controls. Thus, B6.Cg-Tyrc-2J Hrhr/J mice are suitable for photobiology experiments. PMID:27095432

  5. Identification of genes involved in DNA replication of the Autographa californica baculovirus

    NARCIS (Netherlands)

    Kool, M.; Ahrens, C. H.; Goldbach, R. W.; Rohrmann, G. F.; Vlak, J. M.

    1994-01-01

    By use of a transient replication assay, nine genes involved in DNA replication were identified in the genome of the Autographa californica baculovirus. Six genes encoding helicase, DNA polymerase, IE-1, LEF-1, LEF-2, and LEF-3 are essential for DNA replication while three genes encoding P35, IE-2,

  6. Resilience to audiogenic seizures is associated with p-ERK1/2 dephosphorylation in the subiculum of Fmr1 knockout mice

    Directory of Open Access Journals (Sweden)

    Giulia eCuria

    2013-04-01

    Full Text Available Young, but not adult, Fmr1 knockout (KO mice display audiogenic seizures (AGS that can be prevented by inhibiting extracellular signal-regulated kinases 1/2 (ERK1/2 phosphorylation. In order to identify the cerebral regions involved in these phenomena, we characterized the response to AGS in Fmr1 KO mice and wild type (WT controls at postnatal day (P 45 and P90. To characterize the diverse response to AGS in various cerebral regions, we evaluated the activity markers FosB/ΔFosB and phosphorylated ERK1/2 (p-ERK1/2. Wild running (100% of tested mice followed by clonic/tonic seizures (30% were observed in P45 Fmr1 KO mice, but not in WT mice. In P90 Fmr1 KO mice, wild running was only present in 25% of tested animals. Basal FosB/ΔFosB immunoreactivity was higher (P<0.01 vs WT in the CA1 and subiculum of P45 Fmr1 KO mice. Following the AGS test, FosB/ΔFosB expression consistently increased in most of the analyzed regions in both groups at P45, but not at P90. Interestingly, FosB/ΔFosB immunoreactivity was significantly higher in P45 Fmr1 KO mice in the medial geniculate body (P<0.05 vs WT and CA3 (P<0.01. Neurons presenting with immunopositivity to p-ERK1/2 were more abundant in the subiculum of Fmr1 KO mice in control condition (P<0.05 vs WT, in both age groups. In this region, p-ERK1/2-immunopositive cells significantly decreased (-75%, P<0.01 in P90 Fmr1 KO mice exposed to the AGS test, but no changes were found in P45 mice or in other brain regions. In both age groups of WT mice, p-ERK1/2-immunopositive cells increased in the subiculum after exposure to the acoustic test. Our findings illustrate that FosB/ΔFosB markers are overexpressed in the medial geniculate body and CA3 in Fmr1 KO mice experiencing AGS, and that p-ERK1/2 is markedly decreased in the subiculum of Fmr1 KO mice resistant to AGS induction. These findings suggest that resilience to AGS is associated with dephosphorylation of p-ERK1/2 in the subiculum of mature Fmr1 KO mice.

  7. APP/SOD1 overexpressing mice present reduced neuropathic pain sensitivity.

    Science.gov (United States)

    Kotulska, Katarzyna; Larysz-Brysz, Magdalena; LePecheur, Marie; Marcol, Wiesław; Olakowska, Edyta; Lewin-Kowalik, Joanna; London, Jacqueline

    2011-07-15

    There are controversies regarding pain expression in mentally disabled people, including Down syndrome patients. The aim of this study was to examine neuropathic pain-related behavior and peripheral nerve regeneration in mouse model of Down syndrome. Sciatic nerves of double transgenic mice, overexpressing both amyloid precursor protein (APP) and Cu/Zn superoxide dismutase (SOD1) genes, and FVB/N wild type mice were transected and immediately resutured. Evaluation of autotomy and functional recovery was carried out during 4-week follow-up. We found markedly less severe autotomy in transgenic animals, although the onset of autotomy was significantly delayed in control mice. Interestingly, neuroma formation at the injury site was significantly more prominent in transgenic animals. Sciatic function index outcome was better in transgenic mice than in wild-type group. Histological evaluation revealed no statistically significant differences in the number of GAP-43-positive growth cones and macrophages in the distal stump of the transected nerve between groups. However, in transgenic animals, the regenerating axons were arranged more chaotically. The number of Schwann cells in the distal stump of the transected nerves was significantly lower in transgenic mice. The number of surviving motoneurons was markedly decreased in transgenic group. We measured also the atrophy of denervated muscles and found it decreased in APP/SOD1 overexpressing mice. Taken together, in this model of Down syndrome, we observed increased neuroma formation and decreased autotomy after peripheral nerve injury. Our findings suggest that APP/SOD1 overexpressing mice are less sensitive for neuropathic pain associated with neuroma. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. BTB and CNC homolog 1 (Bach1) deficiency ameliorates TNBS colitis in mice: role of M2 macrophages and heme oxygenase-1.

    Science.gov (United States)

    Harusato, Akihito; Naito, Yuji; Takagi, Tomohisa; Uchiyama, Kazuhiko; Mizushima, Katsura; Hirai, Yasuko; Higashimura, Yasuki; Katada, Kazuhiro; Handa, Osamu; Ishikawa, Takeshi; Yagi, Nobuaki; Kokura, Satoshi; Ichikawa, Hiroshi; Muto, Akihiko; Igarashi, Kazuhiko; Yoshikawa, Toshikazu

    2013-01-01

    BTB and CNC homolog 1 (Bach1) is a transcriptional repressor of heme oxygenase-1 (HO-1), which plays an important role in the protection of cells and tissues against acute and chronic inflammation. However, the role of Bach1 in the gastrointestinal mucosal defense system remains little understood. HO-1 supports the suppression of experimental colitis and localizes mainly in macrophages in colonic mucosa. This study was undertaken to elucidate the Bach1/HO-1 system's effects on the pathogenesis of experimental colitis. This study used C57BL/6 (wild-type) and homozygous Bach1-deficient C57BL/6 mice in which colonic damage was induced by the administration of an enema of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Subsequently, they were evaluated macroscopically, histologically, and biochemically. Peritoneal macrophages from the respective mice were isolated and analyzed. Then, wild-type mice were injected with peritoneal macrophages from the respective mice. Acute colitis was induced similarly. TNBS-induced colitis was inhibited in Bach1-deficient mice. TNBS administration increased the expression of HO-1 messenger RNA and protein in colonic mucosa in Bach1-deficient mice. The expression of HO-1 mainly localized in F4/80-immunopositive and CD11b-immunopositive macrophages. Isolated peritoneal macrophages from Bach1-deficient mice highly expressed HO-1 and also manifested M2 macrophage markers, such as Arginase-1, Fizz-1, Ym1, and MRC1. Furthermore, TNBS-induced colitis was inhibited by the transfer of Bach1-deficient macrophages into wild-type mice. Deficiency of Bach1 ameliorated TNBS-induced colitis. Bach1-deficient macrophages played a key role in protection against colitis. Targeting of this mechanism is applicable to cell therapy for human inflammatory bowel disease.

  9. Secreted Klotho Attenuates Inflammation-Associated Aortic Valve Fibrosis in Senescence-Accelerated Mice P1.

    Science.gov (United States)

    Chen, Jianglei; Fan, Jun; Wang, Shirley; Sun, Zhongjie

    2018-05-01

    Senescence-accelerated mice P1 (SAMP1) is an aging model characterized by shortened lifespan and early signs of senescence. Klotho is an aging-suppressor gene. The purpose of this study is to investigate whether in vivo expression of secreted klotho ( Skl ) gene attenuates aortic valve fibrosis in SAMP1 mice. SAMP1 mice and age-matched (AKR/J) control mice were used. SAMP1 mice developed obvious fibrosis in aortic valves, namely fibrotic aortic valve disease. Serum level of Skl was decreased drastically in SAMP1 mice. Expression of MCP-1 (monocyte chemoattractant protein 1), ICAM-1 (intercellular adhesion molecule 1), F4/80, and CD68 was increased in aortic valves of SAMP1 mice, indicating inflammation. An increase in expression of α-smooth muscle actin (myofibroblast marker), transforming growth factorβ-1, and scleraxis (a transcription factor of collagen synthesis) was also found in aortic valves of SAMP1 mice, suggesting that accelerated aging is associated with myofibroblast transition and collagen gene activation. We constructed adeno-associated virus 2 carrying mouse Skl cDNA for in vivo expression of Skl. Skl gene delivery effectively increased serum Skl of SAMP1 mice to the control level. Skl gene delivery inhibited inflammation and myofibroblastic transition in aortic valves and attenuated fibrotic aortic valve disease in SAMP1 mice. It is concluded that senescence-related fibrotic aortic valve disease in SAMP1 mice is associated with a decrease in serum klotho leading to inflammation, including macrophage infiltration and transforming growth factorβ-1/scleraxis-driven myofibroblast differentiation in aortic valves. Restoration of serum Skl levels by adeno-associated virus 2 carrying mouse Skl cDNA effectively suppresses inflammation and myofibroblastic transition and attenuates aortic valve fibrosis. Skl may be a potential therapeutic target for fibrotic aortic valve disease. © 2018 American Heart Association, Inc.

  10. Perturbed desmosomal cadherin expression in grainy head-like 1-null mice.

    Science.gov (United States)

    Wilanowski, Tomasz; Caddy, Jacinta; Ting, Stephen B; Hislop, Nikki R; Cerruti, Loretta; Auden, Alana; Zhao, Lin-Lin; Asquith, Stephen; Ellis, Sarah; Sinclair, Rodney; Cunningham, John M; Jane, Stephen M

    2008-03-19

    In Drosophila, the grainy head (grh) gene plays a range of key developmental roles through the regulation of members of the cadherin gene family. We now report that mice lacking the grh homologue grainy head-like 1 (Grhl1) exhibit hair and skin phenotypes consistent with a reduction in expression of the genes encoding the desmosomal cadherin, desmoglein 1 (Dsg1). Grhl1-null mice show an initial delay in coat growth, and older mice exhibit hair loss as a result of poor anchoring of the hair shaft in the follicle. The mice also develop palmoplantar keratoderma, analogous to humans with DSG1 mutations. Sequence analysis, DNA binding, and chromatin immunoprecipitation experiments demonstrate that the human and mouse Dsg1 promoters are direct targets of GRHL1. Ultrastructural analysis reveals reduced numbers of abnormal desmosomes in the interfollicular epidermis. These findings establish GRHL1 as an important regulator of the Dsg1 genes in the context of hair anchorage and epidermal differentiation, and suggest that cadherin family genes are key targets of the grainy head-like genes across 700 million years of evolution.

  11. Generation and Characterization of Mice Expressing a Conditional Allele of the Interleukin-1 Receptor Type 1.

    Directory of Open Access Journals (Sweden)

    Matthew J Robson

    Full Text Available The cytokines IL-1α and IL-1β exert powerful pro-inflammatory actions throughout the body, mediated primarily by the intracellular signaling capacity of the interleukin-1 receptor (IL-1R1. Although Il1r1 knockout mice have been informative with respect to a requirement for IL-1R1 signaling in inflammatory events, the constitutive nature of gene elimination has limited their utility in the assessment of temporal and spatial patterns of cytokine action. To pursue such questions, we have generated C57Bl/6J mice containing a floxed Il1r1 gene (Il1r1loxP/loxP, with loxP sites positioned to flank exons 3 and 4 and thereby the ability to spatially and temporally eliminate Il1r1 expression and signaling. We found that Il1r1loxP/loxP mice breed normally and exhibit no gross physical or behavioral phenotypes. Moreover, Il1r1loxP/loxP mice exhibit normal IL-1R1 receptor expression in brain and spleen, as well as normal IL-1R1-dependent increases in serum IL-6 following IL-1α injections. Breeding of Il1r1loxP/loxP mice to animals expressing a cytomegalovirus (CMV-driven Cre recombinase afforded efficient excision at the Il1r1 locus. The Il1r1loxP/loxP line should be a valuable tool for the assessment of contributions made by IL-1R1 signaling in diverse cell types across development.

  12. Depletion of GGA1 and GGA3 mediates post-injury elevation of BACE1

    Science.gov (United States)

    Walker, Kendall R.; Kang, Eugene L.; Whalen, Michael J.; Shen, Yong; Tesco, Giuseppina

    2012-01-01

    Traumatic brain injury (TBI) is one of the most robust environmental risk factors for Alzheimer’s disease (AD). Compelling evidence is accumulating that a single event of TBI is associated with increased levels of Aβ. However, the underlying molecular mechanisms remain unknown. We report here that the BACE1 interacting protein, GGA3, is depleted while BACE1 levels increase in the acute phase post-injury (48hrs) in a mouse model of TBI. We further demonstrated the role of GGA3 in the regulation of BACE1 in vivo by showing that BACE1 levels are increased in the brain of GGA3 null mice. We next found that head trauma potentiates BACE1 elevation in GGA3 null mice in the acute phase post-TBI and discovered that GGA1, a GGA3 homologue, is a novel caspase-3 substrate depleted at 48 hrs post-TBI. Moreover, GGA1 silencing potentiates BACE1 elevation induced by GGA3 deletion in neurons in vitro indicating that GGA1 and GGA3 synergistically regulate BACE1. Accordingly, we found that levels of both GGA1 and GGA3 are depleted while BACE1 levels are increased in a series of post-mortem AD brains. Finally, we show that GGA3 haploinsufficiency results in sustained elevation of BACE1 and Aβ levels while GGA1 levels are restored in the subacute phase (7 days) post-injury. In conclusion, our data indicate that depletion of GGA1 and GGA3 engender a rapid and robust elevation of BACE1 in the acute phase post-injury. However, the efficient disposal of the acutely accumulated BACE1 solely depends on GGA3 levels in the sub-acute phase of injury. PMID:22836275

  13. Role of glutathione biosynthesis in endothelial dysfunction and fibrosis

    Directory of Open Access Journals (Sweden)

    Cristina Espinosa-Díez

    2018-04-01

    Full Text Available Glutathione (GSH biosynthesis is essential for cellular redox homeostasis and antioxidant defense. The rate-limiting step requires glutamate-cysteine ligase (GCL, which is composed of the catalytic (GCLc and the modulatory (GCLm subunits. To evaluate the contribution of GCLc to endothelial function we generated an endothelial-specific Gclc haplo-insufficient mouse model (Gclc e/+ mice. In murine lung endothelial cells (MLEC derived from these mice we observed a 50% reduction in GCLc levels compared to lung fibroblasts from the same mice. MLEC obtained from haplo-insufficient mice showed significant reduction in GSH levels as well as increased basal and stimulated ROS levels, reduced phosphorylation of eNOS (Ser 1177 and increased eNOS S-glutathionylation, compared to MLEC from wild type (WT mice. Studies in mesenteric arteries demonstrated impaired endothelium-dependent vasodilation in Gclc(e/+ male mice, which was corrected by pre-incubation with GSH-ethyl-ester and BH4. To study the contribution of endothelial GSH synthesis to renal fibrosis we employed the unilateral ureteral obstruction model in WT and Gclc(e/+ mice. We observed that obstructed kidneys from Gclc(e/+ mice exhibited increased deposition of fibrotic markers and reduced Nrf2 levels. We conclude that the preservation of endothelial GSH biosynthesis is not only critical for endothelial function but also in anti-fibrotic responses. Keywords: Glutamate-cysteine ligase, ROS, Glutathione, Endothelial dysfunction, Kidney Fibrosis

  14. Role of glutathione biosynthesis in endothelial dysfunction and fibrosis.

    Science.gov (United States)

    Espinosa-Díez, Cristina; Miguel, Verónica; Vallejo, Susana; Sánchez, Francisco J; Sandoval, Elena; Blanco, Eva; Cannata, Pablo; Peiró, Concepción; Sánchez-Ferrer, Carlos F; Lamas, Santiago

    2018-04-01

    Glutathione (GSH) biosynthesis is essential for cellular redox homeostasis and antioxidant defense. The rate-limiting step requires glutamate-cysteine ligase (GCL), which is composed of the catalytic (GCLc) and the modulatory (GCLm) subunits. To evaluate the contribution of GCLc to endothelial function we generated an endothelial-specific Gclc haplo-insufficient mouse model (Gclc e/+ mice). In murine lung endothelial cells (MLEC) derived from these mice we observed a 50% reduction in GCLc levels compared to lung fibroblasts from the same mice. MLEC obtained from haplo-insufficient mice showed significant reduction in GSH levels as well as increased basal and stimulated ROS levels, reduced phosphorylation of eNOS (Ser 1177) and increased eNOS S-glutathionylation, compared to MLEC from wild type (WT) mice. Studies in mesenteric arteries demonstrated impaired endothelium-dependent vasodilation in Gclc(e/+) male mice, which was corrected by pre-incubation with GSH-ethyl-ester and BH 4 . To study the contribution of endothelial GSH synthesis to renal fibrosis we employed the unilateral ureteral obstruction model in WT and Gclc(e/+) mice. We observed that obstructed kidneys from Gclc(e/+) mice exhibited increased deposition of fibrotic markers and reduced Nrf2 levels. We conclude that the preservation of endothelial GSH biosynthesis is not only critical for endothelial function but also in anti-fibrotic responses. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. The vitamin D receptor is required for activation of cWnt and hedgehog signaling in keratinocytes.

    Science.gov (United States)

    Lisse, Thomas S; Saini, Vaibhav; Zhao, Hengguang; Luderer, Hilary F; Gori, Francesca; Demay, Marie B

    2014-10-01

    Alopecia (hair loss) in vitamin D receptor (VDR)-null mice is due to absence of ligand-independent actions of the VDR that are required for initiation of postmorphogenic hair cycles. Investigations were undertaken to determine whether the VDR is required for the induction of signaling pathways that play an important role in this process. The induction of cWnt and hedgehog target genes that characterizes early anagen was found to be dramatically attenuated in VDR(-/-) mice, relative to wild-type (WT) mice. To determine whether this reflects impaired responsiveness to cWnt ligands, in vitro studies were performed in primary keratinocytes. These studies demonstrated impaired induction of cWnt target genes in response to Wnt3a in VDR(-/-) keratinocytes, relative to wild-type keratinocytes. Chromatin immunoprecipitation analyses revealed that the VDR was recruited to the regulatory regions of cWnt and hedgehog target genes in WT keratinocytes but not in VDR(-/-) or Lef1(-/-) keratinocytes. Lef1 was enriched on these same regulatory regions in WT keratinocytes but not in VDR(-/-) keratinocytes. In vivo studies were performed to determine whether activation of the hedgehog pathway could bypass the defect in cWnt signaling observed in the absence of the unliganded VDR. In WT, but not VDR(-/-), mice, hedgehog agonist treatment resulted in an induction of cWnt and hedgehog target genes and the generation of mature anagen hair follicles. Thus, these studies demonstrate that the unliganded VDR interacts with regulatory regions in the cWnt and hedgehog target genes and is required for the induction of these pathways during the postnatal hair cycle.

  16. A Mutation in the Dmp1 Gene Alters Phosphate Responsiveness in Mice

    Science.gov (United States)

    Gerard-O'Riley, Rita L.; Acton, Dena; McQueen, Amie K.; Strobel, Isabel E.; Witcher, Phillip C.; Feng, Jian Q.; Econs, Michael J.

    2017-01-01

    Mutations in the dentin matrix protein 1 (DMP1) gene cause autosomal recessive hypophosphatemic rickets (ARHR). Hypophosphatemia in ARHR results from increased circulating levels of the phosphaturic hormone, fibroblast growth factor 23 (FGF23). Similarly, elevated FGF23, caused by mutations in the PHEX gene, is responsible for the hypophosphatemia in X-linked hypophosphatemic rickets (XLH). Previously, we demonstrated that a Phex mutation in mice creates a lower set point for extracellular phosphate, where an increment in phosphorus further stimulates Fgf23 production to maintain low serum phosphorus levels. To test the presence of the similar set point defect in ARHR, we generated 4- and 12-week-old Dmp1/Galnt3 double knockout mice and controls, including Dmp1 knockout mice (a murine model of ARHR), Galnt3 knockout mice (a murine model of familial tumoral calcinosis), and phenotypically normal double heterozygous mice. Galnt3 knockout mice had increased proteolytic cleavage of Fgf23, leading to low circulating intact Fgf23 levels with consequent hyperphosphatemia. In contrast, Dmp1 knockout mice had little Fgf23 cleavage and increased femoral Fgf23 expression, resulting in hypophosphatemia and low femoral bone mineral density (BMD). However, introduction of the Galnt3 null allele to Dmp1 knockout mice resulted in a significant increase in serum phosphorus and normalization of BMD. This increased serum phosphorus was accompanied by markedly elevated Fgf23 expression and circulating Fgf23 levels, an attempt to reduce serum phosphorus in the face of improving phosphorus levels. These data indicate that a Dmp1 mutation creates a lower set point for extracellular phosphate and maintains it through the regulation of Fgf23 cleavage and expression. PMID:28005411

  17. Overexpression of human SOD1 improves survival of mice susceptible to endotoxic shock

    Directory of Open Access Journals (Sweden)

    Charchaflieh J

    2012-07-01

    Full Text Available Jean Charchaflieh,1,2 Georges I Labaze,1 Pulsar Li,1 Holly Van Remmen,3 Haekyung Lee,1 Helen Stutz,1 Arlan Richardson,3 Asher Emanuel,1 Ming Zhang1,41Department of Anesthesiology, State University of New York (SUNY Downstate Medical Center, New York, NY, USA; 2Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA; 3Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; 4Department of Cell Biology, State University of New York (SUNY Downstate Medical Center, New York, NY, USABackground: Protective effects of the antioxidant enzyme Cu-Zn superoxide dismutase (SOD1 against endotoxic shock have not been demonstrated in animal models. We used a murine model to investigate whether overexpression of SOD1 protects against endotoxic shock, and whether the genetic background of SOD1 affects its effective protective effects and susceptibility to endotoxic shock.Methods: Transgenic (tg mice overexpressing human SOD1 and control mice were divided into four groups based on their genetic background: (1 tg mice with mixed genetic background (tg-JAX; (2 wild-type (WT littermates of tg-JAX strain (WT-JAX; (3 tg mice with C57BL/6J background (tg-TX; (4 WT littermates of tg-TX strain (WT-TX. Activity of SOD1 in the intestine, heart, and liver of tg and control mice was confirmed using a polyacrylamide activity gel. Endotoxic shock was induced by intraperitoneal injection of lipopolysaccharide. Survival rates over 120 hours (mean, 95% confidence interval were analyzed using Kaplan–Meier survival curves.Results: Human SOD1 enzymatic activities were significantly higher in the intestine, heart, and liver of both tg strains (tg-JAX and tg-TX compared with their WT littermates (WT-JAX and WT-TX, respectively. Interestingly, the endogenous SOD1 activities in tg-JAX mice were decreased compared with their WT littermates (WT-JAX, but such aberrant changes were not

  18. Heterozygous Che-1 KO mice show deficiencies in object recognition memory persistence.

    Science.gov (United States)

    Zalcman, Gisela; Corbi, Nicoletta; Di Certo, Maria Grazia; Mattei, Elisabetta; Federman, Noel; Romano, Arturo

    2016-10-06

    Transcriptional regulation is a key process in the formation of long-term memories. Che-1 is a protein involved in the regulation of gene transcription that has recently been proved to bind the transcription factor NF-κB, which is known to be involved in many memory-related molecular events. This evidence prompted us to investigate the putative role of Che-1 in memory processes. For this study we newly generated a line of Che-1(+/-) heterozygous mice. Che-1 homozygous KO mouse is lethal during development, but Che-1(+/-) heterozygous mouse is normal in its general anatomical and physiological characteristics. We analyzed the behavioral characteristic and memory performance of Che-1(+/-) mice in two NF-κB dependent types of memory. We found that Che-1(+/-) mice show similar locomotor activity and thigmotactic behavior than wild type (WT) mice in an open field. In a similar way, no differences were found in anxiety-like behavior between Che-1(+/-) and WT mice in an elevated plus maze as well as in fear response in a contextual fear conditioning (CFC) and object exploration in a novel object recognition (NOR) task. No differences were found between WT and Che-1(+/-) mice performance in CFC training and when tested at 24h or 7days after training. Similar performance was found between groups in NOR task, both in training and 24h testing performance. However, we found that object recognition memory persistence at 7days was impaired in Che-1(+/-) heterozygous mice. This is the first evidence showing that Che-1 is involved in memory processes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Intestinal bile salt absorption in Atp8b1 deficient mice

    NARCIS (Netherlands)

    Groen, Annemiek; Kunne, Cindy; Paulusma, Coen C.; Kramer, Werner; Agellon, Luis B.; Bull, Laura N.; Elferink, Ronald P. J. Oude

    2007-01-01

    BACKGROUND/AIMS: Mutations in the ATP8B1 gene can cause Progressive Familial Intrahepatic Cholestasis type 1. We have previously reported that Atp8b1(G308V/G308V) mice, a model for PFIC1, have slightly, but significantly, higher baseline serum bile salt (BS) concentrations compared to wt mice. Upon

  20. Preservation of endothelium-dependent relaxation in atherosclerotic mice with endothelium-restricted endothelin-1 overexpression.

    Science.gov (United States)

    Mian, Muhammad Oneeb Rehman; Idris-Khodja, Noureddine; Li, Melissa W; Leibowitz, Avshalom; Paradis, Pierre; Rautureau, Yohann; Schiffrin, Ernesto L

    2013-10-01

    In human atherosclerosis, which is associated with elevated plasma and coronary endothelin (ET)-1 levels, ETA receptor antagonists improve coronary endothelial function. Mice overexpressing ET-1 specifically in the endothelium (eET-1) crossed with atherosclerosis-prone apolipoprotein E knockout mice (Apoe(-/-)) exhibit exaggerated high-fat diet (HFD)-induced atherosclerosis. Since endothelial dysfunction often precedes atherosclerosis development, we hypothesized that mice overexpressing endothelial ET-1 on a genetic background deficient in apolipoprotein E (eET-1/Apoe(-/-)) would have severe endothelial dysfunction. To test this hypothesis, we investigated endothelium-dependent relaxation (EDR) to acetylcholine in eET-1/Apoe(-/-) mice. EDR in mesenteric resistance arteries from 8- and 16-week-old mice fed a normal diet or HFD was improved in eET-1/Apoe(-/-) compared with Apoe(-/-) mice. Nitric oxide synthase (NOS) inhibition abolished EDR in Apoe(-/-). EDR in eET-1/Apoe(-/-) mice was resistant to NOS inhibition irrespective of age or diet. Inhibition of cyclooxygenase, the cytochrome P450 pathway, and endothelium-dependent hyperpolarization (EDH) resulted in little or no inhibition of EDR in eET-1/Apoe(-/-) compared with wild-type (WT) mice. In eET-1/Apoe(-/-) mice, blocking of EDH or soluble guanylate cyclase (sGC), in addition to NOS inhibition, decreased EDR by 36 and 30%, respectively. The activation of 4-aminopyridine-sensitive voltage-dependent potassium channels (Kv) during EDR was increased in eET-1/Apoe(-/-) compared with WT mice. We conclude that increasing eET-1 in mice that develop atherosclerosis results in decreased mutual dependence of endothelial signaling pathways responsible for EDR, and that NOS-independent activation of sGC and increased activation of Kv are responsible for enhanced EDR in this model of atherosclerosis associated with elevated endothelial and circulating ET-1.

  1. Aberrant Bone Density in Aging Mice Lacking the Adenosine Transporter ENT1

    Science.gov (United States)

    Hinton, David J.; McGee-Lawrence, Meghan E.; Lee, Moonnoh R.; Kwong, Hoi K.; Westendorf, Jennifer J.; Choi, Doo-Sup

    2014-01-01

    Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1) is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months) compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP), an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density. PMID:24586402

  2. Aberrant bone density in aging mice lacking the adenosine transporter ENT1.

    Directory of Open Access Journals (Sweden)

    David J Hinton

    Full Text Available Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1 is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP, an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density.

  3. Curcumin ameliorates skeletal muscle atrophy in type 1 diabetic mice by inhibiting protein ubiquitination.

    Science.gov (United States)

    Ono, Taisuke; Takada, Shingo; Kinugawa, Shintaro; Tsutsui, Hiroyuki

    2015-09-01

    What is the central question of this study? We sought to examine whether curcumin could ameliorate skeletal muscle atrophy in diabetic mice by inhibiting protein ubiquitination, inflammatory cytokines and oxidative stress. What is the main finding and its importance? We found that curcumin ameliorated skeletal muscle atrophy in streptozotocin-induced diabetic mice by inhibiting protein ubiquitination without affecting protein synthesis. This favourable effect of curcumin was possibly due to the inhibition of inflammatory cytokines and oxidative stress. Curcumin may be beneficial for the treatment of muscle atrophy in type 1 diabetes mellitus. Skeletal muscle atrophy develops in patients with diabetes mellitus (DM), especially in type 1 DM, which is associated with chronic inflammation. Curcumin, the active ingredient of turmeric, has various biological actions, including anti-inflammatory and antioxidant properties. We hypothesized that curcumin could ameliorate skeletal muscle atrophy in mice with streptozotocin-induced type 1 DM. C57BL/6 J mice were injected with streptozotocin (200 mg kg(-1) i.p.; DM group) or vehicle (control group). Each group of mice was randomly subdivided into two groups of 10 mice each and fed a diet with or without curcumin (1500 mg kg(-1) day(-1)) for 2 weeks. There were significant decreases in body weight, skeletal muscle weight and cellular cross-sectional area of the skeletal muscle in DM mice compared with control mice, and these changes were significantly attenuated in DM+Curcumin mice without affecting plasma glucose and insulin concentrations. Ubiquitination of protein was increased in skeletal muscle from DM mice and decreased in DM+Curcumin mice. Gene expressions of muscle-specific ubiquitin E3 ligase atrogin-1/MAFbx and MuRF1 were increased in DM and inhibited in DM+Curcumin mice. Moreover, nuclear factor-κB activation, concentrations of the inflammatory cytokines tumour necrosis factor-α and interleukin-1β and oxidative

  4. Sunlight Triggers Cutaneous Lupus through a Colony Stimulating Factor-1 (CSF-1) Dependent Mechanism in MRL-Faslpr mice

    Science.gov (United States)

    Menke, Julia; Hsu, Mei-Yu; Byrne, Katelyn T.; Lucas, Julie A.; Rabacal, Whitney A.; Croker, Byron P.; Zong, Xiao-Hua; Stanley, E. Richard; Kelley, Vicki R.

    2008-01-01

    Sunlight (UVB) triggers cutaneous (CLE) and systemic lupus through an unknown mechanism. We tested the hypothesis that UVB triggers CLE through a CSF-1-dependent, macrophage (Mø) -mediated mechanism in MRL-Faslpr mice. By constructing mutant MRL-Faslpr strains expressing varying levels of CSF-1 (high, intermediate, none), and use of an ex-vivo gene transfer to deliver CSF-1 intra-dermally, we determined that CSF-1 induces CLE in lupus-susceptible, MRL-Faslpr mice, but not in lupus-resistant, BALB/c mice. Notably, UVB incites an increase in Mø, apoptosis in the skin and CLE in MRL-Faslpr, but not in CSF-1-deficient MRL-Faslpr mice. Furthermore, UVB did not induce CLE in BALB/c mice. Probing further, UVB stimulates CSF-1 expression by keratinocytes leading to recruitment and activation of Mø that, in turn, release mediators, which induce apoptosis in keratinocytes. Thus, sunlight triggers a CSF-1-dependent, Mø-mediated destructive inflammation in the skin leading to CLE in lupus-susceptible MRL-Faslpr, but not lupus-resistant BALB/c mice. Taken together, we envision CSF-1 as the “match” and lupus-susceptibility as the “tinder” leading to CLE. PMID:18981160

  5. Sex differences in insulin resistance in GABAB1 knockout mice.

    Science.gov (United States)

    Bonaventura, M M; Rodriguez, D; Ferreira, M L; Crivello, M; Repetto, E M; Bettler, B; Libertun, C; Lux-Lantos, V A

    2013-02-27

    We have previously demonstrated that the absence of functional GABA B receptors (GABABRs) disturbs glucose homeostasis in GABAB1KO mice. The aim of this work was to extend our studies of these alterations in GABAB1KO mice and investigate the sexual differences therein. Male and female, GABAB1KO and WT mice were used. Glucose and insulin tolerance tests (GTT and ITT), and insulin and glucagon secretion tests (IST and GST) were performed. Blood glucose, serum insulin and hyperglycemic hormones were determined, and HOMA-IR calculated. Skeletal muscle insulin receptor β subunit (IRβ), insulin receptor substrates 1/2 (IRS1, IRS2) and hexokinase-II levels were determined by Western blot. Skeletal muscle insulin sensitivity was assessed by in vivo insulin-induced Akt phosphorylation (Western blot). Food intake and hypothalamic NPY mRNA expression (by qPCR) were also evaluated. Fasted insulin and HOMA-IR were augmented in GABAB1KO males, with no alterations in females. Areas under the curve (AUC) for GTT and ITT were increased in GABAB1KO mice of both genders, indicating compromised insulin sensitivity. No genotype differences were observed in IST, GST or in IRβ, IRS1, IRS2 and hexokinase-II expression. Akt activation was severely impaired in GABAB1KO males while no alterations were observed in females. GABAB1KO mice showed increased food intake and NPY expression. Glucose metabolism and energy balance disruptions were more pronounced in GABAB1KO males, which develop peripheral insulin resistance probably due to augmented insulin secretion. Metabolic alterations in females were milder and possibly due to previously described reproductive disorders, such as persistent estrus. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Spinal SIRT1 activation attenuates neuropathic pain in mice.

    Directory of Open Access Journals (Sweden)

    Haijun Shao

    Full Text Available Abnormal histone acetylation occurs during neuropathic pain through an epigenetic mechanism. Silent information regulator 1 (sir2 or SIRT1, a NAD-dependent deacetylase, plays complex systemic roles in a variety of processes through deacetylating acetylated histone and other specific substrates. But the role of SIRT1 in neuropathic pain is not well established yet. The present study was intended to detect SIRT1 content and activity, nicotinamide (NAM and nicotinamide adenine dinucleotide (NAD in the spinal cord using immunoblotting or mass spectroscopy over time in mice following chronic constriction injury (CCI or sham surgery. In addition, the effect of intrathecal injection of NAD or resveratrol on thermal hyperalgesia and mechanical allodynia was evaluated in CCI mice. Finally, we investigated whether SIRT1 inhibitor EX-527 could reverse the anti-nociceptive effect of NAD or resveratrol. It was found that spinal SIRT1 expression, deacetylase activity and NAD/NAM decreased significantly 1, 3, 7, 14 and 21 days after CCI surgery as compared with sham group. In addition, daily intrathecal injection of 5 µl 800 mM NAD 1 h before and 1 day after CCI surgery or single intrathecal injection of 5 µl 90 mM resveratrol 1 h before CCI surgery produced a transient inhibitory effect on thermal hyperalgesia and mechanical allodynia in CCI mice. Finally, an intrathecal injection of 5 µl 1.2 mM EX-527 1 h before NAD or resveratrol administration reversed the anti-nociceptive effect of NAD or resveratrol. These data indicate that the reduction in SIRT1 deacetylase activity may be a factor contributing to the development of neuropathic pain in CCI mice. Our findings suggest that the enhancement of spinal NAD/NAM and/or SIRT1 activity may be a potentially promising strategy for the prevention or treatment of neuropathic pain.

  7. The dwarf phenotype in GH240B mice, haploinsufficient for the autism candidate gene Neurobeachin, is caused by ectopic expression of recombinant human growth hormone.

    Directory of Open Access Journals (Sweden)

    Kim Nuytens

    Full Text Available Two knockout mouse models for the autism candidate gene Neurobeachin (Nbea have been generated independently. Although both models have similar phenotypes, one striking difference is the dwarf phenotype observed in the heterozygous configuration of the GH240B model that is generated by the serendipitous insertion of a promoterless human growth hormone (hGH genomic fragment in the Nbea gene. In order to elucidate this discrepancy, the dwarfism present in this Nbea mouse model was investigated in detail. The growth deficiency in Nbea+/- mice coincided with an increased percentage of fat mass and a decrease in bone mineral density. Low but detectable levels of hGH were detected in the pituitary and hypothalamus of Nbea+/- mice but not in liver, hippocampus nor in serum. As a consequence, several members of the mouse growth hormone (mGH signaling cascade showed altered mRNA levels, including a reduction in growth hormone-releasing hormone mRNA in the hypothalamus. Moreover, somatotrope cells were less numerous in the pituitary of Nbea+/- mice and both contained and secreted significantly less mGH resulting in reduced levels of circulating insulin-like growth factor 1. These findings demonstrate that the random integration of the hGH transgene in this mouse model has not only inactivated Nbea but has also resulted in the tissue-specific expression of hGH causing a negative feedback loop, mGH hyposecretion and dwarfism.

  8. Kidney epithelium specific deletion of kelch-like ECH-associated protein 1 (Keap1) causes hydronephrosis in mice.

    Science.gov (United States)

    Noel, Sanjeev; Arend, Lois J; Bandapalle, Samatha; Reddy, Sekhar P; Rabb, Hamid

    2016-08-02

    Transcription factor Nrf2 protects from experimental acute kidney injury (AKI) and is promising to limit progression in human chronic kidney disease (CKD) by upregulating multiple antioxidant genes. We recently demonstrated that deletion of Keap1, the endogenous inhibitor of Nrf2, in T lymphocytes significantly protects from AKI. In this study, we investigated the effect of Keap1 deletion on Nrf2 mediated antioxidant response in the renal tubular epithelial cells. We deleted Keap1 exon 2 and 3 in the renal tubular epithelial cells by crossing Ksp-Cre mice with Keap1 floxed (Keap1 (f/f)) mice. Deletion of Keap1 gene in the kidney epithelial cells of Ksp-Keap1 (-/-) mice and its effect on Nrf2 target gene expression was performed using PCR and real-time PCR respectively. Histological evaluation was performed on H&E stained sections. Complete blood count, serum and urine analysis were performed to assess systemic effects of defective kidney development. Student's T test was used to determine statistical difference between the groups. Ksp-Cre resulted in the deletion of Keap1 exon 2 and 3 and subsequent upregulation of Nrf2 target genes, Nqo1, Gclm and Gclc in the kidney epithelial cells of Ksp-Keap1 (-/-) mice at baseline. Renal epithelial cell specific deletion of Keap1 in Ksp-Keap1 (-/-) mice caused marked renal pelvic expansion and significant compression of medullary parenchyma consistent with hydronephrosis in both (3 month-old) males and females. Kidneys from 6 month-old Ksp-Keap1 (-/-) mice showed progressive hydronephrosis. Hematological, biochemical and urinary analysis showed significantly higher red blood cell count (p = 0.04), hemoglobin (p = 0.01), hematocrit (p = 0.02), mean cell volume (p = 0.02) and mean cell hemoglobin concentration (p = 0.003) in Ksp-Keap1 (-/-) mice in comparison to Keap1 (f/f) mice. These unexpected findings demonstrate that Keap1 deletion in renal tubular epithelial cells results in an abnormal kidney

  9. Alterations in Adiposity and Glucose Homeostasis in Adult Gasp-1 Overexpressing Mice

    Directory of Open Access Journals (Sweden)

    Luce Périè

    2017-12-01

    Full Text Available Background/Aims: Myostatin is known as a powerful negative regulator of muscle growth playing a key role in skeletal muscle homeostasis. Recent studies revealed that myostatin-deficient mice lead to an increase of insulin sensitivity, a decrease of adiposity and a resistance to obesity, showing that myostatin can also impact on metabolism. Thus, myostatin appeared as a potential therapeutic target to treat insulin resistance. Methods: We generated transgenic mice overexpressing Gasp-1, a myostatin inhibitor. Results: Surprisingly, we found that these mice gained weight with age due to an increase in fat mass associated with ectopic fat accumulation. In addition, these mice developed an adipocyte hypertrophy, hyperglycemia, hyperinsulinemia, muscle and hepatic insulin resistance. Understanding the molecular networks controlling this insulin resistance responsiveness in overexpressing Gasp-1 mice is essential. Molecular analyses revealed a deregulation of adipokines and muscle cytokines expression, but also an increase in plasma myostatin levels. The increase in myostatin bioactivity by a positive feedback mechanism in the Tg(Gasp-1 transgenic mice could lead to this combination of phenotypes. Conclusion: Altogether, these data suggested that overexpressing Gasp-1 mice develop most of the symptoms associated with metabolic syndrome and could be a relevant model for the study of obesity or type 2 diabetes.

  10. Slitrk1-deficient mice display elevated anxiety-like behavior and noradrenergic abnormalities.

    Science.gov (United States)

    Katayama, K; Yamada, K; Ornthanalai, V G; Inoue, T; Ota, M; Murphy, N P; Aruga, J

    2010-02-01

    Mutations in SLITRK1 are found in patients with Tourette's syndrome and trichotillomania. SLITRK1 encodes a transmembrane protein containing leucine-rich repeats that is produced predominantly in the nervous system. However, the role of this protein is largely unknown, except that it can modulate neurite outgrowth in vitro. To clarify the role of Slitrk1 in vivo, we developed Slitrk1-knockout mice and analyzed their behavioral and neurochemical phenotypes. Slitrk1-deficient mice exhibited elevated anxiety-like behavior in the elevated plus-maze test as well as increased immobility time in forced swimming and tail suspension tests. Neurochemical analysis revealed that Slitrk1-knockout mice had increased levels of norepinephrine and its metabolite 3-methoxy-4-hydroxyphenylglycol. Administration of clonidine, an alpha2-adrenergic agonist that is frequently used to treat patients with Tourette's syndrome, attenuated the anxiety-like behavior of Slitrk1-deficient mice in the elevated plus-maze test. These results lead us to conclude that noradrenergic mechanisms are involved in the behavioral abnormalities of Slitrk1-deficient mice. Elevated anxiety due to Slitrk1 dysfunction may contribute to the pathogenesis of neuropsychiatric diseases such as Tourette's syndrome and trichotillomania.

  11. Congenital Hyperinsulinism in Infants with Turner Syndrome: Possible Association with Monosomy X and KDM6A Haploinsufficiency.

    Science.gov (United States)

    Gibson, Christopher E; Boodhansingh, Kara E; Li, Changhong; Conlin, Laura; Chen, Pan; Becker, Susan A; Bhatti, Tricia; Bamba, Vaneeta; Adzick, N Scott; De Leon, Diva D; Ganguly, Arupa; Stanley, Charles A

    2018-06-14

    Previous case reports have suggested a possible association of congenital hyperinsulinism with Turner syndrome. We examined the clinical and molecular features in girls with both congenital hyperinsulinism and Turner syndrome seen at The Children's Hospital of Philadelphia (CHOP) between 1974 and 2017. Records of girls with hyperinsulinism and Turner syndrome were reviewed. Insulin secretion was studied in pancreatic islets and in mouse islets treated with an inhibitor of KDM6A, an X chromosome gene associated with hyperinsulinism in Kabuki syndrome. Hyperinsulinism was diagnosed in 12 girls with Turner syndrome. Six were diazoxide-unresponsive; 3 had pancreatectomies. The incidence of Turner syndrome among CHOP patients with hyperinsulinism (10 of 1,050 from 1997 to 2017) was 48 times more frequent than expected. The only consistent chromosomal anomaly in these girls was the presence of a 45,X cell line. Studies of isolated islets from 1 case showed abnormal elevated cytosolic calcium and heightened sensitivity to amino acid-stimulated insulin release; similar alterations were demonstrated in mouse islets treated with a KDM6A inhibitor. These results demonstrate a higher than expected frequency of Turner syndrome among children with hyperinsulinism. Our data suggest that haploinsufficiency for KDM6A due to mosaic X chromosome monosomy may be responsible for hyperinsulinism in Turner syndrome. © 2018 S. Karger AG, Basel.

  12. Commensal microbiota contributes to chronic endocarditis in TAX1BP1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Satoko Nakano

    Full Text Available Tax1-binding protein 1 (Tax1bp1 negatively regulates NF-κB by editing the ubiquitylation of target molecules by its catalytic partner A20. Genetically engineered TAX1BP1-deficient (KO mice develop age-dependent inflammatory constitutions in multiple organs manifested as valvulitis or dermatitis and succumb to premature death. Laser capture dissection and gene expression microarray analysis on the mitral valves of TAX1BP1-KO mice (8 and 16 week old revealed 588 gene transcription alterations from the wild type. SAA3 (serum amyloid A3, CHI3L1, HP, IL1B and SPP1/OPN were induced 1,180-, 361-, 187-, 122- and 101-fold respectively. WIF1 (Wnt inhibitory factor 1 exhibited 11-fold reduction. Intense Saa3 staining and significant I-κBα reduction were reconfirmed and massive infiltration of inflammatory lymphocytes and edema formation were seen in the area. Antibiotics-induced 'germ free' status or the additional MyD88 deficiency significantly ameliorated TAX1BP1-KO mice's inflammatory lesions. These pathological conditions, as we named 'pseudo-infective endocarditis' were boosted by the commensal microbiota who are usually harmless by their nature. This experimental outcome raises a novel mechanistic linkage between endothelial inflammation caused by the ubiquitin remodeling immune regulators and fatal cardiac dysfunction.

  13. Role of paraoxonase-1 in bone anabolic effects of parathyroid hormone in hyperlipidemic mice

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinxiu [Department of Physiology, University of California, Los Angeles (United States); Cheng, Henry [Department of Medicine, University of California, Los Angeles (United States); Atti, Elisa [Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles (United States); Shih, Diana M. [Department of Medicine, University of California, Los Angeles (United States); Demer, Linda L. [Department of Physiology, University of California, Los Angeles (United States); Department of Medicine, University of California, Los Angeles (United States); Department of Bioengineering, University of California, Los Angeles (United States); Tintut, Yin, E-mail: ytintut@mednet.ucla.edu [Department of Medicine, University of California, Los Angeles (United States)

    2013-02-01

    Highlights: ► Anabolic effects of PTH were tested in hyperlipidemic mice overexpressing PON1. ► Expression of antioxidant regulatory genes was induced in PON1 overexpression. ► Bone resorptive activity was reduced in PON1 overexpressing hyperlipidemic mice. ► PON1 restored responsiveness to intermittent PTH in bones of hyperlipidemic mice. -- Abstract: Hyperlipidemia blunts anabolic effects of intermittent parathyroid hormone (PTH) on cortical bone, and the responsiveness to PTH are restored in part by oral administration of the antioxidant ApoA-I mimetic peptide, D-4F. To evaluate the mechanism of this rescue, hyperlipidemic mice overexpressing the high-density lipoprotein-associated antioxidant enzyme, paraoxonase 1 (Ldlr{sup −/−}PON1{sup tg}) were generated, and daily PTH injections were administered to Ldlr{sup −/−}PON1{sup tg} and to littermate Ldlr{sup −/−} mice. Expression of bone regulatory genes was determined by realtime RT-qPCR, and cortical bone parameters of the femoral bones by micro-computed tomographic analyses. PTH-treated Ldlr{sup −/−}PON1{sup tg} mice had significantly greater expression of PTH receptor (PTH1R), activating transcription factor-4 (ATF4), and osteoprotegerin (OPG) in femoral cortical bone, as well as significantly greater cortical bone mineral content, thickness, and area in femoral diaphyses compared with untreated Ldlr{sup −/−}PON1{sup tg} mice. In contrast, in control mice (Ldlr{sup −/−}) without PON1 overexpression, PTH treatment did not induce these markers. Calvarial bone of PTH-treated Ldlr{sup −/−}PON1{sup tg} mice also had significantly greater expression of osteoblastic differentiation marker genes as well as BMP-2-target and Wnt-target genes. Untreated Ldlr{sup −/−}PON1{sup tg} mice had significantly greater expression of PTHR1 than untreated Ldlr{sup −/−} mice, whereas sclerostin expression was reduced. In femoral cortical bones, expression levels of transcription factors, Fox

  14. Global Overexpression of ET-1 Decreases Blood Pressure - A Systematic Review and Meta-Analysis of ET-1 Transgenic Mice.

    Science.gov (United States)

    Lu, Yong Ping; Tsuprykov, Oleg; Vignon-Zellweger, Nicolas; Heiden, Susi; Hocher, Berthold

    2016-01-01

    ET-1 has independent effects on blood pressure regulation in vivo, it is involved in tubular water and salt excretion, promotes constriction of smooth muscle cells, modulates sympathetic nerve activity, and activates the liberation of nitric oxide. To determine the net effect of these partially counteracting mechanisms on blood pressure, a systematic meta-analysis was performed. Based on the principles of Cochrane systematic reviews, we searched in major literature databases - MEDLINE (PubMed), Embase, Google Scholar, and the China Biological Medicine Database (CBM-disc) - for articles relevant to the topic of the blood pressure phenotype of endothelin-1 transgenic (ET-1+/+) mice from January 1, 1988 to March 31, 2016. Review Manager Version 5.0 (Rev-Man 5.0) software was applied for statistical analysis. In total thirteen studies reported blood pressure data. The meta-analysis of blood pressure data showed that homozygous ET-1 transgenic mice (ET-1+/+ mice) had a significantly lower blood pressure as compared to WT mice (mean difference: -2.57 mmHg, 95% CI: -4.98∼ -0.16, P = 0.04), with minimal heterogeneity (P = 0.86). A subgroup analysis of mice older than 6 months revealed that the blood pressure difference between ET-1+/+ mice and WT mice was even more pronounced (mean difference: -6.19 mmHg, 95% CI: -10.76∼ -1.62, P = 0.008), with minimal heterogeneity (P = 0.91). This meta-analysis provides robust evidence that global ET-1 overexpression in mice lowers blood pressure in an age-dependent manner. Older ET-1+/+ mice have a somewhat more pronounced reduction of blood pressure. © 2016 The Author(s) Published by S. Karger AG, Basel.

  15. Hes1-deficient mice show precocious differentiation of Paneth cells in the small intestine

    International Nuclear Information System (INIS)

    Suzuki, Katsumasa; Fukui, Hirokazu; Kayahara, Takahisa; Sawada, Mitsutaka; Seno, Hiroshi; Hiai, Hiroshi; Kageyama, Ryoichiro; Okano, Hideyuki; Chiba, Tsutomu

    2005-01-01

    We have previously shown that Hes1 is expressed both in putative epithelial stem cells just above Paneth cells and in the crypt base columnar cells between Paneth cells, while Hes1 is completely absent in Paneth cells. This study was undertaken to clarify the role of Hes1 in Paneth cell differentiation, using Hes1-knockout (KO) newborn (P0) mice. Electron microscopy revealed premature appearance of distinct cells containing cytoplasmic granules in the intervillous region in Hes1-KO P0 mice, whereas those cells were absent in wild-type (WT) P0 mice. In Hes1-KO P0 mice, the gene expressions of cryptdins, exclusively present in Paneth cells, were all enhanced compared with WT P0 mice. Immunohistochemistry demonstrated increased number of both lysozyme-positive and cryptdin-4-positive cells in the small intestinal epithelium of Hes1-KO P0 mice as compared to WT P0 mice. Thus, Hes1 appears to have an inhibitory role in Paneth cell differentiation in the small intestine

  16. Cartilage link protein 1 (Crtl1), an extracellular matrix component playing an important role in heart development.

    Science.gov (United States)

    Wirrig, Elaine E; Snarr, Brian S; Chintalapudi, Mastan R; O'neal, Jessica L; Phelps, Aimee L; Barth, Jeremy L; Fresco, Victor M; Kern, Christine B; Mjaatvedt, Corey H; Toole, Bryan P; Hoffman, Stanley; Trusk, Thomas C; Argraves, W Scott; Wessels, Andy

    2007-10-15

    To expand our insight into cardiac development, a comparative DNA microarray analysis was performed using tissues from the atrioventricular junction (AVJ) and ventricular chambers of mouse hearts at embryonic day (ED) 10.5-11.0. This comparison revealed differential expression of approximately 200 genes, including cartilage link protein 1 (Crtl1). Crtl1 stabilizes the interaction between hyaluronan (HA) and versican, two extracellular matrix components essential for cardiac development. Immunohistochemical studies showed that, initially, Crtl1, versican, and HA are co-expressed in the endocardial lining of the heart, and in the endocardially derived mesenchyme of the AVJ and outflow tract (OFT). At later stages, this co-expression becomes restricted to discrete populations of endocardially derived mesenchyme. Histological analysis of the Crtl1-deficient mouse revealed a spectrum of cardiac malformations, including AV septal and myocardial defects, while expression studies showed a significant reduction in versican levels. Subsequent analysis of the hdf mouse, which carries an insertional mutation in the versican gene (CSPG2), demonstrated that haploinsufficient versican mice display septal defects resembling those seen in Crtl1(-/-) embryos, suggesting that reduced versican expression may contribute to a subset of the cardiac abnormalities observed in the Crtl1(-/-) mouse. Combined, these findings establish an important role for Crtl1 in heart development.

  17. Disrupting Jagged1-Notch signaling impairs spatial memory formation in adult mice.

    Science.gov (United States)

    Sargin, Derya; Botly, Leigh C P; Higgs, Gemma; Marsolais, Alexander; Frankland, Paul W; Egan, Sean E; Josselyn, Sheena A

    2013-07-01

    It is well-known that Notch signaling plays a critical role in brain development and growing evidence implicates this signaling pathway in adult synaptic plasticity and memory formation. The Notch1 receptor is activated by two subclasses of ligands, Delta-like (including Dll1 and Dll4) and Jagged (including Jag1 and Jag2). Ligand-induced Notch1 receptor signaling is modulated by a family of Fringe proteins, including Lunatic fringe (Lfng). Although Dll1, Jag1 and Lfng are critical regulators of Notch signaling, their relative contribution to memory formation in the adult brain is unknown. To investigate the roles of these important components of Notch signaling in memory formation, we examined spatial and fear memory formation in adult mice with reduced expression of Dll1, Jag1, Lfng and Dll1 plus Lfng. We also examined motor activity, anxiety-like behavior and sensorimotor gating using the acoustic startle response in these mice. Of the lines of mutant mice tested, we found that only mice with reduced Jag1 expression (mice heterozygous for a null mutation in Jag1, Jag1(+/-)) showed a selective impairment in spatial memory formation. Importantly, all other behavior including open field activity, conditioned fear memory (both context and discrete cue), acoustic startle response and prepulse inhibition, was normal in this line of mice. These results provide the first in vivo evidence that Jag1-Notch signaling is critical for memory formation in the adult brain. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  18. Radon inhalation suppresses nephropathy in streptozotocin-induced type-1 diabetic mice

    International Nuclear Information System (INIS)

    Nishiyama, Yuichi; Kataoka, Takahiro; Yamato, Keiko; Etani, Reo; Taguchi, Takehito; Yamaoka, Kiyonori

    2016-01-01

    In this study, we investigated the suppressive effects of radon inhalation against nephropathy in C57BL/6J mice with type-1 diabetes induced by intraperitoneal injection of streptozotocin (50 mg/kg weight, given five times). Four weeks after diabetes induction, the diabetic mice were continuously treated with inhaled radon-222 of 2000 Bq/m3 or air only (sham) for four weeks. The results showed that radon inhalation did not affect type-1 diabetic symptoms such as body weight loss, hyperglycemia, and hypoinsulinemia. However, diabetic mice treated with radon showed lower urinary albumin excretion and fibrotic change in renal glomeruli compared with diabetic mice not treated with radon. Furthermore, renal superoxide dismutase activity and glutathione content were significantly higher in diabetic mice treated with radon than in diabetic mice not treated with radon. These findings suggested that radon inhalation enhanced renal antioxidants activities, resulting in the suppression of diabetic nephropathy. This study may contribute to the development of a novel approach in the treatment of nephropathy for diabetic patients. (author)

  19. Haploinsufficiency of KDM6A is associated with severe psychomotor retardation, global growth restriction, seizures and cleft palate.

    Science.gov (United States)

    Lindgren, Amelia M; Hoyos, Tatiana; Talkowski, Michael E; Hanscom, Carrie; Blumenthal, Ian; Chiang, Colby; Ernst, Carl; Pereira, Shahrin; Ordulu, Zehra; Clericuzio, Carol; Drautz, Joanne M; Rosenfeld, Jill A; Shaffer, Lisa G; Velsher, Lea; Pynn, Tania; Vermeesch, Joris; Harris, David J; Gusella, James F; Liao, Eric C; Morton, Cynthia C

    2013-05-01

    We describe a female subject (DGAP100) with a 46,X,t(X;5)(p11.3;q35.3)inv(5)(q35.3q35.1)dn, severe psychomotor retardation with hypotonia, global postnatal growth restriction, microcephaly, globally reduced cerebral volume, seizures, facial dysmorphia and cleft palate. Fluorescence in situ hybridization and whole-genome sequencing demonstrated that the X chromosome breakpoint disrupts KDM6A in the second intron. No genes were directly disrupted on chromosome 5. KDM6A is a histone 3 lysine 27 demethylase and a histone 3 lysine 4 methyltransferase. Expression of KDM6A is significantly reduced in DGAP100 lymphoblastoid cells compared to control samples. We identified nine additional cases with neurodevelopmental delay and various other features consistent with the DGAP100 phenotype with copy number variation encompassing KDM6A from microarray databases. We evaluated haploinsufficiency of kdm6a in a zebrafish model. kdm6a is expressed in the pharyngeal arches and ethmoid plate of the developing zebrafish, while a kdm6a morpholino knockdown exhibited craniofacial defects. We conclude KDM6A dosage regulation is associated with severe and diverse structural defects and developmental abnormalities.

  20. Impaired spatial and contextual memory formation in galectin-1 deficient mice

    Directory of Open Access Journals (Sweden)

    Sakaguchi Masanori

    2011-09-01

    Full Text Available Abstract Galectins are a 15 member family of carbohydrate-binding proteins that have been implicated in cancer, immunity, inflammation and development. While galectins are expressed in the central nervous system, little is known about their function in the adult brain. Previously we have shown that galectin-1 (gal-1 is expressed in the adult hippocampus, and, in particular, in putative neural stem cells in the subgranular zone. To evaluate how gal-1 might contribute to hippocampal memory function here we studied galectin-1 null mutant (gal-1-/- mice. Compared to their wildtype littermate controls, gal-1-/- mice exhibited impaired spatial learning in the water maze and contextual fear learning. Interestingly, tone fear conditioning was normal in gal-1-/- mice suggesting that loss of gal-1 might especially impact hippocampal learning and memory. Furthermore, gal-1-/- mice exhibited normal motor function, emotion and sensory processing in a battery of other behavioral tests, suggesting that non-mnemonic performance deficits are unlikely to account for the spatial and contextual learning deficits. Together, these data reveal a role for galectin-carbohydrate signalling in hippocampal memory function.

  1. Disruption of NBS1 gene leads to early embryonic lethality in homozygous null mice and induces specific cancer in heterozygous mice

    Energy Technology Data Exchange (ETDEWEB)

    Kurimasa, Akihiro; Burma, Sandeep; Henrie, Melinda; Ouyang, Honghai; Osaki, Mitsuhiko; Ito, Hisao; Nagasawa, Hatsumi; Little, John B.; Oshimura, Mitsuo; Li, Gloria C.; Chen, David J.

    2002-04-15

    Nijmegen breakage syndrome (NBS) is a rare autosomal recessive chromosome instability syndrome characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition, with cellular features similar to that of ataxia telangiectasia (AT). NBS results from mutations in the mammalian gene Nbs1 that codes for a 95-kDa protein called nibrin, NBS1, or p95. To establish an animal model for NBS, we attempted to generate NBS1 knockout mice. However, NBS1 gene knockouts were lethal at an early embryonic stage. NBS1 homozygous(-/-) blastocyst cells cultured in vitro showed retarded growth and subsequently underwent growth arrest within 5 days of culture. Apoptosis, assayed by TUNEL staining, was observed in NBSI homozygous(-/-) blastocyst cells cultured for four days. NBSI heterozygous(+/-) mice were normal, and exhibited no specific phenotype for at least one year. However, fibroblast cells from NBSI heterozygous(+/-) mice displayed an enhanced frequency of spontaneous transformation to anchorage-independent growth as compared to NBS1 wild-type(+/+) cells. Furthermore, heterozygous(+/-) mice exhibited a high incidence of hepatocellular carcinoma after one year compared to wild-type mice, even though no significant differences in the incidence of other tumors such as lung adenocarcinoma and lymphoma were observed. Taken together, these results strongly suggest that NBS1 heterozygosity and reduced NBSI expression induces formation of specific tumors in mice.

  2. Establishment of mitochondrial pyruvate carrier 1 (MPC1) gene knockout mice with preliminary gene function analyses

    Science.gov (United States)

    Li, Xiaoli; Li, Yaqing; Han, Gaoyang; Li, Xiaoran; Ji, Yasai; Fan, Zhirui; Zhong, Yali; Cao, Jing; Zhao, Jing; Mariusz, Goscinski; Zhang, Mingzhi; Wen, Jianguo; Nesland, Jahn M.; Suo, Zhenhe

    2016-01-01

    Pyruvate plays a critical role in the mitochondrial tricarboxylic acid (TCA) cycle, and it is the center product for the synthesis of amino acids, carbohydrates and fatty acids. Pyruvate transported across the inner mitochondrial membrane appears to be essential in anabolic and catabolic intermediary metabolism. The mitochondrial pyruvate carrier (MPC) mounted in the inner membrane of mitochondria serves as the channel to facilitate pyruvate permeating. In mammals, the MPC is formed by two paralogous subunits, MPC1 and MPC2. It is known that complete ablation of MPC2 in mice causes death on the 11th or 12th day of the embryonic period. However, MPC1 deletion and the knowledge of gene function in vivo are lacking. Using the new technology of gene manipulation known as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) systems, we gained stable MPC1 gene heterozygous mutation mice models, and the heterozygous mutations could be stably maintained in their offsprings. Only one line with homozygous 27 bases deletion in the first exon was established, but no offsprings could be obtained after four months of mating experiments, indicating infertility of the mice with such homozygous deletion. The other line of MPC1 knockout (KO) mice was only heterozygous, which mutated in the first exon with a terminator shortly afterwards. These two lines of MPC1 KO mice showed lower fertility and significantly higher bodyweight in the females. We concluded that heterozygous MPC1 KO weakens fertility and influences the metabolism of glucose and fatty acid and bodyweight in mice. PMID:27835892

  3. Inducible targeting of CNS astrocytes in Aldh1l1-CreERT2 BAC transgenic mice [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jan Winchenbach

    2016-12-01

    Full Text Available Background: Studying astrocytes in higher brain functions has been hampered by the lack of genetic tools for the efficient expression of inducible Cre recombinase throughout the CNS, including the neocortex. Methods: Therefore, we generated BAC transgenic mice, in which CreERT2 is expressed under control of the Aldh1l1 regulatory region. Results: When crossbred to Cre reporter mice, adult Aldh1l1-CreERT2 mice show efficient gene targeting in astrocytes. No such Cre-mediated recombination was detectable in CNS neurons, oligodendrocytes, and microglia. As expected, Aldh1l1-CreERT2 expression was evident in several peripheral organs, including liver and kidney. Conclusions: Taken together, Aldh1l1-CreERT2 mice are a useful tool for studying astrocytes in neurovascular coupling, brain metabolism, synaptic plasticity and other aspects of neuron-glia interactions.

  4. High fat diet accelerates cartilage repair in DBA/1 mice.

    Science.gov (United States)

    Wei, Wu; Bastiaansen-Jenniskens, Yvonne M; Suijkerbuijk, Mathijs; Kops, Nicole; Bos, Pieter K; Verhaar, Jan A N; Zuurmond, Anne-Marie; Dell'Accio, Francesco; van Osch, Gerjo J V M

    2017-06-01

    Obesity is a well-known risk factor for osteoarthritis, but it is unknown what it does on cartilage repair. Here we investigated whether a high fat diet (HFD) influences cartilage repair in a mouse model of cartilage repair. We fed DBA/1 mice control or HFD (60% energy from fat). After 2 weeks, a full thickness cartilage defect was made in the trochlear groove. Mice were sacrificed, 1, 8, and 24 weeks after operation. Cartilage repair was evaluated on histology. Serum glucose, insulin and amyloid A were measured 24 h before operation and at endpoints. Immunohistochemical staining was performed on synovium and adipose tissue to evaluate macrophage infiltration and phenotype. One week after operation, mice on HFD had defect filling with fibroblast-like cells and more cartilage repair as indicated by a lower Pineda score. After 8 weeks, mice on a HFD still had a lower Pineda score. After 24 weeks, no mice had complete cartilage repair and we did not detect a significant difference in cartilage repair between diets. Bodyweight was increased by HFD, whereas serum glucose, amyloid A and insulin were not influenced. Macrophage infiltration and phenotype in adipose tissue and synovium were not influenced by HFD. In contrast to common wisdom, HFD accelerated intrinsic cartilage repair in DBA/1 mice on the short term. Resistance to HFD induced inflammatory and metabolic changes could be associated with accelerated cartilage repair. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1258-1264, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Genetic Screens in Yeast to Identify BRCA1 Modifiers

    National Research Council Canada - National Science Library

    Plon, Sharon E

    2004-01-01

    .... The yeast RAD9 protein has similar functions and sequence motifs as BRCA1 and we proposed to identify candidate modifier loci by identifying haploinsufficient mutations at a second locus that alters...

  6. Bone Abnormalities in Mice with Protein Kinase A (PKA) Defects Reveal a Role of Cyclic AMP Signaling in Bone Stromal Cell-Dependent Tumor Development.

    Science.gov (United States)

    Liu, S; Shapiro, J M; Saloustros, E; Stratakis, C A

    2016-11-01

    Protein kinase A (PKA) is an important enzyme for all eukaryotic cells. PKA phosphorylates other proteins, thus, it is essential for the regulation of many diverse cellular functions, including cytoplasmic trafficking and signaling, organelle structure and mitochondrial oxidation, nuclear gene expression, the cell cycle, and cellular division. The PKA holoenzyme is composed of 2 regulatory and 2 catalytic subunits. Four regulatory (R1α, R1β, R2α, and R2β) and 4 catalytic subunits (Cα, Cβ, Cγ, and Prkx) have been identified, giving rise to mainly PKA-I (when the 2 regulatory subunits are either R1α or R1β), or PKA-II (when the 2 regulatory subunits are either R2α or R2β). Mutations in the PKA subunits can lead to altered total PKA activity or abnormal PKA-I to PKA-II ratio, leading to various abnormalities in both humans and mice. These effects can be tissue-specific. We studied the effect of PKA subunit defects on PKA activity and bone morphology of mice that were single or double heterozygous for null alleles of the various PKA subunit genes. Bone lesions including fibrous dysplasia, myxomas, osteo-sarcomas, -chondromas and -chondrosarcomas were found in these mice. Observational and molecular studies showed that these lesions were derived from bone stromal cells (BSCs). We conclude that haploinsufficiency for different PKA subunit genes affected bone lesion formation, new bone generation, organization, and mineralization in variable ways. This work identified a PKA subunit- and activity-dependent pathway of bone lesion formation from BSCs with important implications for understanding how cyclic AMP affects the skeleton and its tumorigenesis. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Motivational Disturbances and Effects of L-dopa Administration in Neurofibromatosis-1 Model Mice

    Science.gov (United States)

    Wozniak, David F.; Diggs-Andrews, Kelly A.; Conyers, Sara; Yuede, Carla M.; Dearborn, Joshua T.; Brown, Jacquelyn A.; Tokuda, Kazuhiro; Izumi, Yukitoshi; Zorumski, Charles F.; Gutmann, David H.

    2013-01-01

    Children with neurofibromatosis type 1 (NF1) frequently have cognitive and behavioral deficits. Some of these deficits have been successfully modeled in Nf1 genetically-engineered mice that develop optic gliomas (Nf1 OPG mice). In the current study, we show that abnormal motivational influences affect the behavior of Nf1 OPG mice, particularly with regard to their response to novel environmental stimuli. For example, Nf1 OPG mice made fewer spontaneous alternations in a Y-maze and fewer arm entries relative to WT controls. However, analysis of normalized alternation data demonstrated that these differences were not due to a spatial working memory deficit. Other reported behavioral results (e.g., open-field test, below) suggest that differential responses to novelty and/or other motivational influences may be more important determinants of these kinds of behavior than simple differences in locomotor activity/spontaneous movements. Importantly, normal long-term depression was observed in hippocampal slices from Nf1 OPG mice. Results from elevated plus maze testing showed that differences in exploratory activity between Nf1 OPG and WT control mice may be dependent on the environmental context (e.g., threatening or non-threatening) under which exploration is being measured. Nf1 OPG mice also exhibited decreased exploratory hole poking in a novel holeboard and showed abnormal olfactory preferences, although L-dopa (50 mg/kg) administration resolved the abnormal olfactory preference behaviors. Nf1 OPG mice displayed an attenuated response to a novel open field in terms of decreased ambulatory activity and rearing but only during the first 10 min of the session. Importantly, Nf1 OPG mice demonstrated investigative rearing deficits with regard to a novel hanging object suspended on one side of the field which were not rescued by L-dopa administration. Collectively, our results provide new data important for evaluating therapeutic treatments aimed at ameliorating NF1

  8. Motivational disturbances and effects of L-dopa administration in neurofibromatosis-1 model mice.

    Directory of Open Access Journals (Sweden)

    David F Wozniak

    Full Text Available Children with neurofibromatosis type 1 (NF1 frequently have cognitive and behavioral deficits. Some of these deficits have been successfully modeled in Nf1 genetically-engineered mice that develop optic gliomas (Nf1 OPG mice. In the current study, we show that abnormal motivational influences affect the behavior of Nf1 OPG mice, particularly with regard to their response to novel environmental stimuli. For example, Nf1 OPG mice made fewer spontaneous alternations in a Y-maze and fewer arm entries relative to WT controls. However, analysis of normalized alternation data demonstrated that these differences were not due to a spatial working memory deficit. Other reported behavioral results (e.g., open-field test, below suggest that differential responses to novelty and/or other motivational influences may be more important determinants of these kinds of behavior than simple differences in locomotor activity/spontaneous movements. Importantly, normal long-term depression was observed in hippocampal slices from Nf1 OPG mice. Results from elevated plus maze testing showed that differences in exploratory activity between Nf1 OPG and WT control mice may be dependent on the environmental context (e.g., threatening or non-threatening under which exploration is being measured. Nf1 OPG mice also exhibited decreased exploratory hole poking in a novel holeboard and showed abnormal olfactory preferences, although L-dopa (50 mg/kg administration resolved the abnormal olfactory preference behaviors. Nf1 OPG mice displayed an attenuated response to a novel open field in terms of decreased ambulatory activity and rearing but only during the first 10 min of the session. Importantly, Nf1 OPG mice demonstrated investigative rearing deficits with regard to a novel hanging object suspended on one side of the field which were not rescued by L-dopa administration. Collectively, our results provide new data important for evaluating therapeutic treatments aimed at

  9. Glutamate carboxypeptidase II and folate deficiencies result in reciprocal protection against cognitive and social deficits in mice: implications for neurodevelopmental disorders.

    Science.gov (United States)

    Schaevitz, Laura R; Picker, Jonathan D; Rana, Jasmine; Kolodny, Nancy H; Shane, Barry; Berger-Sweeney, Joanne E; Coyle, Joseph T

    2012-06-01

    Interactions between genetic and environmental risk factors underlie a number of neuropsychiatric disorders, including schizophrenia (SZ) and autism (AD). Due to the complexity and multitude of the genetic and environmental factors attributed to these disorders, recent research strategies focus on elucidating the common molecular pathways through which these multiple risk factors may function. In this study, we examine the combined effects of a haplo-insufficiency of glutamate carboxypeptidase II (GCPII) and dietary folic acid deficiency. In addition to serving as a neuropeptidase, GCPII catalyzes the absorption of folate. GCPII and folate depletion interact within the one-carbon metabolic pathway and/or of modulate the glutamatergic system. Four groups of mice were tested: wild-type, GCPII hypomorphs, and wild-types and GCPII hypomorphs both fed a folate deficient diet. Due to sex differences in the prevalence of SZ and AD, both male and female mice were assessed on a number of behavioral tasks including locomotor activity, rotorod, social interaction, prepulse inhibition, and spatial memory. Wild-type mice of both sexes fed a folic acid deficient diet showed motor coordination impairments and cognitive deficits, while social interactions were decreased only in males. GCPII mutant mice of both sexes also exhibited reduced social propensities. In contrast, all folate-depleted GCPII hypomorphs performed similarly to untreated wild-type mice, suggesting that reduced GCPII expression and folate deficiency are mutually protective. Analyses of folate and neurometabolite levels associated with glutamatergic function suggest several potential mechanisms through which GCPII and folate may be interacting to create this protective effect. Copyright © 2011 Wiley Periodicals, Inc.

  10. "Time sweet time": circadian characterization of galectin-1 null mice

    Directory of Open Access Journals (Sweden)

    Rabinovich Gabriel A

    2010-04-01

    Full Text Available Abstract Background Recent evidence suggests a two-way interaction between the immune and circadian systems. Circadian control of immune factors, as well as the effect of immunological variables on circadian rhythms, might be key elements in both physiological and pathological responses to the environment. Among these relevant factors, galectin-1 is a member of a family of evolutionarily-conserved glycan-binding proteins with both extracellular and intracellular effects, playing important roles in immune cell processes and inflammatory responses. Many of these actions have been studied through the use of mice with a null mutation in the galectin-1 (Lgals1 gene. To further analyze the role of endogenous galectin-1 in vivo, we aimed to characterize the circadian behavior of galectin-1 null (Lgals1-/- mice. Methods We analyzed wheel-running activity in light-dark conditions, constant darkness, phase responses to light pulses (LP at circadian time 15, and reentrainment to 6 hour shifts in light-dark schedule in wild-type (WT and Lgals1-/- mice. Results We found significant differences in free-running period, which was longer in mutant than in WT mice (24.02 vs 23.57 h, p alpha (14.88 vs. 12.35 circadian h, p Conclusions Given the effect of a null mutation on circadian period and entrainment, we indicate that galectin-1 could be involved in the regulation of murine circadian rhythmicity. This is the first study implicating galectin-1 in the mammalian circadian system.

  11. Impaired endothelial barrier function in apolipoprotein M-deficient mice is dependent on sphingosine-1-phosphate receptor 1

    DEFF Research Database (Denmark)

    Christensen, Pernille M; Liu, Catherine H; Swendeman, Steven L

    2016-01-01

    Apolipoprotein M (ApoM) transports sphingosine-1-phosphate (S1P) in plasma, and ApoM-deficient mice (Apom(-/-)) have ∼50% reduced plasma S1P levels. There are 5 known S1P receptors, and S1P induces adherens junction formation between endothelial cells through the S1P1 receptor, which in turn...... suppresses vascular leak. Increased vascular permeability is a hallmark of inflammation. The purpose of this study was to explore the relationships between vascular leakage in ApoM deficiency and S1P1 function in normal physiology and in inflammation. Vascular permeability in the lungs was assessed...... by accumulation of dextran molecules (70 kDa) and was increased ∼40% in Apom(-/-) mice compared to WT (C57Bl6/j) mice. Reconstitution of plasma ApoM/S1P or treatment with an S1P1 receptor agonist (SEW2871) rapidly reversed the vascular leakage to a level similar to that in WT mice, suggesting that it is caused...

  12. HTO oral administration in mice: Pt. 1

    International Nuclear Information System (INIS)

    Yamamoto, O.; Yokoro, K.; Seyama, T.; Kinomura, A.; Nomura, T.

    1990-01-01

    Tritiated water in various concentrations was orally administered continuously to (C57BL/6N and C3H/He)F 1 female mice in a closed animal chamber. Tritium radioactivity in various organ tissues was measured periodically after initiating tritiated water intake using an automatic sample combustion system and a liquid scintillation counter. After 7 days the specific radioactivity reached a plateau. Within a range of 1.48 x 10 11 to 5.92 x 10 11 Bq/dm 3 as the concentration of tritiated water in drinking water, the time of death after initiating the administration was about 2 weeks, a typical time for haematopoietic death. A linear relationship of times of death with tritiated water concentrations in drinking water was observed, on a log-log scale, between 1.85 x 10 10 Bq/dm 3 and 1.48 x 10 11 Bq/dm 3 . At concentrations lower than 9.25 x 10 9 Bq/dm 3 , mice no longer died from haematopoietic failure. The authors conclude, therefore, that there should be a threshold dose rate for haematopoietic death. (author)

  13. Role of endothelin-converting enzyme, chymase and neutral endopeptidase in the processing of big ET-1, ET-1(1-21) and ET-1(1-31) in the trachea of allergic mice.

    Science.gov (United States)

    De Campo, Benjamin A; Goldie, Roy G; Jeng, Arco Y; Henry, Peter J

    2002-08-01

    The present study examined the roles of endothelin-converting enzyme (ECE), neutral endopeptidase (NEP) and mast cell chymase as processors of the endothelin (ET) analogues ET-1(1-21), ET-1(1-31) and big ET-1 in the trachea of allergic mice. Male CBA/CaH mice were sensitized with ovalbumin (10 microg) delivered intraperitoneal on days 1 and 14, and exposed to aerosolized ovalbumin on days 14, 25, 26 and 27 (OVA mice). Mice were killed and the trachea excised for histological analysis and contraction studies on day 28. Tracheae from OVA mice had 40% more mast cells than vehicle-sensitized mice (sham mice). Ovalbumin (10 microg/ml) induced transient contractions (15+/-3% of the C(max)) in tracheae from OVA mice. The ECE inhibitor CGS35066 (10 microM) inhibited contractions induced by big ET-1 (4.8-fold rightward shift of dose-response curve; Peffect on contractions induced by any of the ET analogues used. The NEP inhibitor CGS24592 (10 microM) inhibited contractions induced by ET-1(1-31) (6.2-fold rightward shift; Pbig ET-1. These data suggest that big ET-1 is processed predominantly by a CGS35066-sensitive ECE within allergic airways rather than by mast cell-derived proteases such as chymase. If endogenous ET-1(1-31) is formed within allergic airways, it is likely to undergo further conversion by NEP to more active products.

  14. Macrophage inhibitory cytokine-1 (MIC-1/GDF15 slows cancer development but increases metastases in TRAMP prostate cancer prone mice.

    Directory of Open Access Journals (Sweden)

    Yasmin Husaini

    Full Text Available Macrophage inhibitory cytokine-1 (MIC-1/GDF15, a divergent member of the TGF-β superfamily, is over-expressed by many common cancers including those of the prostate (PCa and its expression is linked to cancer outcome. We have evaluated the effect of MIC-1/GDF15 overexpression on PCa development and spread in the TRAMP transgenic model of spontaneous prostate cancer. TRAMP mice were crossed with MIC-1/GDF15 overexpressing mice (MIC-1(fms to produce syngeneic TRAMP(fmsmic-1 mice. Survival rate, prostate tumor size, histopathological grades and extent of distant organ metastases were compared. Metastasis of TC1-T5, an androgen independent TRAMP cell line that lacks MIC-1/GDF15 expression, was compared by injecting intravenously into MIC-1(fms and syngeneic C57BL/6 mice. Whilst TRAMP(fmsmic-1 survived on average 7.4 weeks longer, had significantly smaller genitourinary (GU tumors and lower PCa histopathological grades than TRAMP mice, more of these mice developed distant organ metastases. Additionally, a higher number of TC1-T5 lung tumor colonies were observed in MIC-1(fms mice than syngeneic WT C57BL/6 mice. Our studies strongly suggest that MIC-1/GDF15 has complex actions on tumor behavior: it limits local tumor growth but may with advancing disease, promote metastases. As MIC-1/GDF15 is induced by all cancer treatments and metastasis is the major cause of cancer treatment failure and cancer deaths, these results, if applicable to humans, may have a direct impact on patient care.

  15. High fat diet and GLP-1 drugs induce pancreatic injury in mice

    Energy Technology Data Exchange (ETDEWEB)

    Rouse, Rodney, E-mail: rodney.rouse@fda.hhs.gov; Xu, Lin; Stewart, Sharron; Zhang, Jun

    2014-04-15

    Glucagon Like Peptide-1 (GLP-1) drugs are currently used to treat type-2 diabetes. Safety concerns for increased risk of pancreatitis and pancreatic ductal metaplasia have accompanied these drugs. High fat diet (HFD) is a type-2 diabetes risk factor that may affect the response to GLP-1 drug treatment. The objective of the present study was to investigate the effects of diet and GLP-1 based drugs on the exocrine pancreas in mice. Experiments were designed in a mouse model of insulin resistance created by feeding a HFD or standard diet (STD) for 6 weeks. The GLP-1 drugs, sitagliptin (SIT) and exenatide (EXE) were administered once daily for additional 6 weeks in both mice fed HFD or STD. The results showed that body weight, blood glucose levels, and serum levels of pro-inflammatory cytokines (TNFα, IL-1β, and KC) were significantly greater in HFD mice than in STD mice regardless of GLP-1 drug treatment. The semi-quantitative grading showed that pancreatic changes were significantly greater in EXE and SIT-treated mice compared to control and that HFD exacerbated spontaneous exocrine pancreatic changes seen in saline-treated mice on a standard diet. Exocrine pancreatic changes identified in this study included acinar cell injury (hypertrophy, autophagy, apoptosis, necrosis, and atrophy), vascular injury, interstitial edema and inflammation, fat necrosis, and duct changes. These findings support HFD as a risk factor to increased susceptibility/severity for acute pancreatitis and indicate that GLP-1 drugs cause pancreatic injury that can be exacerbated in a HFD environment.

  16. High fat diet and GLP-1 drugs induce pancreatic injury in mice

    International Nuclear Information System (INIS)

    Rouse, Rodney; Xu, Lin; Stewart, Sharron; Zhang, Jun

    2014-01-01

    Glucagon Like Peptide-1 (GLP-1) drugs are currently used to treat type-2 diabetes. Safety concerns for increased risk of pancreatitis and pancreatic ductal metaplasia have accompanied these drugs. High fat diet (HFD) is a type-2 diabetes risk factor that may affect the response to GLP-1 drug treatment. The objective of the present study was to investigate the effects of diet and GLP-1 based drugs on the exocrine pancreas in mice. Experiments were designed in a mouse model of insulin resistance created by feeding a HFD or standard diet (STD) for 6 weeks. The GLP-1 drugs, sitagliptin (SIT) and exenatide (EXE) were administered once daily for additional 6 weeks in both mice fed HFD or STD. The results showed that body weight, blood glucose levels, and serum levels of pro-inflammatory cytokines (TNFα, IL-1β, and KC) were significantly greater in HFD mice than in STD mice regardless of GLP-1 drug treatment. The semi-quantitative grading showed that pancreatic changes were significantly greater in EXE and SIT-treated mice compared to control and that HFD exacerbated spontaneous exocrine pancreatic changes seen in saline-treated mice on a standard diet. Exocrine pancreatic changes identified in this study included acinar cell injury (hypertrophy, autophagy, apoptosis, necrosis, and atrophy), vascular injury, interstitial edema and inflammation, fat necrosis, and duct changes. These findings support HFD as a risk factor to increased susceptibility/severity for acute pancreatitis and indicate that GLP-1 drugs cause pancreatic injury that can be exacerbated in a HFD environment

  17. Prostaglandin E1 and Its Analog Misoprostol Inhibit Human CML Stem Cell Self-Renewal via EP4 Receptor Activation and Repression of AP-1.

    Science.gov (United States)

    Li, Fengyin; He, Bing; Ma, Xiaoke; Yu, Shuyang; Bhave, Rupali R; Lentz, Steven R; Tan, Kai; Guzman, Monica L; Zhao, Chen; Xue, Hai-Hui

    2017-09-07

    Effective treatment of chronic myelogenous leukemia (CML) largely depends on the eradication of CML leukemic stem cells (LSCs). We recently showed that CML LSCs depend on Tcf1 and Lef1 factors for self-renewal. Using a connectivity map, we identified prostaglandin E1 (PGE1) as a small molecule that partly elicited the gene expression changes in LSCs caused by Tcf1/Lef1 deficiency. Although it has little impact on normal hematopoiesis, we found that PGE1 treatment impaired the persistence and activity of LSCs in a pre-clinical murine CML model and a xenograft model of transplanted CML patient CD34 + stem/progenitor cells. Mechanistically, PGE1 acted on the EP4 receptor and repressed Fosb and Fos AP-1 factors in a β-catenin-independent manner. Misoprostol, an FDA-approved EP4 agonist, conferred similar protection against CML. These findings suggest that activation of this PGE1-EP4 pathway specifically targets CML LSCs and that the combination of PGE1/misoprostol with conventional tyrosine-kinase inhibitors could provide effective therapy for CML. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Haploinsufficiency in the PPARα and LDL receptor genes leads to gender- and age-specific obesity and hyperinsulinemia

    International Nuclear Information System (INIS)

    Sugiyama, Eiko; Tanaka, Naoki; Nakajima, Tamie; Kamijo, Yuji; Yokoyama, Shin; Li Yufeng; Gonzalez, Frank J.; Aoyama, Toshifumi

    2006-01-01

    When preparing peroxisome proliferator-activated receptor (PPAR)α:low-density lipoprotein receptor (LDLR) (-/-) double knockout mice, we unexpectedly found a unique gender- and age-specific obesity in the F1 generation, PPARα (+/-):LDLR (+/-), even in mice fed standard chow. Body weights of the male heterozygous mice increased up to about 60 g at 75 weeks of age, then decreased by about 30 g at 100 weeks of age. More than 95% of the heterozygous mice between 35- and 75-week-olds were overweight. Of interest, the obese heterozygous mice also exhibited hyperinsulinemia correlating with moderate insulin resistance. Hepatic gene expression of LDLR was lower than expected in the heterozygous mice, particularly at 50 and 75 weeks of age. In contrast, the hepatic expression of PPARα was higher than expected in obese heterozygous mice, but decreased in non-obese older heterozygous mice. Modulated expression of these genes may be partially associated with the onset of the hyperinsulinemia

  19. Expression of GAT1 in male reproductive system and its effects on reproduction in mice.

    Science.gov (United States)

    Zhang, JinFu; Gui, YaPing; Yuan, Tao; Bian, CuiDong; Guo, LiHe

    2009-12-01

    The present study was carried out to identify GABA (gamma-aminobutyric acid) transport protein I (GAT1) in male reproductive organs and to study the effect of GAT1 overexpression on the male reproductive system in GAT1 transgenic mice (TG). Expression and location of GAT1 in testes, epididymis, and sperm of wild-type (WT) mice were identified by immunohistochemistry and western-blot. Histological changes of testes, epididymis, and sperm of transgenic mice overexpressing GAT1 were detected by immunofluorenscent staining and haematoxylin and eosin (HE) staining. GAT1 expression was detected in the testes, epididymis, and sperm of non-transgenic mice. Vacuolization and deformity of spermatogenic cells were observed in the transgenic mice, but the epididymis was unremarkable. Immunofluorenscent staining showed that the number of diastrophic and decapitated sperm increased significantly in transgenic mice to 46.9% from 7.3% in nontransgenic mice. These results suggest that abnormal expression of GAT1 could result in spermiogenesis function injury, sperm paramorphia and dysgenesis.

  20. Brain size regulations by cbp haploinsufficiency evaluated by in-vivo MRI based volumetry

    Science.gov (United States)

    Ateca-Cabarga, Juan C.; Cosa, Alejandro; Pallarés, Vicente; López-Atalaya, José P.; Barco, Ángel; Canals, Santiago; Moratal, David

    2015-11-01

    The Rubinstein-Taybi Syndrome (RSTS) is a congenital disease that affects brain development causing severe cognitive deficits. In most cases the disease is associated with dominant mutations in the gene encoding the CREB binding protein (CBP). In this work, we present the first quantitative analysis of brain abnormalities in a mouse model of RSTS using magnetic resonance imaging (MRI) and two novel self-developed automated algorithms for image volumetric analysis. Our results quantitatively confirm key syndromic features observed in RSTS patients, such as reductions in brain size (-16.31%, p < 0.05), white matter volume (-16.00%, p < 0.05), and corpus callosum (-12.40%, p < 0.05). Furthermore, they provide new insight into the developmental origin of the disease. By comparing brain tissues in a region by region basis between cbp+/- and cbp+/+ littermates, we found that cbp haploinsufficiency is specifically associated with significant reductions in prosencephalic tissue, such us in the olfactory bulb and neocortex, whereas regions evolved from the embryonic rhombencephalon were spared. Despite the large volume reductions, the proportion between gray-, white-matter and cerebrospinal fluid were conserved, suggesting a role of CBP in brain size regulation. The commonalities with holoprosencephaly and arhinencephaly conditions suggest the inclusion of RSTS in the family of neuronal migration disorders.

  1. Reduction of VLDL secretion decreases cholesterol excretion in niemann-pick C1-like 1 hepatic transgenic mice.

    Directory of Open Access Journals (Sweden)

    Stephanie M Marshall

    Full Text Available An effective way to reduce LDL cholesterol, the primary risk factor of atherosclerotic cardiovascular disease, is to increase cholesterol excretion from the body. Our group and others have recently found that cholesterol excretion can be facilitated by both hepatobiliary and transintestinal pathways. However, the lipoprotein that moves cholesterol through the plasma to the small intestine for transintestinal cholesterol efflux (TICE is unknown. To test the hypothesis that hepatic very low-density lipoproteins (VLDL support TICE, antisense oligonucleotides (ASO were used to knockdown hepatic expression of microsomal triglyceride transfer protein (MTP, which is necessary for VLDL assembly. While maintained on a high cholesterol diet, Niemann-Pick C1-like 1 hepatic transgenic (L1Tg mice, which predominantly excrete cholesterol via TICE, and wild type (WT littermates were treated with control ASO or MTP ASO. In both WT and L1Tg mice, MTP ASO decreased VLDL triglyceride (TG and cholesterol secretion. Regardless of treatment, L1Tg mice had reduced biliary cholesterol compared to WT mice. However, only L1Tg mice treated with MTP ASO had reduced fecal cholesterol excretion. Based upon these findings, we conclude that VLDL or a byproduct such as LDL can move cholesterol from the liver to the small intestine for TICE.

  2. Oxidized SOD1 alters proteasome activities in vitro and in the cortex of SOD1 overexpressing mice.

    Science.gov (United States)

    Le Pecheur, Marie; Bourdon, Emmanuel; Paly, Evelyne; Farout, Luc; Friguet, Bertrand; London, Jacqueline

    2005-07-04

    Premature ageing, one of the characteristics of Down syndrome (DS), may involve oxidative stress and impairment of proteasome activity. Transgenic mice overexpressing the human copper/zinc superoxide dismutase (SOD1) gene are one of the first murine models for DS and it has been shown that SOD1 overexpression might be either deleterious or beneficial. Here, we show a reduction in proteasome activities in the cortex of SOD1 transgenic mice and an associated increase in the content of oxidized SOD1 protein. As we demonstrate that in vitro oxidized SOD can inhibit purified proteasome peptidase activities, modified SOD1 might be partially responsible for proteasome inhibition shown in SOD1 transgenic mice.

  3. Hexachlorobenzene stimulates uroporphyria in low affinity AHR mice without increasing CYP1A2

    International Nuclear Information System (INIS)

    Gorman, Nadia; Trask, Heidi S.; Robinson, Susan W.; Sinclair, Jacqueline F.; Gerhard, Glenn S.; Smith, Andrew G.; Sinclair, Peter R.

    2007-01-01

    Hexachlorobenzene (HCB), a weak ligand of the aryl hydrocarbon receptor (AHR), causes hepatic uroporphyrin (URO) accumulation (uroporphyria) in humans and animals. CYP1A2 has been shown to be necessary in the development of uroporphyria in mice. Using mice expressing the low affinity form of the AH receptor (AHRd), we investigated whether the enhancement of uroporphyria by HCB involves an obligatory increase in CYP1A2 as measured by specific enzyme assays and immunoblotting. We compared the ability of HCB, in combination with iron dextran and the porphyrin precursor, 5-aminolevulinate (ALA), to cause uroporphyria in a strain of mice (C57BL/6) which expresses the high affinity form of the receptor (AHRb 1 ), with three strains of mice (SWR and two 129 sublines) expressing the low affinity AHRd. In C57BL/6 mice, HCB-enhanced uroporphyria was associated with a doubling of CYP1A2. HCB treatment produced uroporphyria in iron-loaded mice expressing AHRd, even though there was little or no increase in CYP1A2. Cyp1a2(-/-) mice in a 129 background were completely resistant to HCB-induced uroporphyria, and female Hfe(-/-) 129 mice, in which the levels of hepatic CYP1A2 were half of those of the male levels, responded poorly. The effect of exogenous iron, administered in the form of iron dextran, on HCB enhancement of uroporphryia could be replicated utilizing the endogenous hepatic iron accumulated in 129 Hfe(-/-) mice. In conclusion, some minimal basal expression of CYP1A2 is essential for HCB-mediated enhancement of uroporphyria, but increases in CYP1A2 above that level are not essential

  4. Reduced bone mass and muscle strength in male 5α-reductase type 1 inactivated mice.

    Directory of Open Access Journals (Sweden)

    Sara H Windahl

    Full Text Available Androgens are important regulators of bone mass but the relative importance of testosterone (T versus dihydrotestosterone (DHT for the activation of the androgen receptor (AR in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2, encoded by separate genes (Srd5a1 and Srd5a2. 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1⁻/⁻ mice. Four-month-old male Srd5a1⁻/⁻ mice had reduced trabecular bone mineral density (-36%, p<0.05 and cortical bone mineral content (-15%, p<0.05 but unchanged serum androgen levels compared with wild type (WT mice. The cortical bone dimensions were reduced in the male Srd5a1⁻/⁻ mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05 in orchidectomized WT mice but not in orchidectomized Srd5a1⁻/⁻ mice. Male Srd5a1⁻/⁻ mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05. Female Srd5a1⁻/⁻ mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1⁻/⁻ mice, is an indirect effect mediated by elevated circulating androgen levels.

  5. SirT1 regulates energy metabolism and response to caloric restriction in mice.

    Directory of Open Access Journals (Sweden)

    Gino Boily

    Full Text Available The yeast sir2 gene and its orthologues in Drosophila and C. elegans have well-established roles in lifespan determination and response to caloric restriction. We have studied mice carrying two null alleles for SirT1, the mammalian orthologue of sir2, and found that these animals inefficiently utilize ingested food. These mice are hypermetabolic, contain inefficient liver mitochondria, and have elevated rates of lipid oxidation. When challenged with a 40% reduction in caloric intake, normal mice maintained their metabolic rate and increased their physical activity while the metabolic rate of SirT1-null mice dropped and their activity did not increase. Moreover, CR did not extend lifespan of SirT1-null mice. Thus, SirT1 is an important regulator of energy metabolism and, like its orthologues from simpler eukaryotes, the SirT1 protein appears to be required for a normal response to caloric restriction.

  6. Mammary gland tumor formation in transgenic mice overexpressing stromelysin-1

    Energy Technology Data Exchange (ETDEWEB)

    Sympson, Carolyn J; Bissell, Mina J; Werb, Zena

    1995-06-01

    An intact basement membrane (BM) is essential for the proper function, differentiation and morphology of many epithelial cells. The disruption or loss of this BM occurs during normal development as well as in the disease state. To examine the importance of BM during mammary gland development in vivo, we generated transgenic mice that inappropriately express autoactivating isoforms of the matrix metalloproteinase stromelysin-1. The mammary glands from these mice are both functionally and morphologically altered throughout development. We have now documented a dramatic incidence of breast tumors in several independent lines of these mice. These data suggest that overexpression of stromelysin-1 and disruption of the BM may be a key step in the multi-step process of breast cancer.

  7. sirt1-null mice develop an autoimmune-like condition

    International Nuclear Information System (INIS)

    Sequeira, Jedon; Boily, Gino; Bazinet, Stephanie; Saliba, Sarah; He Xiaohong; Jardine, Karen; Kennedy, Christopher; Staines, William; Rousseaux, Colin; Mueller, Rudi; McBurney, Michael W.

    2008-01-01

    The sirt1 gene encodes a protein deacetylase with a broad spectrum of reported substrates. Mice carrying null alleles for sirt1 are viable on outbred genetic backgrounds so we have examined them in detail to identify the biological processes that are dependent on SIRT1. Sera from adult sirt1-null mice contain antibodies that react with nuclear antigens and immune complexes become deposited in the livers and kidneys of these animals. Some of the sirt1-null animals develop a disease resembling diabetes insipidus when they approach 2 years of age although the relationship to the autoimmunity remains unclear. We interpret these observations as consistent with a role for SIRT1 in sustaining normal immune function and in this way delaying the onset of autoimmune disease

  8. Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice.

    Science.gov (United States)

    Noguchi, Fumihito; Nakajima, Takeshi; Inui, Shigeki; Reddy, Janardan K; Itami, Satoshi

    2014-01-01

    MED1 (Mediator complex subunit 1) is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1(epi-/-)) that develop epidermal hyperplasia. Herein, to investigate the function(s) of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1(epi-/-) and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1(epi-/-) mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1(epi-/-) mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1(epi-/-) keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1(epi-/-) keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1(epi-/-) keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1(epi-/-) keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1(epi-/-) mice. On the other hand, skin wound healing in 6-month-old Med1(epi-/-) mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1(epi-/-) mice, indicating a decreased contribution of hair

  9. Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice.

    Directory of Open Access Journals (Sweden)

    Fumihito Noguchi

    Full Text Available MED1 (Mediator complex subunit 1 is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1(epi-/- that develop epidermal hyperplasia. Herein, to investigate the function(s of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1(epi-/- and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1(epi-/- mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1(epi-/- mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1(epi-/- keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1(epi-/- keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1(epi-/- keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1(epi-/- keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1(epi-/- mice. On the other hand, skin wound healing in 6-month-old Med1(epi-/- mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1(epi-/- mice, indicating a decreased contribution of hair

  10. XBP1 (X-Box-Binding Protein-1)-Dependent O-GlcNAcylation Is Neuroprotective in Ischemic Stroke in Young Mice and Its Impairment in Aged Mice Is Rescued by Thiamet-G.

    Science.gov (United States)

    Jiang, Meng; Yu, Shu; Yu, Zhui; Sheng, Huaxin; Li, Ying; Liu, Shuai; Warner, David S; Paschen, Wulf; Yang, Wei

    2017-06-01

    Impaired protein homeostasis induced by endoplasmic reticulum dysfunction is a key feature of a variety of age-related brain diseases including stroke. To restore endoplasmic reticulum function impaired by stress, the unfolded protein response is activated. A key unfolded protein response prosurvival pathway is controlled by the endoplasmic reticulum stress sensor (inositol-requiring enzyme-1), XBP1 (downstream X-box-binding protein-1), and O-GlcNAc (O-linked β-N-acetylglucosamine) modification of proteins (O-GlcNAcylation). Stroke impairs endoplasmic reticulum function, which activates unfolded protein response. The rationale of this study was to explore the potentials of the IRE1/XBP1/O-GlcNAc axis as a target for neuroprotection in ischemic stroke. Mice with Xbp1 loss and gain of function in neurons were generated. Stroke was induced by transient or permanent occlusion of the middle cerebral artery in young and aged mice. Thiamet-G was used to increase O-GlcNAcylation. Deletion of Xbp1 worsened outcome after transient and permanent middle cerebral artery occlusion. After stroke, O-GlcNAcylation was activated in neurons of the stroke penumbra in young mice, which was largely Xbp1 dependent. This activation of O-GlcNAcylation was impaired in aged mice. Pharmacological increase of O-GlcNAcylation before or after stroke improved outcome in both young and aged mice. Our study indicates a critical role for the IRE1/XBP1 unfolded protein response branch in stroke outcome. O-GlcNAcylation is a prosurvival pathway that is activated in the stroke penumbra in young mice but impaired in aged mice. Boosting prosurvival pathways to counterbalance the age-related decline in the brain's self-healing capacity could be a promising strategy to improve ischemic stroke outcome in aged brains. © 2017 American Heart Association, Inc.

  11. Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol

    Science.gov (United States)

    Blednov, Y.A.; Harris, R.A.

    2009-01-01

    The vanilloid receptor TRPV1 is activated by ethanol and this may be important for some of the central and peripheral actions of ethanol. To determine if this receptor has a role in ethanol-mediated behaviors, we studied null mutant mice in which the Trpv1 gene was deleted. Mice lacking this gene showed significantly higher preference for ethanol and consumed more ethanol in a two-bottle choice test as compared with wild type littermates. Null mutant mice showed shorter duration of loss of righting reflex induced by low doses of ethanol (3.2 and 3.4 g/kg) and faster recovery from motor incoordination induced by ethanol (2 g/kg). However, there were no differences between null mutant and wild type mice in severity of ethanol-induced acute withdrawal (4 g/kg) or conditioned taste aversion to ethanol (2.5 g/kg). Two behavioral phenotypes (decreased sensitivity to ethanol-induced sedation and faster recovery from ethanol-induced motor incoordination) seen in null mutant mice were reproduced in wild type mice by injection of a TRPV1 antagonist, capsazepine (10 mg/kg). These two ethanol behaviors were changed in the opposite direction after injection of capsaicin, a selective TRPV1 agonist, in wild type mice. The studies provide the first evidence that TRPV1 is important for specific behavioral actions of ethanol. PMID:19705551

  12. Cardiac dysfunction in Pkd1-deficient mice with phenotype rescue by galectin-3 knockout

    Science.gov (United States)

    Balbo, Bruno E.; Amaral, Andressa G.; Fonseca, Jonathan M.; de Castro, Isac; Salemi, Vera M.; Souza, Leandro E.; dos Santos, Fernando; Irigoyen, Maria C.; Qian, Feng; Chammas, Roger; Onuchic, Luiz F.

    2016-01-01

    Alterations in myocardial wall texture stand out among ADPKD cardiovascular manifestations, in hypertensive and normotensive patients. To elucidate their pathogenesis, we analyzed the cardiac phenotype in Pkd1cond/cond:Nestincre (CYG+) cystic mice exposed to increased blood pressure, at 5–6 and 20–24 weeks of age, and Pkd1+/− (HTG+) noncystic mice at 5–6 and 10–13 weeks. Echocardiographic analyses revealed decreased myocardial deformation and systolic function in CYG+ and HTG+ mice, as well as diastolic dysfunction in older CYG+ mice, compared to their Pkd1cond/cond and Pkd1+/+ controls. Hearts from CYG+ and HTG+ mice presented reduced polycystin-1 expression, increased apoptosis and mild fibrosis. Since galectin-3 has been associated with heart dysfunction, we studied it as a potential modifier of the ADPKD cardiac phenotype. Double-mutant Pkd1cond/cond:Nestincre;Lgals3−/− (CYG−) and Pkd1+/−;Lgals3−/− (HTG−) mice displayed improved cardiac deformability and systolic parameters compared to single-mutants, not differing from their controls. CYG− and HTG− showed decreased apoptosis and fibrosis. Analysis of a severe cystic model (Pkd1V/V; VVG+) showed that Pkd1V/V;Lgals3−/− (VVG−) mice have longer survival, decreased cardiac apoptosis and improved heart function compared to VVG+. CYG− and VVG− animals showed no difference in renal cystic burden compared to CYG+ and VVG+ mice. Thus, myocardial dysfunction occurs in different Pkd1-deficient models and suppression of galectin-3 expression rescues this phenotype. PMID:27475230

  13. Chronic Stress Contributes to Cognitive Dysfunction and Hippocampal Metabolic Abnormalities in APP/PS1 Mice

    Directory of Open Access Journals (Sweden)

    Bing Han

    2017-03-01

    Full Text Available Background/Aims: Stress response is determined by the brain, and the brain is a sensitive target for stress. Our previous experiments have confirmed that once the stress response is beyond the tolerable limit of the brain, particularly that of the hippocampus, it will have deleterious effects on hippocampal structure and function; however, the metabolic mechanisms for this are not well understood. Methods: Here, we used morris water maze, elisa and gas chromatography-time of flight/mass spectrometry to observe the changes in cognition, neuropathology and metabolomics in the hippocampus of APP/PS1 mice and wild-type (C57 mice caused by chronic unpredictable mild stress (CUMS, we also further explored the correlation between cognition and metabolomics. Results: We found that 4 weeks of CUMS aggravated cognitive impairment and increased amyloid-β deposition in APP/PS1 mice, but did not affect C57 mice. Under non-stress conditions, compared with C57 mice, there were 8 different metabolites in APP/PS1 mice. However, following CUMS, 3 different metabolites were changed compared with untreated C57 mice. Compared to APP/PS1 mice, there were 7 different metabolites in APP/PS1+CUMS mice. Among these alterations, 3-hydroxybutyric acid, valine, serine, beta-alanine and o-phosphorylethanolamine, which are involved in sphingolipid metabolism, synthesis and degradation of ketone bodies, and amino acid metabolism. Conclusion: The results indicate that APP/PS1 mice are more vulnerable to stress than C57 mice, and the metabolic mechanisms of stress-related cognitive impairment in APP/PS1 mice are related to multiple pathways and networks, including sphingolipid metabolism, synthesis and degradation of ketone bodies, and amino acid metabolism.

  14. Brain-specific transcriptional regulator T-brain-1 controls brain wiring and neuronal activity in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Tzyy-Nan eHuang

    2015-11-01

    Full Text Available T-brain-1 (TBR1 is a brain-specific T-box transcription factor. In 1995, Tbr1 was first identified from a subtractive hybridization that compared mouse embryonic and adult telencephalons. Previous studies of Tbr1–/– mice have indicated critical roles for TBR1 in the development of the cerebral cortex, amygdala and olfactory bulb. Neuronal migration and axonal projection are two important developmental features controlled by TBR1. Recently, recurrent de novo disruptive mutations in the TBR1 gene have been found in patients with autism spectrum disorders (ASDs. Human genetic studies have identified TBR1 as a high-confidence risk factor for ASDs. Because only one allele of the TBR1 gene is mutated in these patients, Tbr1+/– mice serve as a good genetic mouse model to explore the mechanism by which de novo TBR1 mutation leads to ASDs. Although neuronal migration and axonal projection defects of cerebral cortex are the most prominent phenotypes in Tbr1–/– mice, these features are not found in Tbr1+/– mice. Instead, inter- and intra-amygdalar axonal projections and NMDAR expression and activity in amygdala are particularly susceptible to Tbr1 haploinsufficiency. The studies indicated that both abnormal brain wiring (abnormal amygdalar connections and excitation/inhibition imbalance (NMDAR hypoactivity, two prominent models for ASD etiology, are present in Tbr1+/– mice. Moreover, calcium/calmodulin-dependent serine protein kinase (CASK was found to interact with TBR1. The CASK-TBR1 complex had been shown to directly bind the promoter of the Grin2b gene, which is also known as Nmdar2b, and upregulate Grin2b expression. This molecular function of TBR1 provides an explanation for NMDAR hypoactivity in Tbr1+/– mice. In addition to Grin2b, cell adhesion molecules-including Ntng1, Cdh8 and Cntn2-are also regulated by TBR1 to control axonal projections of amygdala. Taken together, the studies of Tbr1 provide an integrated picture of ASD

  15. Silencing MR-1 attenuates inflammatory damage in mice heart induced by AngII

    International Nuclear Information System (INIS)

    Dai, Wenjian; Chen, Haiyang; Jiang, Jiandong; Kong, Weijia; Wang, Yiguang

    2010-01-01

    Myofibrillogenesis regulator-1(MR-1) can aggravate cardiac hypertrophy induced by angiotensin(Ang) II in mice through activation of NF-κB signaling pathway, and nuclear transcription factor (NF)-κB and activator protein-1(AP-1) regulate inflammatory and immune responses by increasing the expression of specific inflammatory genes in various tissues including heart. Whether inhibition of MR-1 expression will attenuate AngII-induced inflammatory injury in mice heart has not been explored. Herein, we monitored the activation of NF-κB and AP-1, together with expression of pro-inflammatory of interleukin(IL)-6, tumor necrosis factor(TNF)-α, vascular-cell adhesion molecule (VCAM)-1, platelet endothelial cell adhesion molecule (PECAM), and inflammatory cell infiltration in heart of mice which are induced firstly by AngII (PBS),then received MR-1-siRNA or control-siRNA injecting. We found that the activation of NF-κB and AP-1 was inhibited significantly, together with the decreased expression of IL-6, TNF-α, VCAM-1, and PECAM in AngII-induced mice myocardium in MR-1-siRNA injection groups compared with control-siRNA injecting groups. However, the expression level of MR-1 was not an apparent change in PBS-infused groups than in unoperation groups, and MR-1-siRNA do not affect the expression of MR-1 in PBS-infused mice. Our findings suggest that silencing MR-1 protected mice myocardium against inflammatory injury induced by AngII by suppression of pro-inflammatory transcription factors NF-κB and AP-1 signaling pathway.

  16. CMKLR1 deficiency maintains ovarian steroid production in mice treated chronically with dihydrotestosterone.

    Science.gov (United States)

    Tang, Mi; Huang, Chen; Wang, Yu-Fei; Ren, Pei-Gen; Chen, Li; Xiao, Tian-Xia; Wang, Bao-Bei; Pan, Yan-Fei; Tsang, Benjamin K; Zabel, Brian A; Ma, Bao-Hua; Zhao, Hui-Ying; Zhang, Jian V

    2016-02-19

    Elevated serum chemerin levels correlate with increased severity of polycystic ovary syndrome (PCOS). However, the role of CMKLR1 signaling in ovarian biology under conditions of excess DHT remains unclear. In this study we compared the effects of continuous 90-day high dose DHT exposure (83.3 □g/day) on wild type and CMKLR1-deficient mice. DHT induced PCOS-like clinical signs in wild type mice as well as significant changes in the expression of hormone receptors, steroid synthesis enzymes, and BMPs and their receptors. In contrast, CMKLR1-deficient mice significantly attenuated DHT-induced clinical signs of PCOS and alterations in ovarian gene expression. To determine whether the BMP4 signaling pathway was involved in the pathogenic effects of CMKLR1 signaling in DHT-induced ovarian steroidogenesis, antral follicles were isolated from wild type and CMKLR1 knockout (KO) mice and treated in vitro with combinations of hCG, DHT, and BMP4 inhibitors. BMP4 inhibition attenuated the induction effects of hCG and DHT on estrogen and progesterone secretion in CMKLR1 KO mice, but not in WT mice, implicating the BMP4 signaling pathway in the CMKLR1-dependent response to DHT. In conclusion, CMKLR1 gene deletion attenuates the effects of chronic DHT treatment on ovarian function in experimental PCOS, likely via BMP4 signaling.

  17. Effects of angiotensin II type 1 receptor blocker on bones in mice with type 1 diabetes induced by streptozotocin.

    Science.gov (United States)

    Zhang, Yan; Diao, Teng-Yue; Gu, Sa-Sa; Wu, Shu-Yan; Gebru, Yoseph A; Chen, Xi; Wang, Jing-Yu; Ran, Shu; Wong, Man-Sau

    2014-09-01

    This study was performed to address the pathological roles of the skeletal renin-angiotensin system (RAS) in type 1 diabetes-induced osteoporosis and the effects of the angiotensin II type 1 receptor blocker losartan on bones in diabetic mice. Bone histomorphology was detected by H&E staining, Safranin O staining and X-ray radiography. Micro-CT was performed for the analysis of bone parameters. Gene and protein expression were determined by RT-PCR and immunoblotting. Type 1 diabetic mice displayed osteopenia phenotype, and losartan treatment had no osteoprotective effects on diabetic mice as shown by the reduction of bone mineral density and microarchitectural parameters at the proximal metaphysis of the tibia. The mRNA expression of AGT, renin receptor and ACE, and protein expression of renin and AT1R were markedly up-regulated in the bones of vehicle-treated diabetic mice compared to those of non-diabetic mice. The treatment with losartan further significantly increased the expression of AGT, renin, angiotensin II and AT1R, and reduced the expression of AT2R receptor as compared to those of diabetic mice. Local bone RAS functionally played a role in the development of type 1 diabetic osteoporosis, and losartan had no bone-sparing function in diabetes mice because of enhance skeletal RAS activity. © The Author(s) 2013.

  18. Naïve B cells reduce fungal dissemination in Cryptococcus neoformans infected Rag1-/- mice.

    Science.gov (United States)

    Dufaud, Chad; Rivera, Johanna; Rohatgi, Soma; Pirofski, Liise-Anne

    2018-01-01

    IgM and B-1 cell deficient mice exhibit early C. neoformans dissemination from lungs to brain, but a definitive role for B cells in conferring resistance to C. neoformans dissemination has not been established. To address this question, we developed an intranasal (i.n.) C. neoformans infection model in B and T cell deficient Rag1 -/- mice and found they also exhibit earlier fungal dissemination and higher brain CFU than wild-type C57Bl/6 (wild-type) mice. To probe the effect of B cells on fungal dissemination, Rag1 -/- mice were given splenic (intravenously) or peritoneal (intraperitoneally) B cells from wild-type mice and infected i.n. with C. neoformans 7 d later. Mice that received B cells had lung histopathology resembling wild type mice 14 d post-infection, and B-1, not B-2 or T cells in their lungs, and serum and lung IgM and IgG 21 d post-infection. Lung CFU were comparable in wild-type, Rag1 -/-, and Rag1 -/- mice that received B cells 21 d post-infection, but brain CFU were significantly lower in mice that received B cells than Rag1 -/- mice that did not. To determine if natural antibody can promote immunity in our model, we measured alveolar macrophage phagocytosis of C. neoformans in Rag1 -/- mice treated with naive wild-type IgM-sufficient or sIgM -/- IgM-deficient sera before infection. Compared to IgM-deficient sera, IgM-sufficient sera significantly increased phagocytosis. Our data establish B cells are able to reduce early C. neoformans dissemination in mice and suggest natural IgM may be a key mediator of early antifungal immunity in the lungs.

  19. Metabolomic Analysis of the Skeletal Muscle of Mice Overexpressing PGC-1α.

    Directory of Open Access Journals (Sweden)

    Yukino Hatazawa

    Full Text Available Peroxisome proliferator-activated receptor (PPAR γ coactivator 1α (PGC-1α is a coactivator of various nuclear receptors and other transcription factors whose expression increases in the skeletal muscle during exercise. We have previously made transgenic mice overexpressing PGC-1α in the skeletal muscle (PGC-1α-Tg mice. PGC-1α upregulates the expression of genes associated with red fibers, mitochondrial function, fatty acid oxidation, and branched chain amino acid (BCAA degradation. However, global analyses of the actual metabolic products have not been investigated. In this study, we conducted metabolomic analysis of the skeletal muscle in PGC-1α-Tg mice by capillary electrophoresis with electrospray ionization time-of-flight mass spectrometry. Principal component analysis and hierarchical cluster analysis showed clearly distinguishable changes in the metabolites between PGC-1α-Tg and wild-type control mice. Changes were observed in metabolite levels of various metabolic pathways such as the TCA cycle, pentose phosphate pathway, nucleotide synthesis, purine nucleotide cycle, and amino acid metabolism, including BCAA and β-alanine. Namely, metabolic products of the TCA cycle increased in PGC-1α-Tg mice, with increased levels of citrate (2.3-fold, succinate (2.2-fold, fumarate (2.8-fold, and malate (2.3-fold observed. Metabolic products associated with the pentose phosphate pathway and nucleotide biosynthesis also increased in PGC-1α-Tg mice. Meanwhile, BCAA levels decreased (Val, 0.7-fold; Leu, 0.8-fold; and Ile, 0.7-fold, and Glu (3.1-fold and Asp (2.2-fold levels increased. Levels of β-alanine and related metabolites were markedly decreased in PGC-1α-Tg mice. Coordinated regulation of the TCA cycle and amino acid metabolism, including BCAA, suggests that PGC-1α plays important roles in energy metabolism. Moreover, our metabolomics data showing the activation of the purine nucleotide pathway, malate-aspartate shuttle, as well as

  20. Exacerbating effects of human parvovirus B19 NS1 on liver fibrosis in NZB/W F1 mice.

    Directory of Open Access Journals (Sweden)

    Tsai-Ching Hsu

    Full Text Available Systemic lupus erythematosus (SLE is an autoimmune disorder with unknown etiology that impacts various organs including liver. Recently, human parvovirus B19 (B19 is recognized to exacerbate SLE. However, the effects of B19 on liver in SLE are still unclear. Herein we aimed to investigate the effects of B19 on liver in NZB/W F1 mice by injecting subcutaneously with PBS, recombinant B19 NS1, VP1u or VP2, respectively. Our experimental results revealed that B19 NS1 protein significantly enhanced the TGF-β/Smad fibrotic signaling by increasing the expressions of TGF-β, Smad2/3, phosphorylated Smad2/3, Smad4 and Sp1. The consequent fibrosis-related proteins, PAI-1 and α-SMA, were also significantly induced in livers of NZB/W F1 mice receiving B19 NS1 protein. Accordingly, markedly increased collagen deposition was also observed in livers of NZB/W F1 mice receiving B19 NS1 protein. However, no significant difference was observed in livers of NZB/W F1 mice receiving B19 VP1u or VP2 as compared to the controls. These findings indicate that B19 NS1 plays a crucial role in exacerbating liver fibrosis in NZB/W F1 mice through enhancing the TGF-â/Smad fibrotic signaling.

  1. Exacerbating Effects of Human Parvovirus B19 NS1 on Liver Fibrosis in NZB/W F1 Mice

    Science.gov (United States)

    Hsu, Tsai-Ching; Tsai, Chun-Chou; Chiu, Chun-Ching; Hsu, Jeng-Dong; Tzang, Bor-Show

    2013-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder with unknown etiology that impacts various organs including liver. Recently, human parvovirus B19 (B19) is recognized to exacerbate SLE. However, the effects of B19 on liver in SLE are still unclear. Herein we aimed to investigate the effects of B19 on liver in NZB/W F1 mice by injecting subcutaneously with PBS, recombinant B19 NS1, VP1u or VP2, respectively. Our experimental results revealed that B19 NS1 protein significantly enhanced the TGF-β/Smad fibrotic signaling by increasing the expressions of TGF-β, Smad2/3, phosphorylated Smad2/3, Smad4 and Sp1. The consequent fibrosis-related proteins, PAI-1 and α-SMA, were also significantly induced in livers of NZB/W F1 mice receiving B19 NS1 protein. Accordingly, markedly increased collagen deposition was also observed in livers of NZB/W F1 mice receiving B19 NS1 protein. However, no significant difference was observed in livers of NZB/W F1 mice receiving B19 VP1u or VP2 as compared to the controls. These findings indicate that B19 NS1 plays a crucial role in exacerbating liver fibrosis in NZB/W F1 mice through enhancing the TGF-â/Smad fibrotic signaling. PMID:23840852

  2. A distinctive patchy osteomalacia characterises Phospho1-deficient mice.

    Science.gov (United States)

    Boyde, Alan; Staines, Katherine A; Javaheri, Behzad; Millan, Jose Luis; Pitsillides, Andrew A; Farquharson, Colin

    2017-08-01

    The phosphatase PHOSPHO1 is involved in the initiation of biomineralisation. Bones in Phospho1 knockout (KO) mice show histological osteomalacia with frequent bowing of long bones and spontaneous fractures: they contain less mineral, with smaller mineral crystals. However, the consequences of Phospho1 ablation on the microscale structure of bone are not yet fully elucidated. Tibias and femurs obtained from wild-type and Phospho1 null (KO) mice (25-32 weeks old) were embedded in PMMA, cut and polished to produce near longitudinal sections. Block surfaces were studied using 20 kV backscattered-electron (BSE) imaging, and again after iodine staining to reveal non-mineralised matrix and cellular components. For 3D characterisation, we used X-ray micro-tomography. Bones opened with carbide milling tools to expose endosteal surfaces were macerated using an alkaline bacterial pronase enzyme detergent, 5% hydrogen peroxide and 7% sodium hypochlorite solutions to produce 3D surfaces for study with 3D BSE scanning electron microscopy (SEM). Extensive regions of both compact cortical and trabecular bone matrix in Phospho1 KO mice contained no significant mineral and/or showed arrested mineralisation fronts, characterised by a failure in the fusion of the calcospherite-like, separately mineralising, individual micro-volumes within bone. Osteoclastic resorption of the uncalcified matrix in Phospho1 KO mice was attenuated compared with surrounding normally mineralised bone. The extent and position of this aberrant biomineralisation varied considerably between animals, contralateral limbs and anatomical sites. The most frequent manifestation lay, however, in the nearly complete failure of mineralisation in the bone surrounding the numerous transverse blood vessel canals in the cortices. In conclusion, SEM disclosed defective mineralising fronts and extensive patchy osteomalacia, which has previously not been recognised. These data further confirm the role of this phosphatase

  3. Angiotensin-(1-7)/Mas axis modulates fear memory and extinction in mice.

    Science.gov (United States)

    Lazaroni, Thiago Luiz do Nascimento; Bastos, Cristiane Perácio; Moraes, Márcio Flávio Dutra; Santos, Robson Souza; Pereira, Grace Schenatto

    2016-01-01

    Inappropriate defense-alerting reaction to fear is a common feature of neuropsychiatric diseases. Therefore, impairments in brain circuits, as well as in molecular pathways underlying the neurovegetative adjustments to fear may play an essential role on developing neuropsychiatric disorders. Here we tested the hypothesis that interfering with angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis homeostasis, which appears to be essential to arterial pressure control, would affect fear memory and extinction. Mas knockout (MasKO) mice, in FVB/N background, showed normal cued fear memory and extinction, but increased freezing in response to context. Next, as FVB/N has poor performance in contextual fear memory, we tested MasKO in mixed 129xC57BL/6 background. MasKO mice behaved similarly to wild-type (WT), but memory extinction was slower in contextual fear conditioning to a weak protocol (1CS/US). In addition, delayed extinction in MasKO mice was even more pronounced after a stronger protocol (3CS/US). We showed previously that Angiotensin II receptor AT1 antagonist, losantan, rescued object recognition memory deficit in MasKO mice. Here, losartan was also effective. Memory extinction was accelerated in MasKO mice after treatment with losartan. In conclusion, we showed for the first time that Ang-(1-7)/Mas axis may modulate fear memory extinction. Furthermore, we suggest MasKO mice as an animal model to study post-traumatic stress disorder (PTSD). Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Deletion of circadian gene Per1 alleviates acute ethanol-induced hepatotoxicity in mice

    International Nuclear Information System (INIS)

    Wang, Tao; Yang, Ping; Zhan, Yibei; Xia, Lin; Hua, Zichun; Zhang, Jianfa

    2013-01-01

    The severity of ethanol-induced liver injury is associated with oxidative stress and lipid accumulation in the liver. Core circadian clock is known to mediate antioxidative enzyme activity and lipid metabolism. However, the link between circadian clock and ethanol-induced hepatotoxicity remains unclear. Here we showed that extents of acute ethanol-induced liver injury and steatosis in mice exhibit circadian variations consistent with hepatic expression of Period (Per) genes. Mice lacking clock gene Per1 displayed less susceptible to ethanol-induced liver injury, as evidenced by lower serum transaminase activity and less severe histopathological changes. Ethanol-induced lipid peroxidation was alleviated in Per1−/− mice. However, Per1 deletion had no effect on antioxidants depletion caused by ethanol administration. Ethanol-induced triglycerides (TG) accumulation in the serum and liver was significantly decreased in Per1−/− mice compared with that in wild-type (WT) mice. Analysis of gene expression in the liver revealed peroxisome proliferators activated receptor-gamma (PPARγ) and its target genes related to TG synthesis are remarkably down-regulated in Per1−/− mice. HepG2 cells were treated with ethanol at 150 mM for 3 days. Per1 overexpression augmented lipid accumulation after treatment with ethanol in HepG2 cells, but had no effect on ethanol-induced oxidative stress. Expression of genes related to lipogenesis, including PPARγ and its target genes, was up-regulated in cells overexpressing Per1. In conclusion, these results indicated that circadian rhythms of ethanol-induced hepatotoxicity are controlled by clock gene Per1, and deletion of Per1 protected mice from ethanol-induced liver injury by decreasing hepatic lipid accumulation

  5. Strategies to rescue the consequences of inducible arginase-1 deficiency in mice.

    Directory of Open Access Journals (Sweden)

    Laurel L Ballantyne

    Full Text Available Arginase-1 catalyzes the conversion of arginine to ornithine and urea, which is the final step of the urea cycle used to remove excess ammonia from the body. Arginase-1 deficiency leads to hyperargininemia in mice and man with severe lethal consequences in the former and progressive neurological impairment to varying degrees in the latter. In a tamoxifen-induced arginase-1 deficient mouse model, mice succumb to the enzyme deficiency within 2 weeks after inducing the knockout and retain <2 % enzyme in the liver. Standard clinical care regimens for arginase-1 deficiency (low-protein diet, the nitrogen-scavenging drug sodium phenylbutyrate, ornithine supplementation either failed to extend lifespan (ornithine or only minimally prolonged lifespan (maximum 8 days with low-protein diet and drug. A conditional, tamoxifen-inducible arginase-1 transgenic mouse strain expressing the enzyme from the Rosa26 locus modestly extended lifespan of neonatal mice, but not that of 4-week old mice, when crossed to the inducible arginase-1 knockout mouse strain. Delivery of an arginase-1/enhanced green fluorescent fusion construct by adeno-associated viral delivery (rh10 serotype with a strong cytomegalovirus-chicken β-actin hybrid promoter rescued about 30% of male mice with lifespan prolongation to at least 6 months, extensive hepatic expression and restoration of significant enzyme activity in liver. In contrast, a vector of the AAV8 serotype driven by the thyroxine-binding globulin promoter led to weaker liver expression and did not rescue arginase-1 deficient mice to any great extent. Since the induced arginase-1 deficient mouse model displays a much more severe phenotype when compared to human arginase-1 deficiency, these studies reveal that it may be feasible with gene therapy strategies to correct the various manifestations of the disorder and they provide optimism for future clinical studies.

  6. Similar efficacy from specific and non-specific mineralocorticoid receptor antagonist treatment of muscular dystrophy mice.

    Science.gov (United States)

    Lowe, Jeovanna; Floyd, Kyle T; Rastogi, Neha; Schultz, Eric J; Chadwick, Jessica A; Swager, Sarah A; Zins, Jonathan G; Kadakia, Feni K; Smart, Suzanne; Gomez-Sanchez, Elise P; Gomez-Sanchez, Celso E; Raman, Subha V; Janssen, Paul M L; Rafael-Fortney, Jill A

    2016-01-01

    Combined treatment with an angiotensin-converting enzyme inhibitor and a mineralocorticoid receptor (MR) antagonist improved cardiac and skeletal muscle function and pathology in a mouse model of Duchenne muscular dystrophy. MR is present in limb and respiratory skeletal muscles and functions as a steroid hormone receptor. The goals of the current study were to compare the efficacy of the specific MR antagonist eplerenone with the non-specific MR antagonist spironolactone, both in combination with the angiotensin-converting enzyme inhibitor lisinopril. Three groups of n=18 dystrophin-deficient, utrophin-haploinsufficient male mice were given chow containing: lisinopril plus spironolactone, lisinopril plus eplerenone, or no drug, from four to 20 weeks-of-age. Eighteen C57BL/10 male mice were used as wild-type controls. In vivo measurements included cardiac magnetic resonance imaging, conscious electrocardiography, and grip strength. From each mouse in the study, diaphragm, extensor digitorum longus , and cardiac papillary muscle force was measured ex vivo , followed by histological quantification of muscle damage in heart, diaphragm, quadriceps, and abdominal muscles. MR protein levels were also verified in treated muscles. Treatment with specific and non-specific MR antagonists did not result in any adverse effects to dystrophic skeletal muscles or heart. Both treatments resulted in similar functional and pathological improvements across a wide array of parameters. MR protein levels were not reduced by treatment. These data suggest that spironolactone and eplerenone show similar effects in dystrophic mice and support the clinical development of MR antagonists for treating skeletal muscles in Duchenne muscular dystrophy.

  7. Prohormone convertase 2 activity is increased in the hippocampus of Wfs1 knockout mice

    Directory of Open Access Journals (Sweden)

    Karin eTein

    2015-08-01

    Full Text Available BackgroundMutations in WFS1 gene cause Wolfram syndrome, which is a rare autosomal recessive disorder, characterized by diabetes insipidus, diabetes mellitus, optic nerve atrophy and deafness (DIDMOAD. The WFS1 gene product wolframin is located in the endoplasmic reticulum. Mice lacking this gene exhibit disturbances in the processing and secretion of peptides, such as vasopressin and insulin. In the brain, high levels of the wolframin protein have been observed in the hippocampus, amygdala and limbic structures. The aim of this study was to investigate the effect of Wfs1 knockout on peptide processing in mouse hippocampus. A peptidomic approach was used to characterize individual peptides in the hippocampus of wild-type and Wfs1 knockout mice. ResultsWe identified 126 peptides in hippocampal extracts and the levels of 10 peptides differed between Wfs1 KO and wild-type mice at P<0.05. The peptide with the largest alteration was little-LEN, which level was 25 times higher in the hippocampus of Wfs1 KO mice compared to wild-type mice. Processing (cleavage of little-LEN from the Pcsk1n gene product proSAAS involves prohormone convertase 2 (PC2. Thus, PC2 activity was measured in extracts prepared from the hippocampus of Wfs1 knockout mice. The activity of PC2 in Wfs1 mutant mice was significantly higher (149.9±2.3%, p<0.0001, n=8 than in wild-type mice (100.0±7.0%, n=8. However, Western blot analysis showed that protein levels of 7B2, proPC2 and PC2 were same in both groups, and so were gene expression levels.ConclusionsProcessing of proSAAS is altered in the hippocampus of Wfs1-KO mice, which is caused by increased activity of PC2. Increased activity of PC2 in Wfs1 knockout mice is not caused by alteration in the levels of PC2 protein. Our results suggest a functional link between Wfs1 and PC2. Thus, the detailed molecular mechanism of the role of Wfs1 in the regulation of PC2 activity needs further investigation.

  8. Experimental transmission of AA amyloidosis by injecting the AA amyloid protein into interleukin-1 receptor antagonist knockout (IL-1raKO) mice.

    Science.gov (United States)

    Watanabe, K; Uchida, K; Chambers, J K; Tei, M; Shoji, A; Ushio, N; Nakayama, H

    2015-05-01

    The incidence of AA amyloidosis is high in humans with rheumatoid arthritis and several animal species, including cats and cattle with prolonged inflammation. AA amyloidosis can be experimentally induced in mice using severe inflammatory stimuli and a coinjection of AA amyloid; however, difficulties have been associated with transmitting AA amyloidosis to a different animal species, and this has been attributed to the "species barrier." The interleukin-1 receptor antagonist knockout (IL-1raKO) mouse, a rodent model of human rheumatoid arthritis, has been used in the transmission of AA amyloid. When IL-1raKO and BALB/c mice were intraperitoneally injected with mouse AA amyloid together with a subcutaneous pretreatment of 2% AgNO3, all mice from both strains that were injected with crude or purified murine AA amyloid developed AA amyloidosis. However, the amyloid index, which was determined by the intensity of AA amyloid deposition, was significantly higher in IL-1raKO mice than in BALB/c mice. When IL-1raKO and BALB/c mice were injected with crude or purified bovine AA amyloid together with the pretreatment, 83% (5/6 cases) and 38% (3/8 cases) of IL-1raKO mice and 17% (1/6 cases) and 0% (0/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. Similarly, when IL-1raKO and BALB/c mice were injected with crude or purified feline AA amyloid, 33% (2/6 cases) and 88% (7/8 cases) of IL-1raKO mice and 0% (0/6 cases) and 29% (2/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. These results indicated that IL-1raKO mice are a useful animal model for investigating AA amyloidogenesis. © The Author(s) 2014.

  9. Lgl1 Is Required for Olfaction and Development of Olfactory Bulb in Mice

    Science.gov (United States)

    Li, Zhenzu; Zhang, Tingting; Lin, Zhuchun; Hou, Congzhe; Zhang, Jian; Men, Yuqin; Li, Huashun

    2016-01-01

    Lethal giant larvae 1 (Lgl1) was initially identified as a tumor suppressor in Drosophila and functioned as a key regulator of epithelial polarity and asymmetric cell division. In this study, we generated Lgl1 conditional knockout mice mediated by Pax2-Cre, which is expressed in olfactory bulb (OB). Next, we examined the effects of Lgl1 loss in the OB. First, we determined the expression patterns of Lgl1 in the neurogenic regions of the embryonic dorsal region of the LGE (dLGE) and postnatal OB. Furthermore, the Lgl1 conditional mutants exhibited abnormal morphological characteristics of the OB. Our behavioral analysis exhibited greatly impaired olfaction in Lgl1 mutant mice. To elucidate the possible mechanisms of impaired olfaction in Lgl1 mutant mice, we investigated the development of the OB. Interestingly, reduced thickness of the MCL and decreased density of mitral cells (MCs) were observed in Lgl1 mutant mice. Additionally, we observed a dramatic loss in SP8+ interneurons (e.g. calretinin and GABAergic/non-dopaminergic interneurons) in the GL of the OB. Our results demonstrate that Lgl1 is required for the development of the OB and the deletion of Lgl1 results in impaired olfaction in mice. PMID:27603780

  10. Novel molecular changes induced by Nrg1 hypomorphism and Nrg1-cannabinoid interaction in adolescence: a hippocampal proteomic study in mice.

    Directory of Open Access Journals (Sweden)

    Jarrah R Spencer

    2013-02-01

    Full Text Available Neuregulin 1 (NRG1 is linked to an increased risk of developing schizophrenia and cannabis dependence. Mice that are hypomorphic for Nrg1 (Nrg1 HET mice display schizophrenia-relevant behavioural phenotypes and aberrant expression of serotonin and glutamate receptors. Nrg1 HET mice also display idiosyncratic responses to the main psychoactive constituent of cannabis, Δ9-tetrahydrocannabinol (THC. To gain traction on the molecular pathways disrupted by Nrg1 hypomorphism and Nrg1-cannabinoid interactions we conducted a proteomic study. Adolescent wildtype (WT and Nrg1 HET mice were exposed to repeated injections of vehicle or THC and their hippocampi were submitted to 2D gel proteomics. Comparison of WT and Nrg1 HET mice identified proteins linked to molecular changes in schizophrenia that have not been previously associated with Nrg1. These proteins are involved in vesicular release of neurotransmitters such as SNARE proteins; enzymes impacting serotonergic neurotransmission, and; proteins affecting growth factor expression. Nrg1 HET mice treated with THC expressed a distinct protein expression signature compared to WT mice. Replicating prior findings, THC caused proteomic changes in WT mice suggestive of greater oxidative stress and neurodegeneration. We have previously observed that THC selectively increased hippocampal NMDA receptor binding of adolescent Nrg1 HET mice. Here we observed outcomes consistent with heightened NMDA-mediated glutamatergic neurotransmission. This included differential expression of proteins involved in NMDA receptor trafficking to the synaptic membrane; lipid raft stabilization of synaptic NMDA receptors; and homeostatic responses to dampen excitotoxicity. These findings uncover for the first time novel proteins altered in response to Nrg1 hypomorphism and Nrg1-cannabinoid interactions that improves our molecular understanding of Nrg1 signaling and Nrg1-mediated genetic vulnerability to the neurobehavioural effects

  11. Genetic Screens in Yeast to Identify BRCA1 Modifiers

    National Research Council Canada - National Science Library

    Plon, Sharon E

    2005-01-01

    .... The yeast RAD9 protein has similar functions and sequence motifs as BRCA1 and we proposed to identify haploinsufficient mutations at a second locus that alters the chromosome loss rate of our rad9-/- diploid strains...

  12. Cyclooxygenase-2 mediates the febrile response of mice to interleukin-1beta.

    Science.gov (United States)

    Li, S; Ballou, L R; Morham, S G; Blatteis, C M

    2001-08-10

    Various lines of evidence have implicated cyclooxygenase (COX)-2 as a modulator of the fever induced by the exogenous pyrogen lipopolysaccharide (LPS). Thus, treatment with specific inhibitors of COX-2 suppresses the febrile response without affecting basal body (core) temperature (T(c)). Furthermore, COX-2 gene-ablated mice are unable to develop a febrile response to intraperitoneal (i.p.) LPS, whereas their COX-1-deficient counterparts produce fevers not different from their wild-type (WT) controls. To extend the apparently critical role of COX-2 for LPS-induced fevers to fevers produced by endogenous pyrogens, we studied the thermal responses of COX-1- and COX-2 congenitally deficient mice to i.p. and intracerebroventricular (i.c.v.) injections of recombinant murine (rm) interleukin (IL)-1beta. We also assessed the effects of one selective COX-1 inhibitor, SC-560, and two selective COX-2 inhibitors, nimesulide (NIM) and dimethylfuranone (DFU), on the febrile responses of WT and COX-1(-/-) mice to LPS and rmIL-1beta, i.p. Finally, we verified the integrity of the animals' responses to PGE2, i.c.v. I.p. and i.c.v. rmIL-1beta induced similar fevers in WT and COX-1 knockout mice, but provoked no rise in the T(c)s of COX-2 null mutants. The fever produced in WT mice by i.p. LPS was not affected by SC-560, but it was attenuated and abolished by NIM and DFU, respectively, while that caused by i.p. rmIL-1beta was converted into a T(c) fall by DFU. There were no differences in the responses to i.c.v. PGE2 among the WT and COX knockout mice. These results, therefore, further support the notion that the production of PGE2 in response to pyrogens is critically dependent on COX-2 expression.

  13. Niacin and biosynthesis of PGD₂ by platelet COX-1 in mice and humans

    DEFF Research Database (Denmark)

    Song, Wen-Liang; Stubbe, Jane; Ricciotti, Emanuela

    2012-01-01

    during platelet activation in humans and, although vascular expression of DP1 is conserved between humans and mice, platelet DP1 is not present in mice. Despite this, DP1 deletion in mice augmented aneurysm formation and the hypertensive response to Ang II and accelerated atherogenesis and thrombogenesis....... Furthermore, COX inhibitors in humans, as well as platelet depletion, COX-1 knockdown, and COX-2 deletion in mice, revealed that niacin evoked platelet COX-1-derived PGD₂ biosynthesis. Finally, ADP-induced spreading on fibrinogen was augmented by niacin in washed human platelets, coincident with increased...... thromboxane (Tx) formation. However, in platelet-rich plasma, where formation of both Tx and PGD₂ was increased, spreading was not as pronounced and was inhibited by DP1 activation. Thus, PGD₂, like PGI₂, may function as a homeostatic response to thrombogenic and hypertensive stimuli and may have particular...

  14. Prolonged action potential duration in cardiac ablation of PDK1 mice.

    Science.gov (United States)

    Han, Zhonglin; Jiang, Yu; Yang, Zhongzhou; Cao, Kejiang; Wang, Dao W

    2015-01-01

    The involvement of the AGC protein kinase family in regulating arrhythmia has drawn considerable attention, but the underlying mechanisms are still not clear. The aim of this study is to explore the role of 3-phosphoinositide-dependent protein kinase-1 (PDK1), one of upstream protein kinases of the AGC protein kinase family, in the pathogenesis of dysregulated electrophysiological basis. PDK1(F/F) αMHC-Cre mice and PDK1(F/F) mice were divided into experiment group and control group. Using patch clamping technology, we explored action potential duration in both groups, and investigated the functions of transient outward potassium channel and L-type Ca(2+) channel to explain the abnormal action potential duration. Significant prolongation action potential duration was found in mice with PDK1 deletion. Further, the peak current of transient outward potassium current and L-type Ca(2+) current were decreased by 84% and 49% respectively. In addition, dysregulation of channel kinetics lead to action potential duration prolongation further. In conclusion, we have demonstrated that PDK1 participates in action potential prolongation in cardiac ablation of PDK1 mice. This effect is likely to be mediated largely through downregulation of transient outward potassium current. These findings indicate the modulation of the PDK1 pathway could provide a new mechanism for abnormal electrophysiological basis.

  15. PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice

    Science.gov (United States)

    Banno, Ryoichi; Zimmer, Derek; De Jonghe, Bart C.; Atienza, Marybless; Rak, Kimberly; Yang, Wentian; Bence, Kendra K.

    2010-01-01

    Protein tyrosine phosphatase 1B (PTP1B) and SH2 domain–containing protein tyrosine phosphatase–2 (SHP2) have been shown in mice to regulate metabolism via the central nervous system, but the specific neurons mediating these effects are unknown. Here, we have shown that proopiomelanocortin (POMC) neuron–specific deficiency in PTP1B or SHP2 in mice results in reciprocal effects on weight gain, adiposity, and energy balance induced by high-fat diet. Mice with POMC neuron–specific deletion of the gene encoding PTP1B (referred to herein as POMC-Ptp1b–/– mice) had reduced adiposity, improved leptin sensitivity, and increased energy expenditure compared with wild-type mice, whereas mice with POMC neuron–specific deletion of the gene encoding SHP2 (referred to herein as POMC-Shp2–/– mice) had elevated adiposity, decreased leptin sensitivity, and reduced energy expenditure. POMC-Ptp1b–/– mice showed substantially improved glucose homeostasis on a high-fat diet, and hyperinsulinemic-euglycemic clamp studies revealed that insulin sensitivity in these mice was improved on a standard chow diet in the absence of any weight difference. In contrast, POMC-Shp2–/– mice displayed impaired glucose tolerance only secondary to their increased weight gain. Interestingly, hypothalamic Pomc mRNA and α–melanocyte-stimulating hormone (αMSH) peptide levels were markedly reduced in POMC-Shp2–/– mice. These studies implicate PTP1B and SHP2 as important components of POMC neuron regulation of energy balance and point to what we believe to be a novel role for SHP2 in the normal function of the melanocortin system. PMID:20160350

  16. Familial gigantism caused by an NSD1 mutation.

    NARCIS (Netherlands)

    Haelst, M.M. van; Hoogeboom, J.J.; Baujat, G.; Bruggenwirth, H.T.; Laar, I. van de; Coleman, K.; Rahman, N.; Niermeijer, M.F.; Drop, S.L.; Scambler, P.J.

    2005-01-01

    A three-generation family with autosomal dominant segregation of a novel NSD1 mutation (6605G --> A, resulting in Cys2202Tyr) is reported. Haploinsufficiency of NSD1 has been identified as the major cause of Sotos syndrome. The overgrowth condition (MIM 117550) is characterized by facial anomalies,

  17. Progression of Hepatic Adenoma to Carcinoma in Ogg1 Mutant Mice Induced by Phenobarbital

    Directory of Open Access Journals (Sweden)

    Anna Kakehashi

    2017-01-01

    Full Text Available The carcinogenic potential of phenobarbital (PB was assessed in a mouse line carrying a mutant Mmh allele of the Mmh/Ogg1 gene encoding the enzyme oxoguanine DNA glycosylase (Ogg1 responsible for the repair of 8-hydroxy-2′-deoxyguanosine (8-OHdG. Mmh homozygous mutant (Ogg1−/− and wild-type (Ogg1+/+ male and female, 10-week-old, mice were treated with 500 ppm PB in diet for 78 weeks. Hepatocellular carcinomas (HCCs were found in PB-treated Ogg1−/− mice, while Ogg1+/+ animals developed only hepatocellular adenomas (HCAs at the same rate. This was coordinated with PB-induced significant elevation of 8-OHdG formation in DNA and cell proliferation in adjacent liver of Ogg1−/− mice. Proteome analysis predicted activation of transcriptional factor Nrf2 in the livers and HCAs of PB-administered Ogg1+/+ mice; however, its activation was insufficient or absent in the livers and HCCs of Ogg1−/− mice, respectively. Significant elevation of phase I and II metabolizing enzymes was demonstrated in both Ogg1−/− and Ogg1+/+ animals. Treatment of Ogg1−/− mice with PB resulted in significant elevation of cell proliferation in the liver. These results indicate that PB induced progression from HCA to HCC in Ogg1−/− mice, due to persistent accumulation of DNA oxidative base modifications and suppression of Nrf2-mediated oxidative stress response, resulting in significant elevation of cell proliferation.

  18. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M. [Argonne National Lab., IL (United States); Libertin, C.R. [Loyola Univ., Maywood, IL (United States)

    1992-11-01

    Mice recessive for the autosomal gene ``wasted`` (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{sm_bullet} mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/{sm_bullet} and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  19. Cardiomyocyte specific deletion of Crif1 causes mitochondrial cardiomyopathy in mice.

    Directory of Open Access Journals (Sweden)

    Juhee Shin

    Full Text Available Mitochondria are key organelles dedicated to energy production. Crif1, which interacts with the large subunit of the mitochondrial ribosome, is indispensable for the mitochondrial translation and membrane insertion of respiratory subunits. To explore the physiological function of Crif1 in the heart, Crif1(f/f mice were crossed with Myh6-cre/Esr1 transgenic mice, which harbor cardiomyocyte-specific Cre activity in a tamoxifen-dependent manner. The tamoxifen injections were given at six weeks postnatal, and the mutant mice survived only five months due to hypertrophic heart failure. In the mutant cardiac muscles, mitochondrial mass dramatically increased, while the inner structure was altered with lack of cristae. Mutant cardiac muscles showed decreased rates of oxygen consumption and ATP production, suggesting that Crif1 plays a critical role in the maintenance of both mitochondrial structure and respiration in cardiac muscles.

  20. Expansion of B-1a cells with germline heavy chain sequence in lupus mice

    Directory of Open Access Journals (Sweden)

    Nichol E Holodick

    2016-03-01

    Full Text Available B6.Sle1.Sle2.Sle3 (B6.TC lupus-prone mice carrying the NZB allele of Cdkn2c, encoding for the cyclin-dependent kinase inhibitor P18INK4, accumulate B-1a cells due to a higher rate of proliferative self-renewal. However, it is unclear whether this affects primarily early appearing B-1a cells of fetal origin or later appearing B-1a cells that emerge from bone marrow. B-1a cells are the major source of natural autoantibodies, and it has been shown that their protective nature is associated with a germline-like sequence, which is characterized by few N-nucleotide insertions and a repertoire skewed towards rearrangements predominated during fetal life, VH11 and VH12. To determine the nature of B-1a cells expanded in B6.TC mice, we amplified immunoglobulin genes by PCR from single cells in mice. Sequencing showed a significantly higher proportion of B-1a cell antibodies display fewer N-additions in B6.TC mice than in B6 control mice. Following this lower number of N-insertions within the CDR-H3 region, the B6.TC B-1a cells display shorter CDR-H3 length than B6 B-1a cells. The absence of N-additions is a surrogate for fetal origin, as TdT expression starts after birth in mice. Therefore, our results suggest that the B-1a cell population is not only expanded in autoimmune B6.TC mice but also qualitatively different with the majority of cells from fetal origin. Accordingly, our sequencing results also demonstrated overuse of VH11 and VH12 in autoimmune B6.TC mice as compared to B6 controls. These results suggest that the development of lupus autoantibodies in these mice is coupled with skewing of the B-1a cell repertoire and possible retention of protective natural antibodies.

  1. [Sulfatide-loaded CD1d tetramer to detect typeII NKT cells in mice].

    Science.gov (United States)

    Zhang, Gu-qin; Nie, Han-xiang; Yang, Jiong; Yu, Hong-ying

    2012-07-01

    To create a method of detecting typeII natural killer T (NKT) cells of mice. Biotinylated mouse CD1d monomers were mixed with sulfatide at a molar ratio of 1:3 (protein:lipid) and incubated at room temperature overnight, and then 80 μg of streptavidin-PE was added into 200 μg of the CD1d-sulfatide mixture and incubated at room temperature for 4 h to get sulfatide/CD1d tetramer. Flow cytometry was used to detect the percentage of typeII NKT cells in mononuclear cells (MNCs) of lung and spleen of normal mice, as well as the percentage of typeII NKT cells in spleen MNCs of mice after stimulated with sulfatide. In normal mice, the percentage of typeII NKT cells accounted for (0.875±0.096)% and (1.175±0.263)% in MNCs of spleen and lung; the percentage in spleen MNCs after activated with sulfatide was (2.75±0.603)%, which significantly increased as compared with that in normal mice (PNKT cells in mice.

  2. MCPIP1 deficiency in mice results in severe anemia related to autoimmune mechanisms.

    Directory of Open Access Journals (Sweden)

    Zhou Zhou

    Full Text Available Autoimmune gastritis is an organ-specific autoimmune disease of the stomach associated with pernicious anemia. The previous work from us and other groups identified MCPIP1 as an essential factor controlling inflammation and immune homeostasis. MCPIP1(-/- developed severe anemia. However, the mechanisms underlying this phenotype remain unclear. In the present study, we found that MCPIP1 deficiency in mice resulted in severe anemia related to autoimmune mechanisms. Although MCPIP1 deficiency did not affect erythropoiesis per se, the erythropoiesis in MCPIP1(-/- bone marrow erythroblasts was significantly attenuated due to iron and vitamin B12 (VB12 deficiency, which was mainly resulted from autoimmunity-associated gastritis and parietal cell loss. Consistently, exogenous supplement of iron and VB12 greatly improved the anemia phenotype of MCPIP1(-/- mice. Finally, we have evidence suggesting that autoimmune hemolysis may also contribute to anemia phenotype of MCPIP1(-/- mice. Taken together, our study suggests that MCPIP1 deficiency in mice leads to the development of autoimmune gastritis and pernicious anemia. Thus, MCPIP1(-/- mice may be a good mouse model for investigating the pathogenesis of pernicious anemia and testing the efficacy of some potential drugs for treatment of this disease.

  3. Effects of Aging and Oxidative Stress on Spermatozoa of Superoxide-Dismutase 1- and Catalase-Null Mice.

    Science.gov (United States)

    Selvaratnam, Johanna S; Robaire, Bernard

    2016-09-01

    Advanced paternal age is linked to complications in pregnancy and genetic diseases in offspring. Aging results in excess reactive oxygen species (ROS) and DNA damage in spermatozoa; this damage can be transmitted to progeny with detrimental consequences. Although there is a loss of antioxidants with aging, the impact on aging male germ cells of the complete absence of either catalase (CAT) or superoxide dismutase 1 (SOD1) has not been investigated. We used CAT-null (Cat(-/-)) and SOD1-null (Sod(-/-)) mice to determine whether loss of these antioxidants increases germ cell susceptibility to redox dysfunction with aging. Aging reduced fertility and the numbers of Sertoli and germ cells in all mice. Aged Sod(-/-) mice displayed an increased loss of fertility compared to aged wild-type mice. Treatment with the pro-oxidant SIN-10 increased ROS in spermatocytes of aged wild-type and Sod(-/-) mice, while aged Cat(-/-) mice were able to neutralize this ROS. The antioxidant peroxiredoxin 1 (PRDX1) increased with age in wild-type and Cat(-/-) mice but was consistently low in young and aged Sod(-/-) mice. DNA damage and repair markers (γ-H2AX and 53BP1) were reduced with aging and lower in young Sod(-/-) and Cat(-/-) mice. Colocalization of γ-H2AX and 53BP1 suggested active repair in young wild-type mice but reduced in young Cat(-/-) and in Sod(-/-) mice and with age. Oxidative DNA damage (8-oxodG) increased in young Sod(-/-) mice and with age in all mice. These studies show that aged Sod(-/-) mice display severe redox dysfunction, while wild-type and Cat(-/-) mice have compensatory mechanisms to partially alleviate oxidative stress and reduce age-related DNA damage in spermatozoa. Thus, SOD1 but not CAT is critical to the maintenance of germ cell quality with aging. © 2016 by the Society for the Study of Reproduction, Inc.

  4. Taste information derived from T1R-expressing taste cells in mice.

    Science.gov (United States)

    Yoshida, Ryusuke; Ninomiya, Yuzo

    2016-03-01

    The taste system of animals is used to detect valuable nutrients and harmful compounds in foods. In humans and mice, sweet, bitter, salty, sour and umami tastes are considered the five basic taste qualities. Sweet and umami tastes are mediated by G-protein-coupled receptors, belonging to the T1R (taste receptor type 1) family. This family consists of three members (T1R1, T1R2 and T1R3). They function as sweet or umami taste receptors by forming heterodimeric complexes, T1R1+T1R3 (umami) or T1R2+T1R3 (sweet). Receptors for each of the basic tastes are thought to be expressed exclusively in taste bud cells. Sweet (T1R2+T1R3-expressing) taste cells were thought to be segregated from umami (T1R1+T1R3-expressing) taste cells in taste buds. However, recent studies have revealed that a significant portion of taste cells in mice expressed all T1R subunits and responded to both sweet and umami compounds. This suggests that sweet and umami taste cells may not be segregated. Mice are able to discriminate between sweet and umami tastes, and both tastes contribute to behavioural preferences for sweet or umami compounds. There is growing evidence that T1R3 is also involved in behavioural avoidance of calcium tastes in mice, which implies that there may be a further population of T1R-expressing taste cells that mediate aversion to calcium taste. Therefore the simple view of detection and segregation of sweet and umami tastes by T1R-expressing taste cells, in mice, is now open to re-examination. © 2016 Authors; published by Portland Press Limited.

  5. VDR haploinsufficiency impacts body composition and skeletal acquisition in a gender-specific manner.

    Science.gov (United States)

    de Paula, Francisco J A; Dick-de-Paula, Ingrid; Bornstein, Sheila; Rostama, Bahman; Le, Phuong; Lotinun, Sutada; Baron, Roland; Rosen, Clifford J

    2011-09-01

    The vitamin D receptor (VDR) is crucial for virtually all of vitamin D's actions and is thought to be ubiquitously expressed. We hypothesized that disruption of one allele of the VDR gene would impact bone development and would have metabolic consequences. Body composition and bone mass (BMD) in VDR heterozygous (VDR HET) mice were compared to those obtained in male and female VDR KO and WT mice at 8 weeks of age. Male mice were also evaluated at 16 weeks, and bone marrow mesenchymal stem cell (MSC) differentiation was evaluated in VDR female mice. Additionally, female VDR HET and WT mice received intermittent PTH treatment or vehicle (VH) for 4 weeks. BMD was determined at baseline and after treatment. MRI was done in vivo at the end of treatment; μCT and bone histomorphometry were performed after killing the animals. VDR HET male mice had normal skeletal development until 16 weeks of age but showed significantly less gain in fat mass than WT mice. In contrast, female VDR HET mice showed decreased total-body BMD at age 8 weeks but had a normal skeletal response to PTH. MSC differentiation was also impaired in VDR HET female mice. Thus, female VDR HET mice show early impairment in bone acquisition, while male VDR HET mice exhibit a lean phenotype. Our results indicate that the VDR HET mouse is a useful model for studying the metabolic and skeletal impact of decreased vitamin D sensitivity.

  6. Large-conductance Ca2+-activated K+ channel β1-subunit knockout mice are not hypertensive

    Science.gov (United States)

    Garver, Hannah; Galligan, James J.; Fink, Gregory D.

    2011-01-01

    Large-conductance Ca2+-activated K+ (BK) channels are composed of pore-forming α-subunits and accessory β1-subunits that modulate Ca2+ sensitivity. BK channels regulate arterial myogenic tone and renal Na+ clearance/K+ reabsorption. Previous studies using indirect or short-term blood pressure measurements found that BK channel β1-subunit knockout (BK β1-KO) mice were hypertensive. We evaluated 24-h mean arterial pressure (MAP) and heart rate in BK β1-KO mice using radiotelemetry. BK β1-KO mice did not have a higher 24-h average MAP when compared with wild-type (WT) mice, although MAP was ∼10 mmHg higher at night. The dose-dependent peak declines in MAP by nifedipine were only slightly larger in BK β1-KO mice. In BK β1-KO mice, giving 1% NaCl to mice to drink for 7 days caused a transient (5 days) elevation of MAP (∼5 mmHg); MAP returned to pre-saline levels by day 6. BK β1-KO mesenteric arteries in vitro demonstrated diminished contractile responses to paxilline, increased reactivity to Bay K 8644 and norepinephrine (NE), and maintained relaxation to isoproterenol. Paxilline and Bay K 8644 did not constrict WT or BK β1-KO mesenteric veins (MV). BK β1-subunits are not expressed in MV. The results indicate that BK β1-KO mice are not hypertensive on normal or high-salt intake. BK channel deficiency increases arterial reactivity to NE and L-type Ca2+ channel function in vitro, but the L-type Ca2+ channel modulation of MAP is not altered in BK β1-KO mice. BK and L-type Ca2+ channels do not modulate murine venous tone. It appears that selective loss of BK channel function in arteries only is not sufficient to cause sustained hypertension. PMID:21131476

  7. Liver-specific rescuing of CEACAM1 reverses endothelial and cardiovascular abnormalities in male mice with null deletion of Ceacam1 gene

    Directory of Open Access Journals (Sweden)

    Lucia Russo

    2018-03-01

    Full Text Available Objective: Mice with global null mutation of Ceacam1 (Cc1−/−, display impairment of insulin clearance that causes hyperinsulinemia followed by insulin resistance, elevated hepatic de novo lipogenesis, and visceral obesity. In addition, they manifest abnormal vascular permeability and elevated blood pressure. Liver-specific rescuing of Ceacam1 reversed all of the metabolic abnormalities in Cc1−/−liver+ mice. The current study examined whether Cc1−/− male mice develop endothelial and cardiac dysfunction and whether this relates to the metabolic abnormalities caused by defective insulin extraction. Methods and results: Myography studies showed reduction of agonist-stimulated nitric oxide production in resistance arterioles in Cc1−/−, but not Cc1−/−liver+ mice. Liver-based rescuing of CEACAM1 also attenuated the abnormal endothelial adhesiveness to circulating leukocytes in parallel to reducing plasma endothelin-1 and recovering plasma nitric oxide levels. Echocardiography studies revealed increased septal wall thickness, cardiac hypertrophy and reduced cardiac performance in Cc1−/−, but not Cc1−/−xliver+ mice. Insulin signaling experiments indicated compromised IRS1/Akt/eNOS pathway leading to lower nitric oxide level, and activated Shc/MAPK pathway leading to more endothelin-1 production in the aortae and hearts of Cc1−/−, but not Cc1−/−xliver+ mice. The increase in the ratio of endothelin-1 receptor A/B indicated an imbalance in the vasomotor activity of Cc1−/− mice, which was normalized in Cc1−/−xliver+ mice. Conclusions: The data underscore a critical role for impaired CEACAM1-dependent hepatic insulin clearance pathways and resulting hyperinsulinemia and lipid accumulation in aortae and heart in regulating the cardiovascular function. Keywords: Insulin clearance, Hyperinsulinemia, Insulin resistance, Endothelial function, Cardiomyopathy

  8. Lysyl Oxidase-Like 1 Protein Deficiency Protects Mice from Adenoviral Transforming Growth Factor-β1-induced Pulmonary Fibrosis.

    Science.gov (United States)

    Bellaye, Pierre-Simon; Shimbori, Chiko; Upagupta, Chandak; Sato, Seidai; Shi, Wei; Gauldie, Jack; Ask, Kjetil; Kolb, Martin

    2018-04-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by excessive deposition of extracellular matrix (ECM) in the lung parenchyma. The abnormal ECM deposition slowly overtakes normal lung tissue, disturbing gas exchange and leading to respiratory failure and death. ECM cross-linking and subsequent stiffening is thought to be a major contributor of disease progression and also promotes the activation of transforming growth factor (TGF)-β1, one of the main profibrotic growth factors. Lysyl oxidase-like (LOXL) 1 belongs to the cross-linking enzyme family and has been shown to be up-regulated in active fibrotic regions of bleomycin-treated mice and patients with IPF. We demonstrate in this study that LOXL1-deficient mice are protected from experimental lung fibrosis induced by overexpression of TGF-β1 using adenoviral (Ad) gene transfer (AdTGF-β1). The lack of LOXL1 prevented accumulation of insoluble cross-linked collagen in the lungs, and therefore limited lung stiffness after AdTGF-β1. In addition, we applied mechanical stretch to lung slices from LOXL1 +/+ and LOXL1 -/- mice treated with AdTGF-β1. Lung stiffness (Young's modulus) of LOXL1 -/- lung slices was significantly lower compared with LOXL1 +/+ lung slices. Moreover, the release of activated TGF-β1 after mechanical stretch was significantly lower in LOXL1 -/- mice compared with LOXL1 +/+ mice after AdTGF-β1. These data support the concept that cross-linking enzyme inhibition represents an interesting therapeutic target for drug development in IPF.

  9. Attenuated stress response to acute restraint and forced swimming stress in arginine vasopressin 1b receptor subtype (Avpr1b) receptor knockout mice and wild-type mice treated with a novel Avpr1b receptor antagonist.

    Science.gov (United States)

    Roper, J A; Craighead, M; O'Carroll, A-M; Lolait, S J

    2010-11-01

    Arginine vasopressin (AVP) synthesised in the parvocellular region of the hypothalamic paraventricular nucleus and released into the pituitary portal vessels acts on the 1b receptor subtype (Avpr1b) present in anterior pituitary corticotrophs to modulate the release of adrenocorticotrophic hormone (ACTH). Corticotrophin-releasing hormone is considered the major drive behind ACTH release; however, its action is augmented synergistically by AVP. To determine the extent of vasopressinergic influence in the hypothalamic-pituitary-adrenal axis response to restraint and forced swimming stress, we compared the stress hormone levels [plasma ACTH in both stressors and corticosterone (CORT) in restraint stress only] following acute stress in mutant Avpr1b knockout (KO) mice compared to their wild-type controls following the administration of a novel Avpr1b antagonist. Restraint and forced swimming stress-induced increases in plasma ACTH were significantly diminished in mice lacking a functional Avpr1b and in wild-type mice that had been pre-treated with Avpr1b antagonist. A corresponding decrease in plasma CORT levels was also observed in acute restraint-stressed knockout male mice, and in Avpr1b-antagonist-treated male wild-type mice. By contrast, plasma CORT levels were not reduced in acutely restraint-stressed female knockout animals, or in female wild-type animals pre-treated with Avpr1b antagonist. These results demonstrate that pharmacological antagonism or inactivation of Avpr1b causes a reduction in the hypothalamic-pituitary-adrenal (HPA) axis response, particularly ACTH, to acute restraint and forced swimming stress, and show that Avpr1b knockout mice constitute a model by which to study the contribution of Avpr1b to the HPA axis response to acute stressors. © 2010 The Authors. Journal of Neuroendocrinology © 2010 Blackwell Publishing Ltd.

  10. Chronic Toxoplasma gondii in Nurr1-null heterozygous mice exacerbates elevated open field activity.

    Science.gov (United States)

    Eells, Jeffrey B; Varela-Stokes, Andrea; Guo-Ross, Shirley X; Kummari, Evangel; Smith, Holly M; Cox, Erin; Lindsay, David S

    2015-01-01

    Latent infection with Toxoplasma gondii is common in humans (approximately 30% of the global population) and is a significant risk factor for schizophrenia. Since prevalence of T. gondii infection is far greater than prevalence of schizophrenia (0.5-1%), genetic risk factors are likely also necessary to contribute to schizophrenia. To test this concept in an animal model, Nurr1-null heterozygous (+/-) mice and wild-type (+/+) mice were evaluate using an emergence test, activity in an open field and with a novel object, response to bobcat urine and prepulse inhibition of the acoustic startle response (PPI) prior to and 6 weeks after infection with T. gondii. In the emergence test, T. gondii infection significantly decreased the amount of time spent in the cylinder. Toxoplasma gondii infection significantly elevated open field activity in both +/+ and +/- mice but this increase was significantly exacerbated in +/- mice. T. gondii infection reduced PPI in male +/- mice but this was not statistically significant. Aversion to bobcat urine was abolished by T. gondii infection in +/+ mice. In female +/- mice, aversion to bobcat urine remained after T. gondii infection while the male +/- mice showed no aversion to bobcat urine. Antibody titers of infected mice were a critical variable associated with changes in open field activity, such that an inverted U shaped relationship existed between antibody titers and the percent change in open field activity with a significant increase in activity at low and medium antibody titers but no effect at high antibody titers. These data demonstrate that the Nurr1 +/- genotype predisposes mice to T. gondii-induced alterations in behaviors that involve dopamine neurotransmission and are associated with symptoms of schizophrenia. We propose that these alterations in murine behavior were due to further exacerbation of the altered dopamine neurotransmission in Nurr1 +/- mice.

  11. Chronic Toxoplasma gondii in Nurr1-null heterozygous mice exacerbates elevated open field activity.

    Directory of Open Access Journals (Sweden)

    Jeffrey B Eells

    Full Text Available Latent infection with Toxoplasma gondii is common in humans (approximately 30% of the global population and is a significant risk factor for schizophrenia. Since prevalence of T. gondii infection is far greater than prevalence of schizophrenia (0.5-1%, genetic risk factors are likely also necessary to contribute to schizophrenia. To test this concept in an animal model, Nurr1-null heterozygous (+/- mice and wild-type (+/+ mice were evaluate using an emergence test, activity in an open field and with a novel object, response to bobcat urine and prepulse inhibition of the acoustic startle response (PPI prior to and 6 weeks after infection with T. gondii. In the emergence test, T. gondii infection significantly decreased the amount of time spent in the cylinder. Toxoplasma gondii infection significantly elevated open field activity in both +/+ and +/- mice but this increase was significantly exacerbated in +/- mice. T. gondii infection reduced PPI in male +/- mice but this was not statistically significant. Aversion to bobcat urine was abolished by T. gondii infection in +/+ mice. In female +/- mice, aversion to bobcat urine remained after T. gondii infection while the male +/- mice showed no aversion to bobcat urine. Antibody titers of infected mice were a critical variable associated with changes in open field activity, such that an inverted U shaped relationship existed between antibody titers and the percent change in open field activity with a significant increase in activity at low and medium antibody titers but no effect at high antibody titers. These data demonstrate that the Nurr1 +/- genotype predisposes mice to T. gondii-induced alterations in behaviors that involve dopamine neurotransmission and are associated with symptoms of schizophrenia. We propose that these alterations in murine behavior were due to further exacerbation of the altered dopamine neurotransmission in Nurr1 +/- mice.

  12. Metabolic Effects of CX3CR1 Deficiency in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Rachana Shah

    Full Text Available The fractalkine (CX3CL1-CX3CR1 chemokine system is associated with obesity-related inflammation and type 2 diabetes, but data on effects of Cx3cr1 deficiency on metabolic pathways is contradictory. We examined male C57BL/6 Cx3cr1-/- mice on chow and high-fat diet to determine the metabolic effects of Cx3cr1 deficiency. We found no difference in body weight and fat content or feeding and energy expenditure between Cx3cr1-/- and WT mice. Cx3cr1-/- mice had reduced glucose intolerance assessed by intraperitoneal glucose tolerance tests at chow and high-fat fed states, though there was no difference in glucose-stimulated insulin values. Cx3cr1-/- mice also had improved insulin sensitivity at hyperinsulinemic-euglycemic clamp, with higher glucose infusion rate, rate of disposal, and hepatic glucose production suppression compared to WT mice. Enhanced insulin signaling in response to acute intravenous insulin injection was demonstrated in Cx3cr1-/- by increased liver protein levels of phosphorylated AKT and GSK3β proteins. There were no differences in adipose tissue macrophage populations, circulating inflammatory monocytes, adipokines, lipids, or inflammatory markers. In conclusion, we demonstrate a moderate and reproducible protective effect of Cx3cr1 deficiency on glucose intolerance and insulin resistance.

  13. Multiple sleep alterations in mice lacking cannabinoid type 1 receptors.

    Directory of Open Access Journals (Sweden)

    Alessandro Silvani

    Full Text Available Cannabinoid type 1 (CB1 receptors are highly expressed in the brain and play a role in behavior control. Endogenous cannabinoid signaling is modulated by high-fat diet (HFD. We investigated the consequences of congenital lack of CB1 receptors on sleep in mice fed standard diet (SD and HFD. CB1 cannabinoid receptor knock-out (KO and wild-type (WT mice were fed SD or HFD for 4 months (n = 9-10 per group. Mice were instrumented with electroencephalographic (EEG and electromyographic electrodes. Recordings were performed during baseline (48 hours, sleep deprivation (gentle handling, 6 hours, sleep recovery (18 hours, and after cage switch (insomnia model paradigm, 6 hours. We found multiple significant effects of genotype on sleep. In particular, KO spent more time awake and less time in non-rapid-eye-movement sleep (NREMS and rapid-eye-movement sleep (REMS than WT during the dark (active period but not during the light (rest period, enhancing the day-night variation of wake-sleep amounts. KO had slower EEG theta rhythm during REMS. REMS homeostasis after sleep deprivation was less effective in KO than in WT. Finally, KO habituated more rapidly to the arousing effect of the cage-switch test than WT. We did not find any significant effects of diet or of diet x genotype interaction on sleep. The occurrence of multiple sleep alterations in KO indicates important roles of CB1 cannabinoid receptors in limiting arousal during the active period of the day, in sleep regulation, and in sleep EEG in mice.

  14. Deletion of Protein Tyrosine Phosphatase 1B (PTP1B Enhances Endothelial Cyclooxygenase 2 Expression and Protects Mice from Type 1 Diabetes-Induced Endothelial Dysfunction.

    Directory of Open Access Journals (Sweden)

    David J Herren

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B dephosphorylates receptors tyrosine kinase and acts as a molecular brake on insulin signaling pathway. Conditions of metabolic dysfunction increase PTP1B, when deletion of PTP1B protects against metabolic disorders by increasing insulin signaling. Although vascular insulin signaling contributes to the control of glucose disposal, little is known regarding the direct role of PTP1B in the control of endothelial function. We hypothesized that metabolic dysfunctions increase PTP1B expression in endothelial cells and that PTP1B deletion prevents endothelial dysfunction in situation of diminished insulin secretion. Type I diabetes (T1DM was induced in wild-type (WT and PTP1B-deficient mice (KO with streptozotocin (STZ injection. After 28 days of T1DM, KO mice exhibited a similar reduction in body weight and plasma insulin levels and a comparable increase in glycemia (WT: 384 ± 20 vs. Ko: 432 ± 29 mg/dL, cholesterol and triglycerides, as WT mice. T1DM increased PTP1B expression and impaired endothelial NO-dependent relaxation, in mouse aorta. PTP1B deletion did not affect baseline endothelial function, but preserved endothelium-dependent relaxation, in T1DM mice. NO synthase inhibition with L-NAME abolished endothelial relaxation in control and T1DM WT mice, whereas L-NAME and the cyclooxygenases inhibitor indomethacin were required to abolish endothelium relaxation in T1DM KO mice. PTP1B deletion increased COX-2 expression and PGI2 levels, in mouse aorta and plasma respectively, in T1DM mice. In parallel, simulation of diabetic conditions increased PTP1B expression and knockdown of PTP1B increased COX-2 but not COX-1 expression, in primary human aortic endothelial cells. Taken together these data indicate that deletion of PTP1B protected endothelial function by compensating the reduction in NO bioavailability by increasing COX-2-mediated release of the vasodilator prostanoid PGI2, in T1DM mice.

  15. Sex-dependent novelty response in neurexin-1α mutant mice.

    Directory of Open Access Journals (Sweden)

    Marijke C Laarakker

    Full Text Available Neurexin-1 alpha (NRXN1α belongs to the family of cell adhesion molecules (CAMs, which are involved in the formation of neuronal networks and synapses. NRXN1α gene mutations have been identified in neuropsychiatric diseases including Schizophrenia (SCZ and Autism Spectrum Disorder (ASD. In order to get a better understanding of the pleiotropic behavioral manifestations caused by NRXN1α gene mutations, we performed a behavioral study of Nrxn1α heterozygous knock-out (+/- mice and observed increased responsiveness to novelty and accelerated habituation to novel environments compared to wild type (+/+ litter-mates. However, this effect was mainly observed in male mice, strongly suggesting that gender-specific mechanisms play an important role in Nrxn1α-induced phenotypes.

  16. Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice

    International Nuclear Information System (INIS)

    Liu, Ju; Li, Yan; Dong, Fengyun; Li, Liqun; Masuda, Takahiro; Allen, Thaddeus D.; Lobe, Corrinne G.

    2015-01-01

    Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We found that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression. - Highlights: • TSA suppresses lung tumorigenesis in Grg1 overexpressing transgenic mice. • TSA does not affect overall Grg1 protein levels in the mice and in A549 cells. • TSA reduces ErbB1 and ErbB2 expression in the mice and in A549 cells. • Lapatinib masks TSA-induced inhibition of A549 cell proliferation and migration. • TSA inhibits VEGF signaling, but not basic FGF

  17. Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ju, E-mail: ju.liu@sdu.edu.cn [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan (China); Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Li, Yan [Children' s Health Care Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014 (China); Dong, Fengyun; Li, Liqun [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan (China); Masuda, Takahiro; Allen, Thaddeus D. [Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Lobe, Corrinne G. [Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Miami Mice Research Corp., MaRS Centre, Heritage Bldg., 101 College Street, Toronto, Ontario M5G 1L7 (Canada)

    2015-08-07

    Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We found that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression. - Highlights: • TSA suppresses lung tumorigenesis in Grg1 overexpressing transgenic mice. • TSA does not affect overall Grg1 protein levels in the mice and in A549 cells. • TSA reduces ErbB1 and ErbB2 expression in the mice and in A549 cells. • Lapatinib masks TSA-induced inhibition of A549 cell proliferation and migration. • TSA inhibits VEGF signaling, but not basic FGF

  18. Corticosteroid treatment ameliorates acute lung injury induced by 2009 swine origin influenza A (H1N1 virus in mice.

    Directory of Open Access Journals (Sweden)

    Chenggang Li

    Full Text Available BACKGROUND: The 2009 influenza pandemic affected people in almost all countries in the world, especially in younger age groups. During this time, the debate over whether to use corticosteroid treatment in severe influenza H1N1 infections patients resurfaced and was disputed by clinicians. There is an urgent need for a susceptible animal model of 2009 H1N1 infection that can be used to evaluate the pathogenesis and the therapeutic effect of corticosteroid treatment during infection. METHODOLOGY/PRINCIPAL FINDINGS: We intranasally inoculated two groups of C57BL/6 and BALB/c mice (using 4- or 6-to 8-week-old mice to compare the pathogenesis of several different H1N1 strains in mice of different ages. Based on the results, a very susceptible 4-week-old C57BL/6 mouse model of Beijing 501 strain of 2009 H1N1 virus infection was established, showing significantly elevated lung edema and cytokine levels compared to controls. Using our established animal model, the cytokine production profile and lung histology were assessed at different times post-infection, revealing increased lung lesions in a time-dependent manner. In additional,the mice were also treated with dexamethasone, which significantly improved survival rate and lung lesions in infected mice compared to those in control mice. Our data showed that corticosteroid treatment ameliorated acute lung injury induced by the 2009 A/H1N1 virus in mice and suggested that corticosteroids are valid drugs for treating 2009 A/H1N1 infection. CONCLUSIONS/SIGNIFICANCE: Using the established, very susceptible 2009 Pandemic Influenza A (H1N1 mouse model, our studies indicate that corticosteroids are a potential therapeutic remedy that may address the increasing concerns over future 2009 A/H1N1 pandemics.

  19. Characterization of in vivo MRI detectable thalamic amyloid plaques from APP/PS1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Dhenain, M. [URA CEA CNRS 2210, I2BM, SHFJ, 4 Place du General Leclerc, 91401 Orsay Cedex (France); Dhenain, M.; El Tannir El Tayara, N.; Wu, T.D.; Volk, A.; Quintana, C. [U759 INSERM, Centre Universitaire, Laboratoire 112, 91405 Orsay Cedex (France); Dhenain, M.; El Tannir El Tayara, N.; Wu, T.D.; Volk, A.; Quintana, C. [Institut Curie, Centre Universitaire, Laboratoire 112, 91405 Orsay Cedex (France); Guegan, M.; Delatour, B. [Instituto de Microelectronica de Madrid-CSIC, 8, Isaac Newton, 28760 Tres Cantos, Madrid (Spain)

    2009-07-01

    Amyloid deposits are one of the hallmarks of Alzheimer's disease. Recent studies, in transgenic mice modeling Alzheimer's disease showed that, using in vivo, contrast agent-free, MRI, thalamic amyloid plaques are more easily detected than other plaques of the brain. Our study evaluated the characteristics of these thalamic plaques in a large population of APP/PS1, PS1 and C57BL/6 mice. Thalamic spots were detected in all mice but with different frequency and magnitude. Hence, the prevalence and size of the lesions were higher in APP/PS1 mice. However, even in APP/PS1 mice, thalamic spots did not occur in all the old animals. In APP/PS1 mice, spots detection was related to high iron and calcium load within amyloid plaques and thus reflects the ability of such plaque to capture large amounts of minerals. Interestingly, calcium and iron was also detected in extra-thalamic plaques but with a lower intensity. Hypointense lesions in the thalamus were not associated with the iron load in the tissue surrounding the plaques, nor with micro-hemorrhages, inflammation, or a neuro-degenerative context. (authors)

  20. Hypothalamic Dysfunction of the Thrombospondin Receptor α2δ-1 Underlies the Overeating and Obesity Triggered by Brain-Derived Neurotrophic Factor Deficiency

    Science.gov (United States)

    Cordeira, Joshua W.; Felsted, Jennifer A.; Teillon, Sarah; Daftary, Shabrine; Panessiti, Micaella; Wirth, Jena; Sena-Esteves, Miguel

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, are critical components of the neural circuitry controlling appetite and body weight. Diminished BDNF signaling in mice results in severe hyperphagia and obesity. In humans, BDNF haploinsufficiency and the functional Bdnf Val66Met polymorphism have been linked to elevated food intake and body weight. The mechanisms underlying this dysfunction are poorly defined. We demonstrate a chief role of α2δ-1, a calcium channel subunit and thrombospondin receptor, in triggering overeating in mice with central BDNF depletion. We show reduced α2δ-1 cell-surface expression in the BDNF mutant ventromedial hypothalamus (VMH), an energy balance-regulating center. This deficit contributes to the hyperphagia exhibited by BDNF mutant mice because selective inhibition of α2δ-1 by gabapentin infusion into wild-type VMH significantly increases feeding and body weight gain. Importantly, viral-mediated α2δ-1 rescue in BDNF mutant VMH significantly mitigates their hyperphagia, obesity, and liver steatosis and normalizes deficits in glucose homeostasis. Whole-cell recordings in BDNF mutant VMH neurons revealed normal calcium currents but reduced frequency of EPSCs. These results suggest calcium channel-independent effects of α2δ-1 on feeding and implicate α2δ-1–thrombospondin interactions known to facilitate excitatory synapse assembly. Our findings identify a central mechanism mediating the inhibitory effects of BDNF on feeding. They also demonstrate a novel and critical role for α2δ-1 in appetite control and suggest a mechanism underlying weight gain in humans treated with gabapentinoid drugs. PMID:24403154

  1. Morphine Tolerance and Physical Dependence Are Altered in Conditional HIV-1 Tat Transgenic Mice.

    Science.gov (United States)

    Fitting, Sylvia; Stevens, David L; Khan, Fayez A; Scoggins, Krista L; Enga, Rachel M; Beardsley, Patrick M; Knapp, Pamela E; Dewey, William L; Hauser, Kurt F

    2016-01-01

    Despite considerable evidence that chronic opiate use selectively affects the pathophysiologic consequences of human immunodeficiency virus type 1 (HIV-1) infection in the nervous system, few studies have examined whether neuro-acquired immune deficiency syndrome (neuroAIDS) might intrinsically alter the pharmacologic responses to chronic opiate exposure. This is an important matter because HIV-1 and opiate abuse are interrelated epidemics, and HIV-1 patients are often prescribed opiates as a treatment of HIV-1-related neuropathic pain. Tolerance and physical dependence are inevitable consequences of frequent and repeated administration of morphine. In the present study, mice expressing HIV-1 Tat in a doxycycline (DOX)-inducible manner [Tat(+)], their Tat(-) controls, and control C57BL/6 mice were chronically exposed to placebo or 75-mg morphine pellets to explore the effects of Tat induction on morphine tolerance and dependence. Antinociceptive tolerance and locomotor activity tolerance were assessed using tail-flick and locomotor activity assays, respectively, and physical dependence was measured with the platform-jumping assay and recording of other withdrawal signs. We found that Tat(+) mice treated with DOX [Tat(+)/DOX] developed an increased tolerance in the tail-flick assay compared with control Tat(-)/DOX and/or C57/DOX mice. Equivalent tolerance was developed in all mice when assessed by locomotor activity. Further, Tat(+)/DOX mice expressed reduced levels of physical dependence to chronic morphine exposure after a 1-mg/kg naloxone challenge compared with control Tat(-)/DOX and/or C57/DOX mice. Assuming the results seen in Tat transgenic mice can be generalized to neuroAIDS, our findings suggest that HIV-1-infected individuals may display heightened analgesic tolerance to similar doses of opiates compared with uninfected individuals and show fewer symptoms of physical dependence. Copyright © 2015 by The American Society for Pharmacology and Experimental

  2. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Stephen J Kentish

    Full Text Available Within the gastrointestinal tract vagal afferents play a role in control of food intake and satiety signalling. Activation of mechanosensitive gastric vagal afferents induces satiety. However, gastric vagal afferent responses to mechanical stretch are reduced in high fat diet mice. Transient receptor potential vanilloid 1 channels (TRPV1 are expressed in vagal afferents and knockout of TRPV1 reduces gastro-oesophageal vagal afferent responses to stretch. We aimed to determine the role of TRPV1 on gastric vagal afferent mechanosensitivity and food intake in lean and HFD-induced obese mice.TRPV1+/+ and -/- mice were fed either a standard laboratory diet or high fat diet for 20wks. Gastric emptying of a solid meal and gastric vagal afferent mechanosensitivity was determined.Gastric emptying was delayed in high fat diet mice but there was no difference between TRPV1+/+ and -/- mice on either diet. TRPV1 mRNA expression in whole nodose ganglia of TRPV1+/+ mice was similar in both dietary groups. The TRPV1 agonist N-oleoyldopamine potentiated the response of tension receptors in standard laboratory diet but not high fat diet mice. Food intake was greater in the standard laboratory diet TRPV1-/- compared to TRPV1+/+ mice. This was associated with reduced response of tension receptors to stretch in standard laboratory diet TRPV1-/- mice. Tension receptor responses to stretch were decreased in high fat diet compared to standard laboratory diet TRPV1+/+ mice; an effect not observed in TRPV1-/- mice. Disruption of TRPV1 had no effect on the response of mucosal receptors to mucosal stroking in mice on either diet.TRPV1 channels selectively modulate gastric vagal afferent tension receptor mechanosensitivity and may mediate the reduction in gastric vagal afferent mechanosensitivity in high fat diet-induced obesity.

  3. Nongenomic effects of 1α,25-dihydroxyvitamin D3 on cartilage formation deduced from comparisons between Cyp27b1 and Vdr knockout mice

    International Nuclear Information System (INIS)

    Hirota, Yoshihisa; Nakagawa, Kimie; Mimatsu, Shino; Sawada, Natsumi; Sakaki, Toshiyuki; Kubodera, Noboru; Kamao, Maya; Tsugawa, Naoko; Suhara, Yoshitomo; Okano, Toshio

    2017-01-01

    The active form of vitamin D, 1α,25-dihydroxyvitamin D 3 (1α,25D 3 ), plays an important role in the maintenance of calcium (Ca) homeostasis, bone formation, and cell proliferation and differentiation via nuclear vitamin D receptor (VDR). It is formed by the hydroxylation of vitamin D at the 1α position by 25-hydroxyvitamin D 1α-hydroxylase (CYP27B1) in the kidney. However, Cyp27b1 −/− mice, deficient in CYP27B1, and VDR-deficient mice (Vdr −/− ) have not been extensively examined, particularly in a comparative framework. To clarify the physiological significance of 1α,25D 3 and VDR, we produced Cyp27b1 −/− mice and compared their phenotypes with those of Vdr −/− mice. Cyp27b1 −/− mice exhibited hypocalcemia, growth defects, and skeletogenesis dysfunction, similar to Vdr −/− mice. However, unlike Cyp27b1 −/− mice, Vdr −/− mice developed alopecia. Cyp27b1 −/− mice exhibited cartilage mass formation and had difficulty walking on hindlimbs. Furthermore, a phenotypic analysis was performed on Cyp27b1 −/− mice provided a high Ca diet to correct for the Ca metabolic abnormality. In addition, the effects of 1α,25D 3 that are not mediated by Ca metabolic regulatory activity were investigated. Even when the blood Ca concentration was corrected, abnormalities in growth and cartilage tissue formation did not improve in Cyp27b1 −/− mice. These results suggested that 1α,25D 3 directly controls chondrocyte proliferation and differentiation. Using Cyp27b1 −/− mice produced in this study, we can analyze the physiological effects of novel vitamin D derivatives in the absence of endogenous 1α,25D 3 . Accordingly, this study provides a useful animal model for the development of novel vitamin D formulations that are effective for the treatment and prevention of osteoporosis. - Highlights: • We produced Cyp27b1 −/− mice and analyzed their phenotypes. • Vdr −/− mice exhibited alopecia and Cyp27b1 −/− mice exhibited

  4. Inhibition of urethane-induced genotoxicity and cell proliferation in CYP2E1-null mice

    International Nuclear Information System (INIS)

    Hoffler, Undi; Dixon, Darlene; Peddada, Shyamal; Ghanayem, Burhan I.

    2005-01-01

    Urethane is a multi-site animal carcinogen and was classified as 'reasonably anticipated to be a human carcinogen.' Urethane is a fermentation by-product and found at appreciable levels in alcoholic beverages and foods such as bread and cheese. Recent work in this laboratory demonstrated for the first time that CYP2E1 is the principal enzyme responsible for urethane metabolism. The current studies were undertaken to assess the relationships between CYP2E1-mediated metabolism and urethane-induced genotoxicity and cell proliferation as determined by induction of micronucleated erythrocytes (MN) and expression of Ki-67, respectively, using CYP2E1-null and wild-type mice. Urethane was administered at 0 (vehicle), 1, 10, or 100 mg/kg/day (p.o.), 5 days/week for 6 weeks. A significant dose-dependent increase in MN was observed in wild-type mice; however, a slight increase was measured in the MN-polychromatic erythrocytes in CYP2E1-null mice treated with 100 mg/kg. A significant increase in the expression of Ki-67 was detected in the livers and the lungs (terminal bronchioles, alveoli, and bronchi) of wild-type mice administered 100 mg urethane/kg in comparison to controls. In contrast, CYP2E1-null mice administered this dose exhibited negligible alterations in Ki-67 expression in the livers and lungs compared to controls. Interestingly, while Ki-67 expression in the forestomach decreased in wild-type mice, it increased in CYP2E1-null mice. Subsequent comparative metabolism studies demonstrated that total urethane-derived radioactivity in the plasma, liver, and lung was significantly higher in CYP2E1-null versus wild-type mice and un-metabolized urethane constituted greater than 83% of the radioactivity in CYP2E1-null mice. Un-metabolized urethane was not detectable in the plasma, liver, and lung of wild-type mice. In conclusion, these data demonstrated that CYP2E1-mediated metabolism of urethane, presumably via epoxide formation, is necessary for the induction of

  5. Synergistic reversal of type 1 diabetes in NOD mice with anti-CD3 and interleukin-1 blockade

    DEFF Research Database (Denmark)

    Ablamunits, Vitaly; Henegariu, Octavian; Hansen, Jakob Bondo

    2012-01-01

    (ab')(2) fragments of anti-CD3 mAb with or without IL-1 receptor antagonist (IL-1RA), or anti-IL-1ß mAb. We studied the reversal of diabetes and effects of treatment on the immune system. Mice that received a combination of anti-CD3 mAb with IL-1RA showed a more rapid rate of remission of diabetes than......Inflammatory cytokines are involved in autoimmune diabetes: among the most prominent is interleukin (IL)-1ß. We postulated that blockade of IL-1ß would modulate the effects of anti-CD3 monoclonal antibody (mAb) in treating diabetes in NOD mice. To test this, we treated hyperglycemic NOD mice with F...... arginase expression in macrophages and dendritic cells, and had delayed adoptive transfer of diabetes. After 1 month, there were increased concentrations of IgG1 isotype antibodies and reduced intrapancreatic expression of IFN-¿, IL-6, and IL-17 despite normal splenocyte cytokine secretion. These studies...

  6. Advanced age-related denervation and fiber-type grouping in skeletal muscle of SOD1 knockout mice.

    Science.gov (United States)

    Kostrominova, Tatiana Y

    2010-11-30

    In this study skeletal muscles from 1.5- and 10-month-old Cu/Zn superoxide dismutase (SOD1) homozygous knockout (JLSod1(-/-)) mice obtained from The Jackson Laboratory (C57Bl6/129SvEv background) were compared with muscles from age- and sex-matched heterozygous (JLSod1(+/-)) littermates. The results of this study were compared with previously published data on two different strains of Sod1(-/-) mice: one from Dr. Epstein's laboratory (ELSod1(-/-); C57Bl6 background) and the other from Cephalon, Inc. (CSod1(-/-); 129/CD-1 background). Grouping of succinate dehydrogenase-positive fibers characterized muscles of Sod1(-/-) mice from all three strains. The 10-month-old Sod1(-/-)C and JL mice displayed pronounced denervation of the gastrocnemius muscle, whereas the ELSod1(-/-) mice displayed a small degree of denervation at this age, but developed accelerated age-related denervation later on. Denervation markers were up-regulated in skeletal muscle of 10-month-old JLSod1(-/-) mice. This study is the first to show that metallothionein mRNA and protein expression was up-regulated in the skeletal muscle of 10-month-old JLSod1(-/-) mice and was mostly localized to the small atrophic muscle fibers. In conclusion, all three strains of Sod1(-/-) mice develop accelerated age-related muscle denervation, but the genetic background has significant influence on the progress of denervation. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. L-citrulline protects from kidney damage in type 1 diabetic mice.

    Directory of Open Access Journals (Sweden)

    Maritza J Romero

    2013-12-01

    Full Text Available Rationale. Diabetic nephropathy is a major cause of end-stage renal disease, associated with endothelial dysfunction. Chronic supplementation of L-arginine (L-arg, the substrate for endothelial nitric oxide synthase (eNOS, failed to improve vascular function. L-citrulline (L-cit supplementation not only increases L-arg synthesis, but also inhibits cytosolic arginase I (Arg I, a competitor of eNOS for the use of L-arg, in the vasculature. Aims. To investigate whether L-cit treatment reduces diabetic nephropathy in streptozotocin (STZ-induced type 1 diabetes in mice and rats and to study its effects on arginase II (ArgII function, the main renal isoform. Methods. STZ-C57BL6 mice received L-cit or vehicle supplemented in the drinking water. For comparative analysis, diabetic ArgII knock out mice and L-cit-treated STZ-rats were evaluated. Results. L-cit exerted protective effects in kidneys of STZ-rats, and markedly reduced urinary albumin excretion, tubulo-interstitial fibrosis and kidney hypertrophy, observed in untreated diabetic mice. Intriguingly, L-cit treatment was accompanied by a sustained elevation of tubular ArgII at 16 wks and significantly enhanced plasma levels of the anti-inflammatory cytokine IL-10. Diabetic ArgII knock out mice showed greater BUN levels, hypertrophy, and dilated tubules than diabetic wild type mice. Despite a marked reduction in collagen deposition in ArgII knock out mice, their albuminuria was not significantly different from diabetic wild type animals. L-cit also restored NO/ROS balance and barrier function in high glucose-treated monolayers of human glomerular endothelial cells. Moreover, L-cit also has the ability to establish an anti-inflammatory profile, characterized by increased IL-10 and reduced IL-1beta and IL-12(p70 generation in the human proximal tubular cells. Conclusions. L-cit supplementation established an anti-inflammatory profile and significantly preserved the nephron function during type 1

  8. Moderate Light-Induced Degeneration of Rod Photoreceptors with Delayed Transducin Translocation in shaker1 Mice

    Science.gov (United States)

    Zallocchi, Marisa; Wang, Wei-Min; Delimont, Duane; Cosgrove, Dominic

    2011-01-01

    Purpose. Usher syndrome is characterized by congenital deafness associated with retinitis pigmentosa (RP). Mutations in the myosin VIIa gene (MYO7A) cause a common and severe subtype of Usher syndrome (USH1B). Shaker1 mice have mutant MYO7A. They are deaf and have vestibular dysfunction but do not develop photoreceptor degeneration. The goal of this study was to investigate abnormalities of photoreceptors in shaker1 mice. Methods. Immunocytochemistry and hydroethidine-based detection of intracellular superoxide production were used. Photoreceptor cell densities under various conditions of light/dark exposures were evaluated. Results. In shaker1 mice, the rod transducin translocation is delayed because of a shift of its light activation threshold to a higher level. Even moderate light exposure can induce oxidative damage and significant rod degeneration in shaker1 mice. Shaker1 mice reared under a moderate light/dark cycle develop severe retinal degeneration in less than 6 months. Conclusions. These findings show that, contrary to earlier studies, shaker1 mice possess a robust retinal phenotype that may link to defective rod protein translocation. Importantly, USH1B animal models are likely vulnerable to light-induced photoreceptor damage, even under moderate light. PMID:21447681

  9. Sunlight triggers cutaneous lupus through a CSF-1-dependent mechanism in MRL-Fas(lpr) mice.

    Science.gov (United States)

    Menke, Julia; Hsu, Mei-Yu; Byrne, Katelyn T; Lucas, Julie A; Rabacal, Whitney A; Croker, Byron P; Zong, Xiao-Hua; Stanley, E Richard; Kelley, Vicki R

    2008-11-15

    Sunlight (UVB) triggers cutaneous lupus erythematosus (CLE) and systemic lupus through an unknown mechanism. We tested the hypothesis that UVB triggers CLE through a CSF-1-dependent, macrophage (Mø)-mediated mechanism in MRL-Fas(lpr) mice. By constructing mutant MRL-Fas(lpr) strains expressing varying levels of CSF-1 (high, intermediate, none), and use of an ex vivo gene transfer to deliver CSF-1 intradermally, we determined that CSF-1 induces CLE in lupus-susceptible MRL-Fas(lpr) mice, but not in lupus-resistant BALB/c mice. UVB incites an increase in Møs, apoptosis in the skin, and CLE in MRL-Fas(lpr), but not in CSF-1-deficient MRL-Fas(lpr) mice. Furthermore, UVB did not induce CLE in BALB/c mice. Probing further, UVB stimulates CSF-1 expression by keratinocytes leading to recruitment and activation of Møs that, in turn, release mediators, which induce apoptosis in keratinocytes. Thus, sunlight triggers a CSF-1-dependent, Mø-mediated destructive inflammation in the skin leading to CLE in lupus-susceptible MRL-Fas(lpr) but not lupus-resistant BALB/c mice. Taken together, CSF-1 is envisioned as the match and lupus susceptibility as the tinder leading to CLE.

  10. Intestine-targeted DGAT1 inhibition improves obesity and insulin resistance without skin aberrations in mice.

    Directory of Open Access Journals (Sweden)

    Naoto Tsuda

    Full Text Available OBJECTIVE: Diacylglycerol O-acyltransferase 1 (DGAT1 catalyzes the final committed step in triglyceride biosynthesis. DGAT1 null mice are known to be resistant to diet-induced obesity, and more insulin sensitive relative to the wild-type; however, the mice exhibit abnormalities in the skin. This work determined whether the intestine-targeted DGAT1 inhibitor could improve obesity and insulin resistance without skin aberrations in mice. DESIGN AND METHODS: We synthesized 2 DGAT1 inhibitors: Compound A, described in the patent application from the Japan Tobacco, and Compound B (A-922500, reported by Abbott Laboratories. Both compounds were evaluated for inhibitory activities against DGAT1 enzymes and effects on the skin in mice in vivo. Compound B was further investigated for effects on obesity and insulin resistance in diet-induced-obese (DIO mice. RESULTS: The 2 compounds comparably inhibited the DGAT1 enzyme activity and the cellular triglyceride synthesis in vitro, while they showed different distribution patterns in mice in vivo. Compound A, which distributed systemically, caused skin aberrations, while Compound B, which preferentially distributed to the intestine, improved obesity and insulin resistance without skin aberrations in DIO mice. CONCLUSIONS: Our results suggest that the intestine is the key tissue in which DGAT1 plays a role in promoting obesity and insulin resistance.

  11. The contribution of CLIP2 haploinsufficiency to the clinical manifestations of the Williams-Beuren syndrome.

    Science.gov (United States)

    Vandeweyer, Geert; Van der Aa, Nathalie; Reyniers, Edwin; Kooy, R Frank

    2012-06-08

    Williams-Beuren syndrome is a rare contiguous gene syndrome, characterized by intellectual disability, facial dysmorphisms, connective-tissue abnormalities, cardiac defects, structural brain abnormalities, and transient infantile hypercalcemia. Genes lying telomeric to RFC2, including CLIP2, GTF2I and GTF2IRD1, are currently thought to be the most likely major contributors to the typical Williams syndrome cognitive profile, characterized by a better-than-expected auditory rote-memory ability, a relative sparing of language capabilities, and a severe visual-spatial constructive impairment. Atypical deletions in the region have helped to establish genotype-phenotype correlations. So far, however, hardly any deletions affecting only a single gene in the disease region have been described. We present here two healthy siblings with a pure, hemizygous deletion of CLIP2. A putative role in the cognitive and behavioral abnormalities seen in Williams-Beuren patients has been suggested for this gene on the basis of observations in a knock-out mouse model. The presented siblings did not show any of the clinical features associated with the syndrome. Cognitive testing showed an average IQ for both and no indication of the Williams syndrome cognitive profile. This shows that CLIP2 haploinsufficiency by itself does not lead to the physical or cognitive characteristics of the Williams-Beuren syndrome, nor does it lead to the Williams syndrome cognitive profile. Although contribution of CLIP2 to the phenotype cannot be excluded when it is deleted in combination with other genes, our results support the hypothesis that GTF2IRD1 and GTF2I are the main genes causing the cognitive defects associated with Williams-Beuren syndrome. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. Immunogenicity of a Psoralen-Inactivated Dengue Virus Type 1 Vaccine Candidate in Mice

    Science.gov (United States)

    2010-02-01

    United States Naval Medical Research Center Detachment, Lima, Peru , 1 and United States Naval Medical Research Center, Silver Spring, Maryland2 R...and 28. The mice in group B mice received 10-ng vaccine doses on study clays 0, 14, and 28. The mice in group C received 10-ng vaccine doses on

  13. Establishment of HSV1 latency in immunodeficient mice facilitates efficient in vivo reactivation.

    Directory of Open Access Journals (Sweden)

    Chandran Ramakrishna

    2015-03-01

    Full Text Available The establishment of latent infections in sensory neurons is a remarkably effective immune evasion strategy that accounts for the widespread dissemination of life long Herpes Simplex Virus type 1 (HSV1 infections in humans. Periodic reactivation of latent virus results in asymptomatic shedding and transmission of HSV1 or recurrent disease that is usually mild but can be severe. An in-depth understanding of the mechanisms regulating the maintenance of latency and reactivation are essential for developing new approaches to block reactivation. However, the lack of a reliable mouse model that supports efficient in vivo reactivation (IVR resulting in production of infectious HSV1 and/or disease has hampered progress. Since HSV1 reactivation is enhanced in immunosuppressed hosts, we exploited the antiviral and immunomodulatory activities of IVIG (intravenous immunoglobulins to promote survival of latently infected immunodeficient Rag mice. Latently infected Rag mice derived by high dose (HD, but not low dose (LD, HSV1 inoculation exhibited spontaneous reactivation. Following hyperthermia stress (HS, the majority of HD inoculated mice developed HSV1 encephalitis (HSE rapidly and synchronously, whereas for LD inoculated mice reactivated HSV1 persisted only transiently in trigeminal ganglia (Tg. T cells, but not B cells, were required to suppress spontaneous reactivation in HD inoculated latently infected mice. Transfer of HSV1 memory but not OVA specific or naïve T cells prior to HS blocked IVR, revealing the utility of this powerful Rag latency model for studying immune mechanisms involved in control of reactivation. Crossing Rag mice to various knockout strains and infecting them with wild type or mutant HSV1 strains is expected to provide novel insights into the role of specific cellular and viral genes in reactivation, thereby facilitating identification of new targets with the potential to block reactivation.

  14. Deficiency of ABCA1 and ABCG1 in Macrophages Increases Inflammation and Accelerates Atherosclerosis in Mice

    Science.gov (United States)

    Westerterp, Marit; Murphy, Andrew J.; Wang, Mi; Pagler, Tamara A.; Vengrenyuk, Yuliya; Kappus, Mojdeh S.; Gorman, Darren J.; Nagareddy, Prabhakara R.; Zhu, Xuewei; Abramowicz, Sandra; Parks, John S.; Welch, Carrie; Fisher, Edward A.; Wang, Nan; Yvan-Charvet, Laurent; Tall, Alan R.

    2013-01-01

    Rationale Plasma HDL levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is due to the ability of HDL to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. Objective To assess the role of macrophage cholesterol efflux pathways in atherogenesis. Methods and Results We developed MAC-ABCDKO mice with efficient deletion of the ATP Binding Cassette Transporters A1 and G1 (ABCA1 and ABCG1) in macrophages but not in hematopoietic stem or progenitor populations. MAC-ABCDKO bone marrow (BM) was transplanted into Ldlr-/- recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared to controls. On the Western type diet (WTD), MAC-ABCDKO BM transplanted Ldlr-/- mice had disproportionate atherosclerosis, considering they also had lower VLDL/LDL cholesterol levels than controls. ABCA1/G1 deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, WTD-fed MAC-ABCDKO BM transplanted Ldlr-/- mice displayed monocytosis and neutrophilia in the absence of HSPC proliferation. Mechanistic studies revealed increased expression of M-CSF and G-CSF in splenic macrophage foam cells, driving BM monocyte and neutrophil production. Conclusion These studies 1) show that macrophage deficiency of ABCA1/G1 is pro-atherogenic likely by promoting plaque inflammation and 2) uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways. PMID:23572498

  15. A pathophysiological role of TRPV1 in ischemic injury after transient focal cerebral ischemia in mice

    Energy Technology Data Exchange (ETDEWEB)

    Miyanohara, Jun [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Shirakawa, Hisashi, E-mail: shirakaw@pharm.kyoto-u.ac.jp [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Sanpei, Kazuaki [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Nakagawa, Takayuki [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital (Japan); Kaneko, Shuji [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan)

    2015-11-20

    Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with high Ca{sup 2+} permeability, which functions as a polymodal nociceptor activated by heat, protons and several vanilloids, including capsaicin and anandamide. Although TRPV1 channels are widely distributed in the mammalian brain, their pathophysiological roles in the brain remain to be elucidated. In this study, we investigated whether TRPV1 is involved in cerebral ischemic injury using a middle cerebral artery (MCA) occlusion model in wild-type (WT) and TRPV1-knockout (KO) mice. For transient ischemia, the left MCA of C57BL/6 mice was occluded for 60 min and reperfused at 1 and 2 days after ischemia. We found that neurological and motor deficits, and infarct volumes in TRPV1-KO mice were lower than those of WT mice. Consistent with these results, intracerebroventricular injection of a TRPV1 antagonist, capsazepine (20 nmol), 30 min before the onset of ischemia attenuated neurological and motor deficits and improved infarct size without influencing cerebral blood flow in the occluded MCA territory. The protective effect of capsazepine on ischemic brain damage was not observed in TRPV1-KO mice. WT and TRPV1-KO mice did not show any differences with respect to the increased number of Iba1-positive microglia/macrophages, GFAP-positive astrocytes, and Gr1-positive neutrophils at 1 and 2 days after cerebral ischemia. Taken together, we conclude that brain TRPV1 channels are activated by ischemic stroke and cause neurological and motor deficits and infarction after brain ischemia. - Highlights: • We investigated whether TRPV1 is involved in transient ischemic brain damage in mice. • Neurological deficits and infarct volumes were lower in TRPV1-KO mice than in WT mice. • Injection of a TRPV1 antagonist, capsazepine, attenuated neurological deficits and improved infarct size. • No differences in astrocytic or microglial activation were observed between WT and TRPV1-KO mice.

  16. A pathophysiological role of TRPV1 in ischemic injury after transient focal cerebral ischemia in mice

    International Nuclear Information System (INIS)

    Miyanohara, Jun; Shirakawa, Hisashi; Sanpei, Kazuaki; Nakagawa, Takayuki; Kaneko, Shuji

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with high Ca"2"+ permeability, which functions as a polymodal nociceptor activated by heat, protons and several vanilloids, including capsaicin and anandamide. Although TRPV1 channels are widely distributed in the mammalian brain, their pathophysiological roles in the brain remain to be elucidated. In this study, we investigated whether TRPV1 is involved in cerebral ischemic injury using a middle cerebral artery (MCA) occlusion model in wild-type (WT) and TRPV1-knockout (KO) mice. For transient ischemia, the left MCA of C57BL/6 mice was occluded for 60 min and reperfused at 1 and 2 days after ischemia. We found that neurological and motor deficits, and infarct volumes in TRPV1-KO mice were lower than those of WT mice. Consistent with these results, intracerebroventricular injection of a TRPV1 antagonist, capsazepine (20 nmol), 30 min before the onset of ischemia attenuated neurological and motor deficits and improved infarct size without influencing cerebral blood flow in the occluded MCA territory. The protective effect of capsazepine on ischemic brain damage was not observed in TRPV1-KO mice. WT and TRPV1-KO mice did not show any differences with respect to the increased number of Iba1-positive microglia/macrophages, GFAP-positive astrocytes, and Gr1-positive neutrophils at 1 and 2 days after cerebral ischemia. Taken together, we conclude that brain TRPV1 channels are activated by ischemic stroke and cause neurological and motor deficits and infarction after brain ischemia. - Highlights: • We investigated whether TRPV1 is involved in transient ischemic brain damage in mice. • Neurological deficits and infarct volumes were lower in TRPV1-KO mice than in WT mice. • Injection of a TRPV1 antagonist, capsazepine, attenuated neurological deficits and improved infarct size. • No differences in astrocytic or microglial activation were observed between WT and TRPV1-KO mice.

  17. Therapeutic Efficacy of Vectored PGT121 Gene Delivery in HIV-1-Infected Humanized Mice.

    Science.gov (United States)

    Badamchi-Zadeh, Alexander; Tartaglia, Lawrence J; Abbink, Peter; Bricault, Christine A; Liu, Po-Ting; Boyd, Michael; Kirilova, Marinela; Mercado, Noe B; Nanayakkara, Ovini S; Vrbanac, Vladimir D; Tager, Andrew M; Larocca, Rafael A; Seaman, Michael S; Barouch, Dan H

    2018-04-01

    Broadly neutralizing antibodies (bNAbs) are being explored for HIV-1 prevention and cure strategies. However, administration of purified bNAbs poses challenges in resource-poor settings, where the HIV-1 disease burden is greatest. In vivo vector-based production of bNAbs represents an alternative strategy. We investigated adenovirus serotype 5 (Ad5) and adeno-associated virus serotype 1 (AAV1) vectors to deliver the HIV-1-specific bNAb PGT121 in wild-type and immunocompromised C57BL/6 mice as well as in HIV-1-infected bone marrow-liver-thymus (BLT) humanized mice. Ad5.PGT121 and AAV1.PGT121 produced functional antibody in vivo Ad5.PGT121 produced PGT121 rapidly within 6 h, whereas AAV1.PGT121 produced detectable PGT121 in serum by 72 h. Serum PGT121 levels were rapidly reduced by the generation of anti-PGT121 antibodies in immunocompetent mice but were durably maintained in immunocompromised mice. In HIV-1-infected BLT humanized mice, Ad5.PGT121 resulted in a greater reduction of viral loads than did AAV1.PGT121. Ad5.PGT121 also led to more-sustained virologic control than purified PGT121 IgG. Ad5.PGT121 afforded more rapid, robust, and durable antiviral efficacy than AAV1.PGT121 and purified PGT121 IgG in HIV-1-infected humanized mice. Further evaluation of vector delivery of HIV-1 bNAbs is warranted, although approaches to prevent the generation of antiantibody responses may also be required. IMPORTANCE Broadly neutralizing antibodies (bNAbs) are being explored for HIV-1 prevention and cure strategies, but delivery of purified antibodies may prove challenging. We investigated adenovirus serotype 5 (Ad5) and adeno-associated virus serotype 1 (AAV1) vectors to deliver the HIV-1-specific bNAb PGT121. Ad5.PGT121 afforded more rapid, robust, and durable antiviral efficacy than AAV1.PGT121 and purified PGT121 IgG in HIV-1-infected humanized mice. Copyright © 2018 Badamchi-Zadeh et al.

  18. Transgenic Expression of Dspp Partially Rescued the Long Bone Defects of Dmp1-null Mice

    Science.gov (United States)

    Jani, Priyam H.; Gibson, Monica P.; Liu, Chao; Zhang, Hua; Wang, Xiaofang; Lu, Yongbo; Qin, Chunlin

    2016-01-01

    Dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) belong to the Small Integrin-Binding Ligand N-linked Glycoprotein (SIBLING) family. In addition to the features common to all SIBLING members, DMP1 and DSPP share several unique similarities in chemical structure, proteolytic activation and tissue localization. Mutations in, or deletion of DMP1, cause autosomal recessive hypophosphatemic rickets along with dental defects; DSPP mutations or its ablation are associated with dentinogenesis imperfecta. While the roles and functional mechanisms of DMP1 in osteogenesis have been extensively studied, those of DSPP in long bones have been studied only to a limited extent. Previous studies by our group revealed that transgenic expression of Dspp completely rescued the dentin defects of Dmp1-null (Dmp1−/−) mice. In this investigation, we assessed the effects of transgenic Dspp on osteogenesis by analyzing the formation and mineralization of the long bones in Dmp1−/− mice that expresses a transgene encoding full-length DSPP driven by a 3.6-kb rat Col1a1 promoter (referred as “Dmp1−/−;Dspp-Tg mice”). We characterized the long bones of the Dmp1−/−;Dspp-Tg mice at different ages and compared them with those from Dmp1−/− and Dmp1+/− (normal control) mice. Our analyses showed that the long bones of Dmp1−/−;Dspp-Tg mice had a significant increase in cortical bone thickness, bone volume and mineral density along with a remarkable restoration of trabecular thickness compared to those of the Dmp1−/− mice. The long bones of Dmp1−/−;Dspp-Tg mice underwent a dramatic reduction in the amount of osteoid, significant improvement of the collagen fibrillar network, and better organization of the lacunocanalicular system, compared to the Dmp1−/− mice. The elevated levels of biglycan, bone sialoprotein and osteopontin in Dmp1−/− mice were also noticeably corrected by the transgenic expression of Dspp. These findings suggest that

  19. Impairment in extinction of cued fear memory in syntenin-1 knockout mice.

    Science.gov (United States)

    Talukdar, Gourango; Inoue, Ran; Yoshida, Tomoyuki; Mori, Hisashi

    2018-03-01

    Syntenin-1 is a PDZ domain-containing intracellular scaffold protein involved in exosome production, synapse formation, and synaptic plasticity. We tested whether syntenin-1 can regulate learning and memory through its effects on synaptic plasticity. Specifically, we investigated the role of syntenin-1 in contextual and cued fear conditioning and extinction of conditioned fear using syntenin-1 knockout (KO) mice. Genetic disruption of syntenin-1 had little effect on contextual and cued fear memory. However, syntenin-1 KO mice exhibited selective impairment in cued fear extinction retention. This extinction retention deficit in syntenin-1 KO mice was associated with reduced c-Fos-positive neurons in the basolateral amygdala (BLA) and infralimbic cortex (IL) after extinction training and increased c-Fos-positive neurons in the BLA after an extinction retention test. Our results suggest that syntenin-1 plays an important role in extinction of cued fear memory by modulating neuronal activity in the BLA and IL. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. 1,2,3-Trichloropropane: a multisite carcinogen in rats and mice.

    Science.gov (United States)

    Irwin, R D; Haseman, J K; Eustis, S L

    1995-05-01

    1,2,3-Trichloropropane was evaluated in 2-year toxicology and carcinogenesis studies by the National Toxicology Program. The selection of this chemical for study was based on the potential for human exposure, its positive in vitro genotoxicity, and the carcinogenicity of structurally related chemicals. During the 2-year study 1,2,3-trichloropropane was administered in corn oil by gavage 5 days per week; groups of 60 F344/N rats received 0, 3, 10, or 30 mg/kg, while groups of 60 B6C3F1 mice received 0,6,20, or 60 mg/kg. Because of reduced survival associated with the development of chemical-related neoplasms, rats that received 30 mg/kg were terminated at 65 weeks (females) or 76 weeks (males). Similarly, mice that received 60 mg/kg were terminated at 73 weeks (females) or 79 weeks (males), while groups of mice that received 20 mg/kg were terminated at 88 weeks. 1,2,3-Trichloropropane induced benign and/or malignant neoplasms at multiple sites in both rats and mice; this included increased incidences of benign and malignant neoplasms of the squamous epithelium of the oral mucosa and forestomach of male and female rats, benign neoplasms of the kidney and pancreas and benign or malignant neoplasms of the preputial gland in male rats, malignant neoplasms of the mammary gland, and benign or malignant neoplasms of the clitoral gland in female rats. In mice, 1,2,3-trichloropropane induced a low incidence of malignant neoplasms of the oral mucosa in females, high incidences of benign and malignant neoplasms of the forestomach in males and females, benign neoplasms of the liver and harderian gland of males and females, and uterine neoplasms in females.

  1. Mice lacking the conserved transcription factor Grainyhead-like 3 (Grhl3) display increased apposition of the frontal and parietal bones during embryonic development.

    Science.gov (United States)

    Goldie, Stephen J; Arhatari, Benedicta D; Anderson, Peter; Auden, Alana; Partridge, Darren D; Jane, Stephen M; Dworkin, Sebastian

    2016-10-18

    Increased apposition of the frontal and parietal bones of the skull during embryogenesis may be a risk factor for the subsequent development of premature skull fusion, or craniosynostosis. Human craniosynostosis is a prevalent, and often serious embryological and neonatal pathology. Other than known mutations in a small number of contributing genes, the aetiology of craniosynostosis is largely unknown. Therefore, the identification of novel genes which contribute to normal skull patterning, morphology and premature suture apposition is imperative, in order to fully understand the genetic regulation of cranial development. Using advanced imaging techniques and quantitative measurement, we show that genetic deletion of the highly-conserved transcription factor Grainyhead-like 3 (Grhl3) in mice (Grhl3 -/- ) leads to decreased skull size, aberrant skull morphology and premature apposition of the coronal sutures during embryogenesis. Furthermore, Grhl3 -/- mice also present with premature collagen deposition and osteoblast alignment at the sutures, and the physical interaction between the developing skull, and outermost covering of the brain (the dura mater), as well as the overlying dermis and subcutaneous tissue, appears compromised in embryos lacking Grhl3. Although Grhl3 -/- mice die at birth, we investigated skull morphology and size in adult animals lacking one Grhl3 allele (heterozygous; Grhl3 +/- ), which are viable and fertile. We found that these adult mice also present with a smaller cranial cavity, suggestive of post-natal haploinsufficiency in the context of cranial development. Our findings show that our Grhl3 mice present with increased apposition of the frontal and parietal bones, suggesting that Grhl3 may be involved in the developmental pathogenesis of craniosynostosis.

  2. Maximal Oxygen Consumption is Reduced in Aquaporin-1 Knockout Mice

    Directory of Open Access Journals (Sweden)

    Samer Al-Samir

    2016-08-01

    Full Text Available We have measured maximal oxygen consumption (V’O2,max of mice lacking one or two of the established mouse red-cell CO2 channels AQP1, AQP9 and Rhag. We intended to study whether these proteins, by acting as channels for O2, determine O2 exchange in the lung and in the periphery. We found that V’O2,max as determined by the Helox technique is reduced by ~ 16%, when AQP1 is knocked out, but not when AQP9 or Rhag are lacking. This figure holds for animals respiring normoxic as well as hypoxic gas mixtures. To see whether the reduction of V’O2,max is due to impaired O2 uptake in the lung, we measured carotid arterial O2 saturation (SO2 by pulse oximetry. Neither under normoxic (inspiratory O2 21% nor under hypoxic conditions (11% O2 is there a difference in SO2 between AQP1null and WT mice, suggesting that AQP1 is not critical for O2 uptake in the lung. The fact that the % reduction of V’O2,max is identical in normoxia and hypoxia indicates moreover that the limitation of V’O2,max is not due to an O2 diffusion problem, neither in the lung nor in the periphery. Instead, it appears likely that AQP1null animals exhibit a reduced V’O2,max due to the reduced wall thickness and muscle mass of the left ventricles of their hearts, as reported previously. We conclude that very likely the properties of the hearts of AQP1 knockout mice cause a reduced maximal cardiac output and thus cause a reduced V’O2,max, which constitutes a new phenotype of these mice.

  3. Facial nerve palsy after reactivation of herpes simplex virus type 1 in diabetic mice.

    Science.gov (United States)

    Esaki, Shinichi; Yamano, Koji; Katsumi, Sachiyo; Minakata, Toshiya; Murakami, Shingo

    2015-04-01

    Bell's palsy is highly associated with diabetes mellitus (DM). Either the reactivation of herpes simplex virus type 1 (HSV-1) or diabetic mononeuropathy has been proposed to cause the facial paralysis observed in DM patients. However, distinguishing whether the facial palsy is caused by herpetic neuritis or diabetic mononeuropathy is difficult. We previously reported that facial paralysis was aggravated in DM mice after HSV-1 inoculation of the murine auricle. In the current study, we induced HSV-1 reactivation by an auricular scratch following DM induction with streptozotocin (STZ). Controlled animal study. Diabetes mellitus was induced with streptozotocin injection in only mice that developed transient facial nerve paralysis with HSV-1. Recurrent facial palsy was induced after HSV-1 reactivation by auricular scratch. After DM induction, the number of cluster of differentiation 3 (CD3)(+) T cells decreased by 70% in the DM mice, and facial nerve palsy recurred in 13% of the DM mice. Herpes simplex virus type 1 deoxyribonucleic acid (DNA) was detected in the facial nerve of all of the DM mice with palsy, and HSV-1 capsids were found in the geniculate ganglion using electron microscopy. Herpes simplex virus type 1 DNA was also found in some of the DM mice without palsy, which suggested the subclinical reactivation of HSV-1. These results suggested that HSV-1 reactivation in the geniculate ganglion may be the main causative factor of the increased incidence of facial paralysis in DM patients. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  4. Impaired intestinal proglucagon processing in mice lacking prohormone convertase 1

    DEFF Research Database (Denmark)

    Ugleholdt, Randi; Zhu, Xiaorong; Deacon, Carolyn F

    2003-01-01

    proglucagon processing showed marked defects. Tissue proglucagon levels in null mice were elevated, and proglucagon processing to glicentin, oxyntomodulin, and glucagon-like peptide-1 and -2 (GLP-1 and GLP-2) was markedly decreased, indicating that PC1 is essential for the processing of all the intestinal...... proglucagon cleavage sites. This includes the monobasic site R(77) and, thereby, production of mature, biologically active GLP-1. We also found elevated glucagon levels, suggesting that factors other than PC1 that are capable of processing to mature glucagon are present in the secretory granules of the L cell......The neuroendocrine prohormone convertases 1 and 2 (PC1 and PC2) are expressed in endocrine intestinal L cells and pancreatic A cells, respectively, and colocalize with proglucagon in secretory granules. Mice lacking PC2 have multiple endocrinopathies and cannot process proglucagon to mature...

  5. Abnormal grooming activity in Dab1(scm) (scrambler) mutant mice.

    Science.gov (United States)

    Strazielle, C; Lefevre, A; Jacquelin, C; Lalonde, R

    2012-07-15

    Dab1(scm) mutant mice, characterized by cell ectopias and degeneration in cerebellum, hippocampus, and neocortex, were compared to non-ataxic controls for different facets of grooming caused by brief water immersions, as well as some non-grooming behaviors. Dab1(scm) mutants were strongly affected in their quantitative functional parameters, exhibiting higher starting latencies before grooming relative to non-ataxic littermates of the A/A strain, fewer grooming bouts, and grooming components of shorter duration, with an unequal regional distribution targeting almost totally the rostral part (head washing and forelimb licking) of the animal. Only bouts of a single grooming element were preserved. The cephalocaudal order of grooming elements appeared less disorganized, mutant and control mice initiating the grooming with head washing and forelimb licking prior to licking posterior parts. However, mutants differed from controls in that all their bouts were incomplete but uninterrupted, although intergroup difference for percentage of the incorrect transitions was not significant. In contrast to grooming, Dab1(scm) mice ambulated for a longer time. During walking episodes, they exhibited more body scratching than controls, possibly to compensate for the lack of licking different body parts. In conjunction with studies with other ataxic mice, these results indicate that the cerebellar cortex affects grooming activity and is consequently involved in executing various components, but not in its sequential organization, which requires other brain regions such as cerebral cortices or basal ganglia. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Porcine Circovirus-Like Virus P1 Inhibits Wnt Signaling Pathway in Vivo and in Vitro.

    Science.gov (United States)

    Zhu, Xuejiao; Wen, Libin; Sheng, Shaoyang; Wang, Wei; Xiao, Qi; Qu, Meng; Hu, Yiyi; Liu, Chuanmin; He, Kongwang

    2018-01-01

    Porcine circovirus-like virus P1 is an important pathogen of the current pig industry, the infection mechanism is not entirely clear. Wnt signaling pathway plays an important role in the growth of young animals and infection of some viruses. This study was designed to demonstrate the effects of P1 infection on the Wnt signaling pathway. In vivo experiments, we demonstrated the down-regulatory effects of P1 infection in piglets and mice on the downstream components expression levels of Wnt signaling pathway, and the effects of Wnt signaling pathway activation on the pathogenesis of P1. In vitro studies, we found P1 infection down-regulated protein level of β-catenin and mRNA level of mmp2, prevented the β-catenin from entering into nucleus, abolished the TCF/LEF promoter activity, proved that P1 could inhibit the activation of Wnt signaling pathway in vitro . Finally, we found that VP1 of P1 virus also had the inhibitory effects on Wnt signaling pathway in vitro , elucidated the mechanism of P1's inhibitory effects on the Wnt signaling pathway and offered the possibility that the suppression of Wnt signaling pathway was involved in the post-weaning multisystemic wasting syndrome (PMWS), laying a foundation for elucidating the pathogenesis of P1.

  7. Impact of MCT1 Haploinsufficiency on the Mouse Retina

    KAUST Repository

    Peachey, Neal S.

    2018-05-02

    The monocarboxylate transporter 1 (MCT1) is highly expressed in the outer retina, suggesting that it plays a critical role in photoreceptors. We examined MCT1+/− heterozygotes, which express half of the normal complement of MCT1. The MCT1+/− retina developed normally and retained normal function, indicating that MCT1 is expressed at sufficient levels to support outer retinal metabolism.

  8. Impact of MCT1 Haploinsufficiency on the Mouse Retina

    KAUST Repository

    Peachey, Neal S.; Yu, Minzhong; Han, John Y. S.; Lengacher, Sylvain; Magistretti, Pierre J.; Pellerin, Luc; Philp, Nancy J.

    2018-01-01

    The monocarboxylate transporter 1 (MCT1) is highly expressed in the outer retina, suggesting that it plays a critical role in photoreceptors. We examined MCT1+/− heterozygotes, which express half of the normal complement of MCT1. The MCT1+/− retina developed normally and retained normal function, indicating that MCT1 is expressed at sufficient levels to support outer retinal metabolism.

  9. PD-L1 Deficiency within Islets Reduces Allograft Survival in Mice.

    Directory of Open Access Journals (Sweden)

    Dongxia Ma

    Full Text Available Islet transplantation may potentially cure type 1 diabetes mellitus (T1DM. However, immune rejection, especially that induced by the alloreactive T-cell response, remains a restraining factor for the long-term survival of grafted islets. Programmed death ligand-1 (PD-L1 is a negative costimulatory molecule. PD-L1 deficiency within the donor heart accelerates allograft rejection. Here, we investigate whether PD-L1 deficiency in donor islets reduces allograft survival time.Glucose Stimulation Assays were performed to evaluate whether PD-L1 deficiency has detrimental effects on islet function. Islets isolated from PDL1-deficient mice or wild- type (WT mice (C57BL/6j were implanted beneath the renal capsule of streptozotocin (STZ-induced diabetic BALB/c mice. Blood glucose levels and graft survival time after transplantation were monitored. Moreover, we analyzed the residual islets, infiltrating immune cells and alloreactive cells from the recipients.PD-L1 deficiency within islets does not affect islet function. However, islet PD-L1 deficiency increased allograft rejection and was associated with enhanced inflammatory cell infiltration and recipient T-cell alloreactivity.This is the first report to demonstrate that PD-L1 deficiency accelerated islet allograft rejection and regulated recipient alloimmune responses.

  10. Niacin and biosynthesis of PGD₂by platelet COX-1 in mice and humans.

    Science.gov (United States)

    Song, Wen-Liang; Stubbe, Jane; Ricciotti, Emanuela; Alamuddin, Naji; Ibrahim, Salam; Crichton, Irene; Prempeh, Maxwell; Lawson, John A; Wilensky, Robert L; Rasmussen, Lars Melholt; Puré, Ellen; FitzGerald, Garret A

    2012-04-01

    The clinical use of niacin to treat dyslipidemic conditions is limited by noxious side effects, most commonly facial flushing. In mice, niacin-induced flushing results from COX-1-dependent formation of PGD₂ and PGE₂ followed by COX-2-dependent production of PGE₂. Consistent with this, niacin-induced flushing in humans is attenuated when niacin is combined with an antagonist of the PGD₂ receptor DP1. NSAID-mediated suppression of COX-2-derived PGI₂ has negative cardiovascular consequences, yet little is known about the cardiovascular biology of PGD₂. Here, we show that PGD₂ biosynthesis is augmented during platelet activation in humans and, although vascular expression of DP1 is conserved between humans and mice, platelet DP1 is not present in mice. Despite this, DP1 deletion in mice augmented aneurysm formation and the hypertensive response to Ang II and accelerated atherogenesis and thrombogenesis. Furthermore, COX inhibitors in humans, as well as platelet depletion, COX-1 knockdown, and COX-2 deletion in mice, revealed that niacin evoked platelet COX-1-derived PGD₂ biosynthesis. Finally, ADP-induced spreading on fibrinogen was augmented by niacin in washed human platelets, coincident with increased thromboxane (Tx) formation. However, in platelet-rich plasma, where formation of both Tx and PGD₂ was increased, spreading was not as pronounced and was inhibited by DP1 activation. Thus, PGD₂, like PGI₂, may function as a homeostatic response to thrombogenic and hypertensive stimuli and may have particular relevance as a constraint on platelets during niacin therapy.

  11. Antiretroviral pre-exposure prophylaxis prevents vaginal transmission of HIV-1 in humanized BLT mice.

    Directory of Open Access Journals (Sweden)

    Paul W Denton

    2008-01-01

    Full Text Available Worldwide, vaginal transmission now accounts for more than half of newly acquired HIV-1 infections. Despite the urgency to develop and implement novel approaches capable of preventing HIV transmission, this process has been hindered by the lack of adequate small animal models for preclinical efficacy and safety testing. Given the importance of this route of transmission, we investigated the susceptibility of humanized mice to intravaginal HIV-1 infection.We show that the female reproductive tract of humanized bone marrow-liver-thymus (BLT mice is reconstituted with human CD4+ T and other relevant human cells, rendering these humanized mice susceptible to intravaginal infection by HIV-1. Effects of HIV-1 infection include CD4+ T cell depletion in gut-associated lymphoid tissue (GALT that closely mimics what is observed in HIV-1-infected humans. We also show that pre-exposure prophylaxis with antiretroviral drugs is a highly effective method for preventing vaginal HIV-1 transmission. Whereas 88% (7/8 of BLT mice inoculated vaginally with HIV-1 became infected, none of the animals (0/5 given pre-exposure prophylaxis of emtricitabine (FTC/tenofovir disoproxil fumarate (TDF showed evidence of infection (Chi square = 7.5, df = 1, p = 0.006.The fact that humanized BLT mice are susceptible to intravaginal infection makes this system an excellent candidate for preclinical evaluation of both microbicides and pre-exposure prophylactic regimens. The utility of humanized mice to study intravaginal HIV-1 transmission is particularly highlighted by the demonstration that pre-exposure prophylaxis can prevent intravaginal HIV-1 transmission in the BLT mouse model.

  12. Methamphetamine- and 1-methyl-4-phenyl- 1,2,3, 6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficient mice.

    Science.gov (United States)

    Itzhak, Y; Martin, J L; Ali, S F

    1999-12-15

    Previous studies have suggested a role for the retrograde messenger, nitric oxide (NO), in methamphetamine (METH)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- induced dopaminergic neurotoxicity. Since evidence supported the involvement of the neuronal nitric oxide synthase (nNOS) isoform in the dopaminergic neurotoxicity, the present study was undertaken to investigate whether the inducible nitric oxide synthase (iNOS) isoform is also associated with METH- and MPTP-induced neurotoxicity. The administration of METH (5mg/kg x 3) to iNOS deficient mice [homozygote iNOS(-/-)] and wild type mice (C57BL/6) resulted in significantly smaller depletion of striatal dopaminergic markers in the iNOS(-/-) mice compared with the wild-type mice. METH-induced hyperthermia was also significantly lower in the iNOS(-/-) mice than in wild-type mice. In contrast to the outcome of METH administration, MPTP injections (20 mg/kg x 3) resulted in a similar decrease in striatal dopaminergic markers in iNOS(-/-) and wild-type mice. In the set of behavioral experiments, METH-induced locomotor sensitization was investigated. The acute administration of METH (1.0 mg/kg) resulted in the same intensity of locomotor activity in iNOS(-/-) and wild-type mice. Moreover, 68 to 72 h after the exposure to the high-dose METH regimen (5 mg/kg x 3), a marked sensitized response to a challenge injection of METH (1.0 mg/kg) was observed in both the iNOS(-/-) and wild-type mice. The finding that iNOS(-/-) mice were unprotected from MPTP-induced neurotoxicity suggests that the partial protection against METH-induced neurotoxicity observed was primarily associated with the diminished hyperthermic effect of METH seen in the iNOS(-/-) mice. Moreover, in contrast to nNOS deficiency, iNOS deficiency did not affect METH-induced behavioral sensitization. Copyright 1999 Wiley-Liss, Inc.

  13. Inhibition of colony-stimulating factor 1 receptor early in disease ameliorates motor deficits in SCA1 mice.

    Science.gov (United States)

    Qu, Wenhui; Johnson, Andrea; Kim, Joo Hyun; Lukowicz, Abigail; Svedberg, Daniel; Cvetanovic, Marija

    2017-05-25

    Polyglutamine (polyQ) expansion in the protein Ataxin-1 (ATXN1) causes spinocerebellar ataxia type 1 (SCA1), a fatal dominantly inherited neurodegenerative disease characterized by motor deficits, cerebellar neurodegeneration, and gliosis. Currently, there are no treatments available to delay or ameliorate SCA1. We have examined the effect of depleting microglia during the early stage of disease by using PLX, an inhibitor of colony-stimulating factor 1 receptor (CSFR1), on disease severity in a mouse model of SCA1. Transgenic mouse model of SCA1, ATXN1[82Q] mice, and wild-type littermate controls were treated with PLX from 3 weeks of age. The effects of PLX on microglial density, astrogliosis, motor behavior, atrophy, and gene expression of Purkinje neurons were examined at 3 months of age. PLX treatment resulted in the elimination of 70-80% of microglia from the cerebellum of both wild-type and ATXN1[82Q] mice. Importantly, PLX ameliorated motor deficits in SCA1 mice. While we have not observed significant improvement in the atrophy or disease-associated gene expression changes in Purkinje neurons upon PLX treatment, we have detected reduced expression of pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) and increase in the protein levels of wild-type ataxin-1 and post-synaptic density protein 95 (PSD95) that may help improve PN function. A decrease in the number of microglia during an early stage of disease resulted in the amelioration of motor deficits in SCA1 mice.

  14. Rac1 in muscle is dispensable for improved insulin action after exercise in mice

    DEFF Research Database (Denmark)

    Sylow, Lykke; Møller, Lisbeth Liliendal Valbjørn; D'Hulst, Gommaar

    2016-01-01

    sensitivity in inducible muscle-specific Rac1 knockout (mKO) and wildtype littermate (WT) mice. Prior exercise enhanced whole body insulin sensitivity by 40% in WT mice and rescued the insulin intolerance in Rac1 mKO mice by improving whole body insulin sensitivity by 230%. In agreement, prior exercise...... significantly improved insulin sensitivity by 20% in WT and by 40% in Rac1 mKO soleus muscles. These findings suggest that muscle Rac1 is dispensable for the insulin sensitizing effect of exercise. Moreover, insulin resistance in Rac1 mKO mice can be completely normalized by prior exercise explaining why......Exercise has a potent insulin-sensitivity enhancing effect on skeletal muscle but the intracellular mechanisms that mediate this effect are not well understood. In muscle, Rac1 regulates both insulin- and contraction-stimulated glucose transport and is dysregulated in insulin resistant muscle...

  15. Genetic biomarkers for ALS disease in transgenic SOD1(G93A mice.

    Directory of Open Access Journals (Sweden)

    Ana C Calvo

    Full Text Available The pathophysiological mechanisms of both familial and sporadic Amyotrophic Lateral Sclerosis (ALS are unknown, although growing evidence suggests that skeletal muscle tissue is a primary target of ALS toxicity. Skeletal muscle biopsies were performed on transgenic SOD1(G93A mice, a mouse model of ALS, to determine genetic biomarkers of disease longevity. Mice were anesthetized with isoflurane, and three biopsy samples were obtained per animal at the three main stages of the disease. Transcriptional expression levels of seventeen genes, Ankrd1, Calm1, Col19a1, Fbxo32, Gsr, Impa1, Mef2c, Mt2, Myf5, Myod1, Myog, Nnt, Nogo A, Pax7, Rrad, Sln and Snx10, were tested in each muscle biopsy sample. Total RNA was extracted using TRIzol Reagent according to the manufacturer's protocol, and variations in gene expression were assayed by real-time PCR for all of the samples. The Pearson correlation coefficient was used to determine the linear correlation between transcriptional expression levels throughout disease progression and longevity. Consistent with the results obtained from total skeletal muscle of transgenic SOD1(G93A mice and 74-day-old denervated mice, five genes (Mef2c, Gsr, Col19a1, Calm1 and Snx10 could be considered potential genetic biomarkers of longevity in transgenic SOD1(G93A mice. These results are important because they may lead to the exploration of previously unexamined tissues in the search for new disease biomarkers and even to the application of these findings in human studies.

  16. RanBP2 modulates Cox11 and hexokinase I activities and haploinsufficiency of RanBP2 causes deficits in glucose metabolism.

    Directory of Open Access Journals (Sweden)

    Azamat Aslanukov

    2006-10-01

    Full Text Available The Ran-binding protein 2 (RanBP2 is a large multimodular and pleiotropic protein. Several molecular partners with distinct functions interacting specifically with selective modules of RanBP2 have been identified. Yet, the significance of these interactions with RanBP2 and the genetic and physiological role(s of RanBP2 in a whole-animal model remain elusive. Here, we report the identification of two novel partners of RanBP2 and a novel physiological role of RanBP2 in a mouse model. RanBP2 associates in vitro and in vivo and colocalizes with the mitochondrial metallochaperone, Cox11, and the pacemaker of glycolysis, hexokinase type I (HKI via its leucine-rich domain. The leucine-rich domain of RanBP2 also exhibits strong chaperone activity toward intermediate and mature folding species of Cox11 supporting a chaperone role of RanBP2 in the cytosol during Cox11 biogenesis. Cox11 partially colocalizes with HKI, thus supporting additional and distinct roles in cell function. Cox11 is a strong inhibitor of HKI, and RanBP2 suppresses the inhibitory activity of Cox11 over HKI. To probe the physiological role of RanBP2 and its role in HKI function, a mouse model harboring a genetically disrupted RanBP2 locus was generated. RanBP2(-/- are embryonically lethal, and haploinsufficiency of RanBP2 in an inbred strain causes a pronounced decrease of HKI and ATP levels selectively in the central nervous system. Inbred RanBP2(+/- mice also exhibit deficits in growth rates and glucose catabolism without impairment of glucose uptake and gluconeogenesis. These phenotypes are accompanied by a decrease in the electrophysiological responses of photosensory and postreceptoral neurons. Hence, RanBP2 and its partners emerge as critical modulators of neuronal HKI, glucose catabolism, energy homeostasis, and targets for metabolic, aging disorders and allied neuropathies.

  17. RanBP2 modulates Cox11 and hexokinase I activities and haploinsufficiency of RanBP2 causes deficits in glucose metabolism.

    Science.gov (United States)

    Aslanukov, Azamat; Bhowmick, Reshma; Guruju, Mallikarjuna; Oswald, John; Raz, Dorit; Bush, Ronald A; Sieving, Paul A; Lu, Xinrong; Bock, Cheryl B; Ferreira, Paulo A

    2006-10-01

    The Ran-binding protein 2 (RanBP2) is a large multimodular and pleiotropic protein. Several molecular partners with distinct functions interacting specifically with selective modules of RanBP2 have been identified. Yet, the significance of these interactions with RanBP2 and the genetic and physiological role(s) of RanBP2 in a whole-animal model remain elusive. Here, we report the identification of two novel partners of RanBP2 and a novel physiological role of RanBP2 in a mouse model. RanBP2 associates in vitro and in vivo and colocalizes with the mitochondrial metallochaperone, Cox11, and the pacemaker of glycolysis, hexokinase type I (HKI) via its leucine-rich domain. The leucine-rich domain of RanBP2 also exhibits strong chaperone activity toward intermediate and mature folding species of Cox11 supporting a chaperone role of RanBP2 in the cytosol during Cox11 biogenesis. Cox11 partially colocalizes with HKI, thus supporting additional and distinct roles in cell function. Cox11 is a strong inhibitor of HKI, and RanBP2 suppresses the inhibitory activity of Cox11 over HKI. To probe the physiological role of RanBP2 and its role in HKI function, a mouse model harboring a genetically disrupted RanBP2 locus was generated. RanBP2(-/-) are embryonically lethal, and haploinsufficiency of RanBP2 in an inbred strain causes a pronounced decrease of HKI and ATP levels selectively in the central nervous system. Inbred RanBP2(+/-) mice also exhibit deficits in growth rates and glucose catabolism without impairment of glucose uptake and gluconeogenesis. These phenotypes are accompanied by a decrease in the electrophysiological responses of photosensory and postreceptoral neurons. Hence, RanBP2 and its partners emerge as critical modulators of neuronal HKI, glucose catabolism, energy homeostasis, and targets for metabolic, aging disorders and allied neuropathies.

  18. A mutation in the dynein heavy chain gene compensates for energy deficit of mutant SOD1 mice and increases potentially neuroprotective IGF-1

    Directory of Open Access Journals (Sweden)

    Larmet Yves

    2011-04-01

    Full Text Available Abstract Background Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons. ALS patients, as well as animal models such as mice overexpressing mutant SOD1s, are characterized by increased energy expenditure. In mice, this hypermetabolism leads to energy deficit and precipitates motor neuron degeneration. Recent studies have shown that mutations in the gene encoding the dynein heavy chain protein are able to extend lifespan of mutant SOD1 mice. It remains unknown whether the protection offered by these dynein mutations relies on a compensation of energy metabolism defects. Results SOD1(G93A mice were crossbred with mice harboring the dynein mutant Cramping allele (Cra/+ mice. Dynein mutation increased adipose stores in compound transgenic mice through increasing carbohydrate oxidation and sparing lipids. Metabolic changes that occurred in double transgenic mice were accompanied by the normalization of the expression of key mRNAs in the white adipose tissue and liver. Furthermore, Dynein Cra mutation rescued decreased post-prandial plasma triglycerides and decreased non esterified fatty acids upon fasting. In SOD1(G93A mice, the dynein Cra mutation led to increased expression of IGF-1 in the liver, increased systemic IGF-1 and, most importantly, to increased spinal IGF-1 levels that are potentially neuroprotective. Conclusions These findings suggest that the protection against SOD1(G93A offered by the Cramping mutation in the dynein gene is, at least partially, mediated by a reversal in energy deficit and increased IGF-1 availability to motor neurons.

  19. Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption

    Directory of Open Access Journals (Sweden)

    Pamela Lopert

    2014-01-01

    Full Text Available Mutations in the DJ-1 gene have been shown to cause a rare autosomal-recessive genetic form of Parkinson’s disease (PD. The function of DJ-1 and its role in PD development has been linked to multiple pathways, however its exact role in the development of PD has remained elusive. It is thought that DJ-1 may play a role in regulating reactive oxygen species (ROS formation and overall oxidative stress in cells through directly scavenging ROS itself, or through the regulation of ROS scavenging systems such as glutathione (GSH or thioredoxin (Trx or ROS producing complexes such as complex I of the electron transport chain. Previous work in this laboratory has demonstrated that isolated brain mitochondria consume H2O2 predominantly by the Trx/Thioredoxin Reductase (TrxR/Peroxiredoxin (Prx system in a respiration dependent manner (Drechsel et al., Journal of Biological Chemistry, 2010. Therefore we wanted to determine if mitochondrial H2O2 consumption was altered in brains from DJ-1 deficient mice (DJ-1−/−. Surprisingly, DJ-1−/− mice showed an increase in mitochondrial respiration-dependent H2O2 consumption compared to controls. To determine the basis of the increased H2O2 consumption in DJ1−/− mice, the activities of Trx, Thioredoxin Reductase (TrxR, GSH, glutathione disulfide (GSSG and glutathione reductase (GR were measured. Compared to control mice, brains from DJ-1−/− mice showed an increase in (1 mitochondrial Trx activity, (2 GSH and GSSG levels and (3 mitochondrial glutaredoxin (GRX activity. Brains from DJ-1−/− mice showed a decrease in mitochondrial GR activity compared to controls. The increase in the enzymatic activities of mitochondrial Trx and total GSH levels may account for the increased H2O2 consumption observed in the brain mitochondria in DJ-1−/− mice perhaps as an adaptive response to chronic DJ-1 deficiency.

  20. Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein.

    Science.gov (United States)

    Son, Marjatta; Leary, Scot C; Romain, Nadine; Pierrel, Fabien; Winge, Dennis R; Haller, Ronald G; Elliott, Jeffrey L

    2008-05-02

    G93A SOD1 transgenic mice overexpressing CCS protein develop an accelerated disease course that is associated with enhanced mitochondrial pathology and increased mitochondrial localization of mutant SOD1. Because these results suggest an effect of mutant SOD1 on mitochondrial function, we assessed the enzymatic activities of mitochondrial respiratory chain complexes in the spinal cords of CCS/G93A SOD1 and control mice. CCS/G93A SOD1 mouse spinal cord demonstrates a 55% loss of complex IV (cytochrome c oxidase) activity compared with spinal cord from age-matched non-transgenic or G93A SOD1 mice. In contrast, CCS/G93A SOD1 spinal cord shows no reduction in the activities of complex I, II, or III. Blue native gel analysis further demonstrates a marked reduction in the levels of complex IV but not of complex I, II, III, or V in spinal cords of CCS/G93A SOD1 mice compared with non-transgenic, G93A SOD1, or CCS/WT SOD1 controls. With SDS-PAGE analysis, spinal cords from CCS/G93A SOD1 mice showed significant decreases in the levels of two structural subunits of cytochrome c oxidase, COX1 and COX5b, relative to controls. In contrast, CCS/G93A SOD1 mouse spinal cord showed no reduction in levels of selected subunits from complexes I, II, III, or V. Heme A analyses of spinal cord further support the existence of cytochrome c oxidase deficiency in CCS/G93A SOD1 mice. Collectively, these results establish that CCS/G93A SOD1 mice manifest an isolated complex IV deficiency which may underlie a substantial part of mutant SOD1-induced mitochondrial cytopathy.

  1. The nigrostriatal dopamine system of aging GFRα-1 heterozygous mice: neurochemistry, morphology and behavior

    Science.gov (United States)

    Zaman, Vandana; Boger, Heather A.; Granholm, Ann-Charlotte; Rohrer, Baerbel; Moore, Alfred; Buhusi, Mona; Gerhardt, Greg A.; Hoffer, Barry J.; Middaugh, Lawrence D.

    2009-01-01

    Given the established importance of glial cell line-derived neurotrophic factor (GDNF) in maintaining dopaminergic neurotransmitter systems, the nigrostriatal system and associated behaviors of mice with genetic reduction of its high-affinity receptor, GDNF receptor (GFR)α-1 (GFRα-1+/−), were compared with wild-type controls. Motor activity and the stimulatory effects of a dopamine (DA) D1 receptor agonist (SKF 82958) were assessed longitudinally at 8 and 18 months of age. Monoamine concentrations and dopaminergic nerve terminals in the striatum and the number of dopaminergic neurons in the substantia nigra (SN) were assessed. The results support the importance of GFRα-1 in maintaining normal function of the nigrostriatal dopaminergic system, with deficits being observed for GFRα-1+/− mice at both ages. Motor activity was lower and the stimulatory effects of the DA agonist were enhanced for the older GFRα-1+/− mice. DA in the striatum was reduced in the GFRα-1+/− mice at both ages, and tyrosine hydroxylase-positive cell numbers in the SN were reduced most substantially in the older GFRα-1+/− mice. The combined behavioral, pharmacological probe, neurochemical and morphological measures provide evidence of abnormalities in GFRα-1+/− mice that are indicative of an exacerbated aging-related decline in dopaminergic system function. The noted deficiencies, in turn, suggest that GFRα-1 is necessary for GDNF to maintain normal function of the nigrostriatal dopaminergic system. Although the precise mechanism(s) for the aging-related changes in the dopaminergic system remain to be established, the present study clearly establishes that genetic reductions in GFRα-1 can contribute to the degenerative changes observed in this system during the aging process. PMID:18973577

  2. Nav 1.8-null mice show stimulus-dependent deficits in spinal neuronal activity

    Directory of Open Access Journals (Sweden)

    Wood John N

    2006-02-01

    Full Text Available Abstract Background The voltage gated sodium channel Nav 1.8 has a highly restricted expression pattern to predominantly nociceptive peripheral sensory neurones. Behaviourally Nav 1.8-null mice show an increased acute pain threshold to noxious mechanical pressure and also deficits in inflammatory and visceral, but not neuropathic pain. Here we have made in vivo electrophysiology recordings of dorsal horn neurones in intact anaesthetised Nav 1.8-null mice, in response to a wide range of stimuli to further the understanding of the functional roles of Nav 1.8 in pain transmission from the periphery to the spinal cord. Results Nav 1.8-null mice showed marked deficits in the coding by dorsal horn neurones to mechanical, but not thermal, -evoked responses over the non-noxious and noxious range compared to littermate controls. Additionally, responses evoked to other stimulus modalities were also significantly reduced in Nav 1.8-null mice where the reduction observed to pinch > brush. The occurrence of ongoing spontaneous neuronal activity was significantly less in mice lacking Nav 1.8 compared to control. No difference was observed between groups in the evoked activity to electrical activity of the peripheral receptive field. Conclusion This study demonstrates that deletion of the sodium channel Nav 1.8 results in stimulus-dependent deficits in the dorsal horn neuronal coding to mechanical, but not thermal stimuli applied to the neuronal peripheral receptive field. This implies that Nav 1.8 is either responsible for, or associated with proteins involved in mechanosensation.

  3. Inactivation of Nitric Oxide Synthesis Exacerbates the Development of Alzheimer Disease Pathology in APPPS1 Mice (Amyloid Precursor Protein/Presenilin-1).

    Science.gov (United States)

    Cifuentes, Diana; Poittevin, Marine; Bonnin, Philippe; Ngkelo, Anta; Kubis, Nathalie; Merkulova-Rainon, Tatyana; Lévy, Bernard I

    2017-07-31

    The epidemiological link between hypertension and Alzheimer disease is established. We previously reported that hypertension aggravates the Alzheimer-like pathology in APPPS1 mice (amyloid precursor protein/presenilin-1, mouse model of Alzheimer disease) with angiotensin II-induced hypertension, in relation with hypertension and nitric oxide deficiency. To provide further insights into the role of nitric oxide in the hypertension-Alzheimer disease cross-talk, we studied the effects of nitric oxide blockade in APPPS1 mice using N (ω)-nitro-l-arginine methyl ester (l-NAME) alone or in combination with hydralazine, to normalize blood pressure. Compared with normotensive APPPS1 mice, those with l-NAME-induced hypertension had greater amyloid burden ( P <0.05), increased cortical amyloid angiopathy ( P <0.01), decreased regional microvascular density ( P <0.05), and deficient long-term spatial reference memory ( P <0.001). Blood pressure normalization with hydralazine did not protect APPPS1 mice from l-NAME-induced deterioration except for cortical amyloid angiopathy, linked to hypertension-induced arterial wall remodeling. By testing the cerebrovascular response to hypercapnic breathing, we evidenced early functional impairment of cerebral vasomotor activity in APPPS1 mice. Whereas in control wild-type normotensive mice, carbon dioxide breathing resulted in 15±1.3% increase in the mean blood flow velocity ( P <0.001), paradoxical mild decrease (1.5±0.4%) was recorded in normotensive APPPS1 mice ( P <0.001). Carbon dioxide-induced decrease in mean blood flow velocity was not significantly modified in l-NAME-treated hypertensive APPPS1 mice (2.5±1.2%) and partly reversed to mild vasodilation by hydralazine (3.2±1.5%, P <0.01). These results suggest that impaired nitric oxide bioavailability exacerbates the pathophysiology of Alzheimer disease, essentially impacting amyloid load and cognitive impairment, independently of l-NAME-induced hypertension. Only cerebral

  4. Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene.

    Science.gov (United States)

    Murovets, Vladimir O; Bachmanov, Alexander A; Zolotarev, Vasiliy A

    2015-01-01

    The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+) inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-). Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain.

  5. Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene.

    Directory of Open Access Journals (Sweden)

    Vladimir O Murovets

    Full Text Available The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+ inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-. Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain.

  6. Low-Frequency Electroacupuncture Improves Insulin Sensitivity in Obese Diabetic Mice through Activation of SIRT1/PGC-1α in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Fengxia Liang

    2011-01-01

    Full Text Available Electroacupuncture (EA has been observed to reduce insulin resistance in obesity and diabetes. However, the biochemical mechanism underlying this effect remains unclear. This study investigated the effects of low-frequency EA on metabolic action in genetically obese and type 2 diabetic db/db mice. Nine-week-old db/m and db/db mice were randomly divided into four groups, namely, db/m, db/m + EA, db/db, and db/db + EA. db/m + EA and db/db + EA mice received 3-Hz electroacupuncture five times weekly for eight consecutive weeks. In db/db mice, EA tempered the increase in fasting blood glucose, food intake, and body mass and maintained insulin levels. In EA-treated db/db mice, improved insulin sensitivity was established through intraperitoneal insulin tolerance test. EA was likewise observed to decrease free fatty acid levels in db/db mice; it increased protein expression in skeletal muscle Sirtuin 1 (SIRT1 and induced gene expression of peroxisome proliferator-activated receptor coactivator (PGC-, nuclear respiratory factor 1 (NRF1, and acyl-CoA oxidase (ACOX. These results indicated that EA offers a beneficial effect on insulin resistance in obese and diabetic db/db mice, at least partly, via stimulation of SIRT1/PGC-, thus resulting in improved insulin signal.

  7. Phenotyping of Nod1/2 double deficient mice and characterization of Nod1/2 in systemic inflammation and associated renal disease

    Directory of Open Access Journals (Sweden)

    Ingrid Stroo

    2012-10-01

    It is indispensable to thoroughly characterize each animal model in order to distinguish between primary and secondary effects of genetic changes. The present study analyzed Nod1 and Nod2 double deficient (Nod1/2 DKO mice under physiological and inflammatory conditions. Nod1 and Nod2 are members of the Nucleotide-binding domain and Leucine-rich repeat containing Receptor (NLR family. Several inflammatory disorders, such as Crohn's disease and asthma, are linked to genetic changes in either Nod1 or Nod2. These associations suggest that Nod1 and Nod2 play important roles in regulating the immune system. Three-month-old wildtype (Wt and Nod1/2 DKO mice were sacrificed, body and organ weight were determined, and blood was drawn. Except for lower liver weight in Nod1/2 DKO mice, no differences were found in body/organ weight between both strains. Leukocyte count and composition was comparable. No significant changes in analyzed plasma biochemical markers were found. Additionally, intestinal and vascular permeability was determined. Nod1/2 DKO mice show increased susceptibility for intestinal permeability while vascular permeability was not affected. Next we induced septic shock and organ damage by administering LPS+PGN intraperitoneally to Wt and Nod1/2 DKO mice and sacrificed animals after 2 and 24 hours. The systemic inflammatory and metabolic response was comparable between both strains. However, renal response was different as indicated by partly preserved kidney function and tubular epithelial cell damage in Nod1/2 DKO at 24 hours. Remarkably, renal inflammatory mediators Tnfα, KC and Il-10 were significantly increased in Nod1/2 DKO compared with Wt mice at 2 hours. Systematic analysis of Nod1/2 DKO mice revealed a possible role of Nod1/2 in the development of renal disease during systemic inflammation.

  8. Early-Onset Diabetic E1-DN Mice Develop Albuminuria and Glomerular Injury Typical of Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Mervi E. Hyvönen

    2015-01-01

    Full Text Available The transgenic E1-DN mice express a kinase-negative epidermal growth factor receptor in their pancreatic islets and are diabetic from two weeks of age due to impaired postnatal growth of β-cell mass. Here, we characterize the development of hyperglycaemia-induced renal injury in the E1-DN mice. Homozygous mice showed increased albumin excretion rate (AER at the age of 10 weeks; the albuminuria increased over time and correlated with blood glucose. Morphometric analysis of PAS-stained histological sections and electron microscopy images revealed mesangial expansion in homozygous E1-DN mice, and glomerular sclerosis was observed in the most hyperglycaemic mice. The albuminuric homozygous mice developed also other structural changes in the glomeruli, including thickening of the glomerular basement membrane and widening of podocyte foot processes that are typical for diabetic nephropathy. Increased apoptosis of podocytes was identified as one mechanism contributing to glomerular injury. In addition, nephrin expression was reduced in the podocytes of albuminuric homozygous E1-DN mice. Tubular changes included altered epithelial cell morphology and increased proliferation. In conclusion, hyperglycaemic E1-DN mice develop albuminuria and glomerular and tubular injury typical of human diabetic nephropathy and can serve as a new model to study the mechanisms leading to the development of diabetic nephropathy.

  9. CYP 2E1 mutant mice are resistant to DDC-induced enhancement of MPTP toxicity.

    Science.gov (United States)

    Viaggi, C; Vaglini, F; Pardini, C; Sgadò, P; Caramelli, A; Corsini, G U

    2007-01-01

    In order to reach a deeper insight into the mechanism of diethyldithiocarbamate (DDC)-induced enhancement of MPTP toxicity in mice, we showed that CYP450 (2E1) inhibitors, such as diallyl sulfide (DAS) or phenylethylisothiocyanate (PIC), also potentiate the selective DA neuron degeneration in C57/bl mice. Furthermore we showed that CYP 2E1 is present in the brain and in the basal ganglia of mice (Vaglini et al., 2004). However, because DAS and PIC are not selective CYP 2E1 inhibitors and in order to provide direct evidence for CYP 2E1 involvement in the enhancement of MPTP toxicity, CYP 2E1 knockout mice (GONZ) and wild type animals (SVI) of the same genetic background were treated with MPTP or the combined DDC + MPTP treatment. In CYP 2E1 knockout mice, DDC pretreatment completely fails to enhance MPTP toxicity, although enhancement of MPTP toxicity was regularly present in the SVI control animals. The immunohistochemical study confirms our results and suggests that CYP 2E1 may have a detoxifying role.

  10. Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy

    Directory of Open Access Journals (Sweden)

    Gabriel Nasri Marzuca-Nassr

    2017-10-01

    Full Text Available The consequences of two-week hindlimb suspension (HS on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA, and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2 and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1 were evaluated in the soleus muscle. HS decreased soleus muscle wet and dry weights (by 43% and 26%, respectively, muscle isotonic and tetanic force (by 29% and 18%, respectively, CSA of the soleus muscle (by 36%, and soleus muscle fibers (by 45%. Fat-1 transgenic mice had a decrease in the ω-6/ω-3 polyunsaturated fatty acids (PUFAs ratio as compared with C57BL/6 wild-type mice (56%, p < 0.001. Fat-1 mice had lower soleus muscle dry mass loss (by 10% and preserved absolute isotonic force (by 17% and CSA of the soleus muscle (by 28% after HS as compared with C57BL/6 wild-type mice. p-GSK3B/GSK3B ratio was increased (by 70% and MuRF-1 content decreased (by 50% in the soleus muscle of Fat-1 mice after HS. Balanced diet-fed Fat-1 mice are able to preserve in part the soleus muscle mass, absolute isotonic force and CSA of the soleus muscle in a disuse condition.

  11. Enhanced novelty-induced corticosterone spike and upregulated serotonin 5-HT1A and cannabinoid CB1 receptors in adolescent BTBR mice.

    Science.gov (United States)

    Gould, Georgianna G; Burke, Teresa F; Osorio, Miguel D; Smolik, Corey M; Zhang, Wynne Q; Onaivi, Emmanuel S; Gu, Ting-Ting; DeSilva, Mauris N; Hensler, Julie G

    2014-01-01

    Hypothalamic pituitary adrenal (HPA) axis responses to change and social challenges during adolescence can influence mental health and behavior into adulthood. To examine how HPA tone in adolescence may contribute to psychopathology, we challenged male adolescent (5 weeks) and adult (16 weeks) BTBR T(+)tf/J (BTBR) and 129S1/SvImJ (129S) mice with novelty in sociability tests. In prior studies these strains had exaggerated or altered HPA stress responses and low sociability relative to C57BL/6J mice in adulthood. In adolescence these strains already exhibited similar or worse sociability deficits than adults or age-matched C57 mice. Yet BTBR adolescents were less hyperactive and buried fewer marbles than adults. Novelty-induced corticosterone (CORT) spikes in adolescent BTBR were double adult levels, and higher than 129S or C57 mice at either age. Due to their established role in HPA feedback, we hypothesized that hippocampal Gαi/o-coupled serotonin 5-HT1A and cannabinoid CB1 receptor function might be upregulated in BTBR mice. Adolescent BTBR mice had higher hippocampal 5-HT1A density as measured by [(3)H] 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) binding than C57 mice, and adult BTBR 8-OH-DPAT-stimulated GTPγS binding was higher than in either C57 or 129S mice in this region. Further, BTBR hippocampal CB1 density measured by [(3)H]CP55,940 binding was 15-20% higher than in C57. CP55,940-stimulated GTPγS binding in adult BTBR dentate gyrus was 30% higher then 129S (p<0.05), but was not a product of greater neuronal or cell density defined by NeuN and DAPI staining. Hence hyperactive HPA responsiveness during adolescence may underlie 5-HT1A and CB1 receptor up-regulation and behavioral phenotype of BTBR mice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Mice lacking melanin-concentrating hormone receptor 1 demonstrate increased heart rate associated with altered autonomic activity.

    Science.gov (United States)

    Astrand, Annika; Bohlooly-Y, Mohammad; Larsdotter, Sara; Mahlapuu, Margit; Andersén, Harriet; Tornell, Jan; Ohlsson, Claes; Snaith, Mike; Morgan, David G A

    2004-10-01

    Melanin-concentrating hormone (MCH) plays an important role in energy balance. The current studies were carried out on a new line of mice lacking the rodent MCH receptor (MCHR1(-/-) mice). These mice confirmed the previously reported lean phenotype characterized by increased energy expenditure and modestly increased caloric intake. Because MCH is expressed in the lateral hypothalamic area, which also has an important role in the regulation of the autonomic nervous system, heart rate and blood pressure were measured by a telemetric method to investigate whether the increased energy expenditure in these mice might be due to altered autonomic nervous system activity. Male MCHR1(-/-) mice demonstrated a significantly increased heart rate [24-h period: wild type 495 +/- 4 vs. MCHR1(-/-) 561 +/- 8 beats/min (P dark phase: wild type 506 +/- 8 vs. MCHR1(-/-) 582 +/- 9 beats/min (P light phase: wild type 484 +/- 13 vs. MCHR1(-/-) 539 +/- 9 beats/min (P vs. MCHR1(-/-) 113 +/- 0.4 mmHg (P > 0.05)]. Locomotor activity and core body temperature were higher in the MCHR1(-/-) mice during the dark phase only and thus temporally dissociated from heart rate differences. On fasting, wild-type animals rapidly downregulated body temperature and heart rate. MCHR1(-/-) mice displayed a distinct delay in the onset of this downregulation. To investigate the mechanism underlying these differences, autonomic blockade experiments were carried out. Administration of the adrenergic antagonist metoprolol completely reversed the tachycardia seen in MCHR1(-/-) mice, suggesting an increased sympathetic tone.

  13. Supplementation with Lactobacillus plantarum WCFS1 prevents Decline of Mucus Barrier in Colon of Accelerated Aging Ercc1-/Δ7 Mice

    Directory of Open Access Journals (Sweden)

    Adriaan A Van Beek

    2016-10-01

    Full Text Available Although it is clear that probiotics improve intestinal barrier function, little is known about the effects of probiotics on the aging intestine. We investigated effects of 10-wk bacterial supplementation of Lactobacillus plantarum WCFS1, Lactobacillus casei BL23, or Bifidobacterium breve DSM20213 on gut barrier and immunity in 16-week-old accelerated aging Ercc1-/Δ7 mice, which have a median lifespan of ~20wk, and their wild-type littermates. The colonic barrier in Ercc1-/Δ7 mice was characterized by a thin (<10µm mucus layer. L. plantarum prevented this decline in mucus integrity in Ercc1-/Δ7 mice, whereas B. breve exacerbated it. Bacterial supplementations affected the expression of immune-related genes, including Toll-like receptor 4. Regulatory T cell frequencies were increased in the mesenteric lymph nodes of L. plantarum- and L. casei-treated Ercc1-/Δ7 mice. L. plantarum- and L. casei-treated Ercc1-/Δ7 mice showed increased specific antibody production in a T cell-dependent immune response in vivo. By contrast, the effects of bacterial supplementation on wild-type control mice were negligible. Thus, supplementation with L. plantarum – but not with L. casei and B. breve – prevented the decline in the mucus barrier in Ercc1-/Δ7 mice. Our data indicate that age is an important factor influencing beneficial or detrimental effects of candidate probiotics. These findings also highlight the need for caution in translating beneficial effects of probiotics observed in young animals or humans to the elderly.

  14. Myg1-deficient mice display alterations in stress-induced responses and reduction of sex-dependent behavioural differences.

    Science.gov (United States)

    Philips, Mari-Anne; Abramov, Urho; Lilleväli, Kersti; Luuk, Hendrik; Kurrikoff, Kaido; Raud, Sirli; Plaas, Mario; Innos, Jürgen; Puussaar, Triinu; Kõks, Sulev; Vasar, Eero

    2010-02-11

    Myg1 (Melanocyte proliferating gene 1) is a highly conserved and ubiquitously expressed gene, which encodes a protein with mitochondrial and nuclear localization. In the current study we demonstrate a gradual decline of Myg1 expression during the postnatal development of the mouse brain that suggests relevance for Myg1 in developmental processes. To study the effects of Myg1 loss-of-function, we created Myg1-deficient (-/-) mice by displacing the entire coding sequence of the gene. Initial phenotyping, covering a multitude of behavioural, cognitive, neurological, physiological and stress-related responses, revealed that homozygous Myg1 (-/-) mice are vital, fertile and display no gross abnormalities. Myg1 (-/-) mice showed an inconsistent pattern of altered anxiety-like behaviour in different tests. The plus-maze and social interaction tests revealed that male Myg1 (-/-) mice were significantly less anxious than their wild-type littermates; female (-/-) mice showed increased anxiety in the locomotor activity arena. Restraint-stress significantly reduced the expression of the Myg1 gene in the prefrontal cortex of female wild-type mice and restrained female (-/-) mice showed a blunted corticosterone response, suggesting involvement of Myg1 in stress-induced responses. The main finding of the present study was that Myg1 invalidation decreases several behavioural differences between male and female animals that were obvious in wild-type mice, indicating that Myg1 contributes to the expression of sex-dependent behavioural differences in mice. Taken together, we provide evidence for the involvement of Myg1 in anxiety- and stress-related responses and suggest that Myg1 contributes to the expression of sex-dependent behavioural differences.

  15. The transient outward current in mice lacking the potassium channel gene Kv1.4

    Science.gov (United States)

    London, Barry; Wang, Dao W; Hill, Joseph A; Bennett, Paul B

    1998-01-01

    The transient outward current (Ito) plays a prominent role in the repolarization phase of the cardiac action potential. Several K+ channel genes, including Kv1.4, are expressed in the heart, produce rapidly inactivating currents when heterologously expressed, and may be the molecular basis of Ito.We engineered mice homozygous for a targeted disruption of the K+ channel gene Kv1.4 and compared Ito in wild-type (Kv1.4+/+), heterozygous (Kv1.4+/-) and homozygous ‘knockout’ (Kv1.4−/−) mice. Kv1.4 RNA was truncated in Kv1.4−/− mice and protein expression was absent.Adult myocytes isolated from Kv1.4+/+, Kv1.4+/− and Kv1.4−/− mice had large rapidly inactivating outward currents. The peak current densities at 60 mV (normalized by cellular capacitance, in pA pF−1; means ± s.e.m.) were 53.8 ± 5.3, 45.3 ± 2.2 and 44.4 ± 2.8 in cells from Kv1.4+/+, Kv1.4+/− and Kv1.4−/− mice, respectively (P mice.The voltage dependence and time course of inactivation were not changed by targeted disruption of Kv1.4. The mean best-fitting V½ (membrane potential at 50 % inactivation) values for myocytes from Kv1.4 +/+, Kv1.4+/− and Kv1.4−/− mice were -53.5 ± 3.7, -51.1 ± 2.6 and -54.2 ± 2.4 mV, respectively. The slope factors (k) were -10.1 ± 1.4, -8.8 ± 1.4 and -9.5 ± 1.2 mV, respectively. The fast time constants for development of inactivation at -30 mV were 27.8 ± 2.2, 26.2 ± 5.1 and 19.6 ± 2.1 ms in Kv1.4+/+, Kv1.4+/− and Kv1.4−/− myocytes, respectively. At +30 mV, they were 35.5 ± 2.6, 30.0 ± 2.1 and 28.7 ± 1.6 ms, respectively. The time constants for the rapid phase of recovery from inactivation at -80 mV were 32.5 ± 8.2, 23.3 ± 1.8 and 39.0 ± 3.7 ms, respectively.Nearly the entire inactivating component as well as more than 60 % of the steady-state outward current was eliminated by 1 mm 4-aminopyridine in Kv1.4+/+, Kv1.4+/− and Kv1.4−/− myocytes.Western blot analysis of heart membrane extracts showed no significant

  16. Dorsal Medial Habenula Regulation of Mood-Related Behaviors and Primary Reinforcement by Tachykinin-Expressing Habenula Neurons

    Science.gov (United States)

    Hsu, Yun-Wei A.

    2016-01-01

    Abstract Animal models have been developed to investigate aspects of stress, anxiety, and depression, but our understanding of the circuitry underlying these models remains incomplete. Prior studies of the habenula, a poorly understood nucleus in the dorsal diencephalon, suggest that projections to the medial habenula (MHb) regulate fear and anxiety responses, whereas the lateral habenula (LHb) is involved in the expression of learned helplessness, a model of depression. Tissue-specific deletion of the transcription factor Pou4f1 in the dorsal MHb (dMHb) results in a developmental lesion of this subnucleus. These dMHb-ablated mice show deficits in voluntary exercise, a possible correlate of depression. Here we explore the role of the dMHb in mood-related behaviors and intrinsic reinforcement. Lesions of the dMHb do not elicit changes in contextual conditioned fear. However, dMHb-lesioned mice exhibit shorter immobility time in the tail suspension test, another model of depression. dMHb-lesioned mice also display increased vulnerability to the induction of learned helplessness. However, this effect is not due specifically to the dMHb lesion, but appears to result from Pou4f1 haploinsufficiency elsewhere in the nervous system. Pou4f1 haploinsufficiency does not produce the other phenotypes associated with dMHb lesions. Using optogenetic intracranial self-stimulation, intrinsic reinforcement by the dMHb can be mapped to a specific population of neurokinin-expressing habenula neurons. Together, our data show that the dMHb is involved in the regulation of multiple mood-related behaviors, but also support the idea that these behaviors do not reflect a single functional pathway. PMID:27482535

  17. Heme oxygenase-1 prevents non-alcoholic steatohepatitis through suppressing hepatocyte apoptosis in mice

    Directory of Open Access Journals (Sweden)

    Fu Na

    2010-10-01

    Full Text Available Abstract Objective Heme oxygenase-1 (HO-1, the rate-limiting enzyme in heme catabolism, has been reported to have potential antioxidant properties. However, the role of HO-1 on hepatocyte apoptosis remains unclear. We aim to elucidate the effects of HO-1 on oxidative stress related hepatocellular apoptosis in nutritional steatohepatitis in mice. Methods C57BL/6J mice were fed with methionine-choline deficient (MCD diet for four weeks to induce hepatic steatohepatitis. HO-1 chemical inducer (hemin, HO-1 chemical inhibitor zinc protoporphyrin IX (ZnPP-IX and/or adenovirus carrying HO-1 gene (Ad-HO-1 were administered to mice, respectively. Hepatocyte apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL assay, the mRNA and protein expression of apoptosis related genes were assayed by quantitative real-time PCR and Western blot. Results Hepatocyte signs of oxidative related apoptotic injury were presented in mice fed with MCD diet for 4 weeks. Induction of HO-1 by hemin or Ad-HO-1 significantly attenuated the severity of liver histology, which was associated with decreased hepatic lipid peroxidation content, reduced number of apoptotic cells by TUNEL staining, down-regulated expression of pro-apoptosis related genes including Fas/FasL, Bax, caspase-3 and caspase-9, reduced expression of cytochrome p4502E1 (CYP2E1, inhibited cytochrome c (Cyt-c release, and up-regulated expression of anti-apoptosis gene Bcl-2. Whereas, inhibition of HO-1 by ZnPP-IX caused oxidative stress related hepatic injury, which concomitant with increased number of TUNEL positive cells and up-regulated expression of pro-apoptosis related genes. Conclusions The present study provided evidences for the protective role of HO-1 in preventing nutritional steatohepatitis through suppressing hepatocyte apoptosis in mice.

  18. Thyroid hormone regulation of Sirtuin 1 expression and implications to integrated responses in fasted mice.

    Science.gov (United States)

    Cordeiro, Aline; de Souza, Luana Lopes; Oliveira, Lorraine Soares; Faustino, Larissa Costa; Santiago, Letícia Aragão; Bloise, Flavia Fonseca; Ortiga-Carvalho, Tania Maria; Almeida, Norma Aparecida Dos Santos; Pazos-Moura, Carmen Cabanelas

    2013-02-01

    Sirtuin 1 (SIRT1), a NAD(+)-dependent deacetylase, has been connected to beneficial effects elicited by calorie restriction. Physiological adaptation to starvation requires higher activity of SIRT1 and also the suppression of thyroid hormone (TH) action to achieve energy conservation. Here, we tested the hypothesis that those two events are correlated and that TH may be a regulator of SIRT1 expression. Forty-eight-hour fasting mice exhibited reduced serum TH and increased SIRT1 protein content in liver and brown adipose tissue (BAT), and physiological thyroxine replacement prevented or attenuated the increment of SIRT1 in liver and BAT of fasted mice. Hypothyroid mice exhibited increased liver SIRT1 protein, while hyperthyroid ones showed decreased SIRT1 in liver and BAT. In the liver, decreased protein is accompanied by reduced SIRT1 activity and no alteration in its mRNA. Hyperthyroid and hypothyroid mice exhibited increases and decreases in food intake and body weight gain respectively. Food-restricted hyperthyroid animals (pair-fed to euthyroid group) exhibited liver and BAT SIRT1 protein levels intermediary between euthyroid and hyperthyroid mice fed ad libitum. Mice with TH resistance at the liver presented increased hepatic SIRT1 protein and activity, with no alteration in Sirt1 mRNA. These results suggest that TH decreases SIRT1 protein, directly and indirectly, via food ingestion control and, in the liver, this reduction involves TRβ. The SIRT1 reduction induced by TH has important implication to integrated metabolic responses to fasting, as the increase in SIRT1 protein requires the fasting-associated suppression of TH serum levels.

  19. Aerobic Training Prevents Heatstrokes in Calsequestrin-1 Knockout Mice by Reducing Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Flávia Alessandra Guarnier

    2018-01-01

    Full Text Available Calsequestrin-1 knockout (CASQ1-null mice suffer lethal episodes when exposed to strenuous exercise and environmental heat, crises known as exertional/environmental heatstroke (EHS. We previously demonstrated that administration of exogenous antioxidants (N-acetylcysteine and trolox reduces CASQ1-null mortality during exposure to heat. As aerobic training is known to boost endogenous antioxidant protection, we subjected CASQ1-null mice to treadmill running for 2 months at 60% of their maximal speed for 1 h, 5 times/week. When exposed to heat stress protocol (41°C/1 h, the mortality rate of CASQ1-null mice was significantly reduced compared to untrained animals (86% versus 16%. Protection from heatstrokes was accompanied by a reduced increase in core temperature during the stress protocol and by an increased threshold of response to caffeine of isolated extensor digitorum longus muscles during in vitro contracture test. At cellular and molecular levels, aerobic training (i improved mitochondrial function while reducing their damage and (ii lowered calpain activity and lipid peroxidation in membranes isolated from sarcoplasmic reticulum and mitochondria. Based on this evidence, we hypothesize that the protective effect of aerobic training is essentially mediated by a reduction in oxidative stress during exposure of CASQ1-null mice to adverse environmental conditions.

  20. Impaired sense of smell and altered olfactory system in RAG-1-/- immunodeficient mice

    Directory of Open Access Journals (Sweden)

    Lorenza eRattazzi

    2015-09-01

    Full Text Available Immune deficiencies are often associated with a number of physical manifestations including loss of sense of smell and an increased level of anxiety. We have previously shown that T and B cell-deficient recombinase activating gene (RAG-1-/- knockout mice have an increased level of anxiety-like behavior and altered gene expression involved in olfaction. In this study, we expanded these findings by testing the structure and functional development of the olfactory system in RAG-1-/- mice. Our results show that these mice have a reduced engagement in different types of odors and this phenotype is associated with disorganized architecture of glomerular tissue and atrophy of the main olfactory epithelium. Most intriguingly this defect manifests specifically in adult age and is not due to impairment in the patterning of the olfactory neuron staining at the embryo stage. Together these findings provide a formerly unreported biological evidence for an altered function of the olfactory system in RAG-1-/- mice.

  1. Identification of E2F1 as a positive transcriptional regulator for δ-catenin

    International Nuclear Information System (INIS)

    Kim, Kwonseop; Oh, Minsoo; Ki, Hyunkyoung; Wang Tao; Bareiss, Sonja; Fini, M. Elizabeth.; Li Dawei; Lu Qun

    2008-01-01

    δ-Catenin is upregulated in human carcinomas. However, little is known about the potential transcriptional factors that regulate δ-catenin expression in cancer. Using a human δ-catenin reporter system, we have screened several nuclear signaling modulators to test whether they can affect δ-catenin transcription. Among β-catenin/LEF-1, Notch1, and E2F1, E2F1 dramatically increased δ-catenin-luciferase activities while β-catenin/LEF-1 induced only a marginal increase. Rb suppressed the upregulation of δ-catenin-luciferase activities induced by E2F1 but did not interact with δ-catenin. RT-PCR and Western blot analyses in 4 different prostate cancer cell lines revealed that regulation of δ-catenin expression is controlled mainly at the transcriptional level. Interestingly, the effects of E2F1 on δ-catenin expression were observed only in human cancer cells expressing abundant endogenous δ-catenin. These studies identify E2F1 as a positive transcriptional regulator for δ-catenin, but further suggest the presence of strong negative regulator(s) for δ-catenin in prostate cancer cells with minimal endogenous δ-catenin expression

  2. GABAA Receptors Containing ρ1 Subunits Contribute to In Vivo Effects of Ethanol in Mice

    Science.gov (United States)

    Blednov, Yuri A.; Benavidez, Jillian M.; Black, Mendy; Leiter, Courtney R.; Osterndorff-Kahanek, Elizabeth; Johnson, David; Borghese, Cecilia M.; Hanrahan, Jane R.; Johnston, Graham A. R.; Chebib, Mary; Harris, R. Adron

    2014-01-01

    GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects. Null mutant male mice showed reduced ethanol consumption and preference in a two-bottle choice test with no differences in preference for saccharin or quinine. Null mutant mice of both sexes demonstrated longer duration of ethanol-induced loss of righting reflex (LORR), and males were more sensitive to ethanol-induced motor sedation. In contrast, ρ1 null mice showed faster recovery from acute motor incoordination produced by ethanol. Null mutant females were less sensitive to ethanol-induced development of conditioned taste aversion. Measurement of mRNA levels in cerebellum showed that deletion of ρ1 did not change expression of ρ2, α2, or α6 GABAA receptor subunits. (S)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ1” antagonist), when administered to wild type mice, mimicked the changes that ethanol induced in ρ1 null mice (LORR and rotarod tests), but the ρ1 antagonist did not produce these effects in ρ1 null mice. In contrast, (R)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ2” antagonist) did not change ethanol actions in wild type but produced effects in mice lacking ρ1 that were opposite of the effects of deleting (or inhibiting) ρ1. These results suggest that ρ1 has a predominant role in two in vivo effects of ethanol, and a role for ρ2 may be revealed when ρ1 is deleted. We also found that ethanol produces similar inhibition of function of recombinant ρ1 and ρ2 receptors. These data indicate that ethanol action on GABAA receptors containing ρ1/ρ2 subunits may be important for specific effects of ethanol in vivo. PMID:24454882

  3. GABAA receptors containing ρ1 subunits contribute to in vivo effects of ethanol in mice.

    Directory of Open Access Journals (Sweden)

    Yuri A Blednov

    Full Text Available GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects. Null mutant male mice showed reduced ethanol consumption and preference in a two-bottle choice test with no differences in preference for saccharin or quinine. Null mutant mice of both sexes demonstrated longer duration of ethanol-induced loss of righting reflex (LORR, and males were more sensitive to ethanol-induced motor sedation. In contrast, ρ1 null mice showed faster recovery from acute motor incoordination produced by ethanol. Null mutant females were less sensitive to ethanol-induced development of conditioned taste aversion. Measurement of mRNA levels in cerebellum showed that deletion of ρ1 did not change expression of ρ2, α2, or α6 GABAA receptor subunits. (S-4-amino-cyclopent-1-enyl butylphosphinic acid ("ρ1" antagonist, when administered to wild type mice, mimicked the changes that ethanol induced in ρ1 null mice (LORR and rotarod tests, but the ρ1 antagonist did not produce these effects in ρ1 null mice. In contrast, (R-4-amino-cyclopent-1-enyl butylphosphinic acid ("ρ2" antagonist did not change ethanol actions in wild type but produced effects in mice lacking ρ1 that were opposite of the effects of deleting (or inhibiting ρ1. These results suggest that ρ1 has a predominant role in two in vivo effects of ethanol, and a role for ρ2 may be revealed when ρ1 is deleted. We also found that ethanol produces similar inhibition of function of recombinant ρ1 and ρ2 receptors. These data indicate that ethanol action on GABAA receptors containing ρ1/ρ2 subunits may be important for specific effects of ethanol in vivo.

  4. Effects of HIV-1 on Cognition in Humanized NSG Mice

    Science.gov (United States)

    Akhter, Sidra Pervez

    Host species specificity of human immunodeficiency virus (HIV) creates a challenge to study the pathology, diagnostic tools, and therapeutic agents. The closely related simian immunodeficiency virus and studies of neurocognitive impairments on transgenic animals expressing partial viral genome have significant limitations. The humanized mice model provides a small animal system in which a human immune system can be engrafted and immunopathobiology of HIV-1 infection can be studied. However, features of HIV-associated neurocognitive disorders (HAND) were not evaluated in this model. Open field activity test was selected to characterize behavior of original strain NOD/scid-IL-2Rgammac null (NSG) mice, effects of engraftment of human CD34+ hematopoietic stem cells (HSCs) and functional human immune system (huNSG), and finally, investigate the behavior changes induced by chronic HIV-1 infection. Long-term infected HuNSG mice showed the loss of working memory and increased anxiety in the open field. Additionally, these animals were utilized for evaluation of central nervous system metabolic and structural changes. Detected behavioral abnormalities are correlated with obtained neuroimaging and histological abnormalities published.

  5. Mice lacking inositol 1,4,5-trisphosphate receptors exhibit dry eye.

    Directory of Open Access Journals (Sweden)

    Takaaki Inaba

    Full Text Available Tear secretion is important as it supplies water to the ocular surface and keeps eyes moist. Both the parasympathetic and sympathetic pathways contribute to tear secretion. Although intracellular Ca2+ elevation in the acinar cells of lacrimal glands is a crucial event for tear secretion in both the pathways, the Ca2+ channel, which is responsible for the Ca2+ elevation in the sympathetic pathway, has not been sufficiently analyzed. In this study, we examined tear secretion in mice lacking the inositol 1,4,5-trisphosphate receptor (IP3R types 2 and 3 (Itpr2-/-;Itpr3-/-double-knockout mice. We found that tear secretion in both the parasympathetic and sympathetic pathways was abolished in Itpr2-/-;Itpr3-/- mice. Intracellular Ca2+ elevation in lacrimal acinar cells after acetylcholine and epinephrine stimulation was abolished in Itpr2-/-;Itpr3-/- mice. Consequently, Itpr2-/-;Itpr3-/- mice exhibited keratoconjunctival alteration and corneal epithelial barrier disruption. Inflammatory cell infiltration into the lacrimal glands and elevation of serum autoantibodies, a representative marker for Sjögren's syndrome (SS in humans, were also detected in older Itpr2-/-;Itpr3-/- mice. These results suggested that IP3Rs are essential for tear secretion in both parasympathetic and sympathetic pathways and that Itpr2-/-;Itpr3-/- mice could be a new dry eye mouse model with symptoms that mimic those of SS.

  6. Haploinsufficiency of a spliceosomal GTPase encoded by EFTUD2 causes mandibulofacial dysostosis with microcephaly.

    Science.gov (United States)

    Lines, Matthew A; Huang, Lijia; Schwartzentruber, Jeremy; Douglas, Stuart L; Lynch, Danielle C; Beaulieu, Chandree; Guion-Almeida, Maria Leine; Zechi-Ceide, Roseli Maria; Gener, Blanca; Gillessen-Kaesbach, Gabriele; Nava, Caroline; Baujat, Geneviève; Horn, Denise; Kini, Usha; Caliebe, Almuth; Alanay, Yasemin; Utine, Gulen Eda; Lev, Dorit; Kohlhase, Jürgen; Grix, Arthur W; Lohmann, Dietmar R; Hehr, Ute; Böhm, Detlef; Majewski, Jacek; Bulman, Dennis E; Wieczorek, Dagmar; Boycott, Kym M

    2012-02-10

    Mandibulofacial dysostosis with microcephaly (MFDM) is a rare sporadic syndrome comprising craniofacial malformations, microcephaly, developmental delay, and a recognizable dysmorphic appearance. Major sequelae, including choanal atresia, sensorineural hearing loss, and cleft palate, each occur in a significant proportion of affected individuals. We present detailed clinical findings in 12 unrelated individuals with MFDM; these 12 individuals compose the largest reported cohort to date. To define the etiology of MFDM, we employed whole-exome sequencing of four unrelated affected individuals and identified heterozygous mutations or deletions of EFTUD2 in all four. Validation studies of eight additional individuals with MFDM demonstrated causative EFTUD2 mutations in all affected individuals tested. A range of EFTUD2-mutation types, including null alleles and frameshifts, is seen in MFDM, consistent with haploinsufficiency; segregation is de novo in all cases assessed to date. U5-116kD, the protein encoded by EFTUD2, is a highly conserved spliceosomal GTPase with a central regulatory role in catalytic splicing and post-splicing-complex disassembly. MFDM is the first multiple-malformation syndrome attributed to a defect of the major spliceosome. Our findings significantly extend the range of reported spliceosomal phenotypes in humans and pave the way for further investigation in related conditions such as Treacher Collins syndrome. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. Romk1 Knockout Mice Do Not Produce Bartter Phenotype but Exhibit Impaired K Excretion*

    Science.gov (United States)

    Dong, Ke; Yan, Qingshang; Lu, Ming; Wan, Laxiang; Hu, Haiyan; Guo, Junhua; Boulpaep, Emile; Wang, WenHui; Giebisch, Gerhard; Hebert, Steven C.; Wang, Tong

    2016-01-01

    Romk knock-out mice show a similar phenotype to Bartter syndrome of salt wasting and dehydration due to reduced Na-K-2Cl-cotransporter activity. At least three ROMK isoforms have been identified in the kidney; however, unique functions of any of the isoforms in nephron segments are still poorly understood. We have generated a mouse deficient only in Romk1 by selective deletion of the Romk1-specific first exon using an ES cell Cre-LoxP strategy and examined the renal phenotypes, ion transporter expression, ROMK channel activity, and localization under normal and high K intake. Unlike Romk−/− mice, there was no Bartter phenotype with reduced NKCC2 activity and increased NCC expression in Romk1−/− mice. The small conductance K channel (SK) activity showed no difference of channel properties or gating in the collecting tubule between Romk1+/+ and Romk1−/− mice. High K intake increased SK channel number per patch and increased the ROMK channel intensity in the apical membrane of the collecting tubule in Romk1+/+, but such regulation by high K intake was diminished with significant hyperkalemia in Romk1−/− mice. We conclude that 1) animal knockouts of ROMK1 do not produce Bartter phenotype. 2) There is no functional linking of ROMK1 and NKCC2 in the TAL. 3) ROMK1 is critical in response to high K intake-stimulated K+ secretion in the collecting tubule. PMID:26728465

  8. Romk1 Knockout Mice Do Not Produce Bartter Phenotype but Exhibit Impaired K Excretion.

    Science.gov (United States)

    Dong, Ke; Yan, Qingshang; Lu, Ming; Wan, Laxiang; Hu, Haiyan; Guo, Junhua; Boulpaep, Emile; Wang, WenHui; Giebisch, Gerhard; Hebert, Steven C; Wang, Tong

    2016-03-04

    Romk knock-out mice show a similar phenotype to Bartter syndrome of salt wasting and dehydration due to reduced Na-K-2Cl-cotransporter activity. At least three ROMK isoforms have been identified in the kidney; however, unique functions of any of the isoforms in nephron segments are still poorly understood. We have generated a mouse deficient only in Romk1 by selective deletion of the Romk1-specific first exon using an ES cell Cre-LoxP strategy and examined the renal phenotypes, ion transporter expression, ROMK channel activity, and localization under normal and high K intake. Unlike Romk(-/-) mice, there was no Bartter phenotype with reduced NKCC2 activity and increased NCC expression in Romk1(-/-) mice. The small conductance K channel (SK) activity showed no difference of channel properties or gating in the collecting tubule between Romk1(+/+) and Romk1(-/-) mice. High K intake increased SK channel number per patch and increased the ROMK channel intensity in the apical membrane of the collecting tubule in Romk1(+/+), but such regulation by high K intake was diminished with significant hyperkalemia in Romk1(-/-) mice. We conclude that 1) animal knockouts of ROMK1 do not produce Bartter phenotype. 2) There is no functional linking of ROMK1 and NKCC2 in the TAL. 3) ROMK1 is critical in response to high K intake-stimulated K(+) secretion in the collecting tubule. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Interleukin-1 receptor antagonist modulates the early phase of liver regeneration after partial hepatectomy in mice.

    Directory of Open Access Journals (Sweden)

    Antonino Sgroi

    Full Text Available BACKGROUND: Cytokine administration is a potential therapy for acute liver failure by reducing inflammatory responses and favour hepatocyte regeneration. The aim of this study was to evaluate the role of interleukin-1 receptor antagonist (IL-1ra during liver regeneration and to study the effect of a recombinant human IL-1ra on liver regeneration. METHODS: We performed 70%-hepatectomy in wild type (WT mice, IL-1ra knock-out (KO mice and in WT mice treated by anakinra. We analyzed liver regeneration at regular intervals by measuring the blood levels of cytokines, the hepatocyte proliferation by bromodeoxyuridin (BrdU incorporation, proliferating cell nuclear antigen (PCNA and Cyclin D1 expression. The effect of anakinra on hepatocyte proliferation was also tested in vitro using human hepatocytes. RESULTS: At 24h and at 48 h after hepatectomy, IL-1ra KO mice had significantly higher levels of pro-inflammatory cytokines (IL-6, IL-1β and MCP-1 and a reduced and delayed hepatocyte proliferation measured by BrdU incorporation, PCNA and Cyclin D1 protein levels, when compared to WT mice. IGFBP-1 and C/EBPβ expression was significantly decreased in IL-1ra KO compared to WT mice. WT mice treated with anakinra showed significantly decreased levels of IL-6 and significantly higher hepatocyte proliferation at 24h compared to untreated WT mice. In vitro, primary human hepatocytes treated with anakinra showed significantly higher proliferation at 24h compared to hepatocytes without treatment. CONCLUSION: IL1ra modulates the early phase of liver regeneration by decreasing the inflammatory stress and accelerating the entry of hepatocytes in proliferation. IL1ra might be a therapeutic target to improve hepatocyte proliferation.

  10. Alterations of in vivo CA1 network activity in Dp(16)1Yey Down syndrome model mice.

    Science.gov (United States)

    Raveau, Matthieu; Polygalov, Denis; Boehringer, Roman; Amano, Kenji; Yamakawa, Kazuhiro; McHugh, Thomas J

    2018-02-27

    Down syndrome, the leading genetic cause of intellectual disability, results from an extra-copy of chromosome 21. Mice engineered to model this aneuploidy exhibit Down syndrome-like memory deficits in spatial and contextual tasks. While abnormal neuronal function has been identified in these models, most studies have relied on in vitro measures. Here, using in vivo recording in the Dp(16)1Yey model, we find alterations in the organization of spiking of hippocampal CA1 pyramidal neurons, including deficits in the generation of complex spikes. These changes lead to poorer spatial coding during exploration and less coordinated activity during sharp-wave ripples, events involved in memory consolidation. Further, the density of CA1 inhibitory neurons expressing neuropeptide Y, a population key for the generation of pyramidal cell bursts, were significantly increased in Dp(16)1Yey mice. Our data refine the 'over-suppression' theory of Down syndrome pathophysiology and suggest specific neuronal subtypes involved in hippocampal dysfunction in these model mice. © 2018, Raveau et al.

  11. E2F-1-Induced p53-independent apoptosis in transgenic mice

    DEFF Research Database (Denmark)

    Holmberg, Christian Henrik; Helin, K.; Sehested, M.

    1998-01-01

    The E2F transcription factors are key targets for the retinoblastoma protein, pRB. By inactivation of E2Fs, pRB prevents progression to the S phase. To test proliferative functions of E2F, we generated transgenic mice expressing human E2F-1 and/or human DP-1. When the hydroxymethyl glutaryl...... involving increased apoptosis in the germinal epithelium. This effect was potentiated by simultaneous overexpression of DP-1. Testicular atrophy as a result of overexpression of E2F-1 and DP-1 is independent of functional p53, since p53-nullizygous transgenic mice overexpressing E2F-1 and DP-1 also suffered...

  12. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    International Nuclear Information System (INIS)

    Minegishi, Yoshiki; Sakai, Yasuo; Yahara, Yasuhito; Akiyama, Haruhiko; Yoshikawa, Hideki; Hosokawa, Ko; Tsumaki, Noriyuki

    2014-01-01

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1 Δchon cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone

  13. Mice deficient in cryptochrome 1 (Cry1-/- exhibit resistance to obesity induced by a high fat diet

    Directory of Open Access Journals (Sweden)

    Guy eGriebel

    2014-04-01

    Full Text Available Disruption of circadian clock enhances the risk of metabolic syndrome, obesity, and type 2 diabetes. Circadian clocks rely on a highly regulated network of transcriptional and translational loops that drive clock-controlled gene expression. Among these transcribed clock genes are cryptochrome (CRY family members, which comprise Cry1 and Cry2. While the metabolic effects of deletion of several core components of the clock gene machinery have been well characterized, those of selective inactivation of Cry1 or Cry2 genes have not been described. In this study we demonstrate that ablation of Cry1, but not Cry2, prevents high-fat diet (HFD-induced obesity in mice. Despite similar caloric intake, Cry1-/- mice on HFD gained markedly less weight (-18 % at the end of the 16-week experiment and displayed reduced fat accumulation compared to wild-type (WT littermates (-61 %, suggesting increased energy expenditure. Analysis of serum lipid and glucose profiles showed no difference between Cry1-/- and WT mice. Both Cry1-/- and Cry2-/- mice are indistinguishable from WT controls in body weight, fat and protein contents, and food consumption when they are allowed unlimited access to a standard rodent diet. We conclude that although CRY signaling may not be essential for the maintenance of energy homeostasis under steady-state nutritional conditions, Cry1 may play a role in readjusting energy balance under changing nutritional circumstances. These studies reinforce the important role of circadian clock genes in energy homeostasis and suggest that Cry1 is a plausible target for antiobesity therapy.

  14. Mice deficient in cryptochrome 1 (cry1 (-/-)) exhibit resistance to obesity induced by a high-fat diet.

    Science.gov (United States)

    Griebel, Guy; Ravinet-Trillou, Christine; Beeské, Sandra; Avenet, Patrick; Pichat, Philippe

    2014-01-01

    Disruption of circadian clock enhances the risk of metabolic syndrome, obesity, and type 2 diabetes. Circadian clocks rely on a highly regulated network of transcriptional and translational loops that drive clock-controlled gene expression. Among these transcribed clock genes are cryptochrome (CRY) family members, which comprise Cry1 and Cry2. While the metabolic effects of deletion of several core components of the clock gene machinery have been well characterized, those of selective inactivation of Cry1 or Cry2 genes have not been described. In this study, we demonstrate that ablation of Cry1, but not Cry2, prevents high-fat diet (HFD)-induced obesity in mice. Despite similar caloric intake, Cry1 (-/-) mice on HFD gained markedly less weight (-18%) at the end of the 16-week experiment and displayed reduced fat accumulation compared to wild-type (WT) littermates (-61%), suggesting increased energy expenditure. Analysis of serum lipid and glucose profiles showed no difference between Cry1 (-/-) and WT mice. Both Cry1 (-/-) and Cry2 (-/-) mice are indistinguishable from WT controls in body weight, fat and protein contents, and food consumption when they are allowed unlimited access to a standard rodent diet. We conclude that although CRY signaling may not be essential for the maintenance of energy homeostasis under steady-state nutritional conditions, Cry1 may play a role in readjusting energy balance under changing nutritional circumstances. These studies reinforce the important role of circadian clock genes in energy homeostasis and suggest that Cry1 is a plausible target for anti-obesity therapy.

  15. Mice Expressing a "Hyper-Sensitive" Form of the Cannabinoid Receptor 1 (CB1 Are Neither Obese Nor Diabetic.

    Directory of Open Access Journals (Sweden)

    David J Marcus

    Full Text Available Multiple lines of evidence implicate the endocannabinoid signaling system in the modulation of metabolic disease. Genetic or pharmacological inactivation of CB1 in rodents leads to reduced body weight, resistance to diet-induced obesity, decreased intake of highly palatable food, and increased energy expenditure. Cannabinoid agonists stimulate feeding in rodents and increased levels of endocannabinoids can disrupt lipid metabolism. Therefore, the hypothesis that sustained endocannabinoid signaling can lead to obesity and diabetes was examined in this study using S426A/S430A mutant mice expressing a desensitization-resistant CB1 receptor. These mice display exaggerated and prolonged responses to acute administration of phytocannabinoids, synthetic cannabinoids, and endocannabinoids. As a consequence these mice represent a novel model for determining the effect of enhanced endocannabinoid signaling on metabolic disease. S426A/S430A mutants consumed equivalent amounts of both high fat (45% and low fat (10% chow control diet compared to wild-type littermate controls. S426A/S430A mutants and wild-type mice fed either high or low fat control diet displayed similar fasting blood glucose levels and normal glucose clearance following a 2 g/kg glucose challenge. Furthermore, S426A/S430A mutants and wild-type mice consumed similar amounts of chow following an overnight fast. While both THC and JZL195 significantly increased food intake two hours after injection, this increase was similar between the S426A/S430A mutant and wildtype control mice Our results indicate that S426A/S430A mutant mice expressing the desensitization-resistant form of CB1 do not exhibit differences in body weight, food intake, glucose homeostasis, or re-feeding following a fast.

  16. The TLR3/TICAM-1 signal constitutively controls spontaneous polyposis through suppression of c-Myc in Apc Min/+ mice.

    Science.gov (United States)

    Ono, Junya; Shime, Hiroaki; Takaki, Hiromi; Takashima, Ken; Funami, Kenji; Yoshida, Sumito; Takeda, Yohei; Matsumoto, Misako; Kasahara, Masanori; Seya, Tsukasa

    2017-10-17

    Intestinal tumorigenesis is promoted by myeloid differentiation primary response gene 88 (MyD88) activation in response to the components of microbiota in Apc Min/+ mice. Microbiota also contains double-stranded RNA (dsRNA), a ligand for TLR3, which activates the toll-like receptor adaptor molecule 1 (TICAM-1, also known as TRIF) pathway. We established Apc Min/+ Ticam1 -/- mice and their survival was compared to survival of Apc Min/+ Myd88 -/- and wild-type (WT) mice. The properties of polyps were investigated using immunofluorescence staining and RT-PCR analysis. We demonstrate that TICAM-1 is essential for suppression of polyp formation in Apc Min/+ mice. TICAM-1 knockout resulted in shorter survival of mice compared to WT mice or mice with knockout of MyD88 in the Apc Min/+ background. Polyps were more frequently formed in the distal intestine of Apc Min/+ Ticam1 -/- mice than in Apc Min/+ mice. Infiltration of immune cells such as CD11b + and CD8α + cells into the polyps was detected histologically. CD11b and CD8α mRNAs were increased in polyps of Apc Min/+ Ticam1 -/- mice compared to Apc Min/+ mice. Gene expression of inducible nitric oxide synthase (iNOS), interferon (IFN)-γ, CXCL9 and IL-12p40 was increased in polyps of Apc Min/+ Ticam1 -/- mice. mRNA and protein expression of c-Myc, a critical transcription factor for inflammation-associated polyposis, were increased in polyps of Apc Min/+ Ticam1 -/- mice. A Lactobacillus strain producing dsRNA was detected in feces of Apc Min/+ mice. These results imply that the TLR3/TICAM-1 pathway inhibits polyposis through suppression of c-Myc expression and supports long survival in Apc Min/+ mice.

  17. Resolvin D1 promotes corneal epithelial wound healing and restoration of mechanical sensation in diabetic mice.

    Science.gov (United States)

    Zhang, Zhenzhen; Hu, Xiaoli; Qi, Xia; Di, Guohu; Zhang, Yangyang; Wang, Qian; Zhou, Qingjun

    2018-01-01

    To investigate the effect and mechanism of proresolving lipid mediator resolvin D1 (RvD1) on the corneal epithelium and the restoration of mechanical sensation in diabetic mice. Type 1 diabetes was induced in mice with intraperitoneal streptozocin injections. The healthy and diabetic mice underwent removal of the central corneal epithelium, and then 100 ng/ml RvD1 or its formyl peptide receptor 2 (FPR2) antagonist WRW4 was used to treat the diabetic mice. Regeneration of the corneal epithelium and nerves was observed with sodium fluorescein staining and whole-mount anti-β3-tubulin fluorescence staining. The inflammatory response level was measured with hematoxylin and eosin staining (inflammatory cell infiltration), enzyme-linked immunosorbent assay (tumor necrosis factor alpha and interleukin-1 beta content), myeloperoxidase activity, and fluorescence staining (macrophage content). The reactive oxygen species (ROS) and glutathione (GSH) levels were examined with incubation with fluorescent probes, and oxidative stress-related protein expression levels were evaluated with fluorescence staining and western blotting. Topical application of RvD1 promoted regeneration of the corneal epithelium in diabetic mice, accompanied by the reactivation of signaling and inflammation resolution related to regeneration of the epithelium. Furthermore, RvD1 directly attenuated the accumulation of ROS and nicotinamide adenine dinucleotide phosphate oxidase 2/4 expression, while RvD1 enhanced GSH synthesis and reactivated the Nrf2-ARE signaling pathway that was impaired in the corneal epithelium in the diabetic mice. More interestingly, topical application of RvD1 promoted regeneration of corneal nerves and completely restored impaired mechanical sensitivity of the cornea in diabetic mice. In addition, the promotion of corneal epithelial wound healing by RvD1 in diabetic mice was abolished by its FPR2 antagonist WRW4. Topical application of RvD1 promotes corneal epithelial wound

  18. Phosphodiesterase-1b (Pde1b) knockout mice are resistant to forced swim and tail suspension induced immobility and show upregulation of Pde10a.

    Science.gov (United States)

    Hufgard, Jillian R; Williams, Michael T; Skelton, Matthew R; Grubisha, Olivera; Ferreira, Filipa M; Sanger, Helen; Wright, Mary E; Reed-Kessler, Tracy M; Rasmussen, Kurt; Duman, Ronald S; Vorhees, Charles V

    2017-06-01

    Major depressive disorder is a leading cause of suicide and disability. Despite this, current antidepressants provide insufficient efficacy in more than 60% of patients. Most current antidepressants are presynaptic reuptake inhibitors; postsynaptic signal regulation has not received as much attention as potential treatment targets. We examined the effects of disruption of the postsynaptic cyclic nucleotide hydrolyzing enzyme, phosphodiesterase (PDE) 1b, on depressive-like behavior and the effects on PDE1B protein in wild-type (WT) mice following stress. Littermate knockout (KO) and WT mice were tested in locomotor activity, tail suspension (TST), and forced swim tests (FST). FST was also used to compare the effects of two antidepressants, fluoxetine and bupropion, in KO versus WT mice. Messenger RNA (mRNA) expression changes were also determined. WT mice underwent acute or chronic stress and markers of stress and PDE1B expression were examined. Pde1b KO mice exhibited decreased TST and FST immobility. When treated with antidepressants, both WT and KO mice showed decreased FST immobility and the effect was additive in KO mice. Mice lacking Pde1b had increased striatal Pde10a mRNA expression. In WT mice, acute and chronic stress upregulated PDE1B expression while PDE10A expression was downregulated after chronic but not acute stress. PDE1B is a potential therapeutic target for depression treatment because of the antidepressant-like phenotype seen in Pde1b KO mice.

  19. Environmental factors regulate Paneth cell phenotype and host susceptibility to intestinal inflammation in Irgm1-deficient mice

    Directory of Open Access Journals (Sweden)

    Allison R. Rogala

    2018-02-01

    Full Text Available Crohn's disease (CD represents a chronic inflammatory disorder of the intestinal tract. Several susceptibility genes have been linked to CD, though their precise role in the pathogenesis of this disorder remains unclear. Immunity-related GTPase M (IRGM is an established risk allele in CD. We have shown previously that conventionally raised (CV mice lacking the IRGM ortholog, Irgm1 exhibit abnormal Paneth cells (PCs and increased susceptibility to intestinal injury. In the present study, we sought to utilize this model system to determine if environmental conditions impact these phenotypes, as is thought to be the case in human CD. To accomplish this, wild-type and Irgm1−/− mice were rederived into specific pathogen-free (SPF and germ-free (GF conditions. We next assessed how these differential housing environments influenced intestinal injury patterns, and epithelial cell morphology and function in wild-type and Irgm1−/− mice. Remarkably, in contrast to CV mice, SPF Irgm1−/− mice showed only a slight increase in susceptibility to dextran sodium sulfate-induced inflammation. SPF Irgm1−/− mice also displayed minimal abnormalities in PC number and morphology, and in antimicrobial peptide expression. Goblet cell numbers and epithelial proliferation were also unaffected by Irgm1 in SPF conditions. No microbial differences were observed between wild-type and Irgm1−/− mice, but gut bacterial communities differed profoundly between CV and SPF mice. Specifically, Helicobacter sequences were significantly increased in CV mice; however, inoculating SPF Irgm1−/− mice with Helicobacter hepaticus was not sufficient to transmit a pro-inflammatory phenotype. In summary, our findings suggest the impact of Irgm1-deficiency on susceptibility to intestinal inflammation and epithelial function is critically dependent on environmental influences. This work establishes the importance of Irgm1−/− mice as a model to elucidate host

  20. Knockout mice reveal a role for protein tyrosine phosphatase H1 in cognition

    Directory of Open Access Journals (Sweden)

    Ardizzone Michele

    2008-08-01

    Full Text Available Abstract Background The present study has investigated the protein tyrosine phosphatase H1 (PTPH1 expression pattern in mouse brain and its impact on CNS functions. Methods We have previously described a PTPH1-KO mouse, generated by replacing the PTP catalytic and the PDZ domain with a LacZ neomycin cassette. PTPH1 expression pattern was evaluated by LacZ staining in the brain and PTPH1-KO and WT mice (n = 10 per gender per genotype were also behaviorally tested for CNS functions. Results In CNS, PTPH1 is expressed during development and in adulthood and mainly localized in hippocampus, thalamus, cortex and cerebellum neurons. The behavioral tests performed on the PTPH1-KO mice showed an impact on working memory in male mice and an impaired learning performance at rotarod in females. Conclusion These results demonstrate for the first time a neuronal expression of PTPH1 and its functionality at the level of cognition.

  1. Glyoxalase 1 overexpression does not affect atherosclerotic lesion size and severity in ApoE-/- mice with or without diabetes

    DEFF Research Database (Denmark)

    Hanssen, Nordin M J; Brouwers, Olaf; Gijbels, Marion J

    2014-01-01

    are higher in rupture-prone plaques. We here investigated whether overexpression of human GLO1 in ApoE(-/-) mice could reduce the development of atherosclerosis. METHODS AND RESULTS: We crossed C57BL/6 ApoE(-/-) mice with C57BL/6 GLO1 overexpressing mice (huGLO1(+/-)) to generate ApoE(-/-) (n = 16) and Apo......E(-/-) huGLO1(+/-) (n = 20) mice. To induce diabetes, we injected a subset with streptozotocin (STZ) to generate diabetic ApoE(-/-) (n = 8) and ApoE(-/-) huGLO1(+/-) (n = 13) mice. All mice were fed chow and sacrificed at 25 weeks of age. The GLO1 activity was three-fold increased in huGLO1(+/-) aorta......, but aortic root lesion size and phenotype did not differ between mice with and without huGLO1(+/-) overexpression. We detected no differences in gene expression in aortic arches, in AGE levels and cytokines, in circulating cells, and endothelial function between ApoE(-/-) mice with and without huGLO1...

  2. Islet-specific T cell clones transfer diabetes to nonobese diabetic (NOD) F1 mice.

    Science.gov (United States)

    Peterson, J D; Pike, B; McDuffie, M; Haskins, K

    1994-09-15

    To investigate diabetes resistance to T cell-mediated disease transfer, we administered islet-specific T cell clones to the F1 progeny of nonobese diabetic (NOD) mice that were crossed with various nondiabetes-prone inbred mouse strains. We investigated four diabetogenic CD4+ T cell clones and all induced insulitis and full development of diabetes in (SWR x NOD)F1, (SJL x NOD)F1, and (C57BL/6 x NOD)F1 mice. In contrast, (BALB/c x NOD)F1 and (CBA x NOD)F1 mice were susceptible to disease transfer by some T cell clones but not others, and (C57/L x NOD)F1 mice seemed to be resistant to both insulitis and disease transfer by all of the clones tested. Disease induced by the T cell clones in susceptible F1 strains was age dependent and could only be observed in recipients younger than 13 days old. Full or partial disease resistance did not correlate with the presence or absence of I-E, different levels of Ag expression in islet cells, or differences in APC function. The results from this study suggest that there may be multiple factors contributing to susceptibility of F1 mice to T cell clone-mediated induction of diabetes, including non-MHC-related genetic background, the immunologic maturity of the recipient, and individual characteristics of the T cell clones.

  3. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient wasted'' mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M. (Argonne National Lab., IL (United States)); Libertin, C.R. (Loyola Univ., Maywood, IL (United States))

    1992-01-01

    Mice recessive for the autosomal gene wasted'' (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/[sm bullet] mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/[sm bullet] and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  4. Adrenocortical and behavioural response to chronic restraint stress in neurokinin-1 receptor knockout mice.

    Science.gov (United States)

    Delgado-Morales, Raúl; del Río, Eva; Gómez-Román, Almudena; Bisagno, Verónica; Nadal, Roser; de Felipe, Carmen; Armario, Antonio

    2012-02-01

    Brain substance P and its receptor (neurokinin-1, NK1) have a widespread brain distribution and are involved in an important number of behavioural and physiological responses to emotional stimuli. However, the role of NK1 receptors in the consequences of exposure to chronic stress has not been explored. The present study focused on the role of these receptors in the hypothalamic-pituitary-adrenal (HPA) response to daily repeated restraint stress (evaluated by plasma corticosterone levels), as well as on the effect of this procedure on anxiety-like behaviour, spatial learning and memory in the Morris water maze (MWM), a hippocampus-dependent task. Adult null mutant NK1-/- mice, with a C57BL/6J background, and the corresponding wild-type mice showed similar resting corticosterone levels and, also, did not differ in corticosterone response to a first restraint. Nevertheless, adaptation to the repeated stressor was faster in NK1-/- mice. Chronic restraint modestly increased anxiety-like behaviour in the light-dark test, irrespective of genotype. Throughout the days of the MWM trials, NK1-/- mice showed a similar learning rate to that of wild-type mice, but had lower levels of thigmotaxis and showed a better retention in the probe trial. Chronic restraint stress did not affect these variables in either genotype. These results indicate that deletion of the NK1 receptor does not alter behavioural susceptibility to chronic repeated stress in mice, but accelerates adaptation of the HPA axis. In addition, deletion may result in lower levels of thigmotaxis and improved short-term spatial memory, perhaps reflecting a better learning strategy in the MWM. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Alpha-1 adrenoceptors in brown adipose tissue of lean and ob/ob mice

    International Nuclear Information System (INIS)

    Behrens-Zaror, G.; Himms-Hagen, J.

    1986-01-01

    Obese (ob/ob) mice have a low capacity to increase thyroxine 5'-deiodinase (T4 5'-D) in brown adipose tissue (BAT) when exposed to cold. This effect is mediated by alpha-1 (A-1) adrenoceptors. The authors objective was to find out whether BAT of the ob/ob mouse has normal A-1 receptors. Saturation analysis of binding of [3H]-WB4101 at 0.05 nM to 10 μM to crude membrane preparations (100,000 g pellets from Polytron homogenates) using the LIGAND program of Munson and Rodbard, showed two populations of binding sites in BAT of lean (+/+, 11-15 wk old) mice. Acute exposure (12 h, 14 0 C) or acclimation to cold (3 wk, 14 0 C) did not alter affinity or concentration of sites. Displacement with yohimbine and prazosin indicated binding of WB4101 to A-1 receptors. Very young (5 wk) lean (+/.) and obese mice had similar affinity constants (lean 0.13 +/- 0.043 and 34.2 +/- 14.9; obese, 0.12 +/- 0.028 and 20.9 +/- 5.48 nM) and concentrations (lean 22.4 +/- 3.8 and 647 +/- 137; obese, 28.6 +/- 4.6 and 547 +/- 105 fmol/mg protein) of sites. Old (1 yr) mice had high affinity sites similar to those in younger animals (KD lean 0.19 +/- 0.028, obese, 0.25 +/- 0.075; Bmax lean, 60.2 +/- 12.1; obese, 63.1 +/- 13.5 fmol/mg protein). The authors conclude that the ob/ob mouse has normal high affinity A-1 receptors in BAT. Anomalous properties of low affinity binding in old ob/ob mice could not be characterized because of high nonspecific binding. BAT of the ob/ob mouse does not lack A-1 receptors but may have a post-receptor alteration in the A-1 adrenoceptor-mediated response

  6. Synergistic effects of leflunomide and benazepril in streptozotocin-induced diabetic nephropathy.

    Science.gov (United States)

    Jin, Hua; Piao, Shang Guo; Jin, Ji Zhe; Jin, Ying Shun; Cui, Zhen Hua; Jin, Hai Feng; Zheng, Hai Lan; Li, Jin Ji; Jiang, Yu Ji; Yang, Chul Woo; Li, Can

    2014-01-01

    Leflunomide (LEF) and benazepril have renoprotective effects on diabetic nephropathy (DN) through their anti-inflammatory and anti-fibrotic activities. This study investigated whether combined treatment using LEF and benazepril affords superior protection compared with the respective monotherapies. Diabetes was induced with streptozotocin (STZ, 65 mg/kg) by intraperitoneal injection in male Wistar rats. Two weeks after STZ injection, diabetic rats were treated daily for 12 weeks with LEF (10 mg/kg), benazepril (10 mg/kg), or a combination of both. Basic parameters (body weight, fasting blood glucose level, and 24 h urinary protein excretion), histopathology, inflammatory [inflammatory cell infiltration (ED-1), monocyte chemoattractant protein-1 (MCP-1), and Toll-like receptor-2 (TLR-2)] and glomerulosclerotic factors [transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF)], and oxidative stress (8-hydroxy-2'-deoxyguanosine, 8-OHdG) were studied. Benazepril or LEF treatment significantly prevented body weight loss and 24 h urinary protein excretion induced by diabetes; combined treatment with LEF and benazepril further improved these parameters compared with giving each drug alone (all p benazepril and was further reduced by the combined administration of the two drugs (p benazepril provides synergistic effects in preventing DN. 2014 S. Karger AG, Basel

  7. Mice lacking the kf-1 gene exhibit increased anxiety- but not despair-like behavior

    Directory of Open Access Journals (Sweden)

    Atsushi Tsujimura

    2008-09-01

    Full Text Available KF-1 was originally identified as a protein encoded by human gene with increased expression in the cerebral cortex of a patient with Alzheimer’s disease. In mouse brain, kf-1 mRNA is detected predominantly in the hippocampus and cerebellum, and kf-1 gene expression is elevated also in the frontal cortex of rats after chronic antidepressant treatments. KF-1 mediates E2-dependent ubiquitination and may modulate cellular protein levels as an E3 ubiquitin ligase, though its target proteins are not yet identified. To elucidate the role of kf-1 in the central nervous system, we generated kf-1 knockout mice by gene targeting, using Cre-lox recombination. The resulting kf-1−/− mice were normal and healthy in appearance. Behavioral analyses revealed that kf-1−/− mice showed significantly increased anxiety-like behavior compared with kf-1+/+ littermates in the light/dark transition and elevated plus maze tests; however, no significant differences were observed in exploratory locomotion using the open field test or in behavioral despair using the forced swim and tail suspension tests. These observations suggest that KF-1 suppresses selectively anxiety under physiological conditions probably through modulating protein levels of its unknown target(s. Interestingly, kf-1−/− mice exhibited significantly increased prepulse inhibition, which is usually reduced in human schizophrenic patients. Thus, the kf-1−/− mice provide a novel animal model for elucidating molecular mechanisms of psychiatric diseases such as anxiety/depression, and may be useful for screening novel anxiolytic/antidepressant compounds.

  8. Spontaneous autoimmune gastritis and hypochlorhydria are manifest in the ileitis-prone SAMP1/YitFcs mice.

    Science.gov (United States)

    Ernst, P B; Erickson, L D; Loo, W M; Scott, K G; Wiznerowicz, E B; Brown, C C; Torres-Velez, F J; Alam, M S; Black, S G; McDuffie, M; Feldman, S H; Wallace, J L; McKnight, G W; Padol, I T; Hunt, R H; Tung, K S

    2012-01-01

    SAMP1/YitFcs mice serve as a model of Crohn's disease, and we have used them to assess gastritis. Gastritis was compared in SAMP1/YitFcs, AKR, and C57BL/6 mice by histology, immunohistochemistry, and flow cytometry. Gastric acid secretion was measured in ligated stomachs, while anti-parietal cell antibodies were assayed by immunofluorescence and enzyme-linked immunosorbent spot assay. SAMP1/YitFcs mice display a corpus-dominant, chronic gastritis with multifocal aggregates of mononuclear cells consisting of T and B lymphocytes. Relatively few aggregates were observed elsewhere in the stomach. The infiltrates in the oxyntic mucosa were associated with the loss of parietal cell mass. AKR mice, the founder strain of the SAMP1/YitFcs, also have gastritis, although they do not develop ileitis. Genetic studies using SAMP1/YitFcs-C57BL/6 congenic mice showed that the genetic regions regulating ileitis had comparable effects on gastritis. The majority of the cells in the aggregates expressed the T cell marker CD3 or the B cell marker B220. Adoptive transfer of SAMP1/YitFcs CD4(+) T helper cells, with or without B cells, into immunodeficient recipients induced a pangastritis and duodenitis. SAMP1/YitFcs and AKR mice manifest hypochlorhydria and anti-parietal cell antibodies. These data suggest that common genetic factors controlling gastroenteric disease in SAMP1/YitFcs mice regulate distinct pathogenic mechanisms causing inflammation in separate sites within the digestive tract.

  9. Sim1 Neurons Are Sufficient for MC4R-Mediated Sexual Function in Male Mice.

    Science.gov (United States)

    Semple, Erin; Hill, Jennifer W

    2018-01-01

    Sexual dysfunction is a poorly understood condition that affects up to one-third of men around the world. Existing treatments that target the periphery do not work for all men. Previous studies have shown that central melanocortins, which are released by pro-opiomelanocortin neurons in the arcuate nucleus of the hypothalamus, can lead to male erection and increased libido. Several studies specifically implicate the melanocortin 4 receptor (MC4R) in the central control of sexual function, but the specific neural circuitry involved is unknown. We hypothesized that single-minded homolog 1 (Sim1) neurons play an important role in the melanocortin-mediated regulation of male sexual behavior. To test this hypothesis, we examined the sexual behavior of mice expressing MC4R only on Sim1-positive neurons (tbMC4Rsim1 mice) in comparison with tbMC4R null mice and wild-type controls. In tbMC4Rsim1 mice, MC4R reexpression was found in the medial amygdala and paraventricular nucleus of the hypothalamus. These mice were paired with sexually experienced females, and their sexual function and behavior was scored based on mounting, intromission, and ejaculation. tbMC4R null mice showed a longer latency to mount, a reduced intromission efficiency, and an inability to reach ejaculation. Expression of MC4R only on Sim1 neurons reversed the sexual deficits seen in tbMC4R null mice. This study implicates melanocortin signaling via the MC4R on Sim1 neurons in the central control of male sexual behavior. Copyright © 2018 Endocrine Society.

  10. Crosstalk between mTORC1 and cAMP Signaling

    Science.gov (United States)

    2016-09-01

    whether bidirectional inhibition of trafficking be- tween the endoplasmic reticulum (ER) and Golgi would affect Gln-induced activation of mTORC1 (23). We...Shimizu N, Matsumoto K, Itoh M, Ishitani T. 2012. NLK positively regulates Wnt/β-catenin signalling by phosphorylating LEF1 in neural progenitor...L, Pan D, Edgar BA. 2003. Rheb promotes cell growth as a component of the insulin/ TOR signalling network . Nat Cell Biol 5: 566–571. Sengupta S

  11. Overexpression of TIMP-1 under the MMP-9 promoter interferes with wound healing in transgenic mice

    OpenAIRE

    Salonurmi, T.; Parikka, M.; Kontusaari, S.; Pirila, E.; Munaut, Carine; Salo, T.; Tryggvason, K.

    2004-01-01

    We have generated transgenic mice harboring the murine matrix metalloproteinase 9 (MMP-9) promoter cloned in front of human TIMP-1 cDNA. The transgenic mice were viable and fertile and exhibited normal growth and general development. During wound healing the mice were shown to express human TIMP-1 in keratinocytes that normally express MMP-9. However, the healing of skin wounds was significantly retarded with slow migration of keratinocytes over the wound in transgenic mice. In situ zymograph...

  12. Somatostatin receptor 1 and 5 double knockout mice mimic neurochemical changes of Huntington's disease transgenic mice.

    Directory of Open Access Journals (Sweden)

    Padmesh S Rajput

    Full Text Available Selective degeneration of medium spiny neurons and preservation of medium sized aspiny interneurons in striatum has been implicated in excitotoxicity and pathophysiology of Huntington's disease (HD. However, the molecular mechanism for the selective sparing of medium sized aspiny neurons and vulnerability of projection neurons is still elusive. The pathological characteristic of HD is an extensive reduction of the striatal mass, affecting caudate putamen. Somatostatin (SST positive neurons are selectively spared in HD and Quinolinic acid/N-methyl-D-aspartic acid induced excitotoxicity, mimic the model of HD. SST plays neuroprotective role in excitotoxicity and the biological effects of SST are mediated by five somatostatin receptor subtypes (SSTR1-5.To delineate subtype selective biological responses we have here investigated changes in SSTR1 and 5 double knockout mice brain and compared with HD transgenic mouse model (R6/2. Our study revealed significant loss of dopamine and cAMP regulated phosphoprotein of 32 kDa (DARPP-32 and comparable changes in SST, N-methyl-D-aspartic acid receptors subtypes, calbindin and brain nitric oxide synthase expression as well as in key signaling proteins including calpain, phospho-extracellular-signal-regulated kinases1/2, synapsin-IIa, protein kinase C-α and calcineurin in SSTR1/5(-/- and R6/2 mice. Conversely, the expression of somatostatin receptor subtypes, enkephalin and phosphatidylinositol 3-kinases were strain specific. SSTR1/5 appears to be important in regulating NMDARs, DARPP-32 and signaling molecules in similar fashion as seen in HD transgenic mice.This is the first comprehensive description of disease related changes upon ablation of G- protein coupled receptor gene. Our results indicate that SST and SSTRs might play an important role in regulation of neurodegeneration and targeting this pathway can provide a novel insight in understanding the pathophysiology of Huntington's disease.

  13. Deletion of the Intestinal Plasma Membrane Calcium Pump, Isoform 1, Atp2b1, in Mice is Associated with Decreased Bone Mineral Density and Impaired Responsiveness to 1, 25-Dihydroxyvitamin D3

    Science.gov (United States)

    Ryan, Zachary C.; Craig, Theodore A.; Filoteo, Adelaida G.; Westendorf, Jennifer J.; Cartwright, Elizabeth J.; Neyses, Ludwig; Strehler, Emanuel E.; Kumar, Rajiv

    2016-01-01

    The physiological importance of the intestinal plasma membrane calcium pump, isoform 1, (Pmca1, Atp2b1), in calcium absorption and homeostasis has not been previously demonstrated in vivo. Since global germ-line deletion of the Pmca1 in mice is associated with embryonic lethality, we selectively deleted the Pmca1 in intestinal absorptive cells. Mice with loxP sites flanking exon 2 of the Pmca1 gene (Pmca1fl/fl) were crossed with mice expressing Cre recombinase in the intestine under control of the villin promoter to give mice in which the Pmca1 had been deleted in the intestine (Pmca1EKO mice). Pmca1EKO mice were born at a reduced frequency and were small at the time of birth when compared to wild-type (Wt) litter mates. At two months of age, Pmca1EKO mice fed a 0.81% calcium, 0.34% phosphorus, normal vitamin D diet had reduced whole body bone mineral density (P <0.037), and reduced femoral bone mineral density (P <0.015). There was a trend towards lower serum calcium and higher serum parathyroid hormone (PTH) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) concentrations in Pmca1EKO mice compared to Wt mice but the changes were not statistically significant. The urinary phosphorus/creatinine ratio was increased in Pmca1EKO mice (P <0.004). Following the administration of 200 ng of 1α,25(OH)2D3 intraperitoneally to Wt mice, active intestinal calcium transport increased ∼2-fold, whereas Pmca1EKO mice administered an equal amount of 1α,25(OH)2D3 failed to show an increase in active calcium transport. Deletion of the Pmca1 in the intestine is associated with reduced growth and bone mineralization, and a failure to up-regulate calcium absorption in response to 1α,25(OH)2D3. PMID:26392310

  14. The ZEB1 transcription factor is a novel repressor of adiposity in female mice.

    Directory of Open Access Journals (Sweden)

    Jessica N Saykally

    Full Text Available BACKGROUND: Four genome-wide association studies mapped an "obesity" gene to human chromosome 10p11-12. As the zinc finger E-box binding homeobox 1 (ZEB1 transcription factor is encoded by the TCF8 gene located in that region, and as it influences the differentiation of various mesodermal lineages, we hypothesized that ZEB1 might also modulate adiposity. The goal of these studies was to test that hypothesis in mice. METHODOLOGY/PRINCIPAL FINDINGS: To ascertain whether fat accumulation affects ZEB1 expression, female C57BL/6 mice were fed a regular chow diet (RCD ad libitum or a 25% calorie-restricted diet from 2.5 to 18.3 months of age. ZEB1 mRNA levels in parametrial fat were six to ten times higher in the obese mice. To determine directly whether ZEB1 affects adiposity, wild type (WT mice and mice heterozygous for TCF8 (TCF8+/- were fed an RCD or a high-fat diet (HFD (60% calories from fat. By two months of age on an HFD and three months on an RCD, TCF8+/- mice were heavier than WT controls, which was attributed by Echo MRI to increased fat mass (at three months on an HFD: 0.517+/-0.081 total fat/lean mass versus 0.313+/-0.036; at three months on an RCD: 0.175+/-0.013 versus 0.124+/-0.012. No differences were observed in food uptake or physical activity, suggesting that the genotypes differ in some aspect of their metabolic activity. ZEB1 expression also increases during adipogenesis in cell culture. CONCLUSION/SIGNIFICANCE: These results show for the first time that the ZEB1 transcription factor regulates the accumulation of adipose tissue. Furthermore, they corroborate the genome-wide association studies that mapped an "obesity" gene at chromosome 10p11-12.

  15. Oral vaccine of Lactococcus lactis harbouring pandemic H1N1 2009 haemagglutinin1 and nisP anchor fusion protein elevates anti-HA1 sIgA levels in mice.

    Science.gov (United States)

    Joan, Stella Siaw Xiu; Pui-Fong, Jee; Song, Adelene Ai-Lian; Chang, Li-Yen; Yusoff, Khatijah; AbuBakar, Sazaly; Rahim, Raha Abdul

    2016-05-01

    An oral lactococcal-based vaccine which haboured the haemagglutinin1 (HA1) antigen fused to nisP anchor protein for the purpose of surface displaying the HA1 antigen was developed against H1N1 virus. Recombinant L. lactis strains expressed HA1-nisP fusion proteins when induced with nisin, as confirmed through western blotting. However, immunofluorescense did not detect any surface-displayed proteins, suggesting that the protein was either unsuccessfully translocated or improperly displayed. Despite this, oral administration of recombinant L. lactis strains to BALB/c mice revealed that significant levels of anti-HA1 sIgA antibodies were detected in mice fecal suspension samples of mice group NZ9000 (pNZ:HN) when compared to the negative control NZ9000 (pNZ8048) group. Specific anti-HA1 sIgA antibodies were locally produced and live recombinant lactococcal vaccine was able to elicit humoral response of BALB/c mice despite unsuccessful surface display of the HA1 epitope.

  16. Altered gene expression in pulmonary tissue of tryptophan hydroxylase-1 knockout mice: implications for pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Richard B Rothman

    Full Text Available The use of fenfluramines can increase the risk of developing pulmonary arterial hypertension (PAH in humans, but the mechanisms responsible are unresolved. A recent study reported that female mice lacking the gene for tryptophan hydroxylase-1 (Tph1(-/- mice were protected from PAH caused by chronic dexfenfluramine, suggesting a pivotal role for peripheral serotonin (5-HT in the disease process. Here we tested two alternative hypotheses which might explain the lack of dexfenfluramine-induced PAH in Tph1(-/- mice. We postulated that: 1 Tph1(-/- mice express lower levels of pulmonary 5-HT transporter (SERT when compared to wild-type controls, and 2 Tph1(-/- mice display adaptive changes in the expression of non-serotonergic pulmonary genes which are implicated in PAH. SERT was measured using radioligand binding methods, whereas gene expression was measured using microarrays followed by quantitative real time PCR (qRT-PCR. Contrary to our first hypothesis, the number of pulmonary SERT sites was modestly up-regulated in female Tph1(-/- mice. The expression of 51 distinct genes was significantly altered in the lungs of female Tph1(-/- mice. Consistent with our second hypothesis, qRT-PCR confirmed that at least three genes implicated in the pathogenesis of PAH were markedly up-regulated: Has2, Hapln3 and Retlna. The finding that female Tph1(-/- mice are protected from dexfenfluramine-induced PAH could be related to compensatory changes in pulmonary gene expression, in addition to reductions in peripheral 5-HT. These observations emphasize the intrinsic limitation of interpreting data from studies conducted in transgenic mice that are not fully characterized.

  17. Vaccine potential of recombinant cathepsinL1G against Fasciola gigantica in mice.

    Science.gov (United States)

    Changklungmoa, Narin; Phoinok, Natthacha; Yencham, Chonthicha; Sobhon, Prasert; Kueakhai, Pornanan

    2016-08-15

    In this study, we characterized and investigated the vaccine potential of FgCatL1G against Fasciola gigantica infection in mice. Recombinant mature FgCatL1G (rmFgCatL1G) was expressed in Escherichia coli BL21. The vaccination was performed in Imprinting Control Region (ICR) mice (n=10) by subcutaneous injection with 50μg of rmFgCatL1G combined with Freund's adjuvant. Two weeks after the second boost, mice were infected with 15 metacercariae by the oral route. The percents of protection of rmFgCatL1G vaccine were estimated to be 56.5% and 58.3% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. Antibodies in the immune sera of vaccinated mice were shown by immunoblot to react with the native FgCatL1s in the extract of all stages of parasites and rmFgCatL1H, recombinant pro - FgCatL1 (rpFgCatL1). By immunohistochemistry, the immune sera also reacted with FgCatL1s in the caecal epithelial cells of the parasites. The levels of IgG1 and IgG2a in the immune sera, which are indicative of Th2 and Th1 immune responses, were also increased with IgG1 predominating. The levels of serum glutamic oxaloacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT) in rmFgCatL1G-immunized group showed no significant difference from the control groups, but pathological lesions of livers in rmFgCatL1G-immunized group showed significant decrease when compared to the control groups. This study indicates that rmFgCatL1G has a vaccine potential against F. gigantica in mice, and this potential will be tested in larger livestock animals. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Overexpression of CCS in G93A-SOD1 mice leads to accelerated neurological deficits with severe mitochondrial pathology.

    Science.gov (United States)

    Son, Marjatta; Puttaparthi, Krishna; Kawamata, Hibiki; Rajendran, Bhagya; Boyer, Philip J; Manfredi, Giovanni; Elliott, Jeffrey L

    2007-04-03

    Cu, Zn superoxide dismutase (SOD1) has been detected within spinal cord mitochondria of mutant SOD1 transgenic mice, a model of familial ALS. The copper chaperone for SOD1 (CCS) provides SOD1 with copper, facilitates the conversion of immature apo-SOD1 to a mature holoform, and influences in yeast the cytosolic/mitochondrial partitioning of SOD1. To determine how CCS affects G93A-SOD1-induced disease, we generated transgenic mice overexpressing CCS and crossed them to G93A-SOD1 or wild-type SOD1 transgenic mice. Both CCS transgenic mice and CCS/wild-type-SOD1 dual transgenic mice are neurologically normal. In contrast, CCS/G93A-SOD1 dual transgenic mice develop accelerated neurological deficits, with a mean survival of 36 days, compared with 242 days for G93A-SOD1 mice. Immuno-EM and subcellular fractionation studies on the spinal cord show that G93A-SOD1 is enriched within mitochondria in the presence of CCS overexpression. Our results indicate that CCS overexpression in G93A-SOD1 mice produces severe mitochondrial pathology and accelerates disease course.

  19. Wfs1-deficient mice display altered function of serotonergic system and increased behavioural response to antidepressants

    Directory of Open Access Journals (Sweden)

    Tanel eVisnapuu

    2013-07-01

    Full Text Available It has been shown that mutations in the WFS1 gene make humans more susceptible to mood disorders. Besides that, mood disorders are associated with alterations in the activity of serotonergic and noradrenergic systems. Therefore, in this study, the effects of imipramine, an inhibitor of serotonin (5-HT and noradrenaline (NA reuptake, and paroxetine, a selective inhibitor of 5-HT reuptake, were studied in tests of behavioural despair. The tail suspension test (TST and forced swimming test (FST were performed in Wfs1-deficient mice. Simultaneously, gene expression and monoamine metabolism studies were conducted to evaluate changes in 5-HT- and NA-ergic systems of Wfs1-deficient mice. The basal immobility time of Wfs1-deficient mice in TST and FST did not differ from that of their wild-type littermates. However, a significant reduction of immobility time in response to lower doses of imipramine and paroxetine was observed in homozygous Wfs1-deficient mice, but not in their wild-type littermates. In gene expression studies, the levels of 5-HT transporter (SERT were significantly reduced in the pons of homozygous animals. Monoamine metabolism was assayed separately in the dorsal and ventral striatum of naive mice and mice exposed for 30 minutes tobrightly lit motility boxes. We found that this aversive challenge caused a significant increase in the levels of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA, a metabolite of 5-HT, in the ventral and dorsal striatum of wild-type mice, but not in their homozygous littermates. Taken together, the blunted 5-HT metabolism and reduced levels of SERT are a likely reason for the elevated sensitivity of these mice to the action of imipramine and paroxetine. These changes in the pharmacological and neurochemical phenotype of Wfs1-deficient mice may help to explain the increased susceptibility of Wolfram syndrome patients to depressive states.

  20. Nonmyocyte ERK1/2 signaling contributes to load-induced cardiomyopathy in Marfan mice.

    Science.gov (United States)

    Rouf, Rosanne; MacFarlane, Elena Gallo; Takimoto, Eiki; Chaudhary, Rahul; Nagpal, Varun; Rainer, Peter P; Bindman, Julia G; Gerber, Elizabeth E; Bedja, Djahida; Schiefer, Christopher; Miller, Karen L; Zhu, Guangshuo; Myers, Loretha; Amat-Alarcon, Nuria; Lee, Dong I; Koitabashi, Norimichi; Judge, Daniel P; Kass, David A; Dietz, Harry C

    2017-08-03

    Among children with the most severe presentation of Marfan syndrome (MFS), an inherited disorder of connective tissue caused by a deficiency of extracellular fibrillin-1, heart failure is the leading cause of death. Here, we show that, while MFS mice (Fbn1C1039G/+ mice) typically have normal cardiac function, pressure overload (PO) induces an acute and severe dilated cardiomyopathy in association with fibrosis and myocyte enlargement. Failing MFS hearts show high expression of TGF-β ligands, with increased TGF-β signaling in both nonmyocytes and myocytes; pathologic ERK activation is restricted to the nonmyocyte compartment. Informatively, TGF-β, angiotensin II type 1 receptor (AT1R), or ERK antagonism (with neutralizing antibody, losartan, or MEK inhibitor, respectively) prevents load-induced cardiac decompensation in MFS mice, despite persistent PO. In situ analyses revealed an unanticipated axis of activation in nonmyocytes, with AT1R-dependent ERK activation driving TGF-β ligand expression that culminates in both autocrine and paracrine overdrive of TGF-β signaling. The full compensation seen in wild-type mice exposed to mild PO correlates with enhanced deposition of extracellular fibrillin-1. Taken together, these data suggest that fibrillin-1 contributes to cardiac reserve in the face of hemodynamic stress, critically implicate nonmyocytes in disease pathogenesis, and validate ERK as a therapeutic target in MFS-related cardiac decompensation.

  1. Nucleotide-Binding Oligomerization Domain-1 and -2 Play No Role in Controlling Brucella abortus Infection in Mice

    Directory of Open Access Journals (Sweden)

    Fernanda S. Oliveira

    2012-01-01

    Full Text Available Nucleotide-binding oligomerization domain proteins (NODs are modular cytoplasmic proteins implicated in the recognition of peptidoglycan-derived molecules. Further, several in vivo studies have demonstrated a role for Nod1 and Nod2 in host defense against bacterial pathogens. Here, we demonstrated that macrophages from NOD1-, NOD2-, and Rip2-deficient mice produced lower levels of TNF-α following infection with live Brucella abortus compared to wild-type mice. Similar reduction on cytokine synthesis was not observed for IL-12 and IL-6. However, NOD1, NOD2, and Rip2 knockout mice were no more susceptible to infection with virulent B. abortus than wild-type mice. Additionally, spleen cells from NOD1-, NOD2-, and Rip2-deficient mice showed unaltered production of IFN-γ compared to C57BL/6 mice. Taken together, this study demonstrates that NOD1, NOD2 and Rip2 are dispensable for the control of B. abortus during in vivo infection.

  2. Activation of Akt1 accelerates carcinogen-induced tumorigenesis in mammary gland of virgin and post-lactating transgenic mice

    International Nuclear Information System (INIS)

    Wu, Yanyuan; Kim, Juri; Elshimali, Yayha; Sarkissyan, Marianna; Vadgama, Jaydutt V

    2014-01-01

    Data from in vivo and in vitro studies suggest that activation of Akt regulates cell survival signaling and plays a key role in tumorigenesis. Hence, transgenic mice were created to explore the oncogenic role of Akt1 in the development of mammary tumors. The transgenic mice were generated by expressing myristoylated-Akt1 (myr-Akt1) under the control of the MMTV-LTR promoter. The carcinogen 7, 12 dimethyl-1,2-benzanthracene (DMBA) was used to induce tumor formation. The MMTV driven myr-Akt1 transgene expression was detected primarily in the mammary glands, uterus, and ovaries. The expression level increased significantly in lactating mice, suggesting that the response was hormone dependent. The total Akt expression level in the mammary gland was also higher in the lactating mice. Interestingly, the expression of MMTVmyr-Akt1 in the ovaries of the transgenic mice caused significant increase in circulating estrogen levels, even at the post-lactation stage. Expression of myr-Akt1 in mammary glands alone did not increase the frequency of tumor formation. However, there was an increased susceptibility of forming mammary tumors induced by DMBA in the transgenic mice, especially in mice post-lactation. Within 34 weeks, DMBA induced mammary tumors in 42.9% of transgenic mice post-lactation, but not in wild-type mice post-lactation. The myr-Akt1 mammary tumors induced by DMBA had increased phosphorylated-Akt1 and showed strong expression of estrogen receptor (ERα) and epidermal growth factor receptor (EGFR). In addition, Cyclin D1 was more frequently up-regulated in mammary tumors from transgenic mice compared to tumors from wild-type mice. Overexpression of Cyclin D1, however, was not completely dependent on activated Akt1. Interestingly, mammary tumors that had metastasized to secondary sites had increased expression of Twist and Slug, but low expression of Cyclin D1. In summary, the MMTVmyr-Akt1 transgenic mouse model could be useful to study mechanisms of ER

  3. Beta-Amyloid Downregulates MDR1-P-Glycoprotein (Abcb1 Expression at the Blood-Brain Barrier in Mice

    Directory of Open Access Journals (Sweden)

    Anja Brenn

    2011-01-01

    Full Text Available Neurovascular dysfunction is an important component of Alzheimer's disease, leading to reduced clearance across the blood-brain barrier and accumulation of neurotoxic β-amyloid (Aβ peptides in the brain. It has been shown that the ABC transport protein P-glycoprotein (P-gp, ABCB1 is involved in the export of Aβ from the brain into the blood. To determine whether Aβ influences the expression of key Aβ transporters, we studied the effects of 1-day subcutaneous Aβ1-40 and Aβ1-42 administration via Alzet mini-osmotic pumps on P-gp, BCRP, LRP1, and RAGE expression in the brain of 90-day-old male FVB mice. Our results demonstrate significantly reduced P-gp, LRP1, and RAGE mRNA expression in mice treated with Aβ1-42 compared to controls, while BCRP expression was not affected. The expression of the four proteins was unchanged in mice treated with Aβ1-40 or reverse-sequence peptides. These findings indicate that, in addition to the age-related decrease of P-gp expression, Aβ1-42 itself downregulates the expression of P-gp and other Aβ-transporters, which could exacerbate the intracerebral accumulation of Aβ and thereby accelerate neurodegeneration in Alzheimer's disease and cerebral β-amyloid angiopathy.

  4. Deletion of Lkb1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice.

    Science.gov (United States)

    Claret, Marc; Smith, Mark A; Knauf, Claude; Al-Qassab, Hind; Woods, Angela; Heslegrave, Amanda; Piipari, Kaisa; Emmanuel, Julian J; Colom, André; Valet, Philippe; Cani, Patrice D; Begum, Ghazala; White, Anne; Mucket, Phillip; Peters, Marco; Mizuno, Keiko; Batterham, Rachel L; Giese, K Peter; Ashworth, Alan; Burcelin, Remy; Ashford, Michael L; Carling, David; Withers, Dominic J

    2011-03-01

    AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca(2+)-calmodulin-dependent protein kinase kinase β (CaMKKβ) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation. Mice lacking either Camkkβ or Lkb1 in POMC neurons were generated, and physiological, electrophysiological, and molecular biology studies were performed. Deletion of Camkkβ in POMC neurons does not alter energy homeostasis or glucose metabolism. In contrast, female mice lacking Lkb1 in POMC neurons (PomcLkb1KO) display glucose intolerance, insulin resistance, impaired suppression of hepatic glucose production, and altered expression of hepatic metabolic genes. The underlying cellular defect in PomcLkb1KO mice involves a reduction in melanocortin tone caused by decreased α-melanocyte-stimulating hormone secretion. However, Lkb1-deficient POMC neurons showed normal glucose sensing, and body weight was unchanged in PomcLkb1KO mice. Our findings demonstrate that LKB1 in hypothalamic POMC neurons plays a key role in the central regulation of peripheral glucose metabolism but not body-weight control. This phenotype contrasts with that seen in mice lacking AMPK in POMC neurons with defects in body-weight regulation but not glucose homeostasis, which suggests that LKB1 plays additional functions distinct from activating AMPK in POMC neurons.

  5. Hyperexpressed netrin-1promoted neural stem cells migration in mice after focal cerebral ischemia

    OpenAIRE

    Haiyan Lu; Xiaoyan Song; Feng Wang; Guodong Wang; Yuncheng Wu; Qiaoshu Wang; Yongting Wang; Guoyuan Yang; Zhijun Zhang

    2016-01-01

    Endogenous Netrin-1 (NT-1) protein was significantly increased after cerebral ischemia, which may participate in the repair after transient cerebral ischemic injury. In this work, we explored whether NT-1 can be steadily overexpressed by adeno-associated virus (AAV) and the exogenous NT-1 can promote neural stem cells migration from the subventricular zone (SVZ) region after cerebral ischemia. Adult CD-1 mice were injected stereotacticly with AAV carrying NT-1 gene (AAV-NT-1). Mice underwent ...

  6. Developmental alterations in motor coordination and medium spiny neuron markers in mice lacking pgc-1α.

    Directory of Open Access Journals (Sweden)

    Elizabeth K Lucas

    Full Text Available Accumulating evidence implicates the transcriptional coactivator peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α in the pathophysiology of Huntington Disease (HD. Adult PGC-1α (-/- mice exhibit striatal neurodegeneration, and reductions in the expression of PGC-1α have been observed in striatum and muscle of HD patients as well as in animal models of the disease. However, it is unknown whether decreased expression of PGC-1α alone is sufficient to lead to the motor phenotype and striatal pathology characteristic of HD. For the first time, we show that young PGC-1α (-/- mice exhibit severe rotarod deficits, decreased rearing behavior, and increased occurrence of tremor in addition to the previously described hindlimb clasping. Motor impairment and striatal vacuolation are apparent in PGC-1α (-/- mice by four weeks of age and do not improve or decline by twelve weeks of age. The behavioral and pathological phenotype of PGC-1α (-/- mice can be completely recapitulated by conditional nervous system deletion of PGC-1α, indicating that peripheral effects are not responsible for the observed abnormalities. Evaluation of the transcriptional profile of PGC-1α (-/- striatal neuron populations and comparison to striatal neuron profiles of R6/2 HD mice revealed that PGC-1α deficiency alone is not sufficient to cause the transcriptional changes observed in this HD mouse model. In contrast to R6/2 HD mice, PGC-1α (-/- mice show increases in the expression of medium spiny neuron (MSN markers with age, suggesting that the observed behavioral and structural abnormalities are not primarily due to MSN loss, the defining pathological feature of HD. These results indicate that PGC-1α is required for the proper development of motor circuitry and transcriptional homeostasis in MSNs and that developmental disruption of PGC-1α leads to long-term alterations in motor functioning.

  7. NADPH Oxidase Contributes to Photoreceptor Degeneration in Constitutively Active RAC1 Mice

    Science.gov (United States)

    Song, Hongman; Vijayasarathy, Camasamudram; Zeng, Yong; Marangoni, Dario; Bush, Ronald A.; Wu, Zhijian; Sieving, Paul A.

    2016-01-01

    Purpose The active form of small GTPase RAC1 is required for activation of NADPH oxidase (NOX), which in turn generates reactive oxygen species (ROS) in nonphagocytic cells. We explored whether NOX-induced oxidative stress contributes to rod degeneration in retinas expressing constitutively active (CA) RAC1. Methods Transgenic (Tg)–CA-RAC1 mice were given apocynin (10 mg/kg, intraperitoneal), a NOX inhibitor, or vehicle daily for up to 13 weeks. Superoxide production and oxidative damage were assessed by dihydroethidium staining and by protein carbonyls and malondialdehyde levels, respectively. Outer nuclear layer (ONL) cells were counted and electroretinogram (ERG) amplitudes measured in Tg-CA-RAC1 mice. Outer nuclear layer cells were counted in wild-type (WT) mice after transfer of CA-Rac1 gene by subretinal injection of AAV8-pOpsin-CA Rac1-GFP. Results Transgenic-CA-RAC1 retinas had significantly fewer photoreceptor cells and more apoptotic ONL cells than WT controls from postnatal week (Pw) 3 to Pw13. Superoxide accumulation and protein and lipid oxidation were increased in Tg-CA-RAC1 retinas and were reduced in mice treated with apocynin. Apocynin reduced the loss of photoreceptors and increased the rod ERG a- and b-wave amplitudes when compared with vehicle-injected transgenic controls. Photoreceptor loss was also observed in regions of adult WT retina transduced with AAV8-pOpsin-CA Rac1-GFP but not in neighboring regions that were not transduced or in AAV8-pOpsin-GFP–transduced retinas. Conclusions Constitutively active RAC1 promotes photoreceptor cell death by oxidative damage that occurs, at least partially, through NOX-induced ROS. Reactive oxygen species are likely involved in multiple forms of retinal degenerations, and our results support investigating RAC1 inhibition as a therapeutic approach that targets this disease pathway. PMID:27233035

  8. Spontaneous autoimmune gastritis and hypochlorhydria are manifest in the ileitis-prone SAMP1/YitFcs mice

    Science.gov (United States)

    Erickson, L. D.; Loo, W. M.; Scott, K. G.; Wiznerowicz, E. B.; Brown, C. C.; Torres-Velez, F. J.; Alam, M. S.; Black, S. G.; McDuffie, M.; Feldman, S. H.; Wallace, J. L.; McKnight, G. W.; Padol, I. T.; Hunt, R. H.; Tung, K. S.

    2012-01-01

    SAMP1/YitFcs mice serve as a model of Crohn's disease, and we have used them to assess gastritis. Gastritis was compared in SAMP1/YitFcs, AKR, and C57BL/6 mice by histology, immunohistochemistry, and flow cytometry. Gastric acid secretion was measured in ligated stomachs, while anti-parietal cell antibodies were assayed by immunofluorescence and enzyme-linked immunosorbent spot assay. SAMP1/YitFcs mice display a corpus-dominant, chronic gastritis with multifocal aggregates of mononuclear cells consisting of T and B lymphocytes. Relatively few aggregates were observed elsewhere in the stomach. The infiltrates in the oxyntic mucosa were associated with the loss of parietal cell mass. AKR mice, the founder strain of the SAMP1/YitFcs, also have gastritis, although they do not develop ileitis. Genetic studies using SAMP1/YitFcs-C57BL/6 congenic mice showed that the genetic regions regulating ileitis had comparable effects on gastritis. The majority of the cells in the aggregates expressed the T cell marker CD3 or the B cell marker B220. Adoptive transfer of SAMP1/YitFcs CD4+ T helper cells, with or without B cells, into immunodeficient recipients induced a pangastritis and duodenitis. SAMP1/YitFcs and AKR mice manifest hypochlorhydria and anti-parietal cell antibodies. These data suggest that common genetic factors controlling gastroenteric disease in SAMP1/YitFcs mice regulate distinct pathogenic mechanisms causing inflammation in separate sites within the digestive tract. PMID:21921286

  9. FMR1 Knockout mice: A model to study fragile X mental retardation

    Energy Technology Data Exchange (ETDEWEB)

    Oostra, B.A.; Bakker, C.E.; Reyniers, E. [Erasmus Univ., Rotterdam (Netherlands)] [and others

    1994-09-01

    The fragile X syndrome is the most frequent form of inherited mental retardation in humans with an incidence of 1 in 1250 males and 1 in 2500 females. The clinical syndrome includes moderate to severe mental retardation, autistic behavior, macroorchidism, and facial features, such as long face with mandibular prognathism and large, everted ears. The molecular basis for this disease is a large expansion of a triplet repeat (CGG){sub n} in the 5{prime} untranslated region of the FMR1 gene. Due to this large expansion of the CGG repeat, the promoter region becomes methylated and the FMR1 gene is subsequently silenced. Hardly anything is known about the physiologic function of FMR1 and the pathologic mechanisms leading to these symptoms. Since the FMR1 gene is highly conserved in the mouse, we used the mouse to design a knockout model for the fragile X syndrome. These knockout mice lacking Fmrp have normal litter size suggesting that FMR1 is not essential in human gametogenesis and embryonic development. The knockout mice show the abnormalities also seen in the affected organs of human patients. Mutant mice show a gradual development through time of macroorchidism. In the knockout mice we observed cognitive defects in the form of deficits in learning (as shown by the hidden platform Morris water maze task) and behavioral abnormalities such as increased exploratory behavior and hyperactivity. Therefore this knockout mouse may serve as a valuable tool in studying the role of FMR1 in the fragile X syndrome and may serve as a model to elucidate the mechanisms involved in macroorchidism, abnormal behavior, and mental retardation.

  10. Altered social behaviours in neurexin 1α knockout mice resemble core symptoms in neurodevelopmental disorders.

    Directory of Open Access Journals (Sweden)

    Hannah Mary Grayton

    Full Text Available BACKGROUND: Copy number variants have emerged as an important genomic cause of common, complex neurodevelopmental disorders. These usually change copy number of multiple genes, but deletions at 2p16.3, which have been associated with autism, schizophrenia and mental retardation, affect only the neurexin 1 gene, usually the alpha isoform. Previous analyses of neurexin 1α (Nrxn1α knockout (KO mouse as a model of these disorders have revealed impairments in synaptic transmission but failed to reveal defects in social behaviour, one of the core symptoms of autism. METHODS: We performed a detailed investigation of the behavioural effects of Nrxn1α deletion in mice bred onto a pure genetic background (C57BL/6J to gain a better understanding of its role in neurodevelopmental disorders. Wildtype, heterozygote and homozygote Nrxn1α KO male and female mice were tested in a battery of behavioural tests (n = 9-16 per genotype, per sex. RESULTS: In homozygous Nrxn1α KO mice, we observed altered social approach, reduced social investigation, and reduced locomotor activity in novel environments. In addition, male Nrxn1α KO mice demonstrated an increase in aggressive behaviours. CONCLUSIONS: These are the first experimental data that associate a deletion of Nrxn1α with alterations of social behaviour in mice. Since this represents one of the core symptom domains affected in autism spectrum disorders and schizophrenia in humans, our findings suggest that deletions within NRXN1 found in patients may be responsible for the impairments seen in social behaviours, and that the Nrxn1α KO mice are a useful model of human neurodevelopmental disorder.

  11. Altered Social Behaviours in Neurexin 1α Knockout Mice Resemble Core Symptoms in Neurodevelopmental Disorders

    Science.gov (United States)

    Grayton, Hannah Mary; Missler, Markus

    2013-01-01

    Background Copy number variants have emerged as an important genomic cause of common, complex neurodevelopmental disorders. These usually change copy number of multiple genes, but deletions at 2p16.3, which have been associated with autism, schizophrenia and mental retardation, affect only the neurexin 1 gene, usually the alpha isoform. Previous analyses of neurexin 1α (Nrxn1α) knockout (KO) mouse as a model of these disorders have revealed impairments in synaptic transmission but failed to reveal defects in social behaviour, one of the core symptoms of autism. Methods We performed a detailed investigation of the behavioural effects of Nrxn1α deletion in mice bred onto a pure genetic background (C57BL/6J) to gain a better understanding of its role in neurodevelopmental disorders. Wildtype, heterozygote and homozygote Nrxn1α KO male and female mice were tested in a battery of behavioural tests (n = 9–16 per genotype, per sex). Results In homozygous Nrxn1α KO mice, we observed altered social approach, reduced social investigation, and reduced locomotor activity in novel environments. In addition, male Nrxn1α KO mice demonstrated an increase in aggressive behaviours. Conclusions These are the first experimental data that associate a deletion of Nrxn1α with alterations of social behaviour in mice. Since this represents one of the core symptom domains affected in autism spectrum disorders and schizophrenia in humans, our findings suggest that deletions within NRXN1 found in patients may be responsible for the impairments seen in social behaviours, and that the Nrxn1α KO mice are a useful model of human neurodevelopmental disorder. PMID:23840597

  12. Chronic Pseudomonas aeruginosa lung infection is more severe in Th2 responding BALB/c mice compared to Th1 responding C3H/HeN mice

    DEFF Research Database (Denmark)

    Moser, C; Johansen, H K; Song, Z

    1997-01-01

    model of this infection was established in two strains of mice: C3H/HeN and BALB/c, generally known as Th1 and Th2 responders, respectively, which were challenged with alginate-embedded P. aeruginosa. Mortality was significantly lower in C3H/HeN compared to BALB/c mice (p ... was cleared more efficiently in C3H/HeN mice and significantly more C3H/HeN mice showed normal lung histopathology (p BALB/c mice (p ... from the two strains of mice, the interferon-(IFN-) gamma levels were higher, whereas IL-4 levels were lower in C3H/HeN mice than in BALB/c mice. The implications of these findings for CF patients with chronic P. aeruginosa lung infection are discussed....

  13. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins

    NARCIS (Netherlands)

    Schinkel, A. H.; Mayer, U.; Wagenaar, E.; Mol, C. A.; van Deemter, L.; Smit, J. J.; van der Valk, M. A.; Voordouw, A. C.; Spits, H.; van Tellingen, O.; Zijlmans, J. M.; Fibbe, W. E.; Borst, P.

    1997-01-01

    The mdr1-type P-glycoproteins (P-gps) confer multidrug resistance to cancer cells by active extrusion of a wide range of drugs from the cell. To study their physiological roles, we have generated mice genetically deficient in the mdr1b gene [mdr1b (-/-) mice] and in both the mdr1a and mdr1b genes

  14. Mice with deleted multimerin 1 and alpha-synuclein genes have impaired platelet adhesion and impaired thrombus formation that is corrected by multimerin 1.

    Science.gov (United States)

    Reheman, Adili; Tasneem, Subia; Ni, Heyu; Hayward, Catherine P M

    2010-05-01

    Multimerin 1 is a stored platelet and endothelial cell adhesive protein that shows significant conservation. In vitro, multimerin 1 supports platelet adhesion and it also binds to collagen and enhances von Willebrand factor-dependent platelet adhesion to collagen. As selective, multimerin 1 deficient mice have not been generated, we investigated multimerin 1 effects on platelet adhesion using a subpopulation of C57BL/6J mice with tandem deletion of the genes for multimerin 1 and alpha-synuclein, a protein that inhibits alpha-granule release in vitro. We postulated that multimerin 1/alpha-synuclein deficient mice might show impaired platelet adhesive function from multimerin 1 deficiency and increased alpha-granule release from alpha-synuclein deficiency. Platelet function was assessed by intravital microscopy, after ferric chloride injury, using untreated and human multimerin 1-transfused multimerin 1/alpha-synuclein deficient mice, and by in vitro assays of adhesion, aggregation and thrombin-induced P-selectin release. Multimerin 1/alpha-synuclein deficient mice showed impaired platelet adhesion and their defective thrombus formation at sites of vessel injury improved with multimerin 1 transfusion. Although multimerin 1/alpha-synuclein deficient platelets showed increased P-selectin release at low thrombin concentrations, they also showed impaired adhesion to collagen, and attenuated aggregation with thrombin, that improved with added multimerin 1. Our data suggest that multimerin 1 supports platelet adhesive functions and thrombus formation, which will be important to verify by generating and testing selective multimerin 1 deficient mice. Copyright (c) 2010. Published by Elsevier Ltd.

  15. Tolerance induction between two different strains of parental mice prevents graft-versus-host disease in haploidentical hematopoietic stem cell transplantation to F1 mice

    International Nuclear Information System (INIS)

    Guo, Yixian; Zhang, Lanfang; Wan, Suigui; Sun, Xuejing; Wu, Yongxia; Yu, Xue-Zhong; Xia, Chang-Qing

    2014-01-01

    Highlights: • Injection of UVB-irradiated iDCs induces alloantigen tolerance. • This alloantigen tolerance may be associated regulatory T cell induction. • Tolerant mice serve as bone marrow donors reduces GVHD to their F1 recipients in allo-HSCT. • Tolerance is maintained in F1 recipients for long time post HSCT. - Abstract: Haploidentical hematopoietic stem cell transplantation (Haplo-HSCT) has been employed worldwide in recent years and led to favorable outcome in a group of patients who do not have human leukocyte antigen (HLA)-matched donors. However, the high incidence of severe graft-versus-host disease (GVHD) is a major problem for Haplo-HSCT. In the current study, we performed a proof of concept mouse study to test whether induction of allogeneic tolerance between two different parental strains was able to attenuate GVHD in Haplo-HSCT to the F1 mice. We induced alloantigen tolerance in C3H mice (H-2k) using ultraviolet B (UVB) irradiated immature dendritic cells (iDCs) derived from the cultures of Balb/c bone marrow cells. Then, we performed Haplo-HSCT using tolerant C3H mice as donors to F1 mice (C3H × Balb/c). The results demonstrated that this approach markedly reduced GVHD-associated death and significantly prolonged the survival of recipient mice in contrast to the groups with donors (C3H mice) that received infusion of non-UVB-irradiated DCs. Further studies showed that there were enhanced Tregs in the tolerant mice and alloantigen-specific T cell response was skewed to more IL-10-producing T cells, suggesting that these regulatory T cells might have contributed to the attenuation of GVHD. This study suggests that it is a feasible approach to preventing GVHD in Haplo-HSCT in children by pre-induction of alloantigen tolerance between the two parents. This concept may also lead to more opportunities in cell-based immunotherapy for GVHD post Haplo-HSCT

  16. Tolerance induction between two different strains of parental mice prevents graft-versus-host disease in haploidentical hematopoietic stem cell transplantation to F1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yixian; Zhang, Lanfang; Wan, Suigui; Sun, Xuejing; Wu, Yongxia [Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Yu, Xue-Zhong [Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425 (United States); Xia, Chang-Qing, E-mail: cqx65@yahoo.com [Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2014-04-18

    Highlights: • Injection of UVB-irradiated iDCs induces alloantigen tolerance. • This alloantigen tolerance may be associated regulatory T cell induction. • Tolerant mice serve as bone marrow donors reduces GVHD to their F1 recipients in allo-HSCT. • Tolerance is maintained in F1 recipients for long time post HSCT. - Abstract: Haploidentical hematopoietic stem cell transplantation (Haplo-HSCT) has been employed worldwide in recent years and led to favorable outcome in a group of patients who do not have human leukocyte antigen (HLA)-matched donors. However, the high incidence of severe graft-versus-host disease (GVHD) is a major problem for Haplo-HSCT. In the current study, we performed a proof of concept mouse study to test whether induction of allogeneic tolerance between two different parental strains was able to attenuate GVHD in Haplo-HSCT to the F1 mice. We induced alloantigen tolerance in C3H mice (H-2k) using ultraviolet B (UVB) irradiated immature dendritic cells (iDCs) derived from the cultures of Balb/c bone marrow cells. Then, we performed Haplo-HSCT using tolerant C3H mice as donors to F1 mice (C3H × Balb/c). The results demonstrated that this approach markedly reduced GVHD-associated death and significantly prolonged the survival of recipient mice in contrast to the groups with donors (C3H mice) that received infusion of non-UVB-irradiated DCs. Further studies showed that there were enhanced Tregs in the tolerant mice and alloantigen-specific T cell response was skewed to more IL-10-producing T cells, suggesting that these regulatory T cells might have contributed to the attenuation of GVHD. This study suggests that it is a feasible approach to preventing GVHD in Haplo-HSCT in children by pre-induction of alloantigen tolerance between the two parents. This concept may also lead to more opportunities in cell-based immunotherapy for GVHD post Haplo-HSCT.

  17. Interleukin 1-induced augmentation of experimental metastases from a human melanoma in nude mice

    International Nuclear Information System (INIS)

    Giavazzi, R.; Garofalo, A.; Bani, M.R.; Abbate, M.; Ghezzi, P.; Boraschi, D.; Mantovani, A.; Dejana, E.

    1990-01-01

    This study has examined the effect of the cytokine interleukin 1 (IL-1) on metastasis formation by the human melanoma A375M in nude mice. We have found that human recombinant IL-1 beta (a single injection greater than 0.01 micrograms per mouse i.v. given before tumor cells) induced an augmentation of experimental lung metastases from the A375M tumor cells in nude mice. This effect was rapidly induced and reversible within 24 h after IL-1 injection. A similar effect was induced by human recombinant IL-1 alpha and human recombinant tumor necrosis factor, but not by human recombinant interleukin 6. 5-[125I]odo-2'-deoxyuridine-radiolabeled A375M tumor cells injected i.v. remained at a higher level in the lungs of nude mice receiving IL-1 than in control mice. In addition, IL-1 injected 1 h, but not 24 h, after tumor cells enhanced lung colonization as well, thus suggesting an effect of IL-1 on the vascular transit of tumor cells. These findings may explain the observation of enhanced secondary localization of tumor cells at inflammatory sites and suggest that modulation of secondary spread should be carefully considered when assessing the ability of this cytokine to complement cytoreductive therapies

  18. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    Energy Technology Data Exchange (ETDEWEB)

    Minegishi, Yoshiki [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Department of Plastic and Reconstructive Surgery, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193 (Japan); Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sakai, Yasuo [Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Department of Plastic Surgery, Bellland General Hospital, 500-3 Higashiyama Naka-ku, Sakai, Osaka 599-8247 (Japan); Yahara, Yasuhito [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Akiyama, Haruhiko [Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagito, Gifu 501-1194 (Japan); Yoshikawa, Hideki [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Hosokawa, Ko [Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tsumaki, Noriyuki, E-mail: ntsumaki@cira.kyoto-u.ac.jp [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Japan Science and Technology Agency, CREST, Tokyo 102-0075 (Japan)

    2014-11-07

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1{sup Δchon} cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone.

  19. Niacin and biosynthesis of PGD2 by platelet COX-1 in mice and humans

    Science.gov (United States)

    Song, Wen-Liang; Stubbe, Jane; Ricciotti, Emanuela; Alamuddin, Naji; Ibrahim, Salam; Crichton, Irene; Prempeh, Maxwell; Lawson, John A.; Wilensky, Robert L.; Rasmussen, Lars Melholt; Puré, Ellen; FitzGerald, Garret A.

    2012-01-01

    The clinical use of niacin to treat dyslipidemic conditions is limited by noxious side effects, most commonly facial flushing. In mice, niacin-induced flushing results from COX-1–dependent formation of PGD2 and PGE2 followed by COX-2–dependent production of PGE2. Consistent with this, niacin-induced flushing in humans is attenuated when niacin is combined with an antagonist of the PGD2 receptor DP1. NSAID-mediated suppression of COX-2–derived PGI2 has negative cardiovascular consequences, yet little is known about the cardiovascular biology of PGD2. Here, we show that PGD2 biosynthesis is augmented during platelet activation in humans and, although vascular expression of DP1 is conserved between humans and mice, platelet DP1 is not present in mice. Despite this, DP1 deletion in mice augmented aneurysm formation and the hypertensive response to Ang II and accelerated atherogenesis and thrombogenesis. Furthermore, COX inhibitors in humans, as well as platelet depletion, COX-1 knockdown, and COX-2 deletion in mice, revealed that niacin evoked platelet COX-1–derived PGD2 biosynthesis. Finally, ADP-induced spreading on fibrinogen was augmented by niacin in washed human platelets, coincident with increased thromboxane (Tx) formation. However, in platelet-rich plasma, where formation of both Tx and PGD2 was increased, spreading was not as pronounced and was inhibited by DP1 activation. Thus, PGD2, like PGI2, may function as a homeostatic response to thrombogenic and hypertensive stimuli and may have particular relevance as a constraint on platelets during niacin therapy. PMID:22406532

  20. Autosomal dominant pseudohypoaldosteronism type 1 with a novel splice site mutation in MR gene

    Directory of Open Access Journals (Sweden)

    Kaito Hiroshi

    2009-11-01

    Full Text Available Abstract Background Autosomal dominant pseudohypoaldosteronism type 1 (PHA1 is a rare inherited condition that is characterized by renal resistance to aldosterone as well as salt wasting, hyperkalemia, and metabolic acidosis. Renal PHA1 is caused by mutations of the human mineralcorticoid receptor gene (MR, but it is a matter of debate whether MR mutations cause mineralcorticoid resistance via haploinsufficiency or dominant negative mechanism. It was previously reported that in a case with nonsense mutation the mutant mRNA was absent in lymphocytes because of nonsense mediated mRNA decay (NMD and therefore postulated that haploinsufficiency alone can give rise to the PHA1 phenotype in patients with truncated mutations. Methods and Results We conducted genomic DNA analysis and mRNA analysis for familial PHA1 patients extracted from lymphocytes and urinary sediments and could detect one novel splice site mutation which leads to exon skipping and frame shift result in premature termination at the transcript level. The mRNA analysis showed evidence of wild type and exon-skipped RT-PCR products. Conclusion mRNA analysis have been rarely conducted for PHA1 because kidney tissues are unavailable for this disease. However, we conducted RT-PCR analysis using mRNA extracted from urinary sediments. We could demonstrate that NMD does not fully function in kidney cells and that haploinsufficiency due to NMD with premature termination is not sufficient to give rise to the PHA1 phenotype at least in this mutation of our patient. Additional studies including mRNA analysis will be needed to identify the exact mechanism of the phenotype of PHA.

  1. Endothelin-1 overexpression exacerbates atherosclerosis and induces aortic aneurysms in apolipoprotein E knockout mice.

    Science.gov (United States)

    Li, Melissa W; Mian, Muhammad Oneeb Rehman; Barhoumi, Tlili; Rehman, Asia; Mann, Koren; Paradis, Pierre; Schiffrin, Ernesto L

    2013-10-01

    Endothelin (ET)-1 plays a role in vascular reactive oxygen species production and inflammation. ET-1 has been implicated in human atherosclerosis and abdominal aortic aneurysm (AAA) development. ET-1 overexpression exacerbates high-fat diet-induced atherosclerosis in apolipoprotein E(-/-) (Apoe(-/-)) mice. ET-1-induced reactive oxygen species and inflammation may contribute to atherosclerosis progression and AAA development. Eight-week-old male wild-type mice, transgenic mice overexpressing ET-1 selectively in endothelium (eET-1), Apoe(-/-) mice, and eET-1/Apoe(-/-) mice were fed high-fat diet for 8 weeks. eET-1/Apoe(-/-) had a 45% reduction in plasma high-density lipoprotein (P<0.05) and presented ≥ 2-fold more aortic atherosclerotic lesions compared with Apoe(-/-) (P<0.01). AAAs were detected only in eET-1/Apoe(-/-) (8/21; P<0.05). Reactive oxygen species production was increased ≥ 2-fold in perivascular fat, media, or atherosclerotic lesions in the ascending aorta and AAAs of eET-1/Apoe(-/-) compared with Apoe(-/-) (P<0.05). Monocyte/macrophage infiltration was enhanced ≥ 2.5-fold in perivascular fat of ascending aorta and AAAs in eET-1/Apoe(-/-) compared with Apoe(-/-) (P<0.05). CD4(+) T cells were detected almost exclusively in perivascular fat (3/6) and atherosclerotic lesions (5/6) in ascending aorta of eET-1/Apoe(-/-) (P<0.05). The percentage of spleen proinflammatory Ly-6C(hi) monocytes was enhanced 26% by ET-1 overexpression in Apoe(-/-) (P<0.05), and matrix metalloproteinase-2 was increased 2-fold in plaques of eET-1/Apoe(-/-) (P<0.05) compared with Apoe(-/-). ET-1 plays a role in progression of atherosclerosis and AAA formation by decreasing high-density lipoprotein, and increasing oxidative stress, inflammatory cell infiltration, and matrix metalloproteinase-2 in perivascular fat, vascular wall, and atherosclerotic lesions.

  2. Mice lacking collapsin response mediator protein 1 manifest hyperactivity, impaired learning and memory, and impaired prepulse inhibition

    Directory of Open Access Journals (Sweden)

    Naoya eYamashita

    2013-12-01

    Full Text Available Collapsin response mediator protein 1 (CRMP1 is one of the CRMP family members that are involved in various aspects of neuronal development such as axonal guidance and neuronal migration. Here we provide evidence that crmp1-/- mice exhibited behavioral abnormalities related to schizophrenia. The crmp1-/- mice exhibited hyperactivity and/or impaired emotional behavioral phenotype. These mice also exhibited impaired context-dependent memory and long-term memory retention. Furthermore, crmp1-/- mice exhibited decreased prepulse inhibition, and this phenotype was rescued by administration of chlorpromazine, a typical antipsychotic drug. In addition, in vivo microdialysis revealed that the methamphetamine-induced release of dopamine in prefrontal cortex was exaggerated in crmp1-/- mice, suggesting that enhanced mesocortical dopaminergic transmission contributes to their hyperactivity phenotype. These observations suggest that impairment of CRMP1 function may be involved in the pathogenesis of schizophrenia. We propose that crmp1-/- mouse may model endophenotypes present in this neuropsychiatric disorder.

  3. CALHM1 deficiency impairs cerebral neuron activity and memory flexibility in mice.

    Science.gov (United States)

    Vingtdeux, Valérie; Chang, Eric H; Frattini, Stephen A; Zhao, Haitian; Chandakkar, Pallavi; Adrien, Leslie; Strohl, Joshua J; Gibson, Elizabeth L; Ohmoto, Makoto; Matsumoto, Ichiro; Huerta, Patricio T; Marambaud, Philippe

    2016-04-12

    CALHM1 is a cell surface calcium channel expressed in cerebral neurons. CALHM1 function in the brain remains unknown, but recent results showed that neuronal CALHM1 controls intracellular calcium signaling and cell excitability, two mechanisms required for synaptic function. Here, we describe the generation of Calhm1 knockout (Calhm1(-/-)) mice and investigate CALHM1 role in neuronal and cognitive functions. Structural analysis revealed that Calhm1(-/-) brains had normal regional and cellular architecture, and showed no evidence of neuronal or synaptic loss, indicating that CALHM1 deficiency does not affect brain development or brain integrity in adulthood. However, Calhm1(-/-) mice showed a severe impairment in memory flexibility, assessed in the Morris water maze, and a significant disruption of long-term potentiation without alteration of long-term depression, measured in ex vivo hippocampal slices. Importantly, in primary neurons and hippocampal slices, CALHM1 activation facilitated the phosphorylation of NMDA and AMPA receptors by protein kinase A. Furthermore, neuronal CALHM1 activation potentiated the effect of glutamate on the expression of c-Fos and C/EBPβ, two immediate-early gene markers of neuronal activity. Thus, CALHM1 controls synaptic activity in cerebral neurons and is required for the flexible processing of memory in mice. These results shed light on CALHM1 physiology in the mammalian brain.

  4. Transient Receptor Potential Vanilloid 1 is essential for cisplatin-induced heat hyperalgesia in mice

    Directory of Open Access Journals (Sweden)

    Carlton Susan M

    2010-03-01

    Full Text Available Abstract Background Cisplatin is primarily used for treatment of ovarian and testicular cancer. Oxaliplatin is the only effective treatment for metastatic colorectal cancer. Both are known to cause dose related, cumulative toxic effects on the peripheral nervous system and thirty to forty percent of cancer patients receiving these agents experience painful peripheral neuropathy. The mechanisms underlying painful platinum-induced neuropathy remain poorly understood. Previous studies have demonstrated important roles for TRPV1, TRPM8, and TRPA1 in inflammation and nerve injury induced pain. Results In this study, using real-time, reverse transcriptase, polymerase chain reaction (RT-PCR, we analyzed the expression of TRPV1, TRPM8, and TRPA1 induced by cisplatin or oxaliplatin in vitro and in vivo. For in vitro studies, cultured E15 rat dorsal root ganglion (DRG neurons were treated for up to 48 hours with cisplatin or oxaliplatin. For in vivo studies, trigeminal ganglia (TG were isolated from mice treated with platinum drugs for three weeks. We show that cisplatin and oxaliplatin-treated DRG neurons had significantly increased in TRPV1, TRPA1, and TRPM8 mRNA expression. TG neurons from cisplatin treated mice had significant increases in TRPV1 and TRPA1 mRNA expression while oxaliplatin strongly induced only TRPA1. Furthermore, compared to the cisplatin-treated wild-type mice, cisplatin-treated TRPV1-null mice developed mechanical allodynia but did not exhibit enhancement of noxious heat- evoked pain responses. Immunohistochemistry studies showed that cisplatin-treated mice had no change in the proportion of the TRPV1 immunopositive TG neurons. Conclusion These results indicate that TRPV1 and TRPA1 could contribute to the development of thermal hyperalgesia and mechanical allodynia following cisplatin-induced painful neuropathy but that TRPV1 has a crucial role in cisplatin-induced thermal hyperalgesia in vivo.

  5. Loss of stearoyl-CoA desaturase 1 rescues cardiac function in obese leptin-deficient mice.

    Science.gov (United States)

    Dobrzyn, Pawel; Dobrzyn, Agnieszka; Miyazaki, Makoto; Ntambi, James M

    2010-08-01

    The heart of leptin-deficient ob/ob mice is characterized by pathologic left ventricular hypertrophy along with elevated triglyceride (TG) content, increased stearoyl-CoA desaturase (SCD) activity, and increased myocyte apoptosis. In the present study, using an ob/ob;SCD1(-/-) mouse model, we tested the hypothesis that lack of SCD1 could improve steatosis and left ventricle (LV) function in leptin deficiency. We show that disruption of the SCD1 gene improves cardiac function in ob/ob mice by correcting systolic and diastolic dysfunction without affecting levels of plasma TG and FFA. The improvement is associated with reduced expression of genes involved in FA transport and lipid synthesis in the heart, as well as reduction in cardiac FFA, diacylglycerol, TG, and ceramide levels. The rate of FA beta-oxidation is also significantly lower in the heart of ob/ob;SCD1(-/-) mice compared with ob/ob controls. Moreover, SCD1 deficiency reduces cardiac apoptosis in ob/ob mice due to increased expression of antiapoptotic factor Bcl-2 and inhibition of inducible nitric oxide synthase and caspase-3 activities. Reduction in myocardial lipid accumulation and inhibition of apoptosis appear to be one of the main mechanisms responsible for improved LV function in ob/ob mice caused by SCD1 deficiency.

  6. Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation

    DEFF Research Database (Denmark)

    Justesen, Jeannette; Mosekilde, Lis; Holmes, Megan

    2004-01-01

    Glucocorticoids (GCs) exert potent, but poorly characterized, effects on the skeleton. The cellular activity of GCs is regulated at a prereceptor level by 11beta-hydroxysteroid dehydrogenases (11betaHSDs). The type 1 isoform, which predominates in bone, functions as a reductase in intact cells...... and regenerates active cortisol (corticosterone) from circulating inert 11-keto forms. The aim of the present study was to investigate the role of this intracrine activation of GCs on normal bone physiology in vivo using mice deficient in 11betaHSD1 (HSD1(-/-)). The HSD1(-/-) mice exhibited no significant changes...... in cortical or trabecular bone mass compared with wild-type (Wt) mice. Aged HSD1(-/-) mice showed age-related bone loss similar to that observed in Wt mice. Histomorphometric analysis showed similar bone formation and bone resorption parameters in HSD1(-/-) and Wt mice. However, examination of bone marrow...

  7. Deficiency of ATP-binding cassette transporters A1 and G1 in macrophages increases inflammation and accelerates atherosclerosis in mice.

    Science.gov (United States)

    Westerterp, Marit; Murphy, Andrew J; Wang, Mi; Pagler, Tamara A; Vengrenyuk, Yuliya; Kappus, Mojdeh S; Gorman, Darren J; Nagareddy, Prabhakara R; Zhu, Xuewei; Abramowicz, Sandra; Parks, John S; Welch, Carrie; Fisher, Edward A; Wang, Nan; Yvan-Charvet, Laurent; Tall, Alan R

    2013-05-24

    Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. To assess the role of macrophage cholesterol efflux pathways in atherogenesis. We developed mice with efficient deletion of the ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) in macrophages (MAC-ABC(DKO) mice) but not in hematopoietic stem or progenitor populations. MAC-ABC(DKO) bone marrow (BM) was transplanted into Ldlr(-/-) recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared with controls. On the Western-type diet, MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice had disproportionate atherosclerosis, considering they also had lower very low-density lipoprotein/low-density lipoprotein cholesterol levels than controls. ABCA1/G1-deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, Western-type diet-fed MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice displayed monocytosis and neutrophilia in the absence of hematopoietic stem and multipotential progenitor cells proliferation. Mechanistic studies revealed increased expressions of machrophage colony stimulating factor and granulocyte colony stimulating factor in splenic macrophage foam cells, driving BM monocyte and neutrophil production. These studies show that macrophage deficiency of ABCA1/G1 is proatherogenic likely by promoting plaque inflammation and uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways.

  8. Attenuation of Cerebral Ischemic Injury in Smad1 Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Jamie K Wong

    Full Text Available Stroke results in brain tissue damage from ischemia and oxidative stress. Molecular regulators of the protective versus deleterious cellular responses after cerebral ischemia remain to be identified. Here, we show that deletion of Smad1, a conserved transcription factor that mediates canonical bone morphogenetic protein (BMP signaling, results in neuroprotection in an ischemia-reperfusion (I/R stroke model. Uninjured mice with conditional deletion of Smad1 in the CNS (Smad1 cKO displayed upregulation of the reactive astrocyte marker GFAP and hypertrophic morphological changes in astrocytes compared to littermate controls. Additionally, cultured Smad1(-/- astrocytes exhibited an enhanced antioxidant capacity. When subjected to I/R injury by transient middle cerebral artery occlusion (tMCAO, Smad1 cKO mice showed enhanced neuronal survival and improved neurological recovery at 7 days post-stroke. This neuroprotective phenotype is associated with attenuated reactive astrocytosis and neuroinflammation, along with reductions in oxidative stress, p53 induction, and apoptosis. Our data suggest that Smad1-mediated signaling pathway is involved in stroke pathophysiology and may present a new potential target for stroke therapy.

  9. Fractalkine receptor (CX3CR1 deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Kelley Keith W

    2010-12-01

    Full Text Available Abstract Background Interactions between fractalkine (CX3CL1 and fractalkine receptor (CX3CR1 regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX3CL1 and CX3CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS. Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX3CR1-deficient mice (CX3CR1-/-. Methods CX3CR1-/- mice or control heterozygote mice (CX3CR1+/- were injected with LPS (0.5 mg/kg i.p. or saline and behavior (i.e., sickness and depression-like behavior, microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. Results LPS injection caused a prolonged duration of social withdrawal in CX3CR1-/- mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1β, indolamine 2,3-dioxygenase (IDO and kynurenine monooxygenase (KMO in microglia 4 h after LPS. Moreover, elevated expression of IL-1β and CD14 was still detected in microglia of CX3CR1-/- mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX3CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX3CR1-/- mice. This depression-like behavior in CX3CR1-/- mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex. Conclusions Taken together, these data indicate that a deficiency of CX3CR1

  10. Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide

    Science.gov (United States)

    2010-01-01

    Background Interactions between fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX3CL1 and CX3CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS). Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX3CR1-deficient mice (CX3CR1-/-). Methods CX3CR1-/- mice or control heterozygote mice (CX3CR1+/-) were injected with LPS (0.5 mg/kg i.p.) or saline and behavior (i.e., sickness and depression-like behavior), microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. Results LPS injection caused a prolonged duration of social withdrawal in CX3CR1-/- mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1β, indolamine 2,3-dioxygenase (IDO) and kynurenine monooxygenase (KMO) in microglia 4 h after LPS. Moreover, elevated expression of IL-1β and CD14 was still detected in microglia of CX3CR1-/- mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX3CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX3CR1-/- mice. This depression-like behavior in CX3CR1-/- mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex. Conclusions Taken together, these data indicate that a deficiency of CX3CR1 is permissive to

  11. Inducible arginase 1 deficiency in mice leads to hyperargininemia and altered amino acid metabolism.

    Directory of Open Access Journals (Sweden)

    Yuan Yan Sin

    Full Text Available Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1, which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing "floxed" Arg1 mice with CreER(T2 mice. The resulting mice (Arg-Cre die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency.

  12. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    Directory of Open Access Journals (Sweden)

    Oosterveer Maaike H

    2011-12-01

    Full Text Available Abstract Background Overactivity and/or dysregulation of the endocannabinoid system (ECS contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1 in adipocyte function and CB1-receptor deficient (CB1-/- mice are resistant to high fat diet-induced obesity. Whether this phenotype of CB1-/- mice is related to altered fat metabolism in adipose tissue is unknown. Methods We evaluated adipose tissue differentiation/proliferation markers and quantified lipogenic and lipolytic activities in fat tissues of CB1-/- and CB1+/+ mice fed a high-fat (HF or a high-fat/fish oil (HF/FO diet as compared to animals receiving a low-fat chow diet. Comparison between HF diet and HF/FO diet allowed to investigate the influence of dietary fat quality on adipose tissue biology in relation to CB1 functioning. Results The adiposity-resistant phenotype of the CB1-/- mice was characterized by reduced fat mass and adipocyte size in HF and HF/FO-fed CB1-/- mice in parallel to a significant increase in energy expenditure as compared to CB1+/+ mice. The expression levels of adipocyte differentiation and proliferation markers were however maintained in these animals. Consistent with unaltered lipogenic gene expression, the fatty acid synthesis rates in adipose tissues from CB1-/- and CB1+/+ mice were unchanged. Whole-body and adipose-specific lipoprotein lipase (LPL activities were also not altered in CB1-/- mice. Conclusions These findings indicate that protection against diet-induced adiposity in CB1-deficient mice is not related to changes in adipocyte function per se, but rather results from increased energy dissipation by oxidative and non-oxidative pathways.

  13. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior

    Directory of Open Access Journals (Sweden)

    Fuka Aizawa

    2016-12-01

    Full Text Available The free fatty acid receptor 1 (GPR40/FFAR1 is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO mice. The emotional behavior in wild and KO male mice was evaluated at 9–10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC–MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain.

  14. Ablation of Mrds1/Ofcc1 Induces Hyper-γ-Glutamyl Transpeptidasemia without Abnormal Head Development and Schizophrenia-Relevant Behaviors in Mice

    Science.gov (United States)

    Ohnishi, Tetsuo; Yamada, Kazuo; Watanabe, Akiko; Ohba, Hisako; Sakaguchi, Toru; Honma, Yota; Iwayama, Yoshimi; Toyota, Tomoko; Maekawa, Motoko; Watanabe, Kazutada; Detera-Wadleigh, Sevilla D.; Wakana, Shigeharu; Yoshikawa, Takeo

    2011-01-01

    Mutations in the Opo gene result in eye malformation in medaka fish. The human ortholog of this gene, MRDS1/OFCC1, is a potentially causal gene for orofacial cleft, as well as a susceptibility gene for schizophrenia, a devastating mental illness. Based on this evidence, we hypothesized that this gene could perform crucial functions in the development of head and brain structures in vertebrates. To test this hypothesis, we created Mrds1/Ofcc1-null mice. Mice were examined thoroughly using an abnormality screening system referred to as “the Japan Mouse Clinic”. No malformations of the head structure, eye or other parts of the body were apparent in these knockout mice. However, the mutant mice showed a marked increase in serum γ-glutamyl transpeptidase (GGT), a marker for liver damage, but no abnormalities in other liver-related measurements. We also performed a family-based association study on the gene in schizophrenia samples of Japanese origin. We found five single nucleotide polymorphisms (SNPs) located across the gene that showed significant transmission distortion, supporting a prior report of association in a Caucasian cohort. However, the knockout mice showed no behavioral phenotypes relevant to schizophrenia. In conclusion, disruption of the Mrds1/Ofcc1 gene elicits asymptomatic hyper-γ-glutamyl-transpeptidasemia in mice. However, there were no phenotypes to support a role for the gene in the development of eye and craniofacial structures in vertebrates. These results prompt further examination of the gene, including its putative contribution to hyper-γ-glutamyl transpeptidasemia and schizophrenia. PMID:22242126

  15. Ablation of Mrds1/Ofcc1 induces hyper-γ-glutamyl transpeptidasemia without abnormal head development and schizophrenia-relevant behaviors in mice.

    Directory of Open Access Journals (Sweden)

    Tetsuo Ohnishi

    Full Text Available Mutations in the Opo gene result in eye malformation in medaka fish. The human ortholog of this gene, MRDS1/OFCC1, is a potentially causal gene for orofacial cleft, as well as a susceptibility gene for schizophrenia, a devastating mental illness. Based on this evidence, we hypothesized that this gene could perform crucial functions in the development of head and brain structures in vertebrates. To test this hypothesis, we created Mrds1/Ofcc1-null mice. Mice were examined thoroughly using an abnormality screening system referred to as "the Japan Mouse Clinic". No malformations of the head structure, eye or other parts of the body were apparent in these knockout mice. However, the mutant mice showed a marked increase in serum γ-glutamyl transpeptidase (GGT, a marker for liver damage, but no abnormalities in other liver-related measurements. We also performed a family-based association study on the gene in schizophrenia samples of Japanese origin. We found five single nucleotide polymorphisms (SNPs located across the gene that showed significant transmission distortion, supporting a prior report of association in a Caucasian cohort. However, the knockout mice showed no behavioral phenotypes relevant to schizophrenia. In conclusion, disruption of the Mrds1/Ofcc1 gene elicits asymptomatic hyper-γ-glutamyl-transpeptidasemia in mice. However, there were no phenotypes to support a role for the gene in the development of eye and craniofacial structures in vertebrates. These results prompt further examination of the gene, including its putative contribution to hyper-γ-glutamyl transpeptidasemia and schizophrenia.

  16. Maternal separation induces hippocampal changes in cadherin-1 (CDH-1) mRNA and recognition memory impairment in adolescent mice.

    Science.gov (United States)

    de Azeredo, Lucas Araújo; Wearick-Silva, Luis Eduardo; Viola, Thiago Wendt; Tractenberg, Saulo Gantes; Centeno-Silva, Anderson; Orso, Rodrigo; Schröder, Nadja; Bredy, Timothy William; Grassi-Oliveira, Rodrigo

    2017-05-01

    In rodents, disruption of mother-infant attachment induced by maternal separation (MS) is associated with recognition memory impairment and long-term neurobiological consequences. Particularly stress-induced modifications have been associated to disruption of cadherin (CDH) adhesion function, which plays an important role in remodeling of neuronal connection and synaptic plasticity. This study investigated the sex-dependent effect of MS on recognition memory and mRNA levels of classical type I and type II CDH and the related β -catenin (β -Cat) in the hippocampus and prefrontal cortex of late adolescent mice. We provided evidence that the BALB/c mice exposed to MS present deficit in recognition memory, especially females. Postnatal MS induced higher hippocampal CDH-2 and CDH-8 mRNA levels, as well as an upregulation of CDH-1 in the prefrontal cortex in both males and females. MS-reared female mice presented lower CDH-1 mRNA levels in the hippocampus. In addition, hippocampal CDH-1 mRNA levels were positively correlated with recognition memory performance in females. MS-reared male mice exhibited higher β -Cat mRNA levels in the hippocampus. Considering sex-specific effects on CDH mRNA levels, it has been demonstrated mRNA changes in CDH-1, β -Cat, and CDH-6 in the hippocampus, as well as CDH-1, CDH-8 and CDH-11 in the prefrontal cortex. Overall, these findings suggest a complex interplay among MS, CDH mRNA expression, and sex differences in the PFC and hippocampus of adolescent mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Reactive oxygen species on bone mineral density and mechanics in Cu,Zn superoxide dismutase (Sod1) knockout mice

    International Nuclear Information System (INIS)

    Smietana, Michael J.; Arruda, Ellen M.; Faulkner, John A.; Brooks, Susan V.; Larkin, Lisa M.

    2010-01-01

    Research highlights: → Reactive oxygen species (ROS) are considered to be a factor in the onset of a number of age-associated conditions, including loss of BMD. → Cu,Zn-superoxide dismutase (Sod1) deficient mice have increased ROS, reduced bone mineral density, decreased bending stiffness, and decreased strength compared to WT controls. → Increased ROS caused by the deficiency of Sod1, may be responsible for the changes in BMD and bone mechanics and therefore represent an appropriate model for studying mechanisms of age-associated bone loss. -- Abstract: Reactive oxygen species (ROS) play a role in a number of degenerative conditions including osteoporosis. Mice deficient in Cu,Zn-superoxide dismutase (Sod1) (Sod1 -/- mice) have elevated oxidative stress and decreased muscle mass and strength compared to wild-type mice (WT) and appear to have an accelerated muscular aging phenotype. Thus, Sod1 -/- mice may be a good model for evaluating the effects of free radical generation on diseases associated with aging. In this experiment, we tested the hypothesis that the structural integrity of bone as measured by bending stiffness (EI; N/mm 2 ) and strength (MPa) is diminished in Sod1 -/- compared to WT mice. Femurs were obtained from male and female WT and Sod1 -/- mice at 8 months of age and three-point bending tests were used to determine bending stiffness and strength. Bones were also analyzed for bone mineral density (BMD; mg/cc) using micro-computed tomography. Femurs were approximately equal in length across all groups, and there were no significant differences in BMD or EI with respect to gender in either genotype. Although male and female mice demonstrated similar properties within each genotype, Sod1 -/- mice exhibited lower BMD and EI of femurs from both males and females compared with gender matched WT mice. Strength of femurs was also lower in Sod1 -/- mice compared to WT as well as between genders. These data indicate that increased oxidative stress

  18. The combination of reduced MCL-1 and standard chemotherapeutics is tolerable in mice.

    Science.gov (United States)

    Brinkmann, Kerstin; Grabow, Stephanie; Hyland, Craig D; Teh, Charis E; Alexander, Warren S; Herold, Marco J; Strasser, Andreas

    2017-12-01

    A common therapeutic strategy to combat human cancer is the use of combinations of drugs, each targeting different cellular processes or vulnerabilities. Recent studies suggest that addition of an MCL-1 inhibitor to such anticancer drug treatments could be an attractive therapeutic strategy. Thus, it is of great interest to understand whether combinations of conventional anticancer drugs with an MCL-1 inhibitor will be tolerable and efficacious. In order to mimic the combination of MCL-1 inhibition with other cancer therapeutics, we treated Mcl-1 +/- heterozygous mice, which have a ~50% reduction in MCL-1 protein in their cells, with a broad range of chemotherapeutic drugs. Careful monitoring of treated mice revealed that a wide range of chemotherapeutic drugs had no significant effect on the general well-being of Mcl-1 +/- mice with no overt damage to a broad range of tissues, including the haematopoietic compartment, heart, liver and kidney. These results indicate that MCL-1 inhibition may represent a tolerable strategy in cancer therapy, even when combined with select cytotoxic drugs.

  19. [Morphological changes of neurons and neuroglial cells in the brain of senescence-accelerated prone 1 (SAMP1) mice].

    Science.gov (United States)

    Khudoerkov, R M; Sal'kov, V N; Sal'nikova, O V; Sobolev, V B

    2014-01-01

    Computerized morphometry was used to examine the sizes of neuronal bodies and the compactness of arrangement of neurons and neuroglial cells in layers III and V of the sensorimotor cortex in senescence-accelerated prone 1 (SAMP1) mice (an experimental group) and senescence-accelerated-resistant strain 1 (SAMR1) ones (a control group). In the SAMP1 mice as compared to the SAMR1 ones, the neuronal body sizes were significantly unchanged; the compactness of their arrangement decreased by 17 and 20% in layers III and V, respectively; that of neuroglial cells significantly increased by 14% in layer III only. In the SAMP1 mice versus the SAMR1 ones, the glial index rose by 36% in layer III and by 24% in layer V. During simulation of physiological aging, the sizes of neuronal bodies were shown to be virtually unchanged in the cerebral cortex; the compactness of their arrangement (cell counts) moderately reduced and that of neuroglial cells increased, which caused a rise in the glioneuronal index that was indicative of the enhanced supporting function of neuroglial cells during the physiological aging of brain structures.

  20. Identification of Genes in Saccharomyces cerevisiae that Are Haploinsufficient for Overcoming Amino Acid Starvation

    Directory of Open Access Journals (Sweden)

    Nancy S. Bae

    2017-04-01

    Full Text Available The yeast Saccharomyces cerevisiae responds to amino acid deprivation by activating a pathway conserved in eukaryotes to overcome the starvation stress. We have screened the entire yeast heterozygous deletion collection to identify strains haploinsufficient for growth in the presence of sulfometuron methyl, which causes starvation for isoleucine and valine. We have discovered that cells devoid of MET15 are sensitive to sulfometuron methyl, and loss of heterozygosity at the MET15 locus can complicate screening the heterozygous deletion collection. We identified 138 cases of loss of heterozygosity in this screen. After eliminating the issues of the MET15 loss of heterozygosity, strains isolated from the collection were retested on sulfometuron methyl. To determine the general effect of the mutations for a starvation response, SMM-sensitive strains were tested for the ability to grow in the presence of canavanine, which induces arginine starvation, and strains that were MET15 were also tested for growth in the presence of ethionine, which causes methionine starvation. Many of the genes identified in our study were not previously identified as starvation-responsive genes, including a number of essential genes that are not easily screened in a systematic way. The genes identified span a broad range of biological functions, including many involved in some level of gene expression. Several unnamed proteins have also been identified, giving a clue as to possible functions of the encoded proteins.

  1. Lack of tau proteins rescues neuronal cell death and decreases amyloidogenic processing of APP in APP/PS1 mice.

    Science.gov (United States)

    Leroy, Karelle; Ando, Kunie; Laporte, Vincent; Dedecker, Robert; Suain, Valérie; Authelet, Michèle; Héraud, Céline; Pierrot, Nathalie; Yilmaz, Zehra; Octave, Jean-Noël; Brion, Jean-Pierre

    2012-12-01

    Lack of tau expression has been reported to protect against excitotoxicity and to prevent memory deficits in mice expressing mutant amyloid precursor protein (APP) identified in familial Alzheimer disease. In APP mice, mutant presenilin 1 (PS1) enhances generation of Aβ42 and inhibits cell survival pathways. It is unknown whether the deficient phenotype induced by concomitant expression of mutant PS1 is rescued by absence of tau. In this study, we have analyzed the effect of tau deletion in mice expressing mutant APP and PS1. Although APP/PS1/tau(+/+) mice had a reduced survival, developed spatial memory deficits at 6 months and motor impairments at 12 months, these deficits were rescued in APP/PS1/tau(-/-) mice. Neuronal loss and synaptic loss in APP/PS1/tau(+/+) mice were rescued in the APP/PS1/tau(-/-) mice. The amyloid plaque burden was decreased by roughly 50% in the cortex and the spinal cord of the APP/PS1/tau(-/-) mice. The levels of soluble and insoluble Aβ40 and Aβ42, and the Aβ42/Aβ40 ratio were reduced in APP/PS1/tau(-/-) mice. Levels of phosphorylated APP, of β-C-terminal fragments (CTFs), and of β-secretase 1 (BACE1) were also reduced, suggesting that β-secretase cleavage of APP was reduced in APP/PS1/tau(-/-) mice. Our results indicate that tau deletion had a protective effect against amyloid induced toxicity even in the presence of mutant PS1 and reduced the production of Aβ. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. The Molecular Motor KIF1A Transports the TrkA Neurotrophin Receptor and Is Essential for Sensory Neuron Survival and Function.

    Science.gov (United States)

    Tanaka, Yosuke; Niwa, Shinsuke; Dong, Ming; Farkhondeh, Atena; Wang, Li; Zhou, Ruyun; Hirokawa, Nobutaka

    2016-06-15

    KIF1A is a major axonal transport motor protein, but its functional significance remains elusive. Here we show that KIF1A-haploinsufficient mice developed sensory neuropathy. We found progressive loss of TrkA(+) sensory neurons in Kif1a(+/-) dorsal root ganglia (DRGs). Moreover, axonal transport of TrkA was significantly disrupted in Kif1a(+/-) neurons. Live imaging and immunoprecipitation assays revealed that KIF1A bound to TrkA-containing vesicles through the adaptor GTP-Rab3, suggesting that TrkA is a cargo of the KIF1A motor. Physiological measurements revealed a weaker capsaicin response in Kif1a(+/-) DRG neurons. Moreover, these neurons were hyposensitive to nerve growth factor, which could explain the reduced neuronal survival and the functional deficiency of the pain receptor TRPV1. Because phosphatidylinositol 3-kinase (PI3K) signaling significantly rescued these phenotypes and also increased Kif1a mRNA, we propose that KIF1A is essential for the survival and function of sensory neurons because of the TrkA transport and its synergistic support of the NGF/TrkA/PI3K signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The Efficacy and Safety of the Combination of Total Glucosides of Peony and Leflunomide for the Treatment of Rheumatoid Arthritis: A Systemic Review and Meta-Analysis.

    Science.gov (United States)

    Feng, Zhitao; Xu, Juan; He, Guochao; Cao, Meiqun; Duan, Lihong; Chen, Liguo; Wu, Zhengzhi

    2016-01-01

    Objective. To evaluate the efficacy and safety of the total glucosides of peony (TGP) and leflunomide (LEF) for the treatment of rheumatoid arthritis (RA). Methods. Randomized controlled trials (RCTs) on the efficacy and safety of the combination of TGP and LEF versus LEF alone for the treatment of RA were retrieved by searching PubMed, EMBASE, Cochrane Library, the China National Knowledge Infrastructure database, and Wanfang database. Results. Eight RCTs including 643 RA patients were included in the present meta-analysis. The quality of included studies was poor. The levels of ESR (P TGP and LEF were significantly lower than RA patients who received LEF therapy alone. The pooled results suggest that the combination of TGP and LEF caused less abnormal liver function than LEF alone (P = 0.02). No significant difference in the gastrointestinal discomfort was identified between the combination of TGP and LEF and LEF alone groups (P = 0.18). Conclusion. The combination of TGP and LEF in treatment of RA presented the characteristics of notably decreasing the levels of laboratory indexes and higher safety in terms of liver function. However, this conclusion should be further investigated based on a larger sample size.

  4. Deletion of Lkb1 in Pro-Opiomelanocortin Neurons Impairs Peripheral Glucose Homeostasis in Mice

    Science.gov (United States)

    Claret, Marc; Smith, Mark A.; Knauf, Claude; Al-Qassab, Hind; Woods, Angela; Heslegrave, Amanda; Piipari, Kaisa; Emmanuel, Julian J.; Colom, André; Valet, Philippe; Cani, Patrice D.; Begum, Ghazala; White, Anne; Mucket, Phillip; Peters, Marco; Mizuno, Keiko; Batterham, Rachel L.; Giese, K. Peter; Ashworth, Alan; Burcelin, Remy; Ashford, Michael L.; Carling, David; Withers, Dominic J.

    2011-01-01

    OBJECTIVE AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca2+-calmodulin–dependent protein kinase kinase β (CaMKKβ) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation. RESEARCH DESIGN AND METHODS Mice lacking either Camkkβ or Lkb1 in POMC neurons were generated, and physiological, electrophysiological, and molecular biology studies were performed. RESULTS Deletion of Camkkβ in POMC neurons does not alter energy homeostasis or glucose metabolism. In contrast, female mice lacking Lkb1 in POMC neurons (PomcLkb1KO) display glucose intolerance, insulin resistance, impaired suppression of hepatic glucose production, and altered expression of hepatic metabolic genes. The underlying cellular defect in PomcLkb1KO mice involves a reduction in melanocortin tone caused by decreased α-melanocyte–stimulating hormone secretion. However, Lkb1-deficient POMC neurons showed normal glucose sensing, and body weight was unchanged in PomcLkb1KO mice. CONCLUSIONS Our findings demonstrate that LKB1 in hypothalamic POMC neurons plays a key role in the central regulation of peripheral glucose metabolism but not body-weight control. This phenotype contrasts with that seen in mice lacking AMPK in POMC neurons with defects in body-weight regulation but not glucose homeostasis, which suggests that LKB1 plays additional functions distinct from activating AMPK in POMC neurons. PMID:21266325

  5. Porcine Circovirus-Like Virus P1 Inhibits Wnt Signaling Pathway in Vivo and in Vitro

    Directory of Open Access Journals (Sweden)

    Xuejiao Zhu

    2018-03-01

    Full Text Available Porcine circovirus-like virus P1 is an important pathogen of the current pig industry, the infection mechanism is not entirely clear. Wnt signaling pathway plays an important role in the growth of young animals and infection of some viruses. This study was designed to demonstrate the effects of P1 infection on the Wnt signaling pathway. In vivo experiments, we demonstrated the down-regulatory effects of P1 infection in piglets and mice on the downstream components expression levels of Wnt signaling pathway, and the effects of Wnt signaling pathway activation on the pathogenesis of P1. In vitro studies, we found P1 infection down-regulated protein level of β-catenin and mRNA level of mmp2, prevented the β-catenin from entering into nucleus, abolished the TCF/LEF promoter activity, proved that P1 could inhibit the activation of Wnt signaling pathway in vitro. Finally, we found that VP1 of P1 virus also had the inhibitory effects on Wnt signaling pathway in vitro, elucidated the mechanism of P1’s inhibitory effects on the Wnt signaling pathway and offered the possibility that the suppression of Wnt signaling pathway was involved in the post-weaning multisystemic wasting syndrome (PMWS, laying a foundation for elucidating the pathogenesis of P1.

  6. Pharmacologic Treatment Assigned for Niemann Pick Type C1 Disease Partly Changes Behavioral Traits in Wild-Type Mice.

    Science.gov (United States)

    Schlegel, Victoria; Thieme, Markus; Holzmann, Carsten; Witt, Martin; Grittner, Ulrike; Rolfs, Arndt; Wree, Andreas

    2016-11-09

    Niemann-Pick Type C1 (NPC1) is an autosomal recessive inherited disorder characterized by accumulation of cholesterol and glycosphingolipids. Previously, we demonstrated that BALB/c-npc1 nih Npc1 -/- mice treated with miglustat, cyclodextrin and allopregnanolone generally performed better than untreated Npc1 -/- animals. Unexpectedly, they also seemed to accomplish motor tests better than their sham-treated wild-type littermates. However, combination-treated mutant mice displayed worse cognition performance compared to sham-treated ones. To evaluate effects of these drugs in healthy BALB/c mice, we here analyzed pharmacologic effects on motor and cognitive behavior of wild-type mice. For combination treatment mice were injected with allopregnanolone/cyclodextrin weekly, starting at P7. Miglustat injections were performed daily from P10 till P23. Starting at P23, miglustat was embedded in the chow. Other mice were treated with miglustat only, or sham-treated. The battery of behavioral tests consisted of accelerod, Morris water maze, elevated plus maze, open field and hot-plate tests. Motor capabilities and spontaneous motor behavior were unaltered in both drug-treated groups. Miglustat-treated wild-type mice displayed impaired spatial learning compared to sham- and combination-treated mice. Both combination- and miglustat-treated mice showed enhanced anxiety in the elevated plus maze compared to sham-treated mice. Additionally, combination treatment as well as miglustat alone significantly reduced brain weight, whereas only combination treatment reduced body weight significantly. Our results suggest that allopregnanolone/cyclodextrin ameliorate most side effects of miglustat in wild-type mice.

  7. Pharmacologic Treatment Assigned for Niemann Pick Type C1 Disease Partly Changes Behavioral Traits in Wild-Type Mice

    Directory of Open Access Journals (Sweden)

    Victoria Schlegel

    2016-11-01

    Full Text Available Niemann-Pick Type C1 (NPC1 is an autosomal recessive inherited disorder characterized by accumulation of cholesterol and glycosphingolipids. Previously, we demonstrated that BALB/c-npc1nihNpc1−/− mice treated with miglustat, cyclodextrin and allopregnanolone generally performed better than untreated Npc1−/− animals. Unexpectedly, they also seemed to accomplish motor tests better than their sham-treated wild-type littermates. However, combination-treated mutant mice displayed worse cognition performance compared to sham-treated ones. To evaluate effects of these drugs in healthy BALB/c mice, we here analyzed pharmacologic effects on motor and cognitive behavior of wild-type mice. For combination treatment mice were injected with allopregnanolone/cyclodextrin weekly, starting at P7. Miglustat injections were performed daily from P10 till P23. Starting at P23, miglustat was embedded in the chow. Other mice were treated with miglustat only, or sham-treated. The battery of behavioral tests consisted of accelerod, Morris water maze, elevated plus maze, open field and hot-plate tests. Motor capabilities and spontaneous motor behavior were unaltered in both drug-treated groups. Miglustat-treated wild-type mice displayed impaired spatial learning compared to sham- and combination-treated mice. Both combination- and miglustat-treated mice showed enhanced anxiety in the elevated plus maze compared to sham-treated mice. Additionally, combination treatment as well as miglustat alone significantly reduced brain weight, whereas only combination treatment reduced body weight significantly. Our results suggest that allopregnanolone/cyclodextrin ameliorate most side effects of miglustat in wild-type mice.

  8. Intrathymic selection of NK1.1+α/β T cell antigen receptor (TCR)+ cells in transgenic mice bearing TCR specific for chicken ovalbumin and restricted to I-Ad

    Science.gov (United States)

    Iwabuchi, Chikako; Iwabuchi, Kazuya; Nakagawa, Ken-ichi; Takayanagi, Toshiaki; Nishihori, Hiroki; Tone, Saori; Ogasawara, Kazumasa; Good, Robert A.; Onoé, Kazunori

    1998-01-01

    Generation and negative selection of NK1.1+α/β T cell receptor (TCR)+ thymocytes were analyzed using TCR-transgenic (B10.D2 × DO10)F1 and (C57BL/6 × DO10)F1 mice and Rag-1−/−/DO10 mice, which had been established by breeding and backcrossing between Rag-1−/− and DO10 mice. Almost all T cells from these mice were shown to bear Vα13/Vβ8.2 that is specific for chicken ovalbumin (cOVA) and restricted to I-Ad. A normal proportion of the NK1.1+ Vα13/Vβ8.2+ thymocytes was generated in these mice. However, the actual cell number of both NK1.1+ and NK1.1− thymocytes in I-Ad/d mice (positive selecting background) was larger than that in I-Ab/d mice (negative selecting background). Markedly low but significant proportions of NK1.1+ Vα13/Vβ8.2+ cells were detected in the spleens from I-Ad/d and I-Ab/d mice. It was shown that the splenic NK1.1+ T cells of the I-Ab/d mice were anergized against stimulation through TCR. When (B10.D2 × DO10)F1 and (C57BL/6 × DO10)F1 mice were given cOVA, extensive or intermediate elimination of NK1.1+α/βTCR+ thymocytes was induced in I-Ad/d or I-Ab/d mice, respectively. However, the clonal elimination was not as complete as that seen in the major NK1.1− thymocyte population. The present findings indicate that normal generation of NK1.1+α/βTCR+ thymocytes occurs in the absence of Vα14-Jα281 and that substantial negative selection operates on the NK1.1+α/βTCR+ cells. PMID:9653164

  9. Toxicity studies on the radioprotective agent WR-2721 in CDF1 mice and beagle dogs

    International Nuclear Information System (INIS)

    Palmer, T.E.; Glaza, S.M.; Dickie, B.C.; Weltman, R.H.; Greenspun, K.S.

    1985-01-01

    WR-2721, S-2-(3-aminopropylamino)ethylphosphorothioic acid, is used extensively to protect normal cells during the irradiation of neoplastic cells. Dose levels for human radiotherapy are based on results obtained from laboratory animal lethality and toxicity studies. WR-2721 was administered intravenously to CDF1 mice and beagle dogs. Single dose lethality studies in mice showed the average 1/10 of the lethal dose, the median lethal dose and 9/10 the lethal dose to be 508 (1523 mg/m2), 589 (1766 mg/m2), and 682 mg/kg (2047 mg/m2), respectively. The lethal dose for female mice was lower than that for males. The 1/10 lethal dose in mice was slightly toxic to dogs; 1/10 of that dose was nontoxic. The lethal dose for dogs (6000 mg/m2) was higher than that for mice (2000 mg/m2). Clinical signs of toxicosis in the single-dose mouse toxicity study were evident in the 1st week following treatment and declined during the recovery period; signs of toxicosis were transient in dogs. Acute drug-induced pathologic changes included elevated BUN and SGOT levels, lymphoid necrosis, and renal tubular degeneration in mice. These changes were evident in the 1st week following treatment, but had dissipated by study termination. Generalized vascular changes (congestion, hemorrhage, and edema) and renal tubular degeneration occurred in treated dogs that had died or were killed moribund 7 days postinjection. These findings indicate sex-dependent and interspecies variation in the toxicity of WR-2721 with acute, but reversible, pathologic changes

  10. Induction of the 'ASIA' syndrome in NZB/NZWF1 mice after injection of complete Freund's adjuvant (CFA).

    Science.gov (United States)

    Bassi, N; Luisetto, R; Del Prete, D; Ghirardello, A; Ceol, M; Rizzo, S; Iaccarino, L; Gatto, M; Valente, M L; Punzi, L; Doria, A

    2012-02-01

    Adjuvants, commonly used in vaccines, may be responsible for inducing autoimmunity and autoimmune diseases, both in humans and mice. The so-called 'ASIA' (Autoimmune/inflammatory Syndrome Induced by Adjuvants) syndrome has been recently described, which is caused by the exposure to a component reproducing the effect of adjuvants. The aim of our study was to evaluate the effect of injection of complete Freund's adjuvant (CFA) in NZB/NZWF1 mice, a lupus-prone murine model. We injected 10 NZB/NZWF1 mice with CFA/PBS and 10 with PBS, three times, 3 weeks apart, and followed-up until natural death. CFA-injected mice developed both anti-double-stranded DNA and proteinuria earlier and at higher levels than the control group. Proteinuria-free survival rate and survival rate were significantly lower in CFA-treated mice than in the control mice (p = 0.002 and p = 0.001, respectively). Histological analyses showed a more severe glomerulonephritis in CFA-injected mice compared with the control mice. In addition, lymphoid hyperplasia in spleen and lungs, myocarditis, and vasculitis were observed in the former, but not in the latter group. In conclusion, the injection of CFA in NZB/NZWF1 mice accelerated autoimmune manifestations resembling 'ASIA' syndrome in humans.

  11. Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21.

    Science.gov (United States)

    Li, Yu; Wong, Kimberly; Giles, Amber; Jiang, Jianwei; Lee, Jong Woo; Adams, Andrew C; Kharitonenkov, Alexei; Yang, Qin; Gao, Bin; Guarente, Leonard; Zang, Mengwei

    2014-02-01

    The hepatocyte-derived hormone fibroblast growth factor 21 (FGF21) is a hormone-like regulator of metabolism. The nicotinamide adenine dinucleotide-dependent deacetylase SIRT1 regulates fatty acid metabolism through multiple nutrient sensors. Hepatic overexpression of SIRT1 reduces steatosis and glucose intolerance in obese mice. We investigated mechanisms by which SIRT1 controls hepatic steatosis in mice. Liver-specific SIRT1 knockout (SIRT1 LKO) mice and their wild-type littermates (controls) were divided into groups that were placed on a normal chow diet, fasted for 24 hours, or fasted for 24 hours and then fed for 6 hours. Liver tissues were collected and analyzed by histologic examination, gene expression profiling, and real-time polymerase chain reaction assays. Human HepG2 cells were incubated with pharmacologic activators of SIRT1 (resveratrol or SRT1720) and mitochondrion oxidation consumption rate and immunoblot analyses were performed. FGF21 was overexpressed in SIRT1 LKO mice using an adenoviral vector. Energy expenditure was assessed by indirect calorimetry. Prolonged fasting induced lipid deposition in livers of control mice, but severe hepatic steatosis in SIRT1 LKO mice. Gene expression analysis showed that fasting up-regulated FGF21 in livers of control mice but not in SIRT1 LKO mice. Decreased hepatic and circulating levels of FGF21 in fasted SIRT1 LKO mice were associated with reduced hepatic expression of genes involved in fatty acid oxidation and ketogenesis, and increased expression of genes that control lipogenesis, compared with fasted control mice. Resveratrol or SRT1720 each increased the transcriptional activity of the FGF21 promoter (-2070/+117) and levels of FGF21 messenger RNA and protein in HepG2 cells. Surprisingly, SIRT1 LKO mice developed late-onset obesity with impaired whole-body energy expenditure. Hepatic overexpression of FGF21 in SIRT1 LKO mice increased the expression of genes that regulate fatty acid oxidation, decreased

  12. Improved motor performance in Dyt1 ΔGAG heterozygous knock-in mice by cerebellar Purkinje-cell specific Dyt1 conditional knocking-out.

    Science.gov (United States)

    Yokoi, Fumiaki; Dang, Mai Tu; Li, Yuqing

    2012-05-01

    Early-onset generalized torsion dystonia (dystonia 1) is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most patients have a 3-base pair deletion (ΔGAG) in one allele of DYT1, corresponding to a loss of a glutamic acid residue (ΔE) in the C-terminal region of the protein. Functional alterations in basal ganglia circuits and the cerebellum have been reported in dystonia. Pharmacological manipulations or mutations in genes that result in functional alterations of the cerebellum have been reported to have dystonic symptoms and have been used as phenotypic rodent models. Additionally, structural lesions in the abnormal cerebellar circuits, such as cerebellectomy, have therapeutic effects in these models. A previous study has shown that the Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits in the beam-walking test. Both Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 Purkinje cell-specific knockout (Dyt1 pKO) mice exhibit dendritic alterations of cerebellar Purkinje cells. Here, Dyt1 pKO mice exhibited significantly less slip numbers in the beam-walking test, suggesting better motor performance than control littermates, and normal gait. Furthermore, Dyt1 ΔGAG KI/Dyt1 pKO double mutant mice exhibited significantly lower numbers of slips than Dyt1 ΔGAG heterozygous KI mice, suggesting Purkinje-cell specific knockout of Dyt1 wild-type (WT) allele in Dyt1 ΔGAG heterozygous KI mice rescued the motor deficits. The results suggest that molecular lesions of torsinA in Purkinje cells by gene therapy or intervening in the signaling pathway downstream of the cerebellar Purkinje cells may rescue motor symptoms in dystonia 1. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. The ZEB1 Transcription Factor Is a Novel Repressor of Adiposity in Female Mice

    Science.gov (United States)

    Saykally, Jessica N.; Dogan, Soner; Cleary, Margot P.; Sanders, Michel M.

    2009-01-01

    Background Four genome-wide association studies mapped an “obesity” gene to human chromosome 10p11–12. As the zinc finger E-box binding homeobox 1 (ZEB1) transcription factor is encoded by the TCF8 gene located in that region, and as it influences the differentiation of various mesodermal lineages, we hypothesized that ZEB1 might also modulate adiposity. The goal of these studies was to test that hypothesis in mice. Methodology/Principal Findings To ascertain whether fat accumulation affects ZEB1 expression, female C57BL/6 mice were fed a regular chow diet (RCD) ad libitum or a 25% calorie-restricted diet from 2.5 to 18.3 months of age. ZEB1 mRNA levels in parametrial fat were six to ten times higher in the obese mice. To determine directly whether ZEB1 affects adiposity, wild type (WT) mice and mice heterozygous for TCF8 (TCF8+/−) were fed an RCD or a high-fat diet (HFD) (60% calories from fat). By two months of age on an HFD and three months on an RCD, TCF8+/− mice were heavier than WT controls, which was attributed by Echo MRI to increased fat mass (at three months on an HFD: 0.517±0.081 total fat/lean mass versus 0.313±0.036; at three months on an RCD: 0.175±0.013 versus 0.124±0.012). No differences were observed in food uptake or physical activity, suggesting that the genotypes differ in some aspect of their metabolic activity. ZEB1 expression also increases during adipogenesis in cell culture. Conclusion/Significance These results show for the first time that the ZEB1 transcription factor regulates the accumulation of adipose tissue. Furthermore, they corroborate the genome-wide association studies that mapped an “obesity” gene at chromosome 10p11–12. PMID:20041147

  14. Overactivation of Hedgehog Signaling Alters Development of the Ovarian Vasculature in Mice1

    Science.gov (United States)

    Ren, Yi; Cowan, Robert G.; Migone, Fernando F.; Quirk, Susan M.

    2012-01-01

    ABSTRACT The hedgehog (HH) signaling pathway is critical for ovarian function in Drosophila, but its role in the mammalian ovary has not been defined. Previously, expression of a dominant active allele of the HH signal transducer protein smoothened (SMO) in Amhr2cre/+SmoM2 mice caused anovulation in association with a lack of smooth muscle in the theca of developing follicles. The current study examined events during the first 2 wk of life in Amhr2cre/+SmoM2 mice to gain insight into the cause of anovulation. Expression of transcriptional targets of HH signaling, Gli1, Ptch1, and Hhip, which are used as measures of pathway activity, were elevated during the first several days of life in Amhr2cre/+SmoM2 mice compared to controls but were similar to controls in older mice. Microarray analysis showed that genes with increased expression in 2-day-old mutants compared to controls were enriched for the processes of vascular and tube development and steroidogenesis. The density of platelet endothelial cell adhesion molecule (PECAM)-labeled endothelial tubes was increased in the cortex of newborn ovaries of mutant mice. Costaining of preovulatory follicles for PECAM and smooth muscle actin showed that muscle-type vascular support cells are deficient in theca of mutant mice. Expression of genes for steroidogenic enzymes that are normally expressed in the fetal adrenal gland were elevated in newborn ovaries of mutant mice. In summary, overactivation of HH signaling during early life alters gene expression and vascular development and this is associated with the lifelong development of anovulatory follicles in which the thecal vasculature fails to mature appropriately. PMID:22402963

  15. Cholinergic degeneration is associated with increased plaque deposition and cognitive impairment in APPswe/PS1dE9 mice

    DEFF Research Database (Denmark)

    Laursen, Bettina; Mørk, Arne; Plath, Niels

    2013-01-01

    mice was not due to a more extensive cholinergic degeneration since the reduction in choline acetyltransferase activity was similar following SAP treatment in APP/PS1 mice and Wt. Interestingly, plaque load was significantly increased in SAP treated APP/PS1 mice relative to sham lesioned APP/PS1 mice....... Additionally, APP/PS1 mice treated with SAP showed a tendency towards an increased level of soluble and insoluble Aß1-40 and Aß1-42 measured in brain tissue homogenate. Our results suggest that the combination of cholinergic degeneration and Aß overexpression in the APP/PS1 mouse model results in cognitive...... decline and accelerated plaque burden. SAP treated APP/PS1 mice might thus constitute an improved model of Alzheimer's disease-like neuropathology and cognitive deficits compared to the conventional APP/PS1 model without selective removal of basal forebrain cholinergic neurons....

  16. Lack of tryptophan hydroxylase-1 in mice results in gait abnormalities.

    Science.gov (United States)

    Suidan, Georgette L; Duerschmied, Daniel; Dillon, Gregory M; Vanderhorst, Veronique; Hampton, Thomas G; Wong, Siu Ling; Voorhees, Jaymie R; Wagner, Denisa D

    2013-01-01

    The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (-/-) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system.

  17. Noxious heat threshold temperature and pronociceptive effects of allyl isothiocyanate (mustard oil) in TRPV1 or TRPA1 gene-deleted mice.

    Science.gov (United States)

    Tékus, Valéria; Horváth, Ádám; Hajna, Zsófia; Borbély, Éva; Bölcskei, Kata; Boros, Melinda; Pintér, Erika; Helyes, Zsuzsanna; Pethő, Gábor; Szolcsányi, János

    2016-06-01

    To investigate the roles of TRPV1 and TRPA1 channels in baseline and allyl isothiocyanate (AITC)-evoked nociceptive responses by comparing wild-type and gene-deficient mice. In contrast to conventional methods of thermonociception measuring reflex latencies, we used our novel methods to determine the noxious heat threshold. It was revealed that the heat threshold of the tail measured by an increasing-temperature water bath is significantly higher in TRPV1(-/-), but not TRPA1(-/-), mice compared to respective wild-types. There was no difference between the noxious heat thresholds of the hind paw as measured by an increasing-temperature hot plate in TRPV1(-/-), TRPA1(-/-) and the corresponding wild-type mice. The withdrawal latency of the tail from 0°C water was prolonged in TRPA1(-/-), but not TRPV1(-/-), mice compared to respective wild-types. In wild-type animals, dipping the tail or paw into 1% AITC induced an 8-14°C drop of the noxious heat threshold (heat allodynia) of both the tail and paw, and 40-50% drop of the mechanonociceptive threshold (mechanical allodynia) of the paw measured by dynamic plantar esthesiometry. These AITC-evoked responses were diminished in TRPV1(-/-), but not TRPA1(-/-), mice. Tail withdrawal latency to 1% AITC was significantly prolonged in both gene-deleted strains. Different heat sensors determine the noxious heat threshold in distinct areas: a pivotal role for TRPV1 on the tail is contrasted with no involvement of either TRPV1 or TRPA1 on the hind paw. Noxious heat threshold measurement appears appropriate for preclinical screening of TRP channel ligands as novel analgesics. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Regulation of PDGFC signalling and extracellular matrix composition by FREM1 in mice

    Directory of Open Access Journals (Sweden)

    Fenny Wiradjaja

    2013-11-01

    Fras1-related extracellular matrix protein 1 (FREM1 is required for epidermal adhesion during embryogenesis, and mice lacking the gene develop fetal skin blisters and a range of other developmental defects. Mutations in members of the FRAS/FREM gene family cause diseases of the Fraser syndrome spectrum. Embryonic epidermal blistering is also observed in mice lacking PdgfC and its receptor, PDGFRα. In this article, we show that FREM1 binds to PDGFC and that this interaction regulates signalling downstream of PDGFRα. Fibroblasts from Frem1-mutant mice respond to PDGFC stimulation, but with a shorter duration and amplitude than do wild-type cells. Significantly, PDGFC-stimulated expression of the metalloproteinase inhibitor Timp1 is reduced in cells with Frem1 mutations, leading to reduced basement membrane collagen I deposition. These results show that the physical interaction of FREM1 with PDGFC can regulate remodelling of the extracellular matrix downstream of PDGFRα. We propose that loss of FREM1 function promotes epidermal blistering in Fraser syndrome as a consequence of reduced PDGFC activity, in addition to its stabilising role in the basement membrane.

  19. Synergistic tumorigenic effect of procarbazine and ionizing radiation in (BALB/c x DBA/2)F1 mice

    International Nuclear Information System (INIS)

    Arseneau, J.C.; Fowler, E.; Bakemeier, R.F.

    1977-01-01

    Female (BALB/c x DBA/2)F, (CD2F 1 ) mice were treated with procarbazine (PCB) and ionizing radiation at different times to determine whether any synergistic carcinogenic effect could be demonstrated with the combined treatment. The incidence of pulmonary adenomas in groups of mice receiving both PCB and radiation increased significantly, when compared with mice given PCB alone. The incidence of thymomas also increased significantly in groups of mice given PCB 3 days before or after radiation treatment. Two cases of adenocarcinoma apparently arising from the lacrimal gland were also observed in mice from the groups receiving the combined treatment. This tumor had not previously been associated with PCB administration in mice. The results of this experiment indicated a potentiation of the tumorigenic action of PCB by ionizing radiation in CD2F 1 mice

  20. Altered circadian food anticipatory activity rhythms in PACAP receptor 1 (PAC1) deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Georg, Birgitte; Fahrenkrug, Jan

    2016-01-01

    increase in amplitude compared to PAC1+/+ mice when placed in SPP at 300 lux. The same pattern of FAA was observed at 10 lux during both FPP and SPP. The present study indicates a role of PACAP/PAC1 signaling during light regulated FAA. Most likely, PACAP found in ipRGCs mediating non-image forming light...