WorldWideScience

Sample records for lee-yang-parr correlation density

  1. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties

    OpenAIRE

    Xu, Xin; Goddard, William A., III

    2004-01-01

    We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee-Yang-Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energ...

  2. From The Cover: The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties

    Science.gov (United States)

    Xu, Xin; Goddard, William A., III

    2004-03-01

    We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee-Yang-Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee-Yang-Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA.

  3. A second-order unconstrained optimization method for canonical-ensemble density-functional methods

    Science.gov (United States)

    Nygaard, Cecilie R.; Olsen, Jeppe

    2013-03-01

    A second order converging method of ensemble optimization (SOEO) in the framework of Kohn-Sham Density-Functional Theory is presented, where the energy is minimized with respect to an ensemble density matrix. It is general in the sense that the number of fractionally occupied orbitals is not predefined, but rather it is optimized by the algorithm. SOEO is a second order Newton-Raphson method of optimization, where both the form of the orbitals and the occupation numbers are optimized simultaneously. To keep the occupation numbers between zero and two, a set of occupation angles is defined, from which the occupation numbers are expressed as trigonometric functions. The total number of electrons is controlled by a built-in second order restriction of the Newton-Raphson equations, which can be deactivated in the case of a grand-canonical ensemble (where the total number of electrons is allowed to change). To test the optimization method, dissociation curves for diatomic carbon are produced using different functionals for the exchange-correlation energy. These curves show that SOEO favors symmetry broken pure-state solutions when using functionals with exact exchange such as Hartree-Fock and Becke three-parameter Lee-Yang-Parr. This is explained by an unphysical contribution to the exact exchange energy from interactions between fractional occupations. For functionals without exact exchange, such as local density approximation or Becke Lee-Yang-Parr, ensemble solutions are favored at interatomic distances larger than the equilibrium distance. Calculations on the chromium dimer are also discussed. They show that SOEO is able to converge to ensemble solutions for systems that are more complicated than diatomic carbon.

  4. Influence of the exchange and correlation functional on the structure of amorphous InSb and In3SbTe2 compounds

    Science.gov (United States)

    Gabardi, Silvia; Caravati, Sebastiano; Los, Jan H.; Kühne, Thomas D.; Bernasconi, Marco

    2016-05-01

    We have investigated the structural, vibrational, and electronic properties of the amorphous phase of InSb and In3SbTe2 compounds of interest for applications in phase change non-volatile memories. Models of the amorphous phase have been generated by quenching from the melt by molecular dynamics simulations based on density functional theory. In particular, we have studied the dependence of the structural properties on the choice of the exchange-correlation functional. It turns out that the use of the Becke-Lee-Yang-Parr functional provides models with a much larger fraction of In atoms in a tetrahedral bonding geometry with respect to previous results obtained with the most commonly used Perdew-Becke-Ernzerhof functional. This outcome is at odd with the properties of Ge2Sb2Te5 phase change compound for which the two exchange-correlation functionals yield very similar results on the structure of the amorphous phase.

  5. Influence of the exchange and correlation functional on the structure of amorphous InSb and In3SbTe2 compounds

    International Nuclear Information System (INIS)

    Gabardi, Silvia; Caravati, Sebastiano; Bernasconi, Marco; Los, Jan H.; Kühne, Thomas D.

    2016-01-01

    We have investigated the structural, vibrational, and electronic properties of the amorphous phase of InSb and In 3 SbTe 2 compounds of interest for applications in phase change non-volatile memories. Models of the amorphous phase have been generated by quenching from the melt by molecular dynamics simulations based on density functional theory. In particular, we have studied the dependence of the structural properties on the choice of the exchange-correlation functional. It turns out that the use of the Becke-Lee-Yang-Parr functional provides models with a much larger fraction of In atoms in a tetrahedral bonding geometry with respect to previous results obtained with the most commonly used Perdew-Becke-Ernzerhof functional. This outcome is at odd with the properties of Ge 2 Sb 2 Te 5 phase change compound for which the two exchange-correlation functionals yield very similar results on the structure of the amorphous phase.

  6. Influence of the exchange and correlation functional on the structure of amorphous InSb and In{sub 3}SbTe{sub 2} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gabardi, Silvia; Caravati, Sebastiano; Bernasconi, Marco, E-mail: marco.bernasconi@mater.unimib.it [Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via R. Cozzi 55, I-20125 Milano (Italy); Los, Jan H.; Kühne, Thomas D. [Institute of Physical Chemistry and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 7, D-55128 Mainz (Germany)

    2016-05-28

    We have investigated the structural, vibrational, and electronic properties of the amorphous phase of InSb and In{sub 3}SbTe{sub 2} compounds of interest for applications in phase change non-volatile memories. Models of the amorphous phase have been generated by quenching from the melt by molecular dynamics simulations based on density functional theory. In particular, we have studied the dependence of the structural properties on the choice of the exchange-correlation functional. It turns out that the use of the Becke-Lee-Yang-Parr functional provides models with a much larger fraction of In atoms in a tetrahedral bonding geometry with respect to previous results obtained with the most commonly used Perdew-Becke-Ernzerhof functional. This outcome is at odd with the properties of Ge{sub 2}Sb{sub 2}Te{sub 5} phase change compound for which the two exchange-correlation functionals yield very similar results on the structure of the amorphous phase.

  7. Towards improved local hybrid functionals by calibration of exchange-energy densities

    International Nuclear Information System (INIS)

    Arbuznikov, Alexei V.; Kaupp, Martin

    2014-01-01

    A new approach for the calibration of (semi-)local and exact exchange-energy densities in the context of local hybrid functionals is reported. The calibration functions are derived from only the electron density and its spatial derivatives, avoiding spatial derivatives of the exact-exchange energy density or other computationally unfavorable contributions. The calibration functions fulfill the seven more important out of nine known exact constraints. It is shown that calibration improves substantially the definition of a non-dynamical correlation energy term for generalized gradient approximation (GGA)-based local hybrids. Moreover, gauge artifacts in the potential-energy curves of noble-gas dimers may be corrected by calibration. The developed calibration functions are then evaluated for a large range of energy-related properties (atomization energies, reaction barriers, ionization potentials, electron affinities, and total atomic energies) of three sets of local hybrids, using a simple one-parameter local-mixing. The functionals are based on (a) local spin-density approximation (LSDA) or (b) Perdew-Burke-Ernzerhof (PBE) exchange and correlation, and on (c) Becke-88 (B88) exchange and Lee-Yang-Parr (LYP) correlation. While the uncalibrated GGA-based functionals usually provide very poor thermochemical data, calibration allows a dramatic improvement, accompanied by only a small deterioration of reaction barriers. In particular, an optimized BLYP-based local-hybrid functional has been found that is a substantial improvement over the underlying global hybrids, as well as over previously reported LSDA-based local hybrids. It is expected that the present calibration approach will pave the way towards new generations of more accurate hyper-GGA functionals based on a local mixing of exchange-energy densities

  8. Mass density fluctuations in quantum and classical descriptions of liquid water

    Science.gov (United States)

    Galib, Mirza; Duignan, Timothy T.; Misteli, Yannick; Baer, Marcel D.; Schenter, Gregory K.; Hutter, Jürg; Mundy, Christopher J.

    2017-06-01

    First principles molecular dynamics simulation protocol is established using revised functional of Perdew-Burke-Ernzerhof (revPBE) in conjunction with Grimme's third generation of dispersion (D3) correction to describe the properties of water at ambient conditions. This study also demonstrates the consistency of the structure of water across both isobaric (NpT) and isothermal (NVT) ensembles. Going beyond the standard structural benchmarks for liquid water, we compute properties that are connected to both local structure and mass density fluctuations that are related to concepts of solvation and hydrophobicity. We directly compare our revPBE results to the Becke-Lee-Yang-Parr (BLYP) plus Grimme dispersion corrections (D2) and both the empirical fixed charged model (SPC/E) and many body interaction potential model (MB-pol) to further our understanding of how the computed properties herein depend on the form of the interaction potential.

  9. Long-range corrected density functional theory study on static second hyperpolarizabilities of singlet diradical systems.

    Science.gov (United States)

    Kishi, Ryohei; Bonness, Sean; Yoneda, Kyohei; Takahashi, Hideaki; Nakano, Masayoshi; Botek, Edith; Champagne, Benoît; Kubo, Takashi; Kamada, Kenji; Ohta, Koji; Tsuneda, Takao

    2010-03-07

    Within the spin-unrestricted density functional theory (DFT) the long-range correction (LC) scheme combined with the Becke-Lee-Yang-Parr exchange-correlation functional, referred to as LC-UBLYP method, has been applied to the calculation of the second hyperpolarizability (gamma) of open-shell singlet diradical systems of increasing complexity and has demonstrated good performance: (i) for the simplest H(2) dissociation model, the gamma values calculated by the LC-UBLYP method significantly overshoot the full configuration interaction result but reproduce qualitatively the evolution of gamma as a function of the diradical character, (ii) for small singlet diradical 1,3-dipole systems, the diradical character dependence of gamma determined by the UCCSD and UCCSD(T) reference methods is reproduced semiquantitatively by the LC-UBLYP method except in the small diradical character region, where the spin-unrestricted solutions coincide with spin-restricted solutions, (iii) the LC-UBLYP method also closely reproduces the UCCSD(T) results on the diradical character dependence of gamma of the p-quinodimethane model system, particularly in the intermediate and large diradical character regions, whereas it shows an abrupt change for a diradical character (y) close to 0.2 originating from the triplet instability, (iv) the reliability of LC-UBLYP to reproduce reference coupled cluster results on open-shell singlet systems with intermediate and large diradical characters has also been substantiated in the case of gamma of 1,4-bis-(imidazol-2-ylidene)-cyclohexa-2,5-diene (BI2Y), then (v), for real systems built from a pair of phenalenyl radicals separated by a conjugated linker, the LC-UBLYP results have been found to closely match the UBHandHLYP values-which, for small systems are in good agreement with those obtained using correlated molecular orbital methods-whereas the UB3LYP results can be much different. These results are not only important from the viewpoint of an efficient

  10. Benchmarking quantum mechanical calculations with experimental NMR chemical shifts of 2-HADNT

    Science.gov (United States)

    Liu, Yuemin; Junk, Thomas; Liu, Yucheng; Tzeng, Nianfeng; Perkins, Richard

    2015-04-01

    In this study, both GIAO-DFT and GIAO-MP2 calculations of nuclear magnetic resonance (NMR) spectra were benchmarked with experimental chemical shifts. The experimental chemical shifts were determined experimentally for carbon-13 (C-13) of seven carbon atoms for the TNT degradation product 2-hydroxylamino-4,6-dinitrotoluene (2-HADNT). Quantum mechanics GIAO calculations were implemented using Becke-3-Lee-Yang-Parr (B3LYP) and other six hybrid DFT methods (Becke-1-Lee-Yang-Parr (B1LYP), Becke-half-and-half-Lee-Yang-Parr (BH and HLYP), Cohen-Handy-3-Lee-Yang-Parr (O3LYP), Coulomb-attenuating-B3LYP (CAM-B3LYP), modified-Perdew-Wang-91-Lee-Yang-Parr (mPW1LYP), and Xu-3-Lee-Yang-Parr (X3LYP)) which use the same correlation functional LYP. Calculation results showed that the GIAO-MP2 method gives the most accurate chemical shift values, and O3LYP method provides the best prediction of chemical shifts among the B3LYP and other five DFT methods. Three types of atomic partial charges, Mulliken (MK), electrostatic potential (ESP), and natural bond orbital (NBO), were also calculated using MP2/aug-cc-pVDZ method. A reasonable correlation was discovered between NBO partial charges and experimental chemical shifts of carbon-13 (C-13).

  11. An extended hybrid density functional (X3LYP) with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems

    Science.gov (United States)

    Xu, Xin; Zhang, Qingsong; Muller, Richard P.; Goddard, William A.

    2005-01-01

    We derive here the form for the exact exchange energy density for a density that decays with Gaussian-type behavior at long range. This functional is intermediate between the B88 and the PW91 exchange functionals. Using this modified functional to match the form expected for Gaussian densities, we propose the X3LYP extended functional. We find that X3LYP significantly outperforms Becke three parameter Lee-Yang-Parr (B3LYP) for describing van der Waals and hydrogen bond interactions, while performing slightly better than B3LYP for predicting heats of formation, ionization potentials, electron affinities, proton affinities, and total atomic energies as validated with the extended G2 set of atoms and molecules. Thus X3LYP greatly enlarges the field of applications for density functional theory. In particular the success of X3LYP in describing the water dimer (with Re and De within the error bars of the most accurate determinations) makes it an excellent candidate for predicting accurate ligand-protein and ligand-DNA interactions.

  12. Density functionalized [RuII(NO)(Salen)(Cl)] complex: Computational photodynamics and in vitro anticancer facets.

    Science.gov (United States)

    Mir, Jan Mohammad; Jain, N; Jaget, P S; Maurya, R C

    2017-09-01

    Photodynamic therapy (PDT) is a treatment that uses photosensitizing agents to kill cancer cells. Scientific community has been eager for decades to design an efficient PDT drug. Under such purview, the current report deals with the computational photodynamic behavior of ruthenium(II) nitrosyl complex containing N, N'-salicyldehyde-ethylenediimine (SalenH 2 ), the synthesis and X-ray crystallography of which is already known [Ref. 38,39]. Gaussian 09W software package was employed to carry out the density functional (DFT) studies. DFT calculations with Becke-3-Lee-Yang-Parr (B3LYP)/Los Alamos National Laboratory 2 Double Z (LanL2DZ) specified for Ru atom and B3LYP/6-31G(d,p) combination for all other atoms were used using effective core potential method. Both, the ground and excited states of the complex were evolved. Some known photosensitizers were compared with the target complex. Pthalocyanine and porphyrin derivatives were the compounds selected for the respective comparative study. It is suggested that effective photoactivity was found due to the presence of ruthenium core in the model complex. In addition to the evaluation of theoretical aspects in vitro anticancer aspects against COLO-205 human cancer cells have also been carried out with regard to the complex. More emphasis was laid to extrapolate DFT to depict the chemical power of the target compound to release nitric oxide. A promising visible light triggered nitric oxide releasing power of the compound has been inferred. In vitro antiproliferative studies of [RuCl 3 (PPh 3 ) 3 ] and [Ru(NO)(Salen)(Cl)] have revealed the model complex as an excellent anticancer agent. From IC 50 values of 40.031mg/mL in former and of 9.74mg/mL in latter, it is established that latter bears more anticancer potentiality. From overall study the DFT based structural elucidation and the efficiency of NO, Ru and Salen co-ligands has shown promising drug delivery property and a good candidacy for both chemotherapy as well as

  13. Locality of correlation in density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Kieron [Department of Chemistry, University of California, Irvine, California 92697 (United States); Cancio, Antonio [Department of Physics and Astronomy, Ball State University, Muncie, Indiana 47306 (United States); Gould, Tim [Qld Micro- and Nanotechnology Centre, Griffith University, Nathan, Qld 4111 (Australia); Pittalis, Stefano [CNR-Istituto di Nanoscienze, Via Campi 213A, I-41125 Modena (Italy)

    2016-08-07

    The Hohenberg-Kohn density functional was long ago shown to reduce to the Thomas-Fermi (TF) approximation in the non-relativistic semiclassical (or large-Z) limit for all matter, i.e., the kinetic energy becomes local. Exchange also becomes local in this limit. Numerical data on the correlation energy of atoms support the conjecture that this is also true for correlation, but much less relevant to atoms. We illustrate how expansions around a large particle number are equivalent to local density approximations and their strong relevance to density functional approximations. Analyzing highly accurate atomic correlation energies, we show that E{sub C} → −A{sub C} ZlnZ + B{sub C}Z as Z → ∞, where Z is the atomic number, A{sub C} is known, and we estimate B{sub C} to be about 37 mhartree. The local density approximation yields A{sub C} exactly, but a very incorrect value for B{sub C}, showing that the local approximation is less relevant for the correlation alone. This limit is a benchmark for the non-empirical construction of density functional approximations. We conjecture that, beyond atoms, the leading correction to the local density approximation in the large-Z limit generally takes this form, but with B{sub C} a functional of the TF density for the system. The implications for the construction of approximate density functionals are discussed.

  14. correlation between maximum dry density and cohesion

    African Journals Online (AJOL)

    HOD

    represents maximum dry density, signifies plastic limit and is liquid limit. Researchers [6, 7] estimate compaction parameters. Aside from the correlation existing between compaction parameters and other physical quantities there are some other correlations that have been investigated by other researchers. The well-known.

  15. Correlation and spectral density measurements by LDA

    International Nuclear Information System (INIS)

    Pfeifer, H.J.

    1986-01-01

    The present paper is intended to give a review on the state-of-the art in correlation and spectral density measurements by means of laser Doppler anemometry. As will be shown in detail the most important difference in performing this type of studies is the fact that laser anemometry relies on the presence of particles in the flow serving as flow velocity indicators. This means that, except in heavily seeded flows, the instantaneous velocity can only be sampled at random instants. This calls for new algorithms to calculate estimates of both correlation functions and power spectra. Various possibilities to handle the problem of random sampling have been developed in the past. They are explained from the theoretical point of view and the experimental aspects are detailed as far as they are different from conventional applications of laser anemometry

  16. Imaginary time density-density correlations for two-dimensional electron gases at high density

    Energy Technology Data Exchange (ETDEWEB)

    Motta, M.; Galli, D. E. [Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Moroni, S. [IOM-CNR DEMOCRITOS National Simulation Center and SISSA, Via Bonomea 265, 34136 Trieste (Italy); Vitali, E. [Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795 (United States)

    2015-10-28

    We evaluate imaginary time density-density correlation functions for two-dimensional homogeneous electron gases of up to 42 particles in the continuum using the phaseless auxiliary field quantum Monte Carlo method. We use periodic boundary conditions and up to 300 plane waves as basis set elements. We show that such methodology, once equipped with suitable numerical stabilization techniques necessary to deal with exponentials, products, and inversions of large matrices, gives access to the calculation of imaginary time correlation functions for medium-sized systems. We discuss the numerical stabilization techniques and the computational complexity of the methodology and we present the limitations related to the size of the systems on a quantitative basis. We perform the inverse Laplace transform of the obtained density-density correlation functions, assessing the ability of the phaseless auxiliary field quantum Monte Carlo method to evaluate dynamical properties of medium-sized homogeneous fermion systems.

  17. Isobaric-isothermal Monte Carlo simulations from first principles: Application to liquid water at ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, M; Siepmann, J I; Kuo, I W; Mundy, C J; VandeVondele, J; Hutter, J; Mohamed, F; Krack, M

    2004-12-02

    A series of first principles Monte Carlo simulations in the isobaric-isothermal ensemble were carried out for liquid water at ambient conditions (T = 298 K and p = 1 atm). The Becke-Lee-Yang-Parr (BLYP) exchange and correlation energy functionals and norm-conserving Goedecker-Teter-Hutter (GTH) pseudopotentials were employed with the CP2K simulation package to examine systems consisting of 64 water molecules. The fluctuations in the system volume encountered in simulations in the isobaric-isothermal ensemble requires a reconsideration of the suitability of the typical charge density cutoff and the regular grid generation method previously used for the computation of the electrostatic energy in first principles simulations in the microcanonical or canonical ensembles. In particular, it is noted that a much higher cutoff is needed and that the most computationally efficient method of creating grids can result in poor simulations. Analysis of the simulation trajectories using a very large charge density cutoff at 1200 Ry and four different grid generation methods point to a substantially underestimated liquid density of about 0.85 g/cm{sup 3} resulting in a somewhat understructured liquid (with a value of about 2.7 for the height of the first peak in the oxygen/oxygen radial distribution function) for BLYP-GTH water at ambient conditions.

  18. Vibrational spectroscopy (FT-IR and Laser-Raman) investigation, and computational (M06-2X and B3LYP) analysis on the structure of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone.

    Science.gov (United States)

    Sert, Yusuf; Miroslaw, Barbara; Çırak, Çağrı; Doğan, Hatice; Szulczyk, Daniel; Struga, Marta

    2014-07-15

    In this study, the experimental and theoretical vibrational spectral analysis of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone have been carried out. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) have been recorded for the solid state samples. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths and angles) have been calculated for gas phase using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set. The diversity in molecular geometry of fluorophenyl substituted thiosemicarbazones has been discussed based on the X-ray crystal structure reports and theoretical calculation results from the literature. The assignments of the vibrational frequencies have been done on the basis of potential energy distribution (PED) analysis by using VEDA4 software. A good correlation was found between the computed and experimental geometric and vibrational data. In addition, the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbital energy levels and other related molecular energy values of the compound have been determined using the same level of theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Quantum Calculation for Musk Molecules Infrared Spectra towards the Understanding of Odor

    Directory of Open Access Journals (Sweden)

    Elaine Rose Maia

    2014-01-01

    Full Text Available It is not clear so far how humans can recognize odor. One of the theories regarding structure-odor relationship is vibrational theory, which claims that odors can be recognized by their modes of vibration. In this sense, this paper brings a novel comparison made between musky and nonmusky molecules, as to check the existence of correlation between their modes on the infrared spectra and odor. For this purpose, sixteen musky odorants were chosen, as well as seven other molecules that are structurally similar to them, but with no musk odor. All of them were submitted to solid theoretical methodology (using molecular mechanics/molecular dynamics and Neglect of Diatomic Differential Overlap Austin Model 1 methods to optimize geometries as to achieve density functional theory spectra information, with both Gradient Corrected Functional Perdew-Wang generalized-gradient approximation (GGA/PW91 and hybrid Becke, three-parameter, Lee-Yang-Parr (B3LYP functional. For a proper analysis over spectral data, a mathematical method was designed, generating weighted averages for theoretical frequencies and computing deviations from these averages. It was then devised that musky odorants satisfied demands of the vibrational theory, while nonmusk compounds belonging either to nitro group or to acyclic group failed to fulfill the same criteria.

  20. Toward a Monte Carlo program for simulating vapor-liquid phase equilibria from first principles

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, M; Siepmann, J I; Kuo, I W; Mundy, C J; Vandevondele, J; Sprik, M; Hutter, J; Mohamed, F; Krack, M; Parrinello, M

    2004-10-20

    Efficient Monte Carlo algorithms are combined with the Quickstep energy routines of CP2K to develop a program that allows for Monte Carlo simulations in the canonical, isobaric-isothermal, and Gibbs ensembles using a first principles description of the physical system. Configurational-bias Monte Carlo techniques and pre-biasing using an inexpensive approximate potential are employed to increase the sampling efficiency and to reduce the frequency of expensive ab initio energy evaluations. The new Monte Carlo program has been validated through extensive comparison with molecular dynamics simulations using the programs CPMD and CP2K. Preliminary results for the vapor-liquid coexistence properties (T = 473 K) of water using the Becke-Lee-Yang-Parr exchange and correlation energy functionals, a triple-zeta valence basis set augmented with two sets of d-type or p-type polarization functions, and Goedecker-Teter-Hutter pseudopotentials are presented. The preliminary results indicate that this description of water leads to an underestimation of the saturated liquid density and heat of vaporization and, correspondingly, an overestimation of the saturated vapor pressure.

  1. Vibrational frequency analysis, FT-IR, DFT and M06-2X studies on tert-Butyl N-(thiophen-2yl)carbamate

    Science.gov (United States)

    Sert, Yusuf; Singer, L. M.; Findlater, M.; Doğan, Hatice; Çırak, Ç.

    2014-07-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized tert-Butyl N-(thiophen-2yl)carbamate have been investigated. The experimental FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with the 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The vibrational frequencies have been assigned using potential energy distribution (PED) analysis by using VEDA 4 software. The computational optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with related literature results. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and are depicted.

  2. FT-IR and Raman vibrational analysis, B3LYP and M06-2X simulations of 4-bromomethyl-6-tert-butyl-2H-chromen-2-one

    Science.gov (United States)

    Sert, Yusuf; Puttaraju, K. B.; Keskinoğlu, Sema; Shivashankar, K.; Ucun, Fatih

    2015-01-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized bacteriostatic and anti-tumor molecule namely, 4-bromomethyl-6-tert-butyl-2H-chromen-2-one have been investigated. The experimental FT-IR (4000-400 cm-1) and Raman spectra (4000-100 cm-1) of the compound in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parametrized, empirical exchange correlation function) with 6-311++G(d, p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.

  3. Experimental FT-IR, Laser-Raman and DFT spectroscopic analysis of a potential chemotherapeutic agent 6-(2-methylpropyl)-4-oxo-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5-carbonitrile.

    Science.gov (United States)

    Sert, Yusuf; Al-Turkistani, Abdulghafoor A; Al-Deeb, Omar A; El-Emam, Ali A; Ucun, Fatih; Çırak, Çağrı

    2014-01-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential chemotherapeutic agent namely, 6-(2-methylpropyl)-4-oxo-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5-carbonitrile have been investigated. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09 W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. A theoretical study on 2-amino-5-nitroprydinium trifluoroaceta

    Energy Technology Data Exchange (ETDEWEB)

    Arioğlu, Çağla, E-mail: caglaarioglu@gmail.com; Tamer, Ömer, E-mail: omertamer@sakarya.edu.tr; Başoğlu, Adil, E-mail: abasoglu@sakarya.edu.tr; Avci, Davut, E-mail: davci@sakarya.edu.tr; Atalay, Yusuf, E-mail: yatalay@sakarya.edu.tr [Sakarya University, Faculty of Arts and Sciences, Department of Physics, 54187, Sakarya (Turkey)

    2016-03-25

    The geometry optimization of 2-amino-5-nitroprydinium trifluoroacetate molecule was carried out by using Becke’s three-parameter exchange functional in conjunction with the Lee-Yang-Parr correlation functional (B3LYP) level of density functional theory (DFT) and 6-311++G(d,p) basis set at GAUSSIAN 09 program. The vibration spectrum of the title compound was simulated to predict the presence of functional groups and their vibrational modes. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were calculated at the same level, and the obtained small energy gap shows that charge transfer occurs in the title compound. The molecular dipole moment, polarizability and hyperpolarizability parameters were determined to evaluate nonlinear optical efficiency of the title compound. Finally, the {sup 13}C and {sup 1}H Nuclear Magnetic Resonance (NMR) chemical shift values were calculated by the application of the gauge independent atomic orbital (GIAO) method. All of the calculations were carried out by using GAUSSIAN 09 program.

  5. Theoretical study on the spectroscopic properties of CO3(*-).nH2O clusters: extrapolation to bulk.

    Science.gov (United States)

    Pathak, Arup K; Mukherjee, Tulsi; Maity, Dilip K

    2008-10-24

    Vertical detachment energies (VDE) and UV/Vis absorption spectra of hydrated carbonate radical anion clusters, CO(3)(*-).nH(2)O (n=1-8), are determined by means of ab initio electronic structure theory. The VDE values of the hydrated clusters are calculated with second-order Moller-Plesset perturbation (MP2) and coupled cluster theory using the 6-311++G(d,p) set of basis functions. The bulk VDE value of an aqueous carbonate radical anion solution is predicted to be 10.6 eV from the calculated weighted average VDE values of the CO(3)(*-).nH(2)O clusters. UV/Vis absorption spectra of the hydrated clusters are calculated by means of time-dependent density functional theory using the Becke three-parameter nonlocal exchange and the Lee-Yang-Parr nonlocal correlation functional (B3LYP). The simulated UV/Vis spectrum of the CO(3)(*-).8H(2)O cluster is in excellent agreement with the reported experimental spectrum for CO(3)(*-) (aq), obtained based on pulse radiolysis experiments.

  6. NSAIDs as potential treatment option for preventing amyloid β toxicity in Alzheimer's disease: an investigation by docking, molecular dynamics, and DFT studies.

    Science.gov (United States)

    Azam, Faizul; Alabdullah, Nada Hussin; Ehmedat, Hadeel Mohammed; Abulifa, Abdullah Ramadan; Taban, Ismail; Upadhyayula, Sreedevi

    2018-06-01

    Aggregation of amyloid beta (Aβ) protein considered as one of contributors in development of Alzheimer's disease (AD). Several investigations have identified the importance of non-steroidal anti-inflammatory drugs (NSAIDs) as Aβ aggregation inhibitors. Here, we have examined the binding interactions of 24 NSAIDs belonging to eight different classes, with Aβ fibrils by exploiting docking and molecular dynamics studies. Minimum energy conformation of the docked NSAIDs were further optimized by density functional theory (DFT) employing Becke's three-parameter hybrid model, Lee-Yang-Parr (B3LYP) correlation functional method. DFT-based global reactivity descriptors, such as electron affinity, hardness, softness, chemical potential, electronegativity, and electrophilicity index were calculated to inspect the expediency of these descriptors for understanding the reactive nature and sites of the molecules. Few selected NSAID-Aβ fibrils complexes were subjected to molecular dynamics simulation to illustrate the stability of these complexes and the most prominent interactions during the simulated trajectory. All of the NSAIDs exhibited potential activity against Aβ fibrils in terms of predicted binding affinity. Sulindac was found to be the most active compound underscoring the contribution of indene methylene substitution, whereas acetaminophen was observed as least active NSAID. General structural requirements for interaction of NSAIDs with Aβ fibril include: aryl/heteroaryl aromatic moiety connected through a linker of 1-2 atoms to a distal aromatic group. Considering these structural requirements and electronic features, new potent agents can be designed and developed as potential Aβ fibril inhibitors for the treatment of AD.

  7. A quantum dynamical study of the rotation of the dihydrogen ligand in the Fe(H)2(H2)(PEtPh2)3 coordination complex

    Science.gov (United States)

    Gonzalez, Megan E.; Eckert, Juergen; Aquino, Adelia J. A.; Poirier, Bill

    2018-04-01

    Progress in the hydrogen fuel field requires a clear understanding and characterization of how materials of interest interact with hydrogen. Due to the inherently quantum mechanical nature of hydrogen nuclei, any theoretical studies of these systems must be treated quantum dynamically. One class of material that has been examined in this context are dihydrogen complexes. Since their discovery by Kubas in 1984, many such complexes have been studied both experimentally and theoretically. This particular study examines the rotational dynamics of the dihydrogen ligand in the Fe(H)2(H2)(PEtPh2)3 complex, allowing for full motion in both the rotational degrees of freedom and treating the quantum dynamics (QD) explicitly. A "gas-phase" global potential energy surface is first constructed using density functional theory with the Becke, 3-parameter, Lee-Yang-Parr functional; this is followed by an exact QD calculation of the corresponding rotation/libration states. The results provide insight into the dynamical correlation of the two rotation angles as well as a comprehensive analysis of both ground- and excited-state librational tunneling splittings. The latter was computed to be 6.914 cm-1—in excellent agreement with the experimental value of 6.4 cm-1. This work represents the first full-dimensional ab initio exact QD calculation ever performed for dihydrogen ligand rotation in a coordination complex.

  8. correlation between maximum dry density and cohesion of ...

    African Journals Online (AJOL)

    HOD

    investigation on sandy soils to determine the correlation between relative density and compaction test parameter. Using twenty soil samples, they were able to develop correlations between relative density, coefficient of uniformity and maximum dry density. Khafaji [5] using standard proctor compaction method carried out an ...

  9. Spatial correlation between weed species densities and soil properties

    DEFF Research Database (Denmark)

    Walter, Mette; Christensen, Svend; Simmelsgaard, Svend Erik

    2002-01-01

    The spatial cross-correlation between weed species densities and six soil properties within fields was analysed using cross-semivariograms. The survey was carried out in three successive years in two fields. The most consistent relationship between weed species density (numbers m−2) and soil...... properties was negative cross-correlation between the density of Viola arvensis Murray and clay content. This correlation was found in both fields; however, the range of spatial dependence varied between fields. In one of the fields, the density of Lamium purpureum L. was positively cross......-correlated with the phosphorus content in the soil in all years. The density of Veronica spp. and Poa annua L. was negatively cross-correlated with pH in all three years. Other spatial cross-correlations that were found in this study were inconsistent over time or field site. The densities of some of the weed species were...

  10. Atomic structures and covalent-to-metallic transition of lead clusters Pbn (n=2-22)

    International Nuclear Information System (INIS)

    Wang Baolin; Zhao Jijun; Chen Xiaoshuang; Shi Daning; Wang Guanghou

    2005-01-01

    The lowest-energy structures and electronic properties of the lead clusters are studied by density-functional-theory calculations with Becke-Lee-Yang-Parr gradient correction. The lowest-energy structures of Pb n (n=2-22) clusters are determined from a number of structural isomers, which are generated from empirical genetic algorithm simulations. The competition between atom-centered compact structures and layered stacking structures leads to the alternative appearance of the two types of structures as global minimum. The size evolution of geometric and electronic properties from covalent bonding towards bulk metallic behavior in Pb clusters is discussed

  11. CORRELATION BETWEEN GROUP LOCAL DENSITY AND GROUP LUMINOSITY

    Energy Technology Data Exchange (ETDEWEB)

    Deng Xinfa [School of Science, Nanchang University, Jiangxi 330031 (China); Yu Guisheng [Department of Natural Science, Nanchang Teachers College, Jiangxi 330103 (China)

    2012-11-10

    In this study, we investigate the correlation between group local number density and total luminosity of groups. In four volume-limited group catalogs, we can conclude that groups with high luminosity exist preferentially in high-density regions, while groups with low luminosity are located preferentially in low-density regions, and that in a volume-limited group sample with absolute magnitude limit M{sub r} = -18, the correlation between group local number density and total luminosity of groups is the weakest. These results basically are consistent with the environmental dependence of galaxy luminosity.

  12. Two-point density correlations of quasicondensates in free expansion

    DEFF Research Database (Denmark)

    Manz, S.; Bücker, R.; Betz, T.

    2010-01-01

    We measure the two-point density correlation function of freely expanding quasicondensates in the weakly interacting quasi-one-dimensional (1D) regime. While initially suppressed in the trap, density fluctuations emerge gradually during expansion as a result of initial phase fluctuations present...... in the trapped quasicondensate. Asymptotically, they are governed by the thermal coherence length of the system. Our measurements take place in an intermediate regime where density correlations are related to near-field diffraction effects and anomalous correlations play an important role. Comparison...

  13. Ligand identification using electron-density map correlations

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Adams, Paul D.; Moriarty, Nigel W.; Cohn, Judith D.

    2007-01-01

    An automated ligand-fitting procedure is applied to (F o − F c )exp(iϕ c ) difference density for 200 commonly found ligands from macromolecular structures in the Protein Data Bank to identify ligands from density maps. A procedure for the identification of ligands bound in crystal structures of macromolecules is described. Two characteristics of the density corresponding to a ligand are used in the identification procedure. One is the correlation of the ligand density with each of a set of test ligands after optimization of the fit of that ligand to the density. The other is the correlation of a fingerprint of the density with the fingerprint of model density for each possible ligand. The fingerprints consist of an ordered list of correlations of each the test ligands with the density. The two characteristics are scored using a Z-score approach in which the correlations are normalized to the mean and standard deviation of correlations found for a variety of mismatched ligand-density pairs, so that the Z scores are related to the probability of observing a particular value of the correlation by chance. The procedure was tested with a set of 200 of the most commonly found ligands in the Protein Data Bank, collectively representing 57% of all ligands in the Protein Data Bank. Using a combination of these two characteristics of ligand density, ranked lists of ligand identifications were made for representative (F o − F c )exp(iϕ c ) difference density from entries in the Protein Data Bank. In 48% of the 200 cases, the correct ligand was at the top of the ranked list of ligands. This approach may be useful in identification of unknown ligands in new macromolecular structures as well as in the identification of which ligands in a mixture have bound to a macromolecule

  14. Correlations between different methods of UO2 pellet density measurement

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1977-07-01

    Density of UO 2 pellets was measured by three different methods, i.e., geometrical, water-immersed and meta-xylene immersed and treated statistically, to find out the correlations between UO 2 pellets are of six kinds but with same specifications. The correlations are linear 1 : 1 for pellets of 95% theoretical densities and above, but such do not exist below the level and variated statistically due to interaction between open and close pores. (auth.)

  15. Strong Correlation in Kohn-Sham Density Functional Theory

    NARCIS (Netherlands)

    Malet, F.; Gori Giorgi, P.

    2012-01-01

    We use the exact strong-interaction limit of the Hohenberg-Kohn energy density functional to approximate the exchange-correlation energy of the restricted Kohn-Sham scheme. Our approximation corresponds to a highly nonlocal density functional whose functional derivative can be easily constructed,

  16. Exchange-correlation energies of atoms from efficient density functionals: influence of the electron density

    Science.gov (United States)

    Tao, Jianmin; Ye, Lin-Hui; Duan, Yuhua

    2017-12-01

    The primary goal of Kohn-Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao-Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE), Tao-Perdew-Staroverov-Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree-Fock density yields the exchange and correlation energies in good agreement with the Optimized Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Finally, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.

  17. Correlated density matrix theory of spatially inhomogeneous Bose fluids

    International Nuclear Information System (INIS)

    Gernoth, K.A.; Clark, J.W.; Ristig, M.L.

    1994-06-01

    In this paper, the variational Hartree-Jastrow theory of the ground state of spatially inhomogeneous Bose systems is extended to finite temperatures. The theory presented here is a generalization also in the sense that it extends the correlated density matrix approach, formulated previously for uniform Bose fluids, to systems with nonuniform density profiles. The method provides a framework in which the effects of thermal excitations on the spatial structure of a Bose fluid, as represented by the density profile and the two-body distribution functions, may be discussed on the basis on an ab initio microscopic description of the system. Thermal excitations make their appearance through self-consistently determined one-body and two-body potentials which enter the nonlinear, coupled Euler-Lagrange equations for the one-body density and for the pair distribution function. Since back-flow correlations are neglected, the excitations are described by a Feynman eigenvalue equation, suitably generalized to nonzero temperatures. The only external quantities entering the correlated density matrix theory elaborated here are the bare two-body interaction potential and, in actual applications, the boundary conditions to be imposed on the one-body density. 30 refs

  18. Correlation density matrices for one-dimensional quantum chains based on the density matrix renormalization group

    International Nuclear Information System (INIS)

    Muender, W; Weichselbaum, A; Holzner, A; Delft, Jan von; Henley, C L

    2010-01-01

    A useful concept for finding numerically the dominant correlations of a given ground state in an interacting quantum lattice system in an unbiased way is the correlation density matrix (CDM). For two disjoint, separated clusters, it is defined to be the density matrix of their union minus the direct product of their individual density matrices and contains all the correlations between the two clusters. We show how to extract from the CDM a survey of the relative strengths of the system's correlations in different symmetry sectors and the nature of their decay with distance (power law or exponential), as well as detailed information on the operators carrying long-range correlations and the spatial dependence of their correlation functions. To achieve this goal, we introduce a new method of analysing the CDM, termed the dominant operator basis (DOB) method, which identifies in an unbiased fashion a small set of operators for each cluster that serve as a basis for the dominant correlations of the system. We illustrate this method by analysing the CDM for a spinless extended Hubbard model that features a competition between charge density correlations and pairing correlations, and show that the DOB method successfully identifies their relative strengths and dominant correlators. To calculate the ground state of this model, we use the density matrix renormalization group, formulated in terms of a variational matrix product state (MPS) approach within which subsequent determination of the CDM is very straightforward. In an extended appendix, we give a detailed tutorial introduction to our variational MPS approach for ground state calculations for one-dimensional quantum chain models. We present in detail how MPSs overcome the problem of large Hilbert space dimensions in these models and describe all the techniques needed for handling them in practice.

  19. Density-scaling exponents and virial potential-energy correlation ...

    Indian Academy of Sciences (India)

    This paper investigates the relation between the density-scaling exponent γ and the virial potential energy correlation coefficient R at several thermodynamic state points in three dimensions for the generalized (2n, n) Lennard-Jones (LJ) system for n = 4, 9, 12, 18, as well as for the standard n = 6 LJ system in two,three, and ...

  20. Density-correlation functions in Calogero-Sutherland models

    International Nuclear Information System (INIS)

    Minahan, J.A.; Polychronakos, A.P.

    1994-01-01

    Using arguments from two-dimensional Yang-Mills theory and the collective coordinate formulation of the Calogero-Sutherland model, we conjecture the dynamical density-correlation function for coupling l and 1/l, where l is an integer. We present overwhelming evidence that the conjecture is indeed correct

  1. Density correlation functions in Calogero-Sutherland models

    CERN Document Server

    Minahan, Joseph A.; Joseph A Minahan; Alexios P Polychronakos

    1994-01-01

    Using arguments from two dimensional Yang-Mills theory and the collective coordinate formulation of the Calogero-Sutherland model, we conjecture the dynamical density correlation function for coupling l and 1/l, where l is an integer. We present overwhelming evidence that the conjecture is indeed correct.

  2. A pair density functional theory utilizing the correlated wave function

    International Nuclear Information System (INIS)

    Higuchi, M; Higuchi, K

    2009-01-01

    We propose a practical scheme for calculating the ground-state pair density (PD) by utilizing the correlated wave function. As the correlated wave function, we adopt a linear combination of the single Slater determinants that are constructed from the solutions of the initial scheme [Higuchi M and Higuchi K 2007 Physica B 387, 117]. The single-particle equation is derived by performing the variational principle within the set of PDs that are constructed from such correlated wave functions. Since the search region of the PD is substantially extended as compared with the initial scheme, it is expected that the present scheme can cover more correlation effects. The single-particle equation is practical, and may be easily applied to actual calculations.

  3. Describing a Strongly Correlated Model System with Density Functional Theory.

    Science.gov (United States)

    Kong, Jing; Proynov, Emil; Yu, Jianguo; Pachter, Ruth

    2017-07-06

    The linear chain of hydrogen atoms, a basic prototype for the transition from a metal to Mott insulator, is studied with a recent density functional theory model functional for nondynamic and strong correlation. The computed cohesive energy curve for the transition agrees well with accurate literature results. The variation of the electronic structure in this transition is characterized with a density functional descriptor that yields the atomic population of effectively localized electrons. These new methods are also applied to the study of the Peierls dimerization of the stretched even-spaced Mott insulator to a chain of H 2 molecules, a different insulator. The transitions among the two insulating states and the metallic state of the hydrogen chain system are depicted in a semiquantitative phase diagram. Overall, we demonstrate the capability of studying strongly correlated materials with a mean-field model at the fundamental level, in contrast to the general pessimistic view on such a feasibility.

  4. RPA correlations and nuclear densities in relativistic mean field approach

    International Nuclear Information System (INIS)

    Van Giai, N.; Liang, H.Z.; Meng, J.

    2007-02-01

    The relativistic mean field approach (RMF) is well known for describing accurately binding energies and nucleon distributions in atomic nuclei throughout the nuclear chart. The random phase approximation (RPA) built on top of the RMF is also a good framework for the study of nuclear excitations. Here, we examine the consequences of long range correlations brought about by the RPA on the neutron and proton densities as given by the RMF approach. (authors)

  5. Patching the Exchange-Correlation Potential in Density Functional Theory.

    Science.gov (United States)

    Huang, Chen

    2016-05-10

    A method for directly patching exchange-correlation (XC) potentials in materials is derived. The electron density of a system is partitioned into subsystem densities by dividing its Kohn-Sham (KS) potential among the subsystems. Inside each subsystem, its projected KS potential is required to become the total system's KS potential. This requirement, together with the nearsightedness principle of electronic matters, ensures that the electronic structures inside subsystems can be good approximations to the total system's electronic structure. The nearsightedness principle also ensures that subsystem densities could be well localized in their regions, making it possible to use high-level methods to invert the XC potentials for subsystem densities. Two XC patching methods are developed. In the local XC patching method, the total system's XC potential is improved in the cluster region. We show that the coupling between a cluster and its environment is important for achieving a fast convergence of the electronic structure in the cluster region. In the global XC patching method, we discuss how to patch the subsystem XC potentials to construct the XC potential in the total system, aiming to scale up high-level quantum mechanics simulations of materials. Proof-of-principle examples are given.

  6. Covariance and correlation estimation in electron-density maps.

    Science.gov (United States)

    Altomare, Angela; Cuocci, Corrado; Giacovazzo, Carmelo; Moliterni, Anna; Rizzi, Rosanna

    2012-03-01

    Quite recently two papers have been published [Giacovazzo & Mazzone (2011). Acta Cryst. A67, 210-218; Giacovazzo et al. (2011). Acta Cryst. A67, 368-382] which calculate the variance in any point of an electron-density map at any stage of the phasing process. The main aim of the papers was to associate a standard deviation to each pixel of the map, in order to obtain a better estimate of the map reliability. This paper deals with the covariance estimate between points of an electron-density map in any space group, centrosymmetric or non-centrosymmetric, no matter the correlation between the model and target structures. The aim is as follows: to verify if the electron density in one point of the map is amplified or depressed as an effect of the electron density in one or more other points of the map. High values of the covariances are usually connected with undesired features of the map. The phases are the primitive random variables of our probabilistic model; the covariance changes with the quality of the model and therefore with the quality of the phases. The conclusive formulas show that the covariance is also influenced by the Patterson map. Uncertainty on measurements may influence the covariance, particularly in the final stages of the structure refinement; a general formula is obtained taking into account both phase and measurement uncertainty, valid at any stage of the crystal structure solution.

  7. Azimuthal angle correlations at large rapidities. Revisiting density variation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Gotsman, E. [Tel Aviv University, Department of Particle Physics, Raymond and Beverly Sackler Faculty of Exact Science, School of Physics and Astronomy, Tel Aviv (Israel); Levin, E. [Tel Aviv University, Department of Particle Physics, Raymond and Beverly Sackler Faculty of Exact Science, School of Physics and Astronomy, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria, Departemento de Fisica, Valparaiso (Chile); Centro Cientifico-Tecnologico de Valparaiso, Valparaiso (Chile)

    2017-11-15

    We discuss the angular correlation present in hadron-hadron collisions at large rapidity difference (anti α{sub S}y{sub 12} >> 1). We find that in the CGC/saturation approach the largest contribution stems from the density variation mechanism. Our principal results are that the odd Fourier harmonics (v{sub 2n+1}) decrease substantially as a function of y{sub 12}, while the even harmonics (v{sub 2n}) increase considerably with the growth of y{sub 12}. (orig.)

  8. K-correlation power spectral density and surface scatter model

    Science.gov (United States)

    Dittman, Michael G.

    2006-08-01

    The K-Correlation or ABC model for surface power spectral density (PSD) and BRDF has been around for years. Eugene Church and John Stover, in particular, have published descriptions of its use in describing smooth surfaces. The model has, however, remained underused in the optical analysis community partially due to the lack of a clear summary tailored toward that application. This paper provides the K-Correlation PSD normalized to σ(λ) and BRDF normalized to TIS(σ,λ) in a format intended to be used by stray light analysts. It is hoped that this paper will promote use of the model by analysts and its incorporation as a standard tool into stray light modeling software.

  9. Liquid Water from First Principles: Validation of Different Sampling Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Mundy, C J; Kuo, W; Siepmann, J; McGrath, M J; Vondevondele, J; Sprik, M; Hutter, J; Parrinello, M; Mohamed, F; Krack, M; Chen, B; Klein, M

    2004-05-20

    A series of first principles molecular dynamics and Monte Carlo simulations were carried out for liquid water to assess the validity and reproducibility of different sampling approaches. These simulations include Car-Parrinello molecular dynamics simulations using the program CPMD with different values of the fictitious electron mass in the microcanonical and canonical ensembles, Born-Oppenheimer molecular dynamics using the programs CPMD and CP2K in the microcanonical ensemble, and Metropolis Monte Carlo using CP2K in the canonical ensemble. With the exception of one simulation for 128 water molecules, all other simulations were carried out for systems consisting of 64 molecules. It is found that the structural and thermodynamic properties of these simulations are in excellent agreement with each other as long as adiabatic sampling is maintained in the Car-Parrinello molecular dynamics simulations either by choosing a sufficiently small fictitious mass in the microcanonical ensemble or by Nos{acute e}-Hoover thermostats in the canonical ensemble. Using the Becke-Lee-Yang-Parr exchange and correlation energy functionals and norm-conserving Troullier-Martins or Goedecker-Teter-Hutter pseudopotentials, simulations at a fixed density of 1.0 g/cm{sup 3} and a temperature close to 315 K yield a height of the first peak in the oxygen-oxygen radial distribution function of about 3.0, a classical constant-volume heat capacity of about 70 J K{sup -1} mol{sup -1}, and a self-diffusion constant of about 0.1 Angstroms{sup 2}/ps.

  10. Application of computational chemistry methods to obtain thermodynamic data for hydrogen production from liquefied petroleum gas

    Directory of Open Access Journals (Sweden)

    J. A. Sousa

    2013-03-01

    Full Text Available The objective of this study was to estimate thermodynamic data, such as standard enthalpy, entropy and Gibbs free energy changes of reaction and, consequently, chemical equilibrium constants, for a reaction system describing the hydrogen production from Liquefied Petroleum Gas (LPG. The acquisition of those properties was made using computational chemistry methods and the results were compared with experimental data reported in the literature. The reaction system of steam reforming of LPG was reported as a set of seven independent reactions involving the chemical species n-C4H10, C3H8, C2H6, C2H4, CH4, CO2, CO, H2O, H2 and solid carbon. Six computational approaches were used: Density Functional Theory (DFT employing Becke's three parameter hybrid exchange functional, and the Lee-Yang-Parr correlation functional (B3LYP using the 6-31G++(d,p basis set and the composite methods CBS-QB3, Gaussian-1 (G1, Gaussian-2 (G2, Gaussian-3 (G3 and Gaussian-4 (G4. Mole fractions of the system components were also determined between 873.15 and 1173.15 K, at 1 atm and a feed with a stoichiometric amount of water. Results showed that the hybrid functional B3LYP/6-31G++(d,p, G3 and G4 theories were the most appropriated methods to predict the properties of interest. Gaussian-3 and Gaussian-4 theories are expected to be good thermodynamic data predictors and the known efficient prediction of vibrational frequencies by B3LYP is probably the source of the good agreement found in this study. This last methodology is of special interest since it presents low computational cost, which is important when more complex molecular systems are considered.

  11. Correlation functional in screened-exchange density functional theory procedures.

    Science.gov (United States)

    Chan, Bun; Kawashima, Yukio; Hirao, Kimihiko

    2017-10-15

    In the present study, we have explored several prospects for the further development of screened-exchange density functional theory (SX-DFT) procedures. Using the performance of HSE06 as our measure, we find that the use of alternative correlation functionals (as oppose to PBEc in HSE06) also yields adequate results for a diverse set of thermochemical properties. We have further examined the performance of new SX-DFT procedures (termed HSEB-type methods) that comprise the HSEx exchange and a (near-optimal) reparametrized B97c (c OS,0  = c SS,0  = 1, c OS,1  = -1.5, c OS,2  = -0.644, c SS,1  = -0.5, and c SS,2  = 1.10) correlation functionals. The different variants of HSEB all perform comparably to or slightly better than the original HSE-type procedures. These results, together with our fundamental analysis of correlation functionals, point toward various directions for advancing SX-DFT methods. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Transport through correlated systems with density functional theory.

    Science.gov (United States)

    Kurth, S; Stefanucci, G

    2017-10-18

    We present recent advances in density functional theory (DFT) for applications in the field of quantum transport, with particular emphasis on transport through strongly correlated systems. We review the foundations of the popular Landauer-Büttiker(LB)  +  DFT approach. This formalism, when using approximations to the exchange-correlation (xc) potential with steps at integer occupation, correctly captures the Kondo plateau in the zero bias conductance at zero temperature but completely fails to capture the transition to the Coulomb blockade (CB) regime as the temperature increases. To overcome the limitations of LB  +  DFT, the quantum transport problem is treated from a time-dependent (TD) perspective using TDDFT, an exact framework to deal with nonequilibrium situations. The steady-state limit of TDDFT shows that in addition to an xc potential in the junction, there also exists an xc correction to the applied bias. Open shell molecules in the CB regime provide the most striking examples of the importance of the xc bias correction. Using the Anderson model as guidance we estimate these corrections in the limit of zero bias. For the general case we put forward a steady-state DFT which is based on one-to-one correspondence between the pair of basic variables, steady density on and steady current across the junction and the pair local potential on and bias across the junction. Like TDDFT, this framework also leads to both an xc potential in the junction and an xc correction to the bias. Unlike TDDFT, these potentials are independent of history. We highlight the universal features of both xc potential and xc bias corrections for junctions in the CB regime and provide an accurate parametrization for the Anderson model at arbitrary temperatures and interaction strengths, thus providing a unified DFT description for both Kondo and CB regimes and the transition between them.

  13. Out-of-Time-Ordered Density Correlators in Luttinger Liquids.

    Science.gov (United States)

    Dóra, Balázs; Moessner, Roderich

    2017-07-14

    Information scrambling and the butterfly effect in chaotic quantum systems can be diagnosed by out-of-time-ordered (OTO) commutators through an exponential growth and large late time value. We show that the latter feature shows up in a strongly correlated many-body system, a Luttinger liquid, whose density fluctuations we study at long and short wavelengths, both in equilibrium and after a quantum quench. We find rich behavior combining robustly universal and nonuniversal features. The OTO commutators display temperature- and initial-state-independent behavior and grow as t^{2} for short times. For the short-wavelength density operator, they reach a sizable value after the light cone only in an interacting Luttinger liquid, where the bare excitations break up into collective modes. This challenges the common interpretation of the OTO commutator in chaotic systems. We benchmark our findings numerically on an interacting spinless fermion model in 1D and find persistence of central features even in the nonintegrable case. As a nonuniversal feature, the short-time growth exhibits a distance-dependent power.

  14. Reduced density-matrix functional theory: Correlation and spectroscopy.

    Science.gov (United States)

    Di Sabatino, S; Berger, J A; Reining, L; Romaniello, P

    2015-07-14

    In this work, we explore the performance of approximations to electron correlation in reduced density-matrix functional theory (RDMFT) and of approximations to the observables calculated within this theory. Our analysis focuses on the calculation of total energies, occupation numbers, removal/addition energies, and spectral functions. We use the exactly solvable Hubbard dimer at 1/4 and 1/2 fillings as test systems. This allows us to analyze the underlying physics and to elucidate the origin of the observed trends. For comparison, we also report the results of the GW approximation, where the self-energy functional is approximated, but no further hypothesis is made concerning the approximations of the observables. In particular, we focus on the atomic limit, where the two sites of the dimer are pulled apart and electrons localize on either site with equal probability, unless a small perturbation is present: this is the regime of strong electron correlation. In this limit, using the Hubbard dimer at 1/2 filling with or without a spin-symmetry-broken ground state allows us to explore how degeneracies and spin-symmetry breaking are treated in RDMFT. We find that, within the used approximations, neither in RDMFT nor in GW, the signature of strong correlation is present, when looking at the removal/addition energies and spectral function from the spin-singlet ground state, whereas both give the exact result for the spin-symmetry broken case. Moreover, we show how the spectroscopic properties change from one spin structure to the other.

  15. Comparison of HfCl4, HfI4, TEMA-Hf, and TDMA-Hf as precursors in early growing stages of HfO2 films deposited by ALD: A DFT study

    Science.gov (United States)

    Cortez-Valadez, M.; Fierro, C.; Farias-Mancilla, J. R.; Vargas-Ortiz, A.; Flores-Acosta, M.; Ramírez-Bon, R.; Enriquez-Carrejo, J. L.; Soubervielle-Montalvo, C.; Mani-Gonzalez, P. G.

    2016-06-01

    The final structure of HfO2 films grown by atomic layer deposition (ALD) after reaction with OH- ions has been analyzed by DFT (density functional theory). The interaction of the precursors: HfCl4 (hafnium tetrachloride), HfI4 (hafnium tetraiodide), TEMA-Hf (tetrakis-ethylmethylamino hafnium), and TDMA-Hf (tetrakis-dimethylamino hafnium) with HO-H was studied employing the B3LYP (Becke 3-parameter, Lee-Yang-Parr) hybrid functional and the PBE (Perdew-Burke-Ernzerhof) generalized gradient functional. The structural evolution at the Si(100) surface has been analyzed by LDA (local density approximation). The structural parameters: bond length and bond angle, and the vibrational parameters for the optimized structures are also reported. The presence of hafnium silicate at the interface was detected. The infrared spectra and structural parameters obtained in this work agree with previously reported experimental results.

  16. The pseudohydrogen bond structures between 2-F-epoxy-butane and three kinds of bimolecular

    International Nuclear Information System (INIS)

    Liu Yanzhi; Yuan Kun; Lu Lingling; Zhu Yuancheng; Dong Xiaoning

    2012-01-01

    The weak intermolecular interactions between 2-F-epoxy-butane and Iminazole, Thiazole and Oxazole were theoretically discussed by using density functional B3LYP (Becke, three-parameter, Lee- Yang-Parr)/6-311++G ** and HF (Hartree Fock)/6-311++G ** methods. The results showed that both the N…H conventional hydrogen bond and C-F…H-C pseudohydrogen bond (PHB) structures are coexisting in the three complexes. The weak intermolecular interactions energies indicate the relative stabilities of the three complexes are proportionable. The calculated results showed that the stretch vibrational frequency of C-H bond (electronic acceptor) presents blue shift, but that of C-F bond, which is intensely related to F group (electronic donor), presents red shift. Electron density topological properties demonstrates that the covalent and ionic characteristics of the C-F…H-C pseudohydrogen bond are proportional to that of convention hydrogen bond. (authors)

  17. High Temperature, high pressure equation of state density correlations and viscosity correlations

    Energy Technology Data Exchange (ETDEWEB)

    Tapriyal, D.; Enick, R.; McHugh, M.; Gamwo, I.; Morreale, B.

    2012-07-31

    Global increase in oil demand and depleting reserves has derived a need to find new oil resources. To find these untapped reservoirs, oil companies are exploring various remote and harsh locations such as deep waters in Gulf of Mexico, remote arctic regions, unexplored deep deserts, etc. Further, the depth of new oil/gas wells being drilled has increased considerably to tap these new resources. With the increase in the well depth, the bottomhole temperature and pressure are also increasing to extreme values (i.e. up to 500 F and 35,000 psi). The density and viscosity of natural gas and crude oil at reservoir conditions are critical fundamental properties required for accurate assessment of the amount of recoverable petroleum within a reservoir and the modeling of the flow of these fluids within the porous media. These properties are also used to design appropriate drilling and production equipment such as blow out preventers, risers, etc. With the present state of art, there is no accurate database for these fluid properties at extreme conditions. As we have begun to expand this experimental database it has become apparent that there are neither equations of state for density or transport models for viscosity that can be used to predict these fundamental properties of multi-component hydrocarbon mixtures over a wide range of temperature and pressure. Presently, oil companies are using correlations based on lower temperature and pressure databases that exhibit an unsatisfactory predictive capability at extreme conditions (e.g. as great as {+-} 50%). From the perspective of these oil companies that are committed to safely producing these resources, accurately predicting flow rates, and assuring the integrity of the flow, the absence of an extensive experimental database at extreme conditions and models capable of predicting these properties over an extremely wide range of temperature and pressure (including extreme conditions) makes their task even more daunting.

  18. Density functional application to strongly correlated electron systems

    International Nuclear Information System (INIS)

    Eschrig, H.; Koepernik, K.; Chaplygin, I.

    2003-01-01

    The local spin density approximation plus onsite Coulomb repulsion approach (LSDA+U) to density functional theory is carefully reanalyzed. Its possible link to single-particle Green's function theory is occasionally discussed. A simple and elegant derivation of the important sum rules for the on-site interaction matrix elements linking them to the values of U and J is presented. All necessary expressions for an implementation of LSDA+U into a non-orthogonal basis solver for the Kohn-Sham equations are given, and implementation into the full-potential local-orbital solver (Phys. Rev. B 59 (1999) 1743) is made. Results of application to several planar cuprate structures are reported in detail and conclusions on the interpretation of the physics of the electronic structure of the cuprates are drawn

  19. Evaluation of macromolecular electron-density map quality using the correlation of local r.m.s. density

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Berendzen, Joel

    1999-01-01

    The correlation of local r.m.s. density is shown to be a good measure of the presence of distinct solvent and macromolecule regions in macromolecular electron-density maps. It has recently been shown that the standard deviation of local r.m.s. electron density is a good indicator of the presence of distinct regions of solvent and protein in macromolecular electron-density maps [Terwilliger & Berendzen (1999 ▶). Acta Cryst. D55, 501–505]. Here, it is demonstrated that a complementary measure, the correlation of local r.m.s. density in adjacent regions on the unit cell, is also a good measure of the presence of distinct solvent and protein regions. The correlation of local r.m.s. density is essentially a measure of how contiguous the solvent (and protein) regions are in the electron-density map. This statistic can be calculated in real space or in reciprocal space and has potential uses in evaluation of heavy-atom solutions in the MIR and MAD methods as well as for evaluation of trial phase sets in ab initio phasing procedures

  20. Theoretical investigations of the bulk modulus in the tetra-cubic transition of PbTiO3 material

    Directory of Open Access Journals (Sweden)

    Renan A. P. Ribeiro

    2014-01-01

    Full Text Available Resulting from ion displacement in a solid under pressure, piezoelectricity is an electrical polarization that can be observed in perovskite-type electronic ceramics, such as PbTiO3, which present cubic and tetragonal symmetries at different pressures. The transition between these crystalline phases is determined theoretically through the bulk modulus from the relationship between material energy and volume. However, the change in the material molecular structure is responsible for the piezoelectric effect. In this study, density functional theory calculations using the Becke 3-Parameter-Lee-Yang-Parr hybrid functional were employed to investigate the structure and properties associated with the transition state of the tetragonal-cubic phase change in PbTiO3 material.

  1. Cemal PARLAK 1, *, Özgür ALVER 2

    Directory of Open Access Journals (Sweden)

    Cemal Parlak

    2016-10-01

    Full Text Available The structure of 1-(2-nitrophenylpiperazine (NPP, C10H13N3O2 was characterized by nuclear magnetic resonance (NMR, Fourier Transform infrared (FTIR and Raman techniques. The conformational analysis, nuclear magnetic shielding tensors, normal mode frequencies and corresponding vibrational assignments of NPP were examined using the density functional theory (DFT, with the Becke-3-Lee-Yang-Parr (B3LYP functional and the 6-31G(d and 6-311++G(d,p basis sets. Reliable vibrational assignments were investigated by the total energy distributions (TED obtained with scaled quantum mechanical (SQM method. The hydrogen of NH group in piperazine and the phenyl fragment of NPP equatorially oriented relative to piperazine. There is a good agreement between the experimentally determined nuclear magnetic shielding tensors and vibrational frequencies of NPP and those predicted theoretically.

  2. Vibrational frequencies and structural investigation of (M(CN)4)2- (M Cd, Hg and Zn) ions

    International Nuclear Information System (INIS)

    Gurkan, Keshan; Tomas, Polivka; Cemal, Parlak; Mustafa, Shenyel

    2011-01-01

    The normal mode frequencies and corresponding vibrational assignments of tetracyanometallate (II) ions ([M(CN) 4 ] 2 -, M = Cd, Hg and Zn) have been theoretically examined by means of standard quantum chemical techniques. All normalmodes have been successfully assigned to one of six types of motion utilizing the T d symmetry of M(CN) 4 2 -. Calculations have been performed at the Becke-3-Lee-Yang-Parr (B3LYP) density functional method using the Lanl2dz effective core basis set. Furthermore, reliable vibrational assignments have been made on the basis of potential energy distribution (PED) calculated and the thermodynamics functions, highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) of the title ions have been predicted together with their infrared intensities and Raman activities. Theoretical results have been successfully compared against available experimental data

  3. Facile eco-friendly synthesis of 3,4,6,7-tetrahydro-3,3,6,6-tetramethyl-2H-xanthene 1,8(5H,9H)-dione, crystal structure and theoretical study

    Science.gov (United States)

    Tarannum, N.; Singh, M.

    2014-12-01

    New biologically active coumarin derivative, substituted xanthene-dione was synthesized by an easy, facile, cost-effective and efficient method from dimedone and diethylene glycol diacrylate without use of expensive and hazardous catalyst. The synthesis is simple, short, high-yielding and moreover does not require expensive solvents. The compound was characterized by IR, NMR and X-ray crystallography study. DFT (Density Functional Theory) calculations were performed at Becke's three-parameter functional and Lee-Yang-Parr functional (B3LYP) level of calculation and the 6-31G++ basis set was used for ground state geometry optimization. A comparison of the selected bond lengths and bond angles of the crystal structure and theoretically optimized structure by DFT have shown good agreement. The DFT study of electron surface potential (ESP), showed a large intramolecular charge transfer efficiency of the molecule indicating optical activity of xanthene dione.

  4. The heat current density correlation function: sum rules and thermal conductivity

    International Nuclear Information System (INIS)

    Singh, Shaminder; Tankeshwar, K; Pathak, K N; Ranganathan, S

    2006-01-01

    Expressions for the second and fourth sum rules of the heat current density correlation function have been derived in an appropriate ensemble. The thermal conductivity of Lennard-Jones fluids has been calculated using these sum rules for the heat current density correlation function and the Gaussian form of the memory function. It is found that the results obtained for the thermal conductivity are in good agreement with the molecular dynamics simulation results over a wide range of densities and temperatures. Earlier results obtained using the energy current density correlation function are also discussed

  5. The heat current density correlation function: sum rules and thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shaminder [Department of Physics, Panjab University, Chandigarh-160 014 (India); Tankeshwar, K [Department of Physics, Panjab University, Chandigarh-160 014 (India); Pathak, K N [Department of Physics, Panjab University, Chandigarh-160 014 (India); Ranganathan, S [Department of Physics, Royal Military College, Kingston, ON, K7K 7B4 (Canada)

    2006-02-01

    Expressions for the second and fourth sum rules of the heat current density correlation function have been derived in an appropriate ensemble. The thermal conductivity of Lennard-Jones fluids has been calculated using these sum rules for the heat current density correlation function and the Gaussian form of the memory function. It is found that the results obtained for the thermal conductivity are in good agreement with the molecular dynamics simulation results over a wide range of densities and temperatures. Earlier results obtained using the energy current density correlation function are also discussed.

  6. The correlation function for density perturbations in an expanding universe. IV - The evolution of the correlation function. [galaxy distribution

    Science.gov (United States)

    Mcclelland, J.; Silk, J.

    1979-01-01

    The evolution of the two-point correlation function for the large-scale distribution of galaxies in an expanding universe is studied on the assumption that the perturbation densities lie in a Gaussian distribution centered on any given mass scale. The perturbations are evolved according to the Friedmann equation, and the correlation function for the resulting distribution of perturbations at the present epoch is calculated. It is found that: (1) the computed correlation function gives a satisfactory fit to the observed function in cosmological models with a density parameter (Omega) of approximately unity, provided that a certain free parameter is suitably adjusted; (2) the power-law slope in the nonlinear regime reflects the initial fluctuation spectrum, provided that the density profile of individual perturbations declines more rapidly than the -2.4 power of distance; and (3) both positive and negative contributions to the correlation function are predicted for cosmological models with Omega less than unity.

  7. Assessment of density-functional approximations: Long-range correlations and self-interaction effects

    International Nuclear Information System (INIS)

    Jung, J.; Alvarellos, J.E.; Garcia-Gonzalez, P.; Godby, R.W.

    2004-01-01

    The complex nature of electron-electron correlations is made manifest in the very simple but nontrivial problem of two electrons confined within a sphere. The description of highly nonlocal correlation and self-interaction effects by widely used local and semilocal exchange-correlation energy density functionals is shown to be unsatisfactory in most cases. Even the best such functionals exhibit significant errors in the Kohn-Sham potentials and density profiles

  8. Kohn-Sham density functional theory for quantum wires in arbitrary correlation regimes

    NARCIS (Netherlands)

    Malet, F.; Mirtschink, A.P.; Cremon, J. C.; Reimann, S. M.; Gori Giorgi, P.

    2013-01-01

    We use the exact strong-interaction limit of the Hohenberg-Kohn energy density functional to construct an approximation for the exchange-correlation term of the Kohn-Sham approach. The resulting exchange-correlation potential is able to capture the features of the strongly correlated regime without

  9. Theoretical Investigation of Vibrational Frequencies for Tetrabromopalladate (II Ion

    Directory of Open Access Journals (Sweden)

    Metin Bilge

    2010-11-01

    Full Text Available The normal mode frequencies and corresponding vibrational assignments of tetrabromopalladate (II ion ([Pd(Br4]2- have been theoretically examined by means of standard quantum chemical technique. All normal modes have been successfully assigned utilizing the D4h symmetry of [Pd(Br4]2-. Calculation has been performed at the Becke-3-Lee-Yang-Parr (B3LYP density functional method using the Lanl2dz basis set. Infrared intensities and Raman activities have also been calculated and reported. Theoretical results have been successfully compared against available experimental data. Key words: [Pd(Br4]2-, DFT, vibrational assignment, normal mode frequency, Lanl2dz Tetrabromopaladyum (II İyonunun Titreşim Frekanslarının Teorik Olarak İncelenmesi Tetrabromopaladyum (II iyonunun ([Pd(Br4]2- normal mod frekansları ve bunlara karşılık gelen titreşim işaretlemeleri standart kuantum kimyasal teknik yardımıyla teorik olarak incelenmektedir. Tüm normal modlar [Pd(Br4]2- iyonunun D4h nokta grubu kullanılarak başarılı bir şekilde işaretlenmiştir. Hesaplama Lanl2dz baz seti kullanılarak B3LYP (Becke-3-Lee-Yang-Parr yoğunluk fonksiyonel metoduyla gerçekleştirilmiş ve infrared intensiteleri ile Raman aktiviteleri de hesaplanmıştır. Teorik sonuçlar mevcut deneysel değerler ile başarılı bir şekilde karşılaştırılmaktadır. Anahtar kelimeler: [Pd(Br4]2-, DFT, titreşim işaretlemesi, normal mod frekansı, Lanl2dz

  10. Explicit treatment of N-body correlations within a density-matrix formalism

    International Nuclear Information System (INIS)

    Shun-Jin, W.; Cassing, W.

    1985-01-01

    The nuclear many-body problem is reformulated in the density-matrix approach such that n-body correlations are separated out from the reduced density matrix rho/sub n/. A set of equations for the time evolution of the n-body correlations c/sub n/ is derived which allows for physically transparent truncations with respect to the order of correlations. In the stationary limit (c/sub n/ = 0) a restriction to two-body correlations yields a generalized Bethe-Goldstone equation a restriction to body correlations yields generalized Faddeev equations in the density-matrix formulation. Furthermore it can be shown that any truncation of the set of equations (c/sub n/ = 0, n>m) is compatible with conservation laws, a quality which in general is not fulfilled if higher order correlations are treated perturbatively

  11. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function

    DEFF Research Database (Denmark)

    Lacevic, N.; Starr, F. W.; Schrøder, Thomas

    2003-01-01

    correlation function g4(r,t) and corresponding "structure factor" S4(q,t) which measure the spatial correlations between the local liquid density at two points in space, each at two different times, and so are sensitive to dynamical heterogeneity. We study g4(r,t) and S4(q,t) via molecular dynamics......Relaxation in supercooled liquids above their glass transition and below the onset temperature of "slow" dynamics involves the correlated motion of neighboring particles. This correlated motion results in the appearance of spatially heterogeneous dynamics or "dynamical heterogeneity." Traditional...... two-point time-dependent density correlation functions, while providing information about the transient "caging" of particles on cooling, are unable to provide sufficiently detailed information about correlated motion and dynamical heterogeneity. Here, we study a four-point, time-dependent density...

  12. Correlations of both the densities and the masses of spiral galaxies

    CERN Document Server

    Nagornaya, V S

    2002-01-01

    The correlation of densities, masses and scales of galaxies have been researched. The results can be interpreted basing on the hypothesis of rotation origin of galaxies during the proto-clusters collapse epoch. (author)

  13. The finite temperature density matrix and two-point correlations in the antiferromagnetic XXZ chain

    Science.gov (United States)

    Göhmann, Frank; Hasenclever, Nils P.; Seel, Alexander

    2005-10-01

    We derive finite temperature versions of integral formulae for the two-point correlation functions in the antiferromagnetic XXZ chain. The derivation is based on the summation of density matrix elements characterizing a finite chain segment of length m. On this occasion we also supply a proof of the basic integral formula for the density matrix presented in an earlier publication.

  14. Kohn–Sham exchange-correlation potentials from second-order reduced density matrices

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas-Saavedra, Rogelio; Staroverov, Viktor N., E-mail: vstarove@uwo.ca [Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7 (Canada); Ayers, Paul W. [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)

    2015-12-28

    We describe a practical algorithm for constructing the Kohn–Sham exchange-correlation potential corresponding to a given second-order reduced density matrix. Unlike conventional Kohn–Sham inversion methods in which such potentials are extracted from ground-state electron densities, the proposed technique delivers unambiguous results in finite basis sets. The approach can also be used to separate approximately the exchange and correlation potentials for a many-electron system for which the reduced density matrix is known. The algorithm is implemented for configuration-interaction wave functions and its performance is illustrated with numerical examples.

  15. Effects of pairing correlation on nuclear level density parameter and nucleon separation energy

    International Nuclear Information System (INIS)

    Rajesekaran, T.R.; Selvaraj, S.

    2002-01-01

    A systematic study of effects of pairing correlations on nuclear level density parameter 'a' and neutron separation energy S N is presented for 152 Gd using statistical theory of nuclei with deformation, collective and noncollective rotational degrees of freedom, shell effects, and pairing correlations

  16. Gluon and ghost correlation functions of 2-color QCD at finite density

    Science.gov (United States)

    Hajizadeh, Ouraman; Boz, Tamer; Maas, Axel; Skullerud, Jon-Ivar

    2018-03-01

    2-color QCD, i. e. QCD with the gauge group SU(2), is the simplest non-Abelian gauge theory without sign problem at finite quark density. Therefore its study on the lattice is a benchmark for other non-perturbative approaches at finite density. To provide such benchmarks we determine the minimal-Landau-gauge 2-point and 3-gluon correlation functions of the gauge sector and the running gauge coupling at finite density. We observe no significant effects, except for some low-momentum screening of the gluons at and above the supposed high-density phase transition.

  17. Correlation between enhancement characteristics of MR mammography and capillary density of breast lesions

    Energy Technology Data Exchange (ETDEWEB)

    Poellinger, Alexander, E-mail: alexander.poellinger@charite.de [Charité, Universitätsmedizin Berlin, Department of Radiology, Augustenburger Platz 1, 13353 Berlin (Germany); El-Ghannam, Sahra; Diekmann, Susanne; Fischer, Thomas [Charité, Universitätsmedizin Berlin, Department of Radiology, Augustenburger Platz 1, 13353 Berlin (Germany); Kristiansen, Glen [Universitätsklinikum Bonn, Department of Pathology, Sigmund-Freud-Str. 25, D-53127 Bonn (Germany); Fritzsche, Florian [Institut für Histologie und Zytologie, Bahnhofplatz 11, Postfach, 9101 Herisau (Switzerland); Fallenberg, Eva [Charité, Universitätsmedizin Berlin, Department of Radiology, Augustenburger Platz 1, 13353 Berlin (Germany); Morawietz, Lars [Diagnostik Ernst von Bergmann GmbH, Charlottenstr. 72, 14467 Potsdam (Germany); Diekmann, Felix [Charité, Universitätsmedizin Berlin, Department of Radiology, Augustenburger Platz 1, 13353 Berlin (Germany)

    2014-12-15

    Highlights: • We correlate capillary density of breast lesions with MRM. • Capillary density correlates with tumor enhancement for all lesions. • However no such correlation exists for the malignant or benign groups separately. • Mean vessel number of lymphatic vessels do not correlate with tumor enhancement.These results might be of help in the workup of MR-guided breast biopsies. • These results might be of help in the workup of MR-guided breast biopsies. - Abstract: Objective: To correlate capillary density of breast lesions using the markers D2-40, CD31, and CD34 with early and late enhancement of magnetic resonance mammography (MRM). Materials and methods: The local ethics committee approved this study, and informed consent was available from all patients. The study included 64 women with 66 histologically proven breast lesions (41 malignant, 25 benign). MR-enhancement 1 min after contrast medium administration was determined in the tumor (I{sub t1}/I{sub t0} ratio) and in comparison to the surrounding tissue (I{sub t1}/I{sub t1-fat} ratio). Capillary density was quantified based on immunohistological staining with D2-40, CD31, and CD34 in breast tumors and surrounding breast tissue. Mean capillary densities were correlated with contrast enhancement in the tumor and surrounding breast tissue. The Kruskal–Wallis test was used to test whether lesions with different MR enhancement patterns differed in terms of capillary density. Results: For CD34, there was statistically significant correlation between capillary density and tumor enhancement (r = 0.329, p = 0.012), however not for the malignant or benign groups separately. Mean vessel number identified by staining with D2-40 and CD31 did not correlate significantly with tumor enhancement (D2-40: r = −0.188, p = 0.130; CD31: r = 0.095, p = 0.448). There were no statistically significant differences in capillary density between breast lesions with delayed enhancement or a plateau and lesions showing

  18. Correlation between enhancement characteristics of MR mammography and capillary density of breast lesions

    International Nuclear Information System (INIS)

    Poellinger, Alexander; El-Ghannam, Sahra; Diekmann, Susanne; Fischer, Thomas; Kristiansen, Glen; Fritzsche, Florian; Fallenberg, Eva; Morawietz, Lars; Diekmann, Felix

    2014-01-01

    Highlights: • We correlate capillary density of breast lesions with MRM. • Capillary density correlates with tumor enhancement for all lesions. • However no such correlation exists for the malignant or benign groups separately. • Mean vessel number of lymphatic vessels do not correlate with tumor enhancement.These results might be of help in the workup of MR-guided breast biopsies. • These results might be of help in the workup of MR-guided breast biopsies. - Abstract: Objective: To correlate capillary density of breast lesions using the markers D2-40, CD31, and CD34 with early and late enhancement of magnetic resonance mammography (MRM). Materials and methods: The local ethics committee approved this study, and informed consent was available from all patients. The study included 64 women with 66 histologically proven breast lesions (41 malignant, 25 benign). MR-enhancement 1 min after contrast medium administration was determined in the tumor (I t1 /I t0 ratio) and in comparison to the surrounding tissue (I t1 /I t1-fat ratio). Capillary density was quantified based on immunohistological staining with D2-40, CD31, and CD34 in breast tumors and surrounding breast tissue. Mean capillary densities were correlated with contrast enhancement in the tumor and surrounding breast tissue. The Kruskal–Wallis test was used to test whether lesions with different MR enhancement patterns differed in terms of capillary density. Results: For CD34, there was statistically significant correlation between capillary density and tumor enhancement (r = 0.329, p = 0.012), however not for the malignant or benign groups separately. Mean vessel number identified by staining with D2-40 and CD31 did not correlate significantly with tumor enhancement (D2-40: r = −0.188, p = 0.130; CD31: r = 0.095, p = 0.448). There were no statistically significant differences in capillary density between breast lesions with delayed enhancement or a plateau and lesions showing washout (Kruskal

  19. Mean density and two-point correlation function for the CfA redshift survey slices

    International Nuclear Information System (INIS)

    De Lapparent, V.; Geller, M.J.; Huchra, J.P.

    1988-01-01

    The effect of large-scale inhomogeneities on the determination of the mean number density and the two-point spatial correlation function were investigated for two complete slices of the extension of the Center for Astrophysics (CfA) redshift survey (de Lapparent et al., 1986). It was found that the mean galaxy number density for the two strips is uncertain by 25 percent, more so than previously estimated. The large uncertainty in the mean density introduces substantial uncertainty in the determination of the two-point correlation function, particularly at large scale; thus, for the 12-deg slice of the CfA redshift survey, the amplitude of the correlation function at intermediate scales is uncertain by a factor of 2. The large uncertainties in the correlation functions might reflect the lack of a fair sample. 45 references

  20. Turbulence in nearly incompressible fluids: density spectrum, flows, correlations and implication to the interstellar medium

    Directory of Open Access Journals (Sweden)

    S. Dastgeer

    2005-01-01

    Full Text Available Interstellar scintillation and angular radio wave broadening measurements show that interstellar and solar wind (electron density fluctuations exhibit a Kolmogorov-like k-5/3 power spectrum extending over many decades in wavenumber space. The ubiquity of the Kolmogorov-like interstellar medium (ISM density spectrum led to an explanation based on coupling incompressible magnetohydrodynamic (MHD fluctuations to density fluctuations through a 'pseudosound' relation within the context of 'nearly incompressible' (NI hydrodynamics (HD and MHD models. The NI theory provides a fundamentally different explanation for the observed ISM density spectrum in that the density fluctuations can be a consequence of passive scalar convection due to background incompressible fluctuations. The theory further predicts generation of long-scale structures and various correlations between the density, temperature and the (magneto acoustic as well as convective pressure fluctuations in the compressible ISM fluids in different thermal regimes that are determined purely by the thermal fluctuation level. In this paper, we present the results of our two dimensional nonlinear fluid simulations, exploring various nonlinear aspects that lead to inertial range ISM turbulence within the context of a NI hydrodymanics model. In qualitative agreement with the NI predictions and the in-situ observations, we find that i the density fluctuations exhibit a Kolmogorov-like spectrum via a passive convection in the field of the background incompressible fluctuations, ii the compressible ISM fluctuations form long scale flows and structures, and iii the density and the temperature fluctuations are anti-correlated.

  1. Subsystem density functional theory with meta-generalized gradient approximation exchange-correlation functionals.

    Science.gov (United States)

    Śmiga, Szymon; Fabiano, Eduardo; Laricchia, Savio; Constantin, Lucian A; Della Sala, Fabio

    2015-04-21

    We analyze the methodology and the performance of subsystem density functional theory (DFT) with meta-generalized gradient approximation (meta-GGA) exchange-correlation functionals for non-bonded molecular systems. Meta-GGA functionals depend on the Kohn-Sham kinetic energy density (KED), which is not known as an explicit functional of the density. Therefore, they cannot be directly applied in subsystem DFT calculations. We propose a Laplacian-level approximation to the KED which overcomes this limitation and provides a simple and accurate way to apply meta-GGA exchange-correlation functionals in subsystem DFT calculations. The so obtained density and energy errors, with respect to the corresponding supermolecular calculations, are comparable with conventional approaches, depending almost exclusively on the approximations in the non-additive kinetic embedding term. An embedding energy error decomposition explains the accuracy of our method.

  2. Correlations of Rotylenchulus reniformis Population Densities with 1,3-Dichloropropene Dosage Rate and Pineapple Yields

    OpenAIRE

    Schenck, Susan

    1990-01-01

    The relationships between Rotylenchulus reniformis population densities and pineapple growth and yield were studied in a small-plot field experiment. Increasing rates of handgun-injected 1,3-dichloropropene (1,3-D) preplant fumigant from 0 to 337 liters/ha resulted in greater nematode control, faster plant growth, and larger pineapple fruits. Rotylenchulus reniformis population densities at 2, 4, 6, and 8 months postplant were correlated with plant size and yield. The shorter the time period ...

  3. Mammographic density in asymptomatic menopausal women: correlation with clinical and sonographic findings

    Directory of Open Access Journals (Sweden)

    Beatriz Regina Alvares

    2012-06-01

    Full Text Available OBJECTIVE: To evaluate mammographic breast density in asymptomatic menopausal women in correlation with clinical and sonographic findings. MATERIALS AND METHODS: Mammograms and clinical and sonographic findings of 238 asymptomatic patients were retrospectively reviewed in the period from February/2022 to June/2006. The following variables were analyzed: mammographic density patterns, sonographic findings, patients' age, parity, body mass index and use of hormone replacement therapy. RESULTS: Age, parity and body mass index showed a negative correlation with breast density pattern, while use of hormone replacement therapy showed a positive correlation. Supplementary breast ultrasonography was performed in 103 (43.2% patients. Alterations which could not be visualized at mammography were found in 34 (33% of them, most frequently in women with breast density patterns 3 and 4. CONCLUSION: The authors concluded that breast density patterns were influenced by age, parity, body mass index and time of hormone replacement therapy. Despite not having found any malignant abnormality in the studied cases, the authors have observed a predominance of benign sonographic abnormalities in women with high breast density patterns and without mammographic abnormalities, proving the relevance of supplementary ultrasonography to identify breast lesions in such patients.

  4. Correlated random-phase approximation from densities and in-medium matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Trippel, Richard; Roth, Robert [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)

    2016-07-01

    The random-phase approximation (RPA) as well as the second RPA (SRPA) are established tools for the study of collective excitations in nuclei. Addressing the well known lack of correlations, we derived a universal framework for a fully correlated RPA based on the use of one- and two-body densities. We apply densities from coupled cluster theory and investigate the impact of correlations. As an alternative approach to correlations we use matrix elements transformed via in-medium similarity renormalization group (IM-SRG) in combination with RPA and SRPA. We find that within SRPA the use of IM-SRG matrix elements leads to the disappearance of instabilities of low-lying states. For the calculations we use normal-ordered two- plus three-body interactions derived from chiral effective field theory. We apply different Hamiltonians to a number of doubly-magic nuclei and calculate electric transition strengths.

  5. The correlation function for density perturbations in an expanding universe. II - Nonlinear theory

    Science.gov (United States)

    Mcclelland, J.; Silk, J.

    1977-01-01

    A formalism is developed to find the two-point and higher-order correlation functions for a given distribution of sizes and shapes of perturbations which are randomly placed in three-dimensional space. The perturbations are described by two parameters such as central density and size, and the two-point correlation function is explicitly related to the luminosity function of groups and clusters of galaxies

  6. An analysis of hydrated proton diffusion in ab initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tse, Ying-Lung Steve; Voth, Gregory A., E-mail: gavoth@uchicago.edu [Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, Chicago, Illinois 60637 (United States); Knight, Chris [Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2015-01-07

    A detailed understanding of the inherently multiscale proton transport process raises a number of scientifically challenging questions. For example, there remain many (partially addressed) questions on the molecular mechanism for long-range proton migration and the potential for the formation of long-lived traps giving rise to burst-and-rest proton dynamics. Using results from a sizeable collection of ab initio molecular dynamics (AIMD) simulations (totaling ∼2.7 ns) with various density functional approximations (Becke-Lee-Yang-Parr (BLYP), BLYP–D3, Hamprecht-Cohen-Tozer-Handy, B3LYP) and temperatures (300–330 K), equilibrium and dynamical properties of one excess proton and 128 water molecules are studied. Two features in particular (concerted hops and weak hydrogen-bond donors) are investigated to identify modes in the system that are strongly correlated with the onset of periods of burst-and-rest dynamics. The question of concerted hops seeks to identify those time scales over which long-range proton transport can be classified as a series of sequential water hopping events or as a near-simultaneous concerted process along compressed water wires. The coupling of the observed burst-and-rest dynamics with motions of a fourth neighboring water molecule (a weak hydrogen-bond donor) solvating the protonated water molecule is also investigated. The presence (absence) of hydrogen bonds involving this fourth water molecule before and after successful proton hopping events is found to be strongly correlated with periods of burst (rest) dynamics (and consistent with pre-solvation concepts). By analyzing several realizations of the AIMD trajectories on the 100-ps time scale, convergence of statistics can be assessed. For instance, it was observed that the probability for a fourth water molecule to approach the hydronium, if not already proximal at the beginning of the lifetime of the hydronium, is very low, indicative of the formation of stable void regions

  7. Reduced density matrix embedding. General formalism and inter-domain correlation functional.

    Science.gov (United States)

    Pernal, Katarzyna

    2016-08-03

    An embedding method for a one-electron reduced density matrix (1-RDM) is proposed. It is based on partitioning of 1-RDM into domains and describing each domain in the effective potential of the other ones. To assure N-representability of the total 1-RDM N-representability and strong-orthogonality conditions are imposed on the domains. The total energy is given as a sum of single-domain energies and domain-domain electron interaction contributions. Higher than two-body inter-domain interaction terms are neglected. The two-body correlation terms are approximated by deriving inter-domain correlation from couplings of density fluctuations of two domains at a time. Unlike in most density embedding methods kinetic energy is treated exactly and it is not required that densities pertaining to the domains are only weakly overlapping. We propose to treat each domain by a corrected perfect-pairing functional. On a few examples it is shown that the embedding reduced density matrix functional method (ERDMF) yields excellent results for molecules that are well described by a single Lewis structure even if strong static intra-domain or dynamic inter-domain correlation effects must be accounted for.

  8. Derivative discontinuity and exchange-correlation potential of meta-GGAs in density-functional theory

    International Nuclear Information System (INIS)

    Eich, F. G.; Hellgren, Maria

    2014-01-01

    We investigate fundamental properties of meta-generalized-gradient approximations (meta-GGAs) to the exchange-correlation energy functional, which have an implicit density dependence via the Kohn-Sham kinetic-energy density. To this purpose, we construct the most simple meta-GGA by expressing the local exchange-correlation energy per particle as a function of a fictitious density, which is obtained by inverting the Thomas-Fermi kinetic-energy functional. This simple functional considerably improves the total energy of atoms as compared to the standard local density approximation. The corresponding exchange-correlation potentials are then determined exactly through a solution of the optimized effective potential equation. These potentials support an additional bound state and exhibit a derivative discontinuity at integer particle numbers. We further demonstrate that through the kinetic-energy density any meta-GGA incorporates a derivative discontinuity. However, we also find that for commonly used meta-GGAs the discontinuity is largely underestimated and in some cases even negative

  9. Derivative discontinuity and exchange-correlation potential of meta-GGAs in density-functional theory.

    Science.gov (United States)

    Eich, F G; Hellgren, Maria

    2014-12-14

    We investigate fundamental properties of meta-generalized-gradient approximations (meta-GGAs) to the exchange-correlation energy functional, which have an implicit density dependence via the Kohn-Sham kinetic-energy density. To this purpose, we construct the most simple meta-GGA by expressing the local exchange-correlation energy per particle as a function of a fictitious density, which is obtained by inverting the Thomas-Fermi kinetic-energy functional. This simple functional considerably improves the total energy of atoms as compared to the standard local density approximation. The corresponding exchange-correlation potentials are then determined exactly through a solution of the optimized effective potential equation. These potentials support an additional bound state and exhibit a derivative discontinuity at integer particle numbers. We further demonstrate that through the kinetic-energy density any meta-GGA incorporates a derivative discontinuity. However, we also find that for commonly used meta-GGAs the discontinuity is largely underestimated and in some cases even negative.

  10. Density ripples in expanding low-dimensional gases as a probe of correlations

    DEFF Research Database (Denmark)

    Imambekov, A.; Mazets, I. E.; Petrov, D. S.

    2009-01-01

    fluctuations. For the case of free ballistic expansion relevant to current experiments, we present simple analytical relations between the spectrum of "density ripples" and the correlation functions of the original confined systems. We analyze several physical regimes, including weakly and strongly interacting...

  11. Resonant soft x-ray scattering and charge density waves in correlated systems

    NARCIS (Netherlands)

    Rusydi, Andrivo

    2006-01-01

    Summary This work describes results obtained on the study of charge density waves (CDW) in strongly correlated systems with a new experimental method: resonant soft x-ray scattering (RSXS). The basic motivation is the 1986 discovery by Bednorz and Müler of a new type of superconductor, based on Cu

  12. Electron density in reasonably real metallic surfaces, including interchange and correlation effects

    International Nuclear Information System (INIS)

    Moraga, L.A.; Martinez, G.

    1981-01-01

    By means of a new method, the electron density in a jellium surface is calculated taking in account interchange and correlation effects; reproducing, in this way, the Lang and Kohn results. The new method is self-consistent but not iterative and hence is possible extend it to the solution of the same problem in more reasonably real metallic surfaces. (L.C.) [pt

  13. Closed-Form Representations of the Density Function and Integer Moments of the Sample Correlation Coefficient

    Directory of Open Access Journals (Sweden)

    Serge B. Provost

    2015-07-01

    Full Text Available This paper provides a simplified representation of the exact density function of R, the sample correlation coefficient. The odd and even moments of R are also obtained in closed forms. Being expressed in terms of generalized hypergeometric functions, the resulting representations are readily computable. Some numerical examples corroborate the validity of the results derived herein.

  14. Correlated fermionic densities for many harmonically trapped particles interacting with repulsive forces

    International Nuclear Information System (INIS)

    Glasser, M.L.; March, N.H.; Nieto, L.M.

    2010-01-01

    This study is motivated by the very recent work on correlation energy as approximated by the Thomas-Fermi (TF) semiclassical limit [B.R. Landry, et al., Phys. Rev. Lett. 103 (2009) 066401]. In contrast, and motivated by the Hohenberg-Kohn theorem, our work is focussed primarily on the correlated TF ground-state density. We invoke directly the Holas et al. result that for two-fermion systems with harmonic trapping, the fermion-fermion interaction u simply adds to the trapping potential. We conclude this report with some results on correlation kinetic energy for two-fermion systems.

  15. Source-Free Exchange-Correlation Magnetic Fields in Density Functional Theory.

    Science.gov (United States)

    Sharma, S; Gross, E K U; Sanna, A; Dewhurst, J K

    2018-03-13

    Spin-dependent exchange-correlation energy functionals in use today depend on the charge density and the magnetization density: E xc [ρ, m]. However, it is also correct to define the functional in terms of the curl of m for physical external fields: E xc [ρ,∇ × m]. The exchange-correlation magnetic field, B xc , then becomes source-free. We study this variation of the theory by uniquely removing the source term from local and generalized gradient approximations to the functional. By doing so, the total Kohn-Sham moments are improved for a wide range of materials for both functionals. Significantly, the moments for the pnictides are now in good agreement with experiment. This source-free method is simple to implement in all existing density functional theory codes.

  16. Combination of Wavefunction and Density Functional Approximations for Describing Electronic Correlation

    Science.gov (United States)

    Garza, Alejandro J.

    Perhaps the most important approximations to the electronic structure problem in quantum chemistry are those based on coupled cluster and density functional theories. Coupled cluster theory has been called the ``gold standard'' of quantum chemistry due to the high accuracy that it achieves for weakly correlated systems. Kohn-Sham density functionals based on semilocal approximations are, without a doubt, the most widely used methods in chemistry and material science because of their high accuracy/cost ratio. The root of the success of coupled cluster and density functionals is their ability to efficiently describe the dynamic part of the electron correlation. However, both traditional coupled cluster and density functional approximations may fail catastrophically when substantial static correlation is present. This severely limits the applicability of these methods to a plethora of important chemical and physical problems such as, e.g., the description of bond breaking, transition states, transition metal-, lanthanide- and actinide-containing compounds, and superconductivity. In an attempt to tackle this problem, nonstandard (single-reference) coupled cluster-based techniques that aim to describe static correlation have been recently developed: pair coupled cluster doubles (pCCD) and singlet-paired coupled cluster doubles (CCD0). The ability to describe static correlation in pCCD and CCD0 comes, however, at the expense of important amounts of dynamic correlation so that the high accuracy of standard coupled cluster becomes unattainable. Thus, the reliable and efficient description of static and dynamic correlation in a simultaneous manner remains an open problem for quantum chemistry and many-body theory in general. In this thesis, different ways to combine pCCD and CCD0 with density functionals in order to describe static and dynamic correlation simultaneously (and efficiently) are explored. The combination of wavefunction and density functional methods has a long

  17. Absolute choline concentration measured by quantitative proton MR spectroscopy correlates with cell density in meningioma

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Qiang [University of Tsukuba, Department of Neurosurgery, Institute of Clinical Medicine, Tsukuba Science City, Ibaraki (Japan)]|[West China Hospital of Sichuan University, Huaxi MR Research Center, Department of Radiology, Chengdu (China); Shibata, Yasushi; Kawamura, Hiraku; Matsumura, Akira [University of Tsukuba, Department of Neurosurgery, Institute of Clinical Medicine, Tsukuba Science City, Ibaraki (Japan); Isobe, Tomonori [Kitasato University, Department of Medical Technology, School of Allied Health Sciences, Minato, Tokyo (Japan); Anno, Izumi [University of Tsukuba, Department of Radiology, Institute of Clinical Medicine, Tsukuba, Ibaraki (Japan); Gong, Qi-Yong [West China Hospital of Sichuan University, Huaxi MR Research Center, Department of Radiology, Chengdu (China)]|[University of Liverpool, Division of Medical Imaging, Faculty of Medicine, Liverpool (United Kingdom)

    2009-01-15

    This study was aimed to investigate the relationship between quantitative proton magnetic resonance spectroscopy (1H-MRS) and pathological changes in meningioma. Twenty-two meningioma cases underwent single voxel 1H-MRS (point-resolved spectroscopy sequence, repetition time/echo time = 2,000 ms/68, 136, 272 ms). Absolute choline (Cho) concentration was calculated using tissue water as the internal reference and corrected according to intra-voxel cystic/necrotic parts. Pathological specimens were stained with MIB-1 antibody to measure cell density and proliferation index. Correlation analysis was performed between absolute Cho concentration and cell density and MIB-1 labeled proliferation index. Average Cho concentration of all meningiomas before correction was 2.95 {+-} 0.86 mmol/kg wet weight. It was increased to 3.23 {+-} 1.15 mmol/kg wet weight after correction. Average cell density of all meningiomas was 333 {+-} 119 cells/HPF, and average proliferation index was 2.93 {+-} 5.72%. A linear, positive correlation between cell density and Cho concentration was observed (r = 0.650, P = 0.001). After correction of Cho concentration, the correlation became more significant (r = 0.737, P < 0.001). However, no significant correlation between Cho concentration and proliferation index was found. There seemed to be a positive correlation trend after correction of Cho concentration but did not reach significant level. Absolute Cho concentration, especially Cho concentration corrected according to intra-voxel cystic/necrotic parts, reflects cell density of meningioma. (orig.)

  18. Probing heterogeneous dynamics from spatial density correlation in glass-forming liquids.

    Science.gov (United States)

    Li, Yan-Wei; Zhu, You-Liang; Sun, Zhao-Yan

    2016-12-01

    We numerically investigate the connection between spatial density correlation and dynamical heterogeneity in glass-forming liquids. We demonstrate that the cluster size defined by the spatial aggregation of densely packed particles (DPPs) can better capture the difference between the dynamics of the Lennard-Jones glass model and the Weeks-Chandler-Andersen truncation model than the commonly used pair correlation functions. More interestingly, we compare the mobility of DPPs and loosely packed particles, and we find that high local density correlates well with slow dynamics in systems with relatively hard repulsive interactions but links to mobile ones in the system with soft repulsive interactions at one relaxation time scale. Our results show clear evidence that the above model dependence behavior stems from the hopping motion of DPPs at the end of the caging stage due to the compressive nature of soft repulsive spheres, which activates the dynamics of DPPs in the α relaxation stage.

  19. Correlation of the tokamak H-mode density limit with ballooning stability at the separatrix

    Science.gov (United States)

    Eich, T.; Goldston, R. J.; Kallenbach, A.; Sieglin, B.; Sun, H. J.; ASDEX Upgrade Team; Contributors, JET

    2018-03-01

    We show for JET and ASDEX Upgrade, based on Thomson-scattering measurements, a clear correlation of the density limit of the tokamak H-mode high-confinement regime with the approach to the ideal ballooning instability threshold at the periphery of the plasma. It is shown that the MHD ballooning parameter at the separatrix position α_sep increases about linearly with the separatrix density normalized to Greenwald density, n_e, sep/n_GW for a wide range of discharge parameters in both devices. The observed operational space is found to reach at maximum n_e, sep/n_GW≈ 0.4 -0.5 at values for α_sep≈ 2 -2.5, in the range of theoretical predictions for ballooning instability. This work supports the hypothesis that the H-mode density limit may be set by ballooning stability at the separatrix.

  20. Communication: Near-locality of exchange and correlation density functionals for 1- and 2-electron systems

    Science.gov (United States)

    Sun, Jianwei; Perdew, John P.; Yang, Zenghui; Peng, Haowei

    2016-05-01

    The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.

  1. Communication: Near-locality of exchange and correlation density functionals for 1- and 2-electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jianwei; Yang, Zenghui; Peng, Haowei [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States); Perdew, John P. [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States); Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 (United States)

    2016-05-21

    The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.

  2. Communication: Near-locality of exchange and correlation density functionals for 1- and 2-electron systems

    International Nuclear Information System (INIS)

    Sun, Jianwei; Yang, Zenghui; Peng, Haowei; Perdew, John P.

    2016-01-01

    The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.

  3. High-pressure phase diagram of hydrogen and deuterium sulfides from first principles: Structural and vibrational properties including quantum and anharmonic effects

    Science.gov (United States)

    Bianco, Raffaello; Errea, Ion; Calandra, Matteo; Mauri, Francesco

    2018-06-01

    We study the structural and vibrational properties of the high-temperature superconducting sulfur trihydride and trideuteride in the high-pressure I m 3 ¯m and R 3 m phases by first-principles density-functional-theory calculations. On lowering pressure, the rhombohedral transition I m 3 ¯m →R 3 m is expected, with hydrogen-bond desymmetrization and occurrence of trigonal lattice distortion. With both Perdew-Burke-Ernzerhof (PBE) and Becke-Lee-Yang-Parr (BLYP) exchange-correlation functional, in hydrostatic conditions we find that, contrary to what is suggested in some recent experiments, if the rhombohedral distortion exists it affects mainly the hydrogen bonds, whereas the resulting cell distortion is minimal. We estimate that the occurrence of a stress anisotropy of approximately 10 % could explain this discrepancy. Assuming hydrostatic conditions, we calculate the critical pressure at which the rhombohedral transition occurs. Quantum and anharmonic effects, which are relevant in this system, are included at nonperturbative level with the stochastic self-consistent harmonic approximation. Within this approach, we determine the transition pressure by calculating the free-energy Hessian, a method that allows to estimate the critical pressure with much higher precision (and much lower computational cost) compared with the free-energy "finite-difference" approach previously used. Using PBE and BLYP, we find that quantum anharmonic effects are responsible for a strong reduction of the critical pressure with respect to the one obtained with the classical harmonic approach. Interestingly, for the two functionals, even if the transition pressures at classical harmonic level differ by 83 GPa, the transition pressures including quantum anharmonic effects differ only by 23 GPa. Moreover, we observe a prominent isotope effect, as we estimate higher transition pressure for D3S than for H3S . Finally, within the stochastic self-consistent harmonic approximation, with PBE

  4. Simulation of circularly polarized luminescence spectra using coupled cluster theory

    Energy Technology Data Exchange (ETDEWEB)

    McAlexander, Harley R.; Crawford, T. Daniel, E-mail: crawdad@vt.edu [Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2015-04-21

    We report the first computations of circularly polarized luminescence (CPL) rotatory strengths at the equation-of-motion coupled cluster singles and doubles (EOM-CCSD) level of theory. Using a test set of eight chiral ketones, we compare both dipole and rotatory strengths for absorption (electronic circular dichroism) and emission to the results from time-dependent density-functional theory (TD-DFT) and available experimental data for both valence and Rydberg transitions. For two of the compounds, we obtained optimized geometries of the lowest several excited states using both EOM-CCSD and TD-DFT and determined that structures and EOM-CCSD transition properties obtained with each structure were sufficiently similar that TD-DFT optimizations were acceptable for the remaining test cases. Agreement between EOM-CCSD and the Becke three-parameter exchange function and Lee-Yang-Parr correlation functional (B3LYP) corrected using the Coulomb attenuating method (CAM-B3LYP) is typically good for most of the transitions, though agreement with the uncorrected B3LYP functional is significantly worse for all reported properties. The choice of length vs. velocity representation of the electric dipole operator has little impact on the EOM-CCSD transition strengths for nearly all of the states we examined. For a pair of closely related β, γ-enones, (1R)-7-methylenebicyclo[2.2.1]heptan-2-one and (1S)-2-methylenebicyclo[2.2.1]heptan-7-one, we find that EOM-CCSD and CAM-B3LYP agree with the energetic ordering of the two possible excited-state conformations, resulting in good agreement with experimental rotatory strengths in both absorption and emission, whereas B3LYP yields a qualitatively incorrect result for the CPL signal of (1S)-2-methylenebicyclo[2.2.1]heptan-7-one. Finally, we predict that one of the compounds considered here, trans-bicyclo[3.3.0]octane-3,7-dione, is unique in that it exhibits an achiral ground state and a chiral first excited state, leading to a strong CPL

  5. Behaviour of the electron density near an impurity with exchange and correlation

    International Nuclear Information System (INIS)

    Adawi, I.; Godwin, V.E.

    1982-09-01

    The behaviour of the electron density n(r) and potential energy V(r) near an impurity of charge Z is studied in the linear response theory of metals with exchange and correlation. The leading two terms in nsub(odd)(r) and the first three terms in Vsub(odd)(r) are the same as in the Lindhard theory, but corrections appear in the higher terms of the odd powers expansions of these functions. In all quantum linear response theories, the derivative n'(0)=-2Zn 0 /a 0 where n 0 is the free electron gas density and a 0 is the Bohr radius. (author)

  6. Extending the random-phase approximation for electronic correlation energies: the renormalized adiabatic local density approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian S.

    2012-01-01

    The adiabatic connection fluctuation-dissipation theorem with the random phase approximation (RPA) has recently been applied with success to obtain correlation energies of a variety of chemical and solid state systems. The main merit of this approach is the improved description of dispersive forces...... while chemical bond strengths and absolute correlation energies are systematically underestimated. In this work we extend the RPA by including a parameter-free renormalized version of the adiabatic local-density (ALDA) exchange-correlation kernel. The renormalization consists of a (local) truncation...... of the ALDA kernel for wave vectors q > 2kF, which is found to yield excellent results for the homogeneous electron gas. In addition, the kernel significantly improves both the absolute correlation energies and atomization energies of small molecules over RPA and ALDA. The renormalization can...

  7. Common pediatric cerebellar tumors: correlation between cell densities and apparent diffusion coefficient metrics.

    Science.gov (United States)

    Koral, Korgün; Mathis, Derek; Gimi, Barjor; Gargan, Lynn; Weprin, Bradley; Bowers, Daniel C; Margraf, Linda

    2013-08-01

    To test whether there is correlation between cell densities and apparent diffusion coefficient (ADC) metrics of common pediatric cerebellar tumors. This study was reviewed for issues of patient safety and confidentiality and was approved by the Institutional Review Board of the University of Texas Southwestern Medical Center and was compliant with HIPAA. The need for informed consent was waived. Ninety-five patients who had preoperative magnetic resonance imaging and surgical pathologic findings available between January 2003 and June 2011 were included. There were 37 pilocytic astrocytomas, 34 medulloblastomas (23 classic, eight desmoplastic-nodular, two large cell, one anaplastic), 17 ependymomas (13 World Health Organization [WHO] grade II, four WHO grade III), and seven atypical teratoid rhabdoid tumors. ADCs of solid tumor components and normal cerebellum were measured. Tumor-to-normal brain ADC ratios (hereafter, ADC ratio) were calculated. The medulloblastomas and ependymomas were subcategorized according to the latest WHO classification, and tumor cellularity was calculated. Correlation was sought between cell densities and mean tumor ADCs, minimum tumor ADCs, and ADC ratio. When all tumors were considered together, negative correlation was found between cellularity and mean tumor ADCs (ρ = -0.737, P correlation between cellularity and ADC ratio. Negative correlation was found between cellularity and minimum tumor ADC in atypical teratoid rhabdoid tumors (ρ = -0.786, P correlation was found between cellularity and mean tumor ADC and ADC ratio. There was no correlation between the ADC metrics and cellularity of the pilocytic astrocytomas, medulloblastomas, and ependymomas. Negative correlation was found between cellularity and ADC metrics of common pediatric cerebellar tumors. Although ADC metrics are useful in the preoperative diagnosis of common pediatric cerebellar tumors and this utility is generally attributed to differences in cellularity of tumors

  8. Spectral density analysis of time correlation functions in lattice QCD using the maximum entropy method

    International Nuclear Information System (INIS)

    Fiebig, H. Rudolf

    2002-01-01

    We study various aspects of extracting spectral information from time correlation functions of lattice QCD by means of Bayesian inference with an entropic prior, the maximum entropy method (MEM). Correlator functions of a heavy-light meson-meson system serve as a repository for lattice data with diverse statistical quality. Attention is given to spectral mass density functions, inferred from the data, and their dependence on the parameters of the MEM. We propose to employ simulated annealing, or cooling, to solve the Bayesian inference problem, and discuss the practical issues of the approach

  9. Signed zeros of Gaussian vector fields - density, correlation functions and curvature

    CERN Document Server

    Foltin, G

    2003-01-01

    We calculate correlation functions of the (signed) density of zeros of Gaussian distributed vector fields. We are able to express correlation functions of arbitrary order through the curvature tensor of a certain abstract Riemann Cartan or Riemannian manifold. As an application, we discuss one- and two-point functions. The zeros of a two-dimensional Gaussian vector field model the distribution of topological defects in the high-temperature phase of two-dimensional systems with orientational degrees of freedom, such as superfluid films, thin superconductors and liquid crystals.

  10. Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation

    DEFF Research Database (Denmark)

    Wellendorff, Jess; Lundgård, Keld Troen; Møgelhøj, Andreas

    2012-01-01

    A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding the overfit......A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding...... the energetics of intramolecular and intermolecular, bulk solid, and surface chemical bonding, and the developed optimization method explicitly handles making the compromise based on the directions in model space favored by different materials properties. The approach is applied to designing the Bayesian error...... sets validates the applicability of BEEF-vdW to studies in chemistry and condensed matter physics. Applications of the approximation and its Bayesian ensemble error estimate to two intricate surface science problems support this....

  11. Accuracy of ab initio electron correlation and electron densities in vanadium dioxide

    Science.gov (United States)

    Kylänpää, Ilkka; Balachandran, Janakiraman; Ganesh, Panchapakesan; Heinonen, Olle; Kent, Paul R. C.; Krogel, Jaron T.

    2017-11-01

    Diffusion quantum Monte Carlo results are used as a reference to analyze properties related to phase stability and magnetism in vanadium dioxide computed with various formulations of density functional theory. We introduce metrics related to energetics, electron densities and spin densities that give us insight on both local and global variations in the antiferromagnetic M1 and R phases. Importantly, these metrics can address contributions arising from the challenging description of the 3 d orbital physics in this material. We observe that the best description of energetics between the structural phases does not correspond to the best accuracy in the charge density, which is consistent with observations made recently by Medvedev et al. [Science 355, 371 (2017), 10.1126/science.aag0410] in the context of isolated atoms. However, we do find evidence that an accurate spin density connects to correct energetic ordering of different magnetic states in VO2, although local, semilocal, and meta-GGA functionals tend to erroneously favor demagnetization of the vanadium sites. The recently developed SCAN functional stands out as remaining nearly balanced in terms of magnetization across the M1-R transition and correctly predicting the ground state crystal structure. In addition to ranking current density functionals, our reference energies and densities serve as important benchmarks for future functional development. With our reference data, the accuracy of both the energy and the electron density can be monitored simultaneously, which is useful for functional development. So far, this kind of detailed high accuracy reference data for correlated materials has been absent from the literature.

  12. Background enhancement in breast MR: Correlation with breast density in mammography and background echotexture in ultrasound

    International Nuclear Information System (INIS)

    Ko, Eun Sook; Lee, Byung Hee; Choi, Hye Young; Kim, Rock Bum; Noh, Woo-Chul

    2011-01-01

    Objective: This study aimed to determine whether background enhancement on MR was related to mammographic breast density or ultrasonographic background echotexture in premenopausal and postmenopausal women. Materials and methods: We studied 142 patients (79 premenopausal, 63 postmenopausal) who underwent mammography, ultrasonography, and breast MR. We reviewed the mammography for overall breast density of the contralateral normal breast according to the four-point scale of the BI-RADS classification. Ultrasound findings were classified as homogeneous or heterogeneous background echotexture according to the BI-RADS lexicon. We rated background enhancement on a contralateral breast MR into four categories based on subtraction images: absent, mild, moderate, and marked. All imaging findings were interpreted independently by two readers without knowledge of menstrual status, imaging findings of other modalities. Results: There were significant differences between the premenopausal and postmenopausal group in distribution of mammographic breast density, ultrasonographic background echotexture, and degree of background enhancement. Regarding the relationship between mammographic density and background enhancement, there was no significant correlation. There was significant relationship between ultrasonographic background echotexture and background enhancement in both premenopausal and postmenopausal groups. Conclusion: There is a significant correlation between ultrasonographic background echotexture and background enhancement in MR regardless of menopausal status. Interpreting breast MR, or scheduling for breast MR of women showing heterogeneous background echotexture needs more caution.

  13. Correlation between blood and lymphatic vessel density and results of contrast-enhanced spectral mammography.

    Science.gov (United States)

    Luczynska, Elzbieta; Niemiec, Joanna; Ambicka, Aleksandra; Adamczyk, Agnieszka; Walasek, Tomasz; Ryś, Janusz; Sas-Korczyńska, Beata

    2015-09-01

    Contrast-enhanced spectral mammography (CESM) is a novel technique used for detection of tumour vascularity by imaging the moment in which contrast, delivered to the lesion by blood vessels, leaks out of them, and flows out through lymphatic vessels. In our study, we included 174 women for whom spectral mammography was performed for diagnostic purposes. The relationship between enhancement in CESM and blood vessel density (BVD), lymphatic vessel density (LVD) or the percentage of fields with at least one lymphatic vessel (distribution of podoplanin-positive vessels - DPV) and other related parameters was assessed in 55 cases. BVD, LVD and DPV were assessed immunohistochemically, applying podoplanin and CD31/CD34 as markers of lymphatic and blood vessels, respectively. The sensitivity (in detection of malignant lesions) of CESM was 100%, while its specificity - 39%. We found a significant positive correlation between the intensity of enhancement in CESM and BVD (p = 0.007, r = 0.357) and a negative correlation between the intensity of enhancement in CESM and DPV (p = 0.003, r = -0.390). Lesions with the highest enhancement in CESM showed a high number of blood vessels and a low number of lymphatics. 1) CESM is a method characterized by high sensitivity and acceptable specificity; 2) the correlation between CESM results and blood/lymphatic vessel density confirms its utility in detection of tissue angiogenesis and/or lymphangiogenesis.

  14. Static correlation lengths in QCD at high temperatures and finite densities

    CERN Document Server

    Hart, A; Philipsen, O

    2000-01-01

    We use a perturbatively derived effective field theory and three-dimensional lattice simulations to determine the longest static correlation lengths in the deconfined QCD plasma phase at high temperatures (T\\gsim 2 Tc) and finite densities (\\mu\\lsim 4 T). For vanishing chemical potential, we refine a previous determination of the Debye screening length, and determine the dependence of different correlation lengths on the number of massless flavours as well as on the number of colours. For non-vanishing but small chemical potential, the existence of Debye screening allows us to carry out simulations corresponding to the full QCD with two (or three) massless dynamical flavours, in spite of a complex action. We investigate how the correlation lengths in the different quantum number channels change as the chemical potential is switched on.

  15. Effect of impurity correlation on the density of states in slightly compensated heavily doped semiconductors

    International Nuclear Information System (INIS)

    Doan Nhat Quang; Nguyen Nhu Dat; Dinh Van An

    1993-07-01

    A theory is developed of the electron density of states (DOS) in slightly compensated heavily doped semiconductors which undergo a thermal treatment. The calculation is carried out within the semiclassical approach to the random impurity field, taking adequately into account high-temperature correlation among the impurities and low temperature screening due to the free carriers as well. Then, a simple analytic expression for the DOS is obtained which exhibits the same energy dependence as in the case of a random impurity distribution, but now with some correlation-induced changes in the coefficients. A numerical estimation on non-compensated n-type sample of GaAs at a doping level of 5 x 10 18 cm -3 shows that in the tail region the correlated DOS turns out to be somewhat larger and cut less sharply than the random one. (author). 45 refs, 2 figs, 1 tab

  16. The correlation function for density perturbations in an expanding universe. I - Linear theory

    Science.gov (United States)

    Mcclelland, J.; Silk, J.

    1977-01-01

    The evolution of the two-point correlation function for adiabatic density perturbations in the early universe is studied. Analytical solutions are obtained for the evolution of linearized spherically symmetric adiabatic density perturbations and the two-point correlation function for these perturbations in the radiation-dominated portion of the early universe. The results are then extended to the regime after decoupling. It is found that: (1) adiabatic spherically symmetric perturbations comparable in scale with the maximum Jeans length would survive the radiation-dominated regime; (2) irregular fluctuations are smoothed out up to the scale of the maximum Jeans length in the radiation era, but regular fluctuations might survive on smaller scales; (3) in general, the only surviving structures for irregularly shaped adiabatic density perturbations of arbitrary but finite scale in the radiation regime are the size of or larger than the maximum Jeans length in that regime; (4) infinite plane waves with a wavelength smaller than the maximum Jeans length but larger than the critical dissipative damping scale could survive the radiation regime; and (5) black holes would also survive the radiation regime and might accrete sufficient mass after decoupling to nucleate the formation of galaxies.

  17. Correlations in the three-dimensional Lyman-alpha forest contaminated by high column density absorbers

    Science.gov (United States)

    Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris

    2018-05-01

    Correlations measured in three dimensions in the Lyman-alpha forest are contaminated by the presence of the damping wings of high column density (HCD) absorbing systems of neutral hydrogen (H I; having column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}), which extend significantly beyond the redshift-space location of the absorber. We measure this effect as a function of the column density of the HCD absorbers and redshift by measuring three-dimensional (3D) flux power spectra in cosmological hydrodynamical simulations from the Illustris project. Survey pipelines exclude regions containing the largest damping wings. We find that, even after this procedure, there is a scale-dependent correction to the 3D Lyman-alpha forest flux power spectrum from residual contamination. We model this residual using a simple physical model of the HCD absorbers as linearly biased tracers of the matter density distribution, convolved with their Voigt profiles and integrated over the column density distribution function. We recommend the use of this model over existing models used in data analysis, which approximate the damping wings as top-hats and so miss shape information in the extended wings. The simple `linear Voigt model' is statistically consistent with our simulation results for a mock residual contamination up to small scales (|k| account for the effect of the highest column density absorbers on the smallest scales (e.g. |k| > 0.4 h Mpc^{-1} for small damped Lyman-alpha absorbers; HCD absorbers with N(H I) ˜ 10^{21} atoms cm^{-2}). However, these systems are in any case preferentially removed from survey data. Our model is appropriate for an accurate analysis of the baryon acoustic oscillations feature. It is additionally essential for reconstructing the full shape of the 3D flux power spectrum.

  18. Improved correlation between CT emphysema quantification and pulmonary function test by density correction of volumetric CT data based on air and aortic density

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Song Soo [Department of Radiology, Chungnam National University Hospital, Chungnam National University School of Medicine (Korea, Republic of); Seo, Joon Beom, E-mail: seojb@amc.seoul.kr [Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center (Korea, Republic of); Kim, Namkug; Chae, Eun Jin [Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center (Korea, Republic of); Lee, Young Kyung [Department of Radiology, Kyung Hee University Hospital at Gangdong (Korea, Republic of); Oh, Yeon Mok; Lee, Sang Do [Division of Pulmonology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center (Korea, Republic of)

    2014-01-15

    Objectives: To determine the improvement of emphysema quantification with density correction and to determine the optimal site to use for air density correction on volumetric computed tomography (CT). Methods: Seventy-eight CT scans of COPD patients (GOLD II–IV, smoking history 39.2 ± 25.3 pack-years) were obtained from several single-vendor 16-MDCT scanners. After density measurement of aorta, tracheal- and external air, volumetric CT density correction was conducted (two reference values: air, −1000 HU/blood, +50 HU). Using in-house software, emphysema index (EI) and mean lung density (MLD) were calculated. Differences in air densities, MLD and EI prior to and after density correction were evaluated (paired t-test). Correlation between those parameters and FEV{sub 1} and FEV{sub 1}/FVC were compared (age- and sex adjusted partial correlation analysis). Results: Measured densities (HU) of tracheal- and external air differed significantly (−990 ± 14, −1016 ± 9, P < 0.001). MLD and EI on original CT data, after density correction using tracheal- and external air also differed significantly (MLD: −874.9 ± 27.6 vs. −882.3 ± 24.9 vs. −860.5 ± 26.6; EI: 16.8 ± 13.4 vs. 21.1 ± 14.5 vs. 9.7 ± 10.5, respectively, P < 0.001). The correlation coefficients between CT quantification indices and FEV{sub 1}, and FEV{sub 1}/FVC increased after density correction. The tracheal air correction showed better results than the external air correction. Conclusion: Density correction of volumetric CT data can improve correlations of emphysema quantification and PFT.

  19. Improved correlation between CT emphysema quantification and pulmonary function test by density correction of volumetric CT data based on air and aortic density

    International Nuclear Information System (INIS)

    Kim, Song Soo; Seo, Joon Beom; Kim, Namkug; Chae, Eun Jin; Lee, Young Kyung; Oh, Yeon Mok; Lee, Sang Do

    2014-01-01

    Objectives: To determine the improvement of emphysema quantification with density correction and to determine the optimal site to use for air density correction on volumetric computed tomography (CT). Methods: Seventy-eight CT scans of COPD patients (GOLD II–IV, smoking history 39.2 ± 25.3 pack-years) were obtained from several single-vendor 16-MDCT scanners. After density measurement of aorta, tracheal- and external air, volumetric CT density correction was conducted (two reference values: air, −1000 HU/blood, +50 HU). Using in-house software, emphysema index (EI) and mean lung density (MLD) were calculated. Differences in air densities, MLD and EI prior to and after density correction were evaluated (paired t-test). Correlation between those parameters and FEV 1 and FEV 1 /FVC were compared (age- and sex adjusted partial correlation analysis). Results: Measured densities (HU) of tracheal- and external air differed significantly (−990 ± 14, −1016 ± 9, P < 0.001). MLD and EI on original CT data, after density correction using tracheal- and external air also differed significantly (MLD: −874.9 ± 27.6 vs. −882.3 ± 24.9 vs. −860.5 ± 26.6; EI: 16.8 ± 13.4 vs. 21.1 ± 14.5 vs. 9.7 ± 10.5, respectively, P < 0.001). The correlation coefficients between CT quantification indices and FEV 1 , and FEV 1 /FVC increased after density correction. The tracheal air correction showed better results than the external air correction. Conclusion: Density correction of volumetric CT data can improve correlations of emphysema quantification and PFT

  20. Correlation function for density perturbations in an expanding universe. I. Linear theory

    International Nuclear Information System (INIS)

    McClelland, J.; Silk, J.

    1977-01-01

    We derive analytic solutions for the evolution of linearized adiabatic spherically symmetric density perturbations and the two-point correlation function in two regimes of the early universe: the radiation-dominated regime prior to decoupling, and the matter-dominated regime after decoupling. The solutions are for an Einstein--de Sitter universe, and include pressure effects. In the radiation era, we find that individual spherically symmetric adiabatic density perturbations smaller than the Jeans length flow outward like water waves instead of oscillating as infinite plane waves. It seems likely that the only primordial structures on scales smaller than the maximum Jeans length which could survive are very regular waves such as infinite plane waves. However, structure does build up in the correlation function over distances comparable with the maximum Jeans length in the radiation regime, and could lead to the eventual formation of galaxy superclusters. This scale (approx.10 17 Ω -2 M/sub sun)/therefore provides a natural dimension for large-scale structure arising out of the early universe. A general technique is described for constructing solutions for the evolution of the two-point correlation function, and applied to study white noise and power-law initial conditions for primordial inhomogeneities

  1. Duodenal L cell density correlates with features of metabolic syndrome and plasma metabolites

    Directory of Open Access Journals (Sweden)

    Annieke C G van Baar

    2018-05-01

    Full Text Available Background: Enteroendocrine cells are essential for the regulation of glucose metabolism, but it is unknown whether they are associated with clinical features of metabolic syndrome (MetS and fasting plasma metabolites. Objective: We aimed to identify fasting plasma metabolites that associate with duodenal L cell, K cell and delta cell densities in subjects with MetS with ranging levels of insulin resistance. Research design and methods: In this cross-sectional study, we evaluated L, K and delta cell density in duodenal biopsies from treatment-naïve males with MetS using machine-learning methodology. Results: We identified specific clinical biomarkers and plasma metabolites associated with L cell and delta cell density. L cell density was associated with increased plasma metabolite levels including symmetrical dimethylarginine, 3-aminoisobutyric acid, kynurenine and glycine. In turn, these L cell-linked fasting plasma metabolites correlated with clinical features of MetS. Conclusions: Our results indicate a link between duodenal L cells, plasma metabolites and clinical characteristics of MetS. We conclude that duodenal L cells associate with plasma metabolites that have been implicated in human glucose metabolism homeostasis. Disentangling the causal relation between L cells and these metabolites might help to improve the (small intestinal-driven pathophysiology behind insulin resistance in human obesity.

  2. Bone mineral density and computer tomographic measurements in correlation with failure strength of equine metacarpal bones

    Directory of Open Access Journals (Sweden)

    Péter Tóth

    2014-01-01

    Full Text Available Information regarding bone mineral density and fracture characteristics of the equine metacarpus are lacking. The aim of this study was to characterize the relationship between mechanical properties of the equine metacarpal bone and its biomechanical and morphometric properties. Third metacarpal bones were extracted from horses euthanized unrelated to musculoskeletal conditions. In total, bone specimens from 26 front limbs of 13 horses (7.8 ± 5.8 years old including Lipizzaner (n = 5, Hungarian Warmblood (n = 2, Holsteiner (n = 2, Thoroughbred (n = 1, Hungarian Sporthorse (n = 1, Friesian (n = 1, and Shagya Arabian (n = 1 were collected. The horses included 7 mares, 4 stallions and 2 geldings. Assessment of the bone mineral density of the whole bone across four specific regions of interest was performed using dual-energy X-ray absorptiometry. The bones were scanned using a computer tomographic scanner to measure cross-sectional morphometric properties such as bone mineral density and cross-sectional dimensions including cortical area and cortical width. Mechanical properties (breaking force, bending strength, elastic modulus were determined by a 3-point bending test. Significant positive linear correlations were found between the breaking force and bone mineral density of the entire third metacarpal bones (P P P in vivo investigations.

  3. Liquid direct correlation function, singlet densities and the theory of freezing

    International Nuclear Information System (INIS)

    March, N.H.; Tosi, M.P.

    1981-04-01

    We have examined the solutions for the singlet density rho(r) in the hierarchical equation connecting rho(r) with the liquid direct correlation function c(r). In addition to the homogeneous solution rho(r)=rhosub(liquid), we exhibit a periodic solution which can co-exist with the liquid solution. If the defining equation for this is linearized, we recover the bifurcation condition of Lovett and Buff. We stress the difference between the two treatments as that between first and second-order transitions. It turns out that the treatment presented here leads to the same periodic density as that derived, using the hypernetted chain approximation, by Ramakrishnan and Yussouff in their theory of freezing. Invoking that approximation is shown thereby to be inessential. (author)

  4. TROP2 correlates with microvessel density and poor prognosis in hilar cholangiocarcinoma.

    Science.gov (United States)

    Ning, Shanglei; Guo, Sen; Xie, Jianjun; Xu, Yunfei; Lu, Xiaofei; Chen, Yuxin

    2013-02-01

    Trophoblast cell surface antigen 2 (TROP2) was found to be associated with tumor progression and poor prognosis in a variety of epithelial carcinomas. The aim of the study was to investigate TROP2 expression and its prognostic impact in hilar cholangiocarcinoma. Immunohistochemistry and quantitative real-time PCR were used to determine TROP2 expression in surgical specimens from 70 hilar cholangiocarcinoma patients receiving radical resection. The relationship between TROP2 expression and microvessel density was investigated and standard statistical analysis was used to evaluate TROP2 prognosis significance in hilar cholangiocarcinoma. High TROP2 expression by immunohistochemistry was found in 43 (61.4 %) of the 70 tumor specimens. Quantitative real-time PCR confirmed that TROP2 level in tumor was significantly higher than in non-tumoral biliary tissues (P = 0.001). Significant correlations were found between TROP2 expression and histological differentiation (P = 0.016) and tumor T stage (P = 0.031) in hilar cholangiocarcinoma. TROP2 expression correlated with microvessel density in hilar cholangiocarcinoma (P = 0.026). High TROP2 expression patients had a significantly poorer overall survival rate than those with low TROP2 expression (30 vs. 68.5 %, P = 0.001), and multivariate Cox regression analysis indicated TROP2 as an independent prognostic factor for hilar cholangiocarcinoma (P = 0.004). TROP2 expression correlates with microvessel density significantly and is an independent prognostic factor in human hilar cholangiocarcinoma.

  5. Correlated electron dynamics and memory in time-dependent density functional theory

    International Nuclear Information System (INIS)

    Thiele, Mark

    2009-01-01

    Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)

  6. Correlated electron dynamics and memory in time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, Mark

    2009-07-28

    Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)

  7. Cubic scaling algorithms for RPA correlation using interpolative separable density fitting

    Science.gov (United States)

    Lu, Jianfeng; Thicke, Kyle

    2017-12-01

    We present a new cubic scaling algorithm for the calculation of the RPA correlation energy. Our scheme splits up the dependence between the occupied and virtual orbitals in χ0 by use of Cauchy's integral formula. This introduces an additional integral to be carried out, for which we provide a geometrically convergent quadrature rule. Our scheme also uses the newly developed Interpolative Separable Density Fitting algorithm to further reduce the computational cost in a way analogous to that of the Resolution of Identity method.

  8. Current Issues in Finite-T Density-Functional Theory and Warm-Correlated Matter †

    Directory of Open Access Journals (Sweden)

    M. W. C. Dharma-wardana

    2016-03-01

    Full Text Available Finite-temperature density functional theory (DFT has become of topical interest, partly due to the increasing ability to create novel states of warm-correlated matter (WCM.Warm-dense matter (WDM, ultra-fast matter (UFM, and high-energy density matter (HEDM may all be regarded as subclasses of WCM. Strong electron-electron, ion-ion and electron-ion correlation effects and partial degeneracies are found in these systems where the electron temperature Te is comparable to the electron Fermi energy EF. Thus, many electrons are in continuum states which are partially occupied. The ion subsystem may be solid, liquid or plasma, with many states of ionization with ionic charge Zj. Quasi-equilibria with the ion temperature Ti ≠ Te are common. The ion subsystem in WCM can no longer be treated as a passive “external potential”, as is customary in T = 0 DFT dominated by solid-state theory or quantum chemistry. Many basic questions arise in trying to implement DFT for WCM. Hohenberg-Kohn-Mermin theory can be adapted for treating these systems if suitable finite-T exchange-correlation (XC functionals can be constructed. They are functionals of both the one-body electron density ne and the one-body ion densities ρj. Here, j counts many species of nuclei or charge states. A method of approximately but accurately mapping the quantum electrons to a classical Coulomb gas enables one to treat electron-ion systems entirely classically at any temperature and arbitrary spin polarization, using exchange-correlation effects calculated in situ, directly from the pair-distribution functions. This eliminates the need for any XC-functionals. This classical map has been used to calculate the equation of state of WDM systems, and construct a finite-T XC functional that is found to be in close agreement with recent quantum path-integral simulation data. In this review, current developments and concerns in finite-T DFT, especially in the context of non-relativistic warm

  9. Apoptosis and microvessel density in gastric cancer: correlation with tumor stage and prognosis.

    Science.gov (United States)

    Aurello, Paolo; Bellagamba, Riccardo; Rossi Del Monte, Simone; D'Angelo, Francesco; Nigri, Giuseppe; Cicchini, Claudia; Ravaioli, Matteo; Ramacciato, Giovanni

    2009-12-01

    Gastric cancer remains one of the most common human malignancies with a poor prognosis. Apoptosis is known to be a programmed cell death and its inhibition is involved in the unregulated cellular growth that leads to neoplasms. Microvessel density (MVD) has been investigated as a promoting factor for angiogenesis with conflicting results about its relation to survival. The aim of our study was to search a correlation between these factors and some clinicopathological features and prognosis. Identification of apoptotic cells was performed applying the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling technique and recorded as apoptotic index (A.I.), whereas monoclonal antibodies were used for the study of MVD. A significant correlation was found between low and high A.I. and the subgroup of patients in Stages I and II (P stage (P = 0.036) and to a poorer 5-year overall survival (P gastric cancer.

  10. Correlation between serum anyloid a low density lipoprotein and genotoxicity in smokers

    International Nuclear Information System (INIS)

    Jamil, A.; Rashid, A.; Majeed, A.; Naveed, A.K.

    2018-01-01

    Objective:To investigate the relation between serum amyloid A-low density lipoprotein (SAA-LDL) and genotoxicity in smokers. Study Design:An experimental study. Place and Duration of Study:Army Medical College, Rawalpindi and National Institute of Health (NIH), Islamabad, from June 2014 to February 2015. Methodology:Seventy healthy Sprague Dawley rats were purchased from NIH and exposed to cigarette smoke in smoke chamber for three months. Blood samples were drawn from each rat at the end of the study period. SAA-LDL was determined by enzyme-linked immunosorbent assay (ELISA). Genotoxicity was assessed by cytokinesis block micronucleus (CBMN) assay. Pearson correlation was used to find correlation between SAA-LDL and genotoxicity. Results:Strong positive correlation was found between SAA-LDL and micronuclei frequency in smoke-exposed rats (r=0.799, N=70, p <0.01). Conclusion:Statistically significant strong positive correlation between SAA-LDL and genotoxicity in smoke-exposed rats shows that changes in one is associated with changes in other and vice versa. (author)

  11. Numerosity but not texture-density discrimination correlates with math ability in children.

    Science.gov (United States)

    Anobile, Giovanni; Castaldi, Elisa; Turi, Marco; Tinelli, Francesca; Burr, David C

    2016-08-01

    Considerable recent work suggests that mathematical abilities in children correlate with the ability to estimate numerosity. Does math correlate only with numerosity estimation, or also with other similar tasks? We measured discrimination thresholds of school-age (6- to 12.5-years-old) children in 3 tasks: numerosity of patterns of relatively sparse, segregatable items (24 dots); numerosity of very dense textured patterns (250 dots); and discrimination of direction of motion. Thresholds in all tasks improved with age, but at different rates, implying the action of different mechanisms: In particular, in young children, thresholds were lower for sparse than textured patterns (the opposite of adults), suggesting earlier maturation of numerosity mechanisms. Importantly, numerosity thresholds for sparse stimuli correlated strongly with math skills, even after controlling for the influence of age, gender and nonverbal IQ. However, neither motion-direction discrimination nor numerosity discrimination of texture patterns showed a significant correlation with math abilities. These results provide further evidence that numerosity and texture-density are perceived by independent neural mechanisms, which develop at different rates; and importantly, only numerosity mechanisms are related to math. As developmental dyscalculia is characterized by a profound deficit in discriminating numerosity, it is fundamental to understand the mechanism behind the discrimination. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. Accurate and systematically improvable density functional theory embedding for correlated wavefunctions

    International Nuclear Information System (INIS)

    Goodpaster, Jason D.; Barnes, Taylor A.; Miller, Thomas F.; Manby, Frederick R.

    2014-01-01

    We analyze the sources of error in quantum embedding calculations in which an active subsystem is treated using wavefunction methods, and the remainder using density functional theory. We show that the embedding potential felt by the electrons in the active subsystem makes only a small contribution to the error of the method, whereas the error in the nonadditive exchange-correlation energy dominates. We test an MP2 correction for this term and demonstrate that the corrected embedding scheme accurately reproduces wavefunction calculations for a series of chemical reactions. Our projector-based embedding method uses localized occupied orbitals to partition the system; as with other local correlation methods, abrupt changes in the character of the localized orbitals along a reaction coordinate can lead to discontinuities in the embedded energy, but we show that these discontinuities are small and can be systematically reduced by increasing the size of the active region. Convergence of reaction energies with respect to the size of the active subsystem is shown to be rapid for all cases where the density functional treatment is able to capture the polarization of the environment, even in conjugated systems, and even when the partition cuts across a double bond

  13. New correlation potential for the local-spin-density functional formalism. II

    International Nuclear Information System (INIS)

    Kolar, M.; Farkas, L.

    1982-01-01

    Using the new parameterization for the correlation potential which seems to be the best that is at present available within the local-spin-density (LSD) functional formalism, the Fermi contact term in light atoms (up to Ni) is calculated. Although the overall improvement of the previous LSD results is obtained, discrepancy between theory and experiment remains rather large. It seems that the local approximation for exchange and correlation fails to predict such quantities as magnetic-moment density near the nucleus. It is also shown that the self-interaction correction does not remedy this failure. Further, the effect of the nonzero nuclear radius is investigated and found to be most important in the lightest atoms (e.g. a factor of 0.664 appears in the case of Li). This fact was omitted in all previous calculations and throws doubt on the reported excellent agreement of the results of many-body perturbation theory with experiment. It was also verified that the contact approximation of the Fermi contact term is really good enough. (author)

  14. Local and Landscape Correlates of Spider Activity Density and Species Richness in Urban Gardens.

    Science.gov (United States)

    Otoshi, Michelle D; Bichier, Peter; Philpott, Stacy M

    2015-08-01

    Urbanization is a major threat to arthropod biodiversity and abundance due to reduction and loss of suitable natural habitat. Green spaces and small-scale agricultural areas may provide habitat and resources for arthropods within densely developed cities. We studied spider activity density (a measure of both abundance and degree of movement) and diversity in urban gardens in Santa Cruz, Santa Clara, and Monterey counties in central California, USA. We sampled for spiders with pitfall traps and sampled 38 local site characteristics for 5 mo in 19 garden sites to determine the relative importance of individual local factors. We also analyzed 16 landscape variables at 500-m and 1-km buffers surrounding each garden to determine the significance of landscape factors. We identified individuals from the most common families to species and identified individuals from other families to morphospecies. Species from the families Lycosidae and Gnaphosidae composed 81% of total adult spider individuals. Most of the significant factors that correlated with spider activity density and richness were local rather than landscape factors. Spider activity density and richness increased with mulch cover and flowering plant species, and decreased with bare soil. Thus, changes in local garden management have the potential to promote diversity of functionally important spiders in urban environments. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Exchange-Correlation Effects for Noncovalent Interactions in Density Functional Theory.

    Science.gov (United States)

    Otero-de-la-Roza, A; DiLabio, Gino A; Johnson, Erin R

    2016-07-12

    In this article, we develop an understanding of how errors from exchange-correlation functionals affect the modeling of noncovalent interactions in dispersion-corrected density-functional theory. Computed CCSD(T) reference binding energies for a collection of small-molecule clusters are decomposed via a molecular many-body expansion and are used to benchmark density-functional approximations, including the effect of semilocal approximation, exact-exchange admixture, and range separation. Three sources of error are identified. Repulsion error arises from the choice of semilocal functional approximation. This error affects intermolecular repulsions and is present in all n-body exchange-repulsion energies with a sign that alternates with the order n of the interaction. Delocalization error is independent of the choice of semilocal functional but does depend on the exact exchange fraction. Delocalization error misrepresents the induction energies, leading to overbinding in all induction n-body terms, and underestimates the electrostatic contribution to the 2-body energies. Deformation error affects only monomer relaxation (deformation) energies and behaves similarly to bond-dissociation energy errors. Delocalization and deformation errors affect systems with significant intermolecular orbital interactions (e.g., hydrogen- and halogen-bonded systems), whereas repulsion error is ubiquitous. Many-body errors from the underlying exchange-correlation functional greatly exceed in general the magnitude of the many-body dispersion energy term. A functional built to accurately model noncovalent interactions must contain a dispersion correction, semilocal exchange, and correlation components that minimize the repulsion error independently and must also incorporate exact exchange in such a way that delocalization error is absent.

  16. Reliability analysis based on a novel density estimation method for structures with correlations

    Directory of Open Access Journals (Sweden)

    Baoyu LI

    2017-06-01

    Full Text Available Estimating the Probability Density Function (PDF of the performance function is a direct way for structural reliability analysis, and the failure probability can be easily obtained by integration in the failure domain. However, efficiently estimating the PDF is still an urgent problem to be solved. The existing fractional moment based maximum entropy has provided a very advanced method for the PDF estimation, whereas the main shortcoming is that it limits the application of the reliability analysis method only to structures with independent inputs. While in fact, structures with correlated inputs always exist in engineering, thus this paper improves the maximum entropy method, and applies the Unscented Transformation (UT technique to compute the fractional moments of the performance function for structures with correlations, which is a very efficient moment estimation method for models with any inputs. The proposed method can precisely estimate the probability distributions of performance functions for structures with correlations. Besides, the number of function evaluations of the proposed method in reliability analysis, which is determined by UT, is really small. Several examples are employed to illustrate the accuracy and advantages of the proposed method.

  17. Gravitational clustering of gaussian density fluctuations: The origin of hierarchy correlations, voids and QN

    International Nuclear Information System (INIS)

    Kashlinsky, A.

    1990-01-01

    We present here a theory of gravitational clustering based only on: i) The assumption that the primordial density fluctuations (PDF) were Gaussian; and ii) identifying galaxies, and groups and clusters of galaxies with regions of PDF whose turn-around time was less than the age of Universe. It is shown that 1) properties of the hierarchy thus produced depend uniquely on the power spectrum P(k) of PDF; 2) the resultant distribution of galaxies and groups and clusters is non-Gaussian; 3) two-point and higher order correlations depend in a complicated, but unique for a given P(k), way on the mass-scales of groups and clusters and, hence, can be used to constrain P(k) on scales from 1 to (50-100) h -1 Mpc on the basis of the available data; 4) expressions for the dimensionless correlation amplitudes Q N can then be computed for the hierarchy - again they depend uniquely on the mass and P(k); 5) statistics of voids in the distribution of galaxies and clusters of various richness/mass can then be used to constrain P(k). We show that the available data on correlation functions and voids are in better agreement with the n=-1 spectrum than with spectra having n>0 on large scales such as cold-dark-matter models. (orig.)

  18. Density functional theory and dynamical mean-field theory. A way to model strongly correlated systems

    International Nuclear Information System (INIS)

    Backes, Steffen

    2017-04-01

    The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non

  19. Density functional theory and dynamical mean-field theory. A way to model strongly correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Backes, Steffen

    2017-04-15

    The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non

  20. Periodic fluctuations in correlation-based connectivity density time series: Application to wind speed-monitoring network in Switzerland

    Science.gov (United States)

    Laib, Mohamed; Telesca, Luciano; Kanevski, Mikhail

    2018-02-01

    In this paper, we study the periodic fluctuations of connectivity density time series of a wind speed-monitoring network in Switzerland. By using the correlogram-based robust periodogram annual periodic oscillations were found in the correlation-based network. The intensity of such annual periodic oscillations is larger for lower correlation thresholds and smaller for higher. The annual periodicity in the connectivity density seems reasonably consistent with the seasonal meteo-climatic cycle.

  1. Correlation between degenerative spine disease and bone marrow density: a retrospective investigation

    International Nuclear Information System (INIS)

    Grams, Astrid Ellen; Rehwald, Rafael; Bartsch, Alexander; Honold, Sarah; Freyschlag, Christian Franz; Knoflach, Michael; Gizewski, Elke Ruth; Glodny, Bernhard

    2016-01-01

    Spondylosis leads to an overestimation of bone mineral density (BMD) with dual-energy x-ray absorptiometry (DXA) but not with quantitative computed tomography (QCT). The correlation between degenerative changes of the spine and QCT-BMD was therefore investigated for the first time. One hundred thirty-four patients (66 female and 68 male) with a mean age of 49.0 ± 14.6 years (range: 19–88 years) who received a CT scan and QCT-BMD measurements of spine and hip were evaluated retrospectively. The occurrence and severity of spondylosis, osteochondrosis, and spondylarthrosis and the height of the vertebral bodies were assessed. A negative correlation was found between spinal BMD and number of spondylophytes (ρ = −0.35; p < 0.01), disc heights (r = −0.33; p < 0.01), number of discal air inclusions (ρ = −0.34; p < 0.01), the number of Schmorl nodules (ρ = −0.25; p < 0.01), the number (ρ = −0.219; p < 0.05) and the degree (ρ = −0.220; p < 0.05) of spondylarthrosis. Spinal and hip BMD correlated moderately, but the latter did not correlate with degenerative changes of the spine. In linear regression models age, osteochondrosis and spondylarthrosis were factors influencing spinal BMD. Degenerative spinal changes may be associated with reduced regional spinal mineralization. This knowledge could lead to a modification of treatment of degenerative spine disease with early treatment of osteopenia to prevent secondary fractures

  2. Towards a Density Functional Theory Exchange-Correlation Functional able to describe localization/delocalization

    Science.gov (United States)

    Mattsson, Ann E.; Wills, John M.

    2013-03-01

    The inability to computationally describe the physics governing the properties of actinides and their alloys is the poster child of failure of existing Density Functional Theory exchange-correlation functionals. The intricate competition between localization and delocalization of the electrons, present in these materials, exposes the limitations of functionals only designed to properly describe one or the other situation. We will discuss the manifestation of this competition in real materials and propositions on how to construct a functional able to accurately describe properties of these materials. I addition we will discuss both the importance of using the Dirac equation to describe the relativistic effects in these materials, and the connection to the physics of transition metal oxides. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Density and speed of sound of lithium bromide with organic solvents: Measurement and correlation

    Energy Technology Data Exchange (ETDEWEB)

    Zafarani-Moattar, Mohammed Taghi [Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664 (Iran, Islamic Republic of); Research Institute of Fundamental Sciences, Tabriz 51664 (Iran, Islamic Republic of)], E-mail: zafarani47@yahoo.com; Shekaari, Hemayat [Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664 (Iran, Islamic Republic of); Research Institute of Fundamental Sciences, Tabriz 51664 (Iran, Islamic Republic of)

    2007-12-15

    Densities, {rho}, and speed of sound, u, of the solutions of LiBr with non-aqueous solvents (methanol, ethanol, 2-propanol, acetone, and acetonitrile) having a wide range of dielectric constants were measured at T = 298.15 K. Also, these measurements were made for the system (LiBr + N,N-dimethylacetamide) at T = 323.15 K. For the investigated systems, the limiting values for apparent molar volume, V{sub {phi}}{sup 0}, and the apparent molar isentropic compressibility, {kappa}{sub {phi}}{sup 0}, were obtained from the Redlich-Mayer and an abbreviated form of the Pitzer equations. The Pitzer and NRTL equations were satisfactorily used for the correlation of apparent molar volumes, V{sub {phi}}, and the apparent molar isentropic compressibility, {kappa}{sub {phi}}, values of the studied systems.

  4. Coral reef degradation is not correlated with local human population density

    Science.gov (United States)

    Bruno, John F.; Valdivia, Abel

    2016-07-01

    The global decline of reef-building corals is understood to be due to a combination of local and global stressors. However, many reef scientists assume that local factors predominate and that isolated reefs, far from human activities, are generally healthier and more resilient. Here we show that coral reef degradation is not correlated with human population density. This suggests that local factors such as fishing and pollution are having minimal effects or that their impacts are masked by global drivers such as ocean warming. Our results also suggest that the effects of local and global stressors are antagonistic, rather than synergistic as widely assumed. These findings indicate that local management alone cannot restore coral populations or increase the resilience of reefs to large-scale impacts. They also highlight the truly global reach of anthropogenic warming and the immediate need for drastic and sustained cuts in carbon emissions.

  5. Classification of air density areas in CT-pathologic correlation of pulmonary adenocarcinoma

    International Nuclear Information System (INIS)

    Koizumi, Naoya; Akita, Shinichi; Sakai, Kunio; Oda, Junichi; Tsukada, Hiroshi; Usuda, Hiroyuki; Emura, Iwao; Naito, Makoto

    1995-01-01

    Air density areas (ADAs) such as air bronchogram, bubble-like area, and cavity on high resolution computed tomography (HRCT) of pulmonary adenocarcinoma were examined to clarify their pathological implications. Forty-two resected specimens of pulmonary adenocarcinoma were histopathologically examined in correlation with the HRCT findings with particular emphasis on ADAs. Forty-one ADAs observed in 32 of 42 cases with pulmonary adenocarcinoma were classified into three types: air bronchogram type (n=22), bubble-like area type (n=12), and cavity type (n=8). Twenty of 22 air bronchogram ADAs corresponded to bronchi. Nine of 12 bubble-like area ADAs corresponded to bronchioles. Only one of eight cavity-ADAs consisted of necrosis. The classification of ADAs in pulmonary adenocarcinoma is considered to be useful in interpreting HRCT findings of pulmonary nodules. (author)

  6. Pseudoclassical approach to electron and ion density correlations in simple liquid metals

    International Nuclear Information System (INIS)

    Vericat, F.; Tosi, M.P.; Pastore, G.

    1986-04-01

    Electron-electron and electron-ion structural correlations in simple liquid metals are treated by using effective pair potentials to incorporate quantal effects into a pseudoclassical description of the electron fluid. An effective pair potential between simultaneous electron density fluctuations is first constructed from known properties of the degenerate jellium model, which are the plasmon sum rule, the Kimball-Niklasson relation and Yasuhara's values of the electron pair distribution function at contact. An analytic expression is thereby obtained in the Debye-Hueckel approximation for the electronic structure factor in jellium over a range of density appropriate to metals, with results which compare favourably with those of fully quantal evaluations. A simple pseudoclassical model is then set up for a liquid metal: this involves a model of charged hard spheres for the ion-ion potential and an empty core model for the electron-ion potential, the Coulombic tails being scaled as required by the relation between the long-wavelength partial structure factors and the isothermal compressibility of the metal. The model is solved analytically by a pseudoclassical linear response treatment of the electron-ion coupling and numerical results are reported for partial structure factors in liquid sodium and liquid beryllium. Contact is made for the latter system with data on the electron-electron structure factor in the crystal from inelastic X-ray scattering experiments of Eisenberger, Marra and Brown. (author)

  7. The impact of degenerative spinal changes on the correlation of peripheral and axial bone density

    International Nuclear Information System (INIS)

    Schneider, P.; Boerner, W.

    1994-01-01

    Results of bone density measurements by quantitative computed tomography of the peripheral skeleton (pQCT) were compared with those of measurements at the axial skeleton with a view to study the effects of degenerative spinal changes on the validity of bone densitometry of the lumbar spine. 556 consecutive patients were examined by dual-energy X-ray absorptiometry (DXA) of the spine and by peripheral quantitative computed tomography (pQCT) of the distal radius. There were significant differences between the bone mineral values at the distal radius and those at the spine, depending on the degree of spinal degeneration. As expected, spinal degenerations showed a highly significant age dependence. With increasing degeneration the correlations between the radius total bone mineral concentration and the bone density of the lumbar spine decreased from r=0.45 to 0.23 in women and from r=0.64 to 0.28 in men. We conclude that the value of spinal DXA is reduced in patients with degenerative spinal disease, compared to the pQCT at the peripheral skeleton. (orig.) [de

  8. Polymer density functional theory approach based on scaling second-order direct correlation function.

    Science.gov (United States)

    Zhou, Shiqi

    2006-06-01

    A second-order direct correlation function (DCF) from solving the polymer-RISM integral equation is scaled up or down by an equation of state for bulk polymer, the resultant scaling second-order DCF is in better agreement with corresponding simulation results than the un-scaling second-order DCF. When the scaling second-order DCF is imported into a recently proposed LTDFA-based polymer DFT approach, an originally associated adjustable but mathematically meaningless parameter now becomes mathematically meaningful, i.e., the numerical value lies now between 0 and 1. When the adjustable parameter-free version of the LTDFA is used instead of the LTDFA, i.e., the adjustable parameter is fixed at 0.5, the resultant parameter-free version of the scaling LTDFA-based polymer DFT is also in good agreement with the corresponding simulation data for density profiles. The parameter-free version of the scaling LTDFA-based polymer DFT is employed to investigate the density profiles of a freely jointed tangent hard sphere chain near a variable sized central hard sphere, again the predictions reproduce accurately the simulational results. Importance of the present adjustable parameter-free version lies in its combination with a recently proposed universal theoretical way, in the resultant formalism, the contact theorem is still met by the adjustable parameter associated with the theoretical way.

  9. Correlation of H-mode density barrier width and neutral penetration length

    International Nuclear Information System (INIS)

    Groebner, R.J.

    2002-01-01

    Pedestal studies in DIII-D find a good correlation between the width of the H-mode particle barrier width(ne) and the neutral penetration length. These results are obtained by comparing experimental n e profiles to the predictions of an analytic model for the density profile, obtained from a solution of the particle continuity equations for electrons and deuterium atoms. Initial bench-marking shows that the model is consistent with the fluid neutrals model of the UEDGE code. In its range of validity (edge temperature between 0.02-0.3 keV), the model quantitatively predicts the observed values of width(ne), the observed decrease of width(ne) as the pedestal density n e,ped increases, the observed increase of the gradient of n e with the square of n e,ped , and the observation that L-mode and H-mode profiles with the same n e,ped have very similar widths. In the model, width(ne) depends on the fuelling source and on the plasma transport. Thus, these results provide evidence that the width of the particle barrier depends on both plasma physics and atomic physics. (author)

  10. Electron correlation in the interacting quantum atoms partition via coupled-cluster lagrangian densities.

    Science.gov (United States)

    Holguín-Gallego, Fernando José; Chávez-Calvillo, Rodrigo; García-Revilla, Marco; Francisco, Evelio; Pendás, Ángel Martín; Rocha-Rinza, Tomás

    2016-07-15

    The electronic energy partition established by the Interacting Quantum Atoms (IQA) approach is an important method of wavefunction analyses which has yielded valuable insights about different phenomena in physical chemistry. Most of the IQA applications have relied upon approximations, which do not include either dynamical correlation (DC) such as Hartree-Fock (HF) or external DC like CASSCF theory. Recently, DC was included in the IQA method by means of HF/Coupled-Cluster (CC) transition densities (Chávez-Calvillo et al., Comput. Theory Chem. 2015, 1053, 90). Despite the potential utility of this approach, it has a few drawbacks, for example, it is not consistent with the calculation of CC properties different from the total electronic energy. To improve this situation, we have implemented the IQA energy partition based on CC Lagrangian one- and two-electron orbital density matrices. The development presented in this article is tested and illustrated with the H2 , LiH, H2 O, H2 S, N2 , and CO molecules for which the IQA results obtained under the consideration of (i) the CC Lagrangian, (ii) HF/CC transition densities, and (iii) HF are critically analyzed and compared. Additionally, the effect of the DC in the different components of the electronic energy in the formation of the T-shaped (H2 )2 van der Waals cluster and the bimolecular nucleophilic substitution between F(-) and CH3 F is examined. We anticipate that the approach put forward in this article will provide new understandings on subjects in physical chemistry wherein DC plays a crucial role like molecular interactions along with chemical bonding and reactivity. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Interpretation of a correlation between the flux densities of extended hard x-rays and microwave solar bursts

    International Nuclear Information System (INIS)

    Nelson, G.J.; Stewart, R.T.

    1979-01-01

    In a previous paper the authors showed that for extended bursts a good correlation exists between the observed 100 keV X-ray flux density and the 3.75 or 9.4 GHz microwave flux density. They now propose a source model for the extended bursts in which the microwave emission comes from thin shells at increasing heights for decreasing frequencies. This model with reasonable parameter values gives the observed microwave spectral characteristics and also explains why the X-ray and microwave flux densities are so well correlated

  12. Assessing Covalency in Cerium and Uranium Hexachlorides: A Correlated Wavefunction and Density Functional Theory Study

    Directory of Open Access Journals (Sweden)

    Reece Beekmeyer

    2015-11-01

    Full Text Available The electronic structure of a series of uranium and cerium hexachlorides in a variety of oxidation states was evaluated at both the correlated wavefunction and density functional (DFT levels of theory. Following recent experimental observations of covalency in tetravalent cerium hexachlorides, bonding character was studied using topological and integrated analysis based on the quantum theory of atoms in molecules (QTAIM. This analysis revealed that M–Cl covalency was strongly dependent on oxidation state, with greater covalency found in higher oxidation state complexes. Comparison of M–Cl delocalisation indices revealed a discrepancy between correlated wavefunction and DFT-derived values. Decomposition of these delocalisation indices demonstrated that the origin of this discrepancy lay in ungerade contributions associated with the f-manifold which we suggest is due to self-interaction error inherent to DFT-based methods. By all measures used in this study, extremely similar levels of covalency between complexes of U and Ce in the same oxidation state was found.

  13. Approximate self-consistent potentials for density-functional-theory exchange-correlation functionals

    International Nuclear Information System (INIS)

    Cafiero, Mauricio; Gonzalez, Carlos

    2005-01-01

    We show that potentials for exchange-correlation functionals within the Kohn-Sham density-functional-theory framework may be written as potentials for simpler functionals multiplied by a factor close to unity, and in a self-consistent field calculation, these effective potentials find the correct self-consistent solutions. This simple theory is demonstrated with self-consistent exchange-only calculations of the atomization energies of some small molecules using the Perdew-Kurth-Zupan-Blaha (PKZB) meta-generalized-gradient-approximation (meta-GGA) exchange functional. The atomization energies obtained with our method agree with or surpass previous meta-GGA calculations performed in a non-self-consistent manner. The results of this work suggest the utility of this simple theory to approximate exchange-correlation potentials corresponding to energy functionals too complicated to generate closed forms for their potentials. We hope that this method will encourage the development of complex functionals which have correct boundary conditions and are free of self-interaction errors without the worry that the functionals are too complex to differentiate to obtain potentials

  14. Bone Mineral Density in Patients with Ankylosing Spondylitis: Incidence and Correlation with Demographic and Clinical Variables

    Directory of Open Access Journals (Sweden)

    Laura MUNTEAN

    2009-12-01

    Full Text Available Objective: To evaluate bone mineral density (BMD in patients with ankylosing spondylitis (AS and determine its correlation with the demographic and clinical characteristics of AS. Patients and Methods: Demographic, clinical and osteodensitometric data were evaluated in a cross-sectional study that included 136 patients with AS. Spine and hip BMD were measured by means of dual energy X-ray absorptiometry (DXA. Using the modified Schober’s test we assessed spine mobility. We examined the sacroiliac, anteroposterior and lateral dorso-lumbar spine radiographs in order to grade sacroiliitis and assess syndesmophytes. Disease activity was evaluated using C-reactive protein (CRP levels and erythrocyte sedimentation rate (ESR. Demographic data and BMD measurements were compared with those of 167 age- and sex-matched healthy controls. Results: Patients with AS had a significantly lower BMD at the spine, femoral neck, trochanter and total hip as compared to age-matched controls (all p<0.01. According to the WHO classification, osteoporosis was present in 20.6% of the AS patients at the lumbar spine and in 14.6% at the femoral neck. There were no significant differences in BMD when comparing men and women with AS, except for trochanter BMD that was lower in female patients. No correlations were found between disease activity markers (ESR, CRP and BMD. Femoral neck BMD was correlated with disease duration, Schober’s test and sacroiliitis grade. Conclusion: Patients with AS have a lower spine and hip BMD as compared to age- and sex-matched controls. Bone loss at the femoral neck is associated with disease duration and more severe AS.

  15. Spin-density correlations in the dynamic spin-fluctuation theory: Comparison with polarized neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, N.B., E-mail: melnikov@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Reser, B.I., E-mail: reser@imp.uran.ru [Miheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Paradezhenko, G.V., E-mail: gparadezhenko@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2016-08-01

    To study the spin-density correlations in the ferromagnetic metals above the Curie temperature, we relate the spin correlator and neutron scattering cross-section. In the dynamic spin-fluctuation theory, we obtain explicit expressions for the effective and local magnetic moments and spatial spin-density correlator. Our theoretical results are demonstrated by the example of bcc Fe. The effective and local moments are found in good agreement with results of polarized neutron scattering experiment over a wide temperature range. The calculated short-range order is small (up to 4 Å) and slowly decreases with temperature.

  16. Calculation of spin-densities within the context of density functional theory. The crucial role of the correlation functional

    NARCIS (Netherlands)

    Filatov, M; Cremer, D

    2005-01-01

    It is demonstrated that the LYP correlation functional is not suited to be used for the calculation of electron spin resonance hyperfine structure (HFS) constants, nuclear magnetic resonance spin-spin coupling constants, magnetic, shieldings and other properties that require a balanced account of

  17. Correlations between internal and external ocular factors and macular pigment optical density.

    Science.gov (United States)

    Tudosescu, Ruxandra; Alexandrescu, Cristina Mihaela; Istrate, Sânziana Luminiţa; Vrapciu, Alexandra Diana; Ciuluvică, Radu Constantin; Voinea, Liliana

    2018-01-01

    To assess the relationship between the macular pigment optical density and blue-light issued by computers, glare sensibility, with iris color, age, sex, or refractive errors. 83 patients (166 eyes) were enrolled in a prospective observational study. They were divided into 2 groups: group 1 (study group) - computer using patients (time spent in front of the computer for minimum 8 hours per day, 5 days per week, 2 years) - 43 patients and group 2 (control group) - 40 patients. The following investigations were conducted in all the selected cases: visual acuity, refraction, biomicroscopy, measurement of the MPOD, glare sensitivity, assessment of eye color. 51.81% of the patients were included in group 1, while the rest, 48.19%, were in group 2. Thus, the MPOD had a mean value of (+/ -SD) 0.42+/ -0.13 (t = -1.08, p = 0.28) in group 1, and 0.44+/ -0.16 on the LE. The results showed a MPOD mean value of 0.51+/ - 0.16 in group 2 and 0.51+/ -0 .16. (t = 0.49, p = 0 .62) on the LE. 55.77% of the patients with light colored iris and 56.14% of those with dark iris had a low MPOD. The data from our study failed to illustrate a significant correlation between MPOD and blue-light issued by computers. Furthermore, a statistic significant relationship regarding iris color, refractive errors, glare, and MPOD was not observed. L = lutein, Z = zeaxanthin, MZ = meso-zeaxanthin, AMD = age related macular degeneration, MPOD = macular pigment optical density, MP = macular pigment, HFP = Heterochromatic Flicker Photometry, RE = right eye, LE = left eye.

  18. Distribution and correlates of non-high-density lipoprotein cholesterol and triglycerides in Lebanese school children.

    Science.gov (United States)

    Gannagé-Yared, Marie-Hélène; Farah, Vanessa; Chahine, Elise; Balech, Nicole; Ibrahim, Toni; Asmar, Nadia; Barakett-Hamadé, Vanda; Jambart, Selim

    2016-01-01

    The prevalence of dyslipidelmia in pediatric Middle-Eastern populations is unknown. Our study aims to investigate the distribution and correlates of non-high-density lipoprotein cholesterol (non-HDL-C) and triglycerides among Lebanese school children. A total of 969 subjects aged 8-18 years were included in the study (505 boys and 464 girls). Recruitment was done from 10 schools located in the Great Beirut and Mount-Lebanon areas. Non-fasting total cholesterol, triglycerides, and HDL-cholesterol (HDL-C) were measured. Non-HDL-C was calculated. Schools were categorized into 3 socioeconomic statuses (SESs; low, middle, and high). In the overall population, the prevalence of high non-HDL-C (>3.8 mmol/L), very high non-HDL-C (>4.9 mmol/L), and high triglycerides (>1.5 mmol/l) are respectively 9.2%, 1.24%, and 26.6%. There is no significant gender difference for non-HDL-C or triglycerides. Non-HDL-C and triglycerides are inversely correlated with age in girls (P triglycerides are higher in children from lower SES schools. After adjustment for age and body mass index (BMI), testosterone is inversely associated with triglycerides in boys (P triglycerides are independently associated with BMI and schools' SES in both girls and boys. This study confirms, in our population, the association between obesity and both high non-HDL-C and triglycerides, and between high triglycerides and low SES. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  19. VOLUME STUDY WITH HIGH DENSITY OF PARTICLES BASED ON CONTOUR AND CORRELATION IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Tatyana Yu. Nikolaeva

    2014-11-01

    Full Text Available The subject of study is the techniques of particle statistics evaluation, in particular, processing methods of particle images obtained by coherent illumination. This paper considers the problem of recognition and statistical accounting for individual images of small scattering particles in an arbitrary section of the volume in case of high concentrations. For automatic recognition of focused particles images, a special algorithm for statistical analysis based on contouring and thresholding was used. By means of the mathematical formalism of the scalar diffraction theory, coherent images of the particles formed by the optical system with high numerical aperture were simulated. Numerical testing of the method proposed for the cases of different concentrations and distributions of particles in the volume was performed. As a result, distributions of density and mass fraction of the particles were obtained, and the efficiency of the method in case of different concentrations of particles was evaluated. At high concentrations, the effect of coherent superposition of the particles from the adjacent planes strengthens, which makes it difficult to recognize images of particles using the algorithm considered in the paper. In this case, we propose to supplement the method with calculating the cross-correlation function of particle images from adjacent segments of the volume, and evaluating the ratio between the height of the correlation peak and the height of the function pedestal in the case of different distribution characters. The method of statistical accounting of particles considered in this paper is of practical importance in the study of volume with particles of different nature, for example, in problems of biology and oceanography. Effective work in the regime of high concentrations expands the limits of applicability of these methods for practically important cases and helps to optimize determination time of the distribution character and

  20. Effect of the ground state correlations in the density distribution and zero point fluctuations

    International Nuclear Information System (INIS)

    Barranco, F.; Broglia, R.A.

    1985-01-01

    The existence of collective vibrations in the spectrum implies that the description of the ground state in an independent particle model must be corrected. This is because of the zero point fluctuations induced by the collective vibrations, so that ground state correlations have to be included. These are taken into account via the diagrammatic expansion of the Nuclear Field Theory, giving place to a renormalization in the different properties of the ground state. As far as the density distribution is concerned, in a NFT consistent calculation, the largest contributions arise from diagrams that cannot be expressed in terms of backward going amplitudes of the phonon RPA wave function. For a given multipolarity the main correction comes from the low lying state. The giant resonance is of smaller relevance since it lies at larger energies in the response function. The octupole modes give the dominant contribution, and the effect in average becomes smaller as the multipolarity increases. These results agree quite well with those obtained taking into account the zero point fluctuations of the nuclear surface in the collective model with the Esbensen and Bertsch prescription, which the authors use to explain the anomalous behaviour of the mean square radii of the Calcium isotopes

  1. Correlation of bone mineral density with biochemical markers in different menopausal statuses of Pakistani women

    International Nuclear Information System (INIS)

    Maqsood, A.; Nadia, N.; Farzana, A.; Bashir, A.

    2005-01-01

    Aim: The present study is aimed to use bone mineral density (BMD) and various biochemical markers to predict the fracture risk at different menopausal statuses in Pakistani women. Method: Seventy women aged between 28-80 years at various menopausal statuses participated in this study. BMD (T score) of right calcaneus was determined using SAHARA ultrasound bone densitometer that measures the transmission of high frequency from heel. Various biochemical markers such as alkaline phosphates, calcium and inorganic phosphorus were measured from the serum of venous blood using standard kits of Randox. Results: Alkaline phosphates was raised in per menopausal, postmenopausal and postmenopausal with hysterectomy and ligation groups of women as compared to premenopausal women but did not achieve significance (P>0.05). Serum calcium level was significantly lower in postmenopausal women than premenopausal women and inorganic phosphorus decrease significantly when compared with premenopausal and postmenopausal with ligation and hysterectomy. BMD (T score) values of postmenopausal osteopenic and postmenopausal osteoprotic women were significantly lower than those of premenopausal women. BMD values of women under study have negative correlation with age, alkaline phosphates and calcium. Conclusion: Our study conclude that in addition to BMD, serum levels of alkaline phosphate, calcium and inorganic phosphorus can be valuable biochemical markers in predicting bone fracture risk at different menopausal states. (author)

  2. Exact exchange-correlation potential and approximate exchange potential in terms of density matrices

    International Nuclear Information System (INIS)

    Holas, A.; March, N.H.

    1995-01-01

    An exact expression in terms of density matrices (DM) is derived for δF[n]/δn(r), the functional derivative of the Hohenberg-Kohn functional. The derivation starts from the differential form of the virial theorem, obtained here for an electron system with arbitrary interactions, and leads to an expression taking the form of an integral over a path that can be chosen arbitrarily. After applying this approach to the equivalent system of noninteracting electrons (Slater-Kohn-Sham scheme) and combining the corresponding result with the previous one, an exact expression for the exchange-correlation potential v xc (r) is obtained which is analogous in character to that for δF[n]/δn(r), but involving, besides the interacting-system DMs, also the noninteracitng DMs. Equating the former DMs to the latter ones, we reduce the result for the exact v xc (r) to that for an approximate exchange-only potential v x (r). This leads naturally to the Harbola-Sahni exchange-only potential

  3. Density of states and excitonic condensation in the double layer correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Apinyan, V., E-mail: v.apinyan@int.pan.wroc.pl; Kopeć, T.K.

    2016-01-15

    We consider the single-particle density of states (DOS) in the strongly correlated double layer (DL) system, without applied external fields. We demonstrate an unusual collapse effect in the spectrum of the normal single-particle spectral function at the particular high-symmetry point corresponding to the specific bunching-point solution of the chemical potential in the Frenkel channel. We show that at the low-temperature limit the anomalous spectral function obeys a concave like structure, which is directly related to the interlayer pair formation and condensation. We calculate the normal DOS functions, and we find their temperature dependence for different values of the interlayer Coulomb interaction parameter. We show that the normal electron and hole DOS functions demonstrate typical condensates double peak structures on the background of the excitonic pair formation quasiparticle spectra and we have found the evidence of the hybridization gap in the case of high-temperature limit, and small interlayer coupling parameter. Meanwhile, we show a possible crossover from the excitonic condensate regime into the band insulator state. The structure of the normal DOS spectra, in the Frenkel channel and for the strong interlayer coupling regime, is found gapless for all temperature limits, which clearly indicates the strong coherence effects in the DL structure, and the excitonic condensates therein. We have shown that the excitonic pair formation and pair condensation occur simultaneously in the DL system, in contrast with the purely three-dimensional (3D) or two-dimensional cases (2D), discussed previously.

  4. Correlation between bone mineral density and oxidative stress in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Tripti Sharma

    2015-01-01

    Full Text Available Background: Postmenopausal osteoporosis affects large fraction of elderly women. Oxidative stress (OS appears to be involved in its pathogenesis. The scarcity of human studies focusing on the correlation between bone mineral density (BMD and OS in postmenopausal women has prompted us to study on this issue. Materials and Methods: We conducted a cross sectional study in 95 subjects, between 21-65 years of age, including postmenopausal osteoporotic females (n = 35, healthy postmenopausal females (n = 30 and healthy females in reproductive age group (n = 30. We measured serum antioxidant activity of superoxide dismutase (SOD, catalase, glutathione peroxidase (GPx, and total antioxidant power (TAP. BMD was obtained at lumbar spine and femur neck by dual-energy X-ray absorptiometry scan. Osteoporosis was considered when subjects had a BMD of 2.5 standard deviations or more below the mean value for young adults. Results: Serum GPx, SOD, catalase and TAP level were found significantly lower in osteoporotic postmenopausal group as compared to healthy postmenopausal women and women in healthy reproductive age group healthy reproductive women (P 0.005. Conclusion: These findings support that oxidative stress plays an important role in pathogenesis of postmenopausal osteoporosis. We did not find any significant association between BMD and serum level of antioxidants (P > 0.05. The failure to detect this association does not preclude the role of OS in osteoporosis because OS is complex and dynamic process.

  5. Magneto-structural correlations in trinuclear Cu(II) complexes: a density functional study

    CERN Document Server

    Rodríguez-Forteá, A; Alvarez, S; Centre-De Recera-En-Quimica-Teorica; Alemany, P A; Centre-De Recera-En-Quimica-Teorica

    2003-01-01

    Density functional theoretical methods have been used to study magneto-structural correlations for linear trinuclear hydroxo-bridged copper(II) complexes. The nearest-neighbor exchange coupling constant shows very similar trends to those found earlier for dinuclear compounds for which the Cu-O-Cu angle and the out of plane displacement of the hydrogen atoms at the bridge are the two key structural factors that determine the nature of their magnetic behavior. Changes in these two parameters can induce variations of over 1000 cm sup - sup 1 in the value of the nearest-neighbor coupling constant. On the contrary, coupling between next-nearest neighbors is found to be practically independent of structural changes with a value for the coupling constant of about -60 cm sup - sup 1. The magnitude calculated for this coupling constant indicates that considering its value to be negligible, as usually done in experimental studies, can lead to considerable errors, especially for compounds in which the nearest-neighbor c...

  6. Correlation between peak energy and Fourier power density spectrum slope in gamma-ray bursts

    Science.gov (United States)

    Dichiara, S.; Guidorzi, C.; Amati, L.; Frontera, F.; Margutti, R.

    2016-05-01

    Context. The origin of the gamma-ray burst (GRB) prompt emission still defies explanation, in spite of recent progress made, for example, on the occasional presence of a thermal component in the spectrum along with the ubiquitous non-thermal component that is modelled with a Band function. The combination of finite duration and aperiodic modulations make GRBs hard to characterise temporally. Although correlations between GRB luminosity and spectral hardness on one side and time variability on the other side have long been known, the loose and often arbitrary definition of the latter makes the interpretation uncertain. Aims: We characterise the temporal variability in an objective way and search for a connection with rest-frame spectral properties for a number of well-observed GRBs. Methods: We studied the individual power density spectra (PDS) of 123 long GRBs with measured redshift, rest-frame peak energy Ep,I of the time-averaged ν Fν spectrum, and well-constrained PDS slope α detected with Swift, Fermi and past spacecraft. The PDS were modelled with a power law either with or without a break adopting a Bayesian Markov chain Monte Carlo technique. Results: We find a highly significant Ep,I-α anti-correlation. The null hypothesis probability is ~10-9. Conclusions: In the framework of the internal shock synchrotron model, the Ep,I-α anti-correlation can hardly be reconciled with the predicted Ep,I ∝ Γ-2, unless either variable microphysical parameters of the shocks or continual electron acceleration are assumed. Alternatively, in the context of models based on magnetic reconnection, the PDS slope and Ep,I are linked to the ejecta magnetisation at the dissipation site, so that more magnetised outflows would produce more variable GRB light curves at short timescales (≲1 s), shallower PDS, and higher values of Ep,I. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  7. Effective one-body potential of DFT plus correlated kinetic energy density for two-electron spherical model atoms

    International Nuclear Information System (INIS)

    March, N.H.; Ludena, Eduardo V.

    2004-01-01

    For three model problems concerning two-electron spin-compensated ground states with spherical density, the third-order linear homogeneous differential equation constructed for the determination of ρ(r) is used here in conjunction with the von Weizsacker functional to characterize the one-body potential of density functional theory (DFT). Correlated von Weizsacker-type terms are compared to the exact DFT functional

  8. Effects of water salinity on the correlation scale of Root density and Evapotranspiration fluxes

    Science.gov (United States)

    Ajeel, Ali; Saeed, Ali; Dragonetti, Giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Spatial pattern and the correlation of different soil and plant parameters were examined in a green bean field experiment carried out at the Mediterranean Agronomic Institute of Bari, Italy. The experiment aimed to evaluate the role of local processes of salt accumulation and transport which mainly influences the evapotranspiration (and thus the root uptake) processes under different water salinity levels. The experiment consisted of three transects of 30m length and 4.2 m width, irrigated with three different salinity levels (1dSm-1, 3dSm-1, 6dSm-1). Soil measurements (electrical conductivity and soil water content) were monitored along transects in 24 sites, 1 m apart by using TDR probes and Diviner 2000. Water storage measured by TDR and Diviner sensor were coupled for calculating directly the evapotranspiration fluxes along the whole soil profile under the different salinity levels imposed during the experiment. In the same sites, crop monitoring involved measurements of Leaf Area Index (LAI), Osmotic Potential (OP), Leaf Water Potential (LWP), and Root length Density (RlD). Soil and plant properties were analyzed by classical statistics, geostatistics methods and spectral analysis. Results indicated moderate to large spatial variability across the field for soil and plant parameters under all salinity treatments. Furthermore, cross-semivariograms exhibited a strong positive spatial interdependence between electrical conductivity of soil solution ECw with ET and RlD in transect treated with 3dSm-1 as well as with LAI in transect treated with 6dSm-1 at all 24 monitoring sites. Spectral analysis enabled to identify the observation window to sample the soil salinity information responsible for a given plant response (ET, OP, RlD). It is also allowed a clear identification of the spatial scale at which the soil water salinity level and distribution and the crop response in terms of actual evapotranspiration ET, RlD and OP, are actually correlated. Additionally

  9. Density dependence of the fine-differential disturbed gamma-gamma-spatial correlation in gaseous 111InI-sources

    International Nuclear Information System (INIS)

    Schuetter, K.

    1985-01-01

    An instrument for measuring a time-differential disturbed angular correlation was developed. Using this instrument the disturbance of the spatial correlation of the γ-quanta of the 171-245 keV γ-γ-cascade in 111 Cd was examined in dependence of the density of the gaseous 111 InI-systems and the time difference between the emission of the both γ-quanta. (BBOE)

  10. Correlated kinetic energy density functional of ground states of harmonically confined two-electron atoms for arbitrary interparticle interaction

    International Nuclear Information System (INIS)

    Amovilli, C; March, N H

    2012-01-01

    Utilizing the earlier work of Holas et al (2003 Phys. Lett. A 310 451) and the more recent contribution of Akbari et al (2009 Phys. Rev. A 80 032509), we construct an integral equation for the relative motion (RM) contribution t RM (r) to the correlated kinetic energy density for modelling two-electron atoms with harmonic confinement but arbitrary interparticle interaction. It is stressed that t RM = t RM [f(G)], where f(G) is the atomic scattering factor: the Fourier transform of the density ρ(r). As a simple illustrative example of this functional relation for the correlated kinetic energy density, the harmonic Moshinsky case is investigated, the scattering factor then having a Gaussian form. (paper)

  11. Properties of short-range and long-range correlation energy density functionals from electron-electron coalescence

    International Nuclear Information System (INIS)

    Gori-Giorgi, Paola; Savin, Andreas

    2006-01-01

    The combination of density-functional theory with other approaches to the many-electron problem through the separation of the electron-electron interaction into a short-range and a long-range contribution is a promising method, which is raising more and more interest in recent years. In this work some properties of the corresponding correlation energy functionals are derived by studying the electron-electron coalescence condition for a modified (long-range-only) interaction. A general relation for the on-top (zero electron-electron distance) pair density is derived, and its usefulness is discussed with some examples. For the special case of the uniform electron gas, a simple parametrization of the on-top pair density for a long-range only interaction is presented and supported by calculations within the ''extended Overhauser model.'' The results of this work can be used to build self-interaction corrected short-range correlation energy functionals

  12. Density matrix renormalization group with efficient dynamical electron correlation through range separation

    DEFF Research Database (Denmark)

    Hedegård, Erik D.; Knecht, Stefan; Kielberg, Jesper Skau

    2015-01-01

    We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electroncorrelation...... effects in multiconfigurational electronic structure problems....

  13. Parallel-beam correlation technique for measuring density fluctuations in plasmas with strong magnetic shear

    International Nuclear Information System (INIS)

    Jacobson, A.R.

    1981-04-01

    A laser diagnostic scheme is described which facilitates localization of density fluctuations along the line of sight. The method exploits both the generally observed anisotropy of density fluctuations in low-beta plasmas, as well as the twisting of the magnetic field which occurs across the minor diameter of reversed-field pinches, spheromaks, etc. Both interferometric and schlieren variations are discussed

  14. Constraints on rapidity-dependent initial conditions from charged-particle pseudorapidity densities and two-particle correlations

    Science.gov (United States)

    Ke, Weiyao; Moreland, J. Scott; Bernhard, Jonah E.; Bass, Steffen A.

    2017-10-01

    We study the initial three-dimensional spatial configuration of the quark-gluon plasma (QGP) produced in relativistic heavy-ion collisions using centrality and pseudorapidity-dependent measurements of the medium's charged particle density and two-particle correlations. A cumulant-generating function is first used to parametrize the rapidity dependence of local entropy deposition and extend arbitrary boost-invariant initial conditions to nonzero beam rapidities. The model is then compared to p +Pb and Pb + Pb charged-particle pseudorapidity densities and two-particle pseudorapidity correlations and systematically optimized using Bayesian parameter estimation to extract high-probability initial condition parameters. The optimized initial conditions are then compared to a number of experimental observables including the pseudorapidity-dependent anisotropic flows, event-plane decorrelations, and flow correlations. We find that the form of the initial local longitudinal entropy profile is well constrained by these experimental measurements.

  15. Redshift space correlations and scale-dependent stochastic biasing of density peaks

    Science.gov (United States)

    Desjacques, Vincent; Sheth, Ravi K.

    2010-01-01

    We calculate the redshift space correlation function and the power spectrum of density peaks of a Gaussian random field. Our derivation, which is valid on linear scales k≲0.1hMpc-1, is based on the peak biasing relation given by Desjacques [Phys. Rev. DPRVDAQ1550-7998, 78, 103503 (2008)10.1103/PhysRevD.78.103503]. In linear theory, the redshift space power spectrum is Ppks(k,μ)=exp⁡(-f2σvel2k2μ2)[bpk(k)+bvel(k)fμ2]2Pδ(k), where μ is the angle with respect to the line of sight, σvel is the one-dimensional velocity dispersion, f is the growth rate, and bpk(k) and bvel(k) are k-dependent linear spatial and velocity bias factors. For peaks, the value of σvel depends upon the functional form of bvel. When the k dependence is absent from the square brackets and bvel is set to unity, the resulting expression is assumed to describe models where the bias is linear and deterministic, but the velocities are unbiased. The peak model is remarkable because it has unbiased velocities in this same sense—peak motions are driven by dark matter flows—but, in order to achieve this, bvel must be k dependent. We speculate that this is true in general: k dependence of the spatial bias will lead to k dependence of bvel even if the biased tracers flow with the dark matter. Because of the k dependence of the linear bias parameters, standard manipulations applied to the peak model will lead to k-dependent estimates of the growth factor that could erroneously be interpreted as a signature of modified dark energy or gravity. We use the Fisher formalism to show that the constraint on the growth rate f is degraded by a factor of 2 if one allows for a k-dependent velocity bias of the peak type. Our analysis also demonstrates that the Gaussian smoothing term is part and parcel of linear theory. We discuss a simple estimate of nonlinear evolution and illustrate the effect of the peak bias on the redshift space multipoles. For k≲0.1hMpc-1, the peak bias is deterministic but k

  16. Background parenchymal enhancement on breast MRI and mammographic breast density: correlation with tumour characteristics

    International Nuclear Information System (INIS)

    Kim, M.Y.; Choi, N.; Yang, J.-H.; Yoo, Y.B.; Park, K.S.

    2015-01-01

    Aim: To investigate the relationship between mammographic breast density (MGD) and background parenchymal enhancement (BPE) at breast MRI and histopathological features of invasive breast cancers. Materials and methods: A total of 178 women with unilateral invasive breast cancer who preoperatively underwent mammography and breast MRI were included in the study. Two radiologists rated MGD and BPE according to BI-RADS criteria in consensus. The relationship between MGD and BPE was investigated, and compared with histopathological features of invasive breast cancers according to the level of MGD and BPE. Results: At MRI, there is no significant difference in the distribution of MGD and BPE of the contralateral breast in women with invasive breast cancer according to menopausal status (p=0.226, 0.384). Women with high MGD (>50% glandular) were more likely to have oestrogen-receptor (ER)-positive breast cancer (p=0.045) and progesterone receptor (PR)-positive breast cancer (p=0.020). With regard to BPE, PR positivity correlated with moderate or marked BPE with borderline significance (p=0.054). Multivariate logistic regression analyses revealed that women with high MGD were less likely to have triple-negative (i.e., a cancer that is ER negative, PR negative, and human epidermal growth factor receptor type 2 [HER2] negative) breast cancer compared with ER (+)/HER2 (−) cancer (OR=0.231, 95% CI: 0.070, 0.760; p=0.016). No association between the histological tumour characteristics and BPE was observed. Conclusion: In women with invasive breast cancer, high MGD is associated with ER positivity of the invasive breast cancer. However, at MRI, BPE of the contralateral breast seems to be independent of tumour characteristics. -- Highlights: •There is no difference in distribution of MGD and BPE of contralateral breast on MRI. •High MGD is associated with ER positivity of the invasive breast cancer. •BPE of the contralateral breast on MRI is independent of tumor

  17. Solar wind structure suggested by bimodal correlations of solar wind speed and density between the spacecraft SOHO and Wind

    Science.gov (United States)

    Ogilvie, K. W.; Coplan, M. A.; Roberts, D. A.; Ipavich, F.

    2007-08-01

    We calculate the cross-spacecraft maximum lagged-cross-correlation coefficients for 2-hour intervals of solar wind speed and density measurements made by the plasma instruments on the Solar and Heliospheric Observatory (SOHO) and Wind spacecraft over the period from 1996, the minimum of solar cycle 23, through the end of 2005. During this period, SOHO was located at L1, about 200 R E upstream from the Earth, while Wind spent most of the time in the interplanetary medium at distances of more than 100 R E from the Earth. Yearly histograms of the maximum, time-lagged correlation coefficients for both the speed and density are bimodal in shape, suggesting the existence of two distinct solar wind regimes. The larger correlation coefficients we suggest are due to structured solar wind, including discontinuities and shocks, while the smaller are likely due to Alfvénic turbulence. While further work will be required to firmly establish the physical nature of the two populations, the results of the analysis are consistent with a solar wind that consists of turbulence from quiet regions of the Sun interspersed with highly filamentary structures largely convected from regions in the inner solar corona. The bimodal appearance of the distributions is less evident in the solar wind speed than in the density correlations, consistent with the observation that the filamentary structures are convected with nearly constant speed by the time they reach 1 AU. We also find that at solar minimum the fits for the density correlations have smaller high-correlation components than at solar maximum. We interpret this as due to the presence of more relatively uniform Alfvénic regions at solar minimum than at solar maximum.

  18. The correlation between metacarpal bone mineral content and bone mineral density of the jawbone in implant patients

    International Nuclear Information System (INIS)

    Kuroda, Toshinobu; Takamori, Hitoshi; Yosue, Takashi

    2006-01-01

    This study estimated the relationship between metacarpal bone mineral content and jawbone density. The subjects were 141 patients who desired implant treatment and had undergone a thorough pre-operative CT examination. In the maxilla, bone mineral density (BMD) was measured at the cancellous bone between the nasal cavity and the maxillary sinus. In the mandible, BMD was measured at the cancellous bone beneath the mental foramen. The CT numbers were corrected by the quantitative computer tomography (QCT) method. Furthermore, the cortical indices of the mandible, i.e. C-PMI (Central-Panoramic Mandibular Index), and MCW (Mandibular Cortical Width) were measured and calculated from panoramic radiographs. The bone mineral content of the total body was obtained by ΣGS/D and MCI through Microdensitometry. The following results were obtained. Between the maxillary BMD and ΣGS/D and between the mandibular BMD and ΣGS/D, there was a correlation in females but no correlation in males. Between the maxillary BMD and MCI, there was a correlation in females but no correlation in males. However, in the mandibular BMD and MCI there was no correlation in females and males. Between C-PMI and ΣGS/D there was a correlation in both females and males. Between C-PMI and MCI there was a correlation in both females and males. Between MCW and ΣGS/D there was a correlation in both females and males. Between MCW and MCI there was a correlation in females, but no correlation in males. From the above results, it was concluded that the maxillary BMD and the cortical index of the mandible reflected changes in the metacarpal bone mineral content, while mandibular BMD did not. (author)

  19. Correlates of Harlequin Duck densities during winter in Prince William Sound, Alaska

    Science.gov (United States)

    Esler, Daniel N.; Bowman, Timothy D.; Dean, T.A.; O'Clair, Charles E.; Jewett, S.C.; McDonald, L.L.

    2000-01-01

    We evaluated relationships of Harlequin Duck (Histrionicus histrionicus) densities to habitat attributes, history of habitat contamination by the 1989 Exxon Valdez oil spill, and prey biomass density and abundance during winters 1995-1997 in Prince William Sound, Alaska. Habitat features that explained variation in duck densities included distance to streams and reefs, degree of exposure to wind and wave action, and dominant substrate type. After accounting for these effects, densities were lower in oiled than unoiled areas, suggesting that population recovery from the oil spill was not complete, due either to lack of recovery from initial oil spill effects or continuing deleterious effects. Prey biomass density and abundance were not strongly related to duck densities after accounting for habitat and area effects. Traits of Harlequin Ducks that reflect their affiliation with naturally predictable winter habitats, such as strong site fidelity and intolerance of increased energy costs, may make their populations particularly vulnerable to chronic oil spill effects and slow to recover from population reductions, which may explain lower densities than expected on oiled areas nearly a decade following the oil spill.

  20. Correlations between insulin sensitivity and bone mineral density in non-diabetic men

    DEFF Research Database (Denmark)

    Abrahamsen, B.; Rohold, A.; Henriksen, Jan Erik

    2000-01-01

    AIMS: To investigate relationships between bone mineral density (BMD), insulin secretion and insulin sensitivity, controlling for body composition, in view of data suggesting that hyperglycaemia [corrected] leads to decreased osteoblast proliferation and a negative calcium balance and that insulin...

  1. The effect of high column density systems on the measurement of the Lyman-α forest correlation function

    Energy Technology Data Exchange (ETDEWEB)

    Font-Ribera, Andreu [Institut de Ciències de l' Espai (IEEC-CSIC), E. de Ciències, Torre C5, Bellaterra, Catalonia (Spain); Miralda-Escudé, Jordi, E-mail: font@physik.uzh.ch, E-mail: miralda@icc.ub.edu [Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia (Spain)

    2012-07-01

    We present a study of the effect of High Column Density (HCD) systems on the Lyα forest correlation function on large scales. We study the effect both numerically, by inserting HCD systems on mock spectra for a specific model, and analytically, in the context of two-point correlations and linear theory. We show that the presence of HCDs substantially contributes to the noise of the correlation function measurement, and systematically alters the measured redshift-space correlation function of the Lyα forest, increasing the value of the density bias factor and decreasing the redshift distortion parameter β{sub α} of the Lyα forest. We provide simple formulae for corrections on these derived parameters, as a function of the mean effective optical depth and bias factor of the host halos of the HCDs, and discuss the conditions under which these expressions should be valid. In practice, precise corrections to the measured parameters of the Lyα forest correlation for the HCD effects are more complex than the simple analytical approximations we present, owing to non-linear effects of the damped wings of the HCD systems and the presence of three-point terms. However, we conclude that an accurate correction for these HCD effects can be obtained numerically and calibrated with observations of the HCD-Lyα cross-correlation. We also discuss an analogous formalism to treat and correct for the contaminating effect of metal lines overlapping the Lyα forest spectra.

  2. Correlation between radiographic analysis of alveolar bone density around dental implant and resonance frequency of dental implant

    Science.gov (United States)

    Prawoko, S. S.; Nelwan, L. C.; Odang, R. W.; Kusdhany, L. S.

    2017-08-01

    The histomorphometric test is the gold standard for dental implant stability quantification; however, it is invasive, and therefore, it is inapplicable to clinical patients. Consequently, accurate and objective alternative methods are required. Resonance frequency analysis (RFA) and digital radiographic analysis are noninvasive methods with excellent objectivity and reproducibility. To analyze the correlation between the radiographic analysis of alveolar bone density around a dental implant and the resonance frequency of the dental implant. Digital radiographic images for 35 samples were obtained, and the resonance frequency of the dental implant was acquired using Osstell ISQ immediately after dental implant placement and on third-month follow-up. The alveolar bone density around the dental implant was subsequently analyzed using SIDEXIS-XG software. No significant correlation was reported between the alveolar bone density around the dental implant and the resonance frequency of the dental implant (r = -0.102 at baseline, r = 0.146 at follow-up, p > 0.05). However, the alveolar bone density and resonance frequency showed a significant difference throughout the healing period (p = 0.005 and p = 0.000, respectively). Conclusion: Digital dental radiographs and Osstell ISQ showed excellent objectivity and reproducibility in quantifying dental implant stability. Nonetheless, no significant correlation was observed between the results obtained using these two methods.

  3. Time-dependent reduced density matrix functional theory applied to laser-driven, correlated two-electron dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brics, Martins; Kapoor, Varun; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Time-dependent density functional theory (TDDFT) with known and practicable exchange-correlation potentials does not capture highly correlated electron dynamics such as single-photon double ionization, autoionization, or nonsequential ionization. Time-dependent reduced density matrix functional theory (TDRDMFT) may remedy these problems. The key ingredients in TDRDMFT are the natural orbitals (NOs), i.e., the eigenfunctions of the one-body reduced density matrix (1-RDM), and the occupation numbers (OCs), i.e., the respective eigenvalues. The two-body reduced density matrix (2-RDM) is then expanded in NOs, and equations of motion for the NOs can be derived. If the expansion coefficients of the 2-RDM were known exactly, the problem at hand would be solved. In practice, approximations have to be made. We study the prospects of TDRDMFT following a top-down approach. We solve the exact two-electron time-dependent Schroedinger equation for a model Helium atom in intense laser fields in order to study highly correlated phenomena such as the population of autoionizing states or single-photon double ionization. From the exact wave function we calculate the exact NOs, OCs, the exact expansion coefficients of the 2-RDM, and the exact potentials in the equations of motion. In that way we can identify how many NOs and which level of approximations are necessary to capture such phenomena.

  4. Biochemical and functional correlates of an increased membrane density of caveolae in hypertrophic rat urinary bladder.

    OpenAIRE

    Shakirova, Yulia; Swärd, Karl; Uvelius, Bengt; Ekman, Mari

    2010-01-01

    Organ hypertrophy is often found to be associated with changes in the expression of caveolins and altered density of caveolae in the membrane. A plethora of signalling intermediaries are associated with caveolae and loss of caveolae has profound effects on contractility of the urinary bladder. We hypothesized that smooth muscle hypertrophy caused by bladder outflow obstruction (BOO) might lead to an altered caveola density with consequences for contractile regulation. Rat BOO for 6weeks cause...

  5. Density changes in shear bands of a metallic glass determined by correlative analytical transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rösner, Harald, E-mail: rosner@uni-muenster.de [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Peterlechner, Martin [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Kübel, Christian [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen (Germany); Schmidt, Vitalij [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Wilde, Gerhard [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)

    2014-07-01

    Density changes between sheared zones and their surrounding amorphous matrix as a result of plastic deformation in a cold-rolled metallic glass (melt-spun Al{sub 88}Y{sub 7}Fe{sub 5}) were determined using high-angle annular dark-field (HAADF) detector intensities supplemented by electron-energy loss spectroscopy (EELS), energy-dispersive X-ray (EDX) and nano-beam diffraction analyses. Sheared zones or shear bands were observed as regions of bright or dark contrast arising from a higher or lower density relative to the matrix. Moreover, abrupt contrast changes from bright to dark and vice versa were found within individual shear bands. We associate the decrease in density mainly with an enhanced free volume in the shear bands and the increase in density with concomitant changes of the mass. This interpretation is further supported by changes in the zero loss and Plasmon signal originating from such sites. The limits of this new approach are discussed. - Highlights: • We describe a novel approach for measuring densities in shear bands of metallic glasses. • The linear relation of the dark-field intensity I/I{sub 0} and the mass thickness ρt was used. • Individual shear bands showed abrupt contrast changes from bright to dark and vice versa. • Density changes ranging from about −10% to +6% were found for such shear bands. • Mixtures of amorphous/medium range ordered domains were found within the shear bands.

  6. The correlation function for density perturbations in an expanding universe. III The three-point and predictions of the four-point and higher order correlation functions

    Science.gov (United States)

    Mcclelland, J.; Silk, J.

    1978-01-01

    Higher-order correlation functions for the large-scale distribution of galaxies in space are investigated. It is demonstrated that the three-point correlation function observed by Peebles and Groth (1975) is not consistent with a distribution of perturbations that at present are randomly distributed in space. The two-point correlation function is shown to be independent of how the perturbations are distributed spatially, and a model of clustered perturbations is developed which incorporates a nonuniform perturbation distribution and which explains the three-point correlation function. A model with hierarchical perturbations incorporating the same nonuniform distribution is also constructed; it is found that this model also explains the three-point correlation function, but predicts different results for the four-point and higher-order correlation functions than does the model with clustered perturbations. It is suggested that the model of hierarchical perturbations might be explained by the single assumption of having density fluctuations or discrete objects all of the same mass randomly placed at some initial epoch.

  7. Exact correlated kinetic energy related to the electron density for two-electron model atoms with harmonic confinement

    International Nuclear Information System (INIS)

    March, Norman H.; Akbari, Ali; Rubio, Angel

    2007-01-01

    For arbitrary interparticle interaction u(r 12 ), the model two-electron atom in the title is shown to be such that the ground-state electron density ρ(r) is determined uniquely by the correlated kinetic energy density t R (r) of the relative motion. Explicit results for t R (r) are presented for the Hookean atom with force constant k=1/4, and also for u(r 12 )=(λ)/(r 12 2 ) . Possible relevance of the Hookean atom treatment to the ground state of the helium atom itself is briefly discussed

  8. Electronic correlation without double counting via a combination of spin projected Hartree-Fock and density functional theories

    Energy Technology Data Exchange (ETDEWEB)

    Garza, Alejandro J.; Jiménez-Hoyos, Carlos A. [Department of Chemistry, Rice University, Houston, Texas 77251-1892 (United States); Scuseria, Gustavo E. [Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77251-1892, USA and Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2014-06-28

    Several schemes to avoid the double counting of correlations in methods that merge multireference wavefunctions with density functional theory (DFT) are studied and here adapted to a combination of spin-projected Hartree-Fock (SUHF) and DFT. The advantages and limitations of the new method, denoted SUHF+f{sub c}DFT, are explored through calculations on benchmark sets in which the accounting of correlations is challenging for pure SUHF or DFT. It is shown that SUHF+f{sub c}DFT can greatly improve the description of certain molecular properties (e.g., singlet-triplet energy gaps) which are not improved by simple addition of DFT dynamical correlation to SUHF. However, SUHF+f{sub c}DFT is also shown to have difficulties dissociating certain types of bonds and describing highly charged ions with static correlation. Possible improvements to the current SUHF+f{sub c}DFT scheme are discussed in light of these results.

  9. Correlation Between Contrast Time-Density Time on Digital Subtraction Angiography and Flow: An in Vitro Study.

    Science.gov (United States)

    Brunozzi, Denise; Shakur, Sophia F; Ismail, Rahim; Linninger, Andreas; Hsu, Chih-Yang; Charbel, Fady T; Alaraj, Ali

    2018-02-01

    Digital subtraction angiography (DSA) provides an excellent anatomic characterization of cerebral vasculature, but hemodynamic assessment is often qualitative and subjective. Various clinical algorithms have been produced to semiquantify flow from the data obtained from DSA, but few have tested them against reliable flow values. An arched flow model was created and injected with contrast material. Seventeen injections were acquired in anterior-posterior and lateral DSA projections, and 4 injections were acquired in oblique projection. Image intensity change over the angiogram cycle of each DSA run was analyzed through a custom MATLAB code. Time-density plots obtained were divided into 3 components (time-density times, TDTs): TDT 10%-100% (time needed for contrast material to change image intensity from 10% to 100%), TDT 100%-10% (time needed for contrast material to change image intensity from 100% to 10%), and TDT 25%-25% (time needed for contrast material to change from 25% image intensity to 25%). Time-density index (TDI) was defined as model cross-sectional area to TDT ratio, and it was measured against different flow rates. TDI 10%-100% , TDI 100%-10% , and TDI 25%-25% all correlated significantly with flow (P < 0.001). TDI 10%-100% , TDI 100%-10% , and TDI 25%-25% showed, respectively, a correlation coefficient of 0.91, 0.91, and 0.97 in the anterior-posterior DSA projections (P < 0.001). In the lateral DSA projection, TDI 100%-10% showed a weaker correlation (r = 0.57; P = 0.03). Also in the oblique DSA projection, TDIs correlated significantly with flow. TDI on DSA correlates significantly with flow. Although in vitro studies might overlook conditions that occur in patients, this method appears to correlate with the flow and could offer a semiquantitative method to evaluate the cerebral blood flow. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Quantum spin correction scheme based on spin-correlation functional for Kohn-Sham spin density functional theory

    International Nuclear Information System (INIS)

    Yamanaka, Shusuke; Takeda, Ryo; Nakata, Kazuto; Takada, Toshikazu; Shoji, Mitsuo; Kitagawa, Yasutaka; Yamaguchi, Kizashi

    2007-01-01

    We present a simple quantum correction scheme for ab initio Kohn-Sham spin density functional theory (KS-SDFT). This scheme is based on a mapping from ab initio results to a Heisenberg model Hamiltonian. The effective exchange integral is estimated by using energies and spin correlation functionals calculated by ab initio KS-SDFT. The quantum-corrected spin-correlation functional is open to be designed to cover specific quantum spin fluctuations. In this article, we present a simple correction for dinuclear compounds having multiple bonds. The computational results are discussed in relation to multireference (MR) DFT, by which we treat the quantum many-body effects explicitly

  11. Spatial correlations and probability density function of the phase difference in a developed speckle-field: numerical and natural experiments

    International Nuclear Information System (INIS)

    Mysina, N Yu; Maksimova, L A; Ryabukho, V P; Gorbatenko, B B

    2015-01-01

    Investigated are statistical properties of the phase difference of oscillations in speckle-fields at two points in the far-field diffraction region, with different shapes of the scatterer aperture. Statistical and spatial nonuniformity of the probability density function of the field phase difference is established. Numerical experiments show that, for the speckle-fields with an oscillating alternating-sign transverse correlation function, a significant nonuniformity of the probability density function of the phase difference in the correlation region of the field complex amplitude, with the most probable values 0 and p, is observed. A natural statistical interference experiment using Young diagrams has confirmed the results of numerical experiments. (laser applications and other topics in quantum electronics)

  12. Analysis of correlation between initial alveolar bone density and apical root resorption after 12 months of orthodontic treatment without extraction

    Directory of Open Access Journals (Sweden)

    Paula Cabrini Scheibel

    2014-10-01

    Full Text Available OBJECTIVE: The aim of the present study was to investigate the correlation between initial alveolar bone density of upper central incisors (ABD-UI and external apical root resorption (EARR after 12 months of orthodontic movement in cases without extraction. METHODS: A total of 47 orthodontic patients 11 years old or older were submitted to periapical radiography of upper incisors prior to treatment (T1 and after 12 months of treatment (T2. ABD-UI and EARR were measured by means of densitometry. RESULTS: No statistically significant correlation was found between initial ABD-UI and EARR at T2 (r = 0.149; p = 0.157. CONCLUSION: Based on the present findings, alveolar density assessed through periapical radiography is not predictive of root resorption after 12 months of orthodontic treatment in cases without extraction.

  13. Analysis of correlation between initial alveolar bone density and apical root resorption after 12 months of orthodontic treatment without extraction

    Science.gov (United States)

    Scheibel, Paula Cabrini; Ramos, Adilson Luiz; Iwaki, Lilian Cristina Vessoni; Micheletti, Kelly Regina

    2014-01-01

    OBJECTIVE: The aim of the present study was to investigate the correlation between initial alveolar bone density of upper central incisors (ABD-UI) and external apical root resorption (EARR) after 12 months of orthodontic movement in cases without extraction. METHODS: A total of 47 orthodontic patients 11 years old or older were submitted to periapical radiography of upper incisors prior to treatment (T1) and after 12 months of treatment (T2). ABD-UI and EARR were measured by means of densitometry. RESULTS: No statistically significant correlation was found between initial ABD-UI and EARR at T2 (r = 0.149; p = 0.157). CONCLUSION: Based on the present findings, alveolar density assessed through periapical radiography is not predictive of root resorption after 12 months of orthodontic treatment in cases without extraction. PMID:25715722

  14. Experimental and DFT studies on the vibrational spectra of 1H-indene-2-boronic acid

    Science.gov (United States)

    Alver, Özgur; Kaya, Mehmet Fatih

    2014-11-01

    Stable conformers and geometrical molecular structures of 1H-indene-2-boronic acid (I-2B(OH)2) were studied experimentally and theoretically using FT-IR and FT-Raman spectroscopic methods. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1, and 3700-400 cm-1, respectively. The optimized geometric structures were searched by Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-31++G(d,p) basis set. Vibrational wavenumbers of I-2B(OH)2 were calculated using B3LYP density functional methods including 6-31++G(d,p) basis set. Experimental and theoretical results show that density functional B3LYP method gives satisfactory results for predicting vibrational wavenumbers except OH stretching modes which is probably due to increasing unharmonicity in the high wave number region and possible intra and inter molecular interaction at OH edges. To support the assigned vibrational wavenumbers, the potential energy distribution (PED) values were also calculated using VEDA 4 (Vibrational Energy Distribution Analysis) program.

  15. Density variation of parotid glands during IMRT for head–neck cancer: Correlation with treatment and anatomical parameters

    International Nuclear Information System (INIS)

    Fiorino, Claudio; Rizzo, Giovanna; Scalco, Elisa; Broggi, Sara; Belli, Maria Luisa; Dell’Oca, Italo; Dinapoli, Nicola; Ricchetti, Francesco; Rodriguez, Aldo Mejia; Di Muzio, Nadia; Calandrino, Riccardo; Sanguineti, Giuseppe; Valentini, Vincenzo; Cattaneo, Giovanni Mauro

    2012-01-01

    Purpose: Measuring parotid density changes in patients treated with IMRT for head–neck cancer (HNC) and assessing correlation with treatment-related parameters. Patients and materials: Data of 84 patients treated with IMRT for different HNC were pooled from three institutions. Parotid deformation and average Hounsfield number changes (ΔHU) were evaluated through MVCT (with Helical Tomotherapy) or diagnostic kVCT images taken at the treatment start/end. Parotids were delineated in the first image and propagated to the last using a previously validated algorithm based on elastic registration. The correlation between ΔHU and several treatment-related parameters was tested; then, logistic uni- and multi-variate analyses taking “large” ΔHU as end-point were carried out. Due to the better image quality, analyses were repeated considering only kVCT data. Results: ΔHU was negative in 116/168 parotids (69%; for kVCT patients: 72/92, 78%). The average ΔHU was significantly different from zero (−7.3, 0.20–0.25 HU/fraction, p m ean), and with neck thickness variation; these correlations were much stronger for kVCT data. Logistic analyses considering ΔHU m ean < 0.68) and initial neck thickness to be the most predictive variables (p < 0.0005, AUC = 0.683; AUC = 0.776 for kVCT); the odd ratio of large vs moderate/small parotid deformation was 3.8 and 8.0 for the whole and the kVCT population respectively. Conclusions: Parotid density reduced in most patients during IMRT and this phenomenon was highly correlated with parotid deformation. The individual assessment of density changes was highly reliable just with diagnostic KvCT. Density changes should be considered as an additional objective measurement of early parotid radiation-induced modifications; further research is warranted.

  16. Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals.

    Science.gov (United States)

    Furness, James W; Verbeke, Joachim; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M

    2015-09-08

    We present the self-consistent implementation of current-dependent (hybrid) meta-generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn-Sham current density functional theory (KS-CDFT). A unique feature of the nonperturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 au (∼235 kT) in strength. CDFT functionals based on the TPSS and B98 forms are investigated, and their performance is assessed by comparison with accurate coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) data. In the weak field regime, magnetic properties such as magnetizabilities and nuclear magnetic resonance shielding constants show modest but systematic improvements over generalized gradient approximations (GGA). However, in the strong field regime, the mGGA-based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity, these forms are found to be numerically stable, and their accuracy at high field suggests that the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations.

  17. Alternative separation of exchange and correlation energies in range-separated density-functional perturbation theory

    DEFF Research Database (Denmark)

    Cornaton, Y.; Stoyanova, A.; Jensen, Hans Jørgen Aagaard

    2013-01-01

    of the noninteracting Kohn-Sham one. When second-order corrections to the density are neglected, the energy expression reduces to a range-separated double-hybrid (RSDH) type of functional, RSDHf, where "f" stands for "full-range integrals" as the regular full-range interaction appears explicitly in the energy...

  18. The density of GM1-enriched lipid rafts correlates inversely with the efficiency of transfection mediated by cationic liposomes.

    Science.gov (United States)

    Kovács, Tamás; Kárász, Andrea; Szöllosi, János; Nagy, Peter

    2009-08-01

    Although cationic liposome-mediated transfection has become a standard procedure, the mechanistic details of the process are unknown. It has been suggested that endocytic uptake of lipoplexes is efficient, and transfectability is largely determined by later steps. In this article, we stained GM1-enriched membrane microdomains, a subclass of lipid rafts, with subunit B of cholera toxin and correlated transfection efficiency with their density by quantitatively evaluating microscopic images. We found a strong anticorrelation between the density of GM1-enriched membrane microdomains and the efficacy of transfection monitored by measuring the expression level of GFP in different cell lines transfected by lipofection using two different transfection agents. These findings imply that GM1-enriched membrane microdomains interfere with the process of lipofection. The blocked step must be endocytosis since the accumulation of fluorescently labeled plasmids was lower in cells with high content of GM1-enriched membrane microdomains. Such a correlation was not observed in cells transfected by electroporation. By comparing the efficiency of lipofection in several cell lines we found that those with a high density of GM1-enriched membrane microdomains were the most resistant to transfection. We conclude that the inhibition of lipofection by GM1-enriched membrane microdomains is a general rule, and that endocytosis of lipoplexes can be rate limiting in cells with high density of GM1-enriched membrane rafts. Copyright 2009 International Society for Advancement of Cytometry.

  19. Correlation test to assess low-level processing of high-density oligonucleotide microarray data

    Directory of Open Access Journals (Sweden)

    Bergh Jonas

    2005-03-01

    Full Text Available Abstract Background There are currently a number of competing techniques for low-level processing of oligonucleotide array data. The choice of technique has a profound effect on subsequent statistical analyses, but there is no method to assess whether a particular technique is appropriate for a specific data set, without reference to external data. Results We analyzed coregulation between genes in order to detect insufficient normalization between arrays, where coregulation is measured in terms of statistical correlation. In a large collection of genes, a random pair of genes should have on average zero correlation, hence allowing a correlation test. For all data sets that we evaluated, and the three most commonly used low-level processing procedures including MAS5, RMA and MBEI, the housekeeping-gene normalization failed the test. For a real clinical data set, RMA and MBEI showed significant correlation for absent genes. We also found that a second round of normalization on the probe set level improved normalization significantly throughout. Conclusion Previous evaluation of low-level processing in the literature has been limited to artificial spike-in and mixture data sets. In the absence of a known gold-standard, the correlation criterion allows us to assess the appropriateness of low-level processing of a specific data set and the success of normalization for subsets of genes.

  20. Correlation Matrix Renormalization Theory: Improving Accuracy with Two-Electron Density-Matrix Sum Rules.

    Science.gov (United States)

    Liu, C; Liu, J; Yao, Y X; Wu, P; Wang, C Z; Ho, K M

    2016-10-11

    We recently proposed the correlation matrix renormalization (CMR) theory to treat the electronic correlation effects [Phys. Rev. B 2014, 89, 045131 and Sci. Rep. 2015, 5, 13478] in ground state total energy calculations of molecular systems using the Gutzwiller variational wave function (GWF). By adopting a number of approximations, the computational effort of the CMR can be reduced to a level similar to Hartree-Fock calculations. This paper reports our recent progress in minimizing the error originating from some of these approximations. We introduce a novel sum-rule correction to obtain a more accurate description of the intersite electron correlation effects in total energy calculations. Benchmark calculations are performed on a set of molecules to show the reasonable accuracy of the method.

  1. Hydrogen plasmas beyond density-functional theory: dynamic correlations and the onset of localization

    International Nuclear Information System (INIS)

    Perrot, F.; Dharma-Wardana, M.W.C.

    1984-01-01

    The density-functional theory (DFT) equations - previously considered in their application to the study of a system of ions and electrons in thermodynamic equilibrium at arbitrary temperatures and pressure - are reviewed with attention given to extending their validity in obtaining the one-electron excitation spectrum. The DFT model developed here provides structure factors and Kohn-Sham eigenstates which are then used to calculate the self-energy of the one-electron Green function, thus transcending the local-density approximations and the well-known limitations of DFT, especially with regard to the excitation spectrum. The one-particle formalism used makes contact with the multiple-scattering theories of disordered materials, liquid metals, etc., and is a necessary first step to a future calculation of two-particle propagators and related properties. 28 references

  2. Correlation of double-contrast high-density barium enema, colonoscopy, and histology in children with special attention to disparities

    International Nuclear Information System (INIS)

    Stringer, D.A.; Sherman, P.M.; Jakowenko, N.

    1986-01-01

    Colonscopic and double-contrast high-density barium enema (DCBE) findings were correlated in 68 patients (39 boys and 29 girls) aged 6 months to 18 years (mean 11.6 years) evaluated over a 24-month period. There was excellent correlation in 53 patients (78.0%) and good correlation in another 3 (4.4%) who had identical diagnoses and only slightly differing extent of disease reported. In 2 of these, DCBE showed more extensive disease, confirmed histologically in 1. Distal colitis seen on colonoscopy as reddening and neovascularity was missed on DCBE in 6 patients. Colonoscopy and DEBE failed to show a polyp in 1 patient each. One patient who had a normal DCBE and colonoscopy demonstrated a histological abnormality, and 1 patient with an abnormality on histology and DCBE was normal on colonscopy. A disparity resulted from the time between procedures in 1 patient and observer error in another. This high correlation is far better than any previously reported in children, supporting the use of high-density barium sulfate and double-contrast barium enemas in pediatric patients. (orig.)

  3. The correlation between fragility, density, and atomic interaction in glass-forming liquids

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijin; Guan, Pengfei, E-mail: pguan@csrc.ac.cn [Beijing Computational Science Research Center, Beijing 100193 (China); Wang, W. H. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-07-21

    The fragility that controls the temperature-dependent viscous properties of liquids as the glass transition is approached, in various glass-forming liquids with different softness of the repulsive part of atomic interactions at different densities, is investigated by molecular dynamic simulations. We show that the landscape of fragility in purely repulsive systems can be separated into three regions denoted as R{sub I,} R{sub II}, and R{sub III}, respectively, with qualitatively disparate dynamic behaviors: R{sub I} which can be described by “softness makes strong glasses,” R{sub II} where fragility is independent of softness and can only be tuned by density, and R{sub III} with constant fragility, suggesting that density plays an unexpected role for understanding the repulsive softness dependence of fragility. What is more important is that we unify the long-standing inconsistence with respect to the repulsive softness dependence of fragility by observing that a glass former can be tuned more fragile if nonperturbative attraction is added into it. Moreover, we find that the vastly dissimilar influences of attractive interaction on fragility could be estimated from the structural properties of related zero-temperature glasses.

  4. The correlation between fragility, density, and atomic interaction in glass-forming liquids

    International Nuclear Information System (INIS)

    Wang, Lijin; Guan, Pengfei; Wang, W. H.

    2016-01-01

    The fragility that controls the temperature-dependent viscous properties of liquids as the glass transition is approached, in various glass-forming liquids with different softness of the repulsive part of atomic interactions at different densities, is investigated by molecular dynamic simulations. We show that the landscape of fragility in purely repulsive systems can be separated into three regions denoted as R I, R II , and R III , respectively, with qualitatively disparate dynamic behaviors: R I which can be described by “softness makes strong glasses,” R II where fragility is independent of softness and can only be tuned by density, and R III with constant fragility, suggesting that density plays an unexpected role for understanding the repulsive softness dependence of fragility. What is more important is that we unify the long-standing inconsistence with respect to the repulsive softness dependence of fragility by observing that a glass former can be tuned more fragile if nonperturbative attraction is added into it. Moreover, we find that the vastly dissimilar influences of attractive interaction on fragility could be estimated from the structural properties of related zero-temperature glasses.

  5. The correlation between fragility, density, and atomic interaction in glass-forming liquids.

    Science.gov (United States)

    Wang, Lijin; Guan, Pengfei; Wang, W H

    2016-07-21

    The fragility that controls the temperature-dependent viscous properties of liquids as the glass transition is approached, in various glass-forming liquids with different softness of the repulsive part of atomic interactions at different densities, is investigated by molecular dynamic simulations. We show that the landscape of fragility in purely repulsive systems can be separated into three regions denoted as RI, RII, and RIII, respectively, with qualitatively disparate dynamic behaviors: RI which can be described by "softness makes strong glasses," RII where fragility is independent of softness and can only be tuned by density, and RIII with constant fragility, suggesting that density plays an unexpected role for understanding the repulsive softness dependence of fragility. What is more important is that we unify the long-standing inconsistence with respect to the repulsive softness dependence of fragility by observing that a glass former can be tuned more fragile if nonperturbative attraction is added into it. Moreover, we find that the vastly dissimilar influences of attractive interaction on fragility could be estimated from the structural properties of related zero-temperature glasses.

  6. First Principles Thermodynamics of Minerals at HP–HT Conditions: MgO as a Prototypical Material

    Directory of Open Access Journals (Sweden)

    Donato Belmonte

    2017-09-01

    Full Text Available Ab initio thermodynamic properties, equation of state and phase stability of periclase (MgO, B1-type structure have been investigated in a broad P–T range (0–160 GPa; 0–3000 K in order to set a model reference system for phase equilibria simulations under deep Earth conditions. Phonon dispersion calculations performed on large supercells using the finite displacement method and in the framework of quasi-harmonic approximation highlight the performance of the Becke three-parameter Lee-Yang-Parr (B3LYP hybrid density functional in predicting accurate thermodynamic functions (heat capacity, entropy, thermal expansivity, isothermal bulk modulus and phase reaction boundaries at high pressure and temperature. A first principles Mie–Grüneisen equation of state based on lattice vibrations directly provides a physically-consistent description of thermal pressure and P–V–T relations without any need to rely on empirical parameters or other phenomenological formalisms that could give spurious anomalies or uncontrolled extrapolations at HP–HT. The post-spinel phase transformation, Mg2SiO4 (ringwoodite = MgO (periclase + MgSiO3 (bridgmanite, is taken as a computational example to illustrate how first principles theory combined with the use of hybrid functionals is able to provide sound results on the Clapeyron slope, density change and P–T location of equilibrium mineral reactions relevant to mantle dynamics.

  7. Comparative studies on molecular structure, vibrational spectra and hyperpolarizabilies of NLO chromophore Ethyl 4-Dimethylaminobenzoate

    Science.gov (United States)

    Amalanathan, M.; Jasmine, G. Femina; Roy, S. Dawn Dharma

    2017-08-01

    The molecular structure, vibrational spectra and polarizabilities of Ethyl 4-Dimethylaminobenzoate (EDAB) was investigated by density functional theory employing Becke's three parameter hybrid exchange functional with Lee-Yang-Parr (B3LYP) co-relational functional involving 6-311++G(d,p) basis set and compared with some other levels. A detailed interpretation of the IR and Raman spectra of EDBA have been reported and analyzed. Complete vibrational assignments of the vibrational modes have been done on the basis of the potential energy distribution (TED) using VEDA software. The molecular electrostatic potential mapped onto total density surface has been obtained. A study on the electronic properties, such as absorption wavelength, and frontier molecular orbitals energy, was performed using DFT approach. The stability of the molecule arising from hyper conjugative interactions and accompanying charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The natural and Mulliken charge also calculated and compared with different level of calculation. The dipole moment, polarizability and first, second order hyperpolarizabilities of the title molecule were calculated and compared with the experimental values. The energy gap between frontier orbitals has been used along with electric moments and first order hyperpolarizability, to understand the non linear optical (NLO) activity of the molecule. The NLO activity of molecule was confirmed by SHG analysis.

  8. Triphenylamine based organic dyes for dye sensitized solar cells: A theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Mohankumar, V.; Pandian, Muthu Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in [SSN Research Centre, SSN College of Engineering, Chennai-603110, Tamilnadu (India)

    2016-05-23

    The geometry, electronic structure and absorption spectra for newly designed triphenylamine based organic dyes were investigated by density functional theory (DFT) and time dependent density functional theory (TD-DFT) with the Becke 3-Parameter-Lee-Yang-parr(B3LYP) functional, where the 6-31G(d,p) basis set was employed. All calculations were performed using the Gaussian 09 software package. The calculated HOMO and LUMO energies show that charge transfer occurs in the molecule. Ultraviolet–visible (UV–vis) spectrum was simulated by TD-DFT in gas phase. The calculation shows that all of the dyes can potentially be good sensitizers for DSSC. The LUMOs are just above the conduction band of TiO{sub 2} and their HOMOs are under the reduction potential energy of the electrolytes (I{sup −}/I{sub 3}{sup −}) which can facilitate electron transfer from the excited dye to TiO{sub 2} and charge regeneration process after photo oxidation respectively. The simulated absorption spectrum of dyes match with solar spectrum. Frontier molecular orbital results show that among all the three dyes, the “dye 3” can be used as potential sensitizer for DSSC.

  9. Ab initio study of hydrogen adsorption on benzenoid linkers in metal-organic framework materials

    International Nuclear Information System (INIS)

    Gao Yi; Zeng, X C

    2007-01-01

    We have computed the energies of adsorption of molecular hydrogen on a number of molecular linkers in metal-organic framework solid materials using density functional theory (DFT) and ab initio molecular orbital methods. We find that the hybrid B3LYP (Becke three-parameter Lee-Yang-Parr) DFT method gives a qualitatively incorrect prediction of the hydrogen binding with benzenoid molecular linkers. Both local-density approximation (LDA) and generalized gradient approximation (GGA) DFT methods are inaccurate in predicting the values of hydrogen binding energies, but can give a qualitatively correct prediction of the hydrogen binding. When compared to the more accurate binding-energy results based on the ab initio Moeller-Plesset second-order perturbation (MP2) method, the LDA results may be viewed as an upper limit while the GGA results may be viewed as a lower limit. Since the MP2 calculation is impractical for realistic metal-organic framework systems, the combined LDA and GGA calculations provide a cost-effective way to assess the hydrogen binding capability of these systems

  10. MEASUREMENT AND CORRELATION OF THE MASS TRANSFER COEFFICIENT FOR A LIQUID-LIQUID SYSTEM WITH HIGH DENSITY DIFFERENCE

    Directory of Open Access Journals (Sweden)

    Zhixian Huang

    Full Text Available Abstract To investigate the mass transfer behavior of a liquid-liquid system with high density difference (∆ρ≈500 kg/m3, single drop experiments were performed by using the ternary chloroform-ethanol-water system. The mass transfer direction was from the dispersed phase to the continuous phase, while the aqueous phase was dispersed in chloroform to generate drops. The influences of drop diameter, initial solute concentration and temperature on the mass transfer were investigated. The effects of the drop diameter and initial solute concentration on interfacial instability of droplets hanging in the continuous phase were also observed. For the purpose of correlation, a mass transfer enhancement factor F was introduced and then correlated as a function of dimensionless variables. The modified correlation from the mass transfer coefficient model was found to fit well with the experimental values.

  11. Housefly population density correlates with shigellosis among children in Mirzapur, Bangladesh: a time series analysis.

    Directory of Open Access Journals (Sweden)

    Tamer H Farag

    Full Text Available BACKGROUND: Shigella infections are a public health problem in developing and transitional countries because of high transmissibility, severity of clinical disease, widespread antibiotic resistance and lack of a licensed vaccine. Whereas Shigellae are known to be transmitted primarily by direct fecal-oral contact and less commonly by contaminated food and water, the role of the housefly Musca domestica as a mechanical vector of transmission is less appreciated. We sought to assess the contribution of houseflies to Shigella-associated moderate-to-severe diarrhea (MSD among children less than five years old in Mirzapur, Bangladesh, a site where shigellosis is hyperendemic, and to model the potential impact of a housefly control intervention. METHODS: Stool samples from 843 children presenting to Kumudini Hospital during 2009-2010 with new episodes of MSD (diarrhea accompanied by dehydration, dysentery or hospitalization were analyzed. Housefly density was measured twice weekly in six randomly selected sentinel households. Poisson time series regression was performed and autoregression-adjusted attributable fractions (AFs were calculated using the Bruzzi method, with standard errors via jackknife procedure. FINDINGS: Dramatic springtime peaks in housefly density in 2009 and 2010 were followed one to two months later by peaks of Shigella-associated MSD among toddlers and pre-school children. Poisson time series regression showed that housefly density was associated with Shigella cases at three lags (six weeks (Incidence Rate Ratio = 1.39 [95% CI: 1.23 to 1.58] for each log increase in fly count, an association that was not confounded by ambient air temperature. Autocorrelation-adjusted AF calculations showed that a housefly control intervention could have prevented approximately 37% of the Shigella cases over the study period. INTERPRETATION: Houseflies may play an important role in the seasonal transmission of Shigella in some developing

  12. Evidence that platelet buoyant density, but not size, correlates with platelet age in man

    International Nuclear Information System (INIS)

    Mezzano, D.; Hwang, K.; Catalano, P.; Aster, R.H.

    1981-01-01

    Following infusion of 51Cr-labeled autologous platelets into normal subjects, high-density (HD) and low-density (LD) platelet cohorts were isolated by prolonged centrifugation in isosmotic arabino-galactan (Stractan). Specific radio-activity of LD platelets declined rapidly post-infusion (T1/2 . 1.5 days), but specific radioactivity of HD platelets remained constant or increased over a 3--4-day period and gradually declined for 6--7 days thereafter. These differences were exaggerated when platelet cohorts enriched in LD or HD cells by slow centrifugation in high-density albumin were labeled and transfused. Mean survival of a platelet cohort enriched with HD cells was significantly (P less than 0.02) shorter (7.73 days) than that of a cohort enriched with LD cells (9.33) days). In normal subjects treated with aspirin, capacity for thromboxane synthesis was regained more rapidly (P less than 0.05) in LD than in HD platelets. HD and LD platelets differed only slightly in mean volume (HD platelets . 7.57 mu3, LD platelets . 6.87 mu3, 0.05 less than P less than 0.01). We believe the most logical interpretation of these findings is that under normal conditions in man, newly formed platelets are less dense on the average than total platelets and become more dense as they age in the circulation. Thus, specific radioactivity of LD platelets declines rapidly as these platelets move into a more dense compartment and are replaced by newly formed, unlabelled cells; specific radioactivity of HD platelets remains constant or increases as labelled platelets enter this compartment in numbers equal to or greater than the number leaving it at the end of their life span. The similarity in mean volumes of LD and HD platelets suggests that platelet size is unrelated to platelet age under normal conditions

  13. Nutritional Correlates of Koala Persistence in a Low-Density Population

    Science.gov (United States)

    Stalenberg, Eleanor; Wallis, Ian R.; Cunningham, Ross B.; Allen, Chris; Foley, William J.

    2014-01-01

    It is widely postulated that nutritional factors drive bottom-up, resource-based patterns in herbivore ecology and distribution. There is, however, much controversy over the roles of different plant constituents and how these influence individual herbivores and herbivore populations. The density of koala (Phascolarctos cinereus) populations varies widely and many attribute population trends to variation in the nutritional quality of the eucalypt leaves of their diet, but there is little evidence to support this hypothesis. We used a nested design that involved sampling of trees at two spatial scales to investigate how leaf chemistry influences free-living koalas from a low-density population in south east New South Wales, Australia. Using koala faecal pellets as a proxy for koala visitation to trees, we found an interaction between toxins and nutrients in leaves at a small spatial scale, whereby koalas preferred trees with leaves of higher concentrations of available nitrogen but lower concentrations of sideroxylonals (secondary metabolites found exclusively in eucalypts) compared to neighbouring trees of the same species. We argue that taxonomic and phenotypic diversity is likely to be important when foraging in habitats of low nutritional quality in providing diet choice to tradeoff nutrients and toxins and minimise movement costs. Our findings suggest that immediate nutritional concerns are an important priority of folivores in low-quality habitats and imply that nutritional limitations play an important role in constraining folivore populations. We show that, with a careful experimental design, it is possible to make inferences about populations of herbivores that exist at extremely low densities and thus achieve a better understanding about how plant composition influences herbivore ecology and persistence. PMID:25470599

  14. Nutritional correlates of koala persistence in a low-density population.

    Directory of Open Access Journals (Sweden)

    Eleanor Stalenberg

    Full Text Available It is widely postulated that nutritional factors drive bottom-up, resource-based patterns in herbivore ecology and distribution. There is, however, much controversy over the roles of different plant constituents and how these influence individual herbivores and herbivore populations. The density of koala (Phascolarctos cinereus populations varies widely and many attribute population trends to variation in the nutritional quality of the eucalypt leaves of their diet, but there is little evidence to support this hypothesis. We used a nested design that involved sampling of trees at two spatial scales to investigate how leaf chemistry influences free-living koalas from a low-density population in south east New South Wales, Australia. Using koala faecal pellets as a proxy for koala visitation to trees, we found an interaction between toxins and nutrients in leaves at a small spatial scale, whereby koalas preferred trees with leaves of higher concentrations of available nitrogen but lower concentrations of sideroxylonals (secondary metabolites found exclusively in eucalypts compared to neighbouring trees of the same species. We argue that taxonomic and phenotypic diversity is likely to be important when foraging in habitats of low nutritional quality in providing diet choice to tradeoff nutrients and toxins and minimise movement costs. Our findings suggest that immediate nutritional concerns are an important priority of folivores in low-quality habitats and imply that nutritional limitations play an important role in constraining folivore populations. We show that, with a careful experimental design, it is possible to make inferences about populations of herbivores that exist at extremely low densities and thus achieve a better understanding about how plant composition influences herbivore ecology and persistence.

  15. Mechanical torque measurement in the proximal femur correlates to failure load and bone mineral density ex vivo

    Directory of Open Access Journals (Sweden)

    Stefan Grote

    2013-06-01

    Full Text Available Knowledge of local bone quality is essential for surgeons to determine operation techniques. A device for intraoperative measurement of local bone quality has been developed by the AO-Research Foundation (DensiProbe®. We used this device to experimentally measure peak breakaway torque of trabecular bone in the proximal femur and correlated this with local bone mineral density (BMD and failure load. Bone mineral density of 160 cadaver femurs was measured by ex situ dual-energy X-ray absorptiometry. The failure load of all femurs was analyzed by side-impact analysis. Femur fractures were fixed and mechanical peak torque was measured with the DensiProbe® device. Correlation was calculated whereas correlation coefficient and significance was calculated by Fisher’s Z-transformation. Moreover, linear regression analysis was carried out. The unpaired Student’s t-test was used to assess the significance of differences. The Ward triangle region had the lowest BMD with 0.511 g/cm2 (±0.17 g/cm2, followed by the upper neck region with 0.546 g/cm2 (±0.16 g/cm2, trochanteric region with 0.685 g/cm2 (±0.19 g/cm2 and the femoral neck with 0.813 g/cm2 (±0.2 g/cm2. Peak torque of DensiProbe® in the femoral head was 3.48 Nm (±2.34 Nm. Load to failure was 4050.2 N (±1586.7 N. The highest correlation of peak torque measured by Densi Probe® and load to failure was found in the femoral neck (r=0.64, P<0.001. The overall correlation of mechanical peak torque with T-score was r=0.60 (P<0.001. A correlation was found between mechanical peak torque, load to failure of bone and BMD in vitro. Trabecular strength of bone and bone mineral density are different aspects of bone strength, but a correlation was found between them. Mechanical peak torque as measured may contribute additional information about bone strength, especially in the perioperative testing.

  16. Correlations between cyanobacterial density and bacterial transformation to the viable but nonculturable (VBNC) state in four freshwater water bodies.

    Science.gov (United States)

    Chen, Huirong; Shen, Ju; Pan, Gaoshan; Liu, Jing; Li, Jiancheng; Hu, Zhangli

    2015-10-01

    Nutrient concentrations, phytoplankton density and community composition, and the viable but nonculturable (VBNC) state of heterotrophic bacteria were investigated in three connected reservoirs and a small isolated lake in South China to study the relationship between biotic and abiotic factors and the VBNC state in bacteria. Nutrient concentrations in the reservoirs increased in the direction of water flow, whereas Wenshan Lake was more eutrophic. Cyanobacterial blooms occurred in all four water bodies, with differing seasonal trends and dominant species. In Xili and Tiegang Reservoirs, the VBNC ratio (percent of VBNC state bacteria over total viable bacteria) was high for most of the year and negatively correlated with cyanobacterial density. Laboratory co-culture experiments were performed with four heterotrophic bacterial species isolated from Wenshan Lake (Escherichia coli, Klebsiella peneumoniae, Bacillus megaterium and Bacillus cereus) and the dominant cyanobacterial species (Microcystis aeruginosa). For the first three bacterial species, the presence of M. aeruginosa induced the VBNC state and the VBNC ratio was positively correlated with M. aeruginosa density. However, B. cereus inhibited M. aeruginosa growth. These results demonstrate that cyanobacteria could potentially regulate the transformation to the VBNC state of waterborne bacteria, and suggest a role for bacteria in cyanobacterial bloom initiation and termination.

  17. Biochemical and functional correlates of an increased membrane density of caveolae in hypertrophic rat urinary bladder.

    Science.gov (United States)

    Shakirova, Yulia; Swärd, Karl; Uvelius, Bengt; Ekman, Mari

    2010-12-15

    Organ hypertrophy is often found to be associated with changes in the expression of caveolins and altered density of caveolae in the membrane. A plethora of signalling intermediaries are associated with caveolae and loss of caveolae has profound effects on contractility of the urinary bladder. We hypothesized that smooth muscle hypertrophy caused by bladder outflow obstruction (BOO) might lead to an altered caveola density with consequences for contractile regulation. Rat BOO for 6 weeks caused a 2.56-fold increase in the number of smooth muscle caveolae per μm membrane. No changes in the expression of caveolin-1 or cavin-1, normalized to β-actin were seen, but membrane area per unit muscle volume dropped to 0.346. Hypertrophy was associated with altered contraction in response to carbachol. The effect on contraction of cholesterol desorption, which disrupts lipid rafts and caveolae, was however not changed. Contraction in response to bradykinin resisted mβcd in control destrusor, but was inhibited by it after 6 weeks of obstruction. It is concluded that rat detrusor hypertrophy leads to an increased number of caveolae per unit membrane area. This change is due to a reduction of membrane area per volume muscle and it does not play a role for cholinergic activation, but promotes contraction in response to bradykinin after long-term obstruction. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Intrinsic alignment of redMaPPer clusters: cluster shape-matter density correlation

    Science.gov (United States)

    van Uitert, Edo; Joachimi, Benjamin

    2017-07-01

    We measure the alignment of the shapes of galaxy clusters, as traced by their satellite distributions, with the matter density field using the public redMaPPer catalogue based on Sloan Digital Sky Survey-Data Release 8 (SDSS-DR8), which contains 26 111 clusters up to z ˜ 0.6. The clusters are split into nine redshift and richness samples; in each of them, we detect a positive alignment, showing that clusters point towards density peaks. We interpret the measurements within the tidal alignment paradigm, allowing for a richness and redshift dependence. The intrinsic alignment (IA) amplitude at the pivot redshift z = 0.3 and pivot richness λ = 30 is A_IA^gen=12.6_{-1.2}^{+1.5}. We obtain tentative evidence that the signal increases towards higher richness and lower redshift. Our measurements agree well with results of maxBCG clusters and with dark-matter-only simulations. Comparing our results to the IA measurements of luminous red galaxies, we find that the IA amplitude of galaxy clusters forms a smooth extension towards higher mass. This suggests that these systems share a common alignment mechanism, which can be exploited to improve our physical understanding of IA.

  19. Performance of exchange-correlation functionals in density functional theory calculations for liquid metal: A benchmark test for sodium

    Science.gov (United States)

    Han, Jeong-Hwan; Oda, Takuji

    2018-04-01

    The performance of exchange-correlation functionals in density-functional theory (DFT) calculations for liquid metal has not been sufficiently examined. In the present study, benchmark tests of Perdew-Burke-Ernzerhof (PBE), Armiento-Mattsson 2005 (AM05), PBE re-parameterized for solids, and local density approximation (LDA) functionals are conducted for liquid sodium. The pair correlation function, equilibrium atomic volume, bulk modulus, and relative enthalpy are evaluated at 600 K and 1000 K. Compared with the available experimental data, the errors range from -11.2% to 0.0% for the atomic volume, from -5.2% to 22.0% for the bulk modulus, and from -3.5% to 2.5% for the relative enthalpy depending on the DFT functional. The generalized gradient approximation functionals are superior to the LDA functional, and the PBE and AM05 functionals exhibit the best performance. In addition, we assess whether the error tendency in liquid simulations is comparable to that in solid simulations, which would suggest that the atomic volume and relative enthalpy performances are comparable between solid and liquid states but that the bulk modulus performance is not. These benchmark test results indicate that the results of liquid simulations are significantly dependent on the exchange-correlation functional and that the DFT functional performance in solid simulations can be used to roughly estimate the performance in liquid simulations.

  20. 3-Iodobenzaldehyde: XRD, FT-IR, Raman and DFT studies.

    Science.gov (United States)

    Kumar, Chandraju Sadolalu Chidan; Parlak, Cemal; Tursun, Mahir; Fun, Hoong-Kun; Rhyman, Lydia; Ramasami, Ponnadurai; Alswaidan, Ibrahim A; Keşan, Gürkan; Chandraju, Siddegowda; Quah, Ching Kheng

    2015-06-15

    The structure of 3-iodobenzaldehyde (3IB) was characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of 3IB were examined using density functional theory (DFT) method, with the Becke-3-Lee-Yang-Parr (B3LYP) functional and the 6-311+G(3df,p) basis set for all atoms except for iodine. The LANL2DZ effective core basis set was used for iodine. Potential energy distribution (PED) analysis of normal modes was performed to identify characteristic frequencies. 3IB crystallizes in monoclinic space group P21/c with the O-trans form. There is a good agreement between the theoretically predicted structural parameters, and vibrational frequencies and those obtained experimentally. In order to understand halogen effect, 3-halogenobenzaldehyde [XC6H4CHO; X=F, Cl and Br] was also studied theoretically. The free energy difference between the isomers is small but the rotational barrier is about 8kcal/mol. An atypical behavior of fluorine affecting conformational preference is observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Synthesis, molecular structure, FT-IR and XRD investigations of 2-(4-chlorophenyl)-2-oxoethyl 2-chlorobenzoate: a comparative DFT study.

    Science.gov (United States)

    Chidan Kumar, C S; Fun, Hoong Kun; Tursun, Mahir; Ooi, Chin Wei; Chandraju, Siddegowda; Quah, Ching Kheng; Parlak, Cemal

    2014-04-24

    2-(4-Chlorophenyl)-2-oxoethyl 2-chlorobenzoate has been synthesized, its structural and vibrational properties have been reported using FT-IR and single-crystal X-ray diffraction (XRD) studies. The conformational analysis, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of the synthesized compound (C15H10Cl2O3) have been examined by means of Becke-3-Lee-Yang-Parr (B3LYP) density functional theory (DFT) method together with 6-31++G(d,p) basis set. Furthermore, reliable conformational investigation and vibrational assignments have been made by the potential energy surface (PES) and potential energy distribution (PED) analyses, respectively. Calculations are performed with two possible conformations. The title compound crystallizes in orthorhombic space group Pbca with the unit cell dimensions a=12.312(5) Å, b=8.103(3) Å, c=27.565(11) Å, V=2750.0(19) Å(3). B3LYP method provides satisfactory evidence for the prediction of vibrational wavenumbers and structural parameters. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Synthesis, molecular structure, FT-IR, Raman, XRD and theoretical investigations of (2E)-1-(5-chlorothiophen-2-yl)-3-(naphthalen-2-yl)prop-2-en-1-one.

    Science.gov (United States)

    Chidan Kumar, Chandraju Sadolalu; Fun, Hoong Kun; Parlak, Cemal; Rhyman, Lydia; Ramasami, Ponnadurai; Tursun, Mahir; Chandraju, Siddegowda; Quah, Ching Kheng

    2014-11-11

    A novel (2E)-1-(5-chlorothiophen-2-yl)-3-(naphthalen-2-yl)prop-2-en-1-one [C17H11ClOS] compound has been synthesized and its structure has been characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The isomers, optimized geometrical parameters, normal mode frequencies and corresponding vibrational assignments of the compound have been examined by means of the density functional theory method, employing, the Becke-3-Lee-Yang-Parr functional and the 6-311+G(3df,p) basis set. Reliable vibrational assignments and molecular orbitals have been investigated by the potential energy distribution and natural bonding orbital analyses, respectively. The compound crystallizes in the monoclinic space group P2₁/c with the unit cell parameters a=5.7827(8)Å, b=14.590(2)Å, c=16.138(2)Å and β=89.987 (°). The CC bond of the central enone group adopts an E configuration. There is a good agreement between the theoretically predicted structural parameters and vibrational frequencies and those obtained experimentally. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Histamine H3 receptor density is negatively correlated with neural activity related to working memory in humans.

    Science.gov (United States)

    Ito, Takehito; Kimura, Yasuyuki; Seki, Chie; Ichise, Masanori; Yokokawa, Keita; Kawamura, Kazunori; Takahashi, Hidehiko; Higuchi, Makoto; Zhang, Ming-Rong; Suhara, Tetsuya; Yamada, Makiko

    2018-06-14

    The histamine H 3 receptor is regarded as a drug target for cognitive impairments in psychiatric disorders. H 3 receptors are expressed in neocortical areas, including the prefrontal cortex, the key region of cognitive functions such as working memory. However, the role of prefrontal H 3 receptors in working memory has not yet been clarified. Therefore, using functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) techniques, we aimed to investigate the association between the neural activity of working memory and the density of H 3 receptors in the prefrontal cortex. Ten healthy volunteers underwent both fMRI and PET scans. The N-back task was used to assess the neural activities related to working memory. H 3 receptor density was measured with the selective PET radioligand [ 11 C] TASP457. The neural activity of the right dorsolateral prefrontal cortex during the performance of the N-back task was negatively correlated with the density of H 3 receptors in this region. Higher neural activity of working memory was associated with lower H 3 receptor density in the right dorsolateral prefrontal cortex. This finding elucidates the role of H 3 receptors in working memory and indicates the potential of H 3 receptors as a therapeutic target for the cognitive impairments associated with neuropsychiatric disorders.

  4. Correlations of current parameters with flash density from winter thunderstorms in Japan

    DEFF Research Database (Denmark)

    Vogel, Stephan; Ishii, M.; Saito, M.

    2017-01-01

    In this work, Lightning Location System (LLS) data from theJapanese Lightning Detection Network (JLDN) are correlated with lightning current measurements from the New Energy and Industrial Technology Development Organization (NEDO) project which conducted lightning measurements on wind turbines...... during 2008-2013. The terminology of active and inactive winter thunderstorms from Fujii et al. (2013) [1] will be used as a reference to classify the discharge characteristics of the particular storm type. The results indicate that winter thunderstorms with a higher lightning activity are also...

  5. Synthesis, Spectroscopy, Theoretical, and Electrochemical Studies of Zn(II, Cd(II, and Hg(II Azide and Thiocyanate Complexes of a New Symmetric Schiff-Base Ligand

    Directory of Open Access Journals (Sweden)

    Morteza Montazerozohori

    2013-01-01

    Full Text Available Synthesis of zinc(II/cadmium(II/mercury(II thiocyanate and azide complexes of a new bidentate Schiff-base ligand (L with general formula of MLX2 (M = Zn(II, Cd(II, and Hg(II in ethanol solution at room temperature is reported. The ligand and metal complexes were characterized by using ultraviolet-visible (UV-visible, Fourier transform infrared (FT-IR, 1H- and 13C-NMR spectroscopy and physical characterization, CHN analysis, and molar conductivity. 1H- and 13C-NMR spectra have been studied in DMSO-d6. The reasonable shifts of FT-IR and NMR spectral signals of the complexes with respect to the free ligand confirm well coordination of Schiff-base ligand and anions in an inner sphere coordination space. The conductivity measurements as well as spectral data indicated that the complexes are nonelectrolyte. Theoretical optimization on the structure of ligand and its complexes was performed at the Becke’s three-parameter hybrid functional (B3 with the nonlocal correlation of Lee-Yang-Parr (LYP level of theory with double-zeta valence (LANL2DZ basis set using GAUSSIAN 03 suite of program, and then some theoretical structural parameters such as bond lengths, bond angles, and torsion angles were obtained. Finally, electrochemical behavior of ligand and its complexes was investigated. Cyclic voltammograms of metal complexes showed considerable changes with respect to free ligand.

  6. Correlation between Microvascular Density and Matrix Metalloproteinase 11 Expression in Prostate Cancer Tissues: a Preliminary Study in Thailand.

    Science.gov (United States)

    Kanharat, Nongnuch; Tuamsuk, Panya

    2015-01-01

    Prostate cancer is a major concern of public health. Microvascular density (MVD) is one of the prognostic markers for various solid cancers. Matrix metalloproteinase 11 (MMP11) plays an important role in angiogenesis and changes in its expression level are known to be associated with tumor progression and clinical outcome. To investigate the relationship between MVD and MMP11 expression in prostatic adenocarcinoma tissues. The expression levels of MMP11 and MVD were analyzed immunohistochemically for 50 specimens of prostatic adenocarcinoma. MMP11 was mainly expressed in stromal cells but rarely seen in epithelial cells. Mean MVD was 36/mm2, and it was correlated significantly only with bone metastases. MVD was also significantly correlated with MMP11 expression (r=0.29, p=0.044). MMP11 may alter the stromal microenvironment of prostate cancer to stimulate tumor angiogenesis.

  7. Structure and representation of correlation functions and the density matrix for a statistical wave field in optics

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Mukunda, N.

    1978-03-01

    A systematic structure analysis of the correlation functions of statistical quantum optics is carried out. From a suitably defined auxiliary two-point function identification of the excited modes in the wave field is found. The relative simplicity of the higher order correlation functions emerges as a by-product and the conditions under which these are made pure are derived. These results depend in a crucial manner on the notion of coherence indices aand of unimodular coherence indices. A new class of approximate expressions for the density operator of a statistical wave field is worked out based on discrete characteristic sets. These are even more economical than the diagonal coherent state representations. An appreciation of the subtleties of quantum theory obtains. Certain implications for the physics of light beams are cited. 28 references

  8. Development of an exchange–correlation functional with uncertainty quantification capabilities for density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Aldegunde, Manuel, E-mail: M.A.Aldegunde-Rodriguez@warwick.ac.uk; Kermode, James R., E-mail: J.R.Kermode@warwick.ac.uk; Zabaras, Nicholas

    2016-04-15

    This paper presents the development of a new exchange–correlation functional from the point of view of machine learning. Using atomization energies of solids and small molecules, we train a linear model for the exchange enhancement factor using a Bayesian approach which allows for the quantification of uncertainties in the predictions. A relevance vector machine is used to automatically select the most relevant terms of the model. We then test this model on atomization energies and also on bulk properties. The average model provides a mean absolute error of only 0.116 eV for the test points of the G2/97 set but a larger 0.314 eV for the test solids. In terms of bulk properties, the prediction for transition metals and monovalent semiconductors has a very low test error. However, as expected, predictions for types of materials not represented in the training set such as ionic solids show much larger errors.

  9. Thermal properties of UO2 from density functional theory: role of strong correlations

    International Nuclear Information System (INIS)

    Panigrahi, Puspamitra; Kaur Gurpreet; Valsakumar, M.C.

    2011-01-01

    We report a study of ground state magnetic structure of Uranium-dioxide (UO 2 ) using ab initio calculations employing PAW pseudopotentials and Dudarev's version of GGA+U formalism as implemented in VASP to take into account the strong on-site Coulomb correlation among the localized Uranium-5f electrons. By choosing the value of the Hubbard parameter U eff to be 4.0 eV, we have confirmed the experimental observation that the ground state of UO 2 is an insulator with an anti-ferromagnetic (AFM) ordering. We study systematically the ground state structural, electronic, and magnetic properties of UO 2 and focus on the structure sensitive thermal properties such as specific heat, thermal expansion and comment on the calculation of thermal conductivity. (author)

  10. Circulating Zonulin Correlates with Density of Enteroviruses and Tolerogenic Dendritic Cells in the Small Bowel Mucosa of Celiac Disease Patients.

    Science.gov (United States)

    Vorobjova, Tamara; Raikkerus, Helerin; Kadaja, Lumme; Talja, Ija; Uibo, Oivi; Heilman, Kaire; Uibo, Raivo

    2017-02-01

    Impaired intestinal integrity, including increased permeability of the small bowel mucosa, has been shown in patients with celiac disease (CD) as well as with type 1 diabetes (T1D). Zonulin (ZO, pre-haptoglobin), a tight junction regulator, plays a particular role in the regulation of intestinal barrier function and in the pathogenesis of the above-mentioned diseases. To investigate whether enteroviruses (EVs) and immunoregulatory cells are associated with intestinal permeability in patients with CD alone and with coexistent T1D. Altogether 80 patients (mean age 10.68 ± 6.69 years) who had undergone small bowel biopsy were studied. Forty patients with functional dyspepsia and normal small bowel mucosa formed the control group. The circulating ZO level in sera was evaluated using ELISA. The densities of EV, FOXP3+ regulatory T cells (Tregs), indoleamine 2,3-dioxygenase (IDO+) dendritic cells (DCs) and glutamic acid dexarboxylase (GAD)65+ cells in small bowel mucosa were investigated by immunohistochemistry. The expression analysis of FOXP3, tight junction protein 1 (TJP1), gap junction (GJA1), IDO and CD103 genes was evaluated by real-time PCR. The ZO level was higher in CD patients compared to subjects with a normal small bowel mucosa, particularly in those with Marsh IIIc atrophy (p = 0.01), and correlated with the density of EV (r = 0.63; p = 0.0003) and IDO+ DCs (r = 0.58; p = 0.01) in the small bowel mucosa. The density of GAD65+ epithelial cells was correlated with the density of EV (r = 0.59; p = 0.03) and IDO+ DCs (r = 0.78; p = 0.004) in CD patients. The relative expression of FOXP3 mRNA in the small bowel mucosa tissue was significantly higher in patients with CD, compared to subjects with a normal mucosa, and correlated with the density of EV (r = 0.62; p = 0.017) as well as with the relative expression of IDO mRNA (r = 0.54; p = 0.019). The CD is associated with elevation of the circulating ZO level, the value of which

  11. Correlation for downward melt penetration into a miscible low-density substrate

    International Nuclear Information System (INIS)

    Fang, L.J.; Cheung, F.B.; Pedersen, D.R.; Linehan, J.H.

    1984-01-01

    Downward penetration of a sacrificial bed material or a concrete basemat structure by an overlying layer of core melt resulting from a hypothetical core disruptive accident has been a major issue in post accident heat removal studies. One characteristic feature of this problem is that the solid substrate, when molten, is miscible with and lighter than the core melt so that the rate of penetration is strongly dependent upon the motion of natural convection in the melt layer driven by the density difference between the core melt and the molten substrate. This fundamentally interesting and technologically important problem has been investigated by a number of researchers. Significantly different melting rates, however, were observed in these studies. Questions concerning the occurrence of flow transition and its effect on melt penetration remain to be answered. To promote the understanding of the phenomena and to strengthen the data base of melt penetration, simulation experiments were conducted using various kinds of salt solutions (KI, NaCl, CaCl 2 , and MgCl 2 solutions) as the working fluid and an air-bubble-free ice slab as the solid substrate

  12. Importance of Relativistic Effects and Electron Correlation in Structure Factors and Electron Density of Diphenyl Mercury and Triphenyl Bismuth.

    Science.gov (United States)

    Bučinský, Lukáš; Jayatilaka, Dylan; Grabowsky, Simon

    2016-08-25

    This study investigates the possibility of detecting relativistic effects and electron correlation in single-crystal X-ray diffraction experiments using the examples of diphenyl mercury (HgPh2) and triphenyl bismuth (BiPh3). In detail, the importance of electron correlation (ECORR), relativistic effects (REL) [distinguishing between total, scalar and spin-orbit (SO) coupling relativistic effects] and picture change error (PCE) on the theoretical electron density, its topology and its Laplacian using infinite order two component (IOTC) wave functions is discussed. This is to develop an understanding of the order of magnitude and shape of these different effects as they manifest in the electron density. Subsequently, the same effects are considered for the theoretical structure factors. It becomes clear that SO and PCE are negligible, but ECORR and scalar REL are important in low- and medium-order reflections on absolute and relative scales-not in the high-order region. As a further step, Hirshfeld atom refinement (HAR) and subsequent X-ray constrained wavefunction (XCW) fitting have been performed for the compound HgPh2 with various relativistic and nonrelativistic wave functions against the experimental structure factors. IOTC calculations of theoretical structure factors and relativistic HAR as well as relativistic XCW fitting are presented for the first time, accounting for both scalar and spin-orbit relativistic effects.

  13. Correlation analysis between change in thoracic kyphosis and multilevel facetectomy and screw density in main thoracic adolescent idiopathic scoliosis surgery.

    Science.gov (United States)

    Sudo, Hideki; Abe, Yuichiro; Kokabu, Terufumi; Ito, Manabu; Abumi, Kuniyoshi; Ito, Yoichi M; Iwasaki, Norimasa

    2016-09-01

    Controversy exists regarding the effects of multilevel facetectomy and screw density on deformity correction, especially thoracic kyphosis (TK) restoration in adolescent idiopathic scoliosis (AIS) surgery. This study aimed to evaluate the effects of multilevel facetectomy and screw density on sagittal plane correction in patients with main thoracic (MT) AIS curve. A retrospective correlation and comparative analysis of prospectively collected, consecutive, non-randomized series of patients at a single institution was undertaken. Sixty-four consecutive patients with Lenke type 1 AIS treated with posterior correction and fusion surgery using simultaneous double-rod rotation technique were included. Patient demographics and preoperative and 2-year postoperative radiographic measurements were the outcome measures for this study. Multiple stepwise linear regression analysis was conducted between change in TK (T5-T12) and the following factors: age at surgery, Risser sign, number of facetectomy level, screw density, preoperative main thoracic curve, flexibility in main thoracic curve, coronal correction rate, preoperative TK, and preoperative lumbar lordosis. Patients were classified into two groups: TKcorrect hypokyphosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Alternative separation of exchange and correlation energies in multi-configuration range-separated density-functional theory.

    Science.gov (United States)

    Stoyanova, Alexandrina; Teale, Andrew M; Toulouse, Julien; Helgaker, Trygve; Fromager, Emmanuel

    2013-10-07

    The alternative separation of exchange and correlation energies proposed by Toulouse et al. [Theor. Chem. Acc. 114, 305 (2005)] is explored in the context of multi-configuration range-separated density-functional theory. The new decomposition of the short-range exchange-correlation energy relies on the auxiliary long-range interacting wavefunction rather than the Kohn-Sham (KS) determinant. The advantage, relative to the traditional KS decomposition, is that the wavefunction part of the energy is now computed with the regular (fully interacting) Hamiltonian. One potential drawback is that, because of double counting, the wavefunction used to compute the energy cannot be obtained by minimizing the energy expression with respect to the wavefunction parameters. The problem is overcome by using short-range optimized effective potentials (OEPs). The resulting combination of OEP techniques with wavefunction theory has been investigated in this work, at the Hartree-Fock (HF) and multi-configuration self-consistent-field (MCSCF) levels. In the HF case, an analytical expression for the energy gradient has been derived and implemented. Calculations have been performed within the short-range local density approximation on H2, N2, Li2, and H2O. Significant improvements in binding energies are obtained with the new decomposition of the short-range energy. The importance of optimizing the short-range OEP at the MCSCF level when static correlation becomes significant has also been demonstrated for H2, using a finite-difference gradient. The implementation of the analytical gradient for MCSCF wavefunctions is currently in progress.

  15. Bone mineral density (BMD) and computer tomographic measurements of the equine proximal phalanx in correlation with breaking strength.

    Science.gov (United States)

    Tóth, P; Horváth, C; Ferencz, V; Tóth, B; Váradi, A; Szenci, O; Bodó, G

    2013-01-01

    Despite the fact that bone mineral density (BMD) is an important fracture risk predictor in human medicine, studies in equine orthopedic research are still lacking. We hypothesized that BMD correlates with bone failure and fatigue fractures of this bone. Thus, the objectives of this study were to measure the structural and mechanical properties of the proximal phalanx with dual energy X-ray absorptiometry (DXA), to correlate the data obtained from DXA and computer tomography (CT) measurements to those obtained by loading pressure examination and to establish representative region of interest (ROI) for in vitro BMD measurements of the equine proximal phalanx for predicting bone failure force. DXA was used to measure the whole bone BMD and additional three ROI sites in 14 equine proximal phalanges. Following evaluation of the bone density, whole bone, cortical width and area in the mid-diaphyseal plane were measured on CT images. Bones were broken using a manually controlled universal bone crusher to measure bone failure force and reevaluated for the site of fractures on follow-up CT images. Compressive load was applied at a constant displacement rate of 2 mm/min until failure, defined as the first clear drop in the load measurement. The lowest BMD was measured at the trabecular region (mean +/- SD: 1.52 +/- 0.12 g/cm2; median: 1.48 g/cm2; range: 1.38-1.83 g/cm2). There was a significant positive linear correlation between trabelcular BMD and the breaking strength (P = 0.023, r = 0.62). The trabecular region of the proximal phalanx appears to be the only significant indicator of failure of strength in vitro. This finding should be reassessed to further reveal the prognostic value of trabecular BMD in an in vivo fracture risk model.

  16. Quantitative Analysis of Lens Nuclear Density Using Optical Coherence Tomography (OCT with a Liquid Optics Interface: Correlation between OCT Images and LOCS III Grading

    Directory of Open Access Journals (Sweden)

    You Na Kim

    2016-01-01

    Full Text Available Purpose. To quantify whole lens and nuclear lens densities using anterior-segment optical coherence tomography (OCT with a liquid optics interface and evaluate their correlation with Lens Opacities Classification System III (LOCS III lens grading and corrected distance visual acuity (BCVA. Methods. OCT images of the whole lens and lens nucleus of eyes with age-related nuclear cataract were analyzed using ImageJ software. The lens grade and nuclear density were represented in pixel intensity units (PIU and correlations between PIU, BCVA, and LOCS III were assessed. Results. Forty-seven eyes were analyzed. The mean whole lens and lens nuclear densities were 26.99 ± 5.23 and 19.43 ± 6.15 PIU, respectively. A positive linear correlation was observed between lens opacities (R2 = 0.187, p<0.01 and nuclear density (R2 = 0.316, p<0.01 obtained from OCT images and LOCS III. Preoperative BCVA and LOCS III were also positively correlated (R2 = 0.454, p<0.01. Conclusions. Whole lens and lens nuclear densities obtained from OCT correlated with LOCS III. Nuclear density showed a higher positive correlation with LOCS III than whole lens density. OCT with a liquid optics interface is a potential quantitative method for lens grading and can aid in monitoring and managing age-related cataracts.

  17. The correlation of CT perfusion imaging with microvessel density and vascular endothelial growth factor in hepatic alveolar echinococcosis

    International Nuclear Information System (INIS)

    Wang Jing; Ren Bo; Liu Wenya; Wen Hao; Qing Song; Xie Weidong; Sun Yajing; Wang Haitao

    2011-01-01

    Objective: To explore the correlation of CT perfusion imaging with microvessel density (MVD) and vascular endothelial growth factor (VEGF) in hepatic alveolar echinococcosis (HAE). Methods: Multi-slice spiral CT perfusion imaging was performed in 27 patients with HAE. Time-density curves(TDC) of the HAE peripheral area was drawn from the region of interest (ROI) with perfusion functional software. CT perfusion parameters including blood flow (BF), blood volume (BV), mean transit time (MTT) and permeability surface area product (PS) were calculated. MVD and VEGF expression of pathological specimens were examined by immunohistochemical staining with anti-CD34, anti-VEGF monoclonal antibody. The CT perfusion parameters, MVD and VEGF were compared in different types of TDC with t test. The correlation of CT perfusion parameters with MVD and VEGF were analyzed with Spearman test. Results: In this group, 21 cases which TDC lower than that of the liver were classified as type Ⅰ, the others 6 cases TDC higher than the liver were of type Ⅱ TDC. TDC perfusion parameters of the two types were as follows, BF: (111.7±27.6), (158.9±39.5) ml · 100 g -1 · min -1 , BV: (15.1±6.2) , (26.8±8.4) ml/100 g, MTT: (7.0±4.4), (7.7±3.1) s, PS: (51.7±17.3), (51.0±20.5) ml ·100 g -1 · min -1 . The significant differences of BF, BV and MVD [(20.5±5.4)/HP, (37.2±7.5)/HP, respectively] were found between two types (t=-7.897, -18.783, -5.223, P 0.05). The correlation was found between the MVD and BF and BV in the type Ⅱ TDC group (r=0.789 and 0.878, respectively) and no correlation was found between MVD and each CT perfusion parameters in the type Ⅰ TDC group (P>0.05). There was no correlation between the VEGF expression and CT perfusion parameters in two types of TDC (P>0.05). Conclusion: CT perfusion imaging with different type of TDC reflected different situation of angiogenesis in HAE peripheral area, which could be a potential technique to illustrate the

  18. Perfusion imaging of brain gliomas using arterial spin labeling: correlation with histopathological vascular density in MRI-guided biopsies

    Energy Technology Data Exchange (ETDEWEB)

    Di, Ningning; Pang, Haopeng; Ren, Yan; Yao, Zhenwei; Feng, Xiaoyuan [Huashan Hospital Fudan University, Department of Radiology, Shanghai (China); Dang, Xuefei [Shang Hai Gamma Knife Hospital, Shanghai (China); Cheng, Wenna [Binzhou Medical University Affiliated Hospital, Department of Pharmacy, Binzhou (China); Wu, Jingsong; Yao, Chengjun [Huashan Hospital Fudan University, Department of Neurosurgery, Shanghai (China)

    2017-01-15

    This study was designed to determine if cerebral blood flow (CBF) derived from arterial spin labeling (ASL) perfusion imaging could be used to quantitatively evaluate the microvascular density (MVD) of brain gliomas on a ''point-to-point'' basis by matching CBF areas and surgical biopsy sites as accurate as possible. The study enrolled 47 patients with treatment-naive brain gliomas who underwent preoperative ASL, 3D T1-weighted imaging with gadolinium contrast enhancement (3D T1C+), and T2 fluid acquisition of inversion recovery (T2FLAIR) sequences before stereotactic surgery. We histologically quantified MVD from CD34-stained sections of stereotactic biopsies and co-registered biopsy locations with localized CBF measurements. The correlation between CBF and MVD was determined using Spearman's correlation coefficient. P ≤.05 was considered statistically significant. Of the 47 patients enrolled in the study, 6 were excluded from the analysis because of brain shift or poor co-registration and localization of the biopsy site during surgery. Finally, 84 biopsies from 41 subjects were included in the analysis. CBF showed a statistically significant positive correlation with MVD (ρ = 0.567; P =.029). ASL can be a useful noninvasive perfusion MR method for quantitative evaluation of the MVD of brain gliomas. (orig.)

  19. The correlation between temperature and humidity with the population density of Aedes aegypti as dengue fever’s vector

    Science.gov (United States)

    Sintorini, M. M.

    2018-01-01

    The weather change in South East Asia have triggered the increase of dengue fever illness in Indonesia. Jakarta has been declared as one of dengue fever endemic region. This research aim to gain the dynamic of dengue fever incidents related to temperature, humidity and the population density of Aedes aegypti. This research implementated Design of Ecology Study. The samples were collected from April 2015 to March 2016, from houses located in the suburbs i.e. Pasar Minggu, Ciracas, Sunter Agung, Palmerah and Bendungan Hilir. The sampling based on Sampling Design Cluster and each suburb represents 153 samples. The research shows correlation between temperature (p value 0.000) and humidity (p value 0,000) with Aedes aegypti as dengue fever’s Vector. Therefore, an early warning system should be developed based on environmental factors to anticipate the spread of dengue fever.

  20. Density-matrix renormalization group method for the conductance of one-dimensional correlated systems using the Kubo formula

    Science.gov (United States)

    Bischoff, Jan-Moritz; Jeckelmann, Eric

    2017-11-01

    We improve the density-matrix renormalization group (DMRG) evaluation of the Kubo formula for the zero-temperature linear conductance of one-dimensional correlated systems. The dynamical DMRG is used to compute the linear response of a finite system to an applied ac source-drain voltage; then the low-frequency finite-system response is extrapolated to the thermodynamic limit to obtain the dc conductance of an infinite system. The method is demonstrated on the one-dimensional spinless fermion model at half filling. Our method is able to replicate several predictions of the Luttinger liquid theory such as the renormalization of the conductance in a homogeneous conductor, the universal effects of a single barrier, and the resonant tunneling through a double barrier.

  1. Density functional study of photoabsorption in metallic clusters using an exchange-correlation potential with correct long-range behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Torres, M.B. [Dpto. de Matematicas y Computacion, Universidad de Burgos, Burgos (Spain); Balbas, L.C. [Dpto. de Fisica Teorica, Universidad de Valladolid, Valladolid (Spain)

    2002-06-17

    The atomic exchange-correlation (xc) potential with the correct -1/r asymptotic behaviour constructed by Parr and Ghosh (Parr R G and Ghosh S K 1995 Phys. Rev. A 51 3564) is adapted here to study, within time density functional theory, the linear response to external fields of (i) neutral and charged sodium clusters, and (ii) doped clusters of the type Na{sub n}Pb (n=4, 6, 16). The resulting photoabsorption cross sections are compared to experimental results, when available, and to results from previous calculations using local and non-local xc functionals. The calculated static polarizabilities and plasmon frequencies are closer to the experimental values than previous results. (author)

  2. The negative correlation between thyrotropin receptor-stimulating antibodies and bone mineral density in postmenopausal patients with Graves' disease.

    Science.gov (United States)

    Amashukeli, Medea; Korinteli, Maka; Zerekidze, Tamar; Jikurauli, Nino; Shanava, Shorena; Tsagareli, Marina; Giorgadze, Elen

    2013-06-01

    Graves' disease is an autoimmune disorder with various clinical manifestations. Thyrotropin receptor antibodies (TRAbs), the circulating autoantibodies specific to Graves' disease, are the cause for hyperthyroidism, the most prevalent abnormality. Hyperthyroidism leads to increased bone turnover and a negative bone balance. The aims of the present study were to determine the relationship between TRAbs and bone mineral density (BMD), to assess the extent of BMD change in patients with Graves' disease, and to determine the impact of conservative and surgical therapy on BMD. Fifty female postmenopausal patients with Graves' disease were chosen for this study. Twenty women had a recent diagnosis of Graves' disease, 30 women presented with a compensated disease state after either conservative or surgical treatment, and 30 healthy postmenopausal women served as controls. Thyroid parameters were measured, and BMD values were obtained by dual energy x-ray absorptiometry scan.Femoral neck and lumbar spine BMD and T-scores were significantly lower in newly diagnosed patients compared with the control group, but a difference was not observed between the treated and control groups. Statistical analysis revealed a strong and significant negative correlation between femoral neck and lumbar spine BMD and TRAb values.Both surgical and conservative therapies are effective for restoring BMD in postmenopausal patients with Graves' disease, and the increased level of TRAb can be a useful marker of bone density impairment.

  3. Correlation of film density and wet etch rate in hydrofluoric acid of plasma enhanced atomic layer deposited silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Provine, J., E-mail: jprovine@stanford.edu; Schindler, Peter; Kim, Yongmin; Walch, Steve P.; Kim, Hyo Jin [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Kim, Ki-Hyun [Manufacturing Technology Center, Samsung Electronics, Suwon, Gyeonggi-Do (Korea, Republic of); Prinz, Fritz B. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-06-15

    The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposition (ALD) of silicon nitride (SiN{sub x}), particularly for use a low k dielectric spacer. One of the key material properties needed for SiN{sub x} films is a low wet etch rate (WER) in hydrofluoric (HF) acid. In this work, we report on the evaluation of multiple precursors for plasma enhanced atomic layer deposition (PEALD) of SiN{sub x} and evaluate the film’s WER in 100:1 dilutions of HF in H{sub 2}O. The remote plasma capability available in PEALD, enabled controlling the density of the SiN{sub x} film. Namely, prolonged plasma exposure made films denser which corresponded to lower WER in a systematic fashion. We determined that there is a strong correlation between WER and the density of the film that extends across multiple precursors, PEALD reactors, and a variety of process conditions. Limiting all steps in the deposition to a maximum temperature of 350 °C, it was shown to be possible to achieve a WER in PEALD SiN{sub x} of 6.1 Å/min, which is similar to WER of SiN{sub x} from LPCVD reactions at 850 °C.

  4. Increasing Public Awareness of Direct-to-Consumer Genetic Tests: Health Care Access, Internet Use, and Population Density Correlates

    International Nuclear Information System (INIS)

    Rutten, L. J. F.; Gollust, S. E.; Naveed, S.; Moser, R. P.

    2012-01-01

    Uncertainty around the value of and appropriate regulatory models for direct-to-consumer (DTC) genetic testing underscores the importance of tracking public awareness of these services. We analyzed nationally representative, cross-sectional data from the Health Information National Trends Survey in 2008 (n=7, 674) and 2011 (n=3, 959) to assess population-level changes in awareness of DTC genetic testing in the U.S. and to explore socio demographic, health care, Internet use, and population density correlates. Overall, awareness increased significantly from 29% in 2008 to 37% in 2011. The observed increase in awareness from 2008 to 2011 remained significant (OR=1.39) even when adjusted for socio demographic variables, health care access, Internet use, and population density. Independent of survey year, the odds of awareness of DTC genetic tests were significantly higher for those aged 50-64 (OR=1.64), and 65-74 (O R=1.60); college graduates (OR=2.02 ); those with a regular source of health care (OR=1.27); those with a prior cancer diagnosis (OR=1.24); those who use the Internet (OR=1.27); and those living in urban areas ( OR=1.25). Surveillance of awareness-along with empirical data on use of and response to genetic risk information-can inform public health and policy efforts to maximize benefits and minimize risks of DTC genetic testing.

  5. Increasing Public Awareness of Direct-to-Consumer Genetic Tests: Health Care Access, Internet Use, and Population Density Correlates

    Directory of Open Access Journals (Sweden)

    Lila J. Finney Rutten

    2012-01-01

    Full Text Available Uncertainty around the value of and appropriate regulatory models for direct-to-consumer (DTC genetic testing underscores the importance of tracking public awareness of these services. We analyzed nationally representative, cross-sectional data from the Health Information National Trends Survey in 2008 (n=7,674 and 2011 (n=3,959 to assess population-level changes in awareness of DTC genetic testing in the U.S. and to explore sociodemographic, health care, Internet use, and population density correlates. Overall, awareness increased significantly from 29% in 2008 to 37% in 2011. The observed increase in awareness from 2008 to 2011 remained significant (OR=1.39 even when adjusted for sociodemographic variables, health care access, Internet use, and population density. Independent of survey year, the odds of awareness of DTC genetic tests were significantly higher for those aged 50–64 (OR=1.64, and 65–74 (OR=1.60; college graduates (OR=2.02; those with a regular source of health care (OR=1.27; those with a prior cancer diagnosis (OR=1.24; those who use the Internet (OR=1.27; and those living in urban areas (OR=1.25. Surveillance of awareness—along with empirical data on use of and response to genetic risk information—can inform public health and policy efforts to maximize benefits and minimize risks of DTC genetic testing.

  6. Increasing Public Awareness of Direct-to-Consumer Genetic Tests: Health Care Access, Internet Use, and Population Density Correlates.

    Science.gov (United States)

    Finney Rutten, Lila J; Gollust, Sarah E; Naveed, Sana; Moser, Richard P

    2012-01-01

    Uncertainty around the value of and appropriate regulatory models for direct-to-consumer (DTC) genetic testing underscores the importance of tracking public awareness of these services. We analyzed nationally representative, cross-sectional data from the Health Information National Trends Survey in 2008 (n = 7, 674) and 2011 (n = 3, 959) to assess population-level changes in awareness of DTC genetic testing in the U.S. and to explore sociodemographic, health care, Internet use, and population density correlates. Overall, awareness increased significantly from 29% in 2008 to 37% in 2011. The observed increase in awareness from 2008 to 2011 remained significant (OR = 1.39) even when adjusted for sociodemographic variables, health care access, Internet use, and population density. Independent of survey year, the odds of awareness of DTC genetic tests were significantly higher for those aged 50-64 (OR = 1.64), and 65-74 (OR = 1.60); college graduates (OR = 2.02); those with a regular source of health care (OR = 1.27); those with a prior cancer diagnosis (OR = 1.24); those who use the Internet (OR = 1.27); and those living in urban areas (OR = 1.25). Surveillance of awareness-along with empirical data on use of and response to genetic risk information-can inform public health and policy efforts to maximize benefits and minimize risks of DTC genetic testing.

  7. Quantifying the importance of orbital over spin correlations in delta-Pu within density-functional theory

    International Nuclear Information System (INIS)

    Soderlind, P

    2008-01-01

    The electronic structure of plutonium is studied within the density-functional theory (DFT) model. Key features of the electronic structure are correctly modeled and bonding, total energy, and electron density of states are all consistent with measure data, although the prediction of magnetism is not consistent with many observations. Here we analyze the contributions to the electronic structure arising from spin polarization, orbital polarization, and spin-orbit interaction. These effects give rise to spin and orbital moments that are of nearly equal magnitude, but anti-parallel, suggesting a magnetic-moment cancellation with a zero total moment. Quantifying the spin versus orbital effects on the bonding, total energy, and electron spectra it becomes clear that the spin polarization is much less important than the orbital correlations. Consequently, a restricted DFT approach with a non-spin polarized electronic structure can produce reasonable equation-of-state and electron spectra for (delta)-Pu when the orbital effects are accounted for. Hence, we present two non-magnetic models. One in which the spin moment is canceled by the orbital moment and another in which the spin moment (and therefore the orbital moment) is restricted to zero

  8. Correlation of Bone Mineral Density on Quality of Life in Patients with Osteogenesis Imperfecta during Treatment with Denosumab.

    Science.gov (United States)

    Hoyer-Kuhn, Heike; Stark, Christina; Franklin, Jeremy; Schoenau, Eckhard; Semler, Oliver

    2017-11-01

    Osteogenesis imperfecta (OI) is a rare hereditary skeletal disease leading to recurrent fractures, short stature and impaired mobility. The phenotype varies from mildly affected patients to perinatal lethal forms. In most cases an impaired collagen production due to mutations in COL1A1 or COL1A2 cause this hereditary bone fragility syndrome with an autosomal dominant inheritance. Currently an interdisciplinary therapeutic approach with antiresorptive drugs, physiotherapy and surgical procedures is the state of the art therapy. The effect of such a therapy is evaluated by measuring different surrogate parameters like areal bone mineral density or by using different mobility tests or questionnaires. Up till now the impact of these parameters on quality of life of the patients is not evaluated. Currently pharmacological strategies are based on antiresorptive treatment with bisphosphonates. In this trial we investigated the effect of an antiresorptive therapy with the monoclonal antibody denosumab decreasing the activity of osteoclasts. Denosumab was administered subcutaneously in a dose of 1mg/kg body weight in 10 children with OI (5-10 years of age) every 12 weeks for 48 weeks. Areal bone mineral density, mobility, pain scores and quality of life were measured. The results showed a good effect of the treatment on bone mineral density but this improvement showed no correlation to pain and quality of life. In conclusion further trials have to define parameters to assess interventions which influence activities of daily life of the patients. An interdisciplinary approach including physicians, basic researchers and patient organisation is needed to focus research on topics improving quality of life of patients with severe skeletal diseases. Copyright© of YS Medical Media ltd.

  9. The natural emergence of the correlation between H2 and star formation rate surface densities in galaxy simulations

    Science.gov (United States)

    Lupi, Alessandro; Bovino, Stefano; Capelo, Pedro R.; Volonteri, Marta; Silk, Joseph

    2018-03-01

    In this study, we present a suite of high-resolution numerical simulations of an isolated galaxy to test a sub-grid framework to consistently follow the formation and dissociation of H2 with non-equilibrium chemistry. The latter is solved via the package KROME, coupled to the mesh-less hydrodynamic code GIZMO. We include the effect of star formation (SF), modelled with a physically motivated prescription independent of H2, supernova feedback and mass-losses from low-mass stars, extragalactic and local stellar radiation, and dust and H2 shielding, to investigate the emergence of the observed correlation between H2 and SF rate surface densities. We present two different sub-grid models and compare them with on-the-fly radiative transfer (RT) calculations, to assess the main differences and limits of the different approaches. We also discuss a sub-grid clumping factor model to enhance the H2 formation, consistent with our SF prescription, which is crucial, at the achieved resolution, to reproduce the correlation with H2. We find that both sub-grid models perform very well relative to the RT simulation, giving comparable results, with moderate differences, but at much lower computational cost. We also find that, while the Kennicutt-Schmidt relation for the total gas is not strongly affected by the different ingredients included in the simulations, the H2-based counterpart is much more sensitive, because of the crucial role played by the dissociating radiative flux and the gas shielding.

  10. Tetragonal fcc-Fe induced by κ -carbide precipitates: Atomic scale insights from correlative electron microscopy, atom probe tomography, and density functional theory

    Science.gov (United States)

    Liebscher, Christian H.; Yao, Mengji; Dey, Poulumi; Lipińska-Chwalek, Marta; Berkels, Benjamin; Gault, Baptiste; Hickel, Tilmann; Herbig, Michael; Mayer, Joachim; Neugebauer, Jörg; Raabe, Dierk; Dehm, Gerhard; Scheu, Christina

    2018-02-01

    Correlative scanning transmission electron microscopy, atom probe tomography, and density functional theory calculations resolve the correlation between elastic strain fields and local impurity concentrations on the atomic scale. The correlative approach is applied to coherent interfaces in a κ -carbide strengthened low-density steel and establishes a tetragonal distortion of fcc-Fe. An interfacial roughness of ˜1 nm and a localized carbon concentration gradient extending over ˜2 -3 nm is revealed, which originates from the mechano-chemical coupling between local strain and composition.

  11. The prevalence and correlates of subclinical atherosclerosis among adults with low-density lipoprotein cholesterol ELSA-Brasil).

    Science.gov (United States)

    Al Rifai, Mahmoud; Martin, Seth S; McEvoy, John W; Nasir, Khurram; Blankstein, Ron; Yeboah, Joseph; Miedema, Michael; Shea, Steven J; Polak, Joseph F; Ouyang, Pamela; Blumenthal, Roger S; Bittencourt, Marcio; Bensenor, Isabela; Santos, Raul D; Duncan, Bruce B; Santos, Itamar S; Lotufo, Paulo A; Blaha, Michael J

    2018-07-01

    The prevalence and correlates of subclinical atherosclerosis when low-density lipoprotein cholesterol (LDL-C) levels are low remain unclear. Therefore, we examined the association of cardiovascular risk factors and subclinical atherosclerosis among individuals with untreated LDL-C ELSA-Brasil) cohorts. To optimize accuracy, LDL-C was calculated by the validated Martin/Hopkins equation that uses an adjustable factor for the ratio of triglycerides to very low-density lipoprotein cholesterol. We defined subclinical atherosclerosis as a coronary artery calcium (CAC) score >0 in the combined cohort or common carotid intima media thickness (cIMT) in the 4 th quartile, using cohort-specific cIMT distributions at baseline. Logistic regression models examined the cross-sectional associations of cardiovascular risk factors and subclinical atherosclerosis. Among 9411 participants not on lipid lowering therapy, 263 (3%) had LDL-C ELSA: 57). Mean age in this population was 58 (SD 12) years, with 43% men, and 41% Black. The prevalence of CAC >0 in those with untreated LDL-C<70 mg/dL was 30%, and 18% were in 4th quartile of cIMT. In demographically adjusted models, only ever smoking was significantly associated with both CAC and cIMT. Similar results were obtained in risk factor-adjusted models (smoking: OR, 2.29; 95% CI, 1.10-4.80 and OR, 3.44; 95% CI, 1.41-8.37 for CAC and cIMT, respectively). Among middle-aged to older individuals with untreated LDL-C <70 mg/dL, subclinical atherosclerosis remains moderately common and is associated with cigarette smoking. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Cardiopulmonary fitness correlates with regional cerebral grey matter perfusion and density in men with coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Bradley J MacIntosh

    Full Text Available Physical activity is associated with positive effects on the brain but there is a paucity of clinical neuroimaging data in patients with coronary artery disease (CAD, a cardiovascular condition associated with grey matter loss. The purpose of this study was to determine which brain regions are impacted by cardiopulmonary fitness and with the change in fitness after 6 months of exercise-based cardiac rehabilitation.CAD patients underwent magnetic resonance imaging at baseline, and peak volume of oxygen uptake during exercise testing (VO2Peak was measured at baseline and after 6 months of training. T1-weighted structural images were used to perform grey matter (GM voxel-based morphometry (VBM. Pseudo-continuous arterial spin labeling (pcASL was used to produce cerebral blood flow (CBF images. VBM and CBF data were tested voxel-wise using VO2Peak and age as explanatory variables.In 30 men with CAD (mean age 65±7 years, VBM and CBF identified 7 and 5 respective regions positively associated with baseline VO2Peak. These included the pre- and post-central, paracingulate, caudate, hippocampal regions and converging findings in the putamen. VO2Peak increased by 20% at follow-up in 29 patients (t = 9.6, df = 28, p<0.0001. Baseline CBF in the left post-central gyrus and baseline GM density in the right putamen predicted greater change in VO2Peak.Perfusion and GM density were associated with fitness at baseline and with greater fitness gains with exercise. This study identifies new neurobiological correlates of fitness and demonstrates the utility of multi-modal MRI to evaluate the effects of exercise in CAD patients.

  13. 3D MRI for Quantitative Analysis of Quadrant Percent Breast Density: Correlation with Quadrant Location of Breast Cancer.

    Science.gov (United States)

    Chen, Jeon-Hor; Liao, Fuyi; Zhang, Yang; Li, Yifan; Chang, Chia-Ju; Chou, Chen-Pin; Yang, Tsung-Lung; Su, Min-Ying

    2017-07-01

    Breast cancer occurs more frequently in the upper outer (UO) quadrant, but whether this higher cancer incidence is related to the greater amount of dense tissue is not known. Magnetic resonance imaging acquires three-dimensional volumetric images and is the most suitable among all breast imaging modalities for regional quantification of density. This study applied a magnetic resonance imaging-based method to measure quadrant percent density (QPD), and evaluated its association with the quadrant location of the developed breast cancer. A total of 126 cases with pathologically confirmed breast cancer were reviewed. Only women who had unilateral breast cancer located in a clear quadrant were selected for analysis. A total of 84 women, including 47 Asian women and 37 western women, were included. An established computer-aided method was used to segment the diseased breast and the contralateral normal breast, and to separate the dense and fatty tissues. Then, a breast was further separated into four quadrants using the nipple and the centroid as anatomic landmarks. The tumor was segmented using a computer-aided method to determine its quadrant location. The distribution of cancer quadrant location, the quadrant with the highest QPD, and the proportion of cancers occurring in the highest QPD were analyzed. The highest incidence of cancer occurred in the UO quadrant (36 out of 84, 42.9%). The highest QPD was also noted most frequently in the UO quadrant (31 out of 84, 36.9%). When correlating the highest QPD with the quadrant location of breast cancer, only 17 women out of 84 (20.2%) had breast cancer occurring in the quadrant with the highest QPD. The results showed that the development of breast cancer in a specific quadrant could not be explained by the density in that quadrant, and further studies are needed to find the biological reasons accounting for the higher breast cancer incidence in the UO quadrant. Copyright © 2017 The Association of University Radiologists

  14. Orbital-dependent exchange-correlation functionals in density-functional theory realized by the FLAPW method

    Energy Technology Data Exchange (ETDEWEB)

    Betzinger, Markus

    2011-12-14

    In this thesis, we extended the applicability of the full-potential linearized augmented-plane-wave (FLAPW) method, one of the most precise, versatile and generally applicable electronic structure methods for solids working within the framework of density-functional theory (DFT), to orbital-dependent functionals for the exchange-correlation (xc) energy. Two different schemes that deal with orbital-dependent functionals, the Kohn-Sham (KS) and the generalized Kohn-Sham (gKS) formalism, have been realized. Hybrid functionals, combining some amount of the orbital-dependent exact exchange energy with local or semi-local functionals of the density, are implemented within the gKS scheme. We work in particular with the PBE0 hybrid of Perdew, Burke, and Ernzerhof. Our implementation relies on a representation of the non-local exact exchange potential - its calculation constitutes the most time consuming step in a practical calculation - by an auxiliary mixed product basis (MPB). In this way, the matrix elements of the Hamiltonian corresponding to the non-local potential become a Brillouin-zone (BZ) sum over vector-matrix-vector products. Several techniques are developed and explored to further accelerate our numerical scheme. We show PBE0 results for a variety of semiconductors and insulators. In comparison with experiment, the PBE0 functional leads to improved band gaps and an improved description of localized states. Even for the ferromagnetic semiconductor EuO with localized 4f electrons, the electronic and magnetic properties are correctly described by the PBE0 functional. Subsequently, we discuss the construction of the local, multiplicative exact exchange (EXX) potential from the non-local, orbital-dependent exact exchange energy. For this purpose we employ the optimized effective potential (OEP) method. Central ingredients of the OEP equation are the KS wave-function response and the single-particle density response function. We show that a balance between the LAPW

  15. Orbital-dependent exchange-correlation functionals in density-functional theory realized by the FLAPW method

    International Nuclear Information System (INIS)

    Betzinger, Markus

    2011-01-01

    In this thesis, we extended the applicability of the full-potential linearized augmented-plane-wave (FLAPW) method, one of the most precise, versatile and generally applicable electronic structure methods for solids working within the framework of density-functional theory (DFT), to orbital-dependent functionals for the exchange-correlation (xc) energy. Two different schemes that deal with orbital-dependent functionals, the Kohn-Sham (KS) and the generalized Kohn-Sham (gKS) formalism, have been realized. Hybrid functionals, combining some amount of the orbital-dependent exact exchange energy with local or semi-local functionals of the density, are implemented within the gKS scheme. We work in particular with the PBE0 hybrid of Perdew, Burke, and Ernzerhof. Our implementation relies on a representation of the non-local exact exchange potential - its calculation constitutes the most time consuming step in a practical calculation - by an auxiliary mixed product basis (MPB). In this way, the matrix elements of the Hamiltonian corresponding to the non-local potential become a Brillouin-zone (BZ) sum over vector-matrix-vector products. Several techniques are developed and explored to further accelerate our numerical scheme. We show PBE0 results for a variety of semiconductors and insulators. In comparison with experiment, the PBE0 functional leads to improved band gaps and an improved description of localized states. Even for the ferromagnetic semiconductor EuO with localized 4f electrons, the electronic and magnetic properties are correctly described by the PBE0 functional. Subsequently, we discuss the construction of the local, multiplicative exact exchange (EXX) potential from the non-local, orbital-dependent exact exchange energy. For this purpose we employ the optimized effective potential (OEP) method. Central ingredients of the OEP equation are the KS wave-function response and the single-particle density response function. We show that a balance between the LAPW

  16. Correlation of structural stability with functional remodeling of high-density lipoproteins: the importance of being disordered.

    Science.gov (United States)

    Guha, Madhumita; Gao, Xuan; Jayaraman, Shobini; Gursky, Olga

    2008-11-04

    High-density lipoproteins (HDLs) are protein-lipid assemblies that remove excess cell cholesterol and prevent atherosclerosis. HDLs are stabilized by kinetic barriers that decelerate protein dissociation and lipoprotein fusion. We propose that similar barriers modulate metabolic remodeling of plasma HDLs; hence, changes in particle composition that destabilize HDLs and accelerate their denaturation may accelerate their metabolic remodeling. To test this notion, we correlate existing reports on HDL-mediated cell cholesterol efflux and esterification, which are obligatory early steps in cholesterol removal, with our kinetic studies of HDL stability. The results support our hypothesis and show that factors accelerating cholesterol efflux and esterification in model discoidal lipoproteins (including reduced protein size, reduced fatty acyl chain length, and/or increased level of cis unsaturation) destabilize lipoproteins and accelerate their fusion and apolipoprotein dissociation. Oxidation studies of plasma spherical HDLs show a similar trend: mild oxidation by Cu(2+) or OCl(-) accelerates cell cholesterol efflux, protein dissociation, and HDL fusion, while extensive oxidation inhibits these reactions. Consequently, moderate destabilization may be beneficial for HDL functions by facilitating insertion of cholesterol and lipophilic enzymes, promoting dissociation of lipid-poor apolipoproteins, which are primary acceptors of cell cholesterol, and thereby accelerating HDL metabolism. Therefore, HDL stability must be delicately balanced to maintain the structural integrity of the lipoprotein assembly and ensure structural specificity necessary for interactions of HDL with its metabolic partners, while facilitating rapid HDL remodeling and turnover at key junctures of cholesterol transport. The inverse correlation between HDL stability and remodeling illustrates the functional importance of structural disorder in macromolecular assemblies stabilized by kinetic barriers.

  17. 3d-4f magnetic interaction with density functional theory plus u approach: local Coulomb correlation and exchange pathways.

    Science.gov (United States)

    Zhang, Yachao; Yang, Yang; Jiang, Hong

    2013-12-12

    The 3d-4f exchange interaction plays an important role in many lanthanide based molecular magnetic materials such as single-molecule magnets and magnetic refrigerants. In this work, we study the 3d-4f magnetic exchange interactions in a series of Cu(II)-Gd(III) (3d(9)-4f(7)) dinuclear complexes based on the numerical atomic basis-norm-conserving pseudopotential method and density functional theory plus the Hubbard U correction approach (DFT+U). We obtain improved description of the 4f electrons by including the semicore 5s5p states in the valence part of the Gd-pseudopotential. The Hubbard U correction is employed to treat the strongly correlated Cu-3d and Gd-4f electrons, which significantly improve the agreement of the predicted exchange constants, J, with experiment, indicating the importance of accurate description of the local Coulomb correlation. The high efficiency of the DFT+U approach enables us to perform calculations with molecular crystals, which in general improve the agreement between theory and experiment, achieving a mean absolute error smaller than 2 cm(-1). In addition, through analyzing the physical effects of U, we identify two magnetic exchange pathways. One is ferromagnetic and involves an interaction between the Cu-3d, O-2p (bridge ligand), and the majority-spin Gd-5d orbitals. The other one is antiferromagnetic and involves Cu-3d, O-2p, and the empty minority-spin Gd-4f orbitals, which is suppressed by the planar Cu-O-O-Gd structure. This study demonstrates the accuracy of the DFT+U method for evaluating the 3d-4f exchange interactions, provides a better understanding of the exchange mechanism in the Cu(II)-Gd(III) complexes, and paves the way for exploiting the magnetic properties of the 3d-4f compounds containing lanthanides other than Gd.

  18. Density functional theory embedding for correlated wavefunctions: improved methods for open-shell systems and transition metal complexes.

    Science.gov (United States)

    Goodpaster, Jason D; Barnes, Taylor A; Manby, Frederick R; Miller, Thomas F

    2012-12-14

    Density functional theory (DFT) embedding provides a formally exact framework for interfacing correlated wave-function theory (WFT) methods with lower-level descriptions of electronic structure. Here, we report techniques to improve the accuracy and stability of WFT-in-DFT embedding calculations. In particular, we develop spin-dependent embedding potentials in both restricted and unrestricted orbital formulations to enable WFT-in-DFT embedding for open-shell systems, and develop an orbital-occupation-freezing technique to improve the convergence of optimized effective potential calculations that arise in the evaluation of the embedding potential. The new techniques are demonstrated in applications to the van-der-Waals-bound ethylene-propylene dimer and to the hexa-aquairon(II) transition-metal cation. Calculation of the dissociation curve for the ethylene-propylene dimer reveals that WFT-in-DFT embedding reproduces full CCSD(T) energies to within 0.1 kcal/mol at all distances, eliminating errors in the dispersion interactions due to conventional exchange-correlation (XC) functionals while simultaneously avoiding errors due to subsystem partitioning across covalent bonds. Application of WFT-in-DFT embedding to the calculation of the low-spin/high-spin splitting energy in the hexaaquairon(II) cation reveals that the majority of the dependence on the DFT XC functional can be eliminated by treating only the single transition-metal atom at the WFT level; furthermore, these calculations demonstrate the substantial effects of open-shell contributions to the embedding potential, and they suggest that restricted open-shell WFT-in-DFT embedding provides better accuracy than unrestricted open-shell WFT-in-DFT embedding due to the removal of spin contamination.

  19. WDR1 and CLNK gene polymorphisms correlate with serum glucose and high-density lipoprotein levels in Tibetan gout patients.

    Science.gov (United States)

    Lan, Bing; Chen, Peng; Jiri, Mutu; He, Na; Feng, Tian; Liu, Kai; Jin, Tianbo; Kang, Longli

    2016-03-01

    Current evidence suggests heredity and metabolic syndrome contributes to gout progression. Specifically, the WDR1 and CLNK genes may play a role in gout progression in European ancestry populations. However, no studies have focused on Chinese populations, especially Tibetan individuals. This study aims to determine whether variations in these two genes correlate with gout-related indices in Chinese-Tibetan gout patients. Eleven single-nucleotide polymorphisms in the WDR1 and CLNK genes were detected in 319 Chinese-Tibetan gout patients and 318 controls. We used one-way analysis of variance to evaluate the polymorphisms' effects on gout based on mean serum levels of metabolism indicators, such as albumin, glucose (GLU), triglycerides, cholesterol, high-density lipoproteins (HDL-C), creatinine, and uric acid, from fasting venous blood samples. All p values were Bonferroni corrected. Polymorphisms of the WDR1 and CLNK genes affected multiple risk factors for gout development. Significant differences in serum GLU levels were detected between different genotypic groups with WDRI polymorphisms rs4604059 (p = 0.005) and rs12498927 (p = 0.005). In addition, significant differences in serum HDL-C levels were detected between different genotypic groups with the CLNK polymorphism rs2041215 (p = 0.001). Polymorphisms of CLNK also affected levels of albumin, triglycerides, and creatinine. This study is the first to investigate and identify positive correlations between WDR1 and CLNK gene polymorphisms in Chinese-Tibetan populations. Our findings provide significant evidence for the effect of genetic polymorphisms on gout-related factors in Chinese-Tibetan populations.

  20. Road density

    Data.gov (United States)

    U.S. Environmental Protection Agency — Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More...

  1. Increasing the applicability of density functional theory. IV. Consequences of ionization-potential improved exchange-correlation potentials.

    Science.gov (United States)

    Verma, Prakash; Bartlett, Rodney J

    2014-05-14

    This paper's objective is to create a "consistent" mean-field based Kohn-Sham (KS) density functional theory (DFT) meaning the functional should not only provide good total energy properties, but also the corresponding KS eigenvalues should be accurate approximations to the vertical ionization potentials (VIPs) of the molecule, as the latter condition attests to the viability of the exchange-correlation potential (VXC). None of the prominently used DFT approaches show these properties: the optimized effective potential VXC based ab initio dft does. A local, range-separated hybrid potential cam-QTP-00 is introduced as the basis for a "consistent" KS DFT approach. The computed VIPs as the negative of KS eigenvalue have a mean absolute error of 0.8 eV for an extensive set of molecule's electron ionizations, including the core. Barrier heights, equilibrium geometries, and magnetic properties obtained from the potential are in good agreement with experiment. A similar accuracy with less computational efforts can be achieved by using a non-variational global hybrid variant of the QTP-00 approach.

  2. Correlation between Podoplanin-positive Lymphatic Microvessel Density 
and CT Characteristics of Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Hui ZHOU

    2012-01-01

    Full Text Available Background and objective It has been proven that ymphatic microvessel density (LMVD was closely correlated with the lymphatic metastasis of non-small cell lung cancer (NSCLC. The aim of the present study is to explore the relationship between podoplanin-LMVD and multi-slice spiral computed tomography (MSCT characteristics of NSCLC. Methods MSCT scanning was performed on 34 cases of NSCLC (squamous carcinoma, 15 cases; adenocarcinoma, 15 cases; and adenosquamous carcinoma, 4 cases prior to operation. Clinical pathology results, including lymph node metastasis, were obtained. CT characteristics, such as shape of the edge, internal structure, and adjacent structures, were described. LMVD in the central and peripheral areas examined respectively using SP immunohistochemical technique were analyzed. Results Lymph node metastasis was found to be associated with LMVD in the peripheral areas. LMVD in the peripheral areas of the resected lesions, the MSCT findings of which included spinous process, pleural indentation, and carcinomatous lymphangitis, was higher than that of the lesions without these MSCT characteristics (P<0.05. Conclusion MSCT findings of spinous process, pleural indentation, or carcinomatous lymphangitis of NSCLC may suggest a higher level of tumor lymphangiogenesis with a higher risk of lymph node metastasis.

  3. Correlation between Cholesterol, Triglycerides, Calculated, and Measured Lipoproteins: Whether Calculated Small Density Lipoprotein Fraction Predicts Cardiovascular Risks

    Directory of Open Access Journals (Sweden)

    Sikandar Hayat Khan

    2017-01-01

    Full Text Available Background. Recent literature in lipidology has identified LDL-fractions to be more atherogenic. In this regard, small density LDL-cholesterol (sdLDLc has been considered to possess more atherogenicity than other LDL-fractions like large buoyant LDL-cholesterol (lbLDLc. Recently, Srisawasdi et al. have developed a method for calculating sdLDLc and lbLDLc based upon a regression equation. Using that in developing world may provide us with a valuable tool for ASCVD risk prediction. Objective. (1 To correlate directly measured and calculated lipid indices with insulin resistance, UACR, glycated hemoglobin, anthropometric indices, and blood pressure. (2 To evaluate these lipid parameters in subjects with or without metabolic syndrome, nephropathy, and hypertension and among various groups based upon glycated hemoglobin results. Design. Cross-sectional study. Place and Duration of Study. From Jan 2016 to 15 April 2017. Subjects and Methods. Finally enrolled subjects (male: 110, female: 122 were evaluated for differences in various lipid parameters, including measured LDL-cholesterol (mLDLc, HDLc and calculated LDL-cholesterol (cLDLc, non-HDLc, sdLDLC, lbLDLC, and their ratio among subjects with or without metabolic syndrome, nephropathy, glycation index, anthropometric indices, and hypertension. Results. Significant but weak correlation was mainly observed between anthropometric indices, insulin resistance, blood pressure, and nephropathy for non-HDLc, sdLDLc, and sdLDLc/lbLDLc. Generally lipid indices were higher among subjects with metabolic syndrome [{sdLDLc: 0.92 + 0.33 versus 0.70 + 0.29 (p 7.0%. Subjects having nephropathy (UACR > 2.4 mg/g had higher concentration of non-HDLc levels in comparison to sdLDLc [{non-HDLc: 3.68 + 0.59 versus 3.36 + 0.43} (p=0.007, {sdLDLc: 0.83 + 0.27 versus 0.75 + 0.35 (p=NS}]. Conclusion. Lipid markers including cLDLc and mLDLc are less associated with traditional ASCVD markers than non-HDLc, sdLDLc, and sd

  4. Correlation between Onset Oxidation Temperature (OOT) and Fourier Transform Infrared Spectroscopy (FTIR) for monitoring the restabilization of Recycled Low-density Polyethylene (LDPE)

    Energy Technology Data Exchange (ETDEWEB)

    Ruvolo-Filho, Adhemar; Pelozzi, Tadeu Luiz Alonso, E-mail: adhemar@power.ufscar.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica

    2013-07-01

    In this work a new method was developed for monitoring the oxidative stability of restabilized and non-restabilized low-density polyethylene (LDPE) during multiple extrusion cycles. The method is based on correlations between Fourier Transform Infrared Spectroscopy (FTIR) and Onset Oxidation Temperature (OOT). Non-linear calibration curves correlating the concentration of primary or secondary antioxidants and the OOT values were obtained. (author)

  5. Evaluation of exchange-correlation functionals for time-dependent density functional theory calculations on metal complexes.

    Science.gov (United States)

    Holland, Jason P; Green, Jennifer C

    2010-04-15

    The electronic absorption spectra of a range of copper and zinc complexes have been simulated by using time-dependent density functional theory (TD-DFT) calculations implemented in Gaussian03. In total, 41 exchange-correlation (XC) functionals including first-, second-, and third-generation (meta-generalized gradient approximation) DFT methods were compared in their ability to predict the experimental electronic absorption spectra. Both pure and hybrid DFT methods were tested and differences between restricted and unrestricted calculations were also investigated by comparison of analogous neutral zinc(II) and copper(II) complexes. TD-DFT calculated spectra were optimized with respect to the experimental electronic absorption spectra by use of a Matlab script. Direct comparison of the performance of each XC functional was achieved both qualitatively and quantitatively by comparison of optimized half-band widths, root-mean-squared errors (RMSE), energy scaling factors (epsilon(SF)), and overall quality-of-fit (Q(F)) parameters. Hybrid DFT methods were found to outperform all pure DFT functionals with B1LYP, B97-2, B97-1, X3LYP, and B98 functionals providing the highest quantitative and qualitative accuracy in both restricted and unrestricted systems. Of the functionals tested, B1LYP gave the most accurate results with both average RMSE and overall Q(F) 0.990) for the copper complexes. The XC functional performance in spin-restricted TD-DFT calculations on the zinc complexes was found to be slightly worse. PBE1PBE, mPW1PW91 and B1LYP gave the most accurate results with typical RMSE and Q(F) values between 5.3 and 7.3%, and epsilon(SF) around 0.930. These studies illustrate the power of modern TD-DFT calculations for exploring excited state transitions of metal complexes. 2009 Wiley Periodicals, Inc.

  6. Correlation analysis between bone density measured by quantitative CT and blood sugar level of aged patients with non-insulin-dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Wang Guizhi; Liang Ping; Qiao Junhua; Liu Chunyan

    2008-01-01

    Objective: To approach the correlation between the bone density measured by quantitative CT and the blood sugar level of the aged patients with non-insulin-dependent diabetes mellitus, and observe the effects of the blood sugar level on the bone density. Methods: The lumbar bone densities and the blood sugar levels of 160 aged patients with non-insulin-dependent diabetes mellitus (hyperglycemia group 80 cases, euglycemia group 80 cases ) and the healthy aged people (80 cases) were detected by quantitative CT and serum biochemical detection; the correlation between the blood sugar level and the bone density and the osteoporosis occurrence status of aged people in various groups were analyzed. Results: The bone density in the non-insulin-dependent diabetes and hyperglycemia group was lower than those in normal (control) group and non-insulin-dependent diabetes and euglycemia group (P<0.05); the morbility of osteoporosis in the non-insulin-dependent diabetes and hyperglycemia group was higher than those in normal (control) group and non-insulin-dependent diabetes and euglycemia group (P<0.05); negative correlation was found between the bone density and the blood sugar level (aged male group: r=-0.7382, P=0.0013; aged female group: r=-0.8343, P=0.0007). Conclusion: The blood sugar level affects the bone density of the aged patients with non-insulin-dependent diabetes mellitus; the higher the blood sugar level, the lower the bone density. The non-insulin-dependent diabetes aged patients with hyperglycemia have the liability of osteoporosis. (authors)

  7. A statistical model for estimation of fish density including correlation in size, space, time and between species from research survey data

    DEFF Research Database (Denmark)

    Nielsen, J. Rasmus; Kristensen, Kasper; Lewy, Peter

    2014-01-01

    Trawl survey data with high spatial and seasonal coverage were analysed using a variant of the Log Gaussian Cox Process (LGCP) statistical model to estimate unbiased relative fish densities. The model estimates correlations between observations according to time, space, and fish size and includes...

  8. Correlations between critical current density, jc, critical temperature, Tc, and structural quality of Y1B2Cu3O7-x thin superconducting films

    International Nuclear Information System (INIS)

    Chrzanowski, J.; Xing, W.B.; Atlan, D.

    1994-01-01

    Correlations between critical current density (j c ) critical temperature (T c ) and the density of edge dislocations and nonuniform strain have been observed in YBCO thin films deposited by pulsed laser ablation on (001) LaAlO 3 single crystals. Distinct maxima in j c as a function of the linewidths of the (00 ell) Bragg reflections and as a function of the mosaic spread have been found in the epitaxial films. These maxima in j c indicate that the magnetic flux lines, in films of structural quality approaching that of single crystals, are insufficiently pinned which results in a decreased critical current density. T c increased monotonically with improving crystalline quality and approached a value characteristic of a pure single crystal. A strong correlation between j c and the density of edge dislocations N D was found. At the maximum of the critical current density the density of edge dislocations was estimated to be N D ∼1-2 x 10 9 /cm 2

  9. Application of time-dependent current-density-functional theory to nonlocal exchange-correlation effects in polymers

    NARCIS (Netherlands)

    van Faassen, M; de Boeij, PL; van Leeuwen, R; Berger, JA; Snijders, JG

    2003-01-01

    We provide a successful approach towards the solution of the longstanding problem of the large overestimation of the static polarizability of conjugated oligomers obtained using the local density approximation within density-functional theory. The local approximation is unable to describe the highly

  10. A statistical model for estimation of fish density including correlation in size, space, time and between species from research survey data.

    Directory of Open Access Journals (Sweden)

    J Rasmus Nielsen

    Full Text Available Trawl survey data with high spatial and seasonal coverage were analysed using a variant of the Log Gaussian Cox Process (LGCP statistical model to estimate unbiased relative fish densities. The model estimates correlations between observations according to time, space, and fish size and includes zero observations and over-dispersion. The model utilises the fact the correlation between numbers of fish caught increases when the distance in space and time between the fish decreases, and the correlation between size groups in a haul increases when the difference in size decreases. Here the model is extended in two ways. Instead of assuming a natural scale size correlation, the model is further developed to allow for a transformed length scale. Furthermore, in the present application, the spatial- and size-dependent correlation between species was included. For cod (Gadus morhua and whiting (Merlangius merlangus, a common structured size correlation was fitted, and a separable structure between the time and space-size correlation was found for each species, whereas more complex structures were required to describe the correlation between species (and space-size. The within-species time correlation is strong, whereas the correlations between the species are weaker over time but strong within the year.

  11. Gamma Reaction History ablator areal density constraints upon correlated diagnostic modeling of National Ignition Facility implosion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cerjan, C., E-mail: cerjan1@llnl.gov; Sayre, D. B.; Landen, O. L.; Church, J. A.; Stoeffl, W. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Grafil, E. M. [Colorado School of Mines, Golden, Colorado 80401 (United States); Herrmann, H. W.; Hoffman, N. M.; Kim, Y. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-03-15

    The inelastic neutron scattering induced γ-ray signal from {sup 12}C in an Inertial Confinement Fusion capsule is demonstrated to be an effective and general diagnostic for shell ablator areal density. Experimental acquisition of the time-integrated signal at 4.4 MeV using threshold detection from four gas Čerenkov cells provides a direct measurement of the {sup 12}C areal density near stagnation. Application of a three-dimensional isobaric static model of data acquired in a recent high neutron yield National Ignition Facility experimental campaign reveals two general trends: smaller remaining ablator mass at stagnation and higher shell density with increasing laser drive.

  12. Astrocytosis measured by {sup 11}C-deprenyl PET correlates with decrease in gray matter density in the parahippocampus of prodromal Alzheimer's patients

    Energy Technology Data Exchange (ETDEWEB)

    Choo, IL Han [Karolinska Institutet, Department NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); Chosun University, Department of Neuropsychiatry, School of Medicine, Gwangju (Korea, Republic of); Carter, Stephen F. [Karolinska Institutet, Department NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); Manchester University, Wolfson Imaging Center, Manchester (United Kingdom); Schoell, Michael L. [Karolinska Institutet, Department NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); Gothenburg University, Med Tech West, Department of Neuroscience and Rehabilitation, Gothenburg (Sweden); Nordberg, Agneta [Karolinska Institutet, Department NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); Karolinska University Hospital Huddinge, Department of Geriatric Medicine, Stockholm (Sweden); Karolinska Institutet, Department NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Huddinge (Sweden)

    2014-11-15

    The Alzheimer's disease (AD) pathology is characterized by fibrillar amyloid deposits and neurofibrillary tangles, as well as the activation of astrocytosis, microglia activation, atrophy, dysfunctional synapse, and cognitive impairments. The aim of this study was to test the hypothesis that astrocytosis is correlated with reduced gray matter density in prodromal AD. Twenty patients with AD or mild cognitive impairment (MCI) underwent multi-tracer positron emission tomography (PET) studies with {sup 11}C-Pittsburgh compound B ({sup 11}C-PIB), {sup 18}F-Fluorodeoxyglucose ({sup 18}F-FDG), and {sup 11}C-deuterium-L-deprenyl ({sup 11}C-DED) PET imaging, as well as magnetic resonance imaging (MRI) scanning, cerebrospinal fluid (CSF) biomarker analysis, and neuropsychological assessments. The parahippocampus was selected as a region of interest, and each value was calculated for four different imaging modalities. Correlation analysis was applied between DED slope values and gray matter (GM) densities by MRI. To further explore possible relationships, correlation analyses were performed between the different variables, including the CSF biomarker. A significant negative correlation was obtained between DED slope values and GM density in the parahippocampus in PIB-positive (PIB + ve) MCI patients (p = 0.025) (prodromal AD). Furthermore, in exploratory analyses, a positive correlation was observed between PIB-PET retention and DED binding in AD patients (p = 0.014), and a negative correlation was observed between PIB retention and CSF Aβ42 levels in MCI patients (p = 0.021), while the GM density and CSF total tau levels were negatively correlated in both PIB + ve MCI (p = 0.002) and MCI patients (p = 0.001). No significant correlation was observed with FDG-PET and with any of the other PET, MRI, or CSF biomarkers. High astrocytosis levels in the parahippocampus of PIB + ve MCI (prodromal AD) patients suggest an early preclinical influence on cellular tissue loss. The

  13. Astrocytosis measured by 11C-deprenyl PET correlates with decrease in gray matter density in the parahippocampus of prodromal Alzheimer's patients

    International Nuclear Information System (INIS)

    Choo, IL Han; Carter, Stephen F.; Schoell, Michael L.; Nordberg, Agneta

    2014-01-01

    The Alzheimer's disease (AD) pathology is characterized by fibrillar amyloid deposits and neurofibrillary tangles, as well as the activation of astrocytosis, microglia activation, atrophy, dysfunctional synapse, and cognitive impairments. The aim of this study was to test the hypothesis that astrocytosis is correlated with reduced gray matter density in prodromal AD. Twenty patients with AD or mild cognitive impairment (MCI) underwent multi-tracer positron emission tomography (PET) studies with 11 C-Pittsburgh compound B ( 11 C-PIB), 18 F-Fluorodeoxyglucose ( 18 F-FDG), and 11 C-deuterium-L-deprenyl ( 11 C-DED) PET imaging, as well as magnetic resonance imaging (MRI) scanning, cerebrospinal fluid (CSF) biomarker analysis, and neuropsychological assessments. The parahippocampus was selected as a region of interest, and each value was calculated for four different imaging modalities. Correlation analysis was applied between DED slope values and gray matter (GM) densities by MRI. To further explore possible relationships, correlation analyses were performed between the different variables, including the CSF biomarker. A significant negative correlation was obtained between DED slope values and GM density in the parahippocampus in PIB-positive (PIB + ve) MCI patients (p = 0.025) (prodromal AD). Furthermore, in exploratory analyses, a positive correlation was observed between PIB-PET retention and DED binding in AD patients (p = 0.014), and a negative correlation was observed between PIB retention and CSF Aβ42 levels in MCI patients (p = 0.021), while the GM density and CSF total tau levels were negatively correlated in both PIB + ve MCI (p = 0.002) and MCI patients (p = 0.001). No significant correlation was observed with FDG-PET and with any of the other PET, MRI, or CSF biomarkers. High astrocytosis levels in the parahippocampus of PIB + ve MCI (prodromal AD) patients suggest an early preclinical influence on cellular tissue loss. The lack of correlation between

  14. Combinations of coupled cluster, density functionals, and the random phase approximation for describing static and dynamic correlation, and van der Waals interactions

    Science.gov (United States)

    Garza, Alejandro J.; Bulik, Ireneusz W.; Alencar, Ana G. Sousa; Sun, Jianwei; Perdew, John P.; Scuseria, Gustavo E.

    2016-04-01

    Contrary to standard coupled cluster doubles (CCD) and Brueckner doubles (BD), singlet-paired analogues of CCD and BD (denoted here as CCD0 and BD0) do not break down when static correlation is present, but neglect substantial amounts of dynamic correlation. In fact, CCD0 and BD0 do not account for any contributions from multielectron excitations involving only same-spin electrons at all. We exploit this feature to add - without introducing double counting, self-interaction, or increase in cost - the missing correlation to these methods via meta-GGA (generalised gradient approximation) density functionals (Tao-Perdew-Staroverov-Scuseria and strongly constrained and appropriately normed). Furthermore, we improve upon these CCD0+DFT blends by invoking range separation: the short- and long-range correlations absent in CCD0/BD0 are evaluated with density functional theory and the direct random phase approximation, respectively. This corrects the description of long-range van der Waals forces. Comprehensive benchmarking shows that the combinations presented here are very accurate for weakly correlated systems, while also providing a reasonable description of strongly correlated problems without resorting to symmetry breaking.

  15. Linear and curvilinear correlations of brain gray matter volume and density with age using voxel-based morphometry with the Akaike information criterion in 291 healthy children.

    Science.gov (United States)

    Taki, Yasuyuki; Hashizume, Hiroshi; Thyreau, Benjamin; Sassa, Yuko; Takeuchi, Hikaru; Wu, Kai; Kotozaki, Yuka; Nouchi, Rui; Asano, Michiko; Asano, Kohei; Fukuda, Hiroshi; Kawashima, Ryuta

    2013-08-01

    We examined linear and curvilinear correlations of gray matter volume and density in cortical and subcortical gray matter with age using magnetic resonance images (MRI) in a large number of healthy children. We applied voxel-based morphometry (VBM) and region-of-interest (ROI) analyses with the Akaike information criterion (AIC), which was used to determine the best-fit model by selecting which predictor terms should be included. We collected data on brain structural MRI in 291 healthy children aged 5-18 years. Structural MRI data were segmented and normalized using a custom template by applying the diffeomorphic anatomical registration using exponentiated lie algebra (DARTEL) procedure. Next, we analyzed the correlations of gray matter volume and density with age in VBM with AIC by estimating linear, quadratic, and cubic polynomial functions. Several regions such as the prefrontal cortex, the precentral gyrus, and cerebellum showed significant linear or curvilinear correlations between gray matter volume and age on an increasing trajectory, and between gray matter density and age on a decreasing trajectory in VBM and ROI analyses with AIC. Because the trajectory of gray matter volume and density with age suggests the progress of brain maturation, our results may contribute to clarifying brain maturation in healthy children from the viewpoint of brain structure. Copyright © 2012 Wiley Periodicals, Inc.

  16. Correlation for the estimation of the density of fatty acid esters fuels and its implications. A proposed Biodiesel Cetane Index.

    Science.gov (United States)

    Lapuerta, Magín; Rodríguez-Fernández, José; Armas, Octavio

    2010-09-01

    Biodiesel fuels (methyl or ethyl esters derived from vegetables oils and animal fats) are currently being used as a means to diminish the crude oil dependency and to limit the greenhouse gas emissions of the transportation sector. However, their physical properties are different from traditional fossil fuels, this making uncertain their effect on new, electronically controlled vehicles. Density is one of those properties, and its implications go even further. First, because governments are expected to boost the use of high-biodiesel content blends, but biodiesel fuels are denser than fossil ones. In consequence, their blending proportion is indirectly restricted in order not to exceed the maximum density limit established in fuel quality standards. Second, because an accurate knowledge of biodiesel density permits the estimation of other properties such as the Cetane Number, whose direct measurement is complex and presents low repeatability and low reproducibility. In this study we compile densities of methyl and ethyl esters published in literature, and proposed equations to convert them to 15 degrees C and to predict the biodiesel density based on its chain length and unsaturation degree. Both expressions were validated for a wide range of commercial biodiesel fuels. Using the latter, we define a term called Biodiesel Cetane Index, which predicts with high accuracy the Biodiesel Cetane Number. Finally, simple calculations prove that the introduction of high-biodiesel content blends in the fuel market would force the refineries to reduce the density of their fossil fuels. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Strong correlation in acene sheets from the active-space variational two-electron reduced density matrix method: effects of symmetry and size.

    Science.gov (United States)

    Pelzer, Kenley; Greenman, Loren; Gidofalvi, Gergely; Mazziotti, David A

    2011-06-09

    Polyaromatic hydrocarbons (PAHs) are a class of organic molecules with importance in several branches of science, including medicine, combustion chemistry, and materials science. The delocalized π-orbital systems in PAHs require highly accurate electronic structure methods to capture strong electron correlation. Treating correlation in PAHs has been challenging because (i) traditional wave function methods for strong correlation have not been applicable since they scale exponentially in the number of strongly correlated orbitals, and (ii) alternative methods such as the density-matrix renormalization group and variational two-electron reduced density matrix (2-RDM) methods have not been applied beyond linear acene chains. In this paper we extend the earlier results from active-space variational 2-RDM theory [Gidofalvi, G.; Mazziotti, D. A. J. Chem. Phys. 2008, 129, 134108] to the more general two-dimensional arrangement of rings--acene sheets--to study the relationship between geometry and electron correlation in PAHs. The acene-sheet calculations, if performed with conventional wave function methods, would require wave function expansions with as many as 1.5 × 10(17) configuration state functions. To measure electron correlation, we employ several RDM-based metrics: (i) natural-orbital occupation numbers, (ii) the 1-RDM von Neumann entropy, (iii) the correlation energy per carbon atom, and (iv) the squared Frobenius norm of the cumulant 2-RDM. The results confirm a trend of increasing polyradical character with increasing molecular size previously observed in linear PAHs and reveal a corresponding trend in two-dimensional (arch-shaped) PAHs. Furthermore, in PAHs of similar size they show significant variations in correlation with geometry. PAHs with the strictly linear geometry (chains) exhibit more electron correlation than PAHs with nonlinear geometries (sheets).

  18. Correlation between bone mineral density of jaws and skeletal sites in an Iranian population using dual X-ray energy absorptiometry.

    Science.gov (United States)

    Esfahanizadeh, Nasrin; Davaie, Sotoudeh; Rokn, A R; Daneshparvar, Hamid Reza; Bayat, Noushin; Khondi, Nasrin; Ajvadi, Sara; Ghandi, Mostafa

    2013-07-01

    The aim of the present study was to evaluate the relationship between the bone density of various regions of jaws and skeletal bones. A total of 110 patients with a mean age of 55.01 ± 10.77 years were selected for the purpose of the present descriptive study. Dual X-ray Energy Absorptiometry (DXA) was carried out to determine bone mineral density (BMD) of the femur and lumbar vertebrae. Then all the subjects underwent DXA of the jaw bones and BMD values were determined at four jaw regions. Data were analyzed by SPSS 16 statistical software, and the correlation between the various BMD values was determined by Pearson's correlation coefficient. The results showed that 42.7% of females had normal BMD values in the femur, and in vertebrae, 20% were osteopenic and 37.3% suffered from osteoporosis, with statistically significant differences in the BMD values of the jaws between the three above-mentioned groups (P < 0.001). There was an increasing tendency toward osteopenia and osteoporosis with age. There was a positive correlation between BMD values of the femur and lumbar vertebrae and those of all the jaw regions under study (P < 0.005). There was a negative correlation (P < 0.01) between age and the BMD values of the femur, lumbar vertebrae and anterior maxilla. The bone density of the maxilla and mandible and presence of osteoporosis or osteopenia in these bones might reflect the same problem in skeletal bones.

  19. Exchange correlation effects on plasmons and on charge-density wave instability in narrow-band quasi-one-dimensional metals

    International Nuclear Information System (INIS)

    Nobile, A.; Tosatti, E.

    1979-05-01

    The coexistence of tight-binding and exchange-correlation effects inside each chain of a model quasi-one-dimensional metal, on both plasmon and charge density wave properties have been studied. The results, while in qualitative agreement with other treatments of the problem at long wavelengths, indicate a strong tendency for plasmons to turn into excitons at larger momenta, and to exhibit an ''excitonic'' charge-density wave instability at k approximately 2ksub(F). The nature of the plasmon branches and of the excitonic charge distortion is examined. Relevance to existing quasi-one-dimensional materials is also discussed. (author)

  20. Assessment of the metabolic flow phenotype of primary colorectal cancer: correlations with microvessel density are influenced by the histological scoring method

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Vicky [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Rodriguez-Justo, Manuel [University College Hospital, Department of Histopathology, London (United Kingdom); Engledow, Alec; Peck, Jacqui [University College Hospital, Department of Surgery, London (United Kingdom); Shastry, Manu; Endozo, Raymondo; Meagher, Marie; Groves, Ashley M. [University College Hospital, Institute of Nuclear Medicine, London (United Kingdom); Taylor, Stuart A.; Halligan, Steve [University College Hospital, Specialist Radiology, London (United Kingdom)

    2012-08-15

    To investigate how the histological scoring of microvessel density affects correlations between integrated {sup 18}F-FDG-PET/perfusion CT parameters and CD105 microvessel density. A total of 53 patients were enrolled from 2007 to 2010. Integrated {sup 18}F-FDG-PET/perfusion CT was successful in 45 patients, 35 of whom underwent surgery without intervening treatment. Tumour SUV{sub max}, SUV{sub mean} and regional blood flow (BF) were derived. Immunohistochemical staining for CD105 expression and analysis were performed for two hot spots, four hot spots and the Chalkley method. Correlations between metabolic flow parameters and CD105 expression were assessed using Spearman's rank correlation. Mean (SD) for tumour size was 38.5 (20.5) mm, for SUV{sub max}, SUV{sub mean} and BF it was 19.1 (4.5), 11.6 (2.5) and 85.4 (40.3) mL/min/100 g tissue, and for CD105 microvessel density it was 71.4 (23.6), 66.8 (22.9) and 6.18 (2.07) for two hot spots, four hot spots and the Chalkley method, respectively. Positive correlation between BF and CD105 expression was modest but higher for Chalkley than for four hot spots analysis (r = 0.38, P = 0.03; r = 0.33, P = 0.05, respectively). There were no significant correlations between metabolic parameters (SUV{sub max} or SUV{sub mean}) and CD105 expression (r = 0.08-0.22, P = 0.21-0.63). The histological analysis method affects correlations between tumour CD105 expression and BF but not SUV{sub max} or SUV{sub mean}. (orig.)

  1. Assessment of the metabolic flow phenotype of primary colorectal cancer: correlations with microvessel density are influenced by the histological scoring method

    International Nuclear Information System (INIS)

    Goh, Vicky; Rodriguez-Justo, Manuel; Engledow, Alec; Peck, Jacqui; Shastry, Manu; Endozo, Raymondo; Meagher, Marie; Groves, Ashley M.; Taylor, Stuart A.; Halligan, Steve

    2012-01-01

    To investigate how the histological scoring of microvessel density affects correlations between integrated 18 F-FDG-PET/perfusion CT parameters and CD105 microvessel density. A total of 53 patients were enrolled from 2007 to 2010. Integrated 18 F-FDG-PET/perfusion CT was successful in 45 patients, 35 of whom underwent surgery without intervening treatment. Tumour SUV max , SUV mean and regional blood flow (BF) were derived. Immunohistochemical staining for CD105 expression and analysis were performed for two hot spots, four hot spots and the Chalkley method. Correlations between metabolic flow parameters and CD105 expression were assessed using Spearman's rank correlation. Mean (SD) for tumour size was 38.5 (20.5) mm, for SUV max , SUV mean and BF it was 19.1 (4.5), 11.6 (2.5) and 85.4 (40.3) mL/min/100 g tissue, and for CD105 microvessel density it was 71.4 (23.6), 66.8 (22.9) and 6.18 (2.07) for two hot spots, four hot spots and the Chalkley method, respectively. Positive correlation between BF and CD105 expression was modest but higher for Chalkley than for four hot spots analysis (r = 0.38, P = 0.03; r = 0.33, P = 0.05, respectively). There were no significant correlations between metabolic parameters (SUV max or SUV mean ) and CD105 expression (r = 0.08-0.22, P = 0.21-0.63). The histological analysis method affects correlations between tumour CD105 expression and BF but not SUV max or SUV mean . (orig.)

  2. Neurochemical Correlates of Accumbal Dopamine D2 and Amygdaloid 5-HT1B Receptor Densities on Observational Learning of Aggression

    Science.gov (United States)

    Suzuki, Hideo; Lucas, Louis R.

    2015-01-01

    Social learning theory postulates that individuals learn to engage in aggressive behavior through observing an aggressive social model. Prior studies have shown that repeatedly observing aggression, also called “chronic passive exposure to aggression,” changes accumbal dopamine D2 receptor (D2R) and amygdaloid 5-HT1B receptor (5-HT1BR) densities in observers. But, the association between these outcomes remains unknown. Thus, our study used a rat paradigm to comprehensively examine the linkage between aggression, D2R density in the nucleus accumbens core (AcbC) and shell (AcbSh), and 5-HT1BR density in the medial (MeA), basomedial (BMA), and basolateral (BLA) amygdala following chronic passive exposure to aggression. Male Sprague-Dawley rats (N = 72) were passively exposed to either aggression or non-aggression acutely (1 day) or chronically (23 days). When observer rats were exposed to aggression chronically, they showed increased aggressive behavior and reduced D2R density in the bilateral AcbSh. On the other hand, exposure to aggression, regardless of exposure length, increased 5-HT1BR density in the bilateral BLA. Finally, low D2R in the AcbSh significantly interacted with high 5-HT1BR density in the BLA in predicting high levels of aggression in observer rats. Our results advance our understanding of the neurobiological mechanisms for observational learning of aggression, highlighting that dopamine-serotonin interaction, or AcbSh-BLA interaction, may contribute to a risk factor for aggression in observers who chronically witness aggressive interactions. PMID:25650085

  3. Particle-particle and hole-hole RPA correlations at finite temperature and the temperature dependence of the level density parameter

    International Nuclear Information System (INIS)

    Vinh Mau, N.

    1987-11-01

    The pp-hh RPA equations obtained by summing the infinite series of ladder, upwards and backwards going diagrams in the temperature two particle Green's functions are derived at finite temperature. The contribution to the thermodynamic grand potential due to pp-hh RPA correlations is calculated simultaneously to that of ph RPA correlations. A schematic model is constructed which shows that, as for ph RPA states, the energies of pp and hh RPA states have no temperature dependence at not too high temperature. Within the same model, the temperature dependence of the level density parameter is discussed

  4. Particle-particle and hole-hole RPA correlations at finite temperature and the temperature dependence of the level density parameter

    International Nuclear Information System (INIS)

    Vinh Mau, N.

    1989-01-01

    The pp-hh RPA equations obtained by summing the infinite series of ladder, upwards- and backwards-going diagrams in the temperature two-particle Green functions are derived at finite temperature. The contribution to the thermodynamic grand potential due to pp-hh RPA correlations is calculated simultaneously to that of ph RPA correlations. A schematic model is constructed which shows that, as for ph RPA states, the energies of pp and hh RPA states have no temperature dependence at not too high temperature. Within the same model, the temperature dependence of the level density parameter is discussed. (orig.)

  5. Assessing Hubbard-corrected AM05+U and PBEsol+U density functionals for strongly correlated oxides CeO_2 and Ce_2O_3

    International Nuclear Information System (INIS)

    Weck, Philippe F.; Kim, Eunja

    2016-01-01

    The structure–property relationships of bulk CeO_2 and Ce_2O_3 have been investigated using AM05 and PBEsol exchange–correlation functionals within the frameworks of Hubbard-corrected density functional theory (DFT+U) and density functional perturbation theory (DFPT+U). Compared with conventional PBE+U, RPBE+U, PW91+U and LDA+U functionals, AM05+U and PBEsol+U describe experimental crystalline parameters and properties of CeO_2 and Ce_2O_3 with superior accuracy, especially when +U is chosen close to its value derived by the linear-response approach. Lastly, the present findings call for a reexamination of some of the problematic oxide materials featuring strong f- and d-electron correlation using AM05+U and PBEsol+U.

  6. Reporting Recommended Patch Density from Vehicle Panel Vibration Convergence Studies using both DAF and TBL Fits of the Spatial Correlation Function

    Science.gov (United States)

    Smith, Andrew M.; Davis, Robert Ben; LaVerde, Bruce T.; Jones, Douglas C.; Band, Jonathon L.

    2012-01-01

    Using the patch method to represent the continuous spatial correlation function of a phased pressure field over a structural surface is an approximation. The approximation approaches the continuous function as patches become smaller. Plotting comparisons of the approximation vs the continuous function may provide insight revealing: (1) For what patch size/density should the approximation be very good? (2) What the approximation looks like when it begins to break down? (3) What the approximation looks like when the patch size is grossly too large. Following these observations with a convergence study using one FEM may allow us to see the importance of patch density. We may develop insights that help us to predict sufficient patch density to provide adequate convergence for the intended purpose frequency range of interest

  7. Correlations Between the Density of Tryptase Positive Mast Cells (DMCT and that of New Blood Vessels (CD105+ in Patients with Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Micu Gianina Viorica

    2016-06-01

    Full Text Available Mast cells proteases, tryptase and chymase are directly involved in the growth and progression of solid tumors due to their important role in tumor angiogenesis. We examined the density of tryptase positive mast cells and the mean density of new blood vessels in gastric malignant tumors of patients with and without Helicobacter pylori infection, using immunohistochemical staining for tryptase (for mast cells and CD 105 (for new vessels. Tryptase and CD 105 expression was detected in gastrectomy specimens. In this study, mast cell density correlates with angiogenesis and the growth and progression of gastric cancer. It also shows that the participation of Helicobacter pylori infection in the growth and progress of gastric neoplasia is due to an increase of peritumoral angiogenesis, with subsequent local and distant tumor spread and perivascular growth, but without perineural and nodal involvement.

  8. Density-scaling exponents and virial potential-energy correlation coefficients for the (2n, n) Lennard-Jones system

    DEFF Research Database (Denmark)

    Friisberg, Ida Marie; Costigliola, Lorenzo; Dyre, Jeppe C.

    2017-01-01

    This paper investigates the relation between the density-scaling exponent γ and the virial potentialenergy coefficient R at several thermodynamic state points in three dimensions for the generalized (2n, n) Lennard-Jones (LJ) system for n = 4, 9, 12, 18, as well as for the standard n = 6 LJ syste...

  9. Charged plate in asymmetric electrolytes: One-loop renormalization of surface charge density and Debye length due to ionic correlations.

    Science.gov (United States)

    Ding, Mingnan; Lu, Bing-Sui; Xing, Xiangjun

    2016-10-01

    Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m:-n electrolyte. A perturbation series is developed in terms of g=4πκb, where band1/κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For asymmetric electrolytes (m≠n), the first order (one-loop) correction to mean potential contains a secular term, which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation, we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even when the density of electrolytes is relatively high.

  10. Prostate-specific antigen density: correlation with histological diagnosis of prostate cancer, benign prostatic hyperplasia and prostatitis

    NARCIS (Netherlands)

    van Iersel, M. P.; Witjes, W. P.; de la Rosette, J. J.; Oosterhof, G. O.

    1995-01-01

    To assess the additional value of prostate-specific antigen density in the diagnosis of prostate cancer in patients who undergo prostate biopsies. The study comprised 376 patients with symptoms of prostatism who were undergoing prostate biopsy. Digital rectal examination (DRE) and transrectal

  11. Quantitative CT assessment of proximal femoral bone density. An experimental study concerning its correlation to breaking load for femoral neck fractures

    International Nuclear Information System (INIS)

    Buitrago-Tellez, C.H.; Schulze, C.; Gufler, H.; Langer, M.; Bonnaire, F.; Hoenninger, A.; Kuner, E.

    1997-01-01

    Purpose: In an experimental study, the correlation between the trabecular bone density of the different regions of the proximal femur and the fracture load in the setting of femoral neck fractures was examined. Methods: The bone mineral density 41 random proximal human femora was estimated by single-energy quanitative CT (SE-QCT). The trabecular bone density was measured at the greatest possible extracortical volume at midcapital, midneck and intertrochanteric level and in the 1 cm 3 volumes of the centres of these regions in a standardised 10 mm thick slice in the middle of the femoral neck axis (in mg/ml Ca-hydroxyl apatite). The proximal femora were then isolated and mounted on a compression/bending device under two-legged stand conditions and loaded up to the point when a femoral neck fracture occurred. Results: Statistical analysis revealed a linear correlation between the trabecular bone density and the fracture load for the greater regions, with the highest value in the maximal area of the head (coefficient factor r=0.76). Conclusion: According to our data, the measurement of the trabecular bone by SE-QCT at the femoral head is a more confident adjunct than the neck or trochanteric area to predict a femoral neck fracture. (orig.) [de

  12. Microstructural and crystallographic imperfections of MgB2 superconducting wire and their correlation with the critical current density

    Science.gov (United States)

    Shahabuddin, Mohammed; Alzayed, Nasser S.; Oh, Sangjun; Choi, Seyong; Maeda, Minoru; Hata, Satoshi; Shimada, Yusuke; Hossain, Md Shahriar Al; Kim, Jung Ho

    2014-01-01

    A comprehensive study of the effects of structural imperfections in MgB2 superconducting wire has been conducted. As the sintering temperature becomes lower, the structural imperfections of the MgB2 material are increased, as reflected by detailed X-ray refinement and the normal state resistivity. The crystalline imperfections, caused by lattice disorder, directly affect the impurity scattering between the π and σ bands of MgB2, resulting in a larger upper critical field. In addition, low sintering temperature keeps the grain size small, which leads to a strong enhancement of pinning, and thereby, enhanced critical current density. Owing to both the impurity scattering and the grain boundary pinning, the critical current density, irreversibility field, and upper critical field are enhanced. Residual voids or porosities obviously remain in the MgB2, however, even at low sintering temperature, and thus block current transport paths.

  13. A density functional theory study of the influence of exchange-correlation functionals on the properties of FeAs.

    Science.gov (United States)

    Griffin, Sinéad M; Spaldin, Nicola A

    2017-06-01

    We use density functional theory within the local density approximation (LDA), LDA  +  U, generalised gradient approximation (GGA), GGA  +  U, and hybrid-functional methods to calculate the properties of iron monoarsenide. FeAs, which forms in the MnP structure, is of current interest for potential spintronic applications as well as being the parent compound for the pnictide superconductors. We compare the calculated structural, magnetic and electronic properties obtained using the different functionals to each other and to experiment, and investigate the origin of a recently reported magnetic spiral. Our results indicate the appropriateness or otherwise of the various functionals for describing FeAs and the related Fe-pnictide superconductors.

  14. Microstructural and crystallographic imperfections of MgB{sub 2} superconducting wire and their correlation with the critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Shahabuddin, Mohammed; Alzayed, Nasser S. [Department of Physics and Astronomy, College of Science, P. O. Box 2455, King Saud University, Riyadh 11451 (Saudi Arabia); Oh, Sangjun [Materials Research Team, National Fusion Research Institute, Yueeong, Daejeon 305-333 (Korea, Republic of); Choi, Seyong [Busan Center, Korea Basic Science Institute, Geumjeong, Busan 609-735 (Korea, Republic of); Maeda, Minoru [Department of Physics, College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Hata, Satoshi; Shimada, Yusuke [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Hossain, Md Shahriar Al [Institute for Superconducting and Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500 (Australia); Kim, Jung Ho, E-mail: jhk@uow.edu.au [Department of Physics and Astronomy, College of Science, P. O. Box 2455, King Saud University, Riyadh 11451 (Saudi Arabia); Institute for Superconducting and Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500 (Australia)

    2014-01-15

    A comprehensive study of the effects of structural imperfections in MgB{sub 2} superconducting wire has been conducted. As the sintering temperature becomes lower, the structural imperfections of the MgB{sub 2} material are increased, as reflected by detailed X-ray refinement and the normal state resistivity. The crystalline imperfections, caused by lattice disorder, directly affect the impurity scattering between the π and σ bands of MgB{sub 2}, resulting in a larger upper critical field. In addition, low sintering temperature keeps the grain size small, which leads to a strong enhancement of pinning, and thereby, enhanced critical current density. Owing to both the impurity scattering and the grain boundary pinning, the critical current density, irreversibility field, and upper critical field are enhanced. Residual voids or porosities obviously remain in the MgB{sub 2}, however, even at low sintering temperature, and thus block current transport paths.

  15. Proximal tibia volumetric bone mineral density is correlated to the magnitude of local acceleration in male long-distance runners

    OpenAIRE

    Dériaz, Olivier; Najafi, Bijan; Ballabeni, Pierluigi; Crettenand, Antoinette; Gobelet, Charles; Aminian, Kamiar; Rizzoli, René; Gremion, Gerald

    2010-01-01

    The beneficial effect of physical exercise on bone mineral density (BMD) is at least partly explained by the forces exerted directly on the bones. Male runners present generally higher BMD than sedentary individuals. We postulated that the proximal tibia BMD is related to the running distance, as well as to the magnitude of the shocks (while running) in male runners. A prospective study (three yearly measurements) included 81 healthy male subjects: 16 sedentary lean subjects, and 3 groups of ...

  16. Effect of the microscopic correlated-pinning landscape on the macroscopic critical current density in YBCO films

    Science.gov (United States)

    Ghigo, G.; Chiodoni, A.; Gerbaldo, R.; Gozzelino, L.; Laviano, F.; Mezzetti, E.; Minetti, B.; Camerlingo, C.

    This paper deals with the mechanisms controlling the critical current density vs. field behavior in YBCO films. We base our analysis on a suitable model concerning the existence of a network of intergrain Josephson junctions whose length is modulated by defects. Irradiation with 0.25 GeV Au ions provide a useful tool to check the texture of the sample, in particular to give a gauge length reference to separate “weak” links and high- J c links.

  17. Correlations Between the Gradient of Contrast Density, Evaluated by Cardio CT, and Functional Significance of Coronary Artery Stenosis

    Directory of Open Access Journals (Sweden)

    Orzan Marius

    2016-06-01

    Full Text Available Background: Assessment of the hemodynamic significance of a coronary artery stenosis is a challenging task, being extremely important for the establishment of indication for revascularization in atherosclerotic coronary artery stenosis. The aim of this study was to evaluate the role of a new marker reflecting the functional significance of a coronary artery stenosis, represented by the attenuation degree of contrast density along the stenosis by Coronary CT.

  18. Correlator bank detection of gravitational wave chirps--False-alarm probability, template density, and thresholds: Behind and beyond the minimal-match issue

    International Nuclear Information System (INIS)

    Croce, R.P.; Demma, Th.; Pierro, V.; Pinto, I.M.; Longo, M.; Marano, S.; Matta, V.

    2004-01-01

    The general problem of computing the false-alarm probability vs the detection-threshold relationship for a bank of correlators is addressed, in the context of maximum-likelihood detection of gravitational waves in additive stationary Gaussian noise. Specific reference is made to chirps from coalescing binary systems. Accurate (lower-bound) approximants for the cumulative distribution of the whole-bank supremum are deduced from a class of Bonferroni-type inequalities. The asymptotic properties of the cumulative distribution are obtained, in the limit where the number of correlators goes to infinity. The validity of numerical simulations made on small-size banks is extended to banks of any size, via a Gaussian-correlation inequality. The result is used to readdress the problem of relating the template density to the fraction of potentially observable sources which could be dismissed as an effect of template space discreteness

  19. Bond breaking and bond formation: how electron correlation is captured in many-body perturbation theory and density-functional theory.

    Science.gov (United States)

    Caruso, Fabio; Rohr, Daniel R; Hellgren, Maria; Ren, Xinguo; Rinke, Patrick; Rubio, Angel; Scheffler, Matthias

    2013-04-05

    For the paradigmatic case of H(2) dissociation, we compare state-of-the-art many-body perturbation theory in the GW approximation and density-functional theory in the exact-exchange plus random-phase approximation (RPA) for the correlation energy. For an unbiased comparison and to prevent spurious starting point effects, both approaches are iterated to full self-consistency (i.e., sc-RPA and sc-GW). The exchange-correlation diagrams in both approaches are topologically identical, but in sc-RPA they are evaluated with noninteracting and in sc-GW with interacting Green functions. This has a profound consequence for the dissociation region, where sc-RPA is superior to sc-GW. We argue that for a given diagrammatic expansion, sc-RPA outperforms sc-GW when it comes to bond breaking. We attribute this to the difference in the correlation energy rather than the treatment of the kinetic energy.

  20. Perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging in patients with rectal cancer: Correlation with microvascular density and vascular endothelial growth factor expression

    International Nuclear Information System (INIS)

    Kim, Yeo Eun; Lim, Joon Seok; Kim, Myeong Jin; Kim, Ki Whang; Choi, Jun Jeong; Kim, Dae Hong; Myoung, Sung Min

    2013-01-01

    To determine whether quantitative perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) correlate with immunohistochemical markers of angiogenesis in rectal cancer. Preoperative DCE-MRI was performed in 63 patients with rectal adenocarcinoma. Transendothelial volume transfer (K trans ) and fractional volume of the extravascular-extracellular space (Ve) were measured by Interactive Data Language software in rectal cancer. After surgery, microvessel density (MVD) and vascular endothelial growth factor (VEGF) expression scores were determined using immunohistochemical staining of rectal cancer specimens. Perfusion parameters (K trans , Ve) of DCE-MRI in rectal cancer were found to be correlated with MVD and VEGF expression scores by Spearman's rank coefficient analysis. T stage and N stage (negative or positive) were correlated with perfusion parameters and MVD. Significant correlation was not found between any DCE-MRI perfusion parameters and MVD (rs = -0.056 and p 0.662 for K trans ; rs = -0.103 and p = 0.416 for Ve), or between any DCE-MRI perfusion parameters and the VEGF expression score (rs = -0.042, p 0.741 for K trans ; r = 0.086, p = 0.497 for Ve) in rectal cancer. TN stage showed no significant correlation with perfusion parameters or MVD (p > 0.05 for all). DCE-MRI perfusion parameters, K trans and Ve, correlated poorly with MVD and VEGF expression scores in rectal cancer, suggesting that these parameters do not simply denote static histological vascular properties.

  1. The use of CT density changes at internal tissue interfaces to correlate internal organ motion with an external surrogate

    Energy Technology Data Exchange (ETDEWEB)

    Gaede, Stewart; Yu, Edward; Van Dyk, Jake; Battista, Jerry [Radiation Oncology Program, London Regional Cancer Program, London, Ontario (Canada); Carnes, Gregory; Lee, Ting-Yim [Department of Medical Biophysics, University of Western Ontario, London, Ontario (Canada)

    2009-01-21

    The purpose of this paper is to describe a non-invasive method to monitor the motion of internal organs affected by respiration without using external markers or spirometry, to test the correlation with external markers, and to calculate any time shift between the datasets. Ten lung cancer patients were CT scanned with a GE LightSpeed Plus 4-Slice CT scanner operating in a cine mode. We retrospectively reconstructed the raw CT data to obtain consecutive 0.5 s reconstructions at 0.1 s intervals to increase image sampling. We defined regions of interest containing tissue interfaces, including tumour/lung interfaces that move due to breathing on multiple axial slices and measured the mean CT number versus respiratory phase. Tumour motion was directly correlated with external marker motion, acquired simultaneously, using the sample coefficient of determination, r{sup 2}. Only three of the ten patients showed correlation higher than r{sup 2} = 0.80 between tumour motion and external marker position. However, after taking into account time shifts (ranging between 0 s and 0.4 s) between the two data sets, all ten patients showed correlation better than r{sup 2} = 0.8. This non-invasive method for monitoring the motion of internal organs is an effective tool that can assess the use of external markers for 4D-CT imaging and respiratory-gated radiotherapy on a patient-specific basis.

  2. Coulomb repulsion and correlation strength in LaFeAsO from density functional and dynamical mean-field theories

    Czech Academy of Sciences Publication Activity Database

    Anisimov, V.I.; Korotin, D. M.; Korotin, M. A.; Kozhevnikov, A, V.; Kuneš, Jan; Shorikov, A.O.; Skornyakov, S.L.; Streltsov, S. V.

    2009-01-01

    Roč. 21, č. 7 (2009), 075602/1-075602/7 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z10100521 Keywords : iron pnictide * electronic correlations * dynamical mean-field theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.964, year: 2009

  3. Whole-lung volume and density in spirometrically-gated inspiratory and expiratory CT in systemic sclerosis: correlation with static volumes at pulmonary function tests.

    Science.gov (United States)

    Camiciottoli, G; Diciotti, S; Bartolucci, M; Orlandi, I; Bigazzi, F; Matucci-Cerinic, M; Pistolesi, M; Mascalchi, M

    2013-03-01

    Spiral low-dose computed tomography (LDCT) permits to measure whole-lung volume and density in a single breath-hold. To evaluate the agreement between static lung volumes measured with LDCT and pulmonary function test (PFT) and the correlation between the LDCT volumes and lung density in restrictive lung disease. Patients with Systemic Sclerosis (SSc) with (n = 24) and without (n = 16) pulmonary involvement on sequential thin-section CT and patients with chronic obstructive pulmonary disease (COPD)(n = 29) underwent spirometrically-gated LDCT at 90% and 10% of vital capacity to measure inspiratory and expiratory lung volumes and mean lung attenuation (MLA). Total lung capacity and residual volume were measured the same day of CT. Inspiratory [95% limits of agreement (95% LoA)--43.8% and 39.2%] and expiratory (95% LoA -45.8% and 37.1%) lung volumes measured on LDCT and PFT showed poor agreement in SSc patients with pulmonary involvement, whereas they were in substantial agreement (inspiratory 95% LoA -14.1% and 16.1%; expiratory 95% LoA -13.5% and 23%) in SSc patients without pulmonary involvement and in inspiratory scans only (95% LoA -23.1% and 20.9%) of COPD patients. Inspiratory and expiratory LDCT volumes, MLA and their deltas differentiated both SSc patients with or without pulmonary involvement from COPD patients. LDCT lung volumes and density were not correlated in SSc patients with pulmonary involvement, whereas they did correlate in SSc without pulmonary involvement and in COPD patients. In restrictive lung disease due to SSc there is poor agreement between static lung volumes measured using LDCT and PFT and the relationship between volume and density values on CT is altered.

  4. Correlation between bone mineral density of jaws and skeletal sites in an Iranian population using dual X-ray energy absorptiometry

    Directory of Open Access Journals (Sweden)

    Nasrin Esfahanizadeh

    2013-01-01

    Full Text Available Background: The aim of the present study was to evaluate the relationship between the bone density of various regions of jaws and skeletal bones. Materials and Methods: A total of 110 patients with a mean age of 55.01 ± 10.77 years were selected for the purpose of the present descriptive study. Dual X-ray Energy Absorptiometry (DXA was carried out to determine bone mineral density (BMD of the femur and lumbar vertebrae. Then all the subjects underwent DXA of the jaw bones and BMD values were determined at four jaw regions. Data were analyzed by SPSS 16 statistical software, and the correlation between the various BMD values was determined by Pearson′s correlation coefficient. Results: The results showed that 42.7% of females had normal BMD values in the femur, and in vertebrae, 20% were osteopenic and 37.3% suffered from osteoporosis, with statistically significant differences in the BMD values of the jaws between the three above-mentioned groups (P < 0.001. There was an increasing tendency toward osteopenia and osteoporosis with age. There was a positive correlation between BMD values of the femur and lumbar vertebrae and those of all the jaw regions under study (P < 0.005. There was a negative correlation (P < 0.01 between age and the BMD values of the femur, lumbar vertebrae and anterior maxilla. Conclusion: The bone density of the maxilla and mandible and presence of osteoporosis or osteopenia in these bones might reflect the same problem in skeletal bones.

  5. Chiral Spin Texture in the Charge-Density-Wave Phase of the Correlated Metallic Pb /Si (111 ) Monolayer

    Science.gov (United States)

    Tresca, C.; Brun, C.; Bilgeri, T.; Menard, G.; Cherkez, V.; Federicci, R.; Longo, D.; Debontridder, F.; D'angelo, M.; Roditchev, D.; Profeta, G.; Calandra, M.; Cren, T.

    2018-05-01

    We investigate the 1 /3 monolayer α -Pb /Si (111 ) surface by scanning tunneling spectroscopy (STS) and fully relativistic first-principles calculations. We study both the high-temperature √{3 }×√{3 } and low-temperature 3 ×3 reconstructions and show that, in both phases, the spin-orbit interaction leads to an energy splitting as large as 25% of the valence-band bandwidth. Relativistic effects, electronic correlations, and Pb-substrate interaction cooperate to stabilize a correlated low-temperature paramagnetic phase with well-developed lower and upper Hubbard bands coexisting with 3 ×3 periodicity. By comparing the Fourier transform of STS conductance maps at the Fermi level with calculated quasiparticle interference from nonmagnetic impurities, we demonstrate the occurrence of two large hexagonal Fermi sheets with in-plane spin polarizations and opposite helicities.

  6. Magnetic Exchange Couplings from Semilocal Functionals Evaluated Nonself-Consistently on Hybrid Densities: Insights on Relative Importance of Exchange, Correlation, and Delocalization.

    Science.gov (United States)

    Phillips, Jordan J; Peralta, Juan E

    2012-09-11

    Semilocal functionals generally yield poor magnetic exchange couplings for transition-metal complexes, typically overpredicting in magnitude the experimental values. Here we show that semilocal functionals evaluated nonself-consistently on densities from hybrid functionals can yield magnetic exchange couplings that are greatly improved with respect to their self-consistent semilocal values. Furthermore, when semilocal functionals are evaluated nonself-consistently on densities from a "half-and-half" hybrid, their errors with respect to experimental values can actually be lower than those from self-consistent calculations with standard hybrid functionals such as PBEh or TPSSh. This illustrates that despite their notoriously poor performance for exchange couplings, for many systems semilocal functionals are capable of delivering accurate relative energies for magnetic states provided that their electron delocalization error is corrected. However, while self-consistent calculations with hybrids uniformly improve results for all complexes, evaluating nonself-consistently with semilocal functionals does not give a balanced improvement for both ferro- and antiferromagnetically coupled complexes, indicating that there is more at play with the overestimation problem than simply the delocalization error. Additionally, we show that for some systems the conventional wisdom of choice of exchange functional mattering more than correlation does not hold. This combined with results from the nonself-consistent calculations provide insight on clarifying the relative roles of exchange, correlation, and delocalization in calculating magnetic exchange coupling parameters in Kohn-Sham Density Functional Theory.

  7. Gas-phase formaldehyde adsorption isotherm studies on activated carbon: correlations of adsorption capacity to surface functional group density.

    Science.gov (United States)

    Carter, Ellison M; Katz, Lynn E; Speitel, Gerald E; Ramirez, David

    2011-08-01

    Formaldehyde (HCHO) adsorption isotherms were developed for the first time on three activated carbons representing one activated carbon fiber (ACF) cloth, one all-purpose granular activated carbon (GAC), and one GAC commercially promoted for gas-phase HCHO removal. The three activated carbons were evaluated for HCHO removal in the low-ppm(v) range and for water vapor adsorption from relative pressures of 0.1-0.9 at 26 °C where, according to the IUPAC isotherm classification system, the adsorption isotherms observed exhibited Type V behavior. A Type V adsorption isotherm model recently proposed by Qi and LeVan (Q-L) was selected to model the observed adsorption behavior because it reduces to a finite, nonzero limit at low partial pressures and it describes the entire range of adsorption considered in this study. The Q-L model was applied to a polar organic adsorbate to fit HCHO adsorption isotherms for the three activated carbons. The physical and chemical characteristics of the activated carbon surfaces were characterized using nitrogen adsorption isotherms, X-ray photoelectron spectroscopy (XPS), and Boehm titrations. At low concentrations, HCHO adsorption capacity was most strongly related to the density of basic surface functional groups (SFGs), while water vapor adsorption was most strongly influenced by the density of acidic SFGs.

  8. Serial imaging and structure-function correlates of high-density rings of fundus autofluorescence in retinitis pigmentosa.

    Science.gov (United States)

    Robson, Anthony G; Tufail, Adnan; Fitzke, Fred; Bird, Alan C; Moore, Anthony T; Holder, Graham E; Webster, Andrew R

    2011-09-01

    To document the evolution and functional and structural significance of parafoveal rings of high-density fundus autofluorescence (AF) in patients with retinitis pigmentosa and preserved visual acuity. Fifty-two patients with nonsyndromic retinitis pigmentosa or Usher syndrome, who had a parafoveal ring of high-density AF and a visual acuity of 20/30 or better, were ascertained. All had international standard full-field electroretinography and pattern electroretinography. Autofluorescence imaging was repeated in 30 patients after periods of up to 9.3 years. Of the 52 patients, 35 underwent optical coherence tomography. Progressive constriction of the ring was detected in 17 patients. Ring radius reduced by up to 40% at a mean rate of between 0.8% and 15.8% per year. In 1 patient, a small ring was replaced by irregular AF; visual acuity deteriorated over the same period. There was a high correspondence between the lateral extent of the preserved optical coherence tomography inner segment/outer segment band and the diameter of the ring along the same optical coherence tomographic scan plane (slope, 0.9; r = 0.97; P retina and preserved photopic function. Serial fundus AF may provide prognostic indicators for preservation of central acuity and potentially assist in the identification and evaluation of patients suitable for treatment aimed at preservation of remaining function.

  9. Correlation between expressions of hypoxia -inducible factor (HIF-1α, blood vessels density, cell proliferation, and apoptosis intensity in canine fibromas and fibrosarcomas

    Directory of Open Access Journals (Sweden)

    Madej Janusz A.

    2014-03-01

    Full Text Available The study aimed to demonstrate the expression of hypoxia-inducible factor (HIF-1α in soft tissue mesenchymal tumours (fibroma and fibrosarcoma in dogs. An attempt was made to correlate the obtained results with density of blood vessels (expression of von Willebrand Factor, vWF, expression of Ki-67 proliferation antigen, and with intensity of apoptosis in studied tumours. The study was performed on paraffin sections of 15 fibromas and 40 fibrosarcomas sampled from 55 female dogs aged 6 to 16 years. Immunohistochemical staining against HIF-1α, vWF, and Ki-67 was performed. Apoptosis was detected with the use of TUNEL reaction. A significantly higher HIF-1α expression was noted in fibrosarcomas in comparison to fibromas (P < 0.0001. HIF-1α expression in fibromas manifested strong positive correlation with tumour vascularity (r = 0.67, P = 0.007. Moreover, HIF-1α expression in fibrosarcomas manifested a moderate positive correlation with tumour malignancy grade (r = 0.44, P = 0.004, tumour vascularity (r = 0.52, P < 0.001, Ki-67 antigen expression (r = 0.42; P = 0.007, and TUNELpositive cells (r = 0.37, P = 0.017. Expression of HIF-1α was detected in 86.7% of fibroma type tumours and in 100% of fibrosarcomas. In all studied tumours expression of HIF-1α manifested positive correlation with the density of blood vessels, and in fibrosarcomas it correlated also with malignancy grade, intensity of Ki-67 expression, and with intensity of apoptosis in tumour cells.

  10. Density Functional Theory and the Basis Set Truncation Problem with Correlation Consistent Basis Sets: Elephant in the Room or Mouse in the Closet?

    Science.gov (United States)

    Feller, David; Dixon, David A

    2018-03-08

    Two recent papers in this journal called into question the suitability of the correlation consistent basis sets for density functional theory (DFT) calculations, because the sets were designed for correlated methods such as configuration interaction, perturbation theory, and coupled cluster theory. These papers focused on the ability of the correlation consistent and other basis sets to reproduce total energies, atomization energies, and dipole moments obtained from "quasi-exact" multiwavelet results. Undesirably large errors were observed for the correlation consistent basis sets. One of the papers argued that basis sets specifically optimized for DFT methods were "essential" for obtaining high accuracy. In this work we re-examined the performance of the correlation consistent basis sets by resolving problems with the previous calculations and by making more appropriate basis set choices for the alkali and alkaline-earth metals and second-row elements. When this is done, the statistical errors with respect to the benchmark values and with respect to DFT optimized basis sets are greatly reduced, especially in light of the relatively large intrinsic error of the underlying DFT method. When judged with respect to high-quality Feller-Peterson-Dixon coupled cluster theory atomization energies, the PBE0 DFT method used in the previous studies exhibits a mean absolute deviation more than a factor of 50 larger than the quintuple zeta basis set truncation error.

  11. The Correlation Between Porosity, Density and Degree of Serpentinization in Ophiolites from Point Sal, California: Implications for Strength of Oceanic Lithosphere

    Science.gov (United States)

    Karrasch, A. K.; Farough, A.; Lowell, R. P.

    2017-12-01

    Hydration and serpentinization of oceanic lithosphere influences its strength and behavior under stress. Serpentine content is the limiting factor in deformation and the correlation between crustal strength and the degree of serpentinization is not linear. Escartin et al., [2001] shows that the presence of only 10% serpentine results in a nominally non-dilatant mode of brittle deformation and reduces the strength of peridotites dramatically. In this study, we measured density and porosity of ophiolite samples from Point Sal, CA that had various degrees of serpentinization. The densities ranged between 2500- 3000 kg/m3 and porosities ranged between 2.1-4.8%. The degree of serpentinization was estimated from mineralogical analysis, and these data were combined with that of 4 other samples analyzed by Farough et al., [2016], which were obtained from various localities. The degree of serpentinization varied between 0.6 and 40%. We found that degree of serpentinization was inversely correlated with density with a slope of 7.25 (kg/m3)/%. Using Horen et al., [1996] models, estimated P-wave velocity of the samples ranged between 6.75-7.90 km/s and S-wave velocity ranged between 3.58-4.35 km/s. There were no distinguishable difference in the results between olivine-rich or pyroxene-rich samples. These results, along with correlations to strength and deformation style, can be used as a reference for mechanical properties of the crust at depth, analysis of deep drill cores and to estimate the rate of weakening of the oceanic crust after the onset of serpentinization reactions.

  12. The shortcomings of semi-local and hybrid functionals: what we can learn from surface science studies

    International Nuclear Information System (INIS)

    Stroppa, A; Kresse, G

    2008-01-01

    A study of the adsorption of CO on late 4d and 5d transition metal (111) surfaces (Ru, Rh, Pd, Ag, Os, Ir and Pt) considering atop and hollow site adsorption is presented. The applied functionals include the gradient-corrected Perdew-Burke-Ernzerhof (PBE) and Becke-Lee-Yang-Parr (BLYP) functionals, and the corresponding hybrid Hartree-Fock density functionals HSE and B3LYP. We find that PBE-based hybrid functionals (specifically HSE) yield, with the exception of Pt, the correct site order on all considered metals, but they also considerably overestimate the adsorption energies compared to experiment. On the other hand, the semi-local BLYP functional and the corresponding hybrid functional B3LYP yield very satisfactory adsorption energies and the correct adsorption site for all surfaces. We are thus faced with a Procrustean problem: the B3LYP and BLYP functionals seem to be the overall best choice for describing adsorption on metal surfaces, but they simultaneously fail to account well for the properties of the metal, vastly overestimating the equilibrium volume and underestimating the atomization energies. Setting out from these observations, general conclusions are drawn on the relative merits and drawbacks of various semi-local and hybrid functionals. The discussion includes a revised version of the PBE functional specifically optimized for bulk properties and surface energies (PBEsol), a revised version of the PBE functional specifically optimized to predict accurate adsorption energies (rPBE), as well as the aforementioned BLYP functional. We conclude that no semi-local functional is capable of describing all aspects properly, and including non-local exchange also only improves some but worsens other properties

  13. WE-AB-207B-05: Correlation of Normal Lung Density Changes with Dose After Stereotactic Body Radiotherapy (SBRT) for Early Stage Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q; Devpura, S; Feghali, K; Liu, C; Ajlouni, M; Movsas, B; Chetty, I [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: To investigate correlation of normal lung CT density changes with dose accuracy and outcome after SBRT for patients with early stage lung cancer. Methods: Dose distributions for patients originally planned and treated using a 1-D pencil beam-based (PB-1D) dose algorithm were retrospectively recomputed using algorithms: 3-D pencil beam (PB-3D), and model-based Methods: AAA, Acuros XB (AXB), and Monte Carlo (MC). Prescription dose was 12 Gy × 4 fractions. Planning CT images were rigidly registered to the followup CT datasets at 6–9 months after treatment. Corresponding dose distributions were mapped from the planning to followup CT images. Following the method of Palma et al .(1–2), Hounsfield Unit (HU) changes in lung density in individual, 5 Gy, dose bins from 5–45 Gy were assessed in the peri-tumor region, defined as a uniform, 3 cm expansion around the ITV(1). Results: There is a 10–15% displacement of the high dose region (40–45 Gy) with the model-based algorithms, relative to the PB method, due to the electron scattering of dose away from the tumor into normal lung tissue (Fig.1). Consequently, the high-dose lung region falls within the 40–45 Gy dose range, causing an increase in HU change in this region, as predicted by model-based algorithms (Fig.2). The patient with the highest HU change (∼110) had mild radiation pneumonitis, and the patient with HU change of ∼80–90 had shortness of breath. No evidence of pneumonitis was observed for the 3 patients with smaller CT density changes (<50 HU). Changes in CT densities, and dose-response correlation, as computed with model-based algorithms, are in excellent agreement with the findings of Palma et al. (1–2). Conclusion: Dose computed with PB (1D or 3D) algorithms was poorly correlated with clinically relevant CT density changes, as opposed to model-based algorithms. A larger cohort of patients is needed to confirm these results. This work was supported in part by a grant from Varian

  14. Majorana zero modes and long range edge correlation in interacting Kitaev chains: analytic solutions and density-matrix-renormalization-group study.

    Science.gov (United States)

    Miao, Jian-Jian; Jin, Hui-Ke; Zhang, Fu-Chun; Zhou, Yi

    2018-01-11

    We study Kitaev model in one-dimension with open boundary condition by using exact analytic methods for non-interacting system at zero chemical potential as well as in the symmetric case of Δ = t, and by using density-matrix-renormalization-group method for interacting system with nearest neighbor repulsion interaction. We suggest and examine an edge correlation function of Majorana fermions to characterize the long range order in the topological superconducting states and study the phase diagram of the interating Kitaev chain.

  15. Comparison of several measure-correlate-predict models using support vector regression techniques to estimate wind power densities. A case study

    International Nuclear Information System (INIS)

    Díaz, Santiago; Carta, José A.; Matías, José M.

    2017-01-01

    Highlights: • Eight measure-correlate-predict (MCP) models used to estimate the wind power densities (WPDs) at a target site are compared. • Support vector regressions are used as the main prediction techniques in the proposed MCPs. • The most precise MCP uses two sub-models which predict wind speed and air density in an unlinked manner. • The most precise model allows to construct a bivariable (wind speed and air density) WPD probability density function. • MCP models trained to minimise wind speed prediction error do not minimise WPD prediction error. - Abstract: The long-term annual mean wind power density (WPD) is an important indicator of wind as a power source which is usually included in regional wind resource maps as useful prior information to identify potentially attractive sites for the installation of wind projects. In this paper, a comparison is made of eight proposed Measure-Correlate-Predict (MCP) models to estimate the WPDs at a target site. Seven of these models use the Support Vector Regression (SVR) and the eighth the Multiple Linear Regression (MLR) technique, which serves as a basis to compare the performance of the other models. In addition, a wrapper technique with 10-fold cross-validation has been used to select the optimal set of input features for the SVR and MLR models. Some of the eight models were trained to directly estimate the mean hourly WPDs at a target site. Others, however, were firstly trained to estimate the parameters on which the WPD depends (i.e. wind speed and air density) and then, using these parameters, the target site mean hourly WPDs. The explanatory features considered are different combinations of the mean hourly wind speeds, wind directions and air densities recorded in 2014 at ten weather stations in the Canary Archipelago (Spain). The conclusions that can be drawn from the study undertaken include the argument that the most accurate method for the long-term estimation of WPDs requires the execution of a

  16. Improving the correlation of structural FEA models by the application of automated high density robotized laser Doppler vibrometry

    Science.gov (United States)

    Chowanietz, Maximilian; Bhangaonkar, Avinash; Semken, Michael; Cockrill, Martin

    2016-06-01

    Sound has had an intricate relation with the wellbeing of humans since time immemorial. It has the ability to enhance the quality of life immensely when present as music; at the same time, it can degrade its quality when manifested as noise. Hence, understanding its sources and the processes by which it is produced gains acute significance. Although various theories exist with respect to evolution of bells, it is indisputable that they carry millennia of cultural significance, and at least a few centuries of perfection with respect to design, casting and tuning. Despite the science behind its design, the nuances pertaining to founding and tuning have largely been empirical, and conveyed from one generation to the next. Post-production assessment for bells remains largely person-centric and traditional. However, progressive bell manufacturers have started adopting methods such as finite element analysis (FEA) for informing and optimising their future model designs. To establish confidence in the FEA process it is necessary to correlate the virtual model against a physical example. This is achieved by performing an experimental modal analysis (EMA) and comparing the results with those from FEA. Typically to collect the data for an EMA, the vibratory response of the structure is measured with the application of accelerometers. This technique has limitations; principally these are the observer effect and limited geometric resolution. In this paper, 3-dimensional laser Doppler vibrometry (LDV) has been used to measure the vibratory response with no observer effect due to the non-contact nature of the technique; resulting in higher accuracy measurements as the input to the correlation process. The laser heads were mounted on an industrial robot that enables large objects to be measured and extensive data sets to be captured quickly through an automated process. This approach gives previously unobtainable geometric resolution resulting in a higher confidence EMA. This is

  17. Correlation between the nitrogen concentration of two epiphytic lichens and the traffic density in an urban area

    International Nuclear Information System (INIS)

    Gombert, S.; Asta, J.; Seaward, M.R.D.

    2003-01-01

    Nitrogen concentrations of the lichen Physcia adscendens are related to traffic exposure. - A field experiment was carried out in the urban environment of the Grenoble area using two epiphytic lichens: the nitrophytic Physcia adscendens and the acidiphytic Hypogymnia physodes. Two complementary studies characterized this experiment. Firstly, a sampling of the two lichens in 48 sites randomly located throughout the Grenoble area indicated that roads (size and proximity to sampling sites) influenced the nitrogen concentrations of P. adscendens, but not those of H. physodes. Secondly, to study more accurately the influence of roads, a traffic index was calculated and applied along two transects located perpendicularly to urban motorways. Significant positive correlations were found between this traffic index and the total nitrogen concentration of P. adscendens

  18. Nano-viscosity of supercooled liquid measured by fluorescence correlation spectroscopy: Pressure and temperature dependence and the density scaling

    Science.gov (United States)

    Meier, G.; Gapinski, J.; Ratajczyk, M.; Lettinga, M. P.; Hirtz, K.; Banachowicz, E.; Patkowski, A.

    2018-03-01

    The Stokes-Einstein relation allows us to calculate apparent viscosity experienced by tracers in complex media on the basis of measured self-diffusion coefficients. Such defined nano-viscosity values can be obtained through single particle techniques, like fluorescence correlation spectroscopy (FCS) and particle tracking (PT). In order to perform such measurements, as functions of pressure and temperature, a new sample cell was designed and is described in this work. We show that this cell in combination with a long working distance objective of the confocal microscope can be used for successful FCS, PT, and confocal imaging experiments in broad pressure (0.1-100 MPa) and temperature ranges. The temperature and pressure dependent nano-viscosity of a van der Waals liquid obtained from the translational diffusion coefficient measured in this cell by means of FCS obeys the same scaling as the rotational relaxation and macro-viscosity of the system.

  19. Development of gradient-corrected exchange-correlation functionals in the density functional theory; Developpement de fonctionnelles corrigees du gradient en theorie de la fonctionnelle de la densite

    Energy Technology Data Exchange (ETDEWEB)

    Lembarki, A.

    1994-12-01

    In this work, we have developed some gradient-corrected exchange-correlation functionals. This study is in keeping with the density functional theory (DFT) formalism. In the first part of this memory, a description of Hartree-Fock (HF), post-HF and density functional theories is given. The second part is devoted the study the different approximations of DFT exchange-correlation functionals which have been proposed in the last years. In particular, we have underlined the approximations used for the construction of these functionals. The third part of this memory consists in the development of new gradient-corrected functionals. In this study, we have established a new relation between exchange energy, correlation energy and kinetic energy. We have deduced two new possible forms of exchange or correlation functionals, respectively. In the fourth part, we have studied the exchange potential, for which the actual formulation does not satisfy some theoretical conditions, such as the asymptotic behavior -1/r. Our contribution lies in the development of an exchange potential with a correct asymptotic -1/r behavior for large values of r. In this chapter, we have proposed a model which permits the obtention of the exchange energy from the exchange potential, using the virial theorem. The fifth part of this memory is devoted the application of these different functionals to simple systems (H{sub 2}O, CO, N{sub 2}O, H{sub 3}{sup +} and H{sub 5}{sup +}) in order to characterize the performance of DFT calculations in regards to those obtained with post-HF methods. (author). 215 refs., 8 figs., 28 tabs.

  20. "Cuts in Action": A High-Density EEG Study Investigating the Neural Correlates of Different Editing Techniques in Film.

    Science.gov (United States)

    Heimann, Katrin S; Uithol, Sebo; Calbi, Marta; Umiltà, Maria A; Guerra, Michele; Gallese, Vittorio

    2017-08-01

    In spite of their striking differences with real-life perception, films are perceived and understood without effort. Cognitive film theory attributes this to the system of continuity editing, a system of editing guidelines outlining the effect of different cuts and edits on spectators. A major principle in this framework is the 180° rule, a rule recommendation that, to avoid spectators' attention to the editing, two edited shots of the same event or action should not be filmed from angles differing in a way that expectations of spatial continuity are strongly violated. In the present study, we used high-density EEG to explore the neural underpinnings of this rule. In particular, our analysis shows that cuts and edits in general elicit early ERP component indicating the registration of syntactic violations as known from language, music, and action processing. However, continuity edits and cuts-across the line differ from each other regarding later components likely to be indicating the differences in spatial remapping as well as in the degree of conscious awareness of one's own perception. Interestingly, a time-frequency analysis of the occipital alpha rhythm did not support the hypothesis that such differences in processing routes are mainly linked to visual attention. On the contrary, our study found specific modulations of the central mu rhythm ERD as an indicator of sensorimotor activity, suggesting that sensorimotor networks might play an important role. We think that these findings shed new light on current discussions about the role of attention and embodied perception in film perception and should be considered when explaining spectators' different experience of different kinds of cuts. Copyright © 2016 Cognitive Science Society, Inc.

  1. Range-separated time-dependent density-functional theory with a frequency-dependent second-order Bethe-Salpeter correlation kernel

    Energy Technology Data Exchange (ETDEWEB)

    Rebolini, Elisa, E-mail: elisa.rebolini@kjemi.uio.no; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr [Laboratoire de Chimie Théorique, Sorbonne Universités, UPMC Univ Paris 06, CNRS, 4 place Jussieu, F-75005 Paris (France)

    2016-03-07

    We present a range-separated linear-response time-dependent density-functional theory (TDDFT) which combines a density-functional approximation for the short-range response kernel and a frequency-dependent second-order Bethe-Salpeter approximation for the long-range response kernel. This approach goes beyond the adiabatic approximation usually used in linear-response TDDFT and aims at improving the accuracy of calculations of electronic excitation energies of molecular systems. A detailed derivation of the frequency-dependent second-order Bethe-Salpeter correlation kernel is given using many-body Green-function theory. Preliminary tests of this range-separated TDDFT method are presented for the calculation of excitation energies of the He and Be atoms and small molecules (H{sub 2}, N{sub 2}, CO{sub 2}, H{sub 2}CO, and C{sub 2}H{sub 4}). The results suggest that the addition of the long-range second-order Bethe-Salpeter correlation kernel overall slightly improves the excitation energies.

  2. Quantification of Valleys of Randomly Textured Substrates as a Function of Opening Angle: Correlation to the Defect Density in Intrinsic nc-Si:H.

    Science.gov (United States)

    Kim, Do Yun; Hänni, Simon; Schüttauf, Jan-Willem; van Swaaij, René A C M M; Zeman, Miro

    2016-08-17

    Optical and electrical properties of hydrogenated nanocrystalline silicon (nc-Si:H) solar cells are strongly influenced by the morphology of underlying substrates. By texturing the substrates, the photogenerated current of nc-Si:H solar cells can increase due to enhanced light scattering. These textured substrates are, however, often incompatible with defect-less nc-Si:H growth resulting in lower Voc and FF. In this study we investigate the correlation between the substrate morphology, the nc-Si:H solar-cell performance, and the defect density in the intrinsic layer of the solar cells (i-nc-Si:H). Statistical surface parameters representing the substrate morphology do not show a strong correlation with the solar-cell parameters. Thus, we first quantify the line density of potentially defective valleys of randomly textured ZnO substrates where the opening angle is smaller than 130° (ρdrops. It is also observed that ρdefect increases following a power law dependence of ρ<130. This result is attributed to more frequently formed defective regions for substrates having higher ρ<130.

  3. Lung density

    DEFF Research Database (Denmark)

    Garnett, E S; Webber, C E; Coates, G

    1977-01-01

    The density of a defined volume of the human lung can be measured in vivo by a new noninvasive technique. A beam of gamma-rays is directed at the lung and, by measuring the scattered gamma-rays, lung density is calculated. The density in the lower lobe of the right lung in normal man during quiet...... breathing in the sitting position ranged from 0.25 to 0.37 g.cm-3. Subnormal values were found in patients with emphsema. In patients with pulmonary congestion and edema, lung density values ranged from 0.33 to 0.93 g.cm-3. The lung density measurement correlated well with the findings in chest radiographs...... but the lung density values were more sensitive indices. This was particularly evident in serial observations of individual patients....

  4. Wood anatomical correlates with theoretical conductivity and wood density across China: evolutionary evidence of the functional differentiation of axial and radial parenchyma.

    Science.gov (United States)

    Zheng, Jingming; Martínez-Cabrera, Hugo I

    2013-09-01

    In recent years considerable effort has focused on linking wood anatomy and key ecological traits. Studies analysing large databases have described how these ecological traits vary as a function of wood anatomical traits related to conduction and support, but have not considered how these functions interact with cells involved in storage of water and carbohydrates (i.e. parenchyma cells). We analyzed, in a phylogenetic context, the functional relationship between cell types performing each of the three xylem functions (conduction, support and storage) and wood density and theoretical conductivity using a sample of approx. 800 tree species from China. Axial parenchyma and rays had distinct evolutionary correlation patterns. An evolutionary link was found between high conduction capacity and larger amounts of axial parenchyma that is probably related to water storage capacity and embolism repair, while larger amounts of ray tissue have evolved with increased mechanical support and reduced hydraulic capacity. In a phylogenetic principal component analysis this association of axial parenchyma with increased conduction capacity and rays with wood density represented orthogonal axes of variation. In multivariate space, however, the proportion of rays might be positively associated with conductance and negatively with wood density, indicating flexibility in these axes in species with wide rays. The findings suggest that parenchyma types may differ in function. The functional axes represented by different cell types were conserved across lineages, suggesting a significant role in the ecological strategies of the angiosperms.

  5. Low density lipoprotein receptor-related protein 1 expression correlates with cholesteryl ester accumulation in the myocardium of ischemic cardiomyopathy patients

    Directory of Open Access Journals (Sweden)

    Cal Roi

    2012-08-01

    Full Text Available Abstract Our hypothesis was that overexpression of certain lipoprotein receptors might be related to lipid accumulation in the human ischemic myocardium. Intramyocardial lipid overload contributes to contractile dysfunction and arrhythmias in cardiomyopathy. Thus, the purpose of this study was to assess the effect of hypercholesterolemic LDL and hypertrigliceridemic VLDL dose on LRP1 expression in cardiomyocytes, as well as the potential correlation between LRP1 expression and neutral lipid accumulation in the left ventricle tissue from ischemic cardiomyopathy patients. Cell culture experiments include control and LRP1-deficient cardiomyocytes exposed to lipoproteins under normoxic and hypoxic conditions. Explanted hearts from 18 ICM patients and eight non-diseased hearts (CNT were included. Low density lipoprotein receptor-related protein 1 (LRP1, very low density lipoprotein receptor (VLDLR and low density lipoprotein receptor (LDLR expression was analyzed by real time PCR and Western blotting. Cholesteryl ester (CE, triglyceride (TG and free cholesterol (FC content was assess by thin layer chromatography following lipid extraction. Western blotting experiments showed that protein levels of LRP1, VLDLR and HIF-1α were significantly upregulated in ischemic hearts. Immunohistochemistry and confocal microscopy analysis showed that LRP1 and HIF-1α were upregulated in cardiomyocytes of ICM patients. In vitro studies showed that VLDL, LDL and hypoxia exerted an upregulatory effect on LRP1 expression and that LRP1 played a major role in cholesteryl ester accumulation from lipoproteins in cardiomyocytes. Myocardial CE accumulation strongly correlated with LRP1 levels in ischemic hearts. Taken together, our results suggest that LRP1 upregulation is key for myocardial cholesterol ester accumulation in ischemic human hearts and that LRP1 may be a target to prevent the deleterious effects of myocardial cholesterol accumulation in ischemic cardiomyopathy.

  6. Should breast MRI be performed with adjustment for the phase in patients’ menstrual cycle? Correlation between mammographic density, age, and background enhancement on breast MRI without adjusting for the phase in patients’ menstrual cycle

    International Nuclear Information System (INIS)

    Uematsu, Takayoshi; Kasami, Masako; Watanabe, Junichiro

    2012-01-01

    Purpose: The purpose of this study was to assess the correlation between mammographic density, age, and background enhancement on breast MRI without adjusting for the phase in patients’ menstrual cycle. Material and methods: The background enhancement of bilateral breast MRI and the breast density of mammography in 146 consecutive women without adjusting for the phase in patients’ menstrual cycle were reviewed. The breast density was classified into four categories according to the American College of Radiology the Breast Imaging Reporting and Data System lexicon. The background enhancement was classified into four categories: minimal, mild, moderate, and marked. The correlations of mammographic breast density as well as age with background enhancement on breast MRI were examined. Results: There was a significant correlation between mammographic breast density and background enhancement (p = 0.011). All nine cases with almost completely fat mammographic breast density showed minimal (78%) or mild (12%) background enhancement on breast MRI. There was a significant inverse correlation between age and background enhancement (p < 0.0001). Younger patients with dense breasts were more likely to demonstrate moderate/marked background enhancement. Conclusion: When no adjusting for the phase in patients’ menstrual cycle, a significant correlation was observed between background enhancement and mammographic density. A significant inverse correlation was also observed between age and background enhancement.

  7. Quantitative dual-energy CT for phantomless evaluation of cancellous bone mineral density of the vertebral pedicle: correlation with pedicle screw pull-out strength

    Energy Technology Data Exchange (ETDEWEB)

    Wichmann, Julian L.; Booz, Christian; Bauer, Ralf W.; Kerl, J.M.; Fischer, Sebastian; Lehnert, Thomas; Vogl, Thomas J.; Khan, M.F. [University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt am Main (Germany); Wesarg, Stefan [Fraunhofer IGD, Cognitive Computing and Medical Imaging, Darmstadt (Germany); Kafchitsas, Konstantinos [Spine Center, Asklepios Klinik Lindenlohe, Schwandorf (Germany)

    2015-06-01

    To evaluate quantitative dual-energy computed tomography (DECT) for phantomless analysis of cancellous bone mineral density (BMD) of vertebral pedicles and to assess the correlation with pedicle screw pull-out strength. Twenty-nine thoracic and lumbar vertebrae from cadaver specimens were examined with DECT. Using dedicated post-processing software, a pedicle screw vector was mapped (R1, intrapedicular segment of the pedicle vector; R2, intermediate segment; R3, intracorporal segment; global, all segments) and BMD was calculated. To invasively evaluate pedicle stability, pedicle screws were drilled through both pedicles and left pedicle screw pull-out strength was measured. Resulting values were correlated using the paired t test and Pearson's linear correlation. Average pedicle screw vector BMD (R1, 0.232 g/cm{sup 3}; R2, 0.166 g/cm{sup 3}; R3, 0.173 g/cm{sup 3}; global, 0.236 g/cm{sup 3}) showed significant differences between R1-R2 (P < 0.002) and R1-R3 (P < 0.034) segments while comparison of R2-R3 did not reach significance (P > 0.668). Average screw pull-out strength (639.2 N) showed a far stronger correlation with R1 (r = 0.80; P < 0.0001) than global BMD (r = 0.42; P = 0.025), R2 (r = 0.37; P = 0.048) and R3 (r = -0.33; P = 0.078) segments. Quantitative DECT allows for phantomless BMD assessment of the vertebral pedicle. BMD of the intrapedicular segment shows a significantly stronger correlation with pedicle screw pull-out strength than other segments. (orig.)

  8. MN15-L: A New Local Exchange-Correlation Functional for Kohn-Sham Density Functional Theory with Broad Accuracy for Atoms, Molecules, and Solids.

    Science.gov (United States)

    Yu, Haoyu S; He, Xiao; Truhlar, Donald G

    2016-03-08

    Kohn-Sham density functional theory is widely used for applications of electronic structure theory in chemistry, materials science, and condensed-matter physics, but the accuracy depends on the quality of the exchange-correlation functional. Here, we present a new local exchange-correlation functional called MN15-L that predicts accurate results for a broad range of molecular and solid-state properties including main-group bond energies, transition metal bond energies, reaction barrier heights, noncovalent interactions, atomic excitation energies, ionization potentials, electron affinities, total atomic energies, hydrocarbon thermochemistry, and lattice constants of solids. The MN15-L functional has the same mathematical form as a previous meta-nonseparable gradient approximation exchange-correlation functional, MN12-L, but it is improved because we optimized it against a larger database, designated 2015A, and included smoothness restraints; the optimization has a much better representation of transition metals. The mean unsigned error on 422 chemical energies is 2.32 kcal/mol, which is the best among all tested functionals, with or without nonlocal exchange. The MN15-L functional also provides good results for test sets that are outside the training set. A key issue is that the functional is local (no nonlocal exchange or nonlocal correlation), which makes it relatively economical for treating large and complex systems and solids. Another key advantage is that medium-range correlation energy is built in so that one does not need to add damped dispersion by molecular mechanics in order to predict accurate noncovalent binding energies. We believe that the MN15-L functional should be useful for a wide variety of applications in chemistry, physics, materials science, and molecular biology.

  9. Correlations of 3T DCE-MRI Quantitative Parameters with Microvessel Density in a Human-Colorectal-Cancer Xenograft Mouse Model

    International Nuclear Information System (INIS)

    Ahn, Sung Jun; An, Chan Sik; Koom, Woong Sub; Song, Ho Taek; Suh, Jin Suck

    2011-01-01

    To investigate the correlation between quantitative dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) parameters and microvascular density (MVD) in a human-colon-cancer xenograft mouse model using 3 Tesla MRI. A human-colon-cancer xenograft model was produced by subcutaneously inoculating 1 X 106 DLD-1 human-colon-cancer cells into the right hind limbs of 10 mice. The tumors were allowed to grow for two weeks and then assessed using MRI. DCE-MRI was performed by tail vein injection of 0.3 mmol/kg of gadolinium. A region of interest (ROI) was drawn at the midpoints along the z-axes of the tumors, and a Tofts model analysis was performed. The quantitative parameters (Ktrans, Kep and Ve) from the whole transverse ROI and the hotspot ROI of the tumor were calculated. Immunohistochemical microvessel staining was performed and analyzed according to Weidner's criteria at the corresponding MRI sections. Additional Hematoxylin and Eosin staining was performed to evaluate tumor necrosis. The Mann-Whitney test and Spearman's rho correlation analysis were performed to prove the existence of a correlation between the quantitative parameters, necrosis, and MVD. Whole transverse ROI of the tumor showed no significant relationship between the MVD values and quantitative DCE-MRI parameters. In the hotspot ROI, there was a difference in MVD between low and high group of Ktrans and Kep that had marginally statistical significance (ps = 0.06 and 0.07, respectively). Also, Ktrans and Kep were found to have an inverse relationship with MVD (r -0.61, p = 0.06 in Ktrans; r = -0.60, p = 0.07 in Kep). Quantitative analysis of T1-weighted DCE-MRI using hotspot ROI may provide a better histologic match than whole transverse section ROI. Within the hotspots, Ktrans and Kep tend to have a reverse correlation with MVD in this colon cancer mouse model.

  10. Correlations of 3T DCE-MRI Quantitative Parameters with Microvessel Density in a Human-Colorectal-Cancer Xenograft Mouse Model

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sung Jun; An, Chan Sik; Koom, Woong Sub; Song, Ho Taek; Suh, Jin Suck [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2011-11-15

    To investigate the correlation between quantitative dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) parameters and microvascular density (MVD) in a human-colon-cancer xenograft mouse model using 3 Tesla MRI. A human-colon-cancer xenograft model was produced by subcutaneously inoculating 1 X 106 DLD-1 human-colon-cancer cells into the right hind limbs of 10 mice. The tumors were allowed to grow for two weeks and then assessed using MRI. DCE-MRI was performed by tail vein injection of 0.3 mmol/kg of gadolinium. A region of interest (ROI) was drawn at the midpoints along the z-axes of the tumors, and a Tofts model analysis was performed. The quantitative parameters (Ktrans, Kep and Ve) from the whole transverse ROI and the hotspot ROI of the tumor were calculated. Immunohistochemical microvessel staining was performed and analyzed according to Weidner's criteria at the corresponding MRI sections. Additional Hematoxylin and Eosin staining was performed to evaluate tumor necrosis. The Mann-Whitney test and Spearman's rho correlation analysis were performed to prove the existence of a correlation between the quantitative parameters, necrosis, and MVD. Whole transverse ROI of the tumor showed no significant relationship between the MVD values and quantitative DCE-MRI parameters. In the hotspot ROI, there was a difference in MVD between low and high group of Ktrans and Kep that had marginally statistical significance (ps = 0.06 and 0.07, respectively). Also, Ktrans and Kep were found to have an inverse relationship with MVD (r -0.61, p = 0.06 in Ktrans; r = -0.60, p = 0.07 in Kep). Quantitative analysis of T1-weighted DCE-MRI using hotspot ROI may provide a better histologic match than whole transverse section ROI. Within the hotspots, Ktrans and Kep tend to have a reverse correlation with MVD in this colon cancer mouse model.

  11. A molecular dynamics investigation of the surface tension of water nanodroplets and a new technique for local pressure determination through density correlation

    Science.gov (United States)

    Leong, Kai-Yang; Wang, Feng

    2018-04-01

    The surface tension of nanoscale droplets of water was studied with molecular dynamics simulations using the BLYPSP-4F water potential. The internal pressure of the droplet was measured using an empirical correlation between the pressure and density, established through a series of bulk simulations performed at pressures from 1 to 1000 bars. Such a procedure allows for reliable determination of internal pressure without the need to calculate the local virial. The surface tension, estimated with the Young-Laplace relation, shows good agreement with the Tolman equation with a Tolman length of -0.48 Å. The interface of a liquid water droplet is shown to be around 1.1-1.3 nm thick depending on radii. The fairly thick interface region puts a lower limit on the size of droplets that still have a bulk-like interior.

  12. Influence of Exchange-Correlation Functional in the Calculations of Vertical Excitation Energies of Halogenated Copper Phthalocyanines using Time-Dependent Density Functional Theory (TD-DFT)

    International Nuclear Information System (INIS)

    Lee, Sang Uck

    2013-01-01

    The accurate prediction of vertical excitation energies is very important for the development of new materials in the dye and pigment industry. A time-dependent density functional theory (TD-DFT) approach coupled with 22 different exchange-correlation functionals was used for the prediction of vertical excitation energies in the halogenated copper phthalocyanine molecules in order to find the most appropriate functional and to determine the accuracy of the prediction of the absorption wavelength and observed spectral shifts. Among the tested functional, B3LYP functional provides much more accurate vertical excitation energies and UV-vis spectra. Our results clearly provide a benchmark calibration of the TD-DFT method for phthalocyanine based dyes and pigments used in industry

  13. On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters: Benchmarks approaching the complete basis set limit

    Science.gov (United States)

    Santra, Biswajit; Michaelides, Angelos; Scheffler, Matthias

    2007-11-01

    The ability of several density-functional theory (DFT) exchange-correlation functionals to describe hydrogen bonds in small water clusters (dimer to pentamer) in their global minimum energy structures is evaluated with reference to second order Møller-Plesset perturbation theory (MP2). Errors from basis set incompleteness have been minimized in both the MP2 reference data and the DFT calculations, thus enabling a consistent systematic evaluation of the true performance of the tested functionals. Among all the functionals considered, the hybrid X3LYP and PBE0 functionals offer the best performance and among the nonhybrid generalized gradient approximation functionals, mPWLYP and PBE1W perform best. The popular BLYP and B3LYP functionals consistently underbind and PBE and PW91 display rather variable performance with cluster size.

  14. Assessing exchange-correlation functionals for elasticity and thermodynamics of α -ZrW2O8 : A density functional perturbation theory study

    Science.gov (United States)

    Weck, Philippe F.; Kim, Eunja; Greathouse, Jeffery A.; Gordon, Margaret E.; Bryan, Charles R.

    2018-04-01

    Elastic and thermodynamic properties of negative thermal expansion (NTE) α -ZrW2O8 have been calculated using PBEsol and PBE exchange-correlation functionals within the framework of density functional perturbation theory (DFPT). Measured elastic constants are reproduced within ∼ 2 % with PBEsol and ∼ 6 % with PBE. The thermal evolution of the Grüneisen parameter computed within the quasi-harmonic approximation exhibits negative values below the Debye temperature, consistent with observation. The standard molar heat capacity is predicted to be CP0 = 192.2 and 193.8 J mol-1K-1 with PBEsol and PBE, respectively. These results suggest superior accuracy of DFPT/PBEsol for studying the lattice dynamics, elasticity and thermodynamics of NTE materials.

  15. Quantitative ultrasound of the calcaneus with parametric imaging: correlation with bone mineral density at different sites and with anthropometric data in menopausal women

    International Nuclear Information System (INIS)

    Louis, O.; Kaufman, L.; Osteaux, M.

    2000-01-01

    Objective: To prospectively study the relationship of quantitative ultrasound of the calcaneus with anthromopometric variables and with bone mineral density (BMD) assessed at the level of the calcaneus as well as at other sites. Method: Osteosonography of the non-dominant calcaneus was performed in 135 menopausal women, using a DTU-one device with parametric imaging. Broadband ultrasound attenuation (BUA) and speed of sound (SOS) were assessed. BMD of the calcaneus (BMDcal) was measured using dual energy X-ray absorptiometry (DXA), in a subregion matched with the region of interest for osteosonography. BMD of the lumbar trabecular bone was measured using quantitative computed tomography (BMD QCT) while the non-dominant hip was studied using DXA, which provided the total bone mineral density (BMDhip) and that of the Ward triangle (BMDWard). Results: The Pearson correlation coefficients between BUA, SOS and the various measurements of BMD ranged from 0.305 (SOS versus BMDhip) to 0.717 (BUA versus BMDcal). BMD QCT and BMDWard were found to depend on age, but not on weight or height, while BUA, SOS, BMDcal, BMDhip were unrelated to age, but correlated with weight (SOS, BMDhip) or with weight and height (BUA, BMDcal). In a multiple stepwise regression analysis, age was a significant predictor for BMD QCT, BMD hip and BMDWard; BMD QCT, BMDWard and BMDhip admitted BUA as sole predictor, while BMDcal was significantly related to both BUA and SOS. Conclusion: BUA and SOS of the calcaneus, assessed in 135 menopausal women using a parametric imaging device, reflected BMDcal, measured with DXA at a matched region of interest, and did not decline significantly with age

  16. Quantitative ultrasound of the calcaneus with parametric imaging: correlation with bone mineral density at different sites and with anthropometric data in menopausal women

    Energy Technology Data Exchange (ETDEWEB)

    Louis, O.; Kaufman, L.; Osteaux, M

    2000-07-01

    Objective: To prospectively study the relationship of quantitative ultrasound of the calcaneus with anthromopometric variables and with bone mineral density (BMD) assessed at the level of the calcaneus as well as at other sites. Method: Osteosonography of the non-dominant calcaneus was performed in 135 menopausal women, using a DTU-one device with parametric imaging. Broadband ultrasound attenuation (BUA) and speed of sound (SOS) were assessed. BMD of the calcaneus (BMDcal) was measured using dual energy X-ray absorptiometry (DXA), in a subregion matched with the region of interest for osteosonography. BMD of the lumbar trabecular bone was measured using quantitative computed tomography (BMD QCT) while the non-dominant hip was studied using DXA, which provided the total bone mineral density (BMDhip) and that of the Ward triangle (BMDWard). Results: The Pearson correlation coefficients between BUA, SOS and the various measurements of BMD ranged from 0.305 (SOS versus BMDhip) to 0.717 (BUA versus BMDcal). BMD QCT and BMDWard were found to depend on age, but not on weight or height, while BUA, SOS, BMDcal, BMDhip were unrelated to age, but correlated with weight (SOS, BMDhip) or with weight and height (BUA, BMDcal). In a multiple stepwise regression analysis, age was a significant predictor for BMD QCT, BMD hip and BMDWard; BMD QCT, BMDWard and BMDhip admitted BUA as sole predictor, while BMDcal was significantly related to both BUA and SOS. Conclusion: BUA and SOS of the calcaneus, assessed in 135 menopausal women using a parametric imaging device, reflected BMDcal, measured with DXA at a matched region of interest, and did not decline significantly with age.

  17. A Bone Sample Containing a Bone Graft Substitute Analyzed by Correlating Density Information Obtained by X-ray Micro Tomography with Compositional Information Obtained by Raman Microscopy

    Directory of Open Access Journals (Sweden)

    Johann Charwat-Pessler

    2015-06-01

    Full Text Available The ability of bone graft substitutes to promote new bone formation has been increasingly used in the medical field to repair skeletal defects or to replace missing bone in a broad range of applications in dentistry and orthopedics. A common way to assess such materials is via micro computed tomography (µ-CT, through the density information content provided by the absorption of X-rays. Information on the chemical composition of a material can be obtained via Raman spectroscopy. By investigating a bone sample from miniature pigs containing the bone graft substitute Bio Oss®, we pursued the target of assessing to what extent the density information gained by µ-CT imaging matches the chemical information content provided by Raman spectroscopic imaging. Raman images and Raman correlation maps of the investigated sample were used in order to generate a Raman based segmented image by means of an agglomerative, hierarchical cluster analysis. The resulting segments, showing chemically related areas, were subsequently compared with the µ-CT image by means of a one-way ANOVA. We found out that to a certain extent typical gray-level values (and the related histograms in the µ-CT image can be reliably related to specific segments within the image resulting from the cluster analysis.

  18. Chiral Spin-Density Wave, Spin-Charge-Chern Liquid, and d+id Superconductivity in 1/4-Doped Correlated Electronic Systems on the Honeycomb Lattice

    Directory of Open Access Journals (Sweden)

    Shenghan Jiang

    2014-09-01

    Full Text Available Recently, two interesting candidate quantum phases—the chiral spin-density wave state featuring anomalous quantum Hall effect and the d+id superconductor—were proposed for the Hubbard model on the honeycomb lattice at 1/4 doping. Using a combination of exact diagonalization, density matrix renormalization group, the variational Monte Carlo method, and quantum field theories, we study the quantum phase diagrams of both the Hubbard model and the t-J model on the honeycomb lattice at 1/4 doping. The main advantage of our approach is the use of symmetry quantum numbers of ground-state wave functions on finite-size systems (up to 32 sites to sharply distinguish different quantum phases. Our results show that for 1≲U/t<40 in the Hubbard model and for 0.1density wave state or a spin-charge-Chern liquid, but not a d+id superconductor. However, in the t-J model, upon increasing J, the system goes through a first-order phase transition at J/t=0.80(2 into the d+id superconductor. Here, the spin-charge-Chern liquid state is a new type of topologically ordered quantum phase with Abelian anyons and fractionalized excitations. Experimental signatures of these quantum phases, such as tunneling conductance, are calculated. These results are discussed in the context of 1/4-doped graphene systems and other correlated electronic materials on the honeycomb lattice.

  19. Mechanical alterations of rabbit Achilles' tendon after immobilization correlate with bone mineral density but not with magnetic resonance or ultrasound imaging.

    Science.gov (United States)

    Trudel, Guy; Koike, Yoichi; Ramachandran, Nanthan; Doherty, Geoff; Dinh, Laurent; Lecompte, Martin; Uhthoff, Hans K

    2007-12-01

    To assess the usefulness of magnetic resonance imaging (MRI), ultrasound (US) imaging, or bone mineral density (BMD) in predicting the mechanical properties of immobilized rabbit Achilles' tendons. Experimental study. Basic university laboratory. Twenty-eight rabbits. Twelve rabbits had 1 hindlimb casted for 4 weeks and 10 rabbits were casted for 8 weeks. Contralateral legs and 12 normal hindlimbs served as controls. Achilles' tendon dimensions on MRI and US, T1- and T2-signal intensities on MRI, classification of abnormalities on MRI and US; BMD of the calcaneus with dual-energy x-ray absorptiometry. Biomechanic measures consisted of peak load, stiffness, and stress. Imaging variables were correlated with biomechanic alterations. Immobilized Achilles' tendons were weaker and showed decreased mechanical stress compared with their contralateral legs and controls (all PAchilles' tendons after immobilization. However, neither increased MRI nor US signal abnormality was found. BMD was lower in immobilized calcanei and larger in contralateral legs than controls. Only BMD correlated with both the decreased peak load (R2=.42, PAchilles' tendon. This study established weakened mechanical properties of immobilized Achilles' tendons. BMD of the calcaneus, but not MRI and US, was predictive of the mechanical alterations in immobilized Achilles' tendons. BMD may be a useful biomarker to monitor disease and recovery in Achilles' tendons.

  20. Density functional studies on the exchange interaction of a dinuclear Gd(iii)-Cu(ii) complex: method assessment, magnetic coupling mechanism and magneto-structural correlations.

    Science.gov (United States)

    Rajaraman, Gopalan; Totti, Federico; Bencini, Alessandro; Caneschi, Andrea; Sessoli, Roberta; Gatteschi, Dante

    2009-05-07

    Density functional calculations have been performed on a [Gd(iii)Cu(ii)] complex [L(1)CuGd(O(2)CCF(3))(3)(C(2)H(5)OH)(2)] () (where L(1) is N,N'-bis(3-ethoxy-salicylidene)-1,2-diamino-2-methylpropanato) with an aim of assessing a suitable functional within the DFT formalism to understand the mechanism of magnetic coupling and also to develop magneto-structural correlations. Encouraging results have been obtained in our studies where the application of B3LYP on the crystal structure of yields a ferromagnetic J value of -5.8 cm(-1) which is in excellent agreement with the experimental value of -4.42 cm(-1) (H = JS(Gd).S(Cu)). After testing varieties of functional for the method assessment we recommend the use of B3LYP with a combination of an effective core potential basis set. For all electron basis sets the relativistic effects should be incorporated either via the Douglas-Kroll-Hess (DKH) or zeroth-order regular approximation (ZORA) methods. A breakdown approach has been adopted where the calculations on several model complexes of have been performed. Their wave functions have been analysed thereafter (MO and NBO analysis) in order to gain some insight into the coupling mechanism. The results suggest, unambiguously, that the empty Gd(iii) 5d orbitals have a prominent role on the magnetic coupling. These 5d orbitals gain partial occupancy via Cu(ii) charge transfer as well as from the Gd(iii) 4f orbitals. A competing 4f-3d interaction associated with the symmetry of the complex has also been observed. The general mechanism hence incorporates both contributions and sets forth rather a prevailing mechanism for the 3d-4f coupling. The magneto-structural correlations reveal that there is no unique parameter which the J values are strongly correlated with, but an exponential relation to the J value found for the O-Cu-O-Gd dihedral angle parameter is the most credible correlation.

  1. A non-JKL density matrix functional for intergeminal correlation between closed-shell geminals from analysis of natural orbital configuration interaction expansions.

    Science.gov (United States)

    van Meer, R; Gritsenko, O V; Baerends, E J

    2018-03-14

    Almost all functionals that are currently used in density matrix functional theory have been created by some a priori ansatz that generates approximations to the second-order reduced density matrix (2RDM). In this paper, a more consistent approach is used: we analyze the 2RDMs (in the natural orbital basis) of rather accurate multi-reference configuration interaction expansions for several small molecules (CH 4 , NH 3 , H 2 O, FH, and N 2 ) and use the knowledge gained to generate new functionals. The analysis shows that a geminal-like structure is present in the 2RDMs, even though no geminal theory has been applied from the onset. It is also shown that the leading non-geminal dynamical correlation contributions are generated by a specific set of double excitations. The corresponding determinants give rise to non-JKL (non Coulomb/Exchange like) multipole-multipole dispersive attractive terms between geminals. Due to the proximity of the geminals, these dispersion terms are large and cannot be omitted, proving pure JKL functionals to be essentially deficient. A second correction emerges from the observation that the "normal" geminal-like exchange between geminals breaks down when one breaks multiple bonds. This problem can be fixed by doubling the exchange between bond broken geminals, effectively restoring the often physically correct high-spin configurations on the bond broken fragments. Both of these corrections have been added to the commonly used antisymmetrized product of strongly orthogonal geminals functional. The resulting non-JKL functional Extended Löwdin-Shull Dynamical-Multibond is capable of reproducing complete active space self-consistent field curves, in which one active orbital is used for each valence electron.

  2. A non-JKL density matrix functional for intergeminal correlation between closed-shell geminals from analysis of natural orbital configuration interaction expansions

    Science.gov (United States)

    van Meer, R.; Gritsenko, O. V.; Baerends, E. J.

    2018-03-01

    Almost all functionals that are currently used in density matrix functional theory have been created by some a priori ansatz that generates approximations to the second-order reduced density matrix (2RDM). In this paper, a more consistent approach is used: we analyze the 2RDMs (in the natural orbital basis) of rather accurate multi-reference configuration interaction expansions for several small molecules (CH4, NH3, H2O, FH, and N2) and use the knowledge gained to generate new functionals. The analysis shows that a geminal-like structure is present in the 2RDMs, even though no geminal theory has been applied from the onset. It is also shown that the leading non-geminal dynamical correlation contributions are generated by a specific set of double excitations. The corresponding determinants give rise to non-JKL (non Coulomb/Exchange like) multipole-multipole dispersive attractive terms between geminals. Due to the proximity of the geminals, these dispersion terms are large and cannot be omitted, proving pure JKL functionals to be essentially deficient. A second correction emerges from the observation that the "normal" geminal-like exchange between geminals breaks down when one breaks multiple bonds. This problem can be fixed by doubling the exchange between bond broken geminals, effectively restoring the often physically correct high-spin configurations on the bond broken fragments. Both of these corrections have been added to the commonly used antisymmetrized product of strongly orthogonal geminals functional. The resulting non-JKL functional Extended Löwdin-Shull Dynamical-Multibond is capable of reproducing complete active space self-consistent field curves, in which one active orbital is used for each valence electron.

  3. Correlation of III/V semiconductor etch results with physical parameters of high-density reactive plasmas excited by electron cyclotron resonance

    Science.gov (United States)

    Gerhard, FRANZ; Ralf, MEYER; Markus-Christian, AMANN

    2017-12-01

    Reactive ion etching is the interaction of reactive plasmas with surfaces. To obtain a detailed understanding of this process, significant properties of reactive composite low-pressure plasmas driven by electron cyclotron resonance (ECR) were investigated and compared with the radial uniformity of the etch rate. The determination of the electronic properties of chlorine- and hydrogen-containing plasmas enabled the understanding of the pressure-dependent behavior of the plasma density and provided better insights into the electronic parameters of reactive etch gases. From the electrical evaluation of I(V) characteristics obtained using a Langmuir probe, plasmas of different compositions were investigated. The standard method of Druyvesteyn to derive the electron energy distribution functions by the second derivative of the I(V) characteristics was replaced by a mathematical model which has been evolved to be more robust against noise, mainly, because the first derivative of the I(V) characteristics is used. Special attention was given to the power of the energy dependence in the exponent. In particular, for plasmas that are generated by ECR with EM modes, the existence of Maxwellian distribution functions is not to be taken as a self-evident fact, but the bi-Maxwellian distribution was proven for Ar- and Kr-stabilized plasmas. In addition to the electron temperature, the global uniform discharge model has been shown to be useful for calculating the neutral gas temperature. To what extent the invasive method of using a Langmuir probe could be replaced with the non-invasive optical method of emission spectroscopy, particularly actinometry, was investigated, and the resulting data exhibited the same relative behavior as the Langmuir data. The correlation with etchrate data reveals the large chemical part of the removal process—most striking when the data is compared with etching in pure argon. Although the relative amount of the radial variation of plasma density and

  4. Hydrogel-Embedded Model Photocatalytic System Investigated by Raman and IR Spectroscopy Assisted by Density Functional Theory Calculations and Two-Dimensional Correlation Analysis.

    Science.gov (United States)

    Geitner, Robert; Götz, Stefan; Stach, Robert; Siegmann, Michael; Krebs, Patrick; Zechel, Stefan; Schreyer, Kristin; Winter, Andreas; Hager, Martin D; Schubert, Ulrich S; Gräfe, Stefanie; Dietzek, Benjamin; Mizaikoff, Boris; Schmitt, Michael; Popp, Jürgen

    2018-03-15

    The presented study reports the synthesis and the vibrational spectroscopic characterization of different matrix-embedded model photocatalysts. The goal of the study is to investigate the interaction of a polymer matrix with photosensitizing dyes and metal complexes for potential future photocatalytic applications. The synthesis focuses on a new rhodamine B derivate and a Pt(II) terpyridine complex, which both contain a polymerizable methacrylate moiety and an acid labile acylhydrazone group. The methacrylate moieties are afterward utilized to synthesize functional model hydrogels mainly consisting of poly(ethylene glycol) methacrylate units. The pH-dependent and temperature-dependent behavior of the hydrogels is investigated by means of Raman and IR spectroscopy assisted by density functional theory calculations and two-dimensional correlation spectroscopy. The spectroscopic results reveal that the Pt(II) terpyridine complex can be released from the polymer matrix by cleaving the C═N bond in an acid environment. The same behavior could not be observed in the case of the rhodamine B dye although it features a comparable C═N bond. The temperature-dependent study shows that the water evaporation has a significant influence neither on the molecular structure of the hydrogel nor on the model photocatalytic moieties.

  5. Decrease in plasma high-density lipoprotein cholesterol levels at puberty in boys with delayed adolescence: correlation with plasma testosterone levels

    International Nuclear Information System (INIS)

    Kirkland, R.T.; Keenan, B.S.; Probstfield, J.L.; Patsch, W.; Lin, T.L.; Clayton, G.W.; Insull, W. Jr.

    1987-01-01

    A three-phase study tested the hypothesis that the decrease in the high-density lipoprotein cholesterol (HDL-C) level observed in boys at puberty is related to an increase in the plasma testosterone concentration. In phase I, 57 boys aged 10 to 17 years were categorized into four pubertal stages based on clinical parameters and plasma testosterone levels. These four groups showed increasing plasma testosterone values and decreasing HDL-C levels. In phase II, 14 boys with delayed adolescence were treated with testosterone enanthate. Plasma testosterone levels during therapy were in the adult male range. Levels of HDL-C decreased by a mean of 7.4 mg/dL (0.20 mmol/L) and 13.7 mg/dL (0.35 mmol/L), respectively, after the first two doses. In phase III, 13 boys with delayed adolescence demonstrated increasing plasma testosterone levels and decreasing HDL-C levels during spontaneous puberty. Levels of HDL-C and apolipoprotein A-1 were correlated during induced and spontaneous puberty. Testosterone should be considered a significant determinant of plasma HDL-C levels during pubertal development

  6. On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures.

    Science.gov (United States)

    Santra, Biswajit; Klimes, Jirí; Tkatchenko, Alexandre; Alfè, Dario; Slater, Ben; Michaelides, Angelos; Car, Roberto; Scheffler, Matthias

    2013-10-21

    Density-functional theory (DFT) has been widely used to study water and ice for at least 20 years. However, the reliability of different DFT exchange-correlation (xc) functionals for water remains a matter of considerable debate. This is particularly true in light of the recent development of DFT based methods that account for van der Waals (vdW) dispersion forces. Here, we report a detailed study with several xc functionals (semi-local, hybrid, and vdW inclusive approaches) on ice Ih and six proton ordered phases of ice. Consistent with our previous study [B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011)] which showed that vdW forces become increasingly important at high pressures, we find here that all vdW inclusive methods considered improve the relative energies and transition pressures of the high-pressure ice phases compared to those obtained with semi-local or hybrid xc functionals. However, we also find that significant discrepancies between experiment and the vdW inclusive approaches remain in the cohesive properties of the various phases, causing certain phases to be absent from the phase diagram. Therefore, room for improvement in the description of water at ambient and high pressures remains and we suggest that because of the stern test the high pressure ice phases pose they should be used in future benchmark studies of simulation methods for water.

  7. Prognostic significance of epithelial/stromal caveolin‐1 expression in prostatic hyperplasia, high grade prostatic intraepithelial hyperplasia and prostatic carcinoma and its correlation with microvessel density

    Directory of Open Access Journals (Sweden)

    Dareen A. Mohammed

    2017-03-01

    Full Text Available Caveolin-1 may play a role in cancer development and progression. The aim was to record the expression and localization of caveolin-1 in benign prostatic hyperplasia (BPH, high grade prostatic intraepithelial neoplasia (HGPIN and prostatic carcinoma (PCa. Microvessel density was evaluated with CD34 immunostain. Correlations with known prognostic factors of PCa were recorded. Immunohistochemical expression of caveolin-1 and the MVD was evaluated in 65 cases; BPH (25, HGPIN (20 and PCa (20. Stromal caveolin-1expression was significantly higher in BPH than HGPIN and PCca. There was significant inverse relation between stromal caveolin-1 expression and extension to lymph node and seminal vesicle in carcinoma cases. Epithelial caveolin-1 was significantly higher in carcinomas than in BPH and HGPIN. Epithelial expression in carcinoma was significantly associated with preoperative PSA, Gleason score and lymph node extension. MVD was significantly higher in PCa than in BPH and HGPIN. There were significant relations between MVD and preoperative PSA, Gleason score, lymph node and seminal vesicle extension. Stromal caveolin-1 was associated with low MVD while epithelial caveolin-1 with high MVD. Conclusions: Caveolin-1 plays an important role in prostatic carcinogenesis and metastasis. Stromal expression of caveolin-1 in PCa is lowered in relation to BPH and HGPIN. In PCa; stromal caveolin-1 was associated with good prognostic parameters. Epithelial caveolin-1 is significantly increased in PCa than BPH and HGPIN. It is associated with clinically aggressive disease. Caveolin-1 may play a role in angiogenesis.

  8. Classical density functional theory and the phase-field crystal method using a rational function to describe the two-body direct correlation function.

    Science.gov (United States)

    Pisutha-Arnond, N; Chan, V W L; Iyer, M; Gavini, V; Thornton, K

    2013-01-01

    We introduce a new approach to represent a two-body direct correlation function (DCF) in order to alleviate the computational demand of classical density functional theory (CDFT) and enhance the predictive capability of the phase-field crystal (PFC) method. The approach utilizes a rational function fit (RFF) to approximate the two-body DCF in Fourier space. We use the RFF to show that short-wavelength contributions of the two-body DCF play an important role in determining the thermodynamic properties of materials. We further show that using the RFF to empirically parametrize the two-body DCF allows us to obtain the thermodynamic properties of solids and liquids that agree with the results of CDFT simulations with the full two-body DCF without incurring significant computational costs. In addition, the RFF can also be used to improve the representation of the two-body DCF in the PFC method. Last, the RFF allows for a real-space reformulation of the CDFT and PFC method, which enables descriptions of nonperiodic systems and the use of nonuniform and adaptive grids.

  9. Increasing the applicability of density functional theory. V. X-ray absorption spectra with ionization potential corrected exchange and correlation potentials

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Prakash; Bartlett, Rodney J., E-mail: bartlett@qtp.ufl.edu [Quantum Theory Project, University of Florida, Gainesville, Florida 32611 (United States)

    2016-07-21

    Core excitation energies are computed with time-dependent density functional theory (TD-DFT) using the ionization energy corrected exchange and correlation potential QTP(0,0). QTP(0,0) provides C, N, and O K-edge spectra to about an electron volt. A mean absolute error (MAE) of 0.77 and a maximum error of 2.6 eV is observed for QTP(0,0) for many small molecules. TD-DFT based on QTP (0,0) is then used to describe the core-excitation spectra of the 22 amino acids. TD-DFT with conventional functionals greatly underestimates core excitation energies, largely due to the significant error in the Kohn-Sham occupied eigenvalues. To the contrary, the ionization energy corrected potential, QTP(0,0), provides excellent approximations (MAE of 0.53 eV) for core ionization energies as eigenvalues of the Kohn-Sham equations. As a consequence, core excitation energies are accurately described with QTP(0,0), as are the core ionization energies important in X-ray photoionization spectra or electron spectroscopy for chemical analysis.

  10. Increasing the applicability of density functional theory. V. X-ray absorption spectra with ionization potential corrected exchange and correlation potentials.

    Science.gov (United States)

    Verma, Prakash; Bartlett, Rodney J

    2016-07-21

    Core excitation energies are computed with time-dependent density functional theory (TD-DFT) using the ionization energy corrected exchange and correlation potential QTP(0,0). QTP(0,0) provides C, N, and O K-edge spectra to about an electron volt. A mean absolute error (MAE) of 0.77 and a maximum error of 2.6 eV is observed for QTP(0,0) for many small molecules. TD-DFT based on QTP (0,0) is then used to describe the core-excitation spectra of the 22 amino acids. TD-DFT with conventional functionals greatly underestimates core excitation energies, largely due to the significant error in the Kohn-Sham occupied eigenvalues. To the contrary, the ionization energy corrected potential, QTP(0,0), provides excellent approximations (MAE of 0.53 eV) for core ionization energies as eigenvalues of the Kohn-Sham equations. As a consequence, core excitation energies are accurately described with QTP(0,0), as are the core ionization energies important in X-ray photoionization spectra or electron spectroscopy for chemical analysis.

  11. Future Road Density

    Data.gov (United States)

    U.S. Environmental Protection Agency — Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More...

  12. Subsequent Vertebral Fractures Post Cement Augmentation of the Thoracolumbar Spine: Does it Correlate With Level-specific Bone Mineral Density Scores?

    Science.gov (United States)

    Hey, Hwee Weng Dennis; Hwee Weng, Dennis Hey; Tan, Jun Hao; Jun, Hao Tan; Tan, Chuen Seng; Chuen, Seng Tan; Tan, Hsi Ming Bryan; Ming, Bryan Tan Hsi; Lau, Puang Huh Bernard; Huh, Bernard Lau Puang; Hee, Hwan Tak; Hwan, Tak Hee

    2015-12-01

    A case-control study. In this study, we investigated the correlation between level-specific preoperative bone mineral density and subsequent vertebral fractures. We also identified factors associated with subsequent vertebral fractures. Complications of cement augmentation of the spine include subsequent vertebral fractures, leading to unnecessary morbidity and more treatment. Ability to predict at-risk vertebra will help guide management. We studied all patients with osteoporotic compression fractures who underwent cement augmentation in a single institution from November 2001 to December 2010 by a single surgeon. Association between level-specific bone mineral density T-scores and subsequent fractures was assessed. Multivariable analysis was performed to identify significant factors associated with subsequent vertebral fractures. 93 patients followed up for a mean duration of 25.1 months (12-96) had a mean age of 76.8 years (47-99). Vertebroplasty was performed in 58 patients (62.4%) on 68 levels and kyphoplasty in 35 patients (37.6%) on 44 levels. Refracture was seen in 16 patients (17.2%). The time to subsequent fracture post cement augmentation was 20.5 months (2-90). For refracture cases, 43.8% (7/16) fractured in the adjacent vertebrae. Subsequently fractured vertebra had a mean T-score of -2.860 (95% confidence interval -3.268 to -2.452) and nonfractured vertebra had a mean T-score of -2.180 (95% confidence interval -2.373 to -1.986). A T-score of -2.2 or lower is predictive of refracture at that vertebra (P = 0.047). Odds ratio increases with decreasing T-scores from -2.2 or lower to -2.6 or lower. A T-score of -2.6 or lower gives no additional predictive advantage. After multivariable analysis, age (P = 0.049) and loss of preoperative anterior vertebral height (P = 0.017) are associated with refracture. Level-specific T-scores are predictive of subsequent fractures and the odds ratio increases with lower T-scores from -2.2 or less to -2.6 or less. They

  13. Prognostic significance of epithelial/stromal caveolin-1 expression in prostatic hyperplasia, high grade prostatic intraepithelial hyperplasia and prostatic carcinoma and its correlation with microvessel density.

    Science.gov (United States)

    Mohammed, Dareen A; Helal, Duaa S

    2017-03-01

    Caveolin-1 may play a role in cancer development and progression. The aim was to record the expression and localization of caveolin-1 in benign prostatic hyperplasia (BPH), high grade prostatic intraepithelial neoplasia (HGPIN) and prostatic carcinoma (PCa). Microvessel density was evaluated with CD34 immunostain. Correlations with known prognostic factors of PCa were recorded. Immunohistochemical expression of caveolin-1 and the MVD was evaluated in 65 cases; BPH (25), HGPIN (20) and PCa (20). Stromal caveolin-1expression was significantly higher in BPH than HGPIN and PCca. There was significant inverse relation between stromal caveolin-1 expression and extension to lymph node and seminal vesicle in carcinoma cases. Epithelial caveolin-1 was significantly higher in carcinomas than in BPH and HGPIN. Epithelial expression in carcinoma was significantly associated with preoperative PSA, Gleason score and lymph node extension. MVD was significantly higher in PCa than in BPH and HGPIN. There were significant relations between MVD and preoperative PSA, Gleason score, lymph node and seminal vesicle extension. Stromal caveolin-1 was associated with low MVD while epithelial caveolin-1 with high MVD. Caveolin-1 plays an important role in prostatic carcinogenesis and metastasis. Stromal expression of caveolin-1 in PCa is lowered in relation to BPH and HGPIN. In PCa; stromal caveolin-1 was associated with good prognostic parameters. Epithelial caveolin-1 is significantly increased in PCa than BPH and HGPIN. It is associated with clinically aggressive disease. Caveolin-1 may play a role in angiogenesis. Copyright © 2017 National Cancer Institute, Cairo University. Production and hosting by Elsevier B.V. All rights reserved.

  14. Comparison of correlates of bone mineral density in individuals adhering to lacto-ovo, vegan, or omnivore diets: a cross-sectional investigation.

    Science.gov (United States)

    Knurick, Jessica R; Johnston, Carol S; Wherry, Sarah J; Aguayo, Izayadeth

    2015-05-11

    Vegetarian diets are associated with factors that may not support bone health, such as low body mass and low intakes of protein; yet, these diets are alkaline, a factor that favors bone mineral density (BMD). This study compared the correlates of BMD in young, non-obese adults consuming meat-based (n = 27), lacto-ovo vegetarian (n = 27), or vegan (n = 28) diets for ≥1 year. A 24 h diet recall, whole body DXA scan, 24 h urine specimen, and fasting blood sample were collected from participants. BMD did not differ significantly between groups. Protein intake was reduced ~30% in individuals consuming lacto-ovo and vegan diets as compared to those consuming meat-based diets (68 ± 24, 69 ± 29, and 97 ± 47 g/day respectively, p = 0.006); yet dietary protein was only associated with BMD for those following vegan diets. Urinary pH was more alkaline in the lacto-ovo and vegan groups versus omnivores (6.5 ± 0.4, 6.7 ± 0.4, and 6.2 ± 0.4 respectively, p = 0.003); yet urinary pH was associated with BMD in omnivores only. These data suggest that plant-based diets are not detrimental to bone in young adults. Moreover, diet prescriptions for bone health may vary among diet groups: increased fruit and vegetable intake for individuals with high meat intakes and increased plant protein intake for individuals who follow a vegetarian diet plan.

  15. Comparison of Correlates of Bone Mineral Density in Individuals Adhering to Lacto-Ovo, Vegan, or Omnivore Diets: A Cross-Sectional Investigation

    Directory of Open Access Journals (Sweden)

    Jessica R. Knurick

    2015-05-01

    Full Text Available Vegetarian diets are associated with factors that may not support bone health, such as low body mass and low intakes of protein; yet, these diets are alkaline, a factor that favors bone mineral density (BMD. This study compared the correlates of BMD in young, non-obese adults consuming meat-based (n = 27, lacto-ovo vegetarian (n = 27, or vegan (n = 28 diets for ≥1 year. A 24 h diet recall, whole body DXA scan, 24 h urine specimen, and fasting blood sample were collected from participants. BMD did not differ significantly between groups. Protein intake was reduced ~30% in individuals consuming lacto-ovo and vegan diets as compared to those consuming meat-based diets (68 ± 24, 69 ± 29, and 97 ± 47 g/day respectively, p = 0.006; yet dietary protein was only associated with BMD for those following vegan diets. Urinary pH was more alkaline in the lacto-ovo and vegan groups versus omnivores (6.5 ± 0.4, 6.7 ± 0.4, and 6.2 ± 0.4 respectively, p = 0.003; yet urinary pH was associated with BMD in omnivores only. These data suggest that plant-based diets are not detrimental to bone in young adults. Moreover, diet prescriptions for bone health may vary among diet groups: increased fruit and vegetable intake for individuals with high meat intakes and increased plant protein intake for individuals who follow a vegetarian diet plan.

  16. Evaluation of group electronegativities and hardness (softness) of group 14 elements and containing functional groups through density functional theory and correlation with NMR spectra data

    International Nuclear Information System (INIS)

    Vivas-Reyes, R.; Aria, A.

    2008-01-01

    Quantum Chemical calculations for group 14 elements of Periodic Table (C, Si, Ge, Sn, Pb) and their functional groups have been carried out using Density Functional Theory (DFT) based reactivity descriptors such as group electronegativities, hardness and softness. DFT calculations were performed for a large series of tetra coordinated Sn compounds of the CH 3 SnRR'X type, where X is a halogen and R and R' are alkyl, halogenated alkyl, alkoxy, or alkyl thio groups. The results were interpreted in terms of calculated electronegativity and hardness of the SnRR'X groups, applying a methodology previously developed by Geerlings and coworkers (J. Phys. Chem. 1993, 97, 1826). These calculations allowed to see the regularities concerning the influence of the nature of organic groups RR' and inorganic group X on electronegativities and hardness of the SnRR'X groups; in this case, it was found a very good correlation between the electronegativity of the fragment and experimental 119 Sn chemical shifts, a property that sensitively reflects the change in the valence electronic structure of molecules. This work was complemented with the study of some compounds of the EX and ER types, where E= C, Si, Ge, Sn and R= CH 3 , H, which was performed to study the influence that the central atom has on the electronegativity and hardness of molecules, or whether these properties are mainly affected for the type of ligand bound to the central atom. All these calculations were performed using the B3PW91 functional together with the 6-3 1 1 + + G basis set level for H, C, Si, Ge, F, Cl and Br atoms and the 3-21G for Sn and I atoms. (author)

  17. Evaluation of group electronegativities and hardness (softness) of group 14 elements and containing functional groups through density functional theory and correlation with NMR spectra data

    Energy Technology Data Exchange (ETDEWEB)

    Vivas-Reyes, R.; Aria, A. [Universidad de Cartagena, Cartagena (Colombia). Facultad de Ciencias Naturales y Exactas. Grupo de Quimica Cuantica y Computacional]. E-mail: rvivasr@unicartagena.edu.co

    2008-07-01

    Quantum Chemical calculations for group 14 elements of Periodic Table (C, Si, Ge, Sn, Pb) and their functional groups have been carried out using Density Functional Theory (DFT) based reactivity descriptors such as group electronegativities, hardness and softness. DFT calculations were performed for a large series of tetra coordinated Sn compounds of the CH{sub 3}SnRR'X type, where X is a halogen and R and R' are alkyl, halogenated alkyl, alkoxy, or alkyl thio groups. The results were interpreted in terms of calculated electronegativity and hardness of the SnRR'X groups, applying a methodology previously developed by Geerlings and coworkers (J. Phys. Chem. 1993, 97, 1826). These calculations allowed to see the regularities concerning the influence of the nature of organic groups RR' and inorganic group X on electronegativities and hardness of the SnRR'X groups; in this case, it was found a very good correlation between the electronegativity of the fragment and experimental {sup 119}Sn chemical shifts, a property that sensitively reflects the change in the valence electronic structure of molecules. This work was complemented with the study of some compounds of the EX and ER types, where E= C, Si, Ge, Sn and R= CH{sub 3}, H, which was performed to study the influence that the central atom has on the electronegativity and hardness of molecules, or whether these properties are mainly affected for the type of ligand bound to the central atom. All these calculations were performed using the B3PW91 functional together with the 6-3 1 1 + + G basis set level for H, C, Si, Ge, F, Cl and Br atoms and the 3-21G for Sn and I atoms. (author)

  18. Correlations between critical current density, j{sub c}, critical temperature, T{sub c}, and structural quality of Y{sub 1}B{sub 2}Cu{sub 3}O{sub 7-x} thin superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, J.; Xing, W.B.; Atlan, D. [Simon Fraser Univ., British Columbia (Canada)] [and others

    1994-12-31

    Correlations between critical current density (j{sub c}) critical temperature (T{sub c}) and the density of edge dislocations and nonuniform strain have been observed in YBCO thin films deposited by pulsed laser ablation on (001) LaAlO{sub 3} single crystals. Distinct maxima in j{sub c} as a function of the linewidths of the (00{ell}) Bragg reflections and as a function of the mosaic spread have been found in the epitaxial films. These maxima in j{sub c} indicate that the magnetic flux lines, in films of structural quality approaching that of single crystals, are insufficiently pinned which results in a decreased critical current density. T{sub c} increased monotonically with improving crystalline quality and approached a value characteristic of a pure single crystal. A strong correlation between j{sub c} and the density of edge dislocations N{sub D} was found. At the maximum of the critical current density the density of edge dislocations was estimated to be N{sub D}{approximately}1-2 x 10{sup 9}/cm{sup 2}.

  19. Magneto-structural correlations in a family of Fe(II)Re(IV)(CN)2 single-chain magnets: density functional theory and ab initio calculations.

    Science.gov (United States)

    Zhang, Yi-Quan; Luo, Cheng-Lin; Wu, Xin-Bao; Wang, Bing-Wu; Gao, Song

    2014-04-07

    Until now, the expressions of the anisotropic energy barriers Δξ and ΔA, using the uniaxial magnetic anisotropy D, the intrachain coupling strength J, and the high-spin ground state S for single-chain magnets (SCMs) in the intermediate region between the Ising and the Heisenberg limits, were unknown. To explore this relationship, we used density functional theory and ab initio methods to obtain expressions of Δξ and ΔA in terms of D, J, and S of six R4Fe(II)-Re(IV)Cl4(CN)2 (R = diethylformamide (1), dibutylformamide (2), dimethylformamide (3), dimethylbutyramide (4), dimethylpropionamide (5), and diethylacetamide (6)) SCMs in the intermediate region. The ΔA value for compounds 1-3 was very similar to the magnetic anisotropic energy of a single Fe(II), while the value of Δξ was predicted using the exchange interaction of Fe(II) with the neighboring Re(IV), which could be expressed as 2JSReSFe. Similar to compounds 1-3, the anisotropy energy barrier ΔA of compounds 4 and 5 was also equal to (Di - Ei)SFe(2), but the correlation energy Δξ was closely equal to 2JSReSFe(cos 98.4 - cos 180) due to the reversal of the spins on the opposite Fe(II). For compound 6, one unit cell of Re(IV)Fe(II) was regarded as a domain wall since it had two different Re(IV)-Fe(II) couplings. Thus, the Δξ of compound 6 was expressed as 4J″SRe1Fe1SRe2Fe2, where J″ was the coupling constant of the neighboring unit cells of Re1Fe1 and Re2Fe2, and ΔA was equal to the anisotropic energy barrier of one domain wall given by DRe1Fe1(S(2)Re1Fe1 - 1/4).

  20. CORRELATION OF PHYSICAL ACTIVITY LEVEL WITH BONE MINERAL DENSITY, CARDIO-RESPIRATORY FITNESS AND BODY COMPOSITION IN POST-MENOPAUSAL WOMEN

    Directory of Open Access Journals (Sweden)

    Niyati N Khona

    2017-09-01

    Full Text Available Background: Due to the hormonal changes in postmenopausal women they are prone for many complications like increased CVD risk factors, osteoporosis, obesity, mood swings and urinary incontinence. Physical inactivity in postmenopausal women leads to higher risk of developing CVD and osteoporosis. The objective was to find out the correlation of physical activity level with BMD, cardio-respiratory fitness and body composition in post-menopausal women Methods: 42 postmenopausal women were included. A detailed clinical evaluation with physical activity level (IPAQ-METS-mins/week, , BMD ( T-Scores, body composition (BMI, waist circumference, BIA & Skin fold calliper for fat %, cardio-respiratory fitness was measured by Balke protocol and VO2peak (ml/kg/min is estimated. Correlation of physical activity level with BMD, cardio-respiratory fitness and body composition were analysed using “Pearson’s product moment correlation co-efficient and Spearman’s rho.” Results: Spearman’s rank correlation rho for IPAQ with VO2 peak was 0.420,BMI was -0.388 and visceral fat was -0.384 indicating moderate positive correlation between IPAQ and cardio-respiratory fitness and weak negative correlation between IPAQ and BMI and visceral fat. Pearson’s product moment correlation coefficient of IPAQ with BMD was 0.147, body fat was -0.234 and waist circumference was -0.256 indicating no correlation. P value was significant for correlation of IPAQ with CRF (0.006, BMI (0.011 and Visceral fat (0.012. Conclusion: There is moderate positive correlation between IPAQ and cardio-respiratory fitness, weak negative correlation between IPAQ and BMI and visceral fat and no correlation between IPAQ and BMD, body fat and waist circumference

  1. The Correlation between the Triglyceride to High Density Lipoprotein Cholesterol Ratio and Computed Tomography-Measured Visceral Fat and Cardiovascular Disease Risk Factors in Local Adult Male Subjects

    OpenAIRE

    Park, Hye-Rin; Shin, Sae-Ron; Han, A Lum; Jeong, Yong Joon

    2015-01-01

    Background We studied the association between the triglyceride to high-density lipoprotein cholesterol ratio and computed tomography-measured visceral fat as well as cardiovascular risk factors among Korean male adults. Methods We measured triglycerides, high density lipoprotein cholesterol, body mass, waist circumference, fasting plasma glucose, hemoglobin A1c, systolic blood pressure, diastolic blood pressure, visceral fat, and subcutaneous fat among 372 Korean men. The visceral fat and sub...

  2. Correlation between quantitative ultrasound parameters of the calcinosis and bone density of the spine and femur in Arabian women: Relation to menopausal status

    International Nuclear Information System (INIS)

    Al Suhaili, A.R.; Saadi, H.F.; Reed, R.L.; Carter, A.O.

    2002-01-01

    Aims: Quantitative ultrasound (QUS) of the calcaneus is being frequently used to screen for osteoporosis. This technique correlates very well with dual-energy X-ray absorptiometry (DXA) of the spine and femur, and predicts fracture risk in postmenopausal women. The correlation between QUS and DXA in premenopausal women with prevalent vitamin D deficiency however is not known. We assessed the correlation between both techniques in 55 pre- and postmenopausal Arabian women, a population with high prevalence of vitamin D deficiency. Methods: BMD of the right calcaneus was estimated by Sahara ultrasound (Hologic, Waltham, MA). Spine and right total femur BMD was determined by DXA scan (Lunar Expert XL, Madison, WI). Results: Overall, the correlation between calcaneal BMD estimated by QUS and spine and femur BMD measured by DXA in pre- and postmenopausal United Arab Emirates women was statistically significant (r=0.41; p=0.002 for spine and r=0.44; p=0.001 for femur, respectively). In postmenopausal women, all correlations between DXA and QUS parameters were statistically significant. In contrast, only BUA and SOS correlated significantly with spine BMD in premenopausal women. Conclusion: The correlation between DXA and QUS is statistically significant in postmenopausal United Arab Emirates women. However, this correlation is much weaker in premenopausal UAE women suggesting that other factors such as vitamin D deficiency may influence this correlation

  3. [Correlative factors related to the density of Meriones unguiculatus in the Meriones unguiculatus plague foci of Hebei province, 2001-2013].

    Science.gov (United States)

    Niu, Y F; Kang, X P; Yan, D; Zhang, Y H; Liu, G; Kang, D M; Liu, H Z; Shi, X M; Li, Y G

    2016-08-10

    To explore the yearly, monthly and habitat-related distribution and their relations with Meriones unguiculatus density in the Hebei Meriones unguiculatus plague foci, from 2001 to 2013. Data related to Meriones unguiculatus was gathered through the monitoring programs set up at the national and provincial Meriones unguiculatus plague foci in Hebei province, from 2001 to 2013. According to the yearly density of Meriones unguiculatus, criteria set for the three groups under study, were as follows:'high-risk group'-when the rodent density was≥1.00 under rodents/hm(2),'warning group'-when the rodents/hm(2)>rodent density> 0.20,'standard group'-when rodents/hm(2) rodent density≤0.20 rodents/hm(2). Differences of habitats and monthly distribution among the three groups were compared, under the Kruskal-Wallis H rank sum test while their relations were under the multiple correspondence analysis. The Meriones unguiculatus densities were higher than 1.00 rodents/hm(2), far above the set national standards, in the monitoring area, between 2001 and 2005. From 2005, though the rodent densities began to decrease, however, figures from 2008 to 2013 were still among 0.20 to 1.00 rodents/hm(2). The distribution of habitats in the three groups showed that the Meriones unguiculatus densities were all different in habitats and the difference was statistically significant (Pplague increased in Hebei Meriones unguiculatus plague foci. Based on the distribution of Meriones unguiculatus, programs should be set to monitor the rodent in arable land and wasteland, in April and June, to reduce the prevalence of animals plague.

  4. Correlation Analysis of Rainstorm Runoff and Density Current in a Canyon-Shaped Source Water Reservoir: Implications for Reservoir Optimal Operation

    Directory of Open Access Journals (Sweden)

    Yang Li

    2018-04-01

    Full Text Available Extreme weather has recently become frequent. Heavy rainfall forms storm runoff, which is usually very turbid and contains a high concentration of organic matter, therefore affecting water quality when it enters reservoirs. The large canyon-shaped Heihe Reservoir is the most important raw water source for the city of Xi’an. During the flood season, storm runoff flows into the reservoir as a density current. We determined the relationship among inflow peak discharge (Q, suspended sediment concentration, inflow water temperature, and undercurrent water density. The relationships between (Q and inflow suspended sediment concentration (CS0 could be described by the equation CS0 = 0.3899 × e0.0025Q, that between CS0 and suspended sediment concentration at the entrance of the main reservoir area S1 (CS1 was determined using CS1 = 0.0346 × e0.2335CS0, and air temperature (Ta and inflow water temperature (Tw based on the meteorological data were related as follows: Tw = 0.7718 × Ta + 1.0979. Then, we calculated the density of the undercurrent layer. Compared to the vertical water density distribution at S1 before rainfall, the undercurrent elevation was determined based on the principle of equivalent density inflow. Based on our results, we proposed schemes for optimizing water intake selection and flood discharge during the flood season.

  5. Low-amplitude clustering in low-redshift 21-cm intensity maps cross-correlated with 2dF galaxy densities

    Science.gov (United States)

    Anderson, C. J.; Luciw, N. J.; Li, Y.-C.; Kuo, C. Y.; Yadav, J.; Masui, K. W.; Chang, T.-C.; Chen, X.; Oppermann, N.; Liao, Y.-W.; Pen, U.-L.; Price, D. C.; Staveley-Smith, L.; Switzer, E. R.; Timbie, P. T.; Wolz, L.

    2018-05-01

    We report results from 21-cm intensity maps acquired from the Parkes radio telescope and cross-correlated with galaxy maps from the 2dF galaxy survey. The data span the redshift range 0.057 clustering of neutral hydrogen (H I), a small correlation coefficient between optical galaxies and H I, or some combination of the two. Separating 2dF into red and blue galaxies, we find that red galaxies are much more weakly correlated with H I on k ˜ 1.5 h Mpc-1 scales, suggesting that H I is more associated with blue star-forming galaxies and tends to avoid red galaxies.

  6. Non-Flow and Flow studies with differential transverse momentum and number density correlations in p-Pb and Pb-Pb at LHC

    CERN Document Server

    Acharya, Shreyasi; The ALICE collaboration; Adamova, Dagmar; Adolfsson, Jonatan; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Al-turany, Mohammad; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Ali, Yasir; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altenkamper, Lucas; Altsybeev, Igor; Anaam, Mustafa Naji; Andrei, Cristian; Andreou, Dimitra; Andrews, Harry Arthur; Andronic, Anton; Angeletti, Massimo; Anguelov, Venelin; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Anwar, Rafay; Apadula, Nicole; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barioglio, Luca; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartsch, Esther; Bastid, Nicole; Basu, Sumit; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Bazo Alba, Jose Luis; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Espinoza Beltran, Lucina Gabriela; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhaduri, Partha Pratim; Bhasin, Anju; Bhat, Inayat Rasool; Bhatt, Himani; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Antonio; Bianchi, Livio; Bianchi, Nicola; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Boca, Gianluigi; Bock, Friederike; Bogdanov, Alexey; Boldizsar, Laszlo; Bombara, Marek; Bonomi, Germano; Bonora, Matthias; Borel, Herve; Borissov, Alexander; Borri, Marcello; Botta, Elena; Bourjau, Christian; Bratrud, Lars; Braun-munzinger, Peter; Bregant, Marco; Broker, Theo Alexander; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buhler, Paul; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Soto Camacho, Rabi; Camerini, Paolo; Capon, Aaron Allan; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Chandra, Sinjini; Chang, Beomsu; Chang, Wan; Chapeland, Sylvain; Chartier, Marielle; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Chowdhury, Tasnuva; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Concas, Matteo; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Costanza, Susanna; Crkovska, Jana; Crochet, Philippe; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Dani, Sanskruti; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Derradi De Souza, Rafael; Franz Degenhardt, Hermann; Deisting, Alexander; Deloff, Andrzej; Delsanto, Silvia; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Ruzza, Benedetto; Arteche Diaz, Raul; Dietel, Thomas; Dillenseger, Pascal; Ding, Yanchun; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Van Doremalen, Lennart Vincent; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dudi, Sandeep; Duggal, Ashpreet Kaur; Dukhishyam, Mallick; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erhardt, Filip; Ersdal, Magnus Rentsch; Espagnon, Bruno; Eulisse, Giulio; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Fabbietti, Laura; Faggin, Mattia; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Fernandez Tellez, Arturo; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiorenza, Gabriele; Flor, Fernando; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Francisco, Audrey; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gajdosova, Katarina; Gallio, Mauro; Duarte Galvan, Carlos; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-solis, Edmundo Javier; Garg, Kunal; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; De Leone Gay, Maria Beatriz; Germain, Marie; Ghosh, Jhuma; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Greiner, Leo Clifford; Grelli, Alessandro; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Gronefeld, Julius Maximilian; Grosa, Fabrizio; Grosse-oetringhaus, Jan Fiete; Grosso, Raffaele; Guernane, Rachid; Guerzoni, Barbara; Guittiere, Manuel; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Bautista Guzman, Irais; Haake, Rudiger; Habib, Michael Karim; Hadjidakis, Cynthia Marie; Hamagaki, Hideki; Hamar, Gergoe; Hamid, Mohammed; Hamon, Julien Charles; Hannigan, Ryan; Haque, Md Rihan; Harris, John William; Harton, Austin Vincent; Hassan, Hadi; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Gonzalez Hernandez, Emma; Herrera Corral, Gerardo Antonio; Herrmann, Florian; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hills, Christopher; Hippolyte, Boris; Hohlweger, Bernhard; Horak, David; Hornung, Sebastian; Hosokawa, Ritsuya; Hota, Jyotishree; Hristov, Peter Zahariev; Huang, Chun-lu; Hughes, Charles; Huhn, Patrick; Humanic, Thomas; Hushnud, Hushnud; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Iddon, James Philip; Iga Buitron, Sergio Arturo; Ilkaev, Radiy; Inaba, Motoi; Ippolitov, Mikhail; Islam, Md Samsul; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacak, Barbara; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jaelani, Syaefudin; Jahnke, Cristiane; Jakubowska, Monika Joanna; Janik, Malgorzata Anna; Jena, Chitrasen; Jercic, Marko; Jevons, Oliver; Jimenez Bustamante, Raul Tonatiuh; Jin, Muqing; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karczmarczyk, Przemyslaw; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Ketzer, Bernhard Franz; Khabanova, Zhanna; Khan, Ahsan Mehmood; Khan, Shaista; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Khatun, Anisa; Khuntia, Arvind; Kielbowicz, Miroslaw Marek; Kileng, Bjarte; Kim, Byungchul; Kim, Daehyeok; Kim, Dong Jo; Kim, Eun Joo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Jiyoung; Kim, Minjung; Kim, Se Yong; Kim, Taejun; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Varga-kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Konyushikhin, Maxim; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Kralik, Ivan; Kravcakova, Adela; Kreis, Lukas; Krivda, Marian; Krizek, Filip; Kruger, Mario; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kundu, Sourav; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kvapil, Jakub; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lai, Yue Shi; Lakomov, Igor; Langoy, Rune; Lapidus, Kirill; Lardeux, Antoine Xavier; Larionov, Pavel; Laudi, Elisa; Lavicka, Roman; Lea, Ramona; Leardini, Lucia; Lee, Seongjoo; Lehas, Fatiha; Lehner, Sebastian; Lehrbach, Johannes; Lemmon, Roy Crawford; Leon Monzon, Ildefonso; Levai, Peter; Li, Xiaomei; Li, Xing Long; Lien, Jorgen Andre; Lietava, Roman; Lim, Bong-hwi; Lindal, Svein; Lindenstruth, Volker; Lindsay, Scott William; Lippmann, Christian; Lisa, Michael Annan; Litichevskyi, Vladyslav; Liu, Alwina; Ljunggren, Hans Martin; Llope, William; Lodato, Davide Francesco; Loginov, Vitaly; Loizides, Constantinos; Loncar, Petra; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Luhder, Jens Robert; Lunardon, Marcello; Luparello, Grazia; Lupi, Matteo; Maevskaya, Alla; Mager, Magnus; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Malik, Qasim Waheed; Malinina, Liudmila; Mal'kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martinengo, Paolo; Martinez, Jacobb Lee; Martinez Hernandez, Mario Ivan; Martinez-garcia, Gines; Martinez Pedreira, Miguel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Masson, Erwann; Mastroserio, Annalisa; Mathis, Andreas Michael; Toledo Matuoka, Paula Fernanda; Matyja, Adam Tomasz; Mayer, Christoph; Mazzilli, Marianna; Mazzoni, Alessandra Maria; Meddi, Franco; Melikyan, Yuri; Menchaca-rocha, Arturo Alejandro; Meninno, Elisa; Mercado-perez, Jorge; Meres, Michal; Soncco Meza, Carlos; Mhlanga, Sibaliso; Miake, Yasuo; Micheletti, Luca; Mieskolainen, Matti Mikael; Mihaylov, Dimitar Lubomirov; Mikhaylov, Konstantin; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Auro Prasad; Mohanty, Bedangadas; Khan, Mohammed Mohisin; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munning, Konstantin; Arratia Munoz, Miguel Ignacio; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Myers, Corey James; Myrcha, Julian Wojciech; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Narayan, Amrendra; Naru, Muhammad Umair; Nassirpour, Adrian Fereydon; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Negrao De Oliveira, Renato Aparecido; Nellen, Lukas; Nesbo, Simon Voigt; Neskovic, Gvozden; Ng, Fabian; Nicassio, Maria; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oh, Hoonjung; Ohlson, Alice Elisabeth; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pacik, Vojtech; Pagano, Davide; Paic, Guy; Palni, Prabhakar; Pan, Jinjin; Pandey, Ashutosh Kumar; Panebianco, Stefano; Papikyan, Vardanush; Pareek, Pooja; Park, Jonghan; Parkkila, Jasper Elias; Parmar, Sonia; Passfeld, Annika; Pathak, Surya Prakash; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Peng, Xinye; Pereira, Luis Gustavo; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrovici, Mihai; Petta, Catia; Peretti Pezzi, Rafael; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Pisano, Silvia; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pliquett, Fabian; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Poppenborg, Hendrik; Porteboeuf, Sarah Julie; Pozdniakov, Valeriy; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Punin, Valery; Putschke, Jorn Henning; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Ratza, Viktor; Ravasenga, Ivan; Read, Kenneth Francis; Redlich, Krzysztof; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reshetin, Andrey; Revol, Jean-pierre; Reygers, Klaus Johannes; Riabov, Viktor; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-lucian; Rode, Sudhir Pandurang; Rodriguez Cahuantzi, Mario; Roeed, Ketil; Rogalev, Roman; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Rokita, Przemyslaw Stefan; Ronchetti, Federico; Dominguez Rosas, Edgar; Roslon, Krystian; Rosnet, Philippe; Rossi, Andrea; Rotondi, Alberto; Roukoutakis, Filimon; Roy, Christelle Sophie; Roy, Pradip Kumar; Vazquez Rueda, Omar; Rui, Rinaldo; Rumyantsev, Boris; Rustamov, Anar; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Saha, Sumit Kumar; Sahoo, Baidyanath; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandoval, Andres; Sarkar, Amal; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Sas, Mike Henry Petrus; Scapparone, Eugenio; Scarlassara, Fernando; Schaefer, Brennan; Scheid, Horst Sebastian; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schmidt, Marten Ole; Schmidt, Martin; Schmidt, Nicolas Vincent; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sett, Priyanka; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shahoyan, Ruben; Shaikh, Wadut; Shangaraev, Artem; Sharma, Anjali; Sharma, Ankita; Sharma, Meenakshi; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shimomura, Maya; Shirinkin, Sergey; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singh, Randhir; Singhal, Vikas; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Sputowska, Iwona Anna; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Stocco, Diego; Storetvedt, Maksim Melnik; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Suzuki, Ken; Swain, Sagarika; Szabo, Alexander; Szarka, Imrich; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Teyssier, Boris; Thakur, Dhananjaya; Thakur, Sanchari; Thomas, Deepa; Thoresen, Freja; Tieulent, Raphael Noel; Tikhonov, Anatoly; Timmins, Anthony Robert; Toia, Alberica; Topilskaya, Nataliya; Toppi, Marco; Rojas Torres, Solangel; Tripathy, Sushanta; Trogolo, Stefano; Trombetta, Giuseppe; Tropp, Lukas; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Trzcinski, Tomasz Piotr; Trzeciak, Barbara Antonina; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Umaka, Ejiro Naomi; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vazquez Doce, Oton; Vechernin, Vladimir; Veen, Annelies Marianne; Vercellin, Ermanno; Vergara Limon, Sergio; Vermunt, Luuk; Vernet, Renaud; Vertesi, Robert; Vickovic, Linda; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Virgili, Tiziano; Vislavicius, Vytautas; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Voscek, Dominik; Vranic, Danilo; Vrlakova, Janka; Wagner, Boris; Wang, Hongkai; Wang, Mengliang; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Wegrzynek, Adam; Weiser, Dennis Franz; Wenzel, Sandro Christian; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Willems, Guido Alexander; Williams, Crispin; Willsher, Emily; Windelband, Bernd Stefan; Witt, William Edward; Xu, Ran; Yalcin, Serpil; Yamakawa, Kosei; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correa Zanoli, Henrique Jose; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zhalov, Mikhail; Zhang, Xiaoming; Zhang, Yonghong; Zhang, Zuman; Zhao, Chengxin; Zherebchevskii, Vladimir; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Ya; Zichichi, Antonino; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zmeskal, Johann; Zou, Shuguang

    2018-01-01

    Measurements of two-particle differential number correlation functions $R_{2}$ and transverse momentum correlation functions $P_{2}$, obtained from p-Pb collisions at $\\sqrt{s_{NN}}$ = 5.02 TeV and Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV, are presented. Measurements are reported for charged particles in the pseudorapidity range |$\\eta$| < 1.0, and transverse momentum range 0.2 < $p_{T}$ < 2.0 GeV/$c$ as a function of pair separation in pseudorapidity, |$\\Delta\\eta$|, azimuthal angle, $\\Delta\\phi$, and for several charged-particle multiplicity classes. The correlation measurements are carried out for like-sign (LS) and unlike-sign (US) charged-particle pairs separately. The LS and US correlation functions are combined to obtain charge-independent (CI) and charge-dependent (CD) correlation functions. The correlation functions $R_{2}^{(CI)}$ and $P_{2}^{(CI)}$ both feature a prominent and relatively narrow peak centered at $\\Delta\\phi$ = 0, |$\\Delta\\eta$| = 0 (called near-side peak in the rema...

  7. Comparative evaluation of average glandular dose and breast cancer detection between single-view digital breast tomosynthesis (DBT) plus single-view digital mammography (DM) and two-view DM: correlation with breast thickness and density

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sung Ui; Chang, Jung Min; Bae, Min Sun; Lee, Su Hyun; Cho, Nariya; Seo, Mirinae; Kim, Won Hwa; Moon, Woo Kyung [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of)

    2015-01-15

    To compare the average glandular dose (AGD) and diagnostic performance of mediolateral oblique (MLO) digital breast tomosynthesis (DBT) plus cranio-caudal (CC) digital mammography (DM) with two-view DM, and to evaluate the correlation of AGD with breast thickness and density. MLO and CC DM and DBT images of both breasts were obtained in 149 subjects. AGDs of DBT and DM per exposure were recorded, and their correlation with breast thickness and density were evaluated. Paired data of MLO DBT plus CC DM and two-view DM were reviewed for presence of malignancy in a jack-knife alternative free-response ROC (JAFROC) method. The AGDs of both DBT and DM, and differences in AGD between DBT and DM (ΔAGD), were correlated with breast thickness and density. The average JAFROC figure of merit (FOM) was significantly higher on the combined technique than two-view DM (P = 0.005). In dense breasts, the FOM and sensitivity of the combined technique was higher than that of two-view DM (P = 0.003) with small ΔAGD. MLO DBT plus CC DM provided higher diagnostic performance than two-view DM in dense breasts with a small increase in AGD. (orig.)

  8. Comparative evaluation of average glandular dose and breast cancer detection between single-view digital breast tomosynthesis (DBT) plus single-view digital mammography (DM) and two-view DM: correlation with breast thickness and density

    International Nuclear Information System (INIS)

    Shin, Sung Ui; Chang, Jung Min; Bae, Min Sun; Lee, Su Hyun; Cho, Nariya; Seo, Mirinae; Kim, Won Hwa; Moon, Woo Kyung

    2015-01-01

    To compare the average glandular dose (AGD) and diagnostic performance of mediolateral oblique (MLO) digital breast tomosynthesis (DBT) plus cranio-caudal (CC) digital mammography (DM) with two-view DM, and to evaluate the correlation of AGD with breast thickness and density. MLO and CC DM and DBT images of both breasts were obtained in 149 subjects. AGDs of DBT and DM per exposure were recorded, and their correlation with breast thickness and density were evaluated. Paired data of MLO DBT plus CC DM and two-view DM were reviewed for presence of malignancy in a jack-knife alternative free-response ROC (JAFROC) method. The AGDs of both DBT and DM, and differences in AGD between DBT and DM (ΔAGD), were correlated with breast thickness and density. The average JAFROC figure of merit (FOM) was significantly higher on the combined technique than two-view DM (P = 0.005). In dense breasts, the FOM and sensitivity of the combined technique was higher than that of two-view DM (P = 0.003) with small ΔAGD. MLO DBT plus CC DM provided higher diagnostic performance than two-view DM in dense breasts with a small increase in AGD. (orig.)

  9. Analysis of bone mellow density in adults of domestic local area using multi-detector computed tomography: Focus on correlation about eating habits, lifestyle, physical features and social characteristics

    International Nuclear Information System (INIS)

    Lee, Tae Hui; Kim, Tae Hyung; So, Woon Young; Lim, Hei Gyeom; Lim, Cheong Hwan; Park, Myeong Hwan; Cheon, Myung Ki

    2016-01-01

    This study analyzed the correlation between BMD (bone mineral density) value calculated in the MDCT(multidetector computed tomography) and lifestyle, physical features and social characteristics. From July 15 2015 to June 6 2016, we converted from HU (hounsfield unit) value measured by using MDCT to T-score for BMD of 141 patients (male: 63, female: 78) in W medical center. We measured the 2nd, 3rd and 4th lumbar spine and analyzed the correlation between gender differences in BMD and lifestyle, physical features and social characteristics. Statistical significance was validated using independent sample T test with one way Anova. Gender BMD was confirmed that a statistically significant difference (p<0.05). BMD values decreased with increasing age but for the statistically men, there was no significant difference from 20s to 50s, it only showed a significant difference in 20s and 60s (p<0.001). For the statistically women, there was no significant difference from 20s to 40s. but since 50s BMD was decreased rapidly, which showed a significant difference(p<0.001). women showed significant differences for the menstruation and menopause, childbirth, alcohol, cereals and greasy food in bone mineral density (p<0.05) but there were no significant differences in men. The bone mineral density values calculated by the MDCT and lifestyle, physical features and social characteristics correlation analysis method is considered to be used as a basis for estimating the state in BMD and osteoporosis management

  10. Analysis of bone mellow density in adults of domestic local area using multi-detector computed tomography: Focus on correlation about eating habits, lifestyle, physical features and social characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Hui [Wonju Medical Center, Wonju (Korea, Republic of); Kim, Tae Hyung; So, Woon Young; Lim, Hei Gyeom [Kangwon National University Graduate School, Wonju (Korea, Republic of); Lim, Cheong Hwan [Hanseo University, Seosan (Korea, Republic of); Park, Myeong Hwan [Daegu Health College, Daegu (Korea, Republic of); Cheon, Myung Ki [Soongsil University, Seoul (Korea, Republic of)

    2016-12-15

    This study analyzed the correlation between BMD (bone mineral density) value calculated in the MDCT(multidetector computed tomography) and lifestyle, physical features and social characteristics. From July 15 2015 to June 6 2016, we converted from HU (hounsfield unit) value measured by using MDCT to T-score for BMD of 141 patients (male: 63, female: 78) in W medical center. We measured the 2nd, 3rd and 4th lumbar spine and analyzed the correlation between gender differences in BMD and lifestyle, physical features and social characteristics. Statistical significance was validated using independent sample T test with one way Anova. Gender BMD was confirmed that a statistically significant difference (p<0.05). BMD values decreased with increasing age but for the statistically men, there was no significant difference from 20s to 50s, it only showed a significant difference in 20s and 60s (p<0.001). For the statistically women, there was no significant difference from 20s to 40s. but since 50s BMD was decreased rapidly, which showed a significant difference(p<0.001). women showed significant differences for the menstruation and menopause, childbirth, alcohol, cereals and greasy food in bone mineral density (p<0.05) but there were no significant differences in men. The bone mineral density values calculated by the MDCT and lifestyle, physical features and social characteristics correlation analysis method is considered to be used as a basis for estimating the state in BMD and osteoporosis management.

  11. Accumulation of low density lipoprotein associated cholesterol in calcifying vesicle fractions correlates with intimal thickening in thoracic aortas of juvenile rabbits fed a supplemental cholesterol diet

    Directory of Open Access Journals (Sweden)

    Culley Nathan C

    2006-10-01

    Full Text Available Abstract Background It has been shown that calcifying vesicles play an important role in aortic calcification and that cholesterol content in the isolated vesicle fraction is increased when rabbits are fed supplemental cholesterol diets. Whether lipoprotein-associated cholesterols and other lipids are also increased in the vesicle fraction and whether the increase correlates with atherosclerosis remain unknown. Results Fourteen juvenile male rabbits fed an atherogenic diet containing 0.5% cholesterol and 2% peanut oil for 3 months developed varying degrees of hypercholesterolemia and intimal thickening in the ascending thoracic aorta. The correlation between these two parameters was insignificant, and likely attributable to the use of small numbers of rabbits in this study. Despite this lack of correlation, we demonstrate that the accumulation of cholesterol in calcifying vesicle fractions obtained from the collagenase-digested aorta fragments correlates well with intimal thickening (r2 = 0.98, p Conclusion When limited numbers of rabbits are used, LDL-C accumulation in calcifying vesicle fractions is a better biomarker for atherosclerosis than LDL-C levels in the serum. The close association of LDL-C with calcifying vesicles may play an important role in atherosclerosis and calcification.

  12. Comparison of Anger camera and BGO mosaic position-sensitive detectors for `Super ACAR`. Precision electron momentum densities via angular correlation of annihilation radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A.P. Jr. [Bell Labs. Murray Hill, NJ (United States); West, R.N.; Hyodo, Toshio

    1997-03-01

    We discuss the relative merits of Anger cameras and Bismuth Germanate mosaic counters for measuring the angular correlation of positron annihilation radiation at a facility such as the proposed Positron Factory at Takasaki. The two possibilities appear equally cost effective at this time. (author)

  13. Auditory Short-Term Memory Capacity Correlates with Gray Matter Density in the Left Posterior STS in Cognitively Normal and Dyslexic Adults

    Science.gov (United States)

    Richardson, Fiona M.; Ramsden, Sue; Ellis, Caroline; Burnett, Stephanie; Megnin, Odette; Catmur, Caroline; Schofield, Tom M.; Leff, Alex P.; Price, Cathy J.

    2011-01-01

    A central feature of auditory STM is its item-limited processing capacity. We investigated whether auditory STM capacity correlated with regional gray and white matter in the structural MRI images from 74 healthy adults, 40 of whom had a prior diagnosis of developmental dyslexia whereas 34 had no history of any cognitive impairment. Using…

  14. Negative correlation between bone mineral density and TSH receptor antibodies in long-term euthyroid postmenopausal women with treated Graves’ disease

    DEFF Research Database (Denmark)

    Ercolano, Monica A; Drnovsek, Monica L; Croome, Maria C

    2013-01-01

    Thyrotoxicosis is a cause of secondary osteoporosis. High concentrations of triiodotironine (T3) in Graves' disease stimulate bone turnover, but it is unclear if euthyroidism will always normalize bone metabolism. Thyrotropin (TSH) is known to affect directly the bone metabolism through the TSH...... receptor and TSH receptor antibodies (TRAb) may have an important role in bone turn-over.The aim of our study was to determine, in pre and postmenopausal euthyroidism patients with previous overt hyperthyroidism due to Graves' disease the bone mineral density (BMD) as well as factors that could affect BMD...

  15. Assessing the role of Hartree-Fock exchange, correlation energy and long range corrections in evaluating ionization potential, and electron affinity in density functional theory.

    Science.gov (United States)

    Vikramaditya, Talapunur; Lin, Shiang-Tai

    2017-06-05

    Accurate determination of ionization potentials (IPs), electron affinities (EAs), fundamental gaps (FGs), and HOMO, LUMO energy levels of organic molecules play an important role in modeling and predicting the efficiencies of organic photovoltaics, OLEDs etc. In this work, we investigate the effects of Hartree Fock (HF) Exchange, correlation energy, and long range corrections in predicting IP and EA in Hybrid Functionals. We observe increase in percentage of HF exchange results in increase of IPs and decrease in EAs. Contrary to the general expectations inclusion of both HF exchange and correlation energy (from the second order perturbation theory MP2) leads to poor prediction. Range separated Hybrid Functionals are found to be more reliable among various DFT Functionals investigated. DFT Functionals predict accurate IPs whereas post HF methods predict accurate EAs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Introducing correlations into carrier transport simulations of disordered materials through seeded nucleation: impact on density of states, carrier mobility, and carrier statistics

    Science.gov (United States)

    Brown, J. S.; Shaheen, S. E.

    2018-04-01

    Disorder in organic semiconductors has made it challenging to achieve performance gains; this is a result of the many competing and often nuanced mechanisms effecting charge transport. In this article, we attempt to illuminate one of these mechanisms in the hopes of aiding experimentalists in exceeding current performance thresholds. Using a heuristic exponential function, energetic correlation has been added to the Gaussian disorder model (GDM). The new model is grounded in the concept that energetic correlations can arise in materials without strong dipoles or dopants, but may be a result of an incomplete crystal formation process. The proposed correlation has been used to explain the exponential tail states often observed in these materials; it is also better able to capture the carrier mobility field dependence, commonly known as the Poole-Frenkel dependence, when compared to the GDM. Investigation of simulated current transients shows that the exponential tail states do not necessitate Montroll and Scher fits. Montroll and Scher fits occur in the form of two distinct power law curves that share a common constant in their exponent; they are clearly observed as linear lines when the current transient is plotted using a log-log scale. Typically, these fits have been found appropriate for describing amorphous silicon and other disordered materials which display exponential tail states. Furthermore, we observe the proposed correlation function leads to domains of energetically similar sites separated by boundaries where the site energies exhibit stochastic deviation. These boundary sites are found to be the source of the extended exponential tail states, and are responsible for high charge visitation frequency, which may be associated with the molecular turnover number and ultimately the material stability.

  17. Density, viscosity, surface tension, and molar volume of propylene glycol + water mixtures from 293 to 323 K and correlations by the Jouyban–Acree model

    Directory of Open Access Journals (Sweden)

    Ibrahim S. Khattab

    2017-02-01

    Full Text Available Density, viscosity, surface tension and molar volume of propylene glycol + water mixtures at 293, 298, 303, 308, 313, 318, and 323 K are reported, compared with the available literature data and the Jouyban–Acree model was used for mathematical correlation of the data. The mean relative deviation (MRD was used as an error criterion and the MRD values for data correlation of density, viscosity, surface tension and molar volume at different investigated temperatures are 0.1 ± 0.1%, 7.6 ± 6.4%, 3.4 ± 3.7%, and 0.4 ± 0.4%, respectively. The corresponding MRDs for the predicted properties after training the model using the experimental data at 298 K are 0.1 ± 0.2%, 12.8 ± 9.3%, 4.7 ± 4.1% and 0.6 ± 0.5%, respectively for density, viscosity, surface tension, and molar volume data.

  18. Serum anti-Helicobacter pylori immunoglobulin G titer correlates with grade of histological gastritis, mucosal bacterial density, and levels of serum biomarkers.

    Science.gov (United States)

    Tu, Huakang; Sun, Liping; Dong, Xiao; Gong, Yuehua; Xu, Qian; Jing, Jingjing; Yuan, Yuan

    2014-03-01

    OBJECTIVE. Clinical implications of serum anti-Helicobacter pylori immunoglobulin G (IgG) titer were unclear. This study investigated the associations of serum anti-H. pylori IgG titer with grade of histological gastritis, mucosal bacterial density and levels of serum biomarkers, including pepsinogen (PG) I, PGII, PGI/II ratio and gastrin-17. MATERIAL AND METHODS. Study participants were from a screening program in northern China. Serum anti-H. pylori IgG measurements were available for 5922 patients with superficial gastritis. Serum anti-H. pylori IgG titer and serum biomarkers were measured using ELISA, and gastric biopsies were evaluated using standardized criteria. RESULTS. In patients with mild, moderate or severe superficial gastritis, the mean serum anti-H. pylori IgG titers were 17.3, 33.4 and 54.4 EIU (p for trend histological gastritis, mucosal bacterial density and concentrations of serum PGI, PGII and gastrin-17, and negatively with PGI/II ratio.

  19. Further developments in the study of harmonic analysis by the correlation and spectral density methods, and its application to the adult rabbit EEG

    International Nuclear Information System (INIS)

    Meilleurat, Michele

    1973-07-01

    The application of harmonic analysis to the brain spontaneous electrical activity has been studied theoretically and practically in 30 adult rabbits chronically implanted with electrodes. Theoretically, an accurate energetic study of the signal can only be achieved by the calculation of the autocorrelation function and its Fourier transform, the power density spectrum. Secondly, a comparative study has been made of the analogical methods using analogic or hybrid devices and the digital method with an analysis and computing program (the sampling rate, the delay, the period of integration and the problems raised by the amplification of the biological signals and sampling). Data handling is discussed, the method mainly retaining the study of variance, the calculation of the total energy carried by the signal and the energies carried along the frequency bandwidth ΔF, their percentage as related to the total energy, the relationships of these various values for various electroencephalographic states. Experimentally, the general aspect of the spontaneous electric activity of the dorsal hippocampus and the visual cortex during vigilance variations is accurately described by the calculation of the variance and the study of the position of the maximum values of the peaks of the power density spectra on the frequency axis as well as by the calculation of the energies carried in various frequency bands, 0-4, 4-8, 8-12 Hz. With the same theoretical bases, both the analogical and digital methods lead to similar results, the former being easier to operate, the latter more accurate. (author) [fr

  20. Density, viscosity, isothermal (vapour + liquid) equilibrium, excess molar volume, viscosity deviation, and their correlations for chloroform + methyl isobutyl ketone binary system

    International Nuclear Information System (INIS)

    Clara, Rene A.; Gomez Marigliano, Ana C.; Solimo, Horacio N.

    2007-01-01

    Density and viscosity measurements for pure chloroform and methyl isobutyl ketone at T = (283.15, 293.15, 303.15, and 313.15) K as well as for the binary system {x 1 chloroform + (1 - x 1 ) methyl isobutyl ketone} at the same temperatures were made over the whole concentration range. The experimental results were fitted to empirical equations, which permit the calculation of these properties over the whole concentration and temperature ranges studied. Data of the binary mixture were further used to calculate the excess molar volume and viscosity deviation. The (vapour + liquid) equilibrium (VLE) at T = 303.15 K for this binary system was also measured in order to calculate the activity coefficients and the excess molar Gibbs energy. This binary system shows no azeotrope and negative deviations from ideal behaviour. The excess or deviation properties were fitted to the Redlich-Kister polynomial relation to obtain their coefficients and standard deviations

  1. Effects of side-chain and electron exchange correlation on the band structure of perylene diimide liquid crystals: a density functional study.

    Science.gov (United States)

    Arantes, J T; Lima, M P; Fazzio, A; Xiang, H; Wei, Su-Huai; Dalpian, G M

    2009-04-23

    The structural and electronic properties of perylene diimide liquid crystal PPEEB are studied using ab initio methods based on the density functional theory (DFT). Using available experimental crystallographic data as a guide, we propose a detailed structural model for the packing of solid PPEEB. We find that due to the localized nature of the band edge wave function, theoretical approaches beyond the standard method, such as hybrid functional (PBE0), are required to correctly characterize the band structure of this material. Moreover, unlike previous assumptions, we observe the formation of hydrogen bonds between the side chains of different molecules, which leads to a dispersion of the energy levels. This result indicates that the side chains of the molecular crystal not only are responsible for its structural conformation but also can be used for tuning the electronic and optical properties of these materials.

  2. Usefulness of measurement of circulation time using MgSO4 : correlation with time-density curve using electron beam computed tomography

    International Nuclear Information System (INIS)

    Kim, Byung Ki; Lee, Hui Joong; Lee, Jong Min; Kim, Yong Joo; Kang, Duck Sik

    1999-01-01

    To determine the usefulness of MgSO 4 for measuring the systemic circulation time. Systemic circulation time, defined as elapsed time from the injection of MgSO 4 solution to the point of pharyngeal burning sensation, was measured in 63 volunteers. MgSO 4 was injected into a superficial vein of an upper extremity. Using dynamic electron beam computed tomography at the level of the abdominal aorta and celiac axis, a time-intensity curve was plotted, and for these two locations, maximal enhancement time was compared. For 60 of the 63 subjects, both systemic circulation time and maximal enhancement time were determined. Average systemic circulation time was 17.4 (SD:3.6) secs. and average maximal enhancement times at the level of the abdominal aorta and celiac axis were 17.5 (SD:3.0) secs. and 18.5 (SD:3.2) secs., respectively. Correlation coefficients between systemic circulation time and maximal enhancement time for the abdominal aorta and celiac axis were 0.73 (p 4 injection and maximal enhancement time for the abdominal aorta showed significant correlation. Thus, to determine the appropriate scanning time in contrast-enhanced radiological studies, MgSO 4 can be used instead of a test bolus study

  3. Density scaling for multiplets

    International Nuclear Information System (INIS)

    Nagy, A

    2011-01-01

    Generalized Kohn-Sham equations are presented for lowest-lying multiplets. The way of treating non-integer particle numbers is coupled with an earlier method of the author. The fundamental quantity of the theory is the subspace density. The Kohn-Sham equations are similar to the conventional Kohn-Sham equations. The difference is that the subspace density is used instead of the density and the Kohn-Sham potential is different for different subspaces. The exchange-correlation functional is studied using density scaling. It is shown that there exists a value of the scaling factor ζ for which the correlation energy disappears. Generalized OPM and Krieger-Li-Iafrate (KLI) methods incorporating correlation are presented. The ζKLI method, being as simple as the original KLI method, is proposed for multiplets.

  4. Photoelectron spectroscopy of B4O4−: Dual 3c-4e π hyperbonds and rhombic 4c-4e o-bond in boron oxide clusters

    International Nuclear Information System (INIS)

    Tian, Wen-Juan; Chen, Qiang; Ou, Ting; Li, Si-Dian; Zhao, Li-Juan; Xu, Hong-Guang; Zheng, Wei-Jun; Zhai, Hua-Jin

    2015-01-01

    Gas-phase anion photoelectron spectroscopy (PES) is combined with global structural searches and electronic structure calculations at the hybrid Becke 3-parameter exchange functional and Lee-Yang-Parr correlation functional (B3LYP) and single-point coupled-cluster with single, double, and perturbative triple excitations (CCSD(T)) levels to probe the structural and electronic properties and chemical bonding of the B 4 O 4 0/− clusters. The measured PES spectra of B 4 O 4 − exhibit a major band with the adiabatic and vertical detachment energies (ADE and VDE) of 2.64 ± 0.10 and 2.81 ± 0.10 eV, respectively, as well as a weak peak with the ADE and VDE of 1.42 ± 0.08 and 1.48 ± 0.08 eV. The former band proves to correspond to the Y-shaped global minimum of C s B 4 O 4 − ( 2 A″), with the calculated ADE/VDE of 2.57/2.84 eV at the CCSD(T) level, whereas the weak band is associated with the second lowest-energy, rhombic isomer of D 2h B 4 O 4 − ( 2 B 2g ) with the predicted ADE/VDE of 1.43/1.49 eV. Both anion structures are planar, featuring a B atom or a B 2 O 2 core bonded with terminal BO and/or BO 2 groups. The same Y-shaped and rhombic structures are also located for the B 4 O 4 neutral cluster, albeit with a reversed energy order. Bonding analyses reveal dual three-center four-electron (3c-4e) π hyperbonds in the Y-shaped B 4 O 4 0/− clusters and a four-center four-electron (4c-4e) π bond, that is, the so-called o-bond in the rhombic B 4 O 4 0/− clusters. This work is the first experimental study on a molecular system with an o-bond

  5. Photoelectron spectroscopy of B4O4-: Dual 3c-4e π hyperbonds and rhombic 4c-4e o-bond in boron oxide clusters

    Science.gov (United States)

    Tian, Wen-Juan; Zhao, Li-Juan; Chen, Qiang; Ou, Ting; Xu, Hong-Guang; Zheng, Wei-Jun; Zhai, Hua-Jin; Li, Si-Dian

    2015-04-01

    Gas-phase anion photoelectron spectroscopy (PES) is combined with global structural searches and electronic structure calculations at the hybrid Becke 3-parameter exchange functional and Lee-Yang-Parr correlation functional (B3LYP) and single-point coupled-cluster with single, double, and perturbative triple excitations (CCSD(T)) levels to probe the structural and electronic properties and chemical bonding of the B4O40/- clusters. The measured PES spectra of B4O4- exhibit a major band with the adiabatic and vertical detachment energies (ADE and VDE) of 2.64 ± 0.10 and 2.81 ± 0.10 eV, respectively, as well as a weak peak with the ADE and VDE of 1.42 ± 0.08 and 1.48 ± 0.08 eV. The former band proves to correspond to the Y-shaped global minimum of Cs B4O4- (2A″), with the calculated ADE/VDE of 2.57/2.84 eV at the CCSD(T) level, whereas the weak band is associated with the second lowest-energy, rhombic isomer of D2h B4O4- (2B2g) with the predicted ADE/VDE of 1.43/1.49 eV. Both anion structures are planar, featuring a B atom or a B2O2 core bonded with terminal BO and/or BO2 groups. The same Y-shaped and rhombic structures are also located for the B4O4 neutral cluster, albeit with a reversed energy order. Bonding analyses reveal dual three-center four-electron (3c-4e) π hyperbonds in the Y-shaped B4O40/- clusters and a four-center four-electron (4c-4e) π bond, that is, the so-called o-bond in the rhombic B4O40/- clusters. This work is the first experimental study on a molecular system with an o-bond.

  6. Photoelectron spectroscopy of B4O4 (-): Dual 3c-4e π hyperbonds and rhombic 4c-4e o-bond in boron oxide clusters.

    Science.gov (United States)

    Tian, Wen-Juan; Zhao, Li-Juan; Chen, Qiang; Ou, Ting; Xu, Hong-Guang; Zheng, Wei-Jun; Zhai, Hua-Jin; Li, Si-Dian

    2015-04-07

    Gas-phase anion photoelectron spectroscopy (PES) is combined with global structural searches and electronic structure calculations at the hybrid Becke 3-parameter exchange functional and Lee-Yang-Parr correlation functional (B3LYP) and single-point coupled-cluster with single, double, and perturbative triple excitations (CCSD(T)) levels to probe the structural and electronic properties and chemical bonding of the B4O4 (0/-) clusters. The measured PES spectra of B4O4 (-) exhibit a major band with the adiabatic and vertical detachment energies (ADE and VDE) of 2.64 ± 0.10 and 2.81 ± 0.10 eV, respectively, as well as a weak peak with the ADE and VDE of 1.42 ± 0.08 and 1.48 ± 0.08 eV. The former band proves to correspond to the Y-shaped global minimum of Cs B4O4 (-) ((2)A″), with the calculated ADE/VDE of 2.57/2.84 eV at the CCSD(T) level, whereas the weak band is associated with the second lowest-energy, rhombic isomer of D2h B4O4 (-) ((2)B2g) with the predicted ADE/VDE of 1.43/1.49 eV. Both anion structures are planar, featuring a B atom or a B2O2 core bonded with terminal BO and/or BO2 groups. The same Y-shaped and rhombic structures are also located for the B4O4 neutral cluster, albeit with a reversed energy order. Bonding analyses reveal dual three-center four-electron (3c-4e) π hyperbonds in the Y-shaped B4O4 (0/-) clusters and a four-center four-electron (4c-4e) π bond, that is, the so-called o-bond in the rhombic B4O4 (0/-) clusters. This work is the first experimental study on a molecular system with an o-bond.

  7. Development of Metabolic Indicators of Burn Injury: Very Low Density Lipoprotein (VLDL and Acetoacetate Are Highly Correlated to Severity of Burn Injury in Rats

    Directory of Open Access Journals (Sweden)

    Maria-Louisa Izamis

    2012-07-01

    Full Text Available Hypermetabolism is a significant sequela to severe trauma such as burns, as well as critical illnesses such as cancer. It persists in parallel to, or beyond, the original pathology for many months as an often-fatal comorbidity. Currently, diagnosis is based solely on clinical observations of increased energy expenditure, severe muscle wasting and progressive organ dysfunction. In order to identify the minimum number of necessary variables, and to develop a rat model of burn injury-induced hypermetabolism, we utilized data mining approaches to identify the metabolic variables that strongly correlate to the severity of injury. A clustering-based algorithm was introduced into a regression model of the extent of burn injury. As a result, a neural network model which employs VLDL and acetoacetate levels was demonstrated to predict the extent of burn injury with 88% accuracy in the rat model. The physiological importance of the identified variables in the context of hypermetabolism, and necessary steps in extension of this preliminary model to a clinically utilizable index of severity of burn injury are outlined.

  8. A Method to Search for Correlations of Ultra-high Energy Cosmic-Ray Masses with the Large-scale Structures in the Local Galaxy Density Field

    Science.gov (United States)

    Ivanov, A. A.

    2013-02-01

    One of the main goals of investigations using present and future giant extensive air shower (EAS) arrays is the mass composition of ultra-high energy cosmic rays (UHECRs). A new approach to the problem is presented, combining the analysis of arrival directions with the statistical test of the paired EAS samples. One of the ideas of the method is to search for possible correlations between UHECR masses and their separate sources; for instance, if there are two sources in different areas of the celestial sphere injecting different nuclei, but the fluxes are comparable so that arrival directions are isotropic, then the aim is to reveal a difference in the mass composition of cosmic-ray fluxes. The method is based on a non-parametric statistical test—the Wilcoxon signed-rank routine—which does not depend on the populations fitting any parameterized distributions. Two particular algorithms are proposed: first, using measurements of the depth of the EAS maximum position in the atmosphere; and second, relying on the age variance of air showers initiated by different primary particles. The formulated method is applied to the Yakutsk array data, in order to demonstrate the possibility of searching for a difference in average mass composition between the two UHECR sets, arriving particularly from the supergalactic plane and a complementary region.

  9. A METHOD TO SEARCH FOR CORRELATIONS OF ULTRA-HIGH ENERGY COSMIC-RAY MASSES WITH THE LARGE-SCALE STRUCTURES IN THE LOCAL GALAXY DENSITY FIELD

    International Nuclear Information System (INIS)

    Ivanov, A. A.

    2013-01-01

    One of the main goals of investigations using present and future giant extensive air shower (EAS) arrays is the mass composition of ultra-high energy cosmic rays (UHECRs). A new approach to the problem is presented, combining the analysis of arrival directions with the statistical test of the paired EAS samples. One of the ideas of the method is to search for possible correlations between UHECR masses and their separate sources; for instance, if there are two sources in different areas of the celestial sphere injecting different nuclei, but the fluxes are comparable so that arrival directions are isotropic, then the aim is to reveal a difference in the mass composition of cosmic-ray fluxes. The method is based on a non-parametric statistical test—the Wilcoxon signed-rank routine—which does not depend on the populations fitting any parameterized distributions. Two particular algorithms are proposed: first, using measurements of the depth of the EAS maximum position in the atmosphere; and second, relying on the age variance of air showers initiated by different primary particles. The formulated method is applied to the Yakutsk array data, in order to demonstrate the possibility of searching for a difference in average mass composition between the two UHECR sets, arriving particularly from the supergalactic plane and a complementary region.

  10. A METHOD TO SEARCH FOR CORRELATIONS OF ULTRA-HIGH ENERGY COSMIC-RAY MASSES WITH THE LARGE-SCALE STRUCTURES IN THE LOCAL GALAXY DENSITY FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A. A., E-mail: ivanov@ikfia.ysn.ru [Shafer Institute for Cosmophysical Research and Aeronomy, 31 Lenin Avenue, Yakutsk 677980 (Russian Federation)

    2013-02-15

    One of the main goals of investigations using present and future giant extensive air shower (EAS) arrays is the mass composition of ultra-high energy cosmic rays (UHECRs). A new approach to the problem is presented, combining the analysis of arrival directions with the statistical test of the paired EAS samples. One of the ideas of the method is to search for possible correlations between UHECR masses and their separate sources; for instance, if there are two sources in different areas of the celestial sphere injecting different nuclei, but the fluxes are comparable so that arrival directions are isotropic, then the aim is to reveal a difference in the mass composition of cosmic-ray fluxes. The method is based on a non-parametric statistical test-the Wilcoxon signed-rank routine-which does not depend on the populations fitting any parameterized distributions. Two particular algorithms are proposed: first, using measurements of the depth of the EAS maximum position in the atmosphere; and second, relying on the age variance of air showers initiated by different primary particles. The formulated method is applied to the Yakutsk array data, in order to demonstrate the possibility of searching for a difference in average mass composition between the two UHECR sets, arriving particularly from the supergalactic plane and a complementary region.

  11. The Intrinsic Characteristics of Galaxies on the SFR–M ∗ Plane at 1.2 < z < 4: I. The Correlation between Stellar Age, Central Density, and Position Relative to the Main Sequence

    Science.gov (United States)

    Lee, Bomee; Giavalisco, Mauro; Whitaker, Katherine; Williams, Christina C.; Ferguson, Henry C.; Acquaviva, Viviana; Koekemoer, Anton M.; Straughn, Amber N.; Guo, Yicheng; Kartaltepe, Jeyhan S.; Lotz, Jennifer; Pacifici, Camilla; Croton, Darren J.; Somerville, Rachel S.; Lu, Yu

    2018-02-01

    We use the deep CANDELS observations in the GOODS North and South fields to revisit the correlations between stellar mass (M *), star formation rate (SFR) and morphology, and to introduce a fourth dimension, the mass-weighted stellar age, in galaxies at 1.2history for each galaxy. Like others, we find that the slope of the main sequence (MS) of star formation in the ({M}* ;{SFR}) plane bends at high mass. We observe clear morphological differences among galaxies across the MS, which also correlate with stellar age. At all redshifts, galaxies that are quenching or quenched, and thus old, have high {{{Σ }}}1 (the projected density within the central 1 kpc), while younger, star-forming galaxies span a much broader range of {{{Σ }}}1, which includes the high values observed for quenched galaxies, but also extends to much lower values. As galaxies age and quench, the stellar age and the dispersion of {{{Σ }}}1 for fixed values of M * shows two different regimes: one at the low-mass end, where quenching might be driven by causes external to the galaxies; the other at the high-mass end, where quenching is driven by internal causes, very likely the mass given the low scatter of {{{Σ }}}1 (mass quenching). We suggest that the monotonic increase of central density as galaxies grow is one manifestation of a more general phenomenon of structural transformation that galaxies undergo as they evolve.

  12. CRISS power spectral density

    International Nuclear Information System (INIS)

    Vaeth, W.

    1979-04-01

    The correlation of signal components at different frequencies like higher harmonics cannot be detected by a normal power spectral density measurement, since this technique correlates only components at the same frequency. This paper describes a special method for measuring the correlation of two signal components at different frequencies: the CRISS power spectral density. From this new function in frequency analysis, the correlation of two components can be determined quantitatively either they stem from one signal or from two diverse signals. The principle of the method, suitable for the higher harmonics of a signal as well as for any other frequency combinations is shown for the digital frequency analysis technique. Two examples of CRISS power spectral densities demonstrates the operation of the new method. (orig.) [de

  13. Streptozocin-induced type-1 diabetes mellitus results in decreased density of CGRP sensory and TH sympathetic nerve fibers that are positively correlated with bone loss at the mouse femoral neck.

    Science.gov (United States)

    Enríquez-Pérez, Iris A; Galindo-Ordoñez, Karla E; Pantoja-Ortíz, Christian E; Martínez-Martínez, Arisaí; Acosta-González, Rosa I; Muñoz-Islas, Enriqueta; Jiménez-Andrade, Juan M

    2017-08-10

    Type-1 diabetes mellitus (T1DM) results in loss of innervation in some tissues including epidermis and retina; however, the effect on bone innervation is unknown. Likewise, T1DM results in pathological bone loss and increased risk of fracture. Thus, we quantified the density of calcitonin gene-related peptide (CGRP + ) sensory and tyrosine hydroxylase (TH + ) sympathetic nerve fibers and determined the association between the innervation density and microarchitecture of trabecular bone at the mouse femoral neck. Ten weeks-old female mice received 5 daily administrations of streptozocin (i.p. 50mg/kg) or citrate (control group). Twenty weeks later, femurs were analyzed by microCT and processed for immunohistochemistry. Confocal microscopy analysis revealed that mice with T1DM had a significant loss of both CGRP + and TH + nerve fibers in the bone marrow at the femoral neck. Likewise, microCT analysis revealed a significant decrease in the trabecular bone mineral density (tBMD), bone volume/total volume ratio (BV/TB), trabecular thickness (Tb.Th), trabecular number (Tb.N) and trabecular separation (Tb.Sp) in mice with T1DM as compared to control mice. Analysis of correlation revealed a positive and significant association between density of CGRP + or TH + nerve fibers with tBMD, BV/TV, Tb.Th and Tb.Sp, but not with trabecular number (there was a positive association only for CGRP + ) and degree of anisotropy (DA). This study suggests an interaction between sensory and sympathetic nervous system and T1DM-induced bone loss. Identification of the factors involved in the loss of CGRP + sensory and TH + sympathetic fibers and how they regulate bone loss may result in new avenues to treat T1DM-related osteoporosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Quantitative CT assessment of proximal femoral bone density. An experimental study concerning its correlation to breaking load for femoral neck fractures; Quantitative CT des proximalen Femurs. Experimentelle Untersuchungen zur Korrelation mit der Bruchlast bei Schenkelhalsfrakturen

    Energy Technology Data Exchange (ETDEWEB)

    Buitrago-Tellez, C.H.; Schulze, C.; Gufler, H.; Langer, M. [Abt. Roentgendiagnostik, Radiologische Universitaetsklinik, Albert-Ludwigs-Univ. Freiburg (Germany); Bonnaire, F.; Hoenninger, A.; Kuner, E. [Abt. Unfallchirurgie, Chirurgische Universitaetsklinik, Albert-Ludwigs-Univ. Freiburg (Germany)

    1997-12-01

    Purpose: In an experimental study, the correlation between the trabecular bone density of the different regions of the proximal femur and the fracture load in the setting of femoral neck fractures was examined. Methods: The bone mineral density 41 random proximal human femora was estimated by single-energy quanitative CT (SE-QCT). The trabecular bone density was measured at the greatest possible extracortical volume at midcapital, midneck and intertrochanteric level and in the 1 cm{sup 3} volumes of the centres of these regions in a standardised 10 mm thick slice in the middle of the femoral neck axis (in mg/ml Ca-hydroxyl apatite). The proximal femora were then isolated and mounted on a compression/bending device under two-legged stand conditions and loaded up to the point when a femoral neck fracture occurred. Results: Statistical analysis revealed a linear correlation between the trabecular bone density and the fracture load for the greater regions, with the highest value in the maximal area of the head (coefficient factor r=0.76). Conclusion: According to our data, the measurement of the trabecular bone by SE-QCT at the femoral head is a more confident adjunct than the neck or trochanteric area to predict a femoral neck fracture. (orig.) [Deutsch] Ziel: In einer experimentellen Versuchsserie wurde der Zusammenhang zwischen der Knochendichte an verschiedenen Lokalisationen des proximalen Femurs und der maximalen Last bei der Entstehung von Schenkelhalsfrakturen (Bruchlast) untersucht. Methode: An 41 frisch entnommenen proximalen Leichenfemora wurde die trabekulaere Knochendichte mit Hilfe der Ein-Energie Quantitativen Computertomographie (SE-QCT) bei einer Schichtdicke von 10 mm in der Mitte der Schenkelhalsachse bestimmt. Erfasst wurden die maximale extrakortikale, zylinderfoermige Messregion im Hueftkopf, Schenkelhals und der Intertrochantaerregion sowie das 1 cm{sup 3} umfassende Zentrum dieser Regionen. Die Praeparate wurden unter Zweibeinstandbedingungen

  15. Correlation between patients' reasons for encounters/health problems and population density in Japan: a systematic review of observational studies coded by the International Classification of Health Problems in Primary Care (ICHPPC) and the International Classification of Primary care (ICPC).

    Science.gov (United States)

    Kaneko, Makoto; Ohta, Ryuichi; Nago, Naoki; Fukushi, Motoharu; Matsushima, Masato

    2017-09-13

    The Japanese health care system has yet to establish structured training for primary care physicians; therefore, physicians who received an internal medicine based training program continue to play a principal role in the primary care setting. To promote the development of a more efficient primary health care system, the assessment of its current status in regard to the spectrum of patients' reasons for encounters (RFEs) and health problems is an important step. Recognizing the proportions of patients' RFEs and health problems, which are not generally covered by an internist, can provide valuable information to promote the development of a primary care physician-centered system. We conducted a systematic review in which we searched six databases (PubMed, the Cochrane Library, Google Scholar, Ichushi-Web, JDreamIII and CiNii) for observational studies in Japan coded by International Classification of Health Problems in Primary Care (ICHPPC) and International Classification of Primary Care (ICPC) up to March 2015. We employed population density as index of accessibility. We calculated Spearman's rank correlation coefficient to examine the correlation between the proportion of "non-internal medicine-related" RFEs and health problems in each study area in consideration of the population density. We found 17 studies with diverse designs and settings. Among these studies, "non-internal medicine-related" RFEs, which was not thought to be covered by internists, ranged from about 4% to 40%. In addition, "non-internal medicine-related" health problems ranged from about 10% to 40%. However, no significant correlation was found between population density and the proportion of "non-internal medicine-related" RFEs and health problems. This is the first systematic review on RFEs and health problems coded by ICHPPC and ICPC undertaken to reveal the diversity of health problems in Japanese primary care. These results suggest that primary care physicians in some rural areas of Japan

  16. APP with Kunitz type protease inhibitor domain (KPI) correlates with neuritic plaque density but not with cortical synaptophysin immunoreactivity in Alzheimer's disease and non-demented aged subjects: a multifactorial analysis.

    Science.gov (United States)

    Zhan, S S; Sandbrink, R; Beyreuther, K; Schmitt, H P

    1995-01-01

    The formation of beta A4 amyloid protein in neuritic plaques in Alzheimer's disease (AD) and advanced age is a complex process that involves a number of both cellular and molecular mechanisms, the interrelations of which are not yet completely understood. We have examined quantitatively, in AD and aged controls an extended spectrum of amyloid plaque-related cellular and molecular factors and the cortical synaptophysin immunoreactivity (synaptic density) in order to check for interrelations between them by multifactorial analysis. In 3 cases of senile dementia of the Alzheimer type (SDAT) aged 72, 80 and 82 years, and 9 controls aged 43-88 (mean age 65) years, the cortical synaptophysin immunoreactivity was assessed, together with the numbers of neurons, astrocytes and microglial cells, senile plaques, of tangle-bearing neurons, and the amount of beta A4 amyloid precursor protein (APP) with and without the Kunitz type serine protease inhibitor (KPI) domain. The main results were: APP including the KPI domain (KPI-APP) correlated with the number of neuritic plaques, regardless of whether they occurred in SDAT or non-demented controls. There was no significant difference in the amount of KPI-APP between SDAT and controls. Conversely, APP695 (without KPI) was significantly reduced in SDAT. KPI-APP did not correlate with the synaptophysin immunoreactivity (RGVA), while APP695 showed a significant correlation with the latter in all evaluations. It also correlated with the neuron counts, which was not true for KPI-APP. These results support previous findings indicating that KPI-APP is an important local factor for amyloid deposition in the neuritic plaques, both in AD and in non-demented aged people. On the contrary, KPI-APP does not seem to be significantly involved in the mechanisms of synaptic change outside of the plaques.

  17. Density Functional Theory Embedding for Correlated Wavefunctions

    Science.gov (United States)

    2014-01-01

    PBE, PW91, B3LYP, and PBE0. Unlike the spin-splitting energy, which is highly sensitive to the electronic structure of the Fe atom and is thus impacted ...0.125819 H13 -0.266039 -1.879491 0.392857 H14 -0.114525 -0.651038 1.637376 C15 1.939021 0.764969 0.494120 C16 2.110936 -1.464774 -0.530108 H17 3.144393...0.875560 H11 1.176667 0.837647 0.875568 C12 -1.248215 -0.197709 -0.000001 H13 0.192433 -1.477758 0.870558 H14 0.192433 -1.477754 -0.870565 C15 -1.733584

  18. The effect of basis set and exchange-correlation functional on time-dependent density functional theory calculations within the Tamm-Dancoff approximation of the x-ray emission spectroscopy of transition metal complexes.

    Science.gov (United States)

    Roper, Ian P E; Besley, Nicholas A

    2016-03-21

    The simulation of X-ray emission spectra of transition metal complexes with time-dependent density functional theory (TDDFT) is investigated. X-ray emission spectra can be computed within TDDFT in conjunction with the Tamm-Dancoff approximation by using a reference determinant with a vacancy in the relevant core orbital, and these calculations can be performed using the frozen orbital approximation or with the relaxation of the orbitals of the intermediate core-ionised state included. Both standard exchange-correlation functionals and functionals specifically designed for X-ray emission spectroscopy are studied, and it is shown that the computed spectral band profiles are sensitive to the exchange-correlation functional used. The computed intensities of the spectral bands can be rationalised by considering the metal p orbital character of the valence molecular orbitals. To compute X-ray emission spectra with the correct energy scale allowing a direct comparison with experiment requires the relaxation of the core-ionised state to be included and the use of specifically designed functionals with increased amounts of Hartree-Fock exchange in conjunction with high quality basis sets. A range-corrected functional with increased Hartree-Fock exchange in the short range provides transition energies close to experiment and spectral band profiles that have a similar accuracy to those from standard functionals.

  19. Quantal density functional theory

    CERN Document Server

    Sahni, Viraht

    2016-01-01

    This book deals with quantal density functional theory (QDFT) which is a time-dependent local effective potential theory of the electronic structure of matter. The treated time-independent QDFT constitutes a special case. In the 2nd edition, the theory is extended to include the presence of external magnetostatic fields. The theory is a description of matter based on the ‘quantal Newtonian’ first and second laws which is in terms of “classical” fields that pervade all space, and their quantal sources. The fields, which are explicitly defined, are separately representative of electron correlations due to the Pauli exclusion principle, Coulomb repulsion, correlation-kinetic, correlation-current-density, and correlation-magnetic effects. The book further describes Schrödinger theory from the new physical perspective of fields and quantal sources. It also describes traditional Hohenberg-Kohn-Sham DFT, and explains via QDFT the physics underlying the various energy functionals and functional derivatives o...

  20. Angular correlation methods

    International Nuclear Information System (INIS)

    Ferguson, A.J.

    1974-01-01

    An outline of the theory of angular correlations is presented, and the difference between the modern density matrix method and the traditional wave function method is stressed. Comments are offered on particular angular correlation theoretical techniques. A brief discussion is given of recent studies of gamma ray angular correlations of reaction products recoiling with high velocity into vacuum. Two methods for optimization to obtain the most accurate expansion coefficients of the correlation are discussed. (1 figure, 53 references) (U.S.)

  1. Low Bone Density

    Science.gov (United States)

    ... Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone density ... people with normal bone density. Detecting Low Bone Density A bone density test will determine whether you ...

  2. Level densities

    International Nuclear Information System (INIS)

    Ignatyuk, A.V.

    1998-01-01

    For any applications of the statistical theory of nuclear reactions it is very important to obtain the parameters of the level density description from the reliable experimental data. The cumulative numbers of low-lying levels and the average spacings between neutron resonances are usually used as such data. The level density parameters fitted to such data are compiled in the RIPL Starter File for the tree models most frequently used in practical calculations: i) For the Gilber-Cameron model the parameters of the Beijing group, based on a rather recent compilations of the neutron resonance and low-lying level densities and included into the beijing-gc.dat file, are chosen as recommended. As alternative versions the parameters provided by other groups are given into the files: jaeri-gc.dat, bombay-gc.dat, obninsk-gc.dat. Additionally the iljinov-gc.dat, and mengoni-gc.dat files include sets of the level density parameters that take into account the damping of shell effects at high energies. ii) For the backed-shifted Fermi gas model the beijing-bs.dat file is selected as the recommended one. Alternative parameters of the Obninsk group are given in the obninsk-bs.dat file and those of Bombay in bombay-bs.dat. iii) For the generalized superfluid model the Obninsk group parameters included into the obninsk-bcs.dat file are chosen as recommended ones and the beijing-bcs.dat file is included as an alternative set of parameters. iv) For the microscopic approach to the level densities the files are: obninsk-micro.for -FORTRAN 77 source for the microscopical statistical level density code developed in Obninsk by Ignatyuk and coworkers, moller-levels.gz - Moeller single-particle level and ground state deformation data base, moller-levels.for -retrieval code for Moeller single-particle level scheme. (author)

  3. Spatial correlations in compressible granular flows

    NARCIS (Netherlands)

    van Noije, T.P.C.; Ernst, M.H.; Brito, R.

    The clustering instability in freely evolving granular fluids manifests itself in the density-density correlation function and structure factor. These functions are calculated from fluctuating hydrodynamics. As time increases, the structure factor of density fluctuations develops a maximum, which

  4. Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results

    International Nuclear Information System (INIS)

    Goo, Hyun Woo; Yang, Dong Hyun; Seo, Joon Beom; Chae, Eun Jin; Lee, Jeongjin; Hong, Soo-Jong; Yu, Jinho; Kim, Byoung-Ju; Krauss, Bernhard

    2010-01-01

    Xenon ventilation CT using dual-source and dual-energy technique is a recently introduced, promising functional lung imaging method. To expand its clinical applications evidence of additional diagnostic value of xenon ventilation CT over conventional chest CT is required. To evaluate the usefulness of xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans (BO). Seventeen children (age 7-18 years; 11 boys) with BO underwent xenon ventilation CT using dual-source and dual-energy technique. Xenon and CT density values were measured in normal and hyperlucent lung regions on CT and were compared between the two regions. Volumes of hyperlucent regions and ventilation defects were calculated with thresholds determined by visual and histogram-based analysis. Indexed volumes of hyperlucent lung regions and ventilation defects were correlated with pulmonary function test results. Effective doses of xenon CT were calculated. Xenon (14.6 ± 6.4 HU vs 26.1 ± 6.5 HU; P 25-75 , (γ = -0.68-0.88, P ≤ 0.002). Volume percentages of xenon ventilation defects (35.0 ± 16.4%)] were not significantly different from those of hyperlucent lung regions (38.2 ± 18.6%). However, mismatches between the volume percentages were variable up to 21.4-33.3%. Mean effective dose of xenon CT was 1.9 ± 0.5 mSv. In addition to high-resolution anatomic information, xenon ventilation CT using dual-source and dual-energy technique demonstrates impaired regional ventilation and its heterogeneity accurately in children with BO without additional radiation exposure. (orig.)

  5. Fission level densities

    International Nuclear Information System (INIS)

    Maslov, V.M.

    1998-01-01

    Fission level densities (or fissioning nucleus level densities at fission saddle deformations) are required for statistical model calculations of actinide fission cross sections. Back-shifted Fermi-Gas Model, Constant Temperature Model and Generalized Superfluid Model (GSM) are widely used for the description of level densities at stable deformations. These models provide approximately identical level density description at excitations close to the neutron binding energy. It is at low excitation energies that they are discrepant, while this energy region is crucial for fission cross section calculations. A drawback of back-shifted Fermi gas model and traditional constant temperature model approaches is that it is difficult to include in a consistent way pair correlations, collective effects and shell effects. Pair, shell and collective properties of nucleus do not reduce just to the renormalization of level density parameter a, but influence the energy dependence of level densities. These effects turn out to be important because they seem to depend upon deformation of either equilibrium or saddle-point. These effects are easily introduced within GSM approach. Fission barriers are another key ingredients involved in the fission cross section calculations. Fission level density and barrier parameters are strongly interdependent. This is the reason for including fission barrier parameters along with the fission level densities in the Starter File. The recommended file is maslov.dat - fission barrier parameters. Recent version of actinide fission barrier data obtained in Obninsk (obninsk.dat) should only be considered as a guide for selection of initial parameters. These data are included in the Starter File, together with the fission barrier parameters recommended by CNDC (beijing.dat), for completeness. (author)

  6. Correlation trends for bone mineral density in Mexican women: evidence of familiar predisposition Tendencias de correlación para la densidad mineral ósea en mujeres mexicanas: pruebas de predisposición familiar

    Directory of Open Access Journals (Sweden)

    Eduardo Lazcano-Ponce

    2009-01-01

    Full Text Available OBJECTIVE: Genetic factors determine bone mineral density (BMD and peak bone density between 20 and 30 years of age, as well as bone mineral loss after menopause. BMD is a predictor of fractures due to osteoporosis and the impact of genetic factors on osteoporosis. The variation in BMD for each individual is determined by an underlying genetic structure, common genetic effects, particularly with respect to compact bones as compared to those that are primarily trabecular. This article presents the correlation of BMD by anatomical site among different samples of Mexican grandmothers, mothers and granddaughters of mixed race. MATERIAL AND METHODS: The present analysis was performed of healthy employees and their healthy relatives from three different health and academic institutions: the Instituto Mexicano del Seguro Social and the Instituto Nacional de Salud Pública, both located in Cuernavaca, Morelos, as well as the Universidad Autónoma del Estado de México. We selected family-related female participants in order to obtain pairs of mothers and daughters and, whenever possible, grandmother-mother-daughter groups. We were able to match 591 mother-daughter pairs for analysis. Additionally, we were able to include grandmothers to create grandmother-mother-daughter triads for further analysis. Bone density measurements were performed of the non-dominant proximal femur, the lumbar spine (L1-L4 and the whole body using a dual X-ray absorptiometry (DXA Lunar DPX NT instrument. RESULTS: This study included 591 granddaughters, 591 mothers and 69 grandmothers; mean ages were 20, 47 and 72 years old, respectively. A close relationship existed with respect to body mass index (BMI between mothers and grandmothers (27.9 vs. 27.3. The largest proportion of body fat mass was observed in the group of mothers (28.5%, but was also high in grandmothers (25.7% and granddaughters (21.1%. The percentage of lean body mass was similar among the three family groups

  7. Spin-Density Functionals from Current-Density Functional Theory and Vice Versa: A Road towards New Approximations

    International Nuclear Information System (INIS)

    Capelle, K.; Gross, E.

    1997-01-01

    It is shown that the exchange-correlation functional of spin-density functional theory is identical, on a certain set of densities, with the exchange-correlation functional of current-density functional theory. This rigorous connection is used to construct new approximations of the exchange-correlation functionals. These include a conceptually new generalized-gradient spin-density functional and a nonlocal current-density functional. copyright 1997 The American Physical Society

  8. Multicomponent density functional theory embedding formulation

    Energy Technology Data Exchange (ETDEWEB)

    Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, Urbana, Illinois 61801 (United States)

    2016-07-28

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF{sup −} molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.

  9. Produtividade da soja correlacionada com a porosidade e a densidade de um Latossolo Vermelho do cerrado brasileiro Soybean yield correlated with the porosity and the density of a red Latosol of the Brazilian Savanna

    Directory of Open Access Journals (Sweden)

    Marcelo Andreotti

    2010-03-01

    Full Text Available No ano agrícola de 2004/05, na Fazenda Experimental da FE/Unesp-Campus de Ilha Solteira, localizada no Município de Selvíria, Mato Grosso do Sul - (MS, foram estudadas a variabilidade e a dependência espacial entre a macroporosidade (MA, a microporosidade (MI, a porosidade total (PT e a densidade do solo (DS, em três profundidades, com a produtividade da soja (PG, em sistema plantio direto, sobre um Latossolo Vermelho distroférrico. O objetivo foi pesquisar a variabilidade e as correlações lineares e espaciais entre os atributos da planta e do solo, visando a selecionar um indicador da qualidade física do solo para a produtividade da soja. Foi instalada a malha geoestatística, para a coleta de dados do solo e da planta, contendo 124 pontos amostrais, numa área de 4.000m². A correlação linear entre a produtividade de grãos de soja com os atributos do solo estudados foi baixa. Houve correlação espacial direta entre a PG e a MA nas camadas de zero-0,10m e 0,10-0,20m. A macroporosidade do solo (MA1, avaliada na camada de zero-0,10m, apresentou-se como o melhor indicador da qualidade física do solo quando destinada à avaliação da produtividade de soja, nas condições de plantio direto, em solo de cerrado.The variability and the spatial dependence attributes of the following plant and soil: a the soybean yield (SY in no-tillage and irrigated, b the macroporosity (MA, c microporosity (MI, d total porosity (TP, e and bulk density (BD, in depths of 1 (0-0.10m, 2 (0.10-0.20m and 3 (0.20-0.30 m, in a Red Latosol of the Engineering college of the São Paulo State University (FE/UNESP in the Ilha Solteira campus, located in Selvíria County, Mato Grosso do Sul state, Brazil, were analyzed in the agricultural year of 2004/05. The main goal was to study the variability and the linear and spatial correlations among the attributes (plant and soil, aiming to select an index of soil physical quality with good capacity to represent the soybean

  10. Spectral analysis by correlation

    International Nuclear Information System (INIS)

    Fauque, J.M.; Berthier, D.; Max, J.; Bonnet, G.

    1969-01-01

    The spectral density of a signal, which represents its power distribution along the frequency axis, is a function which is of great importance, finding many uses in all fields concerned with the processing of the signal (process identification, vibrational analysis, etc...). Amongst all the possible methods for calculating this function, the correlation method (correlation function calculation + Fourier transformation) is the most promising, mainly because of its simplicity and of the results it yields. The study carried out here will lead to the construction of an apparatus which, coupled with a correlator, will constitute a set of equipment for spectral analysis in real time covering the frequency range 0 to 5 MHz. (author) [fr

  11. Pair correlations in nuclei

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi

    2009-01-01

    Except for the closed shell nuclei, almost all nuclei are in the superconducting state at their ground states. This well-known pair correlation in nuclei causes various interesting phenomena. It is especially to be noted that the pair correlation becomes weak in the excited states of nuclei with high angular momentum, which leads to the pair phase transition to the normal state in the high spin limit. On the other hand, the pair correlation becomes stronger in the nuclei with lower nucleon density than in those with normal density. In the region of neutron halo or skin state of unstable nuclei, this phenomenon is expected to be further enhanced to be observed compared to the ground state of stable nuclei. An overview of those interesting aspects caused via the pair correlation is presented here in the sections titled 'pair correlations in ground states', pair correlations in high spin states' and 'pair correlations in unstable nuclei' focusing on the high spin state. (S. Funahashi)

  12. Nuclear symmetry energy in density dependent hadronic models

    International Nuclear Information System (INIS)

    Haddad, S.

    2008-12-01

    The density dependence of the symmetry energy and the correlation between parameters of the symmetry energy and the neutron skin thickness in the nucleus 208 Pb are investigated in relativistic Hadronic models. The dependency of the symmetry energy on density is linear around saturation density. Correlation exists between the neutron skin thickness in the nucleus 208 Pb and the value of the nuclear symmetry energy at saturation density, but not with the slope of the symmetry energy at saturation density. (author)

  13. Density functional theory

    International Nuclear Information System (INIS)

    Freyss, M.

    2015-01-01

    This chapter gives an introduction to first-principles electronic structure calculations based on the density functional theory (DFT). Electronic structure calculations have a crucial importance in the multi-scale modelling scheme of materials: not only do they enable one to accurately determine physical and chemical properties of materials, they also provide data for the adjustment of parameters (or potentials) in higher-scale methods such as classical molecular dynamics, kinetic Monte Carlo, cluster dynamics, etc. Most of the properties of a solid depend on the behaviour of its electrons, and in order to model or predict them it is necessary to have an accurate method to compute the electronic structure. DFT is based on quantum theory and does not make use of any adjustable or empirical parameter: the only input data are the atomic number of the constituent atoms and some initial structural information. The complicated many-body problem of interacting electrons is replaced by an equivalent single electron problem, in which each electron is moving in an effective potential. DFT has been successfully applied to the determination of structural or dynamical properties (lattice structure, charge density, magnetisation, phonon spectra, etc.) of a wide variety of solids. Its efficiency was acknowledged by the attribution of the Nobel Prize in Chemistry in 1998 to one of its authors, Walter Kohn. A particular attention is given in this chapter to the ability of DFT to model the physical properties of nuclear materials such as actinide compounds. The specificities of the 5f electrons of actinides will be presented, i.e., their more or less high degree of localisation around the nuclei and correlations. The limitations of the DFT to treat the strong 5f correlations are one of the main issues for the DFT modelling of nuclear fuels. Various methods that exist to better treat strongly correlated materials will finally be presented. (author)

  14. Spatial correlations in compressible granular flows

    OpenAIRE

    Van Noije, T. P. C.; Ernst, M. H.; Brito López, Ricardo

    1998-01-01

    The clustering instability in freely evolving granular fluids manifests itself in the density-density correlation function and structure factor. These functions are calculated from fluctuating hydrodynamics. As time increases, the structure factor of density fluctuations develops a maximum, which shifts to smaller wave numbers (growing correlation length). Furthermore, the inclusion of longitudinal velocity fluctuations changes long-range correlations in the flow field qualitatively and exten...

  15. Statistical density modification using local pattern matching

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.

    2003-01-01

    Statistical density modification can make use of local patterns of density found in protein structures to improve crystallographic phases. A method for improving crystallographic phases is presented that is based on the preferential occurrence of certain local patterns of electron density in macromolecular electron-density maps. The method focuses on the relationship between the value of electron density at a point in the map and the pattern of density surrounding this point. Patterns of density that can be superimposed by rotation about the central point are considered equivalent. Standard templates are created from experimental or model electron-density maps by clustering and averaging local patterns of electron density. The clustering is based on correlation coefficients after rotation to maximize the correlation. Experimental or model maps are also used to create histograms relating the value of electron density at the central point to the correlation coefficient of the density surrounding this point with each member of the set of standard patterns. These histograms are then used to estimate the electron density at each point in a new experimental electron-density map using the pattern of electron density at points surrounding that point and the correlation coefficient of this density to each of the set of standard templates, again after rotation to maximize the correlation. The method is strengthened by excluding any information from the point in question from both the templates and the local pattern of density in the calculation. A function based on the origin of the Patterson function is used to remove information about the electron density at the point in question from nearby electron density. This allows an estimation of the electron density at each point in a map, using only information from other points in the process. The resulting estimates of electron density are shown to have errors that are nearly independent of the errors in the original map using

  16. Collisional redistribution of radiation. II - The effects of degeneracy on the equations of motion for the density matrix. III - The equation of motion for the correlation function and the scattered spectrum

    Science.gov (United States)

    Burnett, K.; Cooper, J.

    1980-01-01

    The effect of correlations between an absorber atom and perturbers in the binary-collision approximation are applied to degenerate atomic systems. A generalized absorption profile which specifies the final state of the atom after an absorption event is related to the total intensities of Rayleigh scattering and fluorescence from the atom. It is suggested that additional dynamical information to that obtainable from ordinary absorption experiments is required in order to describe redistributed atomic radiation. The scattering of monochromatic radiation by a degenerate atom is computed in a binary-collision approximation; an equation of motion is derived for the correlation function which is valid outside the quantum-regression regime. Solutions are given for the weak-field conditions in terms of generalized absorption and emission profiles that depend on the indices of the atomic multipoles.

  17. Correlation of radiation-induced changes in microstructure/microchemistry, density and thermo-electric power of type 304L and 316 stainless steels irradiated in the Phénix reactor

    Energy Technology Data Exchange (ETDEWEB)

    Renault Laborne, Alexandra, E-mail: alexandra.renault@cea.fr [CEA, DEN, SRMA, F-91191 Gif-sur-Yvette (France); Gavoille, Pierre [CEA, DEN, SEMI, F-91191 Gif-sur-Yvette (France); Malaplate, Joël [CEA, DEN, SRMA, F-91191 Gif-sur-Yvette (France); Pokor, Cédric [EDF R& D, MMC, Site des Renardières, F-77818 Morêt-sur-Loing cedex (France); Tanguy, Benoît [CEA, DEN, SEMI, F-91191 Gif-sur-Yvette (France)

    2015-05-15

    Annealed specimens of type 304L and 316 stainless steel and cold-worked 316 specimens were irradiated in the Phénix reactor in the temperature range 381–394 °C and to different damage doses up to 39 dpa. The microstructure and microchemistry of both 304L and 316 have been examined using the combination of the different techniques of TEM to establish the void swelling and precipitation behavior under neutron irradiation. TEM observations are compared with results of measurements of immersion density and thermo-electric power obtained on the same irradiated stainless steels. The similarities and differences in their behavior on different scales are used to understand the factors in terms of the chemical composition and metallurgical state of steels, affecting the precipitation under irradiation and the swelling behavior. Irradiation induces the formation of some precipitate phases (e.g., M{sub 6}C and M{sub 23}C{sub 6}-type carbides, and γ’- and G-phases), Frank loops and cavities. According to the metallurgical state and chemical composition of the steel, the amount of each type of radiation-induced defects is not the same, affecting their density and thermo-electric power.

  18. Correlation of radiation-induced changes in microstructure/microchemistry, density and thermo-electric power of type 304L and 316 stainless steels irradiated in the Phénix reactor

    Science.gov (United States)

    Renault Laborne, Alexandra; Gavoille, Pierre; Malaplate, Joël; Pokor, Cédric; Tanguy, Benoît

    2015-05-01

    Annealed specimens of type 304L and 316 stainless steel and cold-worked 316 specimens were irradiated in the Phénix reactor in the temperature range 381-394 °C and to different damage doses up to 39 dpa. The microstructure and microchemistry of both 304L and 316 have been examined using the combination of the different techniques of TEM to establish the void swelling and precipitation behavior under neutron irradiation. TEM observations are compared with results of measurements of immersion density and thermo-electric power obtained on the same irradiated stainless steels. The similarities and differences in their behavior on different scales are used to understand the factors in terms of the chemical composition and metallurgical state of steels, affecting the precipitation under irradiation and the swelling behavior. Irradiation induces the formation of some precipitate phases (e.g., M6C and M23C6-type carbides, and γ'- and G-phases), Frank loops and cavities. According to the metallurgical state and chemical composition of the steel, the amount of each type of radiation-induced defects is not the same, affecting their density and thermo-electric power.

  19. Correlation of radiation-induced changes in microstructure/microchemistry, density and thermo-electric power of type 304L and 316 stainless steels irradiated in the Phénix reactor

    International Nuclear Information System (INIS)

    Renault Laborne, Alexandra; Gavoille, Pierre; Malaplate, Joël; Pokor, Cédric; Tanguy, Benoît

    2015-01-01

    Annealed specimens of type 304L and 316 stainless steel and cold-worked 316 specimens were irradiated in the Phénix reactor in the temperature range 381–394 °C and to different damage doses up to 39 dpa. The microstructure and microchemistry of both 304L and 316 have been examined using the combination of the different techniques of TEM to establish the void swelling and precipitation behavior under neutron irradiation. TEM observations are compared with results of measurements of immersion density and thermo-electric power obtained on the same irradiated stainless steels. The similarities and differences in their behavior on different scales are used to understand the factors in terms of the chemical composition and metallurgical state of steels, affecting the precipitation under irradiation and the swelling behavior. Irradiation induces the formation of some precipitate phases (e.g., M 6 C and M 23 C 6 -type carbides, and γ’- and G-phases), Frank loops and cavities. According to the metallurgical state and chemical composition of the steel, the amount of each type of radiation-induced defects is not the same, affecting their density and thermo-electric power

  20. Measurement of vertebral bone marrow lipid profile at 1.5-T proton magnetic resonance spectroscopy and bone mineral density at dual-energy X-ray absorptiometry: correlation in a swine model

    Energy Technology Data Exchange (ETDEWEB)

    Di Leo, Giovanni; Fina, Laura [IRCCS Policlinico San Donato, Unita di Radiologia, San Donato Milanese (Italy); Bandirali, Michele; Messina, Carmelo [Universita degli Studi di Milano, Scuola di Specializzazione in Radiodiagnostica, Milan (Italy); Sardanelli, Francesco [IRCCS Policlinico San Donato, Unita di Radiologia, San Donato Milanese (Italy); Universita degli Studi di Milano, Dipartimento di Scienze Biomediche per la Salute, San Donato Milanese (Italy)

    2014-08-15

    Bone marrow is mainly composed of red (hematopoietic) and yellow (fatty) components. Soon after the birth there is a physiological conversion of the bone marrow from red to yellow, so that the percentage of hematopoietic cells and adipocytes changes with aging. Although bone marrow adipogenesis is a physiologic process involving all mammals, recent studies showed an accelerated marrow adipogenesis associated with several chronic conditions, including osteoporosis [4] and diabetes mellitus. Moreover, this increased marrow fat is accompanied by a decrease in bone density. Marrow fat is therefore increasingly believed to influence the bone microenvironment. Diagnostic tools for quantitative measurement of bone marrow fat and bone mineral density (BMD) include proton magnetic resonance spectroscopy (MRS) and dual-energy Xray absorptiometry (DXA), respectively. Using MRS, an inverse relationship between vertebral bone marrow fat content and lumbar BMD has been demonstrated in patients affected with osteoporosis or with diabetes mellitus. In most studies, a quite standard MRS sequence has been used, with short echo times (TE) for the measurement of the bulk methylene. In this study we sought to optimize the MRS sequence in order to try to measure other fat components of the vertebral bone marrow at 1.5 T. For this purpose, we used an animal model that allowed long acquisition times and repeated measures. Moreover, we aimed at estimating in this model the relationship between vertebral bone marrow fat content at proton MRS and BMD at DXA.

  1. Measurement of vertebral bone marrow lipid profile at 1.5-T proton magnetic resonance spectroscopy and bone mineral density at dual-energy X-ray absorptiometry: correlation in a swine model

    International Nuclear Information System (INIS)

    Di Leo, Giovanni; Fina, Laura; Bandirali, Michele; Messina, Carmelo; Sardanelli, Francesco

    2014-01-01

    Bone marrow is mainly composed of red (hematopoietic) and yellow (fatty) components. Soon after the birth there is a physiological conversion of the bone marrow from red to yellow, so that the percentage of hematopoietic cells and adipocytes changes with aging. Although bone marrow adipogenesis is a physiologic process involving all mammals, recent studies showed an accelerated marrow adipogenesis associated with several chronic conditions, including osteoporosis [4] and diabetes mellitus. Moreover, this increased marrow fat is accompanied by a decrease in bone density. Marrow fat is therefore increasingly believed to influence the bone microenvironment. Diagnostic tools for quantitative measurement of bone marrow fat and bone mineral density (BMD) include proton magnetic resonance spectroscopy (MRS) and dual-energy Xray absorptiometry (DXA), respectively. Using MRS, an inverse relationship between vertebral bone marrow fat content and lumbar BMD has been demonstrated in patients affected with osteoporosis or with diabetes mellitus. In most studies, a quite standard MRS sequence has been used, with short echo times (TE) for the measurement of the bulk methylene. In this study we sought to optimize the MRS sequence in order to try to measure other fat components of the vertebral bone marrow at 1.5 T. For this purpose, we used an animal model that allowed long acquisition times and repeated measures. Moreover, we aimed at estimating in this model the relationship between vertebral bone marrow fat content at proton MRS and BMD at DXA.

  2. Correlation between serum lipoproteins and abdominal fat pad in ...

    African Journals Online (AJOL)

    GREGORY

    2010-08-30

    Aug 30, 2010 ... Triglyceride, cholesterol and VLDL concentrations were positively correlated with ... negative correlation was observed between high-density lipoprotein and ... Abbreviations: HDL, High density lipoprotein; VLDL, very low.

  3. Age-dependence of power spectral density and fractal dimension of bone mineralized matrix in atomic force microscope topography images: potential correlates of bone tissue age and bone fragility in female femoral neck trabeculae.

    Science.gov (United States)

    Milovanovic, Petar; Djuric, Marija; Rakocevic, Zlatko

    2012-11-01

    There is an increasing interest in bone nano-structure, the ultimate goal being to reveal the basis of age-related bone fragility. In this study, power spectral density (PSD) data and fractal dimensions of the mineralized bone matrix were extracted from atomic force microscope topography images of the femoral neck trabeculae. The aim was to evaluate age-dependent differences in the mineralized matrix of human bone and to consider whether these advanced nano-descriptors might be linked to decreased bone remodeling observed by some authors and age-related decline in bone mechanical competence. The investigated bone specimens belonged to a group of young adult women (n = 5, age: 20-40 years) and a group of elderly women (n = 5, age: 70-95 years) without bone diseases. PSD graphs showed the roughness density distribution in relation to spatial frequency. In all cases, there was a fairly linear decrease in magnitude of the power spectra with increasing spatial frequencies. The PSD slope was steeper in elderly individuals (-2.374 vs. -2.066), suggesting the dominance of larger surface morphological features. Fractal dimension of the mineralized bone matrix showed a significant negative trend with advanced age, declining from 2.467 in young individuals to 2.313 in the elderly (r = 0.65, P = 0.04). Higher fractal dimension in young women reflects domination of smaller mineral grains, which is compatible with the more freshly remodeled structure. In contrast, the surface patterns in elderly individuals were indicative of older tissue age. Lower roughness and reduced structural complexity (decreased fractal dimension) of the interfibrillar bone matrix in the elderly suggest a decline in bone toughness, which explains why aged bone is more brittle and prone to fractures. © 2012 The Authors Journal of Anatomy © 2012 Anatomical Society.

  4. Superadditive correlation

    International Nuclear Information System (INIS)

    Giraud, B.G.; Heumann, J.M.; Lapedes, A.S.

    1999-01-01

    The fact that correlation does not imply causation is well known. Correlation between variables at two sites does not imply that the two sites directly interact, because, e.g., correlation between distant sites may be induced by chaining of correlation between a set of intervening, directly interacting sites. Such 'noncausal correlation' is well understood in statistical physics: an example is long-range order in spin systems, where spins which have only short-range direct interactions, e.g., the Ising model, display correlation at a distance. It is less well recognized that such long-range 'noncausal' correlations can in fact be stronger than the magnitude of any causal correlation induced by direct interactions. We call this phenomenon superadditive correlation (SAC). We demonstrate this counterintuitive phenomenon by explicit examples in (i) a model spin system and (ii) a model continuous variable system, where both models are such that two variables have multiple intervening pathways of indirect interaction. We apply the technique known as decimation to explain SAC as an additive, constructive interference phenomenon between the multiple pathways of indirect interaction. We also explain the effect using a definition of the collective mode describing the intervening spin variables. Finally, we show that the SAC effect is mirrored in information theory, and is true for mutual information measures in addition to correlation measures. Generic complex systems typically exhibit multiple pathways of indirect interaction, making SAC a potentially widespread phenomenon. This affects, e.g., attempts to deduce interactions by examination of correlations, as well as, e.g., hierarchical approximation methods for multivariate probability distributions, which introduce parameters based on successive orders of correlation. copyright 1999 The American Physical Society

  5. Density functional theory in quantum chemistry

    CERN Document Server

    Tsuneda, Takao

    2014-01-01

    This book examines density functional theory based on the foundation of quantum chemistry. Unconventional in approach, it reviews basic concepts, then describes the physical meanings of state-of-the-art exchange-correlation functionals and their corrections.

  6. Electronic Correlation Strength of Pu

    DEFF Research Database (Denmark)

    Svane, A.; C. Albers, R.; E. Christensen, N.

    2013-01-01

    A new electronic quantity, the correlation strength, is defined as a necessary step for understanding the properties and trends in strongly correlated electronic materials. As a test case, this is applied to the different phases of elemental Pu. Within the GW approximation we have surprisingly...... found a "universal" scaling relationship, where the f-electron bandwidth reduction due to correlation effects is shown to depend only upon the local density approximation (LDA) bandwidth and is otherwise independent of crystal structure and lattice constant....

  7. Strain Induced Adatom Correlations

    OpenAIRE

    Kappus, Wolfgang

    2012-01-01

    A Born-Green-Yvon type model for adatom density correlations is combined with a model for adatom interactions mediated by the strain in elastic anisotropic substrates. The resulting nonlinear integral equation is solved numerically for coverages from zero to a limit given by stability constraints. W, Nb, Ta and Au surfaces are taken as examples to show the effects of different elastic anisotropy regions. Results of the calculation are shown by appropriate plots and discussed. A mapping to sup...

  8. The Influence of Decreased Levels of High Density Lipoprotein ...

    African Journals Online (AJOL)

    very low density lipoprotein cholesterol, and triglyceride were assayed. ... Abiodun and Gwarzo: Association of high density lipoprotein cholesterol with haemolysis in sickle cell disease ... analyses were carried out to determine the correlation.

  9. Density heterogeneity of the cratonic lithosphere

    DEFF Research Database (Denmark)

    Cherepanova, Yulia; Artemieva, Irina

    2015-01-01

    Using free-board modeling, we examine a vertically-averaged mantle density beneath the Archean-Proterozoic Siberian craton in the layer from the Moho down to base of the chemical boundary layer (CBL). Two models are tested: in Model 1 the base of the CBL coincides with the LAB, whereas in Model 2...... the base of the CBL is at a 180 km depth. The uncertainty of density model is density structure of the Siberian lithospheric mantle with a strong...... correlation between mantle density variations and the tectonic setting. Three types of cratonic mantle are recognized from mantle density anomalies. 'Pristine' cratonic regions not sampled by kimberlites have the strongest depletion with density deficit of 1.8-3.0% (and SPT density of 3.29-3.33 t/m3...

  10. Laboratory Density Functionals

    OpenAIRE

    Giraud, B. G.

    2007-01-01

    We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.

  11. Concrete density estimation by rebound hammer method

    International Nuclear Information System (INIS)

    Ismail, Mohamad Pauzi bin; Masenwat, Noor Azreen bin; Sani, Suhairy bin; Mohd, Shukri; Jefri, Muhamad Hafizie Bin; Abdullah, Mahadzir Bin; Isa, Nasharuddin bin; Mahmud, Mohamad Haniza bin

    2016-01-01

    Concrete is the most common and cheap material for radiation shielding. Compressive strength is the main parameter checked for determining concrete quality. However, for shielding purposes density is the parameter that needs to be considered. X- and -gamma radiations are effectively absorbed by a material with high atomic number and high density such as concrete. The high strength normally implies to higher density in concrete but this is not always true. This paper explains and discusses the correlation between rebound hammer testing and density for concrete containing hematite aggregates. A comparison is also made with normal concrete i.e. concrete containing crushed granite

  12. Densities of carbon foils

    International Nuclear Information System (INIS)

    Stoner, J.O. Jr.

    1991-01-01

    The densities of arc-evaporated carbon target foils have been measured by several methods. The density depends upon the method used to measure it; for the same surface density, values obtained by different measurement techniques may differ by fifty percent or more. The most reliable density measurements are by flotation, yielding a density of 2.01±0.03 g cm -3 , and interferometric step height with the surface density known from auxiliary measurements, yielding a density of 2.61±0.4 g cm -3 . The difference between these density values mayy be due in part to the compressive stresses that carbon films have while still on their substrates, uncertainties in the optical calibration of surface densities of carbon foils, and systematic errors in step-height measurements. Mechanical thickness measurements by micrometer caliper are unreliable due to nonplanarity of these foils. (orig.)

  13. Achieving maximum baryon densities

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1984-01-01

    In continuing work on nuclear stopping power in the energy range E/sub lab/ approx. 10 GeV/nucleon, calculations were made of the energy and baryon densities that could be achieved in uranium-uranium collisions. Results are shown. The energy density reached could exceed 2 GeV/fm 3 and baryon densities could reach as high as ten times normal nuclear densities

  14. Crowding and Density

    Science.gov (United States)

    Design and Environment, 1972

    1972-01-01

    Three-part report pinpointing problems and uncovering solutions for the dual concepts of density (ratio of people to space) and crowding (psychological response to density). Section one, A Primer on Crowding,'' reviews new psychological and social findings; section two, Density in the Suburbs,'' shows conflict between status quo and increased…

  15. Strain induced adatom correlations

    Science.gov (United States)

    Kappus, Wolfgang

    2012-12-01

    A Born-Green-Yvon type model for adatom density correlations is combined with a model for adatom interactions mediated by the strain in elastic anisotropic substrates. The resulting nonlinear integral equation is solved numerically for coverages from zero to a limit given by stability constraints. W, Nb, Ta and Au surfaces are taken as examples to show the effects of different elastic anisotropy regions. Results of the calculation are shown by appropriate plots and discussed. A mapping to superstructures is tried. Corresponding adatom configurations from Monte Carlo simulations are shown.

  16. Oscillations of the static meson fields at finite baryon density

    International Nuclear Information System (INIS)

    Florkowski, W.; Friman, B.; Technische Hochschule Darmstadt

    1996-04-01

    The spatial dependence of static meson correlation functions at finite baryon density is studied in the Nambu-Jona-Lasinio model. In contrast to the finite temperature case, we find that the correlation functions at finite density are not screened but exhibit long-range oscillations. The observed phenomenon is analogous to the Friedel oscillations in a degenerate electron gas. (orig.)

  17. Elasticity and Density of Paleozoic Shales from Bornholm

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke; Haugwitz, C.; Larsen, Pernille Birkelund

    2017-01-01

    Darcy. We found that solid density and elastic stiffness parameters only vary insignificantly with solid composition, when TOC is lower than 5%, but that mass density and TOC are correlated when TOC is higher than 5%. A similar correlation was not seen for TOC and Sonic logging data. A reason can...

  18. Electron densities in planetary nebulae

    International Nuclear Information System (INIS)

    Stanghellini, L.; Kaler, J.B.

    1989-01-01

    Electron densities for 146 planetary nebulae have been obtained for analyzing a large sample of forbidden lines by interpolating theoretical curves obtained from solutions of the five-level atoms using up-to-date collision strengths and transition probabilities. Electron temperatures were derived from forbidden N II and/or forbidden O III lines or were estimated from the He II 4686 A line strengths. The forbidden O II densities are generally lower than those from forbidden Cl III by an average factor of 0.65. For data sets in which forbidden O II and forbidden S II were observed in common, the forbidden O II values drop to 0.84 that of the forbidden S II, implying that the outermost parts of the nebulae might have elevated densities. The forbidden Cl II and forbidden Ar IV densities show the best correlation, especially where they have been obtained from common data sets. The data give results within 30 percent of one another, assuming homogeneous nebulae. 106 refs

  19. Correlating defect density with growth time in continuous graphene films.

    Science.gov (United States)

    Kang, Cheong; Jung, Da Hee; Nam, Ji Eun; Lee, Jin Seok

    2014-12-01

    We report that graphene flakes and films which were synthesized by copper-catalyzed atmospheric pressure chemical vapor deposition (APCVD) method using a mixture of Ar, H2, and CH4 gases. It was found that variations in the reaction parameters, such as reaction temperature, annealing time, and growth time, influenced the domain size of as-grown graphene. Besides, the reaction parameters influenced the number of layers, degree of defects and uniformity of the graphene films. The increase in growth temperature and annealing time tends to accelerate the graphene growth rate and increase the diffusion length, respectively, thereby increasing the average size of graphene domains. In addition, we confirmed that the number of pinholes reduced with increase in the growth time. Micro-Raman analysis of the as-grown graphene films confirmed that the continuous graphene monolayer film with low defects and high uniformity could be obtained with prolonged reaction time, under the appropriate annealing time and growth temperature.

  20. Correlation between the Flux Density and Polarization for Flat ...

    Indian Academy of Sciences (India)

    3Guangzhou Vocational College of Technology & Business, Guangzhou, China. ... model (Urry & Padovani 1995), in which there is a supermassive black hole at ... This work is partially supported by the National Natural Science Foundation of.

  1. The concept of correlated density and its application

    Czech Academy of Sciences Publication Activity Database

    Morawetz, K.; Lipavský, Pavel; Koláček, Jan; Brandt, E. H.; Schreiber, M.

    2007-01-01

    Roč. 21, 13-14 (2007), s. 2348-2361 ISSN 0217-9792 Institutional research plan: CEZ:AV0Z10100521 Keywords : Fermi liquid theory * superconductivity * Bernoulli potential Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.647, year: 2007

  2. Correlations in charged bosons systems

    International Nuclear Information System (INIS)

    Almeida Caparica, A. de.

    1985-02-01

    The two and three-dimensional charge Bose gas have been studied. In the bidimensional case two different types of interaction were considered: l/r and l n(r). The method of self-consistent-field was applied to these systems, which takes into account the short range correlations between the bosons through a local-field correction. By using self-consistent numerical calculations, the structure factor S(k → ) was determined. The pair-correlation function, the ground-state energy, the pressure of the gas and the spectrum of elementary excitations were obtained from S (k → ). The screening density induced by a fixed charged impurity was calculated. In the high-density limit our calculations reproduce the results given by Bogoliubov's perturbation theory. In the intermediate-density region, corresponding to the strongly coupled systems, the results are in very good agreement with calculations based on HNC approximation as well as Monte Carlo method. The results are compared in several situations with RPA results showing that the self-consistent method is much more accurate. The two-dimensional systems showed to be more correlated than the three-dimensional systems showed to be more correlated than the three-dimensional one; the gas with interaction l/r is also more correlated than the logarithmic one at high densities, but it begins to be less correlated than this one in the low-density region. The thermodynamic functions of the two and three-dimensional systems at finite temperatures near absolute zero are calculated based upon the gas excitation spectra at zero temperature. (author)

  3. Experimental evidence for density dependence of reproduction in great tits

    NARCIS (Netherlands)

    Both, Christiaan

    1998-01-01

    1.  Density dependence of avian reproduction has often been analysed using correlations between annual mean reproductive output and population density. Experiments are necessary to prove that density is the cause of the observed patterns, but so far, three out of four experimental studies do not

  4. Experimental evidence for density dependence of reproduction in great tits

    NARCIS (Netherlands)

    Both, C.

    1998-01-01

    1. Density dependence of avian reproduction has often been analysed using correlations between annual mean reproductive output and population density. Experiments are necessary to prove that density is the cause of the observed patterns, but so far, three out of four experimental studies do not

  5. Correlation spectrometer

    Science.gov (United States)

    Sinclair, Michael B [Albuquerque, NM; Pfeifer, Kent B [Los Lunas, NM; Flemming, Jeb H [Albuquerque, NM; Jones, Gary D [Tijeras, NM; Tigges, Chris P [Albuquerque, NM

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  6. Probability densities and Lévy densities

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler

    For positive Lévy processes (i.e. subordinators) formulae are derived that express the probability density or the distribution function in terms of power series in time t. The applicability of the results to finance and to turbulence is briefly indicated.......For positive Lévy processes (i.e. subordinators) formulae are derived that express the probability density or the distribution function in terms of power series in time t. The applicability of the results to finance and to turbulence is briefly indicated....

  7. High-density limit of quantum chromodynamics

    International Nuclear Information System (INIS)

    Alvarez, E.

    1983-01-01

    By means of a formal expansion of the partition function presumably valid at large baryon densities, the propagator of the quarks is expressed in terms of the gluon propagator. This result is interpreted as implying that correlations between quarks and gluons are unimportant at high enough density, so that a kind of mean-field approximation gives a very accurate description of the physical system

  8. Local Descriptors of Dynamic and Nondynamic Correlation.

    Science.gov (United States)

    Ramos-Cordoba, Eloy; Matito, Eduard

    2017-06-13

    Quantitatively accurate electronic structure calculations rely on the proper description of electron correlation. A judicious choice of the approximate quantum chemistry method depends upon the importance of dynamic and nondynamic correlation, which is usually assesed by scalar measures. Existing measures of electron correlation do not consider separately the regions of the Cartesian space where dynamic or nondynamic correlation are most important. We introduce real-space descriptors of dynamic and nondynamic electron correlation that admit orbital decomposition. Integration of the local descriptors yields global numbers that can be used to quantify dynamic and nondynamic correlation. Illustrative examples over different chemical systems with varying electron correlation regimes are used to demonstrate the capabilities of the local descriptors. Since the expressions only require orbitals and occupation numbers, they can be readily applied in the context of local correlation methods, hybrid methods, density matrix functional theory, and fractional-occupancy density functional theory.

  9. Correlation Dimension Estimation for Classification

    Czech Academy of Sciences Publication Activity Database

    Jiřina, Marcel; Jiřina jr., M.

    2006-01-01

    Roč. 1, č. 3 (2006), s. 547-557 ISSN 1895-8648 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : correlation dimension * probability density estimation * classification * UCI MLR Subject RIV: BA - General Mathematics

  10. A SURVEY OF CORONAL CAVITY DENSITY PROFILES

    International Nuclear Information System (INIS)

    Fuller, J.; Gibson, S. E.

    2009-01-01

    Coronal cavities are common features of the solar corona that appear as darkened regions at the base of coronal helmet streamers in coronagraph images. Their darkened appearance indicates that they are regions of lowered density embedded within the comparatively higher density helmet streamer. Despite interfering projection effects of the surrounding helmet streamer (which we refer to as the cavity rim), Fuller et al. have shown that under certain conditions it is possible to use a Van de Hulst inversion of white-light polarized brightness (pB) data to calculate the electron density of both the cavity and cavity rim plasma. In this article, we apply minor modifications to the methods of Fuller et al. in order to improve the accuracy and versatility of the inversion process, and use the new methods to calculate density profiles for both the cavity and cavity rim in 24 cavity systems. We also examine trends in cavity morphology and how departures from the model geometry affect our density calculations. The density calculations reveal that in all 24 cases the cavity plasma has a flatter density profile than the plasma of the cavity rim, meaning that the cavity has a larger density depletion at low altitudes than it does at high altitudes. We find that the mean cavity density is over four times greater than that of a coronal hole at an altitude of 1.2 R sun and that every cavity in the sample is over twice as dense as a coronal hole at this altitude. Furthermore, we find that different cavity systems near solar maximum span a greater range in density at 1.2 R sun than do cavity systems near solar minimum, with a slight trend toward higher densities for systems nearer to solar maximum. Finally, we found no significant correlation of cavity density properties with cavity height-indeed, cavities show remarkably similar density depletions-except for the two smallest cavities that show significantly greater depletion.

  11. Influence of molecular geometry, exchange-correlation functional, and solvent effects in the modeling of vertical excitation energies in phthalocyanines using time-dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: can modern computational chemistry methods explain experimental controversies?

    Science.gov (United States)

    Nemykin, Victor N; Hadt, Ryan G; Belosludov, Rodion V; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2007-12-20

    A time-dependent density functional theory (TDDFT) approach coupled with 14 different exchange-correlation functionals was used for the prediction of vertical excitation energies in zinc phthalocyanine (PcZn). In general, the TDDFT approach provides a more accurate description of both visible and ultraviolet regions of the UV-vis and magnetic circular dichroism (MCD) spectra of PcZn in comparison to the more popular semiempirical ZINDO/S and PM3 methods. It was found that the calculated vertical excitation energies of PcZn correlate with the amount of Hartree-Fock exchange involved in the exchange-correlation functional. The correlation was explained on the basis of the calculated difference in energy between occupied and unoccupied molecular orbitals. The influence of PcZn geometry, optimized using different exchange-correlation functionals, on the calculated vertical excitation energies in PcZn was found to be relatively small. The influence of solvents on the calculated vertical excitation energies in PcZn was considered for the first time using a polarized continuum model TDDFT (PCM-TDDFT) method and was found to be relatively small in excellent agreement with the experimental data. For all tested TDDFT and PCM-TDDFT cases, an assignment of the Q-band as an almost pure a1u (HOMO)-->eg (LUMO) transition, initially suggested by Gouterman, was confirmed. Pure exchange-correlation functionals indicate the presence of six 1Eu states in the B-band region of the UV-vis spectrum of PcZn, while hybrid exchange-correlation functionals predict only five 1Eu states for the same energy envelope. The first two symmetry-forbidden n-->pi* transitions were predicted in the Q0-2 region and in the low-energy tail of the B-band, while the first two symmetry-allowed n-->pi* transitions were found within the B-band energy envelope when pure exchange-correlation functionals were used for TDDFT calculations. The presence of a symmetry-forbidden but vibronically allowed n

  12. Central depression in nucleonic densities: Trend analysis in the nuclear density functional theory approach

    Science.gov (United States)

    Schuetrumpf, B.; Nazarewicz, W.; Reinhard, P.-G.

    2017-08-01

    Background: The central depression of nucleonic density, i.e., a reduction of density in the nuclear interior, has been attributed to many factors. For instance, bubble structures in superheavy nuclei are believed to be due to the electrostatic repulsion. In light nuclei, the mechanism behind the density reduction in the interior has been discussed in terms of shell effects associated with occupations of s orbits. Purpose: The main objective of this work is to reveal mechanisms behind the formation of central depression in nucleonic densities in light and heavy nuclei. To this end, we introduce several measures of the internal nucleonic density. Through the statistical analysis, we study the information content of these measures with respect to nuclear matter properties. Method: We apply nuclear density functional theory with Skyrme functionals. Using the statistical tools of linear least square regression, we inspect correlations between various measures of central depression and model parameters, including nuclear matter properties. We study bivariate correlations with selected quantities as well as multiple correlations with groups of parameters. Detailed correlation analysis is carried out for 34Si for which a bubble structure has been reported recently, 48Ca, and N =82 , 126, and 184 isotonic chains. Results: We show that the central depression in medium-mass nuclei is very sensitive to shell effects, whereas for superheavy systems it is firmly driven by the electrostatic repulsion. An appreciable semibubble structure in proton density is predicted for 294Og, which is currently the heaviest nucleus known experimentally. Conclusion: Our correlation analysis reveals that the central density indicators in nuclei below 208Pb carry little information on parameters of nuclear matter; they are predominantly driven by shell structure. On the other hand, in the superheavy nuclei there exists a clear relationship between the central nucleonic density and symmetry energy.

  13. Density dependence of the nuclear energy-density functional

    Science.gov (United States)

    Papakonstantinou, Panagiota; Park, Tae-Sun; Lim, Yeunhwan; Hyun, Chang Ho

    2018-01-01

    Background: The explicit density dependence in the coupling coefficients entering the nonrelativistic nuclear energy-density functional (EDF) is understood to encode effects of three-nucleon forces and dynamical correlations. The necessity for the density-dependent coupling coefficients to assume the form of a preferably small fractional power of the density ρ is empirical and the power is often chosen arbitrarily. Consequently, precision-oriented parametrizations risk overfitting in the regime of saturation and extrapolations in dilute or dense matter may lose predictive power. Purpose: Beginning with the observation that the Fermi momentum kF, i.e., the cubic root of the density, is a key variable in the description of Fermi systems, we first wish to examine if a power hierarchy in a kF expansion can be inferred from the properties of homogeneous matter in a domain of densities, which is relevant for nuclear structure and neutron stars. For subsequent applications we want to determine a functional that is of good quality but not overtrained. Method: For the EDF, we fit systematically polynomial and other functions of ρ1 /3 to existing microscopic, variational calculations of the energy of symmetric and pure neutron matter (pseudodata) and analyze the behavior of the fits. We select a form and a set of parameters, which we found robust, and examine the parameters' naturalness and the quality of resulting extrapolations. Results: A statistical analysis confirms that low-order terms such as ρ1 /3 and ρ2 /3 are the most relevant ones in the nuclear EDF beyond lowest order. It also hints at a different power hierarchy for symmetric vs. pure neutron matter, supporting the need for more than one density-dependent term in nonrelativistic EDFs. The functional we propose easily accommodates known or adopted properties of nuclear matter near saturation. More importantly, upon extrapolation to dilute or asymmetric matter, it reproduces a range of existing microscopic

  14. Magnetosheath density fluctuations and magnetopause motion

    Energy Technology Data Exchange (ETDEWEB)

    Sibeck, D.G. [Johns Hopkins Univ. Applied Physics Lab., Laurel, MD (United States); Gosling, J.T. [Los Alamos National Lab., NM (United States)

    1996-01-01

    The interplanetary magnetic field (IMF) orientation controls foreshock densities and modulates the fraction of the solar wind dynamic pressure applied to the magnetosphere. Such pressure variations produce bow shock and magnetopause motion and cause the radial profiles for various magnetosheath parameters to sweep inward and outward past nearly stationary satellites. The authors report ISEE 2 observations of correlated density and speed fluctuations, and anticorrelated density and temperature fluctuations, on an outbound pass through the northern dawnside magnetosheath. Densities decreased when the magnetic field rotated southward and draped about the magnetopause. In the absence of any significant solar wind density or dynamic pressure variations, they interpret the magnetosheath fluctuations as evidence for radial magnetosheath motion induced by variations in the IMF orientation. 41 refs., 8 figs.

  15. Why Density Dependent Propulsion?

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    In 2004 Khoury and Weltman produced a density dependent cosmology theory they call the Chameleon, as at its nature, it is hidden within known physics. The Chameleon theory has implications to dark matter/energy with universe acceleration properties, which implies a new force mechanism with ties to the far and local density environment. In this paper, the Chameleon Density Model is discussed in terms of propulsion toward new propellant-less engineering methods.

  16. Density limits in Tokamaks

    International Nuclear Information System (INIS)

    Tendler, M.

    1984-06-01

    The energy loss from a tokamak plasma due to neutral hydrogen radiation and recycling is of great importance for the energy balance at the periphery. It is shown that the requirement for thermal equilibrium implies a constraint on the maximum attainable edge density. The relation to other density limits is discussed. The average plasma density is shown to be a strong function of the refuelling deposition profile. (author)

  17. Nuclear Level Densities

    International Nuclear Information System (INIS)

    Grimes, S.M.

    2005-01-01

    Recent research in the area of nuclear level densities is reviewed. The current interest in nuclear astrophysics and in structure of nuclei off of the line of stability has led to the development of radioactive beam facilities with larger machines currently being planned. Nuclear level densities for the systems used to produce the radioactive beams influence substantially the production rates of these beams. The modification of level-density parameters near the drip lines would also affect nucleosynthesis rates and abundances

  18. Measurement of true density

    International Nuclear Information System (INIS)

    Carr-Brion, K.G.; Keen, E.F.

    1982-01-01

    System for determining the true density of a fluent mixture such as a liquid slurry, containing entrained gas, such as air comprises a restriction in pipe through which at least a part of the mixture is passed. Density measuring means such as gamma-ray detectors and source measure the apparent density of the mixture before and after its passage through the restriction. Solid-state pressure measuring devices are arranged to measure the pressure in the mixture before and after its passage through the restriction. Calculating means, such as a programmed microprocessor, determine the true density from these measurements using relationships given in the description. (author)

  19. Towards predicting wading bird densities from predicted prey densities in a post-barrage Severn estuary

    International Nuclear Information System (INIS)

    Goss-Custard, J.D.; McGrorty, S.; Clarke, R.T.; Pearson, B.; Rispin, W.E.; Durell, S.E.A. le V. dit; Rose, R.J.; Warwick, R.M.; Kirby, R.

    1991-01-01

    A winter survey of seven species of wading birds in six estuaries in south-west England was made to develop a method for predicting bird densities should a tidal power barrage be built on the Severn estuary. Within most estuaries, bird densities correlated with the densities of widely taken prey species. A barrage would substantially reduce the area of intertidal flats available at low water for the birds to feed but the invertebrate density could increase in the generally more benign post-barrage environmental conditions. Wader densities would have to increase approximately twofold to allow the same overall numbers of birds to remain post-barrage as occur on the Severn at present. Provisional estimates are given of the increases in prey density required to allow bird densities to increase by this amount. With the exception of the prey of dunlin, these fall well within the ranges of densities found in other estuaries, and so could in principle be attained in the post-barrage Severn. An attempt was made to derive equations with which to predict post-barrage densities of invertebrates from easily measured, static environmental variables. The fact that a site was in the Severn had a significant additional effect on invertebrate density in seven cases. This suggests that there is a special feature of the Severn, probably one associated with its highly dynamic nature. This factor must be identified if the post-barrage densities of invertebrates are to be successful predicted. (author)

  20. On density forecast evaluation

    NARCIS (Netherlands)

    Diks, C.

    2008-01-01

    Traditionally, probability integral transforms (PITs) have been popular means for evaluating density forecasts. For an ideal density forecast, the PITs should be uniformly distributed on the unit interval and independent. However, this is only a necessary condition, and not a sufficient one, as

  1. Learning Grasp Affordance Densities

    DEFF Research Database (Denmark)

    Detry, Renaud; Kraft, Dirk; Kroemer, Oliver

    2011-01-01

    and relies on kernel density estimation to provide a continuous model. Grasp densities are learned and refined from exploration, by letting a robot “play” with an object in a sequence of graspand-drop actions: The robot uses visual cues to generate a set of grasp hypotheses; it then executes......We address the issue of learning and representing object grasp affordance models. We model grasp affordances with continuous probability density functions (grasp densities) which link object-relative grasp poses to their success probability. The underlying function representation is nonparametric...... these and records their outcomes. When a satisfactory number of grasp data is available, an importance-sampling algorithm turns these into a grasp density. We evaluate our method in a largely autonomous learning experiment run on three objects of distinct shapes. The experiment shows how learning increases success...

  2. Increased breast density correlates with the proliferation-seeking radiotracer (99m)Tc(V)-DMSA uptake in florid epithelial hyperplasia and in mixed ductal carcinoma in situ with invasive ductal carcinoma but not in pure invasive ductal carcinoma or in mild epithelial hyperplasia.

    Science.gov (United States)

    Papantoniou, Vassilios; Valsamaki, Pipitsa; Sotiropoulou, Evangelia; Tsaroucha, Angeliki; Tsiouris, Spyridon; Sotiropoulou, Maria; Marinopoulos, Spyridon; Kounadi, Evangelia; Karianos, Theodore; Fothiadaki, Athina; Archontaki, Aikaterini; Syrgiannis, Konstantinos; Ptohis, Nikolaos; Makris, Nikolaos; Limouris, Georgios; Antsaklis, Aris

    2011-10-01

    The purpose of this study was to assess the relationship of mammographic breast density (BD) and cell proliferation/focal adhesion kinase activation-seeking radiotracer technetium 99m pentavalent dimercaptosuccinic acid (99mTc(V)-DMSA) uptake in women with different breast histologies, that is, mild epithelial hyperplasia (MEH), florid epithelial hyperplasia (FEH), mixed ductal carcinoma in situ with invasive ductal carcinoma (DCIS + IDC), and pure IDC. Fifty-five women with histologically confirmed mammary pathologies were submitted preoperatively to mammography and 99mTc(V)-DMSA scintimammography. The percentage and intensity of 99mTc(V)-DMSA uptake and the percentage of BD were calculated by computer-assisted methods and compared (t-test) between the breast pathologies. In breasts with increased BD, FEH and DCIS + IDC were found. On the contrary, pure IDC and MEH were identified in breasts with significantly lower BD values. In breasts with increased 99mTc(V)-DMSA area and intensity of uptake, FEH was the main lesion found compared to all other histologies. Linear regression analysis between BD and 99mTc(V)-DMSA uptake area and intensity revealed significant coefficients of correlation (r  =  .689, p < .001 and r  =  .582, p < .001, respectively). Increased BD correlates with the presence of FEH and mixed DCIS + IDC but not with pure IDC or MEH. Its close relationship to 99mTc(V)-DMSA, which also showed an affinity to FEH, indicates that stromal microenvironment may constitute a specific substrate leading to progression to different subtypes of cancerous lesions originating from different pathways.

  3. Quantitative assessment of breast density: comparison of different methods

    International Nuclear Information System (INIS)

    Qin Naishan; Guo Li; Dang Yi; Song Luxin; Wang Xiaoying

    2011-01-01

    Objective: To Compare different methods of quantitative breast density measurement. Methods: The study included sixty patients who underwent both mammography and breast MRI. The breast density was computed automatically on digital mammograms with R2 workstation, Two experienced radiologists read the mammograms and assessed the breast density with Wolfe and ACR classification respectively. Fuzzy C-means clustering algorithm (FCM) was used to assess breast density on MRI. Each assessment method was repeated after 2 weeks. Spearman and Pearson correlations of inter- and intrareader and intermodality were computed for density estimates. Results: Inter- and intrareader correlation of Wolfe classification were 0.74 and 0.65, and they were 0.74 and 0.82 for ACR classification respectively. Correlation between Wolfe and ACR classification was 0.77. High interreader correlation of 0.98 and intrareader correlation of 0.96 was observed with MR FCM measurement. And the correlation between digital mammograms and MRI was high in the assessment of breast density (r=0.81, P<0.01). Conclusion: High correlation of breast density estimates on digital mammograms and MRI FCM suggested the former could be used as a simple and accurate method. (authors)

  4. Meson phase space density from interferometry

    International Nuclear Information System (INIS)

    Bertsch, G.F.

    1993-01-01

    The interferometric analysis of meson correlations a measure of the average phase space density of the mesons in the final state. The quantity is a useful indicator of the statistical properties of the systems, and it can be extracted with a minimum of model assumptions. Values obtained from recent measurements are consistent with the thermal value, but do not rule out superradiance effects

  5. Current density tensors

    Science.gov (United States)

    Lazzeretti, Paolo

    2018-04-01

    It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.

  6. Correlação linear e espacial entre a produtividade de forragem, a porosidade total e a densidade do solo de Pereira Barreto (SP Linear and spatial correlations between forage yield, total porosity and bulk density in Pereira Barreto, Brazil

    Directory of Open Access Journals (Sweden)

    Cesar Gustavo da Rocha Lima

    2007-12-01

    , plant attributes were analyzed in an irrigated fall corn crop under no-tillage besides some soil characteristics (total porosity-TP and bulk density-BD, in a Haplic Acrustox on the Fazenda Bonança (Dahma Agricultural Company in Pereira Barreto County, Sao Paulo State, Brazil (20 ° 40 ' 12 '' latitude S; 51 ° 01 '50 '' longitude W. The purpose of the study was to evaluate the variability, and linear and spatial correlations among the attributes (plant and soil in order to identify an indicator of soil physical quality for corn forage productivity (CPF . A geostatistical grid was installed to collect soil and plant data, with 125 sample points, over an area of 2.500 m². The studied attributes did not vary randomly and the variability was medium to low, with well defined patterns. The spatial range varied between 6.8 and 23.7 m. On the other hand, the linear correlations between the CPF with the soil attributes (TP and BD were low due to the high data number. BD1 and TP1 were best correlated with the CPF. However, concerning the spatial variability, the inverse correlations between CPF and BD1, as well as between BD1 and TP1 were excellent. The BD1 increased (1.45-1.64 kg dm-3 when the CPF varied from 11.653 to14.552 kg ha-1. At the sites where bulk density decreased (1.35-1.45 kg dm-3 the CPF varied from 14.552 to17.450 kg ha-1. Thus, the bulk density in the 0-0.10 m soil layer proved to be a satisfactory index of the soil physical quality regarding forage yield of fall corn.

  7. Intrinsic-density functionals

    International Nuclear Information System (INIS)

    Engel, J.

    2007-01-01

    The Hohenberg-Kohn theorem and Kohn-Sham procedure are extended to functionals of the localized intrinsic density of a self-bound system such as a nucleus. After defining the intrinsic-density functional, we modify the usual Kohn-Sham procedure slightly to evaluate the mean-field approximation to the functional, and carefully describe the construction of the leading corrections for a system of fermions in one dimension with a spin-degeneracy equal to the number of particles N. Despite the fact that the corrections are complicated and nonlocal, we are able to construct a local Skyrme-like intrinsic-density functional that, while different from the exact functional, shares with it a minimum value equal to the exact ground-state energy at the exact ground-state intrinsic density, to next-to-leading order in 1/N. We briefly discuss implications for real Skyrme functionals

  8. Density functional theory

    International Nuclear Information System (INIS)

    Das, M.P.

    1984-07-01

    The state of the art of the density functional formalism (DFT) is reviewed. The theory is quantum statistical in nature; its simplest version is the well-known Thomas-Fermi theory. The DFT is a powerful formalism in which one can treat the effect of interactions in inhomogeneous systems. After some introductory material, the DFT is outlined from the two basic theorems, and various generalizations of the theorems appropriate to several physical situations are pointed out. Next, various approximations to the density functionals are presented and some practical schemes, discussed; the approximations include an electron gas of almost constant density and an electron gas of slowly varying density. Then applications of DFT in various diverse areas of physics (atomic systems, plasmas, liquids, nuclear matter) are mentioned, and its strengths and weaknesses are pointed out. In conclusion, more recent developments of DFT are indicated

  9. Low Density Supersonic Decelerators

    Data.gov (United States)

    National Aeronautics and Space Administration — The Low-Density Supersonic Decelerator project will demonstrate the use of inflatable structures and advanced parachutes that operate at supersonic speeds to more...

  10. density functional theory approach

    Indian Academy of Sciences (India)

    YOGESH ERANDE

    2017-07-27

    Jul 27, 2017 ... a key role in all optical switching devices, since their optical properties can be .... optimized in the gas phase using Density Functional Theory. (DFT).39 The ...... The Mediation of Electrostatic Effects by Sol- vents J. Am. Chem.

  11. Bone mineral density test

    Science.gov (United States)

    BMD test; Bone density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis - BMD ... need to undress. This scan is the best test to predict your risk of fractures, especially of ...

  12. Accuracy of the Hartree-Fock and local density approximations for electron densities: a study for light atoms

    International Nuclear Information System (INIS)

    Almbladh, C.-O.; Ekenberg, U.; Pedroza, A.C.

    1983-01-01

    The authors compare the electron densities and Hartree potentials in the local density and the Hartree-Fock approximations to the corresponding quantities obtained from more accurate correlated wavefunctions. The comparison is made for a number of two-electron atoms, Li, and for Be. The Hartree-Fock approximation is more accurate than the local density approximation within the 1s shell and for the spin polarization in Li, while the local density approximation is slightly better than the Hartree-Fock approximation for charge densities in the 2s shell. The inaccuracy of the Hartree-Fock and local density approximations to the Hartree potential is substantially smaller than the inaccuracy of the local density approximation to the ground-state exchange-correlation potential. (Auth.)

  13. Stochastic GARCH dynamics describing correlations between stocks

    Science.gov (United States)

    Prat-Ortega, G.; Savel'ev, S. E.

    2014-09-01

    The ARCH and GARCH processes have been successfully used for modelling price dynamics such as stock returns or foreign exchange rates. Analysing the long range correlations between stocks, we propose a model, based on the GARCH process, which is able to describe the main characteristics of the stock price correlations, including the mean, variance, probability density distribution and the noise spectrum.

  14. Quantum entanglement and teleportation using statistical correlations

    Indian Academy of Sciences (India)

    Administrator

    Abstract. A study of quantum teleportation using two and three-particle correlated density matrix is presented. A criterion based on standard quantum statistical correlations employed in the many-body virial expansion is used to determine the extent of entanglement for a 2N-particle system. A relation between the probability ...

  15. Density-wave oscillations

    International Nuclear Information System (INIS)

    Belblidia, L.A.; Bratianu, C.

    1979-01-01

    Boiling flow in a steam generator, a water-cooled reactor, and other multiphase processes can be subject to instabilities. It appears that the most predominant instabilities are the so-called density-wave oscillations. They can cause difficulties for three main reasons; they may induce burnout; they may cause mechanical vibrations of components; and they create system control problems. A comprehensive review is presented of experimental and theoretical studies concerning density-wave oscillations. (author)

  16. Density of liquid Ytterbium

    International Nuclear Information System (INIS)

    Stankus, S.V.; Basin, A.S.

    1983-01-01

    Results are presented for measurements of the density of metallic ytterbium in the liquid state and at the liquid-solid phase transition. Based on the numerical data obtained, the coefficient of thermal expansion βZ of the liquid and the density discontinuity on melting deltarho/sub m/ are calculated. The magnitudes of βZ and deltarho/sub m/ for the heavy lanthanides are compared

  17. Negative Ion Density Fronts

    International Nuclear Information System (INIS)

    Igor Kaganovich

    2000-01-01

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas

  18. Acute pulmonary parenchymal densities in the adult

    International Nuclear Information System (INIS)

    Murphy, C.H.; Murphy, M.R.

    1987-01-01

    The thrust of the radiographic interpretation is to correlate the often non-specific appearance of any parenchymal density with its time-table of development, rate of change, distribution, and the patient's clinical status. Although this chapter contains separate sections on each major cause of acute pulmonary opacification, the intent of the chapter overall is their differential diagnosis. Before beginning to deal with acute pulmonary densities, it is stressed that acute densities can only be differentiated from chronic ones by reviewing preoperative or pre-existing studies. Without the baseline comparison film or reliable presumption of prior normalcy, the acuteness of a parenchymal density may not be apparent until later examinations reveal change or resolution. Also, as discussed is baseline pathology that is altered by the portable technique can be terribly confusing when attempting to evaluate a single isolated film in an acute clinical situation

  19. Microvessel density in Prostatic Lesions : Relevance to prognosis

    Directory of Open Access Journals (Sweden)

    P Upadhyaya

    2016-03-01

    Full Text Available Background:  Angiogenesis is required for growth and metastasis of tumor tissue. Quantization of angiogenesis by calculating the microvessel density can be done in histopathology specimens with the help of immunochemistry. In this study we used anti CD 34 antibody to highlight the endothelial cells and thus calculate microvessel density. Most studies have shown a positive correlation of microvessel density with increasing pathological grade and have also shown microvessel density as an independent predictor of cancer progression and survival. The present study was to find out the microvessel density in benign and malignant lesions of prostate and also to correlate the vascularity with increasing grade of cancer.Materials and methods:  Sixty five prostatic biopsies were evaluated for microvessel density using CD34 monoclonal antibody. Comparison was done between BPH and Carcinoma Prostate. MVD was correlated with Gleason’s score, weight of specimen and increasing age of patient. Effect of prostatitis on Microvessel density was studied.Results: Microvessel density was significantly higher in carcinoma prostate than in Benign Prostatic Hyperplasia. There was positive correlation of Microvessel density with increasing Gleason’s score. Microvessel was significantly increased in patients having symptoms for more than a year and also with biopsies revealing prostatitis. However, there was no significant correlation between Microvessel density and weight of specimen or increasing age.Conclusion: Since Microvessel density was found to be significantly higher in Prostatic Carcinoma and it showed positive correlation with Gleason’s score it can be added as one of the indicators for predicting the disease outcome. 

  20. Baryon acoustic signature in the clustering of density maxima

    International Nuclear Information System (INIS)

    Desjacques, Vincent

    2008-01-01

    We reexamine the two-point correlation of density maxima in Gaussian initial conditions. Spatial derivatives of the linear density correlation, which were ignored in the calculation of Bardeen et al.[Astrophys. J. 304, 15 (1986)], are included in our analysis. These functions exhibit large oscillations around the sound horizon scale for generic cold dark matter (CDM) power spectra. We derive the exact leading-order expression for the correlation of density peaks and demonstrate the contribution of those spatial derivatives. In particular, we show that these functions can modify significantly the baryon acoustic signature of density maxima relative to that of the linear density field. The effect depends upon the exact value of the peak height, the filter shape and size, and the small-scale behavior of the transfer function. In the ΛCDM cosmology, for maxima identified in the density field smoothed at mass scale M≅10 12 -10 14 M · /h and with linear threshold height ν=1.673/σ(M), the contrast of the baryon acoustic oscillations (BAO) can be a few tens of percent larger than in the linear matter correlation. Overall, the BAO is amplified for ν > or approx. 1 and damped for ν < or approx. l 1. Density maxima thus behave quite differently than linearly biased tracers of the density field, whose acoustic signature is a simple scaled version of the linear baryon acoustic oscillation. We also calculate the mean streaming of peak pairs in the quasilinear regime. We show that the leading-order 2-point correlation and pairwise velocity of density peaks are consistent with a nonlinear, local biasing relation involving gradients of the density field. Biasing will be an important issue in ascertaining how much of the enhancement of the BAO in the primeval correlation of density maxima propagates into the late-time clustering of galaxies.

  1. Nuclear correlations and structure functions

    International Nuclear Information System (INIS)

    Hu Guoju; Irvine, J.M.

    1989-01-01

    It is argued that the search for a mass number dependence of the nuclear structure function per nucleon is profitably directed to the region of Bjorken scaling variable x > 1. We show that in the convolution model of the nuclear structure function the nuclear momentum distribution and energy spectrum generated by cluster expansion techniques, here realised in the correlated basis function method, invoking tensor correlations and short-range density-dependent repulsions adequately describes the structure function for 12 C in the region x > 1. The results of structure functions for a number of light-, medium- and heavy-mass nuclei are presented. (author)

  2. Mechanisms Affecting Population Density in Fragmented Habitat

    Directory of Open Access Journals (Sweden)

    Lutz Tischendorf

    2005-06-01

    Full Text Available We conducted a factorial simulation experiment to analyze the relative importance of movement pattern, boundary-crossing probability, and mortality in habitat and matrix on population density, and its dependency on habitat fragmentation, as well as inter-patch distance. We also examined how the initial response of a species to a fragmentation event may affect our observations of population density in post-fragmentation experiments. We found that the boundary-crossing probability from habitat to matrix, which partly determines the emigration rate, is the most important determinant for population density within habitat patches. The probability of crossing a boundary from matrix to habitat had a weaker, but positive, effect on population density. Movement behavior in habitat had a stronger effect on population density than movement behavior in matrix. Habitat fragmentation and inter-patch distance may have a positive or negative effect on population density. The direction of both effects depends on two factors. First, when the boundary-crossing probability from habitat to matrix is high, population density may decline with increasing habitat fragmentation. Conversely, for species with a high matrix-to-habitat boundary-crossing probability, population density may increase with increasing habitat fragmentation. Second, the initial distribution of individuals across the landscape: we found that habitat fragmentation and inter-patch distance were positively correlated with population density when individuals were distributed across matrix and habitat at the beginning of our simulation experiments. The direction of these relationships changed to negative when individuals were initially distributed across habitat only. Our findings imply that the speed of the initial response of organisms to habitat fragmentation events may determine the direction of observed relationships between habitat fragmentation and population density. The time scale of post