Teixeira, Miguel A. C.
2017-04-01
A linear model is used to diagnose the onset of rotors in flow over 2D ridges, for atmospheres that are neutrally stratified near the surface and stably stratified aloft, with a sharp temperature inversion in between, where trapped lee waves may propagate. This is achieved by coupling an inviscid two-layer mountain-wave model with a bulk boundary-layer model. The full model shows some ability to detect flow stagnation as a function of key input parameters, such as the Froude number and the height of the inversion, by comparison with results from numerical simulations and laboratory experiments carried out by previous authors. The effect of a boundary layer is essential to correctly predict flow stagnation, as the inviscid version of the model severely overestimates the dimensionless critical mountain height necessary for stagnation to occur. An improved model that includes only the effects of mean flow deceleration and amplification of the velocity perturbation within the boundary layer predicts flow stagnation much better in the most non-hydrostatic cases treated here, where waves appear to be directly forced by the orography. However, in the most hydrostatic case, only the full model, taking into account the feedback of the boundary layer on the inviscid flow, satisfactorily predicts flow stagnation, although the corresponding stagnation condition is unable to discriminate between rotors and hydraulic jumps. This is due to the fact that the trapped lee waves associated with the rotors are not forced directly by the orography in this case, but rather seem to be generated indirectly by nonlinear processes. This mechanism is, to a certain extent, mimicked by the modified surface boundary condition adopted in the full model, where an "effective orography" that differs from the real one forces the trapped lee waves. Versions of the model not including this feedback severely underestimate the amplitude of the trapped lee waves in the most hydrostatic case, partly
Impact of Parameterized Lee Wave Drag on the Energy Budget of an Eddying Global Ocean Model
2013-08-26
of Mexico and other regions in Fig. 2b of Arbic et al. (2010) relative to their Fig. 2a. In subsequent versions of HY- COM simulations with embedded...use of the leap- frog time-stepping scheme (Griffies et al., 2000), it is an unmeasured source of dissi- pation. An associated imbalance in surface...Molines, J.-M., New , A.L., 2001. Circulation characteristics in three eddy- permitting models of the North Atlantic. Progr. Oceanogr. 48, 123–161
Yang-Lee zeros of the Yang-Lee model
Mussardo, G.; Bonsignori, R.; Trombettoni, A.
2017-12-01
To understand the distribution of the Yang-Lee zeros in quantum integrable field theories we analyse the simplest of these systems given by the 2D Yang-Lee model. The grand-canonical partition function of this quantum field theory, as a function of the fugacity z and the inverse temperature β, can be computed in terms of the thermodynamics Bethe Ansatz based on its exact S-matrix. We extract the Yang-Lee zeros in the complex plane by using a sequence of polynomials of increasing order N in z which converges to the grand-canonical partition function. We show that these zeros are distributed along curves which are approximate circles as it is also the case of the zeros for purely free theories. There is though an important difference between the interactive theory and the free theories, for the radius of the zeros in the interactive theory goes continuously to zero in the high-temperature limit β → 0 while in the free theories it remains close to 1 even for small values of β, jumping to 0 only at β = 0 .
Sieve bootstrapping in the Lee-Carter model
Heinemann, A.
2013-01-01
This paper studies an alternative approach to construct confidence intervals for parameter estimates of the Lee-Carter model. First, the procedure of obtaining confidence intervals using regular nonparametric i.i.d. bootstrap is specified. Empirical evidence seems to invalidate this approach as it
Observation of Mountain Lee Waves with MODIS NIR Column Water Vapor
Lyapustin, A.; Alexander, M. J.; Ott, L.; Molod, A.; Holben, B.; Susskind, J.; Wang, Y.
2014-01-01
Mountain lee waves have been previously observed in data from the Moderate Resolution Imaging Spectroradiometer (MODIS) "water vapor" 6.7 micrometers channel which has a typical peak sensitivity at 550 hPa in the free troposphere. This paper reports the first observation of mountain waves generated by the Appalachian Mountains in the MODIS total column water vapor (CWV) product derived from near-infrared (NIR) (0.94 micrometers) measurements, which indicate perturbations very close to the surface. The CWV waves are usually observed during spring and late fall or some summer days with low to moderate CWV (below is approx. 2 cm). The observed lee waves display wavelengths from3-4 to 15kmwith an amplitude of variation often comparable to is approx. 50-70% of the total CWV. Since the bulk of atmospheric water vapor is confined to the boundary layer, this indicates that the impact of thesewaves extends deep into the boundary layer, and these may be the lowest level signatures of mountain lee waves presently detected by remote sensing over the land.
The Friedberg-Lee symmetry and minimal seesaw model
International Nuclear Information System (INIS)
He Xiaogang; Liao Wei
2009-01-01
The Friedberg-Lee (FL) symmetry is generated by a transformation of a fermionic field q to q+ξz. This symmetry puts very restrictive constraints on allowed terms in a Lagrangian. Applying this symmetry to N fermionic fields, we find that the number of independent fields is reduced to N-1 if the fields have gauge interaction or the transformation is a local one. Using this property, we find that a seesaw model originally with three generations of left- and right-handed neutrinos, with the left-handed neutrinos unaffected but the right-handed neutrinos transformed under the local FL translation, is reduced to an effective theory of minimal seesaw which has only two right-handed neutrinos. The symmetry predicts that one of the light neutrino masses must be zero.
A multi-developing-country comparison of the lee-carter model for ...
African Journals Online (AJOL)
This study evaluate the Lee-Carter model for projecting age and gender specific mortality rates and life expectancy at births in four developing countries namely Malaysia, Indonesia, Thailand and Singapore. Although the Lee-Carter model has been successfully applied in many developed countries, little information is ...
Forecasting the mortality rates using Lee-Carter model and Heligman-Pollard model
Ibrahim, R. I.; Ngataman, N.; Abrisam, W. N. A. Wan Mohd
2017-09-01
Improvement in life expectancies has driven further declines in mortality. The sustained reduction in mortality rates and its systematic underestimation has been attracting the significant interest of researchers in recent years because of its potential impact on population size and structure, social security systems, and (from an actuarial perspective) the life insurance and pensions industry worldwide. Among all forecasting methods, the Lee-Carter model has been widely accepted by the actuarial community and Heligman-Pollard model has been widely used by researchers in modelling and forecasting future mortality. Therefore, this paper only focuses on Lee-Carter model and Heligman-Pollard model. The main objective of this paper is to investigate how accurately these two models will perform using Malaysian data. Since these models involves nonlinear equations that are explicitly difficult to solve, the Matrix Laboratory Version 8.0 (MATLAB 8.0) software will be used to estimate the parameters of the models. Autoregressive Integrated Moving Average (ARIMA) procedure is applied to acquire the forecasted parameters for both models as the forecasted mortality rates are obtained by using all the values of forecasted parameters. To investigate the accuracy of the estimation, the forecasted results will be compared against actual data of mortality rates. The results indicate that both models provide better results for male population. However, for the elderly female population, Heligman-Pollard model seems to underestimate to the mortality rates while Lee-Carter model seems to overestimate to the mortality rates.
Deterministic and stochastic trends in the Lee-Carter mortality model
DEFF Research Database (Denmark)
Callot, Laurent; Haldrup, Niels; Kallestrup-Lamb, Malene
2015-01-01
The Lee and Carter (1992) model assumes that the deterministic and stochastic time series dynamics load with identical weights when describing the development of age-specific mortality rates. Effectively this means that the main characteristics of the model simplify to a random walk model with age...... mortality data. We find empirical evidence that this feature of the Lee–Carter model overly restricts the system dynamics and we suggest to separate the deterministic and stochastic time series components at the benefit of improved fit and forecasting performance. In fact, we find that the classical Lee...
Deterministic and stochastic trends in the Lee-Carter mortality model
DEFF Research Database (Denmark)
Callot, Laurent; Haldrup, Niels; Kallestrup-Lamb, Malene
The Lee and Carter (1992) model assumes that the deterministic and stochastic time series dynamics loads with identical weights when describing the development of age specific mortality rates. Effectively this means that the main characteristics of the model simplifies to a random walk model...... that characterizes mortality data. We find empirical evidence that this feature of the Lee-Carter model overly restricts the system dynamics and we suggest to separate the deterministic and stochastic time series components at the benefit of improved fit and forecasting performance. In fact, we find...
Forecasting selected specific age mortality rate of Malaysia by using Lee-Carter model
Shukri Kamaruddin, Halim; Ismail, Noriszura
2018-03-01
Observing mortality pattern and trend is an important subject for any country to maintain a good social-economy in the next projection years. The declining in mortality trend gives a good impression of what a government has done towards macro citizen in one nation. Selecting a particular mortality model can be a tricky based on the approached method adapting. Lee-Carter model is adapted because of its simplicity and reliability of the outcome results with approach of regression. Implementation of Lee-Carter in finding a fitted model and hence its projection has been used worldwide in most of mortality research in developed countries. This paper studies the mortality pattern of Malaysia in the past by using original model of Lee-Carter (1992) and hence its cross-sectional observation for a single age. The data is indexed by age of death and year of death from 1984 to 2012, in which are supplied by Department of Statistics Malaysia. The results are modelled by using RStudio and the keen analysis will focus on the trend and projection of mortality rate and age specific mortality rate in the future. This paper can be extended to different variants extensions of Lee-Carter or any stochastic mortality tool by using Malaysia mortality experience as a centre of the main issue.
INCA Modelling of the Lee System: strategies for the reduction of nitrogen loads
Flynn, N. J.; Paddison, T.; Whitehead, P. G.
The Integrated Nitrogen Catchment model (INCA) was applied successfully to simulate nitrogen concentrations in the River Lee, a northern tributary of the River Thames for 1995-1999. Leaching from urban and agricultural areas was found to control nitrogen dynamics in reaches unaffected by effluent discharges and abstractions; the occurrence of minimal flows resulted in an upward trend in nitrate concentration. Sewage treatment works (STW) discharging into the River Lee raised nitrate concentrations substantially, a problem which was compounded by abstractions in the Lower Lee. The average concentration of nitrate (NO3) for the simulation period 1995-96 was 7.87 mg N l-1. Ammonium (NH4) concentrations were simulated less successfully. However, concentrations of ammonium rarely rose to levels which would be of environmental concern. Scenarios were run through INCA to assess strategies for the reduction of nitrate concentrations in the catchment. The conversion of arable land to ungrazed vegetation or to woodland would reduce nitrate concentrations substantially, whilst inclusion of riparian buffer strips would be unsuccessful in reducing nitrate loading. A 50% reduction in nitrate loading from Luton STW would result in a fall of up to 5 mg N l-1 in the reach directly affected (concentrations fell from maxima of 13 to 8 mg N l-1 , nearly a 40 % reduction), whilst a 20% reduction in abstractions would reduce maximum peaks in concentration in the lower Lee by up to 4 mg l-1 (from 17 to 13 mg N l-1, nearly a 25 % reduction),.
Multiple mortality modeling in Poisson Lee-Carter framework
D'Amato, V.; Haberman, S.; Piscopo, G.; Russolillo, M.; Trapani, L.
2016-01-01
The academic literature in longevity field has recently focused on models for detecting multiple population trends (D'Amato et al., 2012b; Njenga and Sherris, 2011; Russolillo et al., 2011, etc.). In particular, increasing interest has been shown about "related" population dynamics or "parent" populations characterized by similar socioeconomic conditions and eventually also by geographical proximity. These studies suggest dependence across multiple populations and common long-run relationship...
Adaptation of Sing Lee's model to the Filippov type plasma focus geometry
International Nuclear Information System (INIS)
Siahpoush, V; Tafreshi, M A; Sobhanian, S; Khorram, S
2005-01-01
A new model for plasma behaviour in Filippov type plasma focus (PF) systems has been described and used. This model is based on the so-called slug model and Sing Lee's model for Mather type PF devices. Using the model, the discharge current and its derivative as a function of time, and the pinch time and the maximum discharge current as a function of pressure, have been predicted. At the end, the predicted data are compared with the experimental data obtained through a Filippov type PF facility with a nominal maximum energy of 90 kJ
Numerical Simulation of Wake Effects in the Lee of a Farm of Wave Dragon Wave Energy Converters
DEFF Research Database (Denmark)
Beels, C.; Troch, P.; De Visch, K.
2009-01-01
sea level and then drains back to the sea through hydro turbines. The wake dimensions behind a single Wave Dragon WEC are investigated for uni- and multidirectional waves. An increasing directional spreading results in a faster wave redistribution behind the WEC. The power absorption of a farm of five...
Numerical Simulation of Wake Effects in the Lee of a Farm of Wave Dragon Wave Energy Converters
DEFF Research Database (Denmark)
Beels, C.; Troch, P.; De Visch, K.
2009-01-01
The contribution of wave energy to the renewable energy supply is rising. To extract a considerable amount of wave power,Wave Energy Converters (WECs) are arranged in several rows or in a ‘farm'. The wake behind each individual WEC in the farm affects the power absorption of its neighbouring WECs...
The Yang-Lee edge singularity for the Ising model on two Sierpinski fractal lattices
Energy Technology Data Exchange (ETDEWEB)
Knezevic, Milan [Faculty of Physics, University of Belgrade, PO Box 368, 11000 Belgrade (Serbia); Knezevic, Dragica, E-mail: knez@ff.bg.ac.r, E-mail: dknezevic@kg.ac.r [Faculty of Natural Sciences and Mathematics, University of Kragujevac, PO Box 60, 34000 Kragujevac (Serbia)
2010-10-15
We study the distribution of zeros of the partition function of the ferromagnetic Ising model near the Yang-Lee edge on two Sierpiski-type lattices. We have shown that relevant correlation length displays a logarithmic divergence near the edge, {xi}{sub YL{approx}}|ln({partial_derivative}h)|{sup {Phi}} where {Phi} is a constant and {delta}h distance from the edge, in the case of a modified Sierpinski gasket with a nonuniform coordination number. It is demonstrated that this critical behavior can be related to the critical behavior of a simple zero-field Gaussian model of the same structure. We have shown that there is no such connection between these two models on a second lattice that has a uniform coordination number. These findings suggest that fluctuations of the lattice coordination number of a nonhomogeneous self-similar structure exert the crucial influence on the critical behavior of both models.
Interpretation for ''high''-Tc of the totally interconnected solution of the Ma and Lee model
International Nuclear Information System (INIS)
Wiecko, C.
1988-09-01
The already presented totally interconnected (mean-field) approximation of the Ma and Lee model, pictures very well many ingredients of the present status of comprehension of high-T c superconductors. The picture is that of a disordered grain with variable number of particles available for an attractive on-site pairing interaction, embedded in a reservoir of normal particles which fix the chemical potential. Interesting effect of absence of T c and then a sharp increase and slow decay of T c with disorder appears for weak coupling pairing as compared with the hopping probability for single particles. Interpretation is given in terms of one-particle Anderson localization theory and standard mechanisms. (author). 13 refs, 4 figs
Lee-Carter state space modeling: Application to the Malaysia mortality data
Zakiyatussariroh, W. H. Wan; Said, Z. Mohammad; Norazan, M. R.
2014-06-01
This article presents an approach that formalizes the Lee-Carter (LC) model as a state space model. Maximum likelihood through Expectation-Maximum (EM) algorithm was used to estimate the model. The methodology is applied to Malaysia's total population mortality data. Malaysia's mortality data was modeled based on age specific death rates (ASDR) data from 1971-2009. The fitted ASDR are compared to the actual observed values. However, results from the comparison of the fitted and actual values between LC-SS model and the original LC model shows that the fitted values from the LC-SS model and original LC model are quite close. In addition, there is not much difference between the value of root mean squared error (RMSE) and Akaike information criteria (AIC) from both models. The LC-SS model estimated for this study can be extended for forecasting ASDR in Malaysia. Then, accuracy of the LC-SS compared to the original LC can be further examined by verifying the forecasting power using out-of-sample comparison.
Hanafiah, Hazlenah; Jemain, Abdul Aziz
2013-11-01
In recent years, the study of fertility has been getting a lot of attention among research abroad following fear of deterioration of fertility led by the rapid economy development. Hence, this study examines the feasibility of developing fertility forecasts based on age structure. Lee Carter model (1992) is applied in this study as it is an established and widely used model in analysing demographic aspects. A singular value decomposition approach is incorporated with an ARIMA model to estimate age specific fertility rates in Peninsular Malaysia over the period 1958-2007. Residual plots is used to measure the goodness of fit of the model. Fertility index forecast using random walk drift is then utilised to predict the future age specific fertility. Results indicate that the proposed model provides a relatively good and reasonable data fitting. In addition, there is an apparent and continuous decline in age specific fertility curves in the next 10 years, particularly among mothers' in their early 20's and 40's. The study on the fertility is vital in order to maintain a balance between the population growth and the provision of facilities related resources.
DEFF Research Database (Denmark)
Larsén, Xiaoli Guo; Larsen, Søren Ejling; Hahmann, Andrea N.
2012-01-01
This note uses SAR images, satellite cloud pictures and point measurements together with simulations using the Weather Research and Forecasting (WRF) model to identify the origin of the gravity waves over Denmark on 6 November 2006, studied recently. The wave characteristics, concerning their ini...
Nobelist TD LEE Scientist Cooperation Network and Scientist Innovation Ability Model
Directory of Open Access Journals (Sweden)
Jin-Qing Fang
2013-01-01
Full Text Available Nobelist TD Lee scientist cooperation network (TDLSCN and their innovation ability are studied. It is found that the TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also appears the creation multiple-peak phenomenon for number of published paper with year evolution, which become Nobelist TD Lee’s significant mark distinguished from other scientists. This new phenomenon has not been revealed in the scientist cooperation networks before. To demonstrate and explain this new finding, we propose a theoretical model for a nature scientist and his/her team innovation ability. The theoretical results are consistent with the empirical studies very well. This research demonstrates that the model has a certain universality and can be extended to estimate innovation ability for any nature scientist and his/her team. It is a better method for evaluating scientist innovation ability and his/her team for the academic profession and is of application potential.
The other Higgses, at resonance, in the Lee-Wick extension of the Standard Model
Figy, Terrance
2011-01-01
Within the framework of the Lee Wick Standard Model (LWSM) we investigate Higgs pair production $gg \\to h_0 h_0$, $gg \\to h_0 \\tilde p_0$ and top pair production $gg \\to \\bar tt$ at the Large Hadron Collider (LHC), where the neutral particles from the Higgs sector ($h_0$, $\\tilde h_0$ and $\\tilde p_0$) appear as possible resonant intermediate states. We investigate the signal $gg \\to h_0 h_0 \\to \\bar b b \\gamma \\gamma$ and we find that the LW Higgs, depending on its mass-range, can be seen not long after the LHC upgrade in 2012. More precisely this happens when the new LW Higgs states are below the top pair threshold. In $gg \\to \\bar tt$ the LW states, due to the wrong-sign propagator and negative width, lead to a dip-peak structure instead of the usual peak-dip structure which gives a characteristic signal especially for low-lying LW Higgs states. We comment on the LWSM and the forward-backward asymmetry in view of the measurement at the TeVatron. Furthermore, we present a technique which reduces the hyperbo...
International Nuclear Information System (INIS)
Koeppel, T.; Harvey, M.
1984-06-01
A new numerical method is applied to solving the equations of motion of the Friedberg-Lee Soliton model for both ground and spherically symmetric excited states. General results have been obtained over a wide range of parameters. Critical coupling constants and critical particle numbers have been determined below which soliton solutions cease to exist. The static properties of the proton are considered to show that as presently formulated the model fails to fit all experimental data for any set of parameters
DEFF Research Database (Denmark)
Burcharth, H. F.; Larsen, Brian Juul
The investigation concerns the design of a new internal breakwater in the main port of Ibiza. The objective of the model tests was in the first hand to optimize the cross section to make the wave reflection low enough to ensure that unacceptable wave agitation will not occur in the port. Secondly...
Nobelist TD LEE Scientist Cooperation Network and Scientist Innovation Ability Model
Fang, Jin-Qing; Liu, Qiang
2013-01-01
Nobelist TD Lee scientist cooperation network (TDLSCN) and their innovation ability are studied. It is found that the TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also appears the creation multiple-peak phenomenon for number of published paper with year evolution, which become Nobelist TD Lee’s significant mark distinguished from other scientists. This new phenomenon has not been revealed in the scie...
International Nuclear Information System (INIS)
Benoit, M.; Marcos, F.; Teisson, Ch.
1999-01-01
Nuclear power stations located on the coast take the water they use to cool their circuits from the sea. The water intake and discharge devices must be able to operate in all weathers, notably during extreme storms, with waves 10 m high and over. To predict the impact of the waves on the equipment, they are modeled digitally from the moment they form in the middle of the ocean right up to the moment they break on the shore. (authors)
Zakiyatussariroh, W. H. Wan; Said, Z. Mohammad; Norazan, M. R.
2014-12-01
This study investigated the performance of the Lee-Carter (LC) method and it variants in modeling and forecasting Malaysia mortality. These include the original LC, the Lee-Miller (LM) variant and the Booth-Maindonald-Smith (BMS) variant. These methods were evaluated using Malaysia's mortality data which was measured based on age specific death rates (ASDR) for 1971 to 2009 for overall population while those for 1980-2009 were used in separate models for male and female population. The performance of the variants has been examined in term of the goodness of fit of the models and forecasting accuracy. Comparison was made based on several criteria namely, mean square error (MSE), root mean square error (RMSE), mean absolute deviation (MAD) and mean absolute percentage error (MAPE). The results indicate that BMS method was outperformed in in-sample fitting for overall population and when the models were fitted separately for male and female population. However, in the case of out-sample forecast accuracy, BMS method only best when the data were fitted to overall population. When the data were fitted separately for male and female, LCnone performed better for male population and LM method is good for female population.
Directory of Open Access Journals (Sweden)
Dobrilović Dalibor
2017-01-01
Full Text Available In the recent period, fast ICT expansion and rapid appearance of new technologies raised the importance of fast and accurate planning and deployment of emerging communication technologies, especially wireless ones. In this paper is analyzed possible usage of Lee propagation model for planning, design and management of networks based on LoRa 868MHz technology. LoRa is wireless technology which can be deployed in various Internet of Things and Smart City scenarios in urban areas. The analyses are based on comparison of field measurements with model calculations. Besides the analyses of Lee propagation model usability, the possible optimization of the model is discussed as well. The research results can be used for accurate design, planning and for preparation of high-performance wireless resource management of various Internet of Things and Smart City applications in urban areas based on LoRa or similar wireless technology. The equipment used for measurements is based on open-source hardware.
DEFF Research Database (Denmark)
Beels, Charlotte; Troch, Peter; Visch, Kenneth De
2010-01-01
Time-dependent mild-slope equations have been extensively used to compute wave transformations near coastal and offshore structures for more than 20 years. Recently the wave absorption characteristics of a Wave Energy Converter (abbreviated as WEC) of the overtopping type have been implemented...
Kashchenko, Serguey
2015-01-01
This monograph examines in detail models of neural systems described by delay-differential equations. Each element of the medium (neuron) is an oscillator that generates, in standalone mode, short impulses also known as spikes. The book discusses models of synaptic interaction between neurons, which lead to complex oscillatory modes in the system. In addition, it presents a solution to the problem of choosing the parameters of interaction in order to obtain attractors with predetermined structure. These attractors are represented as images encoded in the form of autowaves (wave memory). The target audience primarily comprises researchers and experts in the field, but it will also be beneficial for graduate students.
Abnormal Waves Modelled as Second-order Conditional Waves
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
2005-01-01
, the water depth and the directional spreading on the conditional mean wave profile are presented. Application of conditional waves to model and explain abnormal waves, e.g. the well-known New Year Wave measured at the Draupner platform January 1st 1995, is discussed. Whereas the wave profile can be modelled...
A critique of the Lees-Marshment market-oriented party model
DEFF Research Database (Denmark)
Ormrod, Robert P.
2006-01-01
between the related concepts of 'market orientation' and 'marketing orientation'. Empirical studies demonstrate problems with the model when applied to certain party types and electoral systems, the limitations on implementation of the model due to ideology and scarce resources, the partial application...
Higher-derivative Lee-Wick unification
International Nuclear Information System (INIS)
Carone, Christopher D.
2009-01-01
We consider gauge coupling unification in Lee-Wick extensions of the Standard Model that include higher-derivative quadratic terms beyond the minimally required set. We determine how the beta functions are modified when some Standard Model particles have two Lee-Wick partners. We show that gauge coupling unification can be achieved in such models without requiring the introduction of additional fields in the higher-derivative theory and we comment on possible ultraviolet completions.
Wave Generation in Physical Models
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Frigaard, Peter
The present book describes the most important aspects of wave generation techniques in physical models. Moreover, the book serves as technical documentation for the wave generation software AwaSys 6, cf. Aalborg University (2012). In addition to the two main authors also Tue Hald and Michael...
Abnormal Waves Modelled as Second-order Conditional Waves
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
2005-01-01
The paper presents results for the expected second order short-crested wave conditional of a given wave crest at a specific point in time and space. The analysis is based on the second order Sharma and Dean shallow water wave theory. Numerical results showing the importance of the spectral density......, the water depth and the directional spreading on the conditional mean wave profile are presented. Application of conditional waves to model and explain abnormal waves, e.g. the well-known New Year Wave measured at the Draupner platform January 1st 1995, is discussed. Whereas the wave profile can be modelled...... quite well by the second order conditional wave including directional spreading and finite water depth the probability to encounter such a wave is still, however, extremely rare. The use of the second order conditional wave as initial condition to a fully non-linear three-dimensional analysis...
Near Shore Wave Modeling and applications to wave energy estimation
Zodiatis, G.; Galanis, G.; Hayes, D.; Nikolaidis, A.; Kalogeri, C.; Adam, A.; Kallos, G.; Georgiou, G.
2012-04-01
The estimation of the wave energy potential at the European coastline is receiving increased attention the last years as a result of the adaptation of novel policies in the energy market, the concernsfor global warming and the nuclear energy security problems. Within this framework, numerical wave modeling systems keep a primary role in the accurate description of wave climate and microclimate that is a prerequisite for any wave energy assessment study. In the present work two of the most popular wave models are used for the estimation of the wave parameters at the coastline of Cyprus: The latest parallel version of the wave model WAM (ECMWF version), which employs new parameterization of shallow water effects, and the SWAN model, classically used for near shore wave simulations. The results obtained from the wave models near shores are studied by an energy estimation point of view: The wave parameters that mainly affect the energy temporal and spatial distribution, that is the significant wave height and the mean wave period, are statistically analyzed,focusing onpossible different aspects captured by the two models. Moreover, the wave spectrum distribution prevailing in different areas are discussed contributing, in this way, to the wave energy assessmentin the area. This work is a part of two European projects focusing on the estimation of the wave energy distribution around Europe: The MARINA platform (http://www.marina-platform.info/ index.aspx) and the Ewave (http://www.oceanography.ucy.ac.cy/ewave/) projects.
Numerical experiments on plasma focus for soft x-ray yield scaling laws derivation using Lee model
International Nuclear Information System (INIS)
Akel, M.
2012-09-01
The required plasma parameters of krypton and xenon at different temperatures were calculated, the x-ray emission properties of plasmas were studied, and based on the corona model the suitable temperature range for generating H-like and He-like ions (therefore soft x-ray emissions) of different gases plasma were found. The code is applied to characterize the plasma focus in different plasma focus devices, and for optimizing the nitrogen, oxygen, neon, argon, krypton and xenon soft x-ray yields based on bank, tubes and operating parameters. It is found that the soft x-ray yield increases with changing pressure until it reaches the maximum value for each plasma focus device. Keeping the bank parameters, operational voltage unchanged but systematically changing other parameters, numerical experiments were performed finding the optimum combination of P o , Z o and 'a' for the maximum soft x-ray yield. Thus we expect to increase the soft x-ray yield of plasma focus device several-fold from its present typical operation; without changing the capacitor bank, merely by changing the electrode configuration and the operating pressure. The Lee model code was also used to run numerical experiments on plasma focus devices for optimizing soft x-ray yield with reducing L o , varying L o and 'a' to get engineering designs with maximum soft x-ray yield for these devices at different experimental conditions and gases. Numerical experiments showed the influence of the gas used in plasma focus and its properties on soft x-ray emission and its properties and then on its applications. Scaling laws for soft x-ray of nitrogen, oxygen, neon, argon, krypton and xenon plasma focus, in terms of energy, peak discharge current and focus pinch current were found. Radiative cooling effects are studied indicating that radiative collapse may be observed for heavy noble gases (Ar, Kr, Xe) for pinch currents even below 100 kA. The results show that the line radiation emission and tube voltages have
Modeling fluctuations in scattered waves
Jakeman, E
2006-01-01
Fluctuations in scattered waves limit the performance of imaging and remote sensing systems that operate on all wavelengths of the electromagnetic spectrum. To better understand these fluctuations, Modeling Fluctuations in Scattered Waves provides a practical guide to the phenomenology, mathematics, and simulation of non-Gaussian noise models and discusses how they can be used to characterize the statistics of scattered waves.Through their discussion of mathematical models, the authors demonstrate the development of new sensing techniques as well as offer intelligent choices that can be made for system analysis. Using experimental results and numerical simulation, the book illustrates the properties and applications of these models. The first two chapters introduce statistical tools and the properties of Gaussian noise, including results on phase statistics. The following chapters describe Gaussian processes and the random walk model, address multiple scattering effects and propagation through an extended med...
Numerical Modelling of Wave Run-Up: Regular Waves
DEFF Research Database (Denmark)
Ramirez, Jorge; Frigaard, Peter; Andersen, Thomas Lykke
2011-01-01
Wave loads are important in problems related to offshore structure, such as wave run-up, slamming. The computation of such wave problems are carried out by CFD models. This paper presents one model, NS3, which solve 3D Navier-Stokes equations and use Volume of Fluid (VOF) method to treat the free...
Wave-to-wire Modelling of Wave Energy Converters
DEFF Research Database (Denmark)
Ferri, Francesco
applicable, efficient and reliable wave-to-wire model tool is needed. A wave-to-wire model identifies the relation from the source of energy of a particular location to the expected device productivity. The latter being expressed in terms of electricity fed into the grid. The model needs to output a coarse...
Basic concepts of kinematic-wave models
Miller, J.E.
1984-01-01
The kinematic-wave model is one of a number of approximations of the dynamic-wave model. The dynamic-wave model describes onedimensional shallow-water waves (unsteady, gradually varied, openchannel flow). This report provides a basic reference on the theory and applications of the kinematic-wave model and describes the limitations of the model in relation to the other approximations of the dynamic-wave model. In the kinematic-wave approximation, a number of the terms in the equation of motion are assumed to be insignificant. The equation of motion is replaced by an equation describing uniform flow. Thus, the kinematic-wave model is described by the continuity equation and a uniform-flow equation such as the wellknown Chezy or Manning formulas. Kinematic-wave models are applicable to overland flow where lateral inflow is continuously added and is a large part of the total flow. For channel-routing applications, the kinematic-wave model always predicts a steeper wave with less dispersion and attenuation than actually occurs. The effect of the accumulation of errors in the kinematic-wave model shows that the approximations made in the development of the kinematic-wave equations are not generally justified for most channel-routing applications. Modified flow-routing models can be used which help to stop the accumulation of errors that occur when the kinematic-wave model is applied.
Overview of Wave to Wire Models
DEFF Research Database (Denmark)
Nielsen, Kim; Kramer, Morten Mejlhede; Ferri, Francesco
A “Wave to Wire” (W2W) model is a numerical tool that can calculate the power output from a specified Wave Energy Converter (WEC), under specified ocean wave conditions. The tool can be used to assess and optimize the performance of a Wave Energy Converter (WEC) design and provide knowledge...
Kasimov, Aslan R.
2013-03-08
We propose the following model equation, ut+1/2(u2−uus)x=f(x,us) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x=0 for any t≥0. Here, us(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.
Numerical Modelling of Wave Run-Up
DEFF Research Database (Denmark)
Ramirez, Jorge Robert Rodriguez; Frigaard, Peter; Andersen, Thomas Lykke
2011-01-01
Wave loads are important in problems related to offshore structure, such as wave run-up, slamming. The computation of such wave problems are carried out by CFD models. This paper presents one model, NS3, which solve 3D Navier-Stokes equations and use Volume of Fluid (VOF) method to treat the free...
Modelling and Simulation of Wave Loads
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Thoft-Christensen, Palle
1985-01-01
A simple model of the wave load on stender members of offshore structures is described . The wave elevation of the sea stateis modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...... velocity can be approximated by a Gaussian Markov process. Known approximate results for the first passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results...
Modelling and Simulation of Wave Loads
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Thoft-Christensen, Palle
velocity can be approximated by a Gaussian Markov process. Known approximate results for the first-passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results......A simple model of the wave load on slender members of offshore structures is described. The wave elevation of the sea state is modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...
Modelling and Simulation of Wave Loads
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Thoft-Christensen, Palle
1985-01-01
velocity can be approximated by a Gaussian Markov process. Known approximate results for the first passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results......A simple model of the wave load on stender members of offshore structures is described . The wave elevation of the sea stateis modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...
Constraints on the Lee-Wick Higgs sector
International Nuclear Information System (INIS)
Carone, Christopher D.; Primulando, Reinard
2009-01-01
Lee-Wick partners to the standard model Higgs doublet may appear at a mass scale that is significantly lower than that of the remaining Lee-Wick partner states. The relevant effective theory is a two-Higgs doublet model in which one doublet has wrong-sign kinetic and mass terms. We determine bounds on this effective theory, including those from neutral B-meson mixing, b→X s γ, and Z→bb. The results differ from those of conventional two-Higgs doublet models and lead to meaningful constraints on the Lee-Wick Higgs sector.
National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...
Radio wave propagation and parabolic equation modeling
Apaydin, Gokhan
2018-01-01
A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various v rtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenari...
Directional wave measurements and modelling
Digital Repository Service at National Institute of Oceanography (India)
Anand, N.M.; Nayak, B.U.; Bhat, S.S.; SanilKumar, V.
-dimensional spectra and sech@u2@@ (beta theta) spreading function seem to provide a better estimate of the directional energy distribution for the monsoon conditions. While non-linear wave-wave interaction seems to be the major governing factor in the directional...
Opdriftsbaserede modeller for Wave Star
DEFF Research Database (Denmark)
Kramer, Morten
Formålet med dette skrift er at få en forhåndsvurdering af mulige effektforøgelser for Wave Star ved anvendelse af aktiv akkumulatordrift. Disse vurderinger baseres på simuleringsmodeller for driften af Wave Star i uregelmæssige bølger. Modellen er udarbejdet i programmeringssproget Delphi og er en...
Wave-to-wire Modelling of Wave Energy Converters
DEFF Research Database (Denmark)
Ferri, Francesco
different techniques to reduce the cost of energy are compared: the former maximises the system revenue (income) by acting on the control logic, while the second extends the first methods adding a penalty term due to the effect of the control logic on the structural design. Both methods are once more based...... applicable, efficient and reliable wave-to-wire model tool is needed. A wave-to-wire model identifies the relation from the source of energy of a particular location to the expected device productivity. The latter being expressed in terms of electricity fed into the grid. The model needs to output a coarse...... the best of what we have", the numerical model used is entirely based on well established methods. The experimental data is used as a check point to verify the direction of the numerical path. Second, shed light on what should be the objective of the sector: minimisation of the cost of energy. Two...
Instability of the Lee-Wick bounce
International Nuclear Information System (INIS)
Karouby, Johanna; Brandenberger, Robert; Qiu, Taotao
2011-01-01
It was recently realized [Y. F. Cai, T. t. Qiu, R. Brandenberger, and X. m. Zhang, Phys. Rev. D 80, 023511 (2009).] that a model constructed from a Lee-Wick type scalar field theory yields, at the level of homogeneous and isotropic background cosmology, a bouncing cosmology. However, bouncing cosmologies induced by pressureless matter are in general unstable to the addition of relativistic matter (i.e. radiation). Here we study the possibility of obtaining a bouncing cosmology if we add radiation coupled to the Lee-Wick scalar field. This coupling in principle would allow the energy to flow from radiation to matter, thus providing a drain for the radiation energy. However, we find that it takes an extremely unlikely fine-tuning of the initial phases of the field configurations for a sufficient amount of radiative energy to flow into matter. For general initial conditions, the evolution leads to a singularity rather than a smooth bounce.
Staunton, George Thomas
2017-01-01
Anastatic reprint of Ta-Tsing-Leu-Lee o Sia Leggi Fondamentali del Codice Penale della China, stampato e promulgato a Pekin coll’autorità di tutti gl’Imperatori Ta-Tsing, della presente dinastìa. Tradotto dal chinese da Giorgio Tommaso Staunton, membro della Società reale di Londra […] Versione italiana […] 3 vols. (Milano: dalla Stamperia di Giovanni Silvestri agli Scalini del Duomo n° 994, 1812), Italian translation of George Thomas Staunton, Ta Tsing Leu Lee; Being the Funda...
Directory of Open Access Journals (Sweden)
Lihwa Lin
2015-12-01
Full Text Available The protection of a boat canal at the western entrance of Tangier Island, Virginia, located in the lower Chesapeake Bay, is investigated using different structural alternatives. The existing entrance channel is oriented 45 deg with respect to the local shoreline, and exposed directly to the lower Bay without any protection. The adjacent shoreline has experienced progressive erosion in recent decades by flooding due to severe storms and waves. To protect the western entrance of the channel and shoreline, five different jetty and spur combinations were proposed to reduce wave energy in the lee of jetties. Environmental forces affecting the proposed jettied inlet system are quantified using the Coastal Modeling System, consisting of a spectral wave model and a depth-averaged circulation model with sediment transport calculations. Numerical simulations were conducted for design wave conditions and a 50-year return period tropical storm at the project site. Model results show a low crested jetty of 170-m length connecting to the north shore at a 45-deg angle, and a short south spur of 25-m long, provide adequate wave-reduction benefits among the five proposed alternatives. The model simulation indicates this alternative has the minimum impact on sedimentation around the structured inlet and boat canal.
Solitary waves in dimer binary collision model
Ahsan, Zaid; Jayaprakash, K. R.
2017-01-01
Solitary wave propagation in nonlinear diatomic (dimer) chains is a very interesting topic of research in the study of nonlinear lattices. Such waves were recently found to be supported by the essentially nonlinear granular lattice and Toda lattice. An interesting aspect of this discovery is attributed to the realization of a spectrum of the mass ratio (the only system parameter governing the dynamics) that supports the propagation of such waves corresponding to the considered interaction potential. The objective of this exposition is to explore solitary wave propagation in the dimer binary collision (BC) model. Interestingly, the dimer BC model supports solitary wave propagation at a discrete spectrum of mass ratios similar to those observed in granular and Toda dimers. Further, we report a qualitative and one-to-one correspondence between the spectrum of the mass ratio corresponding to the dimer BC model and those corresponding to granular and Toda dimer chains.
Wave Modelling - The State of the Art
2007-09-27
conservation of wave energy, wave action and wave momentum. The coupling coefficient is given by G(k, k 2 , k 3 , k 4 ) = 97EgDZ(k, k, k3, )(3.5) 4p 2 CO, (0...applications, with a continuous push by the market forces to improve the quality of the results. Since the first order approximation of the historical SMB... market , their use in practical applications is growing and the present limitations of spectral wave modelling in this respect are beginning to be felt. It
Travelling Waves in Hybrid Chemotaxis Models
Franz, Benjamin
2013-12-18
Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant), which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybrid models shows good agreement in the case of weak chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-field approximations. © 2013 Society for Mathematical Biology.
A Blast Wave Model With Viscous Corrections
Yang, Z.; Fries, R. J.
2017-04-01
Hadronic observables in the final stage of heavy ion collision can be described well by fluid dynamics or blast wave parameterizations. We improve existing blast wave models by adding shear viscous corrections to the particle distributions in the Navier-Stokes approximation. The specific shear viscosity η/s of a hadron gas at the freeze-out temperature is a new parameter in this model. We extract the blast wave parameters with viscous corrections from experimental data which leads to constraints on the specific shear viscosity at kinetic freeze-out. Preliminary results show η/s is rather small.
-Advanced Models for Tsunami and Rogue Waves
Directory of Open Access Journals (Sweden)
D. W. Pravica
2012-01-01
Full Text Available A wavelet , that satisfies the q-advanced differential equation for , is used to model N-wave oscillations observed in tsunamis. Although q-advanced ODEs may seem nonphysical, we present an application that model tsunamis, in particular the Japanese tsunami of March 11, 2011, by utilizing a one-dimensional wave equation that is forced by . The profile is similar to tsunami models in present use. The function is a wavelet that satisfies a q-advanced harmonic oscillator equation. It is also shown that another wavelet, , matches a rogue-wave profile. This is explained in terms of a resonance wherein two small amplitude forcing waves eventually lead to a large amplitude rogue. Since wavelets are used in the detection of tsunamis and rogues, the signal-analysis performance of and is examined on actual data.
Ocean wave prediction using numerical and neural network models
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Prabaharan, N.
This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...
Assessment of multi class kinematic wave models
Van Wageningen-Kessels, F.L.M.; Van Lint, J.W.C.; Vuik, C.; Hoogendoorn, S.P.
2012-01-01
In the last decade many multi class kinematic wave (MCKW) traffic ow models have been proposed. MCKW models introduce heterogeneity among vehicles and drivers. For example, they take into account differences in (maximum) velocities and driving style. Nevertheless, the models are macroscopic and the
Hydraulic Model Tests on Modified Wave Dragon
DEFF Research Database (Denmark)
Hald, Tue; Lynggaard, Jakob
A floating model of the Wave Dragon (WD) was built in autumn 1998 by the Danish Maritime Institute in scale 1:50, see Sørensen and Friis-Madsen (1999) for reference. This model was subjected to a series of model tests and subsequent modifications at Aalborg University and in the following this mo...
Turbulent Spot Pressure Fluctuation Wave Packet Model
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-05-01
Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.
Simple opdriftsbaserede modeller for Wave Star
DEFF Research Database (Denmark)
Kramer, Morten
Wave Star modellen er udarbejdet i programmeringssproget Delphi. Modellerne er en videre udarbejdelse af tidligere anvendte Excel-modeller. I forhold til Excelmodellerne udmærker de nye Dephi-modeller sig ved at beregningerne udføres mange gange hurtigere og modellerne kan håndtere lange tidsserier...
Modeling and Inversion of Scattered Surface waves
Riyanti, C.D.
2005-01-01
In this thesis, we present a modeling method based on a domain-type integral representation for waves propagating along the surface of the Earth which have been scattered in the vicinity of the source or the receivers. Using this model as starting point, we formulate an inversion scheme to estimate
Model for predicting mountain wave field uncertainties
Damiens, Florentin; Lott, François; Millet, Christophe; Plougonven, Riwal
2017-04-01
Studying the propagation of acoustic waves throughout troposphere requires knowledge of wind speed and temperature gradients from the ground up to about 10-20 km. Typical planetary boundary layers flows are known to present vertical low level shears that can interact with mountain waves, thereby triggering small-scale disturbances. Resolving these fluctuations for long-range propagation problems is, however, not feasible because of computer memory/time restrictions and thus, they need to be parameterized. When the disturbances are small enough, these fluctuations can be described by linear equations. Previous works by co-authors have shown that the critical layer dynamics that occur near the ground produces large horizontal flows and buoyancy disturbances that result in intense downslope winds and gravity wave breaking. While these phenomena manifest almost systematically for high Richardson numbers and when the boundary layer depth is relatively small compare to the mountain height, the process by which static stability affects downslope winds remains unclear. In the present work, new linear mountain gravity wave solutions are tested against numerical predictions obtained with the Weather Research and Forecasting (WRF) model. For Richardson numbers typically larger than unity, the mesoscale model is used to quantify the effect of neglected nonlinear terms on downslope winds and mountain wave patterns. At these regimes, the large downslope winds transport warm air, a so called "Foehn" effect than can impact sound propagation properties. The sensitivity of small-scale disturbances to Richardson number is quantified using two-dimensional spectral analysis. It is shown through a pilot study of subgrid scale fluctuations of boundary layer flows over realistic mountains that the cross-spectrum of mountain wave field is made up of the same components found in WRF simulations. The impact of each individual component on acoustic wave propagation is discussed in terms of
DEFF Research Database (Denmark)
Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard
2015-01-01
Wave models used for site assessments are subjected to model uncertainties, which need to be quantified when using wave model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties. Four different wave models are considered, and validation...... data are collected from published scientific research. The bias and the root-mean-square error, as well as the scatter index, are considered for the significant wave height as well as the mean zero-crossing wave period. Based on an illustrative generic example, this paper presents how the quantified...... uncertainties can be implemented in probabilistic reliability assessments....
DEFF Research Database (Denmark)
Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard
2014-01-01
Wave models used for site assessments are subject to model uncertainties, which need to be quantified when using wave model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties. Considered are four different wave models and validation...... data is collected from published scientific research. The bias, the root-mean-square error as well as the scatter index are considered for the significant wave height as well as the mean zero-crossing wave period. Based on an illustrative generic example it is shown how the estimated uncertainties can...... be implemented in probabilistic reliability assessments....
Wrong vertex displacements due to Lee-Wick resonances at LHC
International Nuclear Information System (INIS)
Alvarez, E.; Schat, C.; Rold, L. da; Szynkman, A.
2009-01-01
We show how a resonance from the recently proposed Lee-Wick Standard Model could lead to wrong vertex displacements at LHCb. We study which could be the possible 'longest lived' Lee-Wick particle that could be created at LHC, and we study its possible decays and detections. We conclude that there is a region in the parameter space which would give wrong vertex displacements as a unique signature of the Lee-Wick Standard Model at LHCb. Further numerical simulation shows that LHC era could explore these wrong vertex displacements through Lee-Wick leptons below 500 GeV. (author)
Forecasting ocean wave energy: A Comparison of the ECMWF wave model with time series methods
DEFF Research Database (Denmark)
Reikard, Gordon; Pinson, Pierre; Bidlot, Jean
2011-01-01
(ECMWF) Wave Model, and two statistical techniques, time-varying parameter regressions and neural networks. Thirteen data sets at locations in the Atlantic and Pacific Oceans and the Gulf of Mexico are tested. The quantities to be predicted are the significant wave height, the wave period, and the wave...
Lee de Forest King of Radio, Television, and Film
Adams, Mike
2012-01-01
Lee de Forest, Yale doctorate and Oscar winner, gave voice to the radio and the motion picture. Yet by the 1930s, after the radio and the Talkies were regular features of American life, Lee de Forest had seemingly lost everything. Why? Why didn’t he receive the recognition and acclaim he sought his entire life until years later in 1959, when he was awarded an Oscar? A lifelong innovator, Lee de Forest invented the three-element vacuum tube which he developed between 1906 and 1916 as a detector, amplifier, and oscillator of radio waves. As early as 1907, he was broadcasting music programming. In 1918, he began to develop a system for recording and playing back sound by using light patterns on motion picture film. In order to promote and demonstrate his process he made hundreds of short sound films, found theatres for their showing, and issued publicity to gain audiences for his invention. While he received many patents for this technology, he was ignored by the film industry. Lee de Forest, King of Radio, Te...
Radiation bounce from the Lee-Wick construction?
International Nuclear Information System (INIS)
Karouby, Johanna; Brandenberger, Robert
2010-01-01
It was recently realized that matter modeled by the scalar field sector of the Lee-Wick standard model yields, in the context of a homogeneous and isotropic cosmological background, a bouncing cosmology. However, bouncing cosmologies induced by pressureless matter are in general unstable to the addition of relativistic matter (i.e. radiation). Here we study the possibility of obtaining a bouncing cosmology if we add not only radiation, but also its Lee-Wick partner, to the matter sector. We find that, in general, no bounce occurs. The only way to obtain a bounce is to choose initial conditions with very special phases of the radiation field and its Lee-Wick partner.
Eliminating time dispersion from seismic wave modeling
Koene, Erik F. M.; Robertsson, Johan O. A.; Broggini, Filippo; Andersson, Fredrik
2018-04-01
We derive an expression for the error introduced by the second-order accurate temporal finite-difference (FD) operator, as present in the FD, pseudospectral and spectral element methods for seismic wave modeling applied to time-invariant media. The `time-dispersion' error speeds up the signal as a function of frequency and time step only. Time dispersion is thus independent of the propagation path, medium or spatial modeling error. We derive two transforms to either add or remove time dispersion from synthetic seismograms after a simulation. The transforms are compared to previous related work and demonstrated on wave modeling in acoustic as well as elastic media. In addition, an application to imaging is shown. The transforms enable accurate computation of synthetic seismograms at reduced cost, benefitting modeling applications in both exploration and global seismology.
Wave Energy Converter (WEC) Array Effects on Wave Current and Sediment Circulation: Monterey Bay CA.
Energy Technology Data Exchange (ETDEWEB)
Roberts, Jesse D.; Jones, Craig; Magalen, Jason
2014-09-01
The goal s of this study were to develop tools to quantitatively characterize environments where wave energy converter ( WEC ) devices may be installed and to assess e ffects on hydrodynamics and lo cal sediment transport. A large hypothetical WEC array was investigated using wave, hydrodynamic, and sediment transport models and site - specific average and storm conditions as input. The results indicated that there were significant changes in sediment s izes adjacent to and in the lee of the WEC array due to reduced wave energy. The circulation in the lee of the array was also altered; more intense onshore currents were generated in the lee of the WECs . In general, the storm case and the average case show ed the same qualitative patterns suggesting that these trends would be maintained throughout the year. The framework developed here can be used to design more efficient arrays while minimizing impacts on nearshore environmen ts.
Acoustic field distribution of sawtooth wave with nonlinear SBE model
Energy Technology Data Exchange (ETDEWEB)
Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Zhang, Lue; Wang, Xiangda; Gong, Xiufen [Key Laboratory of Modern Acoustics, Ministry of Education, Institute of Acoustics, Nanjing University, Nanjing 210093 (China)
2015-10-28
For precise prediction of the acoustic field distribution of extracorporeal shock wave lithotripsy with an ellipsoid transducer, the nonlinear spheroidal beam equations (SBE) are employed to model acoustic wave propagation in medium. To solve the SBE model with frequency domain algorithm, boundary conditions are obtained for monochromatic and sawtooth waves based on the phase compensation. In numerical analysis, the influence of sinusoidal wave and sawtooth wave on axial pressure distributions are investigated.
Toward An Internal Gravity Wave Spectrum In Global Ocean Models
2015-05-14
Toward an internal gravity wave spectrum in global ocean models Malte Müller1,2, Brian K. Arbic3, James G. Richman4, Jay F. Shriver4, Eric L. Kunze5...fields and tides are beginning to display realistic internal gravity wave spectra, especially as model resolution increases. This paper examines...able to simulate the internal gravity wave spectrum and the extent to which nonlinear internal wave-wave interactions contribute to the simulated
Traveling Wave Solutions in a Reaction-Diffusion Epidemic Model
Wang, Sheng; Liu, Wenbin; Guo, Zhengguang; Wang, Weiming
2013-01-01
We investigate the traveling wave solutions in a reaction-diffusion epidemic model. The existence of the wave solutions is derived through monotone iteration of a pair of classical upper and lower solutions. The traveling wave solutions are shown to be unique and strictly monotonic. Furthermore, we determine the critical minimal wave speed.
The Earl Lee Street Art Campaign
Bubba
2013-01-01
This article describes a catchy phrase with more to its meaning than first view. A slogan "All the girls love Earl Lee," appears in street art around the world. Earl Lee is a lovable, handsome man who owns the fictitious Earl Lube industries. Originally intended to bring a smile to people's faces at a time when there wasn't much to smile…
Characterization of Phenolic Compounds in Wine Lees
Directory of Open Access Journals (Sweden)
Ye Zhijing
2018-03-01
Full Text Available The effect of vinification techniques on phenolic compounds and antioxidant activity of wine lees are poorly understood. The present study investigated the antioxidant activity of white and red wine lees generated at early fermentation and during aging. In this study, the total phenol content (TPC, total tannin content (TTC, mean degree of polymerization (mDP, and antioxidant activities of five white and eight red wine lees samples from different vinification backgrounds were determined. The results showed that vinification techniques had a significant (p < 0.05 impact on total phenol and tannin content of the samples. White wine lees had high mDP content compared with red ones. Catechin (50–62% and epicatechin contents were the predominant terminal units of polymeric proanthocyanidin extracted from examined samples. Epigallocatechin was the predominant extension unit of white wine lees, whereas epicatechin was the predominant compound in red wine marc. The ORAC (oxygen radical absorbance capacity assay was strongly correlated with the DPPH (α, α-diphenyl-β-picrylhydrazyl assay, and the results showed the strong antioxidant activities associated with red wine lees (PN > 35 mg Trolox/g FDM (PN: Pinot noir lees; FDM: Freeze-dried Material. This study indicates that tannin is one of the major phenolic compounds available in wine lees that can be useful in human and animal health applications.
Tim Berners-Lee during the WSIS
Maximilien Brice
2003-01-01
Tim Berners-Lee stands in front of the first web server at the Geneva Palexpo during the World Summit on the Information Society (WSIS) in 2003. Tim Berners-Lee developed the first network and server system that lead to the World Wide Web.
Astrophysical Model Selection in Gravitational Wave Astronomy
Adams, Matthew R.; Cornish, Neil J.; Littenberg, Tyson B.
2012-01-01
Theoretical studies in gravitational wave astronomy have mostly focused on the information that can be extracted from individual detections, such as the mass of a binary system and its location in space. Here we consider how the information from multiple detections can be used to constrain astrophysical population models. This seemingly simple problem is made challenging by the high dimensionality and high degree of correlation in the parameter spaces that describe the signals, and by the complexity of the astrophysical models, which can also depend on a large number of parameters, some of which might not be directly constrained by the observations. We present a method for constraining population models using a hierarchical Bayesian modeling approach which simultaneously infers the source parameters and population model and provides the joint probability distributions for both. We illustrate this approach by considering the constraints that can be placed on population models for galactic white dwarf binaries using a future space-based gravitational wave detector. We find that a mission that is able to resolve approximately 5000 of the shortest period binaries will be able to constrain the population model parameters, including the chirp mass distribution and a characteristic galaxy disk radius to within a few percent. This compares favorably to existing bounds, where electromagnetic observations of stars in the galaxy constrain disk radii to within 20%.
Detailed modeling of mountain wave PSCs
Directory of Open Access Journals (Sweden)
S. Fueglistaler
2003-01-01
Full Text Available Polar stratospheric clouds (PSCs play a key role in polar ozone depletion. In the Arctic, PSCs can occur on the mesoscale due to orographically induced gravity waves. Here we present a detailed study of a mountain wave PSC event on 25-27 January 2000 over Scandinavia. The mountain wave PSCs were intensively observed by in-situ and remote-sensing techniques during the second phase of the SOLVE/THESEO-2000 Arctic campaign. We use these excellent data of PSC observations on 3 successive days to analyze the PSCs and to perform a detailed comparison with modeled clouds. We simulated the 3-dimensional PSC structure on all 3 days with a mesoscale numerical weather prediction (NWP model and a microphysical box model (using best available nucleation rates for ice and nitric acid trihydrate particles. We show that the combined mesoscale/microphysical model is capable of reproducing the PSC measurements within the uncertainty of data interpretation with respect to spatial dimensions, temporal development and microphysical properties, without manipulating temperatures or using other tuning parameters. In contrast, microphysical modeling based upon coarser scale global NWP data, e.g. current ECMWF analysis data, cannot reproduce observations, in particular the occurrence of ice and nitric acid trihydrate clouds. Combined mesoscale/microphysical modeling may be used for detailed a posteriori PSC analysis and for future Arctic campaign flight and mission planning. The fact that remote sensing alone cannot further constrain model results due to uncertainities in the interpretation of measurements, underlines the need for synchronous in-situ PSC observations in campaigns.
Characterization of Phenolic Compounds in Wine Lees.
Zhijing, Ye; Shavandi, Amin; Harrison, Roland; Bekhit, Alaa El-Din A
2018-03-25
The effect of vinification techniques on phenolic compounds and antioxidant activity of wine lees are poorly understood. The present study investigated the antioxidant activity of white and red wine lees generated at early fermentation and during aging. In this study, the total phenol content (TPC), total tannin content (TTC), mean degree of polymerization (mDP), and antioxidant activities of five white and eight red wine lees samples from different vinification backgrounds were determined. The results showed that vinification techniques had a significant ( p 35 mg Trolox/g FDM) (PN: Pinot noir lees; FDM: Freeze-dried Material). This study indicates that tannin is one of the major phenolic compounds available in wine lees that can be useful in human and animal health applications.
A wave model test bed study for wave energy resource characterization
Energy Technology Data Exchange (ETDEWEB)
Yang, Zhaoqing; Neary, Vincent S.; Wang, Taiping; Gunawan, Budi; Dallman, Annie R.; Wu, Wei-Cheng
2017-12-01
This paper presents a test bed study conducted to evaluate best practices in wave modeling to characterize energy resources. The model test bed off the central Oregon Coast was selected because of the high wave energy and available measured data at the site. Two third-generation spectral wave models, SWAN and WWIII, were evaluated. A four-level nested-grid approach—from global to test bed scale—was employed. Model skills were assessed using a set of model performance metrics based on comparing six simulated wave resource parameters to observations from a wave buoy inside the test bed. Both WWIII and SWAN performed well at the test bed site and exhibited similar modeling skills. The ST4 package with WWIII, which represents better physics for wave growth and dissipation, out-performed ST2 physics and improved wave power density and significant wave height predictions. However, ST4 physics tended to overpredict the wave energy period. The newly developed ST6 physics did not improve the overall model skill for predicting the six wave resource parameters. Sensitivity analysis using different wave frequencies and direction resolutions indicated the model results were not sensitive to spectral resolutions at the test bed site, likely due to the absence of complex bathymetric and geometric features.
Underwater Noise Modelling of Wave Energy Devices
Energy Technology Data Exchange (ETDEWEB)
NONE
2009-07-01
Future large-scale implementation of wave energy converts (WECs) will introduce an anthropogenic activity in the ocean which may contribute to underwater noise. The Ocean houses several marine species with acoustic sensibility; consequently the potential impact of the underwater noise needs to be addressed. At present, there are no acoustic impact studies based on acquired data. The WEAM project (Wave Energy Acoustic Monitoring) aims at developing an underwater noise monitoring plan for WECs. The development of an acoustic monitoring plan must consider the sound propagation in the ocean, identify noise sources, understand the operational characteristics and select adequate instrumentation. Any monitoring strategy must involve in-situ measurements. However, the vast distances which sound travels within the ocean, can make in-situ measurements covering the entire area of interest, impracticable. This difficulty can be partially overcome through acoustic numerical modelling. This paper presents a synthetic study, on the application of acoustic forward modelling and the evaluation of the impact of noise produced by wave energy devices on marine mammals using criteria based on audiograms of dolphins, or other species. The idea is to illustrate the application of that methodology, and to show to what extent it allows for estimating distances of impacts due to acoustic noise.
Inflationary gravitational waves in collapse scheme models
Energy Technology Data Exchange (ETDEWEB)
Mariani, Mauro, E-mail: mariani@carina.fcaglp.unlp.edu.ar [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina); Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); León, Gabriel, E-mail: gleon@df.uba.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria – Pab. I, 1428 Buenos Aires (Argentina)
2016-01-10
The inflationary paradigm is an important cornerstone of the concordance cosmological model. However, standard inflation cannot fully address the transition from an early homogeneous and isotropic stage, to another one lacking such symmetries corresponding to our present universe. In previous works, a self-induced collapse of the wave function has been suggested as the missing ingredient of inflation. Most of the analysis regarding the collapse hypothesis has been solely focused on the characteristics of the spectrum associated to scalar perturbations, and within a semiclassical gravity framework. In this Letter, working in terms of a joint metric-matter quantization for inflation, we calculate, for the first time, the tensor power spectrum and the tensor-to-scalar ratio corresponding to the amplitude of primordial gravitational waves resulting from considering a generic self-induced collapse.
Inflationary gravitational waves in collapse scheme models
Directory of Open Access Journals (Sweden)
Mauro Mariani
2016-01-01
Full Text Available The inflationary paradigm is an important cornerstone of the concordance cosmological model. However, standard inflation cannot fully address the transition from an early homogeneous and isotropic stage, to another one lacking such symmetries corresponding to our present universe. In previous works, a self-induced collapse of the wave function has been suggested as the missing ingredient of inflation. Most of the analysis regarding the collapse hypothesis has been solely focused on the characteristics of the spectrum associated to scalar perturbations, and within a semiclassical gravity framework. In this Letter, working in terms of a joint metric-matter quantization for inflation, we calculate, for the first time, the tensor power spectrum and the tensor-to-scalar ratio corresponding to the amplitude of primordial gravitational waves resulting from considering a generic self-induced collapse.
Inflationary gravitational waves in collapse scheme models
International Nuclear Information System (INIS)
Mariani, Mauro; Bengochea, Gabriel R.; León, Gabriel
2016-01-01
The inflationary paradigm is an important cornerstone of the concordance cosmological model. However, standard inflation cannot fully address the transition from an early homogeneous and isotropic stage, to another one lacking such symmetries corresponding to our present universe. In previous works, a self-induced collapse of the wave function has been suggested as the missing ingredient of inflation. Most of the analysis regarding the collapse hypothesis has been solely focused on the characteristics of the spectrum associated to scalar perturbations, and within a semiclassical gravity framework. In this Letter, working in terms of a joint metric-matter quantization for inflation, we calculate, for the first time, the tensor power spectrum and the tensor-to-scalar ratio corresponding to the amplitude of primordial gravitational waves resulting from considering a generic self-induced collapse.
Modeling Propagation of Shock Waves in Metals
Howard, W. M.; Molitoris, J. D.
2006-07-01
We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P ˜ 300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and shear modulus depend on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. At melt the yield strength and shear modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that give the correct detonation velocity and C-J pressure (P ˜ 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov.
Optimization of multi-model ensemble forecasting of typhoon waves
Directory of Open Access Journals (Sweden)
Shun-qi Pan
2016-01-01
Full Text Available Accurately forecasting ocean waves during typhoon events is extremely important in aiding the mitigation and minimization of their potential damage to the coastal infrastructure, and the protection of coastal communities. However, due to the complex hydrological and meteorological interaction and uncertainties arising from different modeling systems, quantifying the uncertainties and improving the forecasting accuracy of modeled typhoon-induced waves remain challenging. This paper presents a practical approach to optimizing model-ensemble wave heights in an attempt to improve the accuracy of real-time typhoon wave forecasting. A locally weighted learning algorithm is used to obtain the weights for the wave heights computed by the WAVEWATCH III wave model driven by winds from four different weather models (model-ensembles. The optimized weights are subsequently used to calculate the resulting wave heights from the model-ensembles. The results show that the Optimization is capable of capturing the different behavioral effects of the different weather models on wave generation. Comparison with the measurements at the selected wave buoy locations shows that the optimized weights, obtained through a training process, can significantly improve the accuracy of the forecasted wave heights over the standard mean values, particularly for typhoon-induced peak waves. The results also indicate that the algorithm is easy to implement and practical for real-time wave forecasting.
Improving coastal wave hindcasts by combining offshore buoy observations with global wave models.
Crosby, S. C.; O'Reilly, W. C.; Guza, R. T.
2014-12-01
Waves conditions in southern California are sensitive to offshore wave directions. Due to blocking by coastal islands and refraction across complex bathymetry, a transform incident offshore swell-spectra to shallow water buoy locations. A nearly continuous 10 yr data set of approximately 14 buoys is used. Comparisons include standard bulk parameters (e.g. significant wave height, peak period), the frequency-dependent energy spectrum (needed for run-up estimation) and radiation stress component Sxy (needed for alongshore current and sediment transport estimation). Global wave model uncertainties are unknown, complicating the formulation of optimum assimilation constraints. Several plausible models for estimating offshore waves are tested. Future work includes assimilating nearshore buoy observations, with the long-term objective of accurate regional wave hindcasts using an efficient mix of global wave models and buoys. This work is supported by the California Department of Parks and Recreation, Division of Boating and Waterways Oceanography Program.
Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.
2010-01-01
As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.
Electro-magnetic waves within a model for charged solitons
International Nuclear Information System (INIS)
Borisyuk, Dmitry; Faber, Manfried; Kobushkin, Alexander
2007-01-01
We analyse the model of topological fermions (MTF), where charged fermions are treated as soliton solutions of the field equations. In the region far from the sources we find plane waves solutions with the properties of electro-magnetic waves
3D mmWave Channel Model Proposal
DEFF Research Database (Denmark)
Thomas, Timothy; Nguyen, Huan Cong; R. MacCartney Jr., George
2014-01-01
There is growing interest in using millimeter wave (mmWave) frequencies for future access communications based on the enormous amount of available spectrum. To characterize the mmWave channel in urban areas, wideband propagation measurements at 73 GHz have recently been made in New York City. Using...... mmWave channel model is developed with special emphasis on using the ray tracer to determine elevation model parameters. The channel model includes distance-dependent elevation modeling which is critical for the expected 2D arrays which will be employed at mmWave....
Experimental Modeling of the Overtopping Flow on the Wave Dragon Wave Energy Converter
DEFF Research Database (Denmark)
Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, Erik
2011-01-01
The Wave Dragon Wave Energy Converter is currently facing a precommercial phase. At this stage of development a reliable overtopping model is highly required, in order to predict the performance of the device at possible deployment locations. A model formulation derived for an overtopping device...... with general geometry has been used so far. The paper presents an updated formulation drawn through the tank testing of a scaled model the Wave Dragon. The sensitivity analysis of the main features influencing the overtopping flow led to an updated model formulation which can be specifically suited...... for the Wave Dragon....
A reaction-diffusion model of cholinergic retinal waves.
Directory of Open Access Journals (Sweden)
Benjamin Lansdell
2014-12-01
Full Text Available Prior to receiving visual stimuli, spontaneous, correlated activity in the retina, called retinal waves, drives activity-dependent developmental programs. Early-stage waves mediated by acetylcholine (ACh manifest as slow, spreading bursts of action potentials. They are believed to be initiated by the spontaneous firing of Starburst Amacrine Cells (SACs, whose dense, recurrent connectivity then propagates this activity laterally. Their inter-wave interval and shifting wave boundaries are the result of the slow after-hyperpolarization of the SACs creating an evolving mosaic of recruitable and refractory cells, which can and cannot participate in waves, respectively. Recent evidence suggests that cholinergic waves may be modulated by the extracellular concentration of ACh. Here, we construct a simplified, biophysically consistent, reaction-diffusion model of cholinergic retinal waves capable of recapitulating wave dynamics observed in mice retina recordings. The dense, recurrent connectivity of SACs is modeled through local, excitatory coupling occurring via the volume release and diffusion of ACh. In addition to simulation, we are thus able to use non-linear wave theory to connect wave features to underlying physiological parameters, making the model useful in determining appropriate pharmacological manipulations to experimentally produce waves of a prescribed spatiotemporal character. The model is used to determine how ACh mediated connectivity may modulate wave activity, and how parameters such as the spontaneous activation rate and sAHP refractory period contribute to critical wave size variability.
Impact of surface waves in a Regional Climate Model
DEFF Research Database (Denmark)
Rutgersson, Anna; Sætra, Oyvind; Semedo, Alvaro
2010-01-01
A coupled regional atmosphere-wave model system is developed with the purpose of investigating the impact of climate changes on the wave field, as well as feed-back effects of the wave field on the atmospheric parameters. This study focuses on the effects of introducing a two-way atmosphere......-wave coupling on the atmosphere as well as on wave parameters. The model components are the regional climate model RCA, and the third generation wave model WAM. Two different methods are used for the coupling, using the roughness length and only including the effect of growing sea, and using the wave age...... in climate models for a realistic description of processes over sea....
The Statecraft of Singapore's Lee Kuan Yew
National Research Council Canada - National Science Library
Toh, K
1996-01-01
.... The ejection of Singapore from the Federation led Lee to focus on two strategic goals: the survival of Singapore as an independent state while simultaneously pursuing nation-building under the threats of communism and internal ethnic conflicts...
A methodology for spectral wave model evaluation
Siqueira, S. A.; Edwards, K. L.; Rogers, W. E.
2017-12-01
Model evaluation is accomplished by comparing bulk parameters (e.g., significant wave height, energy period, and mean square slope (MSS)) calculated from the model energy spectra with those calculated from buoy energy spectra. Quality control of the observed data and choice of the frequency range from which the bulk parameters are calculated are critical steps in ensuring the validity of the model-data comparison. The compared frequency range of each observation and the analogous model output must be identical, and the optimal frequency range depends in part on the reliability of the observed spectra. National Data Buoy Center 3-m discus buoy spectra are unreliable above 0.3 Hz due to a non-optimal buoy response function correction. As such, the upper end of the spectrum should not be included when comparing a model to these data. Bioufouling of Waverider buoys must be detected, as it can harm the hydrodynamic response of the buoy at high frequencies, thereby rendering the upper part of the spectrum unsuitable for comparison. An important consideration is that the intentional exclusion of high frequency energy from a validation due to data quality concerns (above) can have major implications for validation exercises, especially for parameters such as the third and fourth moments of the spectrum (related to Stokes drift and MSS, respectively); final conclusions can be strongly altered. We demonstrate this by comparing outcomes with and without the exclusion, in a case where a Waverider buoy is believed to be free of biofouling. Determination of the appropriate frequency range is not limited to the observed spectra. Model evaluation involves considering whether all relevant frequencies are included. Guidance to make this decision is based on analysis of observed spectra. Two model frequency lower limits were considered. Energy in the observed spectrum below the model lower limit was calculated for each. For locations where long swell is a component of the wave
Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains
Przedborski, Michelle; Anco, Stephen C.
2017-09-01
A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.
International Nuclear Information System (INIS)
Cai Yifu; Qiu Taotao; Brandenberger, Robert; Zhang Xinmin
2009-01-01
We study the cosmology of a Lee-Wick type scalar field theory. First, we consider homogeneous and isotropic background solutions and find that they are nonsingular, leading to cosmological bounces. Next, we analyze the spectrum of cosmological perturbations which result from this model. Unless either the potential of the Lee-Wick theory or the initial conditions are finely tuned, it is impossible to obtain background solutions which have a sufficiently long period of inflation after the bounce. More interestingly, however, we find that in the generic noninflationary bouncing cosmology, perturbations created from quantum vacuum fluctuations in the contracting phase have the correct form to lead to a scale-invariant spectrum of metric inhomogeneities in the expanding phase. Since the background is nonsingular, the evolution of the fluctuations is defined unambiguously through the bounce. We also analyze the evolution of fluctuations which emerge from thermal initial conditions in the contracting phase. The spectrum of gravitational waves stemming from quantum vacuum fluctuations in the contracting phase is also scale-invariant, and the tensor to scalar ratio is not suppressed.
Numerical modelling of nearshore wave transformation
Digital Repository Service at National Institute of Oceanography (India)
Chandramohan, P.; Nayak, B.U.; SanilKumar, V.
A software has been developed for numerical refraction study based on finite amplitude wave theories. Wave attenuation due to shoaling, bottom friction, bottom percolation and viscous dissipation has also been incorporated. The software...
Optimal parametric modelling of measured short waves
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.
The spectral analysis of measured short waves can efficiently be carried out by the fast Fourier transform technique. Even though many present techniques can be used for the simulation of time series waves, these may not provide accurate...
Improved Wave-vessel Transfer Functions by Uncertainty Modelling
DEFF Research Database (Denmark)
Nielsen, Ulrik Dam; Fønss Bach, Kasper; Iseki, Toshio
2016-01-01
This paper deals with uncertainty modelling of wave-vessel transfer functions used to calculate or predict wave-induced responses of a ship in a seaway. Although transfer functions, in theory, can be calculated to exactly reflect the behaviour of the ship when exposed to waves, uncertainty in input...
Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong
2016-06-01
According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.
Modeling of aqueous foam blast wave attenuation
Directory of Open Access Journals (Sweden)
Domergue L.
2011-01-01
Full Text Available The use of aqueous foams enables the mitigation of blast waves induced by the explosion of energetic materials. The two-phase confinement gives rise to interphase interactions between the gaseous and liquid phases, which role have been emphasized in shock-tube studies with solid foams [1, 2]. Multifluid formalism enables the thermo-mechanical disequilibria between phases to be taken into account. The flow model ensures the correct estimation of the acoustic impedance of the two-phase media. As for the numerical scheme, Riemann solvers are used to describe the microscopic fluid interactions, the summation of which provides the multiphase flux. The role of the different transfer mechanisms is evaluated in the case where the liquid ligaments of the foam matrix have been shattered into droplets by the shock impingement. Characteristics of blast waves in heterogeneous media leads to a decrease of overpressure. The numerical results have been compared favorably to experimental data [3, 4].
Millimeter waves sensor modeling and simulation
Latger, Jean; Cathala, Thierry
2015-10-01
Guidance of weapon systems relies on sensors to analyze targets signature. Defense weapon systems also need to detect then identify threats also using sensors. One important class of sensors are millimeter waves radar systems that are very efficient for seeing through atmosphere and/or foliage for example. This type of high frequency radar can produce high quality images with very tricky features such as dihedral and trihedral bright points, shadows and lay over effect. Besides, image quality is very dependent on the carrier velocity and trajectory. Such sensors systems are so complex that they need simulation to be tested. This paper presents a state of the Art of millimeter waves sensor models. A short presentation of asymptotic methods shows that physical optics support is mandatory to reach realistic results. SE-Workbench-RF tool is presented and typical examples of results are shown both in the frame of Synthetic Aperture Radar sensors and Real Beam Ground Mapping radars. Several technical topics are then discussed, such as the rendering technique (ray tracing vs. rasterization), the implementation (CPU vs. GP GPU) and the tradeoff between physical accuracy and performance of computation. Examples of results using SE-Workbench-RF are showed and commented.
Wave Resource Characterization Using an Unstructured Grid Modeling Approach
Directory of Open Access Journals (Sweden)
Wei-Cheng Wu
2018-03-01
Full Text Available This paper presents a modeling study conducted on the central Oregon coast for wave resource characterization, using the unstructured grid Simulating WAve Nearshore (SWAN model coupled with a nested grid WAVEWATCH III® (WWIII model. The flexibility of models with various spatial resolutions and the effects of open boundary conditions simulated by a nested grid WWIII model with different physics packages were evaluated. The model results demonstrate the advantage of the unstructured grid-modeling approach for flexible model resolution and good model skills in simulating the six wave resource parameters recommended by the International Electrotechnical Commission in comparison to the observed data in Year 2009 at National Data Buoy Center Buoy 46050. Notably, spectral analysis indicates that the ST4 physics package improves upon the ST2 physics package’s ability to predict wave power density for large waves, which is important for wave resource assessment, load calculation of devices, and risk management. In addition, bivariate distributions show that the simulated sea state of maximum occurrence with the ST4 physics package matched the observed data better than with the ST2 physics package. This study demonstrated that the unstructured grid wave modeling approach, driven by regional nested grid WWIII outputs along with the ST4 physics package, can efficiently provide accurate wave hindcasts to support wave resource characterization. Our study also suggests that wind effects need to be considered if the dimension of the model domain is greater than approximately 100 km, or O (102 km.
Boussinesq Modeling of Wave Propagation and Runup over Fringing Coral Reefs, Model Evaluation Report
National Research Council Canada - National Science Library
Demirbilek, Zeki; Nwogu, Okey G
2007-01-01
..., for waves propagating over fringing reefs. The model evaluation had two goals: (a) investigate differences between laboratory and field characteristics of wave transformation processes over reefs, and (b...
Transmission of wave energy through an offshore wind turbine farm
DEFF Research Database (Denmark)
Christensen, Erik Damgaard; Johnson, Martin; Sørensen, Ole Rene
2013-01-01
The transmission of wave energy passing an offshore wind farm is studied. Three effects that can change the wave field are analysed, which is the A) energy dissipation due to drag resistance, B) wave reflection/diffraction from structures, and C) the effect of a modified wind field inside...... and on the lee side of the wind farm. The drag dissipation, A), is quantified by a quadratic resistance law. The effect of B) is parameterised based on 1st order potential theory. A method to find the amount of reflected and transmitted wave energy is developed based on the panel method WAMIT™ and a radiation...... condition at infinity. From airborne and Satellite SAR (Synthetic Aperture Radar) a model has been derived for the change of the water surface friction C) inside and on the lee side of the offshore wind farm. The effects have been implemented in a spectral wind wave model,MIKE21 SW, and a parametric study...
Stochastic volatility models and Kelvin waves
International Nuclear Information System (INIS)
Lipton, Alex; Sepp, Artur
2008-01-01
We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics
Rayson, Matthew D.; Ivey, Gregory N.; Jones, Nicole L.; Fringer, Oliver B.
2018-02-01
We apply the unstructured grid hydrodynamic model SUNTANS to investigate the internal wave dynamics around Scott Reef, Western Australia, an isolated coral reef atoll located on the edge of the continental shelf in water depths of 500,m and more. The atoll is subject to strong semi-diurnal tidal forcing and consists of two relatively shallow lagoons separated by a 500 m deep, 2 km wide and 15 km long channel. We focus on the dynamics in this channel as the internal tide-driven flow and resulting mixing is thought to be a key mechanism controlling heat and nutrient fluxes into the reef lagoons. We use an unstructured grid to discretise the domain and capture both the complex topography and the range of internal wave length scales in the channel flow. The model internal wave field shows super-tidal frequency lee waves generated by the combination of the steep channel topography and strong tidal flow. We evaluate the model performance using observations of velocity and temperature from two through water-column moorings in the channel separating the two reefs. Three different global ocean state estimate datasets (global HYCOM, CSIRO Bluelink, CSIRO climatology atlas) were used to provide the model initial and boundary conditions, and the model outputs from each were evaluated against the field observations. The scenario incorporating the CSIRO Bluelink data performed best in terms of through-water column Murphy skill scores of water temperature and eastward velocity variability in the channel. The model captures the observed vertical structure of the tidal (M2) and super-tidal (M4) frequency temperature and velocity oscillations. The model also predicts the direction and magnitude of the M2 internal tide energy flux. An energy analysis reveals a net convergence of the M2 energy flux and a divergence of the M4 energy flux in the channel, indicating the channel is a region of either energy transfer to higher frequencies or energy loss to dissipation. This conclusion is
Operational numerical wind-wave model for the Black Sea
Directory of Open Access Journals (Sweden)
A. KORTCHEVA
2000-06-01
Full Text Available In this paper the discrete spectral shallow water wave model named VAGBUHL1 is presented. This model is used for real-time Black Sea state forecasting. The model was verified against satellite ERS-2 altimeter wave height data.
Modeling of Wave Spectrum and Wave Breaking Statistics Based on Balance Equation
Irisov, V.
2012-12-01
Surface roughness and foam coverage are the parameters determining microwave emissivity of sea surface in a wide range of wind. Existing empirical wave spectra are not associated with wave breaking statistics although physically they are closely related. We propose a model of sea surface based on the balance of three terms: wind input, dissipation, and nonlinear wave-wave interaction. It provides an insight on wave generation, interaction, and dissipation - very important parameters for understanding of wave development under changing oceanic and atmospheric conditions. The wind input term is the best known among all three. For our analysis we assume a wind input term as it was proposed by Plant [1982] and consider modification necessary to do to account for proper interaction of long fast waves with wind. For long gravity waves (longer than 15-30 cm) the dissipation term can be related to the wave breaking with whitecaps, as it was shown by Kudryavtsev et al. [2003], so we assume the cubic dependence of dissipation term on wind. It implies certain limitations on the spectrum shape. The most difficult is to estimate the term describing nonlinear wave-wave interaction. Hasselmann [1962] and Zakharov [1999] developed theory of 4-wave interaction, but the resulting equation requires at least 3-fold integration over wavenumbers at each time step of integration of balance equation, which makes it difficult for direct numerical modeling. It is desirable to use an approximation of wave-wave interaction term, which preserves wave action, energy, and momentum, and can be easily estimated during time integration of balance equation. Zakharov and Pushkarev [1999] proposed the diffusion approximation of the wave interaction term and showed that it can be used for estimate of wave spectrum. We believe their assumption that wave-wave interaction is the dominant factor in forming the wave spectrum does not agree with the observations made by Hwang and Sletten [2008]. Finally we
A physical model of sea wave period from altimeter data
Badulin, S. I.
2014-02-01
A physical model for sea wave period from altimeter data is presented. Physical roots of the model are in recent advances of the theory of weak turbulence of wind-driven waves that predicts the link of instant wave energy to instant energy flux to/from waves. The model operates with wave height and its spatial derivative and does not refer to normalized radar cross-section σ0 measured by the altimeter. Thus, the resulting formula for wave period does not contain any empirical parameters and does not require features of particular satellite altimeter or any calibration for specific region of measurements. A single case study illustrates consistency of the new approach with previously proposed empirical models in terms of estimates of wave periods and their statistical distributions. The paper brings attention to the possible corruption of dynamical parameters such as wave steepness or energy fluxes to/from waves when using the empirical approaches. Applications of the new model to the studies of sea wave dynamics are discussed.
Use of Awamori-pressed Lees and Tofu Lees as Feed Ingredients for Growing Female Goats
Directory of Open Access Journals (Sweden)
Itsuki Nagamine
2012-12-01
Full Text Available Okinawan Awamori is produced by fermenting steamed indica rice with black mold, yeast, and water. Awamori-pressed lees is a by-product of the Awamori production process. Tofu lees is a by-product of the Tofu production process. This research consisted of two experiments conducted to elucidate whether or not dried Awamori-pressed lees and Tofu lees can be used as a mixed feed ingredient for raising female goats. In experiment 1, digestion trials were conducted to ascertain the nutritive values of dried Awamori-pressed lees and dried Tofu lees for goats. The digestible crude protein (DCP and total digestible nutrients (TDN contents of dried Awamori-pressed lees and Tofu lees were 22.5%, 22.5% (DCP, and 87.2%, 94.4% (TDN respectively. In experiment 2, 18 female goats (Japanese Saanen×Nubian, three months old, body weight 15.4±0.53 kg were divided into three groups of six animals (control feed group (CFG, Awamori-pressed lees mixed feed group (AMFG, Tofu lees mixed feed group (TMFG. The CFG control used feed containing 20% soybean meal as the main protein source, while the AMFG and TMFG treatments used feed mixed with 20% dried Awamori-pressed lees or dried Tofu lees. The groups were fed mixed feed (volume to provide 100 g/d increase in body weight twice a day (10:00, 16:00. The klein grass hay and water was given ad libitum. The hay intake was measured at 08:00 and 16:00. Body weight and size measurements were taken once a month. At the end of the experiment, a blood sample was drawn from the jugular vein of each animal. The DCP and TDN intakes in AMFG and TMFG showed no significant difference to the CFG. Cumulative measurements of growth in body weight, withers height, chest depth, chest girth, and hip width over the 10 mo period in the AMFG and TMFG were similar to the CFG. By contrast, cumulative growth in body length and hip height in the AMFG and TMFG tended to be larger than the CFG. Cumulative growth in chest width in the AMFG was
Pulsar average wave forms and hollow-cone beam models
Backer, D. C.
1976-01-01
Pulsar wave forms have been analyzed from observations conducted over a wide radio-frequency range to assess the wave-form morphologies and to measure wave-form widths. The results of the analysis compare favorably with the predictions of a model with a hollow-cone beam of fixed dimensions and with random orientation of both the observer and the cone axis with respect to the pulsar spin axis. A class of three-component wave forms is included in the model by adding a central pencil beam to the hollow-cone hypothesis. The consequences of a number of discrepancies between observations and quantitative predictions of the model are discussed.
Hydrodynamic analysis of oscillating water column wave energy devices
DEFF Research Database (Denmark)
Bingham, Harry B.; Ducasse, Damien; Nielsen, Kim
2015-01-01
A 40-chamber I-Beam attenuator-type, oscillating water column, wave energy converter is analyzed numerically based on linearized potential flow theory, and experimentally via model test experiments. The high-order panel method WAMIT by Newman and Lee (WAMIT; a radiation–diffraction panel program...
Modeling of Mud-Wave Interaction: Mud-Induced Wave Transport & Wave-Induced Mud Transport
National Research Council Canada - National Science Library
Winterwerp, Johan C
2007-01-01
.... From an analytical solution of the 2L schematization the dispersion relation for the wave propagation and attenuation is derived, which can be re-written in the form of an energy dissipation term, implemented in SWAN (Delft3D-wave...
Improving wave forecasting by integrating ensemble modelling and machine learning
O'Donncha, F.; Zhang, Y.; James, S. C.
2017-12-01
Modern smart-grid networks use technologies to instantly relay information on supply and demand to support effective decision making. Integration of renewable-energy resources with these systems demands accurate forecasting of energy production (and demand) capacities. For wave-energy converters, this requires wave-condition forecasting to enable estimates of energy production. Current operational wave forecasting systems exhibit substantial errors with wave-height RMSEs of 40 to 60 cm being typical, which limits the reliability of energy-generation predictions thereby impeding integration with the distribution grid. In this study, we integrate physics-based models with statistical learning aggregation techniques that combine forecasts from multiple, independent models into a single "best-estimate" prediction of the true state. The Simulating Waves Nearshore physics-based model is used to compute wind- and currents-augmented waves in the Monterey Bay area. Ensembles are developed based on multiple simulations perturbing input data (wave characteristics supplied at the model boundaries and winds) to the model. A learning-aggregation technique uses past observations and past model forecasts to calculate a weight for each model. The aggregated forecasts are compared to observation data to quantify the performance of the model ensemble and aggregation techniques. The appropriately weighted ensemble model outperforms an individual ensemble member with regard to forecasting wave conditions.
Vafa-Witten theorem and Lee-Yang singularities
International Nuclear Information System (INIS)
Aguado, M.; Asorey, M.
2009-01-01
We prove the analyticity of the finite volume QCD partition function for complex values of the θ-vacuum parameter. The absence of singularities different from Lee-Yang zeros only permits and cusp singularities in the vacuum energy density and never or cusps. This fact together with the Vafa-Witten diamagnetic inequality implies the vanishing of the density of Lee-Yang zeros at θ=0 and has an important consequence: the absence of a first order phase transition at θ=0. The result provides a key missing link in the Vafa-Witten proof of parity symmetry conservation in vectorlike gauge theories and follows from renormalizability, unitarity, positivity, and existence of Bogomol'nyi-Prasad-Sommerfield bounds. Generalizations of this theorem to other physical systems are also discussed, with particular interest focused on the nonlinear CP N sigma model.
Wave Tank Testing and Model Validation of an Autonomous Wave Energy Converter
Directory of Open Access Journals (Sweden)
Bret Bosma
2015-08-01
Full Text Available A key component in bringing ocean wave energy converters from concept to commercialization is the building and testing of scaled prototypes to provide model validation. A one quarter scale prototype of an autonomous two body heaving point absorber was modeled, built, and tested for this work. Wave tank testing results are compared with two hydrodynamic and system models—implemented in both ANSYS AQWA and MATLAB/Simulink—and show model validation over certain regions of operation. This work will serve as a guide for future developers of wave energy converter devices, providing insight in taking their design from concept to prototype stage.
Swift GRBs and the blast wave model
Curran, P.A.; van der Horst, A.J.; Starling, R.L.C.; Wijers, R.A.M.J.
2009-01-01
The complex structure of the light curves of Swift GRBs has made their interpretation and that of the blast wave caused by the burst, more difficult than in the pre-Swift era. We aim to constrain the blast wave parameters: electron energy distribution, p, density profile of the circumburst medium,
Modelling of Performance of Caisson Type Breakwaters under Extreme Waves
Güney Doǧan, Gözde; Özyurt Tarakcıoǧlu, Gülizar; Baykal, Cüneyt
2016-04-01
Many coastal structures are designed without considering loads of tsunami-like waves or long waves although they are constructed in areas prone to encounter these waves. Performance of caisson type breakwaters under extreme swells is tested in Middle East Technical University (METU) Coastal and Ocean Engineering Laboratory. This paper presents the comparison of pressure measurements taken along the surface of caisson type breakwaters and obtained from numerical modelling of them using IH2VOF as well as damage behavior of the breakwater under the same extreme swells tested in a wave flume at METU. Experiments are conducted in the 1.5 m wide wave flume, which is divided into two parallel sections (0.74 m wide each). A piston type of wave maker is used to generate the long wave conditions located at one end of the wave basin. Water depth is determined as 0.4m and kept constant during the experiments. A caisson type breakwater is constructed to one side of the divided flume. The model scale, based on the Froude similitude law, is chosen as 1:50. 7 different wave conditions are applied in the tests as the wave period ranging from 14.6 s to 34.7 s, wave heights from 3.5 m to 7.5 m and steepness from 0.002 to 0.015 in prototype scale. The design wave parameters for the breakwater were 5m wave height and 9.5s wave period in prototype. To determine the damage of the breakwater which were designed according to this wave but tested under swell waves, video and photo analysis as well as breakwater profile measurements before and after each test are performed. Further investigations are carried out about the acting wave forces on the concrete blocks of the caisson structures via pressure measurements on the surfaces of these structures where the structures are fixed to the channel bottom minimizing. Finally, these pressure measurements will be compared with the results obtained from the numerical study using IH2VOF which is one of the RANS models that can be applied to simulate
Numerical modelling of extreme waves by Smoothed Particle Hydrodynamics
Directory of Open Access Journals (Sweden)
M. H. Dao
2011-02-01
Full Text Available The impact of extreme/rogue waves can lead to serious damage of vessels as well as marine and coastal structures. Such extreme waves in deep water are characterized by steep wave fronts and an energetic wave crest. The process of wave breaking is highly complex and, apart from the general knowledge that impact loadings are highly impulsive, the dynamics of the breaking and impact are still poorly understood. Using an advanced numerical method, the Smoothed Particle Hydrodynamics enhanced with parallel computing is able to reproduce well the extreme waves and their breaking process. Once the waves and their breaking process are modelled successfully, the dynamics of the breaking and the characteristics of their impact on offshore structures could be studied. The computational methodology and numerical results are presented in this paper.
Modeling ocean wave propagation under sea ice covers
Zhao, Xin; Shen, Hayley H.; Cheng, Sukun
2015-02-01
Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice-covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology
Evaluation of the Mountain Wave Forecast Model's Stratospheric Turbulence Simulations
National Research Council Canada - National Science Library
Allen, Mark
2003-01-01
.... The Air Force Weather Agency (AFWA) requested a product with the capability of forecasting Stratoturb at 30, 50, and 70 mb using model data currently available, To facilitate their request, the Mountain Wave Forecast Model (MWFM...
Model Predictive Control of a Wave Energy Converter
DEFF Research Database (Denmark)
Andersen, Palle; Pedersen, Tom Søndergård; Nielsen, Kirsten Mølgaard
2015-01-01
In this paper reactive control and Model Predictive Control (MPC) for a Wave Energy Converter (WEC) are compared. The analysis is based on a WEC from Wave Star A/S designed as a point absorber. The model predictive controller uses wave models based on the dominating sea states combined with a model......'s are designed for each sea state using a model assuming a linear loss torque. The mean power results from two controllers are compared using both loss models. Simulation results show that MPC can outperform a reactive controller if a good model of the conversion losses is available....... connecting undisturbed wave sequences to sequences of torque. Losses in the conversion from mechanical to electrical power are taken into account in two ways. Conventional reactive controllers are tuned for each sea state with the assumption that the converter has the same efficiency back and forth. MPC...
Coupling atmospheric and ocean wave models for storm simulation
DEFF Research Database (Denmark)
Du, Jianting
is found to have similar spatial patterns as the Advanced Synthetic Aperture Radar (ASAR) radar backscatter; both show features of the bathymetry. Analysis of the wind field from the non-coupled and WBLM coupled experiments show that the wind-wave coupling is important in strong wind conditions, varying......This thesis studies the wind-wave interactions through the coupling between the atmospheric model and ocean surface wave models. Special attention is put on storm simulations in the North Sea for wind energy applications in the coastal zones. The two aspects, namely storm conditions and coastal...... areas, are challenging for the wind-wave coupling system because: in storm cases, the wave field is constantly modified by the fast varying wind field; in coastal zones, the wave field is strongly influenced by the bathymetry and currents. Both conditions have complex, unsteady sea state varying...
A Coupled Atmospheric and Wave Modeling System for Storm Simulations
DEFF Research Database (Denmark)
Du, Jianting; Larsén, Xiaoli Guo; Bolanos, R.
2015-01-01
This study aims at improving the simulation of wind and waves during storms in connection with wind turbine design and operations in coastal areas. For this particular purpose, we investigated the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System which couples the Weather...... to parametrize z0. The results are validated through QuikScat data and point measurements from an open ocean site Ekosk and a coastal, relatively shallow water site Horns Rev. It is found that the modeling system captures in general better strong wind and strong wave characteristics for open ocean condition than...... Research and Forecasting (WRF) Model with the thirdgeneration ocean wave modelSWAN. This study investigates mainly two issues: spatial resolution and the wind-wave interface parameter roughness length(z0). To study the impact of resolution, the nesting function for both WRF and SWAN is used, with spatial...
Wind-wave modelling aspects within complicate topography
Directory of Open Access Journals (Sweden)
S. Christopoulos
Full Text Available Wave forecasting aspects for basins with complicate geomorphology, such as the Aegean Sea, are investigated through an intercomparison study. The efficiency of the available wind models (ECMWF, UKMO to reproduce wind patterns over special basins, as well as three wave models incorporating different physics and characteristics (WAM, AUT, WACCAS, are tested for selected storm cases representing the typical wind situations over the basin. From the wave results, discussed in terms of time-series and statistical parameters, the crucial role is pointed out of the wind resolution and the reliability of the different wave models to estimate the wave climate in such a basin. The necessary grid resolution is also tested, while for a specific test case (December 1991 ERS-1 satellite data are compared with those of the model.
An Arctic Ice/Ocean Coupled Model with Wave Interactions
2015-09-30
The first investigates how the brine volume gradient between the surface and underside of the sea ice affects its rigidity and flexural strength and... Auckland , December 2014. Montiel, F. Transmission of ocean waves through a row of randomly perturbed circular ice floes. Minisymposium on Wave Motions of...2014 AUT Mathematical Sciences Symposium, Auckland , December 2014. Mosig, J. E. M. Rheological models of flexural-gravity waves in an ice covered ocean
Jacobian elliptic wave solutions in an anharmonic molecular crystal model
International Nuclear Information System (INIS)
Teh, C.G.R.; Lee, B.S.; Koo, W.K.
1997-07-01
Explicit Jacobian elliptic wave solutions are found in the anharmonic molecular crystal model for both the continuum limit and discrete modes. This class of wave solutions include the famous pulse-like and kink-like solitary modes. We would also like to report on the existence of some highly discrete staggered solitary wave modes not found in the continuum limit. (author). 9 refs, 1 fig
Gravity Wave Modeling and Airglow Applications
National Research Council Canada - National Science Library
Fritts, David
1999-01-01
This AASERT supplemental grant supported numerical, theoretical, and observational studies of gravity wave and shear instability processes in the atmosphere and their impact on airglow layers near the mesopause...
Traveling waves for two SIV models
Directory of Open Access Journals (Sweden)
REN Jingli
2015-06-01
Full Text Available The existence of traveling waves is established for a diffusive SIV system with constant total population. The approach used is the geometric singular perturbation method. The same result is suitable to another SIV system with exponential input.
Experimental Update of the Overtopping Model Used for the Wave Dragon Wave Energy Converter
DEFF Research Database (Denmark)
Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, Erik
2013-01-01
An overtopping model specifically suited for Wave Dragon is needed in order to improve the reliability of its performance estimates. The model shall be comprehensive of all relevant physical processes that affect overtopping and flexible to adapt to any local conditions and device configuration....... An experimental investigation is carried out to update an existing formulation suited for 2D draft-limited, low-crested structures, in order to include the effects on the overtopping flow of the wave steepness, the 3D geometry of Wave Dragon, the wing reflectors, the device motions and the non-rigid connection...... between platform and reflectors. The study is carried out in four phases, each of them specifically targeted at quantifying one of these effects through a sensitivity analysis and at modeling it through custom-made parameters. These are depending on features of the wave or the device configuration, all...
Experimental Update of the Overtopping Model Used for the Wave Dragon Wave Energy Converter
Directory of Open Access Journals (Sweden)
Erik Friis-Madsen
2013-04-01
Full Text Available An overtopping model specifically suited for Wave Dragon is needed in order to improve the reliability of its performance estimates. The model shall be comprehensive of all relevant physical processes that affect overtopping and flexible to adapt to any local conditions and device configuration. An experimental investigation is carried out to update an existing formulation suited for 2D draft-limited, low-crested structures, in order to include the effects on the overtopping flow of the wave steepness, the 3D geometry of Wave Dragon, the wing reflectors, the device motions and the non-rigid connection between platform and reflectors. The study is carried out in four phases, each of them specifically targeted at quantifying one of these effects through a sensitivity analysis and at modeling it through custom-made parameters. These are depending on features of the wave or the device configuration, all of which can be measured in real-time. Instead of using new fitting coefficients, this approach allows a broader applicability of the model beyond the Wave Dragon case, to any overtopping WEC or structure within the range of tested conditions. Predictions reliability of overtopping over Wave Dragon increased, as the updated model allows improved accuracy and precision respect to the former version.
Modeling the Buoyancy System of a Wave Energy Power Plant
DEFF Research Database (Denmark)
Pedersen, Tom S.; Nielsen, Kirsten M.
2009-01-01
producing electrical power. Through air chambers it is possible to control the level of the WD. It is important to control the level in order to maximize the power production in proportion to the wave height, here the amount of overtopping water and the amount of potential energy is conflicting......A nonlinear dynamic model of the buoyancy system in a wave energy power plant is presented. The plant ("Wave Dragon") is a floating device using the potential energy in overtopping waves to produce power. A water reservoir is placed on top of the WD, and hydro turbines lead the water to the sea...
Models for seismic wave propagation in periodically layered porous media
Kudarova, A.; Van Dalen, K.N.; Drijkoningen, G.G.
2014-01-01
Several models are discussed for seismic wave propagation in periodically layered poroelastic media where layers represent mesoscopic-scale heterogeneities that are larger than the pore and grain sizes but smaller than the wavelength. The layers behave according to Biot’s theory. Wave propagation
Wave drag coefficient of a model `Busemann biplane' catamaran
Liebenberg, L.; Bunt, E. A.
1990-09-01
Tests conducted on a model ‘Busemann biplane’ catamaran in a towing basin qualitatively showed that the form of the wave drag coefficient curve followed the typical drag curve for a single unswept supersonic wing, but on this was superimposed that of the Busemann wave drag curve (giving a local minimum near the design Froude number).
Variational Boussinesq model for strongly nonlinear dispersive waves
Lawrence, C.; Adytia, D.; van Groesen, E.
2018-01-01
For wave tank, coastal and oceanic applications, a fully nonlinear Variational Boussinesq model with optimized dispersion is derived and a simple Finite Element implementation is described. Improving a previous weakly nonlinear version, high waves over flat and varying bottom are shown to be
Model Predictive Control of Buoy Type Wave Energy Converter
DEFF Research Database (Denmark)
Soltani, Mohsen; Sichani, Mahdi Teimouri; Mirzaei, Mahmood
2014-01-01
The paper introduces the Wavestar wave energy converter and presents the implementation of model predictive controller that maximizes the power generation. The ocean wave power is extracted using a hydraulic electric generator which is connected to an oscillating buoy. The power generator is an a...
Particle transport model sensitivity on wave-induced processes
Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna
2017-04-01
Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.
Attenuation of surface waves due to monsoon rains: A model study for the north Indian Ocean
Digital Repository Service at National Institute of Oceanography (India)
Vethamony, P.; Kumar, B.P.; Sarma, Y.V.B.
The dynamic interaction of intense rain with waves based on momentum exchange is applied to a second generation wave model to predict wave attenuation during monsoon. The scheme takes into account the characteristics of rain and wave parameters...
Navier-Stokes wave models for investigations of breakwater characteristics
CSIR Research Space (South Africa)
Cannoo, BR
2008-03-01
Full Text Available The dynamics of full breakwater stability are of importance in coastal engineering, and numerical models are some of the tools that can be applied. Given the work that exists worldwide in numerical models of breakwaters and armour units, it appears that a... examines spectral wave diffraction and refraction, dolos contact dynamics, and experimental breakwater modelling. Wave interaction effects and turbulence effects on the stability of armour unit and rock beds have been investigated widely. Shallow...
Nonlinear wave energy modelling in the surf zone
Directory of Open Access Journals (Sweden)
Th. V. Karambas
1996-01-01
Full Text Available Breaking wave energy in the surf zone is modelled through the incorporation of the time dependent energy balance equation in a non linear dispersive wave propagation model. The energy equations solved simultaneously with the momentum and continuity equation. Turbulence effects and the non uniform horizontal velocity distribution due to breaking is introduced in both the energy and momentum equations. The dissipation term is a function of the velocity defect derived from a turbulent analysis. The resulting system predicts both wave characteristics (surface elevation and velocity and the energy distribution inside surf zone. The model is validated against experimental data and analytical expressions.
US Navy Global and Regional Wave Modeling
2014-09-01
Africa Northern Indian Ocean Northwestern Atlantic Northwestern Pacific Central America Northeastern Pacific Sources: Esri, DeLorme, NAVTEQ, USGS...JTWC forecasts, respectively. VT: Wed 12Z 30 APR 14 FNMOC WAVE WATCH (U): Significant Wave Height (ft) and Direction Run: 2014042912Z Tau: 24 60°N... Indian Ocean Northwestern Atlantic Northwestern Pacific Australia Arctic Sources: Esri, DeLorme, NAVTEQ, USGS, NRCAN, METI, iPC, TomTom 86°N 70°N 54°N 38
Traveling waves in an optimal velocity model of freeway traffic
Berg, Peter; Woods, Andrew
2001-03-01
Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].
Modeling Non-linear Ocean Wave Amplification in Coastal Settings
Harrington, J. P.; Cox, R.; Brennan, J.; Clancy, C.; Herterich, J.; Dias, F.
2016-12-01
Coastal boulder deposits occur in many locations worldwide, along high-energy coastlines. They contain clasts with masses >100 t in some cases, deposited many m above high water and many tens of m inland, often at the top of steep cliffs. The clasts are moved by storm waves, despite being at elevations and inshore distances that should be unreachable by recorded sea states. The question is, therefore, how are storm waves amplified to the extent needed to transport megagravel inshore? As climate changes, with the risk of increased storminess, it is important to understand this issue, as it is central to understanding inland transmission of fluid forces during storm events. Numerical modeling is a powerful technique for exploring this complex problem. We used a conformal mapping solution to Euler's equations to explore runup of 2D wave trains against a vertical barrier (simulating a coastal cliff). Previous research showed that modeled wave trains passing over flat bathymetry experience vertical runup up to 6 times the initial wave amplitude for both short- (3 times water depth) and long- (125 times depth) wavelength waves. We increased the model complexity by including a bathymetric step, causing an abrupt depth decrease before the cliff. We found that the uneven bathymetry further amplified both short- and long-wavelength waves. Short-wavelength simulations were hampered by our code's limitations in solving Euler's equations for steep waves, and crashed before reaching maximum runups: ongoing work focuses on solving the computational problems. These problems did not affect the long-wavelength simulations, however, which returned maximum runup values up to 10 times initial amplitude. The key message is that bathymetric effects can drive large wave-height amplifications. This suggests that enhanced runup for long-wavelength waves caused by variable bathymetry could be a key factor in cases where ocean waves overtop steep cliffs and transport boulders well above high
New Gravity Wave Treatments for GISS Climate Models
Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye
2011-01-01
Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested.
Energy Technology Data Exchange (ETDEWEB)
Neary, Vincent Sinclair [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies; Yang, Zhaoqing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Coastal Sciences Division; Wang, Taiping [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Coastal Sciences Division; Gunawan, Budi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies; Dallman, Ann Renee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies
2016-03-01
A wave model test bed is established to benchmark, test and evaluate spectral wave models and modeling methodologies (i.e., best practices) for predicting the wave energy resource parameters recommended by the International Electrotechnical Commission, IEC TS 62600-101Ed. 1.0 ©2015. Among other benefits, the model test bed can be used to investigate the suitability of different models, specifically what source terms should be included in spectral wave models under different wave climate conditions and for different classes of resource assessment. The overarching goal is to use these investigations to provide industry guidance for model selection and modeling best practices depending on the wave site conditions and desired class of resource assessment. Modeling best practices are reviewed, and limitations and knowledge gaps in predicting wave energy resource parameters are identified.
On the linear programming bound for linear Lee codes.
Astola, Helena; Tabus, Ioan
2016-01-01
Based on an invariance-type property of the Lee-compositions of a linear Lee code, additional equality constraints can be introduced to the linear programming problem of linear Lee codes. In this paper, we formulate this property in terms of an action of the multiplicative group of the field [Formula: see text] on the set of Lee-compositions. We show some useful properties of certain sums of Lee-numbers, which are the eigenvalues of the Lee association scheme, appearing in the linear programming problem of linear Lee codes. Using the additional equality constraints, we formulate the linear programming problem of linear Lee codes in a very compact form, leading to a fast execution, which allows to efficiently compute the bounds for large parameter values of the linear codes.
Identification and modeling of internal waves
Digital Repository Service at National Institute of Oceanography (India)
Murty, T.V.R.; Sadhuram, Y.; Rao, M.M.M.; SujithKumar, S.; Maneesha, K.; Sandhya, K.S.; Prakash, S.S.; Chandramouli, P.; Murthy, K.S.R.
) and Bhimili (17°35.486’N, 83°42.322’E) at sonic depth 100 m during different seasons using time series CTD (hourly), current meter and indigenously developed thermister chain (at an interval of 2 minutes) to study the Internal Wave (IW) characteristics. Sound...
Modelling and simulation of surface water waves
van Groesen, Embrecht W.C.; Westhuis, J.H.
2002-01-01
The evolution of waves on the surface of a layer of fluid is governed by non-linear effects from surface deformations and dispersive effects from the interaction with the interior fluid motion. Several simulation tools are described in this paper and compared with real life experiments in large
Computer modeling of inelastic wave propagation in porous rock
International Nuclear Information System (INIS)
Cheney, J.A.; Schatz, J.F.; Snell, C.
1979-01-01
Computer modeling of wave propagation in porous rock has several important applications. Among them are prediction of fragmentation and permeability changes to be caused by chemical explosions used for in situ resource recovery, and the understanding of nuclear explosion effects such as seismic wave generation, containment, and site hardness. Of interest in all these applications are the distance from the source to which inelastic effects persist and the amount of porosity change within the inelastic region. In order to study phenomena related to these applications, the Cam Clay family of models developed at Cambridge University was used to develop a similar model that is applicable to wave propagation in porous rock. That model was incorporated into a finite-difference wave propagation computer code SOC. 10 figures, 1 table
Wave speeds in the macroscopic extended model for ultrarelativistic gases
Energy Technology Data Exchange (ETDEWEB)
Borghero, F., E-mail: borghero@unica.it [Dip. Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Demontis, F., E-mail: fdemontis@unica.it [Dip. Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); Pennisi, S., E-mail: spennisi@unica.it [Dip. Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy)
2013-11-15
Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.
Can plane wave modes be physical modes in soliton models?
International Nuclear Information System (INIS)
Aldabe, F.
1995-08-01
I show that plane waves may not be used as asymptotic states in soliton models because they describe unphysical states. When asymptotic states are taken to the physical there is not T-matrix of O(1). (author). 9 refs
Statistical study of some Lee galaxy groups
Mohamed, Sabry A.; Fouad, Ahmed M.
2017-12-01
Compact groups of galaxies are systems of small number of galaxies close to each other. They are a good laboratory to study galaxy properties, such as structure, morphology and evolution which are affected by the environment and galaxy interactions. We applied the tree clustering technique (the Euclidean separation distance coefficients) to test the physical reality of groups and used certain criteria (Sabry et al., 2009) depending on the physical attributes of the galaxies. The sample of the data is the quintets groups of Lee compact groups of galaxies (Lee et al., 2004). It is based on a modified version of Hickson's criteria (Hickson, 1982). The results reveal the membership of each galaxy and how it is related to its group. The tables of groups and their members are included. Our results indicates that 12 Groups are real groups with real members while 18 Groups have one galaxy that has attribute discordant and should be discarded from its group.
An Arctic Ice/Ocean Coupled Model with Wave Interactions
2014-09-30
Arctic sea ice has experienced since at least the beginning of the satellite era are believed to be caused by ice - albedo temperature feedback...dimensional (2D) ocean surface wave interactions with sea ice in a contemporary 3D Arctic ice /ocean model. To accomplish this primary goal, the objectives...of how ocean waves and sea ice interact, for use in operational models of the Arctic Basin and the adjacent seas ; – improve the forecasting
Modeling Stop-and-Go Waves in Pedestrian Dynamics
Portz, Andrea; Seyfried, Armin
2010-01-01
Several spatially continuous pedestrian dynamics models have been validated against empirical data. We try to reproduce the experimental fundamental diagram (velocity versus density) with simulations. In addition to this quantitative criterion, we tried to reproduce stop-and-go waves as a qualitative criterion. Stop-and-go waves are a characteristic phenomenon for the single file movement. Only one of three investigated models satisfies both criteria.
Lipid composition of lees from Sherry wine.
Gómez, Maria Ester; Igartuburu, José M; Pando, Enrique; Luis, Francisco Rodríguez; Mourente, Gabriel
2004-07-28
In this paper, we describe the study and characterization of the lipids from lees of Sherry wine, one of the main byproducts from the wine-making industry in the Jerez/Xeres/Sherry denomination of the origin zone in Jerez de la Frontera, Spain. The lipid content, extractability, classification, fatty acid composition, and its main chemical characteristics have been determined in order to evaluate their potential use as a food or food additive. Copyright 2004 American Chemical Society
Statistical study of some Lee galaxy groups
Directory of Open Access Journals (Sweden)
Sabry A. Mohamed
2017-12-01
Full Text Available Compact groups of galaxies are systems of small number of galaxies close to each other. They are a good laboratory to study galaxy properties, such as structure, morphology and evolution which are affected by the environment and galaxy interactions. We applied the tree clustering technique (the Euclidean separation distance coefficients to test the physical reality of groups and used certain criteria (Sabry et al., 2009 depending on the physical attributes of the galaxies. The sample of the data is the quintets groups of Lee compact groups of galaxies (Lee et al., 2004. It is based on a modified version of Hicksonâs criteria (Hickson, 1982. The results reveal the membership of each galaxy and how it is related to its group. The tables of groups and their members are included.Our results indicates that 12 Groups are real groups with real members while 18 Groups have one galaxy that has attribute discordant and should be discarded from its group. Keywords: Galaxies, Cluster analysis, Galaxy groups, Lee galaxy groups
Wave Model Development in Multi-Ion Plasmas
Directory of Open Access Journals (Sweden)
Sung-Hee Song
1999-06-01
Full Text Available Near-earth space is composed of plasmas which embed a number of plasma waves. Space plasmas consist of electrons and multi-ion that determine local wave propagation characteristics. In multi-ion plasmas, it is di cult to find out analytic solution from the dispersion relation in general. In this work, we have developed a model with an arbitrary magnetic field and density as well as multi-ion plasmas. This model allows us to investigate how plasma waves behave when they propagate along realistic magnetic field lines, which are assumed by IGRF(International Geomagnetic Reference Field. The results are found to be useful for the analysis of the in situ observational data in space. For instance, if waves are assumed to propagate into the polar region, from the equatorial region, our model quantitatively shows how polarization is altered along earth travel path.
Chromospheric extents predicted by time-dependent acoustic wave models
Cuntz, Manfred
1990-01-01
Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights.
Chromospheric extents predicted by time-dependent acoustic wave models
Energy Technology Data Exchange (ETDEWEB)
Cuntz, M. (Joint Institute for Laboratory Astrophysics, Boulder, CO (USA) Heidelberg Universitaet (Germany, F.R.))
1990-01-01
Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights. 74 refs.
Holographic p-wave superconductor models with Weyl corrections
Directory of Open Access Journals (Sweden)
Lu Zhang
2015-04-01
Full Text Available We study the effect of the Weyl corrections on the holographic p-wave dual models in the backgrounds of AdS soliton and AdS black hole via a Maxwell complex vector field model by using the numerical and analytical methods. We find that, in the soliton background, the Weyl corrections do not influence the properties of the holographic p-wave insulator/superconductor phase transition, which is different from that of the Yang–Mills theory. However, in the black hole background, we observe that similarly to the Weyl correction effects in the Yang–Mills theory, the higher Weyl corrections make it easier for the p-wave metal/superconductor phase transition to be triggered, which shows that these two p-wave models with Weyl corrections share some similar features for the condensation of the vector operator.
DEFF Research Database (Denmark)
Larsén, Xiaoli Guo; Bolanos, Rodolfo; Du, Jianting
modeling for oshore wind farms. This modeling system consists of the atmospheric Weather Research and Forecasting (WRF) model, the wave model SWAN and an interface the Wave Boundary Layer Model WBLM, within the framework of coupled-ocean-atmosphere-wave-sediment transport modeling system COAWST...... (Hereinafter the WRF-WBLM-SWAN model). WBLM is implemented in SWAN, and it calculates stress and kinetic energy budgets in the lowest atmospheric layer where the wave-induced stress is introduced to the atmospheric modeling. WBLM ensures consistent calculation of stress for both the atmospheric and wave......, which can aect the choice of the off-shore wind turbine type. X-WiWa examined various methodologies for wave modeling. The offline coupling system using atmospheric data such as WRF or global reanalysis wind field to the MIKE 21 SW model has been improved with considerations of stability, air density...
Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements
Energy Technology Data Exchange (ETDEWEB)
Fouques, Sebastien
2005-07-01
The present thesis is concerned with the estimation of the ocean wave spectrum from synthetic aperture radar imaging and the modelling of ocean surface waves using the Lagrangian formalism. The first part gives a short overview of the theories of ocean surface waves and synthetic aperture radar (SAR) whereas the second part consists of five independent publications. The first two articles investigate the influence of the radar backscatter model on the SAR imaging of ocean waves. In Article I, Monte Carlo simulations of SAR images of the ocean surface are carried out using a nonlinear backscatter model that include both specular reflection and Bragg scattering and the results are compared to simulations from the classical Hasselmann integral transform (Hasselmann and Hasselmann, 1991). It is shown that nonlinearities in the backscatter model strongly influence the imaging of range-travelling waves and that the former can suppress the range-splitting effect (Bruning et al., 1988). Furthermore, in Article II a database of Envisat-ASAR Wave Mode products co-located with directional wave spectra from the numerical model WAM and which contains range-travelling wave cases only, is set up. The WAM spectra are used as input to several ocean-to-SAR integral transforms, with various real aperture radar (RAR) models and the obtained SAR image cross-spectra are compared to the Envisat-ASAR observations. A first result is that the use of a linear backscatter model leads to a high proportion of non-physical negative backscatter values in the RAR image, as suggested by Schulz-Stellenfleth (2001). Then, a comparison between the observed SAR cross-spectra and the ones simulated through Hasselmann's integral transform reveals that only twenty percents of the observations show a range-splitting effect as strong as in the simulations. A much better agreement is obtained when using the integral transform by Schulz-Stellenfleth (2003), which is based on a nonlinear hackscatter model
International Nuclear Information System (INIS)
Ferrand, Adrien
2014-01-01
The head wave is the first arrival wave received during a TOFD (Time Of Flight Diffraction) inspection. The TOFD technique is a classical ultrasonic NDT (Non Destructive Testing) inspection method employing two piezoelectric transducers which are symmetrically placed facing each other with a constant spacing above the inspected specimen surface. The head wave propagation along an irregular entry surface is shown by a numerical study to be not only a surface propagation phenomenon, as for the plane surface case, but also involves a bulk propagation phenomenon caused by diffractions of the ultrasonic wave field on the surface irregularities. In order to model theses phenomena, a generic ray tracing method based on the generalized Fermat's principle has been developed and establishes the effective path of any ultrasonic propagating wave in a specimen of irregular surface, notably including the effective head wave path. The diffraction phenomena evaluation by amplitude models using a ray approach allows to provide a complete simulation (time of flight, wave front and amplitude) of the head wave for numerous kinds of surface irregularity. Theoretical and experimental validations of the developed simulation tool have been carried out and have proven successful. (author) [fr
Wave-Ice interaction in the Marginal Ice Zone: Toward a Wave-Ocean-Ice Coupled Modeling System
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave-Ice interaction in the Marginal Ice Zone: Toward a...scattering of waves by interaction with ice in the Marginal Ice Zone (MIZ). The wave model physics developed here will later be part of an operational...10.5670/oceanog.2014.73. Liu, A.K., B. Holt, and P.W. Vachon, 1991: Wave propagation in the Marginal Ice Zone: Model predictions and comparisons
Modelling of wave propagation over a submerged sand bar using SWASH
Digital Repository Service at National Institute of Oceanography (India)
Jishad, M.; Vu, T.T.T.; JayaKumar, S.
cases The wave heights and wave induced velocities obtained from the model and the laboratory experimental resultsare compared The model without the morphology feedback provided good correlation with the measurements for case of low wave energy, whereas...
Modelling and Experiments of a Standing Wave Piezomotor
DEFF Research Database (Denmark)
Andersen, B.; Helbo, Jan; Blanke, Mogens
The paper presents a new contact model for standing wave piezomotors. The contact model is based on the Hertz theory for normal contact deformations and elastic contact theory for tangential loads. The contact theory is simplified into a model with discrete springs for normal and tangential loads...
Two Mode Resonator and Contact Model for Standing Wave Piezomotor
DEFF Research Database (Denmark)
Andersen, B.; Blanke, Mogens; Helbo, J.
2001-01-01
The paper presents a model for a standing wave piezoelectric motor with a two bending mode resonator. The resonator is modelled using Hamilton's principle and the Rayleigh-Ritz method. The contact is modelled using the Lagrange Multiplier method under the assumption of slip and it is showed how...
Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele
2016-01-01
We introduce a new stabilized high-order and unstructured numerical model for modeling fully nonlinear and dispersive water waves. The model is based on a nodal spectral element method of arbitrary order in space and a -transformed formulation due to Cai, Langtangen, Nielsen and Tveito (1998). In...
Numerical wind wave model with a dynamic boundary layer
Directory of Open Access Journals (Sweden)
V. G. Polnikov
2002-01-01
Full Text Available A modern version of a numerical wind wave model of the fourth generation is constructed for a case of deep water. The following specific terms of the model source function are used: (a a new analytic parameterization of the nonlinear evolution term proposed recently in Zakharov and Pushkarev (1999; (b a traditional input term added by the routine for an atmospheric boundary layer fitting to a wind wave state according to Makin and Kudryavtsev (1999; (c a dissipative term of the second power in a wind wave spectrum according to Polnikov (1991. The direct fetch testing results showed an adequate description of the main empirical wave evolution effects. Besides, the model gives a correct description of the boundary layer parameters' evolution, depending on a wind wave stage of development. This permits one to give a physical treatment of the dependence mentioned. These performances of the model allow one to use it both for application and for investigation aims in the task of the joint description of wind and wave fields.
Numerical wind wave model with a dynamic boundary layer
Polnikov, V. G.; Volkov, Y. A.; Pogarskii, F. A.
A modern version of a numerical wind wave model of the fourth generation is constructed for a case of deep water. The following specific terms of the model source function are used: (a) a new analytic parameterization of the nonlinear evolution term proposed recently in Zakharov and Pushkarev (1999); (b) a traditional input term added by the routine for an atmospheric boundary layer fitting to a wind wave state according to Makin and Kudryavtsev (1999); (c) a dissipative term of the second power in a wind wave spectrum according to Polnikov (1991). The direct fetch testing results showed an adequate description of the main empirical wave evolution effects. Besides, the model gives a correct description of the boundary layer parameters' evolution, depending on a wind wave stage of development. This permits one to give a physical treatment of the dependence mentioned. These performances of the model allow one to use it both for application and for investigation aims in the task of the joint description of wind and wave fields.
Dynamical models for sand ripples beneath surface waves
DEFF Research Database (Denmark)
Andersen, Ken Haste; Chabanol, M.-L.; v. Hecke, M.
2001-01-01
We introduce order parameter models for describing the dynamics of sand ripple patterns under oscillatory flow. A crucial ingredient of these models is the mass transport between adjacent ripples, which we obtain from detailed numerical simulations for a range of ripple sizes. Using this mass...... transport function, our models predict the existence of a stable band of wave numbers limited by secondary instabilities. Small ripples coarsen in our models and this process leads to a sharply selected final wave number, in agreement with experimental observations....
A model with chaotic scattering and reduction of wave packets
Guarneri, Italo
2018-03-01
Some variants of Smilansky’s model of a particle interacting with harmonic oscillators are examined in the framework of scattering theory. A dynamical proof is given of the existence of wave operators. Analysis of a classical version of the model provides a transparent picture for the spectral transition to which the quantum model owes its renown, and for the underlying dynamical behaviour. The model is thereby classified as an extreme case of chaotic scattering, with aspects related to wave packet reduction and irreversibility.
Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides
DEFF Research Database (Denmark)
Bæk, David; Willatzen, Morten
2008-01-01
A computationally fast and accurate model (a set of coupled ordinary differential equations) for fluid sound-wave propagation in infinite axisymmetric waveguides of varying radius is proposed. The model accounts for fluid heat conduction and fluid irrotational viscosity. The model problem is solved...... by expanding solutions in terms of cross-sectional eigenfunctions following Stevenson’s method. A transfer matrix can be easily constructed from simple model responses of a given waveguide and later used in computing the response to any complex wave input. Energy losses due to heat conduction and viscous...
Self-organized Criticality Model for Ocean Internal Waves
International Nuclear Information System (INIS)
Wang Gang; Hou Yijun; Lin Min; Qiao Fangli
2009-01-01
In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed. (general)
Scattering of surface waves modelled by the integral equation method
Lu, Laiyu; Maupin, Valerie; Zeng, Rongsheng; Ding, Zhifeng
2008-09-01
The integral equation method is used to model the propagation of surface waves in 3-D structures. The wavefield is represented by the Fredholm integral equation, and the scattered surface waves are calculated by solving the integral equation numerically. The integration of the Green's function elements is given analytically by treating the singularity of the Hankel function at R = 0, based on the proper expression of the Green's function and the addition theorem of the Hankel function. No far-field and Born approximation is made. We investigate the scattering of surface waves propagating in layered reference models imbedding a heterogeneity with different density, as well as Lamé constant contrasts, both in frequency and time domains, for incident plane waves and point sources.
DLCQ and plane wave matrix Big Bang models
Blau, Matthias; O'Loughlin, Martin
2008-09-01
We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.
DLCQ and plane wave matrix Big Bang models
International Nuclear Information System (INIS)
Blau, Matthias; O'Loughlin, Martin
2008-01-01
We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.
Modeling wave attenuation by salt marshes in Jamaica Bay, New York, using a new rapid wave model
Marsooli, Reza; Orton, Philip M.; Mellor, George
2017-07-01
Using a new rapid-computation wave model, improved and validated in the present study, we quantify the value of salt marshes in Jamaica Bay—a highly urbanized estuary located in New York City—as natural buffers against storm waves. We augment the MDO phase-averaged wave model by incorporating a vegetation-drag-induced energy dissipation term into its wave energy balance equation. We adopt an empirical formula from literature to determine the vegetation drag coefficient as a function of environmental conditions. Model evaluation using data from laboratory-scale experiments show that the improved MDO model accurately captures wave height attenuation due to submerged and emergent vegetation. We apply the validated model to Jamaica Bay to quantify the influence of coastal-scale salt marshes on storm waves. It is found that the impact of marsh islands is largest for storms with lower flood levels, due to wave breaking on the marsh island substrate. However, the role of the actual marsh plants, Spartina alterniflora, grows larger for storms with higher flood levels, when wave breaking does not occur and the vegetative drag becomes the main source of energy dissipation. For the latter case, seasonality of marsh height is important; at its maximum height in early fall, S. alterniflora causes twice the reduction as when it is at a shorter height in early summer. The model results also indicate that the vegetation drag coefficient varies 1 order of magnitude in the study area, and suggest exercising extra caution in using a constant drag coefficient in coastal wetlands.
Numerical Modeling of a Wave Energy Point Absorber
DEFF Research Database (Denmark)
Hernandez, Lorenzo Banos; Frigaard, Peter; Kirkegaard, Poul Henning
2009-01-01
The present study deals with numerical modelling of the Wave Star Energy WSE device. Hereby, linear potential theory is applied via a BEM code on the wave hydrodynamics exciting the floaters. Time and frequency domain solutions of the floater response are determined for regular and irregular seas....... Furthermore, these results are used to estimate the power and the energy absorbed by a single oscillating floater. Finally, a latching control strategy is analysed in open-loop configuration for energy maximization....
Thin film bulk acoustic wave devices : performance optimization and modeling
Pensala, Tuomas
2011-01-01
Thin film bulk acoustic wave (BAW) resonators and filters operating in the GHz range are used in mobile phones for the most demanding filtering applications and complement the surface acoustic wave (SAW) based filters. Their main advantages are small size and high performance at frequencies above 2 GHz. This work concentrates on the characterization, performance optimization, and modeling techniques of thin film BAW devices. Laser interferometric vibration measurements together with plat...
Modeling storm waves; Modeliser les houles de tempete
Energy Technology Data Exchange (ETDEWEB)
Benoit, M.; Marcos, F.; Teisson, Ch
1999-07-01
Nuclear power stations located on the coast take the water they use to cool their circuits from the sea. The water intake and discharge devices must be able to operate in all weathers, notably during extreme storms, with waves 10 m high and over. To predict the impact of the waves on the equipment, they are modeled digitally from the moment they form in the middle of the ocean right up to the moment they break on the shore. (authors)
Modeling Waves and Coastal Flooding along the Connecticut Coast
Cifuentes-Lorenzen, A.; Howard-Strobel, M. M.; Fake, T.; McCardell, G.; O'Donnell, J.; Asthita, M.
2015-12-01
We have used a hydrodynamic- wave coupled numerical model (FVCOM-SWAVE) to simulate flooding at the Connecticut coastline during severe storms. The model employed a one-way nesting scheme and an unstructured grid. The parent domain spanned most of the southern New England shelf and the fine resolution grid covered Long Island Sound (LIS) and extended across the Connecticut coast to the 10m elevation contour. The model results for sea level, current and wave statistics from the parent grid have been tested with data from several field campaigns at different locations spanning the western, central and eastern portions of LIS. Waves are fetch limited and improvements to the model-data comparison required modifications to spectral coefficients in the wave model. Finally, the nested results were validated with two field campaigns in shallow water environments (i.e. New Haven and Old Saybrook). To assess the spatial variability of storm wave characteristics the domain was forced with the hindcast winds obtained from meteorological models (NAM and WRF) for 13 severe weather events that affected LIS in the past 15 years. We have also forced the system with a simulation of Superstorm Sandy in a warmer climate to assess the impact a climate change on the character of flooding. The nested grid is currently being used to map flooding risks under severe weather events including the effects of precipitation on river flow and discharge.
Source modelling at the dawn of gravitational-wave astronomy
Gerosa, Davide
2016-09-01
The age of gravitational-wave astronomy has begun. Gravitational waves are propagating spacetime perturbations ("ripples in the fabric of space-time") predicted by Einstein's theory of General Relativity. These signals propagate at the speed of light and are generated by powerful astrophysical events, such as the merger of two black holes and supernova explosions. The first detection of gravitational waves was performed in 2015 with the LIGO interferometers. This constitutes a tremendous breakthrough in fundamental physics and astronomy: it is not only the first direct detection of such elusive signals, but also the first irrefutable observation of a black-hole binary system. The future of gravitational-wave astronomy is bright and loud: the LIGO experiments will soon be joined by a network of ground-based interferometers; the space mission eLISA has now been fully approved by the European Space Agency with a proof-of-concept mission called LISA Pathfinder launched in 2015. Gravitational-wave observations will provide unprecedented tests of gravity as well as a qualitatively new window on the Universe. Careful theoretical modelling of the astrophysical sources of gravitational-waves is crucial to maximize the scientific outcome of the detectors. In this Thesis, we present several advances on gravitational-wave source modelling, studying in particular: (i) the precessional dynamics of spinning black-hole binaries; (ii) the astrophysical consequences of black-hole recoils; and (iii) the formation of compact objects in the framework of scalar-tensor theories of gravity. All these phenomena are deeply characterized by a continuous interplay between General Relativity and astrophysics: despite being a truly relativistic messenger, gravitational waves encode details of the astrophysical formation and evolution processes of their sources. We work out signatures and predictions to extract such information from current and future observations. At the dawn of a revolutionary
Multiscale Deterministic Wave Modeling with Wind Input and Wave Breaking Dissipation
2009-01-01
Kudryavtsev , V. N., Makin, V. K. & Meirink, J. F. 2001 “Simplified model of the air flow above the waves,” Boundary-Layer Meteorol. 100, 63-90. 5 Li...Figure 6. Comparison of pressure profiles with exponential decays: solid line, the Kudryavtsev et al. (2001) profile estimated by Donelan et al
Validation Study of Wave Breaking Influence in a Coupled Wave Model for Hurricane Wind Conditions
2008-08-27
an essential modification to the Janssen (1991) input source term in the spirit of the notion of ’sheltering’ (e.g. Makin & Kudryavtsev , 2001...Ocean Waves, Cambridge University Press, Cambridge, 532pp. Makin, V.K. and V.N. Kudryavtsev , 2001: Coupled sea surface-atmosphere model. 1. Wind over
Travelling waves in models of neural tissue: from localised structures to periodic waves
Meijer, Hil Gaétan Ellart; Coombes, Stephen
2014-01-01
We consider travelling waves (fronts, pulses and periodics) in spatially extended one dimensional neural field models. We demonstrate for an excitatory field with linear adaptation that, in addition to an expected stable pulse solution, a stable anti-pulse can exist. Varying the adaptation strength
Scattering center models of backscattering waves by dielectric spheroid objects.
Guo, Kun-Yi; Han, Xiao-Zhe; Sheng, Xin-Qing
2018-02-19
Scattering center models provide a simple and effective way of describing the complex electromagnetic scattering phenomena of targets and have been successfully applied in radar applications. However, the existing models are limited to conducting objects. Numerical results show that scattering centers of dielectric objects are far more complex than conducting objects and most of them are distributed beyond the object. For the lossless and low-loss media, the major scattering contributions to total fields are surface waves and multiple internal reflections rather than the direct reflection. Concise scattering center models for backscattering from dielectric spheroid objects are proposed in this work, which can characterize the backscattered waves by scattering centers with sparse and physical parameters. Good agreement has been demonstrated between the high resolution range profiles simulated by this model with those obtained by Mie series and the full wave numerical method.
Numerical modeling of shoreline undulations part 1: Constant wave climate
DEFF Research Database (Denmark)
Kærgaard, Kasper Hauberg; Fredsøe, Jørgen
2013-01-01
This paper presents a numerical study of the non-linear development of alongshore undulations up to fully developed quasi-steady equilibrium. A numerical model which describes the longshore sediment transport along arbitrarily shaped shorelines is applied, based on a spectral wave model, a depth...... integrated flow model, a wave-phase resolving sediment transport description and a one-line shoreline model.First the length of the shoreline undulations is determined in the linear regime using a stability analysis. Next the further evolution from the linear to the fully non-linear regime is described....... In the fully non-linear regime down-drift spits and migrating shoreline undulations are described.Three different shoreline shapes are found depending on the wave conditions: undulations with no spits, undulations with shore parallel spit and undulations with reconnecting spits. © 2012 Published by Elsevier B.V....
Simulating Freak Waves in the Ocean with CFD Modeling
Manolidis, M.; Orzech, M.; Simeonov, J.
2017-12-01
Rogue, or freak, waves constitute an active topic of research within the world scientific community, as various maritime authorities around the globe seek to better understand and more accurately assess the risks that the occurrence of such phenomena entail. Several experimental studies have shed some light on the mechanics of rogue wave formation. In our work we numerically simulate the formation of such waves in oceanic conditions by means of Computational Fluid Dynamics (CFD) software. For this purpose we implement the NHWAVE and OpenFOAM software packages. Both are non-hydrostatic, turbulent flow solvers, but NHWAVE implements a shock-capturing scheme at the free surface-interface, while OpenFOAM utilizes the Volume Of Fluid (VOF) method. NHWAVE has been shown to accurately reproduce highly nonlinear surface wave phenomena, such as soliton propagation and wave shoaling. We conducted a range of tests simulating rogue wave formation and horizontally varying currents to evaluate and compare the capabilities of the two software packages. Then we used each model to investigate the effect of ocean currents and current gradients on the formation of rogue waves. We present preliminary results.
A parametric costing model for wave energy technology
International Nuclear Information System (INIS)
1992-01-01
This document describes the philosophy and technical approach to a parametric cost model for offshore wave energy systems. Consideration is given both to existing known devices and other devices yet to be conceptualised. The report is complementary to a spreadsheet based cost estimating model. The latter permits users to derive capital cost estimates using either inherent default data or user provided data, if a particular scheme provides sufficient design definition for more accurate estimation. The model relies on design default data obtained from wave energy device designs and a set of specifically collected cost data. (author)
2013-09-30
disk the following wave input fields: Stokes drift current ( SDC ), wave-to-ocean momentum flux (WOMF), bottom orbital wave current (OWC). (b) Add SDC ...Earth System Modeling Framework) layer in HYCOM to import SDC , WOMF and OWC fields and export SSC (surface current) and SSH (surface height) fields
Practical Improvements to the Lee-More Conductivity Near the Metal-Insulator Transition
International Nuclear Information System (INIS)
Desjarlais, Michael P.
2000-01-01
The wide-range conductivity model of Lee and More is modified to allow better agreement with recent experimental data and theories for dense plasmas in the metal-insulator transition regime. Modifications primarily include a new ionization equilibrium model, consisting of a smooth blend between single ionization Saha (with a pressure ionization correction) and the generic Thomas-Fermi ionization equilibrium, a more accurate treatment of electron-neutral collisions using a polarization potential, and an empirical modification to the minimum allowed collision time. These simple modifications to the Lee-More algorithm permit a more accurate modeling of the physics near the metal-insulator transition, while preserving the generic Lee-More results elsewhere
Practical improvements to the Lee-More conductivity near the metal-insulator transition
International Nuclear Information System (INIS)
Desjarlais, M.P.
2001-01-01
The wide-range conductivity model of Lee and More is modified to allow better agreement with recent experimental data and theories for dense plasmas in the metal-insulator transition regime. Modifications primarily include a new ionization equilibrium model, consisting of a smooth blend between single ionization Saha (with a pressure ionization correction) and the generic Thomas-Fermi ionization equilibrium, a more accurate treatment of electron-neutral collisions using a polarization potential, and an empirical modification to the minimum allowed collision time. These simple modifications to the Lee-More algorithm permit a more accurate modeling of the physics near the metal-insulator transition, while preserving the generic Lee-More results elsewhere. (orig.)
Wave attenuation model for dephasing and measurement of ...
Indian Academy of Sciences (India)
An analysis of previous models to simulate inelastic scattering in such systems is presented and a relatively new model based on wave attenuation is introduced. The problem of Aharonov–Bohm (AB) oscillations in conductance of a mesoscopic ring is studied. We show that the conductance is symmetric under ﬂux reversal ...
Modeling of wave attenuation by vegetation with XBeach
Van Rooijen, A.A.; Van Thiel de Vries, J.S.M.; McCall, R.T.; Van Dongeren, A.R.; Roelvink, J.A.; Reniers, A.J.H.M.
2015-01-01
Over the past decades the effect of vegetation (e.g. kelp, mangroves, sea grass) on nearshore coastal processes has received more and more attention. In recent years several numerical wave models have been extended to include this effect. In the current study, the numerical storm impact model XBeach
Wave attenuation model for dephasing and measurement of ...
Indian Academy of Sciences (India)
Further the wave attenuation model is applied to a fundamental problem in quantum mechanics, that of the ... The process of dephasing or decoherence leads to the diminishing of quantum effects or loss of quantum ... injected back with an uncorrelated phase leading to irreversible loss of phase memory. This model has ...
Wave-particle duality in a quark model
International Nuclear Information System (INIS)
Gudder, S.P.
1984-01-01
A quark model based on finite-dimensional quantum mechanics is presented. Observables associated with color, flavor, charge, and spin are considered. Using these observables, quark and baryon Hamiltonians are constructed. Wave-particle dualities in this model are pointed out. (Auth.)
Non-homogeneous polymer model for wave propagation and its ...
African Journals Online (AJOL)
This article concerns certain aspects of four parameter polymer models to study harmonic waves in the non-homogeneous polymer rods of varying density. There are two sections of this paper, in first section, the rheological behaviour of the model is discussed numerically and then it is solved analytically with the help of ...
Energy Technology Data Exchange (ETDEWEB)
Puckett, Anthony D. [Colorado State Univ., Fort Collins, CO (United States)
2000-09-01
The ability to model wave propagation in circular cylindrical bars of finite length numerically or analytically has many applications. In this thesis the capability of an explicit finite element method to model longitudinal waves in cylindrical rods with circular cross-sections is explored. Dispersion curves for the first four modes are compared to the analytical solution to determine the accuracy of various element sizes and time steps. Values for the time step and element size are determined that retain accuracy while minimizing computational time. The modeling parameters are validated by calculating a signal propagated with a broadband input force. Limitations on the applicability are considered along with modeling parameters that should be applicable to more general geometries.
TWO-DIMENSIONAL MODELLING OF ACCIDENTAL FLOOD WAVES PROPAGATION
Directory of Open Access Journals (Sweden)
Lorand Catalin STOENESCU
2011-05-01
Full Text Available The study presented in this article describes a modern modeling methodology of the propagation of accidental flood waves in case a dam break; this methodology is applied in Romania for the first time for the pilot project „Breaking scenarios of Poiana Uzului dam”. The calculation programs used help us obtain a bidimensional calculation (2D of the propagation of flood waves, taking into consideration the diminishing of the flood wave on a normal direction to the main direction; this diminishing of the flood wave is important in the case of sinuous courses of water or with urban settlements very close to the minor river bed. In the case of Poiana Uzului dam, 2 scenarios were simulated with the help of Ph.D. Eng. Dan Stematiu, plausible scenarios but with very little chances of actually producing. The results were presented as animations with flooded surfaces at certain time steps successively.
Hybrid Modelling of a Traveling Wave Piezoelectric Motor
DEFF Research Database (Denmark)
El, Ghouti N.
This thesis considers the modeling of the traveling wave piezoelectric motor (PEM). The rotary traveling wave ultrasonic motor "Shinsei type USR60" is the case study considered in this work. The traveling wave PEM has excellent performance and many useful features such as high holding torque, high...... to solve the highly demanding problem of performance prediction of the PEM. The emphasis is on the combination of the electrical network method, the physics underlying piezoelectric phenomena, the variational work and elasticity theory (Hamilton's principle), besides contact mechanics (friction...... of an ultrasonic traveling wave rotary piezoelectric motor. This approach is carried out on the basis of the experimental investigation combined with the electrical network method. Consequently, an insight in the analysis of the electromechanical coupling force factor, which is responsible for the electrical...
Searching for Lee-Wick Gauge Bosons at the LHC
Energy Technology Data Exchange (ETDEWEB)
Rizzo, Thomas G.
2007-04-30
In an extension of the Standard Model(SM) based on the ideas of Lee and Wick, Grinstein, O'Connell and Wise have found an interesting way to remove the usual quadratically divergent contributions to the Higgs mass induced by radiative corrections. Phenomenologically, the model predicts the existence of Terascale, negative-norm copies of the usual SM fields with rather unique properties: ghost-like propagators and negative decay widths, but with otherwise SM-like couplings. The model is both unitary and causal on macroscopic scales. In this paper we examine whether or not such states with these unusual properties can be uniquely identified as such at the LHC. We find that in the extended strong and electroweak gauge boson sector of the model, which is the simplest one to analyze, such an identification can be rather difficult. Observation of heavy gluon-like resonances in the dijet channel offers the best hope for this identification.
Comparison of Model Output of Wind and Wave Parameters with Spaceborne Altimeter Measurements
National Research Council Canada - National Science Library
Hwang, Paul
1998-01-01
.... While comparisons with point measurements from discrete and sparsely distributed wave buoys provide some measure of statistical confidence, the spatial distribution of the modeled wind and wave...
Improvements on Semi-Classical Distorted-Wave model
Energy Technology Data Exchange (ETDEWEB)
Sun Weili; Watanabe, Y.; Kuwata, R. [Kyushu Univ., Fukuoka (Japan); Kohno, M.; Ogata, K.; Kawai, M.
1998-03-01
A method of improving the Semi-Classical Distorted Wave (SCDW) model in terms of the Wigner transform of the one-body density matrix is presented. Finite size effect of atomic nuclei can be taken into account by using the single particle wave functions for harmonic oscillator or Wood-Saxon potential, instead of those based on the local Fermi-gas model which were incorporated into previous SCDW model. We carried out a preliminary SCDW calculation of 160 MeV (p,p`x) reaction on {sup 90}Zr with the Wigner transform of harmonic oscillator wave functions. It is shown that the present calculation of angular distributions increase remarkably at backward angles than the previous ones and the agreement with the experimental data is improved. (author)
Modeling Tides, Planetary Waves, and Equatorial Oscillations in the MLT
Mengel, J. G.; Mayr, H. G.; Drob, D. P.; Porter, H. S.; Bhartia, P. K. (Technical Monitor)
2001-01-01
Applying Hines Doppler Spread Parameterization for gravity waves (GW), our 3D model reproduces some essential features that characterize the observed seasonal variations of tides and planetary waves in the upper mesosphere. In 2D, our model also reproduces the large Semi-Annual Oscillation (SAO) and Quasi Biennial Oscillation (QBO) observed in this region at low latitudes. It is more challenging to describe these features combined in a more comprehensive self consistent model, and we give a progress report that outlines the difficulties and reports some success. In 3D, the GW's are partially absorbed by tides and planetary waves to amplify them. Thus the waves are less efficient in generating the QBO and SAO at equatorial latitudes. Some of this deficiency is compensated by the fact that the GW activity is observed to be enhanced at low latitudes. Increasing the GW source has the desired effect to boost the QBO, but the effect is confined primarily to the stratosphere. With increasing altitude, the meridional circulation becomes more important in redistributing the momentum deposited in the background flow by the GW's. Another factor involved is the altitude at which the GW's originate, which we had originally chosen to be the surface. Numerical experiments show that moving this source altitude to the top of the troposphere significantly increases the efficiency for generating the QBO without affecting much the tides and planetary waves in the model. Attention to the details in which the GW source comes into play thus appears to be of critical importance in modeling the phenomenology of the MLT. Among the suite of numerical experiments reported, we present a simulation that produced significant variations of tides and planetary waves in the upper mesosphere. The effect is related to the QBO generated in the model, and GW filtering is the likely cause.
Progress in Mathematical Modeling of Gastrointestinal Slow Wave Abnormalities.
Du, Peng; Calder, Stefan; Angeli, Timothy R; Sathar, Shameer; Paskaranandavadivel, Niranchan; O'Grady, Gregory; Cheng, Leo K
2017-01-01
Gastrointestinal (GI) motility is regulated in part by electrophysiological events called slow waves, which are generated by the interstitial cells of Cajal (ICC). Slow waves propagate by a process of "entrainment," which occurs over a decreasing gradient of intrinsic frequencies in the antegrade direction across much of the GI tract. Abnormal initiation and conduction of slow waves have been demonstrated in, and linked to, a number of GI motility disorders. A range of mathematical models have been developed to study abnormal slow waves and applied to propose novel methods for non-invasive detection and therapy. This review provides a general outline of GI slow wave abnormalities and their recent classification using multi-electrode (high-resolution) mapping methods, with a particular emphasis on the spatial patterns of these abnormal activities. The recently-developed mathematical models are introduced in order of their biophysical scale from cellular to whole-organ levels. The modeling techniques, main findings from the simulations, and potential future directions arising from notable studies are discussed.
Wave Transformation Over Reefs: Evaluation of One-Dimensional Numerical Models
National Research Council Canada - National Science Library
Demirbilek, Zeki; Nwogu, Okey G; Ward, Donald L; Sanchez, Alejandro
2009-01-01
Three one-dimensional (1D) numerical wave models are evaluated for wave transformation over reefs and estimates of wave setup, runup, and ponding levels in an island setting where the beach is fronted by fringing reef and lagoons...
Negative effect of discharging vinification lees on soils.
Moldes, Ana B; Vázquez, Manuel; Domínguez, José M; Díaz-Fierros, Francisco; Barral, María T
2008-09-01
In this work, vinification lees from Galicia (Spain) were chemically analysed and compared with the composition of vinification lees from other regions and residues. Moreover, vinification lees were submitted to biological test employing cress, spring barley and ryegrass seeds. The evaluated vinification lees were rich in nutrients that are essential for plants, like P (2,520 mg kg(-1)), K (36,738 mg kg(-1)) and Mg (462 mg kg(-1)), but have low pH (3.9) and high C/N ratio. However, when vinification lees were submitted to biological tests, no germination was observed for garden cress and ryegrass seeds and almost no germination for spring barley seeds, showing the negative effect of discharging lees on crop fields.
Effective Orthorhombic Anisotropic Models for Wave field Extrapolation
Ibanez Jacome, Wilson
2013-05-01
Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models, to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, I generate effective isotropic inhomogeneous models that are capable of reproducing the first-arrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, I develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic one, is represented by a sixth order polynomial equation that includes the fastest solution corresponding to outgoing P-waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, which is done by explicitly solving the isotropic eikonal equation for the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. I extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the
Paradelo, Remigio; Moldes, Ana B; Barral, María T
2010-03-10
Hydrolyzed grape marc (HGM) is the solid residue generated after the acid hydrolysis of grape marc to obtain hemicellulosic sugars for biotechnological purposes. In this work, HGM containing cellulose and lignin was composted together with vinification lees to obtain plant substrates on a laboratory scale. The effects of temperature (in the range of 20-50 degrees C), concentration of vinification lees (5-100 g/100 g of hydrolyzed grape marc), and concentration of CaCO(3) on the final properties of the composted HGM were studied by means of an experimental plan with factorial structure. The interrelationship between dependent and operational variables was established by models including linear, interaction, and quadratic terms. The most influential variable on the C/N ratio and P, K and Mg contents of composted substrates was the vinification lees concentration followed by the temperature, whereas on Na content and electrical conductivity the most influential variable was the temperature followed by the vinification lees concentration. The results of the incubation experiments indicated that optimal conditions for obtaining plant substrates can be achieved by composting 1:1 mixtures of hydrolyzed grape marc and vinification lees, in the presence of 5 g of CaCO(3)/100 g of HGM. During composting the pH of the mixtures increased from 5.1-6.7 to 7.1-8.1, salinity and water-soluble carbon were reduced in most cases, and the initial phytotoxicity disappeared in all of the mixtures tested.
Practicing psychology in the art gallery: Vernon Lee's aesthetics of empathy.
Lanzoni, Susan
2009-01-01
Late nineteenth-century psychologists and aestheticians were fascinated by the study of psychological and physiological aspects of aesthetic response, and the British intellectual and aesthete Vernon Lee was a major participant in this venture. Working outside the academy, Lee conducted informal experiments with Clementina Anstruther-Thomson, recording changes in respiration, balance, emotion, and body movements in response to aesthetic form. In fashioning her aesthetics of empathy, she mined a wealth of psychological theories of the period including motor theories of mind, physiological theories of emotion, evolutionary models of the usefulness of art, and, most prominently, the empathic projection of feeling and movement into form. Lee distributed questionnaires, contributed to scientific journals, carried out her own introspective studies, and debated aesthetics with leading psychologists. This paper critiques the prevailing view of Lee's aesthetics as a displaced sign of her gender or sexuality, and questions her status as simply an amateur in the field of psychology. Instead, I argue that Lee's empirically based empathy theory of art was a significant contribution to debates on psychological aesthetics at the outset of the twentieth century, offering a synthesis of Lipps's mentalistic Einfühlung and sensation-based imitation theories of aesthetic response.
Wave-current interactions: model development and preliminary results
Mayet, Clement; Lyard, Florent; Ardhuin, Fabrice
2013-04-01
The coastal area concentrates many uses that require integrated management based on diagnostic and predictive tools to understand and anticipate the future of pollution from land or sea, and learn more about natural hazards at sea or activity on the coast. The realistic modelling of coastal hydrodynamics needs to take into account various processes which interact, including tides, surges, and sea state (Wolf [2008]). These processes act at different spatial scales. Unstructured-grid models have shown the ability to satisfy these needs, given that a good mesh resolution criterion is used. We worked on adding a sea state forcing in a hydrodynamic circulation model. The sea state model is the unstructured version of WAVEWATCH III c (Tolman [2008]) (which version is developed at IFREMER, Brest (Ardhuin et al. [2010]) ), and the hydrodynamic model is the 2D barotropic module of the unstructured-grid finite element model T-UGOm (Le Bars et al. [2010]). We chose to use the radiation stress approach (Longuet-Higgins and Stewart [1964]) to represent the effect of surface waves (wind waves and swell) in the barotropic model, as previously done by Mastenbroek et al. [1993]and others. We present here some validation of the model against academic cases : a 2D plane beach (Haas and Warner [2009]) and a simple bathymetric step with analytic solution for waves (Ardhuin et al. [2008]). In a second part we present realistic application in the Ushant Sea during extreme event. References Ardhuin, F., N. Rascle, and K. Belibassakis, Explicit wave-averaged primitive equations using a generalized Lagrangian mean, Ocean Modelling, 20 (1), 35-60, doi:10.1016/j.ocemod.2007.07.001, 2008. Ardhuin, F., et al., Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation, J. Phys. Oceanogr., 40 (9), 1917-1941, doi:10.1175/2010JPO4324.1, 2010. Haas, K. A., and J. C. Warner, Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and
Seismic waves and earthquakes in a global monolithic model
Roubíček, Tomáš
2018-03-01
The philosophy that a single "monolithic" model can "asymptotically" replace and couple in a simple elegant way several specialized models relevant on various Earth layers is presented and, in special situations, also rigorously justified. In particular, global seismicity and tectonics is coupled to capture, e.g., (here by a simplified model) ruptures of lithospheric faults generating seismic waves which then propagate through the solid-like mantle and inner core both as shear (S) or pressure (P) waves, while S-waves are suppressed in the fluidic outer core and also in the oceans. The "monolithic-type" models have the capacity to describe all the mentioned features globally in a unified way together with corresponding interfacial conditions implicitly involved, only when scaling its parameters appropriately in different Earth's layers. Coupling of seismic waves with seismic sources due to tectonic events is thus an automatic side effect. The global ansatz is here based, rather for an illustration, only on a relatively simple Jeffreys' viscoelastic damageable material at small strains whose various scaling (limits) can lead to Boger's viscoelastic fluid or even to purely elastic (inviscid) fluid. Self-induced gravity field, Coriolis, centrifugal, and tidal forces are counted in our global model, as well. The rigorous mathematical analysis as far as the existence of solutions, convergence of the mentioned scalings, and energy conservation is briefly presented.
A delay differential equation model of follicle waves in women.
Panza, Nicole M; Wright, Andrew A; Selgrade, James F
2016-01-01
This article presents a mathematical model for hormonal regulation of the menstrual cycle which predicts the occurrence of follicle waves in normally cycling women. Several follicles of ovulatory size that develop sequentially during one menstrual cycle are referred to as follicle waves. The model consists of 13 nonlinear, delay differential equations with 51 parameters. Model simulations exhibit a unique stable periodic cycle and this menstrual cycle accurately approximates blood levels of ovarian and pituitary hormones found in the biological literature. Numerical experiments illustrate that the number of follicle waves corresponds to the number of rises in pituitary follicle stimulating hormone. Modifications of the model equations result in simulations which predict the possibility of two ovulations at different times during the same menstrual cycle and, hence, the occurrence of dizygotic twins via a phenomenon referred to as superfecundation. Sensitive parameters are identified and bifurcations in model behaviour with respect to parameter changes are discussed. Studying follicle waves may be helpful for improving female fertility and for understanding some aspects of female reproductive ageing.
Herman, Agnieszka
2017-11-01
In this paper, a coupled sea ice-wave model is developed and used to analyze wave-induced stress and breaking in sea ice for a range of wave and ice conditions. The sea ice module is a discrete-element bonded-particle model, in which ice is represented as cuboid grains floating on the water surface that can be connected to their neighbors by elastic joints. The joints may break if instantaneous stresses acting on them exceed their strength. The wave module is based on an open-source version of the Non-Hydrostatic WAVE model (NHWAVE). The two modules are coupled with proper boundary conditions for pressure and velocity, exchanged at every wave model time step. In the present version, the model operates in two dimensions (one vertical and one horizontal) and is suitable for simulating compact ice in which heave and pitch motion dominates over surge. In a series of simulations with varying sea ice properties and incoming wavelength it is shown that wave-induced stress reaches maximum values at a certain distance from the ice edge. The value of maximum stress depends on both ice properties and characteristics of incoming waves, but, crucially for ice breaking, the location at which the maximum occurs does not change with the incoming wavelength. Consequently, both regular and random (Jonswap spectrum) waves break the ice into floes with almost identical sizes. The width of the zone of broken ice depends on ice strength and wave attenuation rates in the ice.
Bhardwaj, Divyanshu; Guha, Anirban
2018-01-01
Theoretical studies on linear shear instabilities often use simple velocity and density profiles (e.g., constant, piecewise) for obtaining good qualitative and quantitative predictions of the initial disturbances. Furthermore, such simple profiles provide a minimal model for obtaining a mechanistic understanding of otherwise elusive shear instabilities. However, except a few specific cases, the efficacy of simple profiles has remained limited to the linear stability paradigm. In this work, we have proposed a general framework that can simulate the fully nonlinear evolution of a variety of stratified shear instabilities as well as wave-wave and wave-topography interaction problems having simple piecewise constant and/or linear profiles. To this effect, we have modified the classical vortex method by extending the Birkhoff-Rott equation to multiple interfaces and, furthermore, have incorporated background shear across a density interface. The latter is more subtle and originates from the understanding that Bernoulli's equation is not just limited to irrotational flows but can be modified to make it applicable for piecewise linear velocity profiles. We have solved diverse problems that can be essentially reduced to the multiple interacting interfaces paradigm, e.g., spilling and plunging breakers, stratified shear instabilities like Holmboe and Taylor-Caulfield, jet flows, and even wave-topography interaction problems like Bragg resonance. Free-slip boundary being a vortex sheet, its effect can also be effectively captured using vortex method. We found that the minimal models capture key nonlinear features, e.g., wave breaking features like cusp formation and roll-ups, which are observed in experiments and/or extensive simulations with smooth, realistic profiles.
Modelling and Testing of Wave Dragon Wave Energy Converter Towards Full Scale Deployment
DEFF Research Database (Denmark)
Parmeggiani, Stefano
carried out aimed at quantifying design loads in the mooring system of the WD-DanWEC unit, as well as identifying viable force-reduction strategies which would allow significant savings in design cost (estimated up to 65%). According to these results, the most cost-effective real mooring solutions....... This is mainly due to the development of an updated overtopping model specifically suited to Wave Dragon, which allows greater quality to predictions of the primary energy absorption of the device compared to previous versions. At the same time an equitable approach has been described and used in the performance...... will need to be identified by means of time-domain analyses. To do so, a numerical model has been calibrated for the application with the results from the complete hydrodynamic characterization of Wave Dragon, which has been carried out based on experimental data and numerical analysis. Overall...
Frontiers in Anisotropic Shock-Wave Modeling
2012-02-01
Nowadays, some models incorporate a user-defined subroutine within the commercial software (e.g., ABAQUS ) to take into account either a homogenous...I.; Razorenov, S. V.; Baumung, K. Impact Strength Properties of Nickel-Based Refractory Superalloys at Normal and Elevated Temperatures. Int. J
Yasui, Kyuichi; Kozuka, Teruyuki; Yasuoka, Masaki; Kato, Kazumi
2015-11-01
There are two major categories in a thermoacoustic prime-mover. One is the traveling-wave type and the other is the standing-wave type. A simple analytical model of a standing-wave thermoacoustic prime-mover is proposed at relatively low heat-flux for a stack much shorter than the acoustic wavelength, which approximately describes the Brayton cycle. Numerical simulations of Rott's equations have revealed that the work flow (acoustic power) increases by increasing of the amplitude of the particle velocity (| U|) for the traveling-wave type and by increasing cosΦ for the standing-wave type, where Φ is the phase difference between the particle velocity and the acoustic pressure. In other words, the standing-wave type is a phase-dominant type while the traveling-wave type is an amplitude-dominant one. The ratio of the absolute value of the traveling-wave component (| U|cosΦ) to that of the standing-wave component (| U|sinΦ) of any thermoacoustic engine roughly equals the ratio of the absolute value of the increasing rate of | U| to that of cosΦ. The different mechanism between the traveling-wave and the standing-wave type is discussed regarding the dependence of the energy efficiency on the acoustic impedance of a stack as well as that on ωτα, where ω is the angular frequency of an acoustic wave and τα is the thermal relaxation time. While the energy efficiency of the traveling-wave type at the optimal ωτα is much higher than that of the standing-wave type, the energy efficiency of the standing-wave type is higher than that of the traveling-wave type at much higher ωτα under a fixed temperature difference between the cold and the hot ends of the stack.
Perturbative unitarity of Lee-Wick quantum field theory
Anselmi, Damiano; Piva, Marco
2017-08-01
We study the perturbative unitarity of the Lee-Wick models, formulated as nonanalytically Wick rotated Euclidean theories. The complex energy plane is divided into disconnected regions and the values of a loop integral in the various regions are related to one another by a nonanalytic procedure. We show that the one-loop diagrams satisfy the expected, unitary cutting equations in each region: only the physical d.o.f. propagate through the cuts. The goal can be achieved by working in suitable subsets of each region and proving that the cutting equations can be analytically continued as a whole. We make explicit calculations in the cases of the bubble and triangle diagrams and address the generality of our approach. We also show that the same higher-derivative models violate unitarity if they are formulated directly in Minkowski spacetime.
Travelling wave solutions to nonlinear physical models by means of ...
Indian Academy of Sciences (India)
On the other hand, considerable attention has been given to problem of finding spe- cial types of analytic solutions to understand biological, physical and chemical phenomena modelled by NPDEs. Among the possible solutions, certain solutions may depend only on a single combination of variables such as travelling wave ...
Variational Boussinesq model for simulation of coastal waves and tsunamis
Adytia, D.; Adytia, Didit; van Groesen, Embrecht W.C.; Tan, Soon Keat; Huang, Zhenhua
2009-01-01
In this paper we describe the basic ideas of a so-called Variational Boussinesq Model which is based on the Hamiltonian structure of gravity surface waves. By using a rather simple approach to prescribe the profile of vertical fluid potential in the expression for the kinetic energy, we obtain a set
FDTD Modelling of Electromagnetic waves in Stratified Medium ...
African Journals Online (AJOL)
The technique is an adaptation of the finite-difference time domain (FDTD) approach usually applied to model electromagnetic wave propagation. In this paper a simple 2D implementation of FDTD algorithm in mathematica environment is presented. Source implementation and the effect of conductivity on the incident field ...
Modeling the effect of wave-vegetation interaction on wave setup
van Rooijen, A.A.; McCall, RT; van Thiel de Vries, J.S.M.; van Dongeren, AR; Reniers, A.J.H.M.; Roelvink, D.
2016-01-01
Aquatic vegetation in the coastal zone attenuates wave energy and reduces the risk of coastal hazards, e.g., flooding. Besides the attenuation of sea-swell waves, vegetation may also affect infragravity-band (IG) waves and wave setup. To date, knowledge on the effect of vegetation on IG waves and
Model basin, measurement of particle velocities in wave crests
Energy Technology Data Exchange (ETDEWEB)
1989-11-15
A model set-up, which makes it possible to measure water particle velocities in wave crests, has been developed and tested. The technique includes a tri-axial ultrasonic current probe mounted on a movable frame which is moved vertically by a hydraulic piston thus following the oscillating water surface. Recording is hereby done at a constant depth beneath the water surface and the velocity profiles are found by interpolation/extrapolation between the recordings taken in different levels at a given time during the wave time series. The set-up has been successfully used for measurements indeep-water regular and irregular seastates. Detailed analysis and comparison with various theoretical descriptions of wave kinematics has been performed. Furthermore, the set-up has been used for measurements in freak waves reproduced at a limited waterdepth. The analysis and comparisons with theoretical predictions have shed new light on the freak wave phenomenon. Some disturbance into the area of measurements is introduced by the ultrasonic proble. For the maximum values of particle velocities (under a crest or a trough), this disturbance is minimal as the particles move in practically horizontal directons. (BN).
Boussinesq modeling of surface waves due to underwater landslides
Directory of Open Access Journals (Sweden)
D. Dutykh
2013-05-01
Full Text Available Consideration is given to the influence of an underwater landslide on waves at the surface of a shallow body of fluid. The equations of motion that govern the evolution of the barycenter of the landslide mass include various dissipative effects due to bottom friction, internal energy dissipation, and viscous drag. The surface waves are studied in the Boussinesq scaling, with time-dependent bathymetry. A numerical model for the Boussinesq equations is introduced that is able to handle time-dependent bottom topography, and the equations of motion for the landslide and surface waves are solved simultaneously. The numerical solver for the Boussinesq equations can also be restricted to implement a shallow-water solver, and the shallow-water and Boussinesq configurations are compared. A particular bathymetry is chosen to illustrate the general method, and it is found that the Boussinesq system predicts larger wave run-up than the shallow-water theory in the example treated in this paper. It is also found that the finite fluid domain has a significant impact on the behavior of the wave run-up.
Energy Technology Data Exchange (ETDEWEB)
Watanabe, T.; Sassa, K. [Kyoto University, Kyoto (Japan); Uesaka, S. [Kyoto University, Kyoto (Japan). Faculty of Engineering
1996-10-01
The effect of initial models on full-wave inversion (FWI) analysis based on acoustic wave-equation was studied for elastic wave tomography of underground structures. At present, travel time inversion using initial motion travel time is generally used, and inverse analysis is conducted using the concept `ray,` assuming very high wave frequency. Although this method can derive stable solutions relatively unaffected by initial model, it uses only the data of initial motion travel time. FWI calculates theoretical waveform at each receiver using all of observed waveforms as data by wave equation modeling where 2-D underground structure is calculated by difference calculus under the assumption that wave propagation is described by wave equation of P wave. Although it is a weak point that FWI is easily affected by noises in an initial model and data, it is featured by high resolution of solutions. This method offers very excellent convergence as a proper initial model is used, resulting in sufficient performance, however, it is strongly affected by initial model. 2 refs., 7 figs., 1 tab.
Retrospective: Ivy Lee and the German Dye Trust.
Hainsworth, Brad E.
1987-01-01
Examines the relationship between public relations trailblazer Ivy Lee and the German Dye Trust, which became an agent for the policies of Adolf Hitler. Discusses how Lee's efforts to use this relationship to persuade his contacts to influence the Nazi leadership failed because of his formal connection with this group. (JD)
Tim Berners-Lee and Kofi Annan during the WSIS
Patrice Loïez
2003-01-01
During the 2003 World Summit on the Information Society (WSIS) at Geneva Palexpo, Tim Berners-Lee W3C's director (World Wide Web consortium) was introduced to Kofi Annan, Secretary General of the United Nations. Tim Berners-Lee developed the first network and server system that lead to the World Wide Web.
Tim Berners-Lee and Kofi Annan during the WSIS
Patrice Loïez
2003-01-01
During the 2003 World Summit on the Information Society (WSIS) at Geneva Palexpo, Tim Berners-Lee, W3C's director (World Wide Web consortium) was introduced to Kofi Annan, Secretary General of the United Nations. Tim Berners-Lee developed the first network and server system that lead to the World Wide Web.
Complete synchronization of two Chen-Lee systems
International Nuclear Information System (INIS)
Sheu, L-J; Chen, J-H; Chen, H-K; Tam, L-M; Lao, S-K; Chen, W-C; Lin, K-T
2008-01-01
This study demonstrates that complete synchronization of two Chen-Lee chaotic systems can be easily achieved. The upper bound of the Chen-Lee chaotic system is estimated numerically. A controller is designed to synchronize two chaotic systems. Sufficient conditions for synchronization are obtained using Lyapunov's direct method. Two numerical examples are presented to verify the proposed synchronization approach
Web Inventor Berners-Lee starts a Blog
Olson, Parmy
2005-01-01
Berners-Lee created what is known today as the World Wide Web. Now, just in time for the Web's 15th anniversary and after taking his proverbial stroll around the global dwelling of cyberspace, Berners-Lee is chatting with the rest of us about what he thinks with a blog
Energy Technology Data Exchange (ETDEWEB)
Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig
2014-09-01
A modified version of an indust ry standard wave modeling tool, SNL - SWAN, was used to perform model simulations for hourly initial wave conditio ns measured during the month of October 2009. The model was run with an array of 50 wave energy converters (WECs) and compared with model runs without WECs. Maximum changes in H s were found in the lee of the WEC array along the angles of incident wave dire ction and minimal changes were found along the western side of the model domain due to wave shadowing by land. The largest wave height reductions occurred during observed typhoon conditions and resulted in 14% decreases in H s along the Santa Cruz shoreline . Shoreline reductions in H s were 5% during s outh swell wave conditions and negligible during average monthly wave conditions.
Yang-Lee edge singularity on a class of tree-like lattices
Energy Technology Data Exchange (ETDEWEB)
Knezevic, Milan; Elezovic-Hadzic, Suncica [Faculty of Physics, University of Belgrade, Belgrade (Yugoslavia)
1997-03-21
The density of zeros of the partition function of the Ising model on a class of tree-like lattices is studied. An exact closed-form expression for the pertinent critical exponents is derived by using a couple of recursion relations which have a singular behaviour near the Yang-Lee edge. (author)
Modeling of Electromagnetic Wave Propagation with Tapered Transmission Line
Lee, Kun-A.; Ko, Kwang-Cheol
2012-09-01
Tapered transmission line was used for impedance matching, for high voltage pulse, and atmospheric medium is applied to characteristic equation of tapered transmission line and reflection coefficient so that nonlinear load and circuit modeling of atmospheric medium was simulated by electromagnetic transient program (EMTP). A characteristic of atmospheric medium and Time delay are decided by inductance and capacitance of tapered transmission line. For electromagnetic wave propagation modeling, in this paper, tapered transmission line is implemented. It is difficult to model tapered transmission line directly. Other transmission line that can be expressed by the circuit is used. So object of this paper is efficient modeling of tapered transmission line.
Traveling waves in a continuum model of 1D schools
Oza, Anand; Kanso, Eva; Shelley, Michael
2017-11-01
We construct and analyze a continuum model of a 1D school of flapping swimmers. Our starting point is a delay differential equation that models the interaction between a swimmer and its upstream neighbors' wakes, which is motivated by recent experiments in the Applied Math Lab at NYU. We coarse-grain the evolution equations and derive PDEs for the swimmer density and variables describing the upstream wake. We study the equations both analytically and numerically, and find that a uniform density of swimmers destabilizes into a traveling wave. Our model makes a number of predictions about the properties of such traveling waves, and sheds light on the role of hydrodynamics in mediating the structure of swimming schools.
International Nuclear Information System (INIS)
Valeo, Ernest; Johnson, Jay R.; Kim, Eun-Hwa; Phillips, Cynthia
2012-01-01
A wide variety of plasma waves play an important role in the energization and loss of particles in the inner magnetosphere. Our ability to understand and model wave-particle interactions in this region requires improved knowledge of the spatial distribution and properties of these waves as well as improved understanding of how the waves depend on changes in solar wind forcing and/or geomagnetic activity. To this end, we have developed a two-dimensional, finite element code that solves the full wave equations in global magnetospheric geometry. The code describes three-dimensional wave structure including mode conversion when ULF, EMIC, and whistler waves are launched in a two-dimensional axisymmetric background plasma with general magnetic field topology. We illustrate the capabilities of the code by examining the role of plasmaspheric plumes on magnetosonic wave propagation; mode conversion at the ion-ion and Alfven resonances resulting from external, solar wind compressions; and wave structure and mode conversion of electromagnetic ion cyclotron waves launched in the equatorial magnetosphere, which propagate along the magnetic field lines toward the ionosphere. We also discuss advantages of the finite element method for resolving resonant structures, and how the model may be adapted to include nonlocal kinetic effects.
Energy Technology Data Exchange (ETDEWEB)
Ernest Valeo, Jay R. Johnson, Eun-Hwa and Cynthia Phillips
2012-03-13
A wide variety of plasma waves play an important role in the energization and loss of particles in the inner magnetosphere. Our ability to understand and model wave-particle interactions in this region requires improved knowledge of the spatial distribution and properties of these waves as well as improved understanding of how the waves depend on changes in solar wind forcing and/or geomagnetic activity. To this end, we have developed a two-dimensional, finite element code that solves the full wave equations in global magnetospheric geometry. The code describes three-dimensional wave structure including mode conversion when ULF, EMIC, and whistler waves are launched in a two-dimensional axisymmetric background plasma with general magnetic field topology. We illustrate the capabilities of the code by examining the role of plasmaspheric plumes on magnetosonic wave propagation; mode conversion at the ion-ion and Alfven resonances resulting from external, solar wind compressions; and wave structure and mode conversion of electromagnetic ion cyclotron waves launched in the equatorial magnetosphere, which propagate along the magnetic field lines toward the ionosphere. We also discuss advantages of the finite element method for resolving resonant structures, and how the model may be adapted to include nonlocal kinetic effects.
Tim Berners-Lee receives the Millennium Technology Prize
2004-01-01
On 15 April, for his invention of the Web, Tim Berners-Lee was awarded the first ever Millennium Technology Prize by the Finnish Technology Award Foundation, which recognises technological innovations of lasting benefit to society. "Tim Berners-Lee's invention perfectly encapsulates the spirit of the Prize. The Web is encouraging new types of social networks, contributing to transparency and democracy, and opening up new avenues for information management and business development," underlined Pekka Tarjanne, chairman of the jury and former Secretary-General of the International Telecommunication Union (ITU). Tim Berners-Lee is congratulated by Jukka Valtasaari, Finland's Ambassador to the United States. Tim Berners-Lee created the first server, browser and editor, the HTML code, the URL address and the HTTP transmission protocol at CERN in 1990. CERN released the Web into the public domain in 1993. Tim Berners-Lee is currently head of the World Wide Web Consortium, managed by ERCIM (Europe...
DEFF Research Database (Denmark)
Ferri, Francesco
The idea to use the motion of a wavy sea surface to produce electricity was investigate in the seventies, in a time when the earliest wave energy converters were conceived and developed. But nowadays still none of the patented devices reached a commercial stage. Wave energy is a large, mostly...... this goal a reliable wave-to-wire (numerical) model is needed and a validation procedure based on experimental data sets have been used through the work....
Renormalization group approach to a p-wave superconducting model
International Nuclear Information System (INIS)
Continentino, Mucio A.; Deus, Fernanda; Caldas, Heron
2014-01-01
We present in this work an exact renormalization group (RG) treatment of a one-dimensional p-wave superconductor. The model proposed by Kitaev consists of a chain of spinless fermions with a p-wave gap. It is a paradigmatic model of great actual interest since it presents a weak pairing superconducting phase that has Majorana fermions at the ends of the chain. Those are predicted to be useful for quantum computation. The RG allows to obtain the phase diagram of the model and to study the quantum phase transition from the weak to the strong pairing phase. It yields the attractors of these phases and the critical exponents of the weak to strong pairing transition. We show that the weak pairing phase of the model is governed by a chaotic attractor being non-trivial from both its topological and RG properties. In the strong pairing phase the RG flow is towards a conventional strong coupling fixed point. Finally, we propose an alternative way for obtaining p-wave superconductivity in a one-dimensional system without spin–orbit interaction.
Evaluation of wave runup predictions from numerical and parametric models
Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.
2014-01-01
Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.
Modeling and Simulation of a Wave Energy Converter INWAVE
Directory of Open Access Journals (Sweden)
Seung Kwan Song
2017-01-01
Full Text Available INGINE Inc. developed its own wave energy converter (WEC named INWAVE and has currently installed three prototype modules in Jeju Island, Korea. This device is an on-shore-type WEC that consists of a buoy, pulleys fixed to the sea-floor and a power take off module (PTO. Three ropes are moored tightly on the bottom of the buoy and connected to the PTO via the pulleys, which are moving back and forth according to the motion of the buoy. Since the device can harness wave energy from all six degrees of movement of the buoy, it is possible to extract energy efficiently even under low energy density conditions provided in the coastal areas. In the PTO module, the ratchet gears convert the reciprocating movement of the rope drum into a uni-directional rotation and determine the transmission of power from the relation of the angular velocities between the rope drum and the generator. In this process, the discontinuity of the power transmission occurs and causes the modeling divergence. Therefore, we introduce the concept of the virtual torsion spring in order to prevent the impact error in the ratchet gear module, thereby completing the PTO modeling. In this paper, we deal with dynamic analysis in the time domain, based on Newtonian mechanics and linear wave theory. We derive the combined dynamics of the buoy and PTO modules via geometric relation between the buoy and mooring ropes, then suggest the ratchet gear mechanism with the virtual torsion spring element to reduce the dynamic errors during the phase transitions. Time domain simulation is carried out under irregular waves that reflect the actual wave states of the installation area, and we evaluate the theoretical performance using the capture width ratio.
Numerical modelling of nonlinear full-wave acoustic propagation
Energy Technology Data Exchange (ETDEWEB)
Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx [Grupo de Acústica y Vibraciones, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-186, C.P. 04510, México D.F., México (Mexico)
2015-10-28
The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.
Improved bag models of P-wave baryons
International Nuclear Information System (INIS)
Wang Fan; Wong Chunwa
1988-01-01
Problems in two previous bag-model calculations of P-wave baryon states are pointed out. The two-body matrix elements used in one of these models, the Myhrer-Wroldsen bag model, have now been revised and corrected by Myhrer, Umino and Wroldsen. We use their corrected matrix elements to construct simple bag models in which baryon masses are stabilized against collapse by using a finite pion size. We find that baryon masses in both ground and excited states can be fitted with the same model parameters. Models with small-bag baryons of the type proposed by Brown and Rho are then obtained. Typical bag radii are 0.5 fm for N, 0.6 fm for Δ and 0.7 fm for P-wave nonstrange baryons. In these models, the mixing angles are still unsatisfactory, while inadequacy in the treatment of center-of-mass motion found in an earlier paper persists. These results are briefly discussed. especially in connection with skyrmion models. (orig.)
Numerical Modeling and Experimental Testing of a Wave Energy Converter
DEFF Research Database (Denmark)
Zurkinden, Andrew Stephen; Kramer, Morten; Ferri, Francesco
numerical values for comparison with the experimental test results which were carried out in the same time. It is for this reason why Chapter 4 does consist exclusively of numerical values. Experimental values and measured time series of wave elevations have been used throughout the report in order to a......) validate the numerical model and b) preform stochastic analysis. The latter technique is introduced in order to optimize the control parameters of the power take off system....
Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling
2013-09-30
both Mann - Kendall test (MKT) and Sen estimate for trend were used. These are shown in Figure 3. 7 Figure 3: Changes of mean wave...Wave Boundary Layer module has been prepared and is being tested . Two- dimensional spectra of the wave-energy input and two components of the wave...the University of Plymouth (England), laboratory tests were conducted to evaluate wave attenuation and scattering due to imitated ice floes
Thermodynamics of the Lee-Wick partners: An alternative approach
International Nuclear Information System (INIS)
Bhattacharya, Kaushik; Das, Suratna
2011-01-01
It was pointed out some time ago that there can be two variations in which the divergences of a quantum field theory can be tamed using the ideas presented by Lee and Wick. In one variation the Lee-Wick partners of the normal fields live in an indefinite metric Hilbert space but have positive energy and in the other variation the Lee-Wick partners can live in a normal Hilbert space but carry negative energy. Quantum mechanically the two variations mainly differ in the way the fields are quantized. In this article the second variation of Lee and Wick's idea is discussed. Using statistical mechanical methods the energy density, pressure and entropy density of the negative energy Lee-Wick fields have been calculated. The results exactly match with the thermodynamic results of the conventional, positive energy Lee-Wick fields. The result sheds some light on the second variation of Lee-Wick's idea. The result seems to say that the thermodynamics of the theories do not care about the way they are quantized.
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...
Application of multi-parameter chorus and plasmaspheric hiss wave models in radiation belt modeling
Aryan, H.; Kang, S. B.; Balikhin, M. A.; Fok, M. C. H.; Agapitov, O. V.; Komar, C. M.; Kanekal, S. G.; Nagai, T.; Sibeck, D. G.
2017-12-01
Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model along with many other radiation belt models require inputs for pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. In this study we incorporate recently developed multi-parameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multi-parameter wave models resembles the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.
Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays
Energy Technology Data Exchange (ETDEWEB)
Rhinefrank, Kenneth E; Haller, Merrick C; Ozkan-Haller, H Tuba
2013-01-26
This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys' that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate
Energy Technology Data Exchange (ETDEWEB)
Long, M. S. [Harvard Univ., Cambridge, MA (United States). School of Engineering and Applied Sciences; Keene, William C. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Environmental Sciences; Zhang, J. [Univ. of North Dakota, Grand Forks, ND (United States). Dept. of Atmospheric Sciences; Reichl, B. [Univ. of Rhode Island, Narragansett, RI (United States). Graduate School of Oceanography; Shi, Y. [Univ. of North Dakota, Grand Forks, ND (United States). Dept. of Atmospheric Sciences; Hara, T. [Univ. of Rhode Island, Narragansett, RI (United States). Graduate School of Oceanography; Reid, J. S. [Naval Research Lab. (NRL), Monterey, CA (United States); Fox-Kemper, B. [Brown Univ., Providence, RI (United States). Earth, Environmental and Planetary Sciences; Craig, A. P. [National Center for Atmospheric Research, Boulder, CO (United States); Erickson, D. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division; Ginis, I. [Univ. of Rhode Island, Narragansett, RI (United States). Graduate School of Oceanography; Webb, A. [Univ. of Tokyo (Japan). Dept. of Ocean Technology, Policy, and Environment
2016-11-08
Primary marine aerosol (PMA) is emitted into the atmosphere via breaking wind waves on the ocean surface. Most parameterizations of PMA emissions use 10-meter wind speed as a proxy for wave action. This investigation coupled the 3^{rd} generation prognostic WAVEWATCH-III wind-wave model within a coupled Earth system model (ESM) to drive PMA production using wave energy dissipation rate – analogous to whitecapping – in place of 10-meter wind speed. The wind speed parameterization did not capture basin-scale variability in relations between wind and wave fields. Overall, the wave parameterization did not improve comparison between simulated versus measured AOD or Na^{+}, thus highlighting large remaining uncertainties in model physics. Results confirm the efficacy of prognostic wind-wave models for air-sea exchange studies coupled with laboratory- and field-based characterizations of the primary physical drivers of PMA production. No discernible correlations were evident between simulated PMA fields and observed chlorophyll or sea surface temperature.
Model Predictive Control of Buoy Type Wave Energy Converter
DEFF Research Database (Denmark)
Soltani, Mohsen N.; Sichani, Mahdi T.; Mirzaei, Mahmood
2014-01-01
by forcing this condition. In the paper the theoretical framework for this principal is shown. The optimal controller requires information of the sea state for infinite horizon which is not applicable. Model Predictive Controllers (MPC) can have finite horizon which crosses out this requirement....... This approach is then taken into account and an MPC controller is designed for a model wave energy converter and implemented on a numerical example. Further, the power outtake of this controller is compared to the optimal controller as an indicator of the performance of the designed controller....
Pattern formation and traveling waves in myxobacteria: Theory and modeling
Igoshin, Oleg A.; Mogilner, Alex; Welch, Roy D.; Kaiser, Dale; Oster, George
2001-01-01
Recent experiments have provided new quantitative measurements of the rippling phenomenon in fields of developing myxobacteria cells. These measurements have enabled us to develop a mathematical model for the ripple phenomenon on the basis of the biochemistry of the C-signaling system, whereby individuals signal by direct cell contact. The model quantitatively reproduces all of the experimental observations and illustrates how intracellular dynamics, contact-mediated intercellular communication, and cell motility can coordinate to produce collective behavior. This pattern of waves is qualitatively different from that observed in other social organisms, especially Dictyostelium discoideum, which depend on diffusible morphogens. PMID:11752439
Generation and Active Absorption of 2- and 3-Dimensional Linear Water Waves in Physical Models
DEFF Research Database (Denmark)
Christensen, Morten
Methods for mechanical generation of 2-dimensional (2-D) and 3-dimensional (3-D) linear water waves in physical models are presented. The results of a series of laboratory 3-D wave generation tests are presented and discussed. The tests preformed involve reproduction of wave fields characterised...... is based on a new principle for active absorption of reflected waves: the wave generator displacement correction signal corresponding to absorption of the reflected wave train is determined by means of linear filtering and subsequent superposition of surface elevation signals measured in two positions...... in the wave channel in front of the wave generator. The results of physical model tests performed with an absorbing wave maker based on this principle show that the problem of rereflection is reduced significantly when active absorption is performed. Finally, an absorbing directional wave generator for 3-D...
Modeling Gravitational Waves to Test GR Dispersion and Polarization
Tso, Rhondale; Chen, Yanbei; Isi, Maximilliano
2017-01-01
Given continued observation runs from the Laser Interferometer Gravitational-Wave Observatory Scientific Collaboration, further gravitational wave (GW) events will provide added constraints on beyond-general relativity (b-GR) theories. One approach, independent of the GW generation mechanism at the source, is to look at modification to the GW dispersion and propagation, which can accumulate over vast distances. Generic modification of GW propagation can also, in certain b-GR theories, impact the polarization content of GWs. To this end, a comprehensive approach to testing the dispersion and polarization content is developed by modeling anisotropic deformations to the waveforms' phase, along with birefringence effects and corollary consequences for b-GR polarizations, i.e., breathing, vector, and longitudinal modes. Such an approach can be mapped to specific theories like Lorentz violation, amplitude birefringence in Chern-Simons, and provide hints at additional theories to be included. An overview of data analysis routines to be implemented will also be discussed.
Boussinesq Modeling of Wave Propagation and Runup over Fringing Coral Reefs, Model Evaluation Report
National Research Council Canada - National Science Library
Demirbilek, Zeki; Nwogu, Okey G
2007-01-01
This report describes evaluation of a two-dimensional Boussinesq-type wave model, BOUSS-2D, with data obtained from two laboratory experiments and two field studies at the islands of Guam and Hawaii...
A particle model of rolling grain ripples under waves
DEFF Research Database (Denmark)
Andersen, Ken Haste
2001-01-01
A simple model for the formation of rolling grain ripples on a flat sand bed by the oscillatory flow generated by a surface wave is presented. An equation of motion is derived for the individual ripples, seen as "particles," on the otherwise flat bed. The model accounts for the initial appearance...... with the square-root of the nondimensional shear stress (the Shields parameter) on a flat bed. The results of the model are compared with measurements, and reasonable agreement between the model and the measurements is demonstrated. ©2001 American Institute of Physics....... of the ripples, the subsequent coarsening of the ripples, and the final equilibrium state. The model is related to the physical parameters of the problem, and an analytical approximation for the equilibrium spacing of the ripples is developed. It is found that the spacing between the ripples scales...
Multivariate Statistical Modelling of Drought and Heat Wave Events
Manning, Colin; Widmann, Martin; Vrac, Mathieu; Maraun, Douglas; Bevaqua, Emanuele
2016-04-01
Multivariate Statistical Modelling of Drought and Heat Wave Events C. Manning1,2, M. Widmann1, M. Vrac2, D. Maraun3, E. Bevaqua2,3 1. School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK 2. Laboratoire des Sciences du Climat et de l'Environnement, (LSCE-IPSL), Centre d'Etudes de Saclay, Gif-sur-Yvette, France 3. Wegener Center for Climate and Global Change, University of Graz, Brandhofgasse 5, 8010 Graz, Austria Compound extreme events are a combination of two or more contributing events which in themselves may not be extreme but through their joint occurrence produce an extreme impact. Compound events are noted in the latest IPCC report as an important type of extreme event that have been given little attention so far. As part of the CE:LLO project (Compound Events: muLtivariate statisticaL mOdelling) we are developing a multivariate statistical model to gain an understanding of the dependence structure of certain compound events. One focus of this project is on the interaction between drought and heat wave events. Soil moisture has both a local and non-local effect on the occurrence of heat waves where it strongly controls the latent heat flux affecting the transfer of sensible heat to the atmosphere. These processes can create a feedback whereby a heat wave maybe amplified or suppressed by the soil moisture preconditioning, and vice versa, the heat wave may in turn have an effect on soil conditions. An aim of this project is to capture this dependence in order to correctly describe the joint probabilities of these conditions and the resulting probability of their compound impact. We will show an application of Pair Copula Constructions (PCCs) to study the aforementioned compound event. PCCs allow in theory for the formulation of multivariate dependence structures in any dimension where the PCC is a decomposition of a multivariate distribution into a product of bivariate components modelled using copulas. A
Modeling the Propagation of Shock Waves in Metals
Howard, W. Michael
2005-07-01
We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P ˜300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and bulk modulus depends on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. At melt the yield strength and bulk modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that gives the correct detonation velocity and C-J pressure (P ˜ 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov. We also discuss the dependence of our results upon our material model for aluminum.
Travelling Wave Solutions in Multigroup Age-Structured Epidemic Models
Ducrot, Arnaut; Magal, Pierre; Ruan, Shigui
2010-01-01
Age-structured epidemic models have been used to describe either the age of individuals or the age of infection of certain diseases and to determine how these characteristics affect the outcomes and consequences of epidemiological processes. Most results on age-structured epidemic models focus on the existence, uniqueness, and convergence to disease equilibria of solutions. In this paper we investigate the existence of travelling wave solutions in a deterministic age-structured model describing the circulation of a disease within a population of multigroups. Individuals of each group are able to move with a random walk which is modelled by the classical Fickian diffusion and are classified into two subclasses, susceptible and infective. A susceptible individual in a given group can be crisscross infected by direct contact with infective individuals of possibly any group. This process of transmission can depend upon the age of the disease of infected individuals. The goal of this paper is to provide sufficient conditions that ensure the existence of travelling wave solutions for the age-structured epidemic model. The case of two population groups is numerically investigated which applies to the crisscross transmission of feline immunodeficiency virus (FIV) and some sexual transmission diseases.
Impact of an offshore wind farm on wave conditions and shoreline development
DEFF Research Database (Denmark)
Christensen, Erik Damgaard; Kristensen, Sten Esbjørn; Deigaard, Rolf
2014-01-01
The influence of offshore wind farms on the wave conditions and impact on shoreline development is studied in a generic set-up of a coast and a shoreline. The objective was to estimate the impact of a typical sized offshore wind farm on a shoreline in a high wave energetic environment. Especially...... the shoreline’s sensitivity to the distance from the OWF to the shoreline was studied. The effect of the reduced wind speed inside and on the lee side of the offshore wind farm was incorporated in a parameterized way in a spectral wind wave model. The shoreline impact was studied with a one-line model....
General Robert E. Lee -- Brightest Star in the South
National Research Council Canada - National Science Library
Dalton, Kent B
2006-01-01
.... Lee's distinctive application of operational art and leadership as the commander of the Army of Northern Virginia, we can discern many lessons which are still pertinent to our commanders at the operational level today...
The Statecraft of Lee Kuan Yew, Visionary and Opportunist
National Research Council Canada - National Science Library
Thomas, David
1996-01-01
...." "Not so," replied the passenger, Lee Kuan Yew, "Singapore intends to continue to ride along as part of the federation created with Malaysia, Sarawak, and Sabah -- we have no plans for getting off...
Nobel laureate T.D. Lee at CERN
2007-01-01
On 30 August, Professor T.D. Lee, who received the Nobel Prize for Physics in 1957, gave a seminar at CERN on symmetry and asymmetry in electroweak interactions, 50 years after the discovery of the non-conservation of parity. In 1956, Tsung-Dao Lee postulated with Chen Ning Yang that parity is not conserved in weak interactions, and suggested several experiments to demonstrate this. The following year, an experiment led by Chien-Shiung Wu proved this prediction and, soon after, T.D. Lee and Chen Ning Yang were awarded the Nobel Prize for Physics. Still very active at over 80 years of age, T.D. Lee pursues his theory work to this day.
Numerical Modeling of Infragravity Wave Runup on Steep and Mildly Sloping Natural Beaches
Fiedler, J. W.; Smit, P.; Brodie, K. L.; McNinch, J.; Guza, R. T.; Gallien, T.
2016-12-01
We present ongoing work which aims to validate the non-hydrostatic model SWASH for wave runup and infragravity waves generated by a range of different incident wave spectra at the offshore boundary, including the effect of finite directional spread. Flume studies of wave runup are limited to normally incident (1D) sea and infragravity waves, but natural waves are directionally spread (2D), with substantially different dynamics from 1D. For example, refractive trapping (edge waves) is only possible with 2D waves, and the bound infragravity wave response to short wave groups is highly amplified for the special case of normal incidence. Selected case studies are modeled at Agate Beach, Oregon, a low slope (1:80) beach with maximum offshore wave heights greater than 7m, and Cardiff, California, a steep (1:8) beach with maximum wave heights of 2m. Peak periods ranged between 5-20 s at both sites. On both beaches, waves were measured on a transect from approximately 10m depth to the runup, using pressure sensors, current meters, and a scanning lidar. Bulk short wave quantities, wave runup, infragravity frequency spectra and energy fluxes are compared with SWASH. On the low slope beach with energetic incident waves, the observed horizontal runup excursions reach 140m ( 100s periods). Swash front velocities reached up to several m/s, causing short waves to stack up during runup drawdown. On reversal of the infragravity phase, the stacked short waves are swept onshore with the long wave front, effectively enhancing runup by phase coupling long and short waves. Statistical variability and nonlinearity in swash generation lead to time-varying runup heights. Here, we test these observations with 2D SWASH, as well as the sensitivity of modeled runup to the parameterization of bottom friction.
Optimization of arterial age prediction models based in pulse wave
International Nuclear Information System (INIS)
Scandurra, A G; Meschino, G J; Passoni, L I; Dai Pra, A L; Introzzi, A R; Clara, F M
2007-01-01
We propose the detection of early arterial ageing through a prediction model of arterial age based in the coherence assumption between the pulse wave morphology and the patient's chronological age. Whereas we evaluate several methods, a Sugeno fuzzy inference system is selected. Models optimization is approached using hybrid methods: parameter adaptation with Artificial Neural Networks and Genetic Algorithms. Features selection was performed according with their projection on main factors of the Principal Components Analysis. The model performance was tested using the bootstrap error type .632E. The model presented an error smaller than 8.5%. This result encourages including this process as a diagnosis module into the device for pulse analysis that has been developed by the Bioengineering Laboratory staff
Optimization of arterial age prediction models based in pulse wave
Energy Technology Data Exchange (ETDEWEB)
Scandurra, A G [Bioengineering Laboratory, Electronic Department, Mar del Plata University (Argentina); Meschino, G J [Bioengineering Laboratory, Electronic Department, Mar del Plata University (Argentina); Passoni, L I [Bioengineering Laboratory, Electronic Department, Mar del Plata University (Argentina); Dai Pra, A L [Engineering Aplied Artificial Intelligence Group, Mathematics Department, Mar del Plata University (Argentina); Introzzi, A R [Bioengineering Laboratory, Electronic Department, Mar del Plata University (Argentina); Clara, F M [Bioengineering Laboratory, Electronic Department, Mar del Plata University (Argentina)
2007-11-15
We propose the detection of early arterial ageing through a prediction model of arterial age based in the coherence assumption between the pulse wave morphology and the patient's chronological age. Whereas we evaluate several methods, a Sugeno fuzzy inference system is selected. Models optimization is approached using hybrid methods: parameter adaptation with Artificial Neural Networks and Genetic Algorithms. Features selection was performed according with their projection on main factors of the Principal Components Analysis. The model performance was tested using the bootstrap error type .632E. The model presented an error smaller than 8.5%. This result encourages including this process as a diagnosis module into the device for pulse analysis that has been developed by the Bioengineering Laboratory staff.
Entanglement entropy in a holographic p-wave superconductor model
Energy Technology Data Exchange (ETDEWEB)
Li, Li-Fang, E-mail: lilf@itp.ac.cn [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Cai, Rong-Gen, E-mail: cairg@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Li, E-mail: liliphy@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Shen, Chao, E-mail: sc@nssc.ac.cn [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)
2015-05-15
In a recent paper, (arXiv:1309.4877), a holographic p-wave model has been proposed in an Einstein–Maxwell-complex vector field theory with a negative cosmological constant. The model exhibits rich phase structure depending on the mass and the charge of the vector field. We investigate the behavior of the entanglement entropy of dual field theory in this model. When the above two model parameters change, we observe the second order, first order and zeroth order phase transitions from the behavior of the entanglement entropy at some intermediate temperatures. These imply that the entanglement entropy can indicate not only the occurrence of the phase transition, but also the order of the phase transition. The entanglement entropy is indeed a good probe to phase transition. Furthermore, the “retrograde condensation” which is a sub-dominated phase is also reflected on the entanglement entropy.
Kinetic computer modeling of microwave surface-wave plasma production
International Nuclear Information System (INIS)
Ganachev, Ivan P.
2004-01-01
Kinetic computer plasma modeling occupies an intermediate position between the time consuming rigorous particle dynamic simulation and the fast but rather rough cold- or warm-plasma fluid models. The present paper reviews the kinetic modeling of microwave surface-wave discharges with accent on recent kinetic self-consistent models, where the external input parameters are reduced to the necessary minimum (frequency and intensity of the applied microwave field and pressure and geometry of the discharge vessel). The presentation is limited to low pressures, so that Boltzmann equation is solved in non-local approximation and collisional electron heating is neglected. The numerical results reproduce correctly the bi-Maxwellian electron energy distribution functions observed experimentally. (author)
Falsification of Leggett's model using neutron matter waves
International Nuclear Information System (INIS)
Hasegawa, Yuji; Sponar, Stephan; Durstberger-Rennhofer, Katharina; Badurek, Gerald; Schmitzer, Claus; Bartosik, Hannes; Klepp, Jürgen
2012-01-01
According to Bell's theorem, no theory based on the joint assumption of realism and locality can reproduce certain predictions of quantum mechanics. Another class of realistic models, proposed by Leggett, that demands realism but abandons reliance on locality, is predicted to be in conflict with quantum mechanics. In this paper, we report on an experimental test of a contextual realistic model analogous to the model of Leggett performed with matter waves, more precisely with neutrons. Correlation measurements of the spin-energy entangled single-particle system show violation of a Leggett-type inequality by more than 7.6 standard deviations. Our experimental data falsify the contextual realistic model and are fully in favor of quantum mechanics. (paper)
Entanglement entropy in a holographic p-wave superconductor model
Directory of Open Access Journals (Sweden)
Li-Fang Li
2015-05-01
Full Text Available In a recent paper, arXiv:1309.4877, a holographic p-wave model has been proposed in an Einstein–Maxwell-complex vector field theory with a negative cosmological constant. The model exhibits rich phase structure depending on the mass and the charge of the vector field. We investigate the behavior of the entanglement entropy of dual field theory in this model. When the above two model parameters change, we observe the second order, first order and zeroth order phase transitions from the behavior of the entanglement entropy at some intermediate temperatures. These imply that the entanglement entropy can indicate not only the occurrence of the phase transition, but also the order of the phase transition. The entanglement entropy is indeed a good probe to phase transition. Furthermore, the “retrograde condensation” which is a sub-dominated phase is also reflected on the entanglement entropy.
A RECONNECTION-DRIVEN RAREFACTION WAVE MODEL FOR CORONAL OUTFLOWS
International Nuclear Information System (INIS)
Bradshaw, S. J.; Aulanier, G.; Del Zanna, G.
2011-01-01
We conduct numerical experiments to determine whether interchange reconnection at high altitude coronal null points can explain the outflows observed as blueshifts in coronal emission lines at the boundaries between open and closed magnetic field regions. In this scenario, a strong, post-reconnection pressure gradient forms in the field-aligned direction when dense and hot, active region core loops reconnect with neighboring tenuous and cool, open field lines. We find that the pressure gradient drives a supersonic outflow and a rarefaction wave develops in both the open and closed post-reconnection magnetic field regions. We forward-model the spectral line profiles for a selection of coronal emission lines to predict the spectral signatures of the rarefaction wave. We find that the properties of the rarefaction wave are consistent with the observed velocity versus temperature structure of the corona in the outflow regions, where the velocity increases with the formation temperature of the emission lines. In particular, we find excellent agreement between the predicted and observed Fe XII 195.119 Å spectral line profiles in terms of the blueshift (10 km s –1 ), full width at half-maximum (83 mÅ) and symmetry. Finally, we find that T i e in the open field region, which indicates that the interchange reconnection scenario may provide a viable mechanism and source region for the slow solar wind.
Jacobson, Abram R.; Shao, Xuan-Min; Holzworth, Robert
2009-03-01
A model is developed for calculating ionospheric reflection of electromagnetic pulses emitted by lightning, with most energy in the long-wave spectral region (f ~ 3-100 kHz). The building block of the calculation is a differential equation full-wave solution of Maxwell's equations for the complex reflection of individual plane waves incident from below, by the anisotropic, dissipative, diffuse dielectric profile of the lower ionosphere. This full-wave solution is then put into a summation over plane waves in an angular direct Fourier transform to obtain the reflection properties of curved wavefronts. This step models also the diffraction effects of long-wave ionospheric reflections observed at short or medium range (~200-500 km). The calculation can be done with any arbitrary but smooth dielectric profile versus altitude. For an initial test, this article uses the classic D region exponential profiles of electron density and collision rate given by Volland. With even these simple profiles, our model of full-wave reflection of curved wavefronts captures some of the basic attributes of observed reflected waveforms recorded with the Los Alamos Sferic Array. A follow-on article will present a detailed comparison with data in order to retrieve ionospheric parameters.
Modeling Whistler Wave Generation Regimes In Magnetospheric Cyclotron Maser
Pasmanik, D. L.; Demekhov, A. G.; Trakhtengerts, V. Y.; Parrot, M.
Numerical analysis of the model for cyclotron instability development in the Earth magnetosphere is made.This model, based on the self-consistent set of equations of quasi-linear plasma theory, describes different regimes of wave generation and related energetic particle precipitation. As the source of free energy the injection of energetic electrons with transverse anisotropic distribution function to the interaction region is considered. Two different mechanisms of energetic electron loss from the interaction region are discussed. The first one is precipitation of energetic particles via the loss cone. The other mechanism is drift of particles away from the interaction region across the mag- netic field line. In the case of interaction in plasmasphere or rather large areas of cold plasma density enhancement the loss cone precipitation are dominant. For interaction in a subauroral duct losses due to drift are most effective. A parametric study of the model for both mechanisms of particle losses is made. The main attention is paid to the analysis of generation regimes for different characteristics of energetic electron source, such as the shape of pitch-angle distributions and elec- tron density. We show that in addition to the well-known stationary generation and periodic regime with successive spikes of similar shape, more complex forms of wave spectrum exist. In particular, we found a periodic regime, in which a single period in- cludes two separate spikes with different spectral shapes. In another regime, periodic generation of spikes at higher frequencies together with quasi-stationary generation at lower frequencies occurs. Quasi-periodic regime with spike overlapping, i.e. when generation of a new spike begins before the previous one is over is also found. Results obtained are compared with experimental data on quasi-periodic regimes of whistler wave generation.
Wave modelling for the North Indian Ocean using MSMR analysed winds
Digital Repository Service at National Institute of Oceanography (India)
Vethamony, P.; Sudheesh, K.; Rupali, S.P.; Babu, M.T.; Jayakumar, S.; Saran, A.K.; Basu, S.K.; Kumar, R.; Sarkar, A.
NCMRWF (National Centre for Medium Range Weather Forecast) winds assimilated with MSMR (Multi-channel Scanning Microwave Radiometer) winds are used as input to MIKE21 Offshore Spectral Wave model (OSW) which takes into account wind induced wave...
Reference Model 6 (RM6): Oscillating Wave Energy Converter.
Energy Technology Data Exchange (ETDEWEB)
Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard Alan
2014-10-01
This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour ($/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.
Model of the electromagnetic waves processing in ultrasound
International Nuclear Information System (INIS)
Abrego L, J.; Azorin N, J.; Siles A, S.; Cruz O, A.
2004-01-01
In this work, a model to process the electromagnetic waves in ultrasonic equipment is proposed and it is experimentally demonstrated that, the origin of the ultrasound is electronic and non mechanic. The above mentioned, it has been demonstrated when making in an electronic equipment a spectral analysis the one that indicated an unfolding of the original ultrasonic pulses of 17 K Hz., to 88 K Hz., and of 5 MHz., to 23 GHz. Also, it was obtained the degradation with ultrasound of particles of Hematite and of Galena, as well as the fading of the methylene blue and the generation of an electric current exciting with ultrasound. (Author)
Planetary wave prediction: Benefits of tropical data and global models
Somerville, R. C. J.
1985-01-01
Skillful numerical predictions of midlatitude atmospheric planetary waves generally require both tropical data for the initial conditions and a global domain for the forecast model. The lack of either adequate tropical observations or a global domain typically leads to a significant degradation of forecast skill in middle latitudes within the first one to three days of the forecast period. These effects were first discovered by numerical experimentation. They were subsequently explained theoretically, and their importance for practical forecasting was confirmed in a series of prediction experiments using FGGE data.
Innovative technologies to accurately model waves and moored ship motions
CSIR Research Space (South Africa)
van der Molen, W
2010-09-01
Full Text Available swells that could excite low-frequency ship motions. The paddles are driven by signal-generation software capable of creating short crested waves with set- down compensation to simulate second-order boundary conditions, thereby forming the theoretical... mass and weight distribution. The vertical placement of blocks is calibrated such that the centre of gravity is at the correct height, while the horizontal placement is chosen such that the moments of inertia for pitch and roll are correct. The model...
A probabilistic method for constructing wave time-series at inshore locations using model scenarios
Long, Joseph W.; Plant, Nathaniel G.; Dalyander, P. Soupy; Thompson, David M.
2014-01-01
Continuous time-series of wave characteristics (height, period, and direction) are constructed using a base set of model scenarios and simple probabilistic methods. This approach utilizes an archive of computationally intensive, highly spatially resolved numerical wave model output to develop time-series of historical or future wave conditions without performing additional, continuous numerical simulations. The archive of model output contains wave simulations from a set of model scenarios derived from an offshore wave climatology. Time-series of wave height, period, direction, and associated uncertainties are constructed at locations included in the numerical model domain. The confidence limits are derived using statistical variability of oceanographic parameters contained in the wave model scenarios. The method was applied to a region in the northern Gulf of Mexico and assessed using wave observations at 12 m and 30 m water depths. Prediction skill for significant wave height is 0.58 and 0.67 at the 12 m and 30 m locations, respectively, with similar performance for wave period and direction. The skill of this simplified, probabilistic time-series construction method is comparable to existing large-scale, high-fidelity operational wave models but provides higher spatial resolution output at low computational expense. The constructed time-series can be developed to support a variety of applications including climate studies and other situations where a comprehensive survey of wave impacts on the coastal area is of interest.
On integrable models from pp-wave string backgrounds
Bakas, Ioannis; Bakas, Ioannis; Sonnenschein, Jacob
2002-01-01
We construct solutions of type IIB supergravity with non-trivial Ramond-Ramond 5-form in ten dimensions by replacing the transverse flat space of pp-wave backgrounds with exact $N=(4,4)$ $c=4$ superconformal field theory blocks. These solutions, which also include a dilaton and (in some cases) an anti-symmetric tensor field, lead to integrable models on the world-sheet in the light-cone gauge of string theory. In one instance we demonstrate explicitly the emergence of the complex sine-Gordon model, which coincides with integrable perturbations of the corresponding superconformal building blocks in the transverse space. In other cases we arrive at the supersymmetric Liouville theory or at the complex sine-Liouville model. For axionic instantons in the transverse space, as for the (semi)-wormhole geometry, we obtain an entire class of supersymmetric pp-wave backgrounds by solving the Killing spinor equations as in flat space, supplemented by the appropriate chiral projections; as such, they generalize the usual...
Validation of Hydrodynamic Numerical Model of a Pitching Wave Energy Converter
DEFF Research Database (Denmark)
López, Maria del Pilar Heras; Thomas, Sarah; Kramer, Morten Mejlhede
2017-01-01
Validation of numerical model is essential in the development of new technologies. Commercial software and codes available simulating wave energy converters (WECs) have not been proved to work for all the available and upcoming technologies yet. The present paper presents the first stages...... of the validation process of a hydrodynamic numerical model for a pitching wave energy converter. The development of dry tests, wave flume and wave basin experiments are going to be explained, lessons learned shared and results presented....
Model for a collimated spin wave beam generated by a single layer, spin torque nanocontact
Hoefer, M. A.; Silva, T. J.; Stiles, M. D.
2007-01-01
A model of spin torque induced magnetization dynamics based upon semi-classical spin diffusion theory for a single layer nanocontact is presented. The model incorporates effects due to the current induced Oersted field and predicts the generation of a variety of spatially dependent, coherent, precessional magnetic wave structures. Directionally controllable collimated spin wave beams, vortex spiral waves, and localized standing waves are found to be excited by the interplay of the Oersted fie...
International Nuclear Information System (INIS)
Belmonte-Beitia, Juan; Perez-Garcia, Victor M.; Vekslerchik, Vadym
2007-01-01
In this paper, we study a system of coupled nonlinear Schroedinger equations modelling a quantum degenerate mixture of bosons and fermions. We analyze the stability of plane waves, give precise conditions for the existence of solitons and write explicit solutions in the form of periodic waves. We also check that the solitons observed previously in numerical simulations of the model correspond exactly to our explicit solutions and see how plane waves destabilize to form periodic waves
pp-wave matrix models from point-like gravitons
Energy Technology Data Exchange (ETDEWEB)
Lozano, Y. [Departamento de Fisica, Universidad de Oviedo, Av. Calvo Sotelo 18, 33007 Oviedo (Spain); Rodriguez-Gomez, D. [Department of Physics, Princeton University, Princeton, NJ 08540 (United States)
2007-05-15
The BFSS Matrix model can be regarded as a theory of coincident M-theory gravitons. In this spirit, we summarize how using the action for coincident gravitons proposed in hep-th/0207199 it is possible to go beyond the linear order approximation of Kabat and Taylor, and to provide a satisfactory microscopical description of giant gravitons in AdS{sub m} x S{sup n} backgrounds. We then show that in the M-theory maximally supersymmetric pp-wave background, the action for coincident gravitons, besides reproducing the BMN Matrix model, predicts a new quadrupolar coupling to the M-theory 6-form potential, which supports the so far elusive fuzzy 5-sphere giant graviton solution. Finally, we discuss similar Matrix models that can be derived in Type II string theories using dualities. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
Hydro-morphological modelling of small, wave-dominated estuaries
Slinger, Jill H.
2017-11-01
Small, intermittently open or closed estuaries are characteristic of the coasts of South Africa, Australia, California, Mexico and many other areas of the world. However, modelling attention has tended to focus on big estuaries that drain large catchments and serve a wide diversity of interests e.g. agriculture, urban settlement, recreation, commercial fishing. In this study, the development of a simple, parametric, system dynamics model to simulate the opening and closure of the mouths of small, wave-dominated estuaries is reported. In the model, the estuary is conceived as a basin with a specific water volume to water level relationship, connected to the sea by a channel of fixed width, but variable sill height. Changes in the form of the basin are not treated in the model, while the dynamics of the mouth channel are central to the model. The magnitude and direction of the flow through the mouth determines whether erosion or deposition of sediment occurs in the mouth channel, influencing the sill height. The model is implemented on the Great Brak Estuary in South Africa and simulations reveal that the raised low water levels in the estuary during spring tide relative to neap tide, are occasioned by the constriction of the tidal flow through the shallow mouth. Freshwater inflows to the estuary are shown to be significant in determining the behaviour of the inlet mouth, a factor often ignored in studies on tidal inlets. Further it is the balance between freshwater inflows and wave events that determines the opening or closure of the mouth of a particular estuary.
Wang, D.; Shprits, Y.; Spasojevic, M.; Zhu, H.; Aseev, N.; Drozdov, A.; Kellerman, A. C.
2017-12-01
In situ satellite observations, theoretical studies and model simulations suggested that chorus waves play a significant role in the dynamic evolution of relativistic electrons in the Earth's radiation belts. In this study, we developed new wave frequency and amplitude models that depend on Magnetic Local Time (MLT)-, L-shell, latitude- and geomagnetic conditions indexed by Kp for upper-band and lower-band chorus waves using measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument onboard the Van Allen Probes. Utilizing the quasi-linear full diffusion code, we calculated corresponding diffusion coefficients in each MLT sector (1 hour resolution) for upper-band and lower-band chorus waves according to the new developed wave models. Compared with former parameterizations of chorus waves, the new parameterizations result in differences in diffusion coefficients that depend on energy and pitch angle. Utilizing obtained diffusion coefficients, lifetime of energetic electrons is parameterized accordingly. In addition, to investigate effects of obtained diffusion coefficients in different MLT sectors and under different geomagnetic conditions, we performed simulations using four-dimensional Versatile Electron Radiation Belt simulations and validated results against observations.
DISCRETE DEFORMATION WAVE DYNAMICS IN SHEAR ZONES: PHYSICAL MODELLING RESULTS
Directory of Open Access Journals (Sweden)
S. A. Bornyakov
2016-01-01
Full Text Available Observations of earthquake migration along active fault zones [Richter, 1958; Mogi, 1968] and related theoretical concepts [Elsasser, 1969] have laid the foundation for studying the problem of slow deformation waves in the lithosphere. Despite the fact that this problem has been under study for several decades and discussed in numerous publications, convincing evidence for the existence of deformation waves is still lacking. One of the causes is that comprehensive field studies to register such waves by special tools and equipment, which require sufficient organizational and technical resources, have not been conducted yet.The authors attempted at finding a solution to this problem by physical simulation of a major shear zone in an elastic-viscous-plastic model of the lithosphere. The experiment setup is shown in Figure 1 (A. The model material and boundary conditions were specified in accordance with the similarity criteria (described in detail in [Sherman, 1984; Sherman et al., 1991; Bornyakov et al., 2014]. The montmorillonite clay-and-water paste was placed evenly on two stamps of the installation and subject to deformation as the active stamp (1 moved relative to the passive stamp (2 at a constant speed. The upper model surface was covered with fine sand in order to get high-contrast photos. Photos of an emerging shear zone were taken every second by a Basler acA2000-50gm digital camera. Figure 1 (B shows an optical image of a fragment of the shear zone. The photos were processed by the digital image correlation method described in [Sutton et al., 2009]. This method estimates the distribution of components of displacement vectors and strain tensors on the model surface and their evolution over time [Panteleev et al., 2014, 2015].Strain fields and displacements recorded in the optical images of the model surface were estimated in a rectangular box (220.00×72.17 mm shown by a dot-and-dash line in Fig. 1, A. To ensure a sufficient level of
O'Boyle, Louise; Whittaker, Trevor; Cox, Ronadh; Elsäßer, Björn
2017-04-01
During the winter of 2013-2014 the west coast of Ireland was exposed to 6 storms over a period of 8 weeks with wind speeds equating to hurricane categories 3 and 4. During this period, the largest significant wave height recorded at the Marine Institute M6 wave buoy, approximately 300km from the site, was 13.6m (on 26th January 2014). However, this may not be the largest sea state of that winter, because the buoy stopped logging on 30th January and therefore failed to capture the full winter period. During the February 12th 2014 "Darwin" storm, the Kinsale Energy Gas Platform off Ireland's south coast measured a wave height of 25 m, which remains the highest wave measured off Ireland's coasts[1]. Following these storms, significant dislocation and transportation of boulders and megagravel was observed on the Aran Islands, Co. Galway at elevations of up to 25m above the high water mark and distances up to 220 m inland including numerous clasts with masses >50t, and at least one megagravel block weighing >500t [2]. Clast movements of this magnitude would not have been predicted from the measured wave heights. This highlights a significant gap in our understanding of the relationships between storms and the coastal environment: how are storm waves amplified and modified by interactions with bathymetry? To gain further understanding of wave amplification, especially over steep and irregular bathymetry, we have designed Froude-scaled wave tank experiments using the 3D coastal wave basin facility at Queen's University Belfast. The basin is 18m long by 16m wide with wave generation by means of a 12m wide bank of 24 top hinged, force feedback, sector carrier wave paddles at one end. The basin is equipped with gravel beaches to dissipate wave energy on the remaining three sides, capable of absorbing up to 99% of the incident wave energy, to prevent unwanted reflections. Representative bathymetry for the Aran Islands is modelled in the basin based on a high resolution
Seismoelectric wave propagation numerical modelling in partially saturated materials
Warden, S.; Garambois, S.; Jouniaux, L.; Brito, D.; Sailhac, P.; Bordes, C.
2013-09-01
To better understand and interpret seismoelectric measurements acquired over vadose environments, both the existing theory and the wave propagation modelling programmes, available for saturated materials, should be extended to partial saturation conditions. We propose here an extension of Pride's equations aiming to take into account partially saturated materials, in the case of a water-air mixture. This new set of equations was incorporated into an existing seismoelectric wave propagation modelling code, originally designed for stratified saturated media. This extension concerns both the mechanical part, using a generalization of the Biot-Gassmann theory, and the electromagnetic part, for which dielectric permittivity and electrical conductivity were expressed against water saturation. The dynamic seismoelectric coupling was written as a function of the streaming potential coefficient, which depends on saturation, using four different relations derived from recent laboratory or theoretical studies. In a second part, this extended programme was used to synthesize the seismoelectric response for a layered medium consisting of a partially saturated sand overburden on top of a saturated sandstone half-space. Subsequent analysis of the modelled amplitudes suggests that the typically very weak interface response (IR) may be best recovered when the shallow layer exhibits low saturation. We also use our programme to compute the seismoelectric response of a capillary fringe between a vadose sand overburden and a saturated sand half-space. Our first modelling results suggest that the study of the seismoelectric IR may help to detect a sharp saturation contrast better than a smooth saturation transition. In our example, a saturation contrast of 50 per cent between a fully saturated sand half-space and a partially saturated shallow sand layer yields a stronger IR than a stepwise decrease in saturation.
Modeling whistler wave generation regimes in magnetospheric cyclotron maser
Directory of Open Access Journals (Sweden)
D. L. Pasmanik
2004-11-01
Full Text Available Numerical analysis of the model for cyclotron instability in the Earth's magnetosphere is performed. This model, based on the self-consistent set of equations of quasi-linear plasma theory, describes different regimes of wave generation and related energetic particle precipitation. As the source of free energy the injection of energetic electrons with transverse anisotropic distribution function to the interaction region is considered. A parametric study of the model is performed. The main attention is paid to the analysis of generation regimes for different characteristics of energetic electron source, such as the shape of pitch angle distributions and its intensity. Two mechanisms of removal of energetic electrons from a generation region are considered, one is due to the particle precipitation through the loss cone and another one is related to the magnetic drift of energetic particles. It was confirmed that two main regimes occur in this system in the presence of a constant particle source, in the case of precipitation losses. At small source intensity relaxation oscillations were found, whose parameters are in good agreement with simplified analytical theory developed earlier. At a larger source intensity, transition to a periodic generation occurs. In the case of drift losses the regime of self-sustained periodic generation regime is realized for source intensity higher than some threshold. The dependencies of repetition period and dynamic spectrum shape on the source parameters were studied in detail. In addition to simple periodic regimes, those with more complex spectral forms were found. In particular, alteration of spikes with different spectral shape can take place. It was also shown that quasi-stationary generation at the low-frequency band can coexist with periodic modulation at higher frequencies. On the basis of the results obtained, the model for explanation of quasi-periodic whistler wave emissions is verified.
Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter
Energy Technology Data Exchange (ETDEWEB)
Yu, Y. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenne, D. S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Copping, A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, L. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-01-01
This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.
Modeling whistler wave generation regimes in magnetospheric cyclotron maser
Directory of Open Access Journals (Sweden)
D. L. Pasmanik
2004-11-01
Full Text Available Numerical analysis of the model for cyclotron instability in the Earth's magnetosphere is performed. This model, based on the self-consistent set of equations of quasi-linear plasma theory, describes different regimes of wave generation and related energetic particle precipitation. As the source of free energy the injection of energetic electrons with transverse anisotropic distribution function to the interaction region is considered. A parametric study of the model is performed. The main attention is paid to the analysis of generation regimes for different characteristics of energetic electron source, such as the shape of pitch angle distributions and its intensity. Two mechanisms of removal of energetic electrons from a generation region are considered, one is due to the particle precipitation through the loss cone and another one is related to the magnetic drift of energetic particles.
It was confirmed that two main regimes occur in this system in the presence of a constant particle source, in the case of precipitation losses. At small source intensity relaxation oscillations were found, whose parameters are in good agreement with simplified analytical theory developed earlier. At a larger source intensity, transition to a periodic generation occurs. In the case of drift losses the regime of self-sustained periodic generation regime is realized for source intensity higher than some threshold. The dependencies of repetition period and dynamic spectrum shape on the source parameters were studied in detail. In addition to simple periodic regimes, those with more complex spectral forms were found. In particular, alteration of spikes with different spectral shape can take place. It was also shown that quasi-stationary generation at the low-frequency band can coexist with periodic modulation at higher frequencies.
On the basis of the results obtained, the model for explanation of
On wave breaking for Boussinesq-type models
Kazolea, M.; Ricchiuto, M.
2018-03-01
We consider the issue of wave breaking closure for Boussinesq type models, and attempt at providing some more understanding of the sensitivity of some closure approaches to the numerical set-up, and in particular to mesh size. For relatively classical choices of weakly dispersive propagation models, we compare two closure strategies. The first is the hybrid method consisting in suppressing the dispersive terms in breaking regions, as initially suggested by Tonelli and Petti in 2009. The second is an eddy viscosity approach based on the solution of a a turbulent kinetic energy. The formulation follows early work by O. Nwogu in the 90's, and some more recent developments by Zhang and co-workers (Ocean Mod. 2014), adapting it to be consistent with the wave breaking detection used here. We perform a study of the behaviour of the two closures for different mesh sizes, with attention to the possibility of obtaining grid independent results. Based on a classical shallow water theory, we also suggest some monitors to quantify the different contributions to the dissipation mechanism, differentiating those associated to the scheme from those of the partial differential equation. These quantities are used to analyze the dynamics of dissipation in some classical benchmarks, and its dependence on the mesh size. Our main results show that numerical dissipation contributes very little to the the results obtained when using eddy viscosity method. This closure shows little sensitivity to the grid, and may lend itself to the development and use of non-dissipative/energy conserving numerical methods. The opposite is observed for the hybrid approach, for which numerical dissipation plays a key role, and unfortunately is sensitive to the size of the mesh. In particular, when working, the two approaches investigated provide results which are in the same ball range and which agree with what is usually reported in literature. With the hybrid method, however, the inception of instabilities
Eckermann, S. D.; Broutman, D.; Ma, J.; Doyle, J. D.; Pautet, P. D.; Taylor, M. J.; Bossert, K.; Williams, B. P.; Fritts, D. C.; Smith, R. B.; Kuhl, D.; Hoppel, K.; McCormack, J. P.; Ruston, B. C.; Baker, N. L.; Viner, K.; Whitcomb, T.; Hogan, T. F.; Peng, M.
2016-12-01
The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was an international aircraft-based field program to observe and study the end-to-end dynamics of atmospheric gravity waves from 0-100 km altitude and the effects on atmospheric circulations. On 14 July 2014, aircraft remote-sensing instruments detected large-amplitude gravity-wave oscillations within mesospheric airglow and sodium layers downstream of the Auckland Islands, located 1000 km south of Christchurch, New Zealand. A high-altitude reanalysis and a three-dimensional Fourier gravity wave model are used to investigate the dynamics of this event from the surface to the mesosphere. At 0700 UTC when first observations were made, surface flow across the islands' terrain generated linear three-dimensional wavefields that propagated rapidly to ˜78 km altitude, where intense breaking occurred in a narrow layer beneath a zero-wind region at ˜83 km altitude. In the following hours, the altitude of weak winds descended under the influence of a large-amplitude migrating semidiurnal tide, leading to intense breaking of these wavefields in subsequent observations starting at 1000 UTC. The linear Fourier model constrained by upstream reanalysis reproduces the salient aspects of observed wavefields, including horizontal wavelengths, phase orientations, temperature and vertical displacement amplitudes, heights and locations of incipient wave breaking, and momentum fluxes. Wave breaking has huge effects on local circulations, with inferred layer-averaged westward mean-flow accelerations of ˜350 m s-1 hour-1 and dynamical heating rates of ˜8 K hour-1, supporting recent speculation of important impacts of orographic gravity waves from subantarctic islands on the mean circulation and climate of the middle atmosphere during austral winter. We also study deep orographic gravity waves from islands during DEEPWAVE more widely using observations from the Atmospheric Infrared Sounder (AIRS) and high-resolution high
Compound waves in a higher order nonlinear model of thermoviscous fluids
DEFF Research Database (Denmark)
Rønne Rasmussen, Anders; Sørensen, Mads Peter; Gaididei, Yuri B.
2016-01-01
A generalized traveling wave ansatz is used to investigate compound shock waves in a higher order nonlinear model of a thermoviscous fluid. The fluid velocity potential is written as a traveling wave plus a linear function of space and time. The latter offers the possibility of predicting...
Model based feasibility study on bidirectional check valves in wave energy converters
DEFF Research Database (Denmark)
Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole
2014-01-01
Discrete fluid power force systems have been proposed as the primary stage for Wave Energy Converters (WEC’s) when converting ocean waves into electricity, this to improve the overall efficiency of wave energy devices. This paper presents a model based feasibility study of using bidirectional check...... structural loads in the WEC....
Modelling of Wave Attenuation Induced by Multi-Purpose Floating Structures
DEFF Research Database (Denmark)
Stratigaki, Vasiliki; Troch, Peter; Stallard, Tim
2014-01-01
, polychromatic, long- and short-crested irregular waves), WEC response and modification of the wave field have been measured to provide data for the understanding of WEC farm interactions and for the evaluation of farm interaction numerical models. A first extensive wave farm database is established...
Wind-wave amplification mechanisms: possible models for steep wave events in finite depth
Directory of Open Access Journals (Sweden)
P. Montalvo
2013-11-01
Full Text Available We extend the Miles mechanism of wind-wave generation to finite depth. A β-Miles linear growth rate depending on the depth and wind velocity is derived and allows the study of linear growth rates of surface waves from weak to moderate winds in finite depth h. The evolution of β is plotted, for several values of the dispersion parameter kh with k the wave number. For constant depths we find that no matter what the values of wind velocities are, at small enough wave age the β-Miles linear growth rates are in the known deep-water limit. However winds of moderate intensities prevent the waves from growing beyond a critical wave age, which is also constrained by the water depth and is less than the wave age limit of deep water. Depending on wave age and wind velocity, the Jeffreys and Miles mechanisms are compared to determine which of them dominates. A wind-forced nonlinear Schrödinger equation is derived and the Akhmediev, Peregrine and Kuznetsov–Ma breather solutions for weak wind inputs in finite depth h are obtained.
Directory of Open Access Journals (Sweden)
Irena Landeka Jurčević
2017-01-01
Full Text Available The study examines the potential of wine industry by-product, the lees, as a rich mixture of natural polyphenols, and its physiological potential to reduce postprandial metabolic and oxidative stress caused by a cholesterol-rich diet in in vivo model. Chemical analysis of wine lees showed that their total solid content was 94.2 %. Wine lees contained total phenols, total nonflavonoids and total flavonoids expressed in mg of gallic acid equivalents per 100 g of dry mass: 2316.6±37.9, 1332.5±51.1 and 984.1±28.2, respectively. The content of total anthocyanins expressed in mg of cyanidin-3-glucoside equivalents per 100 g of dry mass was 383.1±21.6. Antioxidant capacity of wine lees determined by the DPPH and FRAP methods and expressed in mM of Trolox equivalents per 100 g was 259.8±1.8 and 45.7±1.05, respectively. The experiment lasted 60 days using C57BL/6 mice divided in four groups: group 1 was fed normal diet and used as control, group 2 was fed normal diet with added wine lees, group 3 was fed high-cholesterol diet (HCD, i.e. normal diet with the addition of sunflower oil, and group 4 was fed HCD with wine lees. HCD increased serum total cholesterol (TC by 2.3-fold, triacylglycerol (TAG by 1.5-fold, low-density lipoprotein (LDL by 3.5-fold and liver malondialdehyde (MDA by 50 %, and reduced liver superoxide dismutase (SOD by 50 %, catalase (CAT by 30 % and glutathione (GSH by 17.5 % compared to control. Conversely, treatment with HCD and wine lees reduced TC and LDL up to 1.4 times more than with HCD only, with depletion of lipid peroxidation (MDA and restoration of SOD and CAT activities in liver, approximating values of the control. HDL levels were unaffected in any group. Serum transaminase activity showed no hepatotoxic properties in the treatment with lees alone. In the proposed model, wine lees as a rich polyphenol source could be a basis for functional food products without alcohol.
Alfven-wave particle interaction in finite-dimensional self-consistent field model
International Nuclear Information System (INIS)
Padhye, N.; Horton, W.
1998-01-01
A low-dimensional Hamiltonian model is derived for the acceleration of ions in finite amplitude Alfven waves in a finite pressure plasma sheet. The reduced low-dimensional wave-particle Hamiltonian is useful for describing the reaction of the accelerated ions on the wave amplitudes and phases through the self-consistent fields within the envelope approximation. As an example, the authors show for a single Alfven wave in the central plasma sheet of the Earth's geotail, modeled by the linear pinch geometry called the Harris sheet, the time variation of the wave amplitude during the acceleration of fast protons
Experimental Validation of a Mathematical Model for Seabed Liquefaction Under Waves
DEFF Research Database (Denmark)
Sumer, B. Mutlu; Kirca, Özgür; Fredsøe, Jørgen
2012-01-01
This paper summarizes the results of an experimental study directed towards the validation of a mathematical model for the buildup of pore water pressure and resulting liquefaction of marine soils under progressive waves. Experiments were conducted under controlled conditions with silt (d(50) = 0.......070 mm) in a wave flume with a soil pit. Waves with wave heights in the range of 7.7-18 cm, 55-cm water depth and 1.6-s wave period enabled us to study both the liquefaction and no-liquefaction regime pore water pressure buildup. The experimental data were used to validate the model. A numerical example...
Between tide and wave marks: a unifying model of physical zonation on littoral shores
Directory of Open Access Journals (Sweden)
Christopher E. Bird
2013-09-01
Full Text Available The effects of tides on littoral marine habitats are so ubiquitous that shorelines are commonly described as ‘intertidal’, whereas waves are considered a secondary factor that simply modifies the intertidal habitat. However mean significant wave height exceeds tidal range at many locations worldwide. Here we construct a simple sinusoidal model of coastal water level based on both tidal range and wave height. From the patterns of emergence and submergence predicted by the model, we derive four vertical shoreline benchmarks which bracket up to three novel, spatially distinct, and physically defined zones. The (1 emergent tidal zone is characterized by tidally driven emergence in air; the (2 wave zone is characterized by constant (not periodic wave wash; and the (3 submergent tidal zone is characterized by tidally driven submergence. The decoupling of tidally driven emergence and submergence made possible by wave action is a critical prediction of the model. On wave-dominated shores (wave height ≫ tidal range, all three zones are predicted to exist separately, but on tide-dominated shores (tidal range ≫ wave height the wave zone is absent and the emergent and submergent tidal zones overlap substantially, forming the traditional “intertidal zone”. We conclude by incorporating time and space in the model to illustrate variability in the physical conditions and zonation on littoral shores. The wave:tide physical zonation model is a unifying framework that can facilitate our understanding of physical conditions on littoral shores whether tropical or temperate, marine or lentic.
Directory of Open Access Journals (Sweden)
A. V. Vikulin
2014-01-01
Full Text Available Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related. The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.
Numerical modelling of wind effects on breaking waves in the surf zone
Xie, Zhihua
2017-10-01
Wind effects on periodic breaking waves in the surf zone have been investigated in this study using a two-phase flow model. The model solves the Reynolds-averaged Navier-Stokes equations with the k - 𝜖 turbulence model simultaneously for the flows both in the air and water. Both spilling and plunging breakers over a 1:35 sloping beach have been studied under the influence of wind, with a focus during wave breaking. Detailed information of the distribution of wave amplitudes and mean water level, wave-height-to-water-depth ratio, the water surface profiles, velocity, vorticity, and turbulence fields have been presented and discussed. The inclusion of wind alters the air flow structure above water waves, increases the generation of vorticity, and affects the wave shoaling, breaking, overturning, and splash-up processes. Wind increases the water particle velocities and causes water waves to break earlier and seaward, which agrees with the previous experiment.
Enhanced micropolar model for wave propagation in granular materials
Merkel, Aurélien; Luding, Stefan
2016-04-01
well as a Cosserat model. The Cosserat model is derived from the discrete model through an expansion of the discrete displacement and particle rotation to continuum field variables. The long wavelength approximation of these two models are compared and, considering the discrete model as the reference, the Cosserat model shows inconsistent predictions of the bulk wave dispersion relations. The discrepancies between the two models are explained by an insufficient modeling of one of the particle interactions in the Cosserat model. A enhanced micropolar model is proposed to correctly describe all the particle interactions by including a new elastic tensor from the second order gradient micropolar theory. The enhanced micropolar model involve the minimum number of elastic constant to consistently predicts the bulk mode dispersion relations in the long wavelength limit.
Modeling the Complete Gravitational Wave Spectrum of Neutron Star Mergers.
Bernuzzi, Sebastiano; Dietrich, Tim; Nagar, Alessandro
2015-08-28
In the context of neutron star mergers, we study the gravitational wave spectrum of the merger remnant using numerical relativity simulations. Postmerger spectra are characterized by a main peak frequency f2 related to the particular structure and dynamics of the remnant hot hypermassive neutron star. We show that f(2) is correlated with the tidal coupling constant κ(2)^T that characterizes the binary tidal interactions during the late-inspiral merger. The relation f(2)(κ(2)^T) depends very weakly on the binary total mass, mass ratio, equation of state, and thermal effects. This observation opens up the possibility of developing a model of the gravitational spectrum of every merger unifying the late-inspiral and postmerger descriptions.
Colombian ocean waves and coasts modeled by special functions
Duque Tisnés, Simón
2013-06-01
Modeling the ocean bottom and surface of both Atlantic and Pacific Oceans near the Colombian coast is a subject of increasing attention due to the possibility of finding oil deposits that haven't been discovered, and as a way of monitoring the ocean limits of Colombia with other countries not only covering the possibility of naval intrusion but as a chance to detect submarine devices that are used by illegal groups for different unwished purposes. In the development of this topic it would be necessary to use Standard Hydrodynamic Equations to model the mathematical shape of ocean waves that will take differential equations forms. Those differential equations will be solved using computer algebra software and methods. The mentioned solutions will involve the use of Special Functions such as Bessel Functions, Whittaker, Heun, and so on. Using the Special Functions mentioned above, the obtained results will be simulated by numerical methods obtaining the typical patterns around the Colombian coasts (both surface and bottom). Using this simulation as a non-perturbed state, any change in the patter could be taken as an external perturbation caused by a strange body or device in an specific area or region modeled, building this simulation as an ocean radar or an unusual object finder. It's worth mentioning that the use of stronger or more rigorous methods and more advanced Special Functions would generate better theoretical results, building a more accurate simulation model that would lead to a finest detection.
Grevemeyer, Ingo; Lange, Dietrich; Schippkus, Sven
2016-04-01
The lithosphere is the outermost solid layer of the Earth and includes the brittle curst and brittle uppermost mantle. It is underlain by the asthenosphere, the weaker and hotter portion of the mantle. The boundary between the brittle lithosphere and the asthenosphere is call the lithosphere-asthenosphere boundary, or LAB. The oceanic lithosphere is created at spreading ridges and cools and thickens with age. Seismologists define the LAB by the presence of a low shear wave velocity zone beneath a high velocity lid. Surface waves from earthquakes occurring in young oceanic lithosphere should sample lithospheric structure when being recorded in the vicinity of a mid-ocean ridge. Here, we study group velocity and dispersion of Rayleigh waves caused by earthquakes occurring at transform faults in the Central Atlantic Ocean. Earthquakes were recorded either by a network of wide-band (up to 60 s) ocean-bottom seismometers (OBS) deployed at the Mid-Atlantic Ridge near 15°N or at the Global Seismic Network (GSN) Station ASCN on Ascension Island. Surface waves sampling young Atlantic lithosphere indicate systematic age-dependent changes of group velocities and dispersion of Rayleigh waves. With increasing plate age maximum group velocity increases (as a function of period), indicating cooling and thickening of the lithosphere. Shear wave velocity is derived inverting the observed dispersion of Rayleigh waves. Further, models derived from the OBS records were refined using waveform modelling of vertical component broadband data at periods of 15 to 40 seconds, constraining the velocity structure of the uppermost 100 km and hence in the depth interval of the mantle where lithospheric cooling is most evident. Waveform modelling supports that the thickness of lithosphere increases with age and that velocities in the lithosphere increase, too.
DEFF Research Database (Denmark)
Air and sea interacts, where winds generate waves and waves affect the winds. This topic is ever relevant for offshore functions such as shipping, portal routines, wind farm operation and maintenance. In a coupled modeling system, the atmospheric modeling and the wave modeling interfere with each...... use the stress directly, thus avoiding the uncertainties caused by parameterizations. This study examines the efficiency of the wave impact transfer to the atmospheric modeling through the two types of interfaces, roughness length and stress, through the coupled-ocean...
National Research Council Canada - National Science Library
Basu, Bamandas
2008-01-01
Linear dispersion relations for electrostatic waves in spatially inhomogeneous, current-carrying anisotropic plasma, where the equilibrium particle velocity distributions are modeled by various Lorentzian (kappa...
The Red Sea: An Arena for Wind-Wave Modeling in Enclosed Seas
Langodan, Sabique
2016-12-01
Wind and waves play a major role in important ocean dynamical processes, such as the exchange of heat, momentum and gases between atmosphere and ocean, that greatly contributes to the earth climate and marine lives. Knowledge on wind and wave weather and climate is crucial for a wide range of applications, including oceanographic studies, maritime activities and ocean engineering. Despite being one of the important world shipping routes, the wind-wave characteristics in the Red Sea are yet to be fully explored. Because of the scarcity of waves data in the Red Sea, numerical models become crucial and provide very powerful tools to extrapolate wind and wave data in space, and backward and forward in time. Unlike open oceans, enclosed basins wave have different characteristics, mainly because of their local generation processes. The complex orography on both sides of the Red Sea makes the local wind, and consequently wave, modeling very challenging. This thesis considers the modeling of wind-wave characteristics in the Red Sea, including their climate variability and trends using state-of-the-art numerical models and all available observations. Different approaches are investigated to model and understand the general and unusual wind and wave conditions in the basin using standard global meteorological products and customised regional wind and wave models. After studying and identifying the main characteristics of the wind-wave variability in the Red Sea, we demonstrate the importance of generating accurate atmospheric forcing through data assimilation for reliable wave simulations. In particular, we show that the state-of-the-art physical formulation of wave models is not suitable to model the unique situation of the two opposing wind-waves systems in the Red Sea Convergence Zone, and propose and successfully test a modification to the input and white-capping source functions to address this problem. We further investigate the climate variability and trends of wind
Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling
Liu, Shaolin
2017-09-28
The development of an efficient algorithm for teleseismic wave field modeling is valuable for calculating the gradients of the misfit function (termed misfit gradients) or Fréchet derivatives when the teleseismic waveform is used for adjoint tomography. Here, we introduce an element-by-element parallel spectral-element method (EBE-SEM) for the efficient modeling of teleseismic wave field propagation in a reduced geology model. Under the plane-wave assumption, the frequency-wavenumber (FK) technique is implemented to compute the boundary wave field used to construct the boundary condition of the teleseismic wave incidence. To reduce the memory required for the storage of the boundary wave field for the incidence boundary condition, a strategy is introduced to efficiently store the boundary wave field on the model boundary. The perfectly matched layers absorbing boundary condition (PML ABC) is formulated using the EBE-SEM to absorb the scattered wave field from the model interior. The misfit gradient can easily be constructed in each time step during the calculation of the adjoint wave field. Three synthetic examples demonstrate the validity of the EBE-SEM for use in teleseismic wave field modeling and the misfit gradient calculation.
An assessment of wind forcing impact on a spectral wave model for ...
Indian Academy of Sciences (India)
The focus of the present study is the assessment of the impact of wind forcing on the spectral wave model MIKE 21 SW in the Indian Ocean region. Three different wind fields, namely the ECMWF analyzed winds, the ECMWF blended winds, and the NCEP blended winds have been used to drive the model. The wave model ...
Lee Acculturation Dream Scale for Korean-American college students.
Lee, Sang Bok
2005-04-01
This study examined acculturation as represented in dream narratives of 165 Korean immigrant college students living in the USA. A total of 165 dreams were collected and evaluated using the Lee Acculturation Dream Scale, for which locations of dream contents were coded. 39% of the dreams took place in South Korea, while 38% were in the USA. Also, 16% of the dreams included both locations, whereas 7% had no specific dream location. The dreams contained overlapping dream messages, images, scenes, and interactions in both South Korea and the USA. A two-sample t test on the mean scores of the Lee Acculturation Dream Scale indicated no significant difference between men and women.
Lee-Wick indefinite metric quantization: A functional integral approach
International Nuclear Information System (INIS)
Boulware, D.G.; Gross, D.J.
1984-01-01
In an attempt to study the stability of the Lee-Wick indefinite metric theory, the functional integral for indefinite metric quantum field theories is derived. Theories with an indefinite classical energy may be quantized with either a normal metric and an indefinite energy in Minkowski space or an indefinite metric and a positive energy in euclidean space. However, the functional integral in the latter formulation does not incorporate the Lee-Wick prescription for assuring the unitarity of the positive energy positive metric sector of the theory, hence the stability of the theory cannot be studied non-perturbatively. (orig.)
Satellite data for systematic validation of wave model results in the Black Sea
Behrens, Arno; Staneva, Joanna
2017-04-01
The Black Sea is with regard to the availability of traditional in situ wave measurements recorded by usual waverider buoys a data sparse semi-enclosed sea. The only possibility for systematic validations of wave model results in such a regional area is the use of satellite data. In the frame of the COPERNICUS Marine Evolution System for the Black Sea that requires wave predictions, the third-generation spectral wave model WAM is used. The operational system is demonstrated based on four years' systematic comparisons with satellite data. The aim of this investigation was to answer two questions. Is the wave model able to provide a reliable description of the wave conditions in the Black Sea and are the satellite measurements suitable for validation purposes on such a regional scale ? Detailed comparisons between measured data and computed model results for the Black Sea including yearly statistics have been done for about 300 satellite overflights per year. The results discussed the different verification schemes needed to review the forecasting skills of the operational system. The good agreement between measured and modeled data supports the expectation that the wave model provides reasonable results and that the satellite data is of good quality and offer an appropriate validation alternative to buoy measurements. This is the required step towards further use of those satellite data for assimilation into the wave fields to improve the wave predictions. Additional support for the good quality of the wave predictions is provided by comparisons between ADCP measurements that are available for a short time period in February 2012 and the corresponding model results at a location near the Bulgarian coast in the western Black Sea. Sensitivity tests with different wave model options and different driving wind fields have been done which identify the appropriate model configuration that provides the best wave predictions. In addition to the comparisons between measured
Beyramzade, Mostafa; Siadatmousavi, Seyed Mostafa
2018-01-01
The interaction of waves with fluid mud can dissipate the wave energy significantly over few wavelengths. In this study, the third-generation wave model, SWAN, was advanced to include attenuation of wave energy due to interaction with a viscoelastic fluid mud layer. The performances of implemented viscoelastic models were verified against an analytical solution and viscous formulations for simple one-dimensional propagation cases. Stationary and non-stationary test cases in the Surinam coast and the Atchafalaya Shelf showed that the inclusion of the mud-wave interaction term in the third-generation wave model enhances the model performance in real applications. A high value of mud viscosity (of the order of 0.1 m2/s) was required in both field cases to remedy model overestimation at high frequency ranges of the wave spectrum. The use of frequency-dependent mud viscosity value improved the performance of model, especially in the frequency range of 0.2-0.35 Hz in the wave spectrum. In addition, the mud-wave interaction might affect the high frequency part of the spectrum, and this part of the wave spectrum is also affected by energy transfer from wind to waves, even for the fetch lengths of the order of 10 km. It is shown that exclusion of the wind input term in such cases might result in different values for parameters of mud layer when inverse modeling procedure was employed. Unlike viscous models for wave-mud interaction, the inverse modeling results to a set of mud parameters with the same performance when the viscoelastic model is used. It provides an opportunity to select realistic mud parameters which are in more agreement with in situ measurements.
DEFF Research Database (Denmark)
Carci, Enric; Rivero, Francisco J.; Burcharth, Hans Falk
2003-01-01
takes place on the breakwater, and it was finally suggested to complement the numerical analysis with physical model tests in a multidirectional wave basin. Due to the large dimensions of the prototype area, several numerical models were applied to optimize the physical model lay-out (model scale......, boundary conditions, location of wave gauges). All physical model test results were compared with results from a spectral wave propagation model GHOST simulations, showing good agreement on wave amplification in the focusing area behind the shoal. The combination of both numerical and physical modeling...... improved the knowledge on the problem studied. Read More: http://www.worldscientific.com/doi/abs/10.1142/9789812791306_0042?prevSearch=The+Use+of+Numerical+Modeling+in+the+Planning+of+Physical+Model+Tests+in+a+Multidirectional+Wave+Basin&searchHistoryKey=...
Chen, Shuyi S.; Curcic, Milan
2016-07-01
Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.
Nonlinear Modeling and Analysis of Pressure Wave inside CEUP Fuel Pipeline
Directory of Open Access Journals (Sweden)
Qaisar Hayat
2014-01-01
Full Text Available Operating conditions dependent large pressure variations are one of the working characteristics of combination electronic unit pump (CEUP fuel injection system for diesel engines. We propose a precise and accurate nonlinear numerical model of pressure inside HP fuel pipeline of CEUP using wave equation (WE including both viscous and frequency dependent frictions. We have proved that developed hyperbolic approximation gives more realistic description of pressure wave as compared to classical viscous damped wave equation. Frictional effects of various frequencies on pressure wave have been averaged out across valid frequencies to represent the combined effect of all frequencies on pressure wave. Dynamic variations of key fuel properties including density, acoustic wave speed, and bulk modulus with varying pressures have also been incorporated. Based on developed model we present analysis on effect of fuel pipeline length on pressure wave propagation and variation of key fuel properties with both conventional diesel and alternate fuel rapeseed methyl ester (RME for CEUP pipeline.
Analysis and modeling of ducted and evanescent gravity waves observed in the Hawaiian airglow
Directory of Open Access Journals (Sweden)
D. B. Simkhada
2009-08-01
Full Text Available Short-period gravity waves of especially-small horizontal scale have been observed in the Maui, Hawaii airglow. Typical small-scale gravity wave events have been investigated, and intrinsic wave propagation characteristics have been calculated from simultaneous meteor radar wind measurements. Here we report specific cases where wave structure is significantly determined by the local wind structure, and where wave characteristics are consistent with ducted or evanescent waves throughout the mesopause region. Two of the documented events, exhibiting similar airglow signatures but dramatically different propagation conditions, are selected for simple numerical modeling case studies. First, a Doppler-ducted wave trapped within relatively weak wind flow is examined. Model results confirm that the wave is propagating in the 85–95 km region, trapped weakly by evanescence above and below. Second, an evanescent wave in strong wind flow is examined. Model results suggest an opposite case from the first case study, where the wave is instead trapped above or below the mesopause region, with strong evanescence arising in the 85–95 km airglow region. Distinct differences between the characteristics of these visibly-similar wave events demonstrate the need for simultaneous observations of mesopause winds to properly assess local propagation conditions.
Finite element modelling of radial shock wave therapy for chronic plantar fasciitis.
Alkhamaali, Zaied K; Crocombe, Andrew D; Solan, Matthew C; Cirovic, Srdjan
2016-01-01
Therapeutic use of high-amplitude pressure waves, or shock wave therapy (SWT), is emerging as a popular method for treating musculoskeletal disorders. However, the mechanism(s) through which this technique promotes healing are unclear. Finite element models of a shock wave source and the foot were constructed to gain a better understanding of the mechanical stimuli that SWT produces in the context of plantar fasciitis treatment. The model of the shock wave source was based on the geometry of an actual radial shock wave device, in which pressure waves are generated through the collision of two metallic objects: a projectile and an applicator. The foot model was based on the geometry reconstructed from magnetic resonance images of a volunteer and it comprised bones, cartilage, soft tissue, plantar fascia, and Achilles tendon. Dynamic simulations were conducted of a single and of two successive shock wave pulses administered to the foot. The collision between the projectile and the applicator resulted in a stress wave in the applicator. This wave was transmitted into the soft tissue in the form of compression-rarefaction pressure waves with an amplitude of the order of several MPa. The negative pressure at the plantar fascia reached values of over 1.5 MPa, which could be sufficient to generate cavitation in the tissue. The results also show that multiple shock wave pulses may have a cumulative effect in terms of strain energy accumulation in the foot.
Modeling a nonperturbative spinor vacuum interacting with a strong gravitational wave
Energy Technology Data Exchange (ETDEWEB)
Dzhunushaliev, Vladimir [Al-Farabi Kazakh National University, Department of Theoretical and Nuclear Physics, Almaty (Kazakhstan); Al-Farabi Kazakh National University, Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Folomeev, Vladimir [Institute of Physicotechnical Problems and Material Science, NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan)
2015-07-15
We consider the propagation of strong gravitational waves interacting with a nonperturbative vacuum of spinor fields. To described the latter, we suggest an approximate model. The corresponding Einstein equation has the form of the Schroedinger equation. Its gravitational-wave solution is analogous to the solution of the Schroedinger equation for an electron moving in a periodic potential. The general solution for the periodic gravitational waves is found. The analog of the Kronig-Penney model for gravitational waves is considered. It is shown that the suggested gravitational-wave model permits the existence of weak electric charge and current densities concomitant with the gravitational wave. Based on this observation, a possible experimental verification of the model is suggested. (orig.)
Experimental investigation and modeling of dynamic performance of wave springs
Tang, N.; Rongong, J.; Lord, C.; Sims, N.
2016-01-01
This paper investigates vibration suppression potentials for a novel frictional system - a wave spring.\\ud Two different types of wave springs, crest-to-crest and nested ones, were used in this work. Compared with\\ud nested wave springs, crest-to-crest wave springs have lower damping and a larger range for the linear stiffness\\ud due to a reduced level of contact. Dynamic compressive tests, subject to different static compression levels,\\ud are carried out to investigate the force-displacemen...
Blocking Radial Diffusion in a Double-Waved Hamiltonian Model
Energy Technology Data Exchange (ETDEWEB)
Martins, Caroline G L; De Carvalho, R Egydio [UNESP-Univ Estadual Paulista, Instituto de Geociencias e Ciencias Exatas, Departamento de Estatistica, Matematica Aplicada e Computacao, Av. 24A, 1515, 13506-900 Rio Claro, SP (Brazil); Marcus, F A [Universidade de Sao Paulo, Departamento de Engenharia Naval e Oceanica 05508-970 Sao Paulo, SP (Brazil); Caldas, I L, E-mail: carolinegameiro@gmail.com, E-mail: albertus@if.usp.br, E-mail: ibere@if.usp.br, E-mail: regydio@rc.unesp.br [Universidade de Sao Paulo, Instituto de Fisica 05315-970 Sao Paulo, SP (Brazil)
2011-03-01
A non-twist Hamiltonian system perturbed by two waves with particular wave numbers can present Robust Tori, barriers created by the vanishing of the perturbing Hamiltonian at some defined positions. When Robust Tori exist, any trajectory in phase space passing close to them is blocked by emergent invariant curves that prevent the chaotic transport. We analyze the breaking up of the RT as well the transport dependence on the wave numbers and on the wave amplitudes. Moreover, we report the chaotic web formation in the phase space and how this pattern influences the transport.
3D time-domain spectral elements for stress waves modelling
International Nuclear Information System (INIS)
Kudela, P; Ostachowicz, W
2009-01-01
Elastic stress waves induced by piezoelectric transducers are extensively used for damage detection purposes. Induced high frequency impulse signals cause that stress wave modelling by the finite element method is inefficient. Instead, numerical model based on the time-domain spectral element method has been developed to simulate stress wave propagation in metallic structures induced by the piezoelectric transducers. The model solves the coupled electromechanical field equations simultaneously in three-dimensional case. Visualisation of the propagating elastic waves generated by the actuator of different shapes and properties has been performed.
Validation of a Wave-Body Interaction Model by Experimental Tests
DEFF Research Database (Denmark)
Ferri, Francesco; Kramer, Morten; Pecher, Arthur
2013-01-01
Within the wave energy field, numerical simulation has recently acquired a worldwide consent as being a useful tool, besides physical model testing. The main goal of this work is the validation of a numerical model by experimental results. The numerical model is based on a linear wave-body intera......-body interaction theory, applied for a point absorber wave energy converter. The results show that the ratio floater size/wave amplitude is a key parameter for the validity of the applied theory....
2016-04-19
Ocean Modelling 102 (2016) 1–13 Contents lists available at ScienceDirect Ocean Modelling journal homepage: www.elsevier.com/locate/ocemod Drag ...2015 Revised 3 February 2016 Accepted 16 April 2016 Available online 19 April 2016 Keywords: Wind waves WAVEWATCH III, Drag coefficient Wave...1688 source function is used to calculate drag coefficients from both the scanning radar altimeter (SRA) measured two dimensional wave spectra
Lee Kuan Yew: Master Builder of Singapore
National Research Council Canada - National Science Library
Exner, Philip J
1996-01-01
... powerhouse has made the "Singapore Model" one of the most closely studied patterns among developing nations. Singapore enjoyed sustained growth and political stability during a period when other regional states experienced much turbulence...
Travelling waves and their bifurcations in the Lorenz-96 model
van Kekem, Dirk L.; Sterk, Alef E.
2018-03-01
In this paper we study the dynamics of the monoscale Lorenz-96 model using both analytical and numerical means. The bifurcations for positive forcing parameter F are investigated. The main analytical result is the existence of Hopf or Hopf-Hopf bifurcations in any dimension n ≥ 4. Exploiting the circulant structure of the Jacobian matrix enables us to reduce the first Lyapunov coefficient to an explicit formula from which it can be determined when the Hopf bifurcation is sub- or supercritical. The first Hopf bifurcation for F > 0 is always supercritical and the periodic orbit born at this bifurcation has the physical interpretation of a travelling wave. Furthermore, by unfolding the codimension two Hopf-Hopf bifurcation it is shown to act as an organising centre, explaining dynamics such as quasi-periodic attractors and multistability, which are observed in the original Lorenz-96 model. Finally, the region of parameter values beyond the first Hopf bifurcation value is investigated numerically and routes to chaos are described using bifurcation diagrams and Lyapunov exponents. The observed routes to chaos are various but without clear pattern as n → ∞.
CIMI simulations with newly developed multiparameter chorus and plasmaspheric hiss wave models
Aryan, Homayon; Sibeck, David G.; Kang, Suk-Bin; Balikhin, Michael A.; Fok, Mei-Ching; Agapitov, Oleksiy; Komar, Colin M.; Kanekal, Shrikanth G.; Nagai, Tsugunobu
2017-09-01
Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model considers the effects of the ring current and plasmasphere on the radiation belts to obtain plausible results. The CIMI model incorporates pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. However, currently, these wave distribution models are based only on a single-parameter, geomagnetic index (AE) and could potentially underestimate the wave amplitudes. Here we incorporate recently developed multiparameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We then perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multiparameter wave models resemble the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.
Must Historians Regress? An Answer to Lee Benson.
Kousser, J. Morgan
1986-01-01
Considers the impact of empirical social science methodology and data analysis techniques on the process of historical analysis and its product, generalizations about the past. Uses political preference and voting information as a vehicle to illustrate the differences in historical conclusions reached by Lee Benson and J. Morgan Kousser. (JDH)
The Garrett Lee Smith Memorial Suicide Prevention Program
Goldston, David B.; Walrath, Christine M.; McKeon, Richard; Puddy, Richard W.; Lubell, Keri M.; Potter, Lloyd B.; Rodi, Michael S.
2010-01-01
In response to calls for greater efforts to reduce youth suicide, the Garrett Lee Smith (GLS) Memorial Act has provided funding for 68 state, territory, and tribal community grants, and 74 college campus grants for suicide prevention efforts. Suicide prevention activities supported by GLS grantees have included education, training programs…
Robert E. Lee, George Peabody, and Sectional Reunion.
Parker, Franklin
1994-01-01
Discusses an 1869 meeting between George Peabody, educational philanthropist, and Robert E. Lee. The meeting focused public attention on the Peabody Education Fund and the South's educational plight. Significant measures of educational efforts in the South are directly attributable to several informal meetings centered around Peabody and Lee…
Rejoinder to Goldberg, Lee and Ashton : Explaining counterintuitive findings
Anderson, N.; Ones, D.S.
2008-01-01
In their critique of our erratum and addendum (Anderson & Ones, [2008]), Goldberg, Lee, and Ashton ([2008]) allege clerical errors (1) where participants' HPI scores were incorrectly matched to other inventory scale scores and (2) in scoring of the OPQ and BPI scales. The first point was fully
W3C head Berners-Lee to be knighted
Gross, G
2004-01-01
"Tim Berners-Lee, credited with inventing the World Wide Web and now director of the World Wide Web Consortium, will be named a knight commander, Order of the British Empire, by Queen Elizabeth II, the W3C announced Wednesday" (1 page)
Virginia Lee Burton's "Little House" in Popular Consciousness
DEFF Research Database (Denmark)
Goddard, Joseph
2011-01-01
This article considers the significance of Victoria Lee Burton’s authorship, specifically The Little House, for lifestyle preferences and the development of environmental consciousness in the postwar period. The article argues that Burton deliberately designed her work to evoke country-friendly s...
Berners-Lee wins inaugural Millennium Technology prize
2004-01-01
"World Wide Web inventor Tim Berners-Lee today was named recipient of the first-ever Millennium Technology Prize. The honor, which is accompanied by one million euros, is bestowed by the Finnish Technology Award Foundation as an international acknowledgement of outstanding technological innovation aimed at promoting quality of life and sustainable economic and societal development" (1 page)
Tim Berners-Lee, World Wide Web inventor
1998-01-01
The "Internet, Web, What's next?" conference on 26 June 1998 at CERN: Tim Berners-Lee, inventor of the World Wide Web and Director of the W3C, explains how the Web came to be and gave his views on the future.
Dan Gilmor Column [Berners-Lee and the WWW
Gillmore, D
2002-01-01
In the keynote speech at the 11th Annual World Wide Web Conference, Tim Berner's Lee said that in the early days of the web, people were worrying about the same thing as today - one company dominating the market and controlling standards (2 pages).
Modelling shear wave splitting observations from Wellington, New Zealand
Marson-Pidgeon, Katrina; Savage, Martha K.
2004-05-01
Frequency-dependent anisotropy was previously observed at the permanent broad-band station SNZO, South Karori, Wellington, New Zealand. This has important implications for the interpretation of measurements in other subduction zones and hence for our understanding of mantle flow. This motivated us to make further splitting measurements using events recorded since the previous study and to develop a new modelling technique. Thus, in this study we have made 67 high-quality shear wave splitting measurements using events recorded at the SNZO station spanning a 10-yr period. This station is the only one operating in New Zealand for longer than 2 yr. Using a combination of teleseismic SKS and S phases and regional ScS phases provides good azimuthal coverage, allowing us to undertake detailed modelling. The splitting measurements indicate that in addition to the frequency dependence observed previously at this station, there are also variations with propagation and initial polarization directions. The fast polarization directions range between 2° and 103°, and the delay times range between 0.75 s and 3.05 s. These ranges are much larger than observed previously at SNZO or elsewhere in New Zealand. Because of the observed frequency dependence we measure the dominant frequency of the phase used to make the splitting measurement, and take this into account in the modelling. We fit the fast polarization directions fairly well with a two-layer anisotropic model with horizontal axes of symmetry. However, such a model does not fit the delay times or explain the frequency dependence. We have developed a new inversion method which allows for an inclined axis of symmetry in each of the two layers. However, applying this method to SNZO does not significantly improve the fit over a two-layer model with horizontal symmetry axes. We are therefore unable to explain the frequency dependence or large variation in delay time values with multiple horizontal layers of anisotropy, even
Standing and travelling waves in a spherical brain model: The Nunez model revisited
Visser, S.; Nicks, R.; Faugeras, O.; Coombes, S.
2017-06-01
The Nunez model for the generation of electroencephalogram (EEG) signals is naturally described as a neural field model on a sphere with space-dependent delays. For simplicity, dynamical realisations of this model either as a damped wave equation or an integro-differential equation, have typically been studied in idealised one dimensional or planar settings. Here we revisit the original Nunez model to specifically address the role of spherical topology on spatio-temporal pattern generation. We do this using a mixture of Turing instability analysis, symmetric bifurcation theory, centre manifold reduction and direct simulations with a bespoke numerical scheme. In particular we examine standing and travelling wave solutions using normal form computation of primary and secondary bifurcations from a steady state. Interestingly, we observe spatio-temporal patterns which have counterparts seen in the EEG patterns of both epileptic and schizophrenic brain conditions.
Impact of wind waves on the air-sea fluxes: A coupled model
Kudryavtsev, V.; Chapron, B.; Makin, V.
2014-02-01
A revised wind-over-wave-coupling model is developed to provide a consistent description of the sea surface drag and heat/moister transfer coefficients, and associated wind velocity and temperature profiles. The spectral distribution of short wind waves in the decimeter to a few millimeters range of wavelengths is introduced based on the wave action balance equation constrained using the Yurovskaya et al. (2013) optical field wave measurements. The model is capable to reproduce fundamental statistical properties of the sea surface, such as the mean square slope and the spectral distribution of breaking crests length. The surface stress accounts for the effect of airflow separation due to wave breaking, which enables a better fit of simulated form drag to observations. The wave breaking controls the overall energy losses for the gravity waves, but also the generation of shorter waves including the parasitic capillaries, thus enhancing the form drag. Breaking wave contribution to the form drag increases rapidly at winds above 15 m/s where it exceeds the nonbreaking wave contribution. The overall impact of wind waves (breaking and nonbreaking) leads to a sheltering of the near-surface layer where the turbulent mixing is suppressed. Accordingly, the air temperature gradient in this sheltered layer increases to maintain the heat flux constant. The resulting deformation of the air temperature profile tends to lower the roughness scale for temperature compared to its value over the smooth surface.
Hydrodynamic Modelling and Layout Optimisation of Wave Energy Converter Arrays
DEFF Research Database (Denmark)
Ruiz, Pau Mercadé
2017-01-01
in various positions and orientations are finally investigated. This thesis intends in this way to offer a practical approach to the analysis of wave energy converters when they operate together as an array and the optimal design of array layouts. The topics covered by the text include propagation of waves...
Mathematical modelling of generation and forward propagation of dispersive waves
Lie She Liam, L.S.L.
2013-01-01
This dissertation concerns the mathematical theory of forward propagation and generation of dispersive waves. We derive the AB2-equation which describes forward traveling waves in two horizontal dimension. It is the generalization of the Kadomtsev-Petviashvilli (KP) equation. The derivation is based
Testing the blast wave model with Swift GRBs
Curran, P.A.; Starling, R.L.C.; van der Horst, A.J.; Wijers, R.A.M.J.; de Pasquale, M.; Page, M.
2011-01-01
The complex structure of the light curves of Swift GRBs (e.g. superimposed flares and shallow decay) has made their interpretation and that of the blast wave caused by the burst, more difficult than in the pre-Swift era. We aim to constrain the blast wave parameters: electron energy distribution, p,
Towards the best approach for wind wave modelling in the Red Sea
Langodan, Sabique
2015-04-01
While wind and wave modelling is nowadays quite satisfactory in the open oceans, problems are still present in the enclosed seas. In general, the smaller the basin, the poorer the models perform, especially if the basin is surrounded by a complex orography. The Red Sea is an extreme example in this respect, especially because of its long and narrow shape. This deceivingly simple domain offers very interesting challenges for wind and wave modeling, not easily, if ever, found elsewhere. Depending on the season, opposite wind regimes, one directed to southeast, the other one to northwest, are present and may coexist in the most northerly and southerly parts of the Red Sea. Where the two regimes meet, the wave spectra can be rather complicated and, crucially dependent on small details of the driving wind fields. We explored how well we could reproduce the general and unusual wind and wave patterns of the Red Sea using different meteorological products. Best results were obtained using two rather opposite approaches: the high-resolution Weather Research Forecasting (WRF) regional model and the slightly enhanced surface winds from the global European Centre for Medium-Range Weather Forecasts (ECMWF) model. We discuss the reasons why these two approaches produce the best results and the implications on wave modeling in the Red Sea. The unusual wind and wave patterns in the Red Sea suggest that the currently available wave model source functions may not properly represent the evolution of local fields. However, within limits, the WAVEWATCH III wave model, based on Janssen\\'s and also Ardhuin\\'s wave model physics, provides in many cases very reasonable results. Because surface winds lead to important uncertainties in wave simulation, we also discuss the impact of data assimilation for simulating the most accurate winds, and consequently waves, over the Red Sea.
The Red Sea: A Natural Laboratory for Wind and Wave Modeling
Langodan, Sabique
2014-12-01
The Red Sea is a narrow, elongated basin that is more than 2000km long. This deceivingly simple structure offers very interesting challenges for wind and wave modeling, not easily, if ever, found elsewhere. Using standard meteorological products and local wind and wave models, this study explores how well the general and unusual wind and wave patterns of the Red Sea could be reproduced. The authors obtain the best results using two rather opposite approaches: the high-resolution Weather Research Forecasting (WRF) local model and the slightly enhanced surface winds from the global European Centre for Medium-Range Weather Forecasts model. The reasons why these two approaches produce the best results and the implications on wave modeling in the Red Sea are discussed. The unusual wind and wave patterns in the Red Sea suggest that the currently available wave model source functions may not properly represent the evolution of local fields. However, within limits, the WAVEWATCH III wave model, based on Janssen\\'s and also Ardhuin\\'s wave model physics, provides very reasonable results in many cases. The authors also discuss these findings and outline related future work.
DEFF Research Database (Denmark)
Burcharth, Hans F.; Andersen, Thomas Lykke; Meinert, Palle
2008-01-01
Wave induced pressures on model scale monolithic structures like caissons and concrete superstructures on rubble mound breakwaters show very peaky variations, even in cases without impacts from slamming waves.......Wave induced pressures on model scale monolithic structures like caissons and concrete superstructures on rubble mound breakwaters show very peaky variations, even in cases without impacts from slamming waves....
Structural Modeling and Analysis of a Wave Energy Converter
DEFF Research Database (Denmark)
Zurkinden, Andrew Stephen; Lambertsen, Søren Heide; Damkilde, Lars
2012-01-01
A fatigue analysis is being carried out for a wave energy converter subjected to ocean wave loads. The device is a bottom fixed structure, located in a shallow water environment. Interest is focused on the local stress response of a structural detail and a subsequent calculation of its fatigue life...... by using the rainflow counting approach. The wave energy converter is characterized by its ability to enter in a storm protection mode which - whenever extreme conditions occur - will drastically reduce the exposure to wave loads. The predicted fatigue life is calculated for two different control cases....... Finally the question will be answered which control strategy is more favorable regarding the trade off between fatigue damage reduction and power production on the wave energy device....
Field verification of linear and nonlinear hybrid wave models for offshore tower response prediction
Energy Technology Data Exchange (ETDEWEB)
Couch, A.T. [Hudson Engineering, Houston, TX (United States). Offshore Structural Div.; Conte, J.P. [Rice Univ., Houston, TX (United States). Dept. of Civil Engineering
1996-12-31
Accuracy of the prediction of the dynamic response of deepwater fixed offshore platforms to irregular sea waves depends very much on the theory used to determine water kinematics from the mudline to the free surface. A common industry practice consists of using linear wave theory, which assumes infinitesimal wave steepness, in conjunction with empirical wave stretching techniques to provide a more realistic representation of near surface kinematics. The current velocity field is then added to the wave-induced fluid velocity field and the wave-and-current forces acting on the structure are computed via Morrison`s equation. The first objective of this study is to compare the predicted responses of Cognac, a deepwater fixed platform, obtained from various empirically stretched linear wave models with the response of Cognac predicted based on the Hybrid Wave Model. The latter is a recently developed higher-order, and therefore more accurate, wave model which satisfies, up to the second-order in wave steepness, the local mass conservation and the free surface boundary conditions up to the free surface. The second objective of this study consists of comparing the various analytical response predictions with the measured response of the Cognac platform. Availability of a set of oceanographic and structural vibration data for Cognac provides a unique opportunity to evaluate the prediction ability of traditional analytical models used in designing such structures. The results of this study indicate that (1) the use of the Hybrid Wave Model provides a predicted platform response which is in closer agreement with the measured response than the predictions based on the various stretched linear wave models; and (2) the Wheeler stretching technique produces platform response results which are more accurate than those obtained by using the other stretching schemes considered here.
Coupling of Wave and Circulation Models in the Atlantic European North-West Shelf Predicting System
Staneva, Joanna; Krüger, Oliver; Behrens, Arno; Lewis, Huw; Castillo, Juan M.
2017-04-01
This study addresses the coupling between wind wave and circulation models on the example of the Atlantic - European North-West Shelf (NWS). This topic reflects the increased interest in operational oceanography to reduce prediction errors of state estimates at coastal scales. The uncertainties in most of the presently used models result from the nonlinear feedback between strong tidal currents and wind-waves, which can no longer be ignored, in particular in the coastal zone where its role seems to be dominant. Coupled circulation (NEMO) and wave model (WAM) system was used to study the effects of surface ocean waves on thermohaline distribution and ocean circulation at the NWS. Four scenarios - including Stokes-Coriolis force, sea-state dependent energy flux (additional turbulent kinetic energy due to breaking waves), sea-state dependent momentum flux and the combination of the three wave-induced forcing were performed to study the role of the wave-induced processes on model simulations. The individual and collective role of those processes is quantified and the results are compared with the NWS circulation model results without wave effects as well as against various in-situ measurements. The performance of the forecasting system is illustrated for the cases of several extreme events. The improved skills resulting from the new developments in the forecasting system, in particular during extreme events, justify further enhancements of the coastal operational systems. The study is performed in the frame of the COPERNICUS CMEMS Service Evolution Projects Wave2NEMO and OWAIRS.
Using a matter wave model to study the structure of the electron inside an atom
Chang, Donald
In Bohr's atomic model, the atom was conceptually modeled as a miniature solar system. With the development of the Schrödinger equation, the wave function of the electron inside an atom becomes much better known. But the electron is still regarded as a pointed object; according to the Copenhagen Interpretation, the wave function is thought to describe only the probability of finding the electron. Such an interpretation, however, has raised some conceptual questions. For example, how can a point-like electron form a chemical bond between neighboring atoms? In an attempt to overcome this difficulty, we use a matter wave theory to model the structure of an electron inside the atom. This model is inspired by noticing the similarity between a free electron and a photon; both particles behave like a corpuscular object as well as a physical wave. Thus, we hypothesize that, like the photon, an electron is an excitation wave of a real physical field. Based on this hypothesis, we have derived a basic wave equation for the free electron. We show that, in the presence of an electrical potential, this basic wave equation can lead to the Schrödinger equation. This work implies that the solution of the Schrödinger equation actually represents the physical waves of the electron. Thus, the electron inside the atom should behave more like a topologically distributive wave than a pointed object. In this presentation, we will discuss the advantages and limitations of this model.
Modelling wave-induced sea ice break-up in the marginal ice zone.
Montiel, F; Squire, V A
2017-10-01
A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensional stress field satisfies a break-up criterion. A closed-feedback loop algorithm is devised, which (i) solves the wave-scattering problem for a given FSD under time-harmonic plane wave forcing, (ii) computes the stress field in all the floes, (iii) fractures the floes satisfying the break-up criterion, and (iv) generates an updated FSD, initializing the geometry for the next iteration of the loop. The FSD after 50 break-up events is unimodal and near normal, or bimodal, suggesting waves alone do not govern the power law observed in some field studies. Multiple scattering is found to enhance break-up for long waves and thin ice, but to reduce break-up for short waves and thick ice. A break-up front marches forward in the latter regime, as wave-induced fracture weakens the ice cover, allowing waves to travel deeper into the MIZ.
Algebraic Traveling Wave Solutions of a Non-local Hydrodynamic-type Model
International Nuclear Information System (INIS)
Chen, Aiyong; Zhu, Wenjing; Qiao, Zhijun; Huang, Wentao
2014-01-01
In this paper we consider the algebraic traveling wave solutions of a non-local hydrodynamic-type model. It is shown that algebraic traveling wave solutions exist if and only if an associated first order ordinary differential system has invariant algebraic curve. The dynamical behavior of the associated ordinary differential system is analyzed. Phase portraits of the associated ordinary differential system is provided under various parameter conditions. Moreover, we classify algebraic traveling wave solutions of the model. Some explicit formulas of smooth solitary wave and cuspon solutions are obtained
Surface wave modelling and simulation for wave tanks and coastal areas
van Groesen, Embrecht W.C.; Bunnik, T.; Andonowati, A.
2011-01-01
For testing ships and offshore structures in hydrodynamic laboratories, the sea and ocean states should be represented as realistic as possible in the wave tanks in which the scaled experiments are executed. To support efficient testing, accurate software that determines and translates the required
Wave climatology of the Indian Ocean derived from altimetry and wave model
Digital Repository Service at National Institute of Oceanography (India)
Vethamony, P.; Rao, L.V.G.; Kumar, R.; Sarkar, A.; Mohan, M.; Sudheesh, K.; Karthikeyan, S.B.
GEOSAT altimeter data for the period 1986-1989 have been utilised to derive wave climatology for the Indian Ocean region bounded by 20 degrees S to 25 degrees N and 40 degrees E to 110 degrees E. The results are presented in the form of mean monthly...
DiamondTorre Algorithm for High-Performance Wave Modeling
Directory of Open Access Journals (Sweden)
Vadim Levchenko
2016-08-01
Full Text Available Effective algorithms of physical media numerical modeling problems’ solution are discussed. The computation rate of such problems is limited by memory bandwidth if implemented with traditional algorithms. The numerical solution of the wave equation is considered. A finite difference scheme with a cross stencil and a high order of approximation is used. The DiamondTorre algorithm is constructed, with regard to the specifics of the GPGPU’s (general purpose graphical processing unit memory hierarchy and parallelism. The advantages of these algorithms are a high level of data localization, as well as the property of asynchrony, which allows one to effectively utilize all levels of GPGPU parallelism. The computational intensity of the algorithm is greater than the one for the best traditional algorithms with stepwise synchronization. As a consequence, it becomes possible to overcome the above-mentioned limitation. The algorithm is implemented with CUDA. For the scheme with the second order of approximation, the calculation performance of 50 billion cells per second is achieved. This exceeds the result of the best traditional algorithm by a factor of five.
Modeling Nonlinear Acoustic Standing Waves in Resonators: Theory and Experiments
Raman, Ganesh; Li, Xiaofan; Finkbeiner, Joshua
2004-01-01
The overall goal of the cooperative research with NASA Glenn is to fundamentally understand, computationally model, and experimentally validate non-linear acoustic waves in enclosures with the ultimate goal of developing a non-contact acoustic seal. The longer term goal is to transition the Glenn acoustic seal innovation to a prototype sealing device. Lucas and coworkers are credited with pioneering work in Resonant Macrosonic Synthesis (RMS). Several Patents and publications have successfully illustrated the concept of Resonant Macrosonic Synthesis. To utilize this concept in practical application one needs to have an understanding of the details of the phenomenon and a predictive tool that can examine the waveforms produced within resonators of complex shapes. With appropriately shaped resonators one can produce un-shocked waveforms of high amplitude that would result in very high pressures in certain regions. Our goal is to control the waveforms and exploit the high pressures to produce an acoustic seal. Note that shock formation critically limits peak-to-peak pressure amplitudes and also causes excessive energy dissipation. Proper shaping of the resonator is thus critical to the use of this innovation.
Optimization of Forward Wave Modeling on Contemporary HPC Architectures
Energy Technology Data Exchange (ETDEWEB)
Krueger, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Micikevicius, Paulius [NVIDIA, Santa Clara, CA (United States); Williams, Samuel [Fraunhofer ITWM, Kaiserslautern (Germany)
2012-07-20
Reverse Time Migration (RTM) is one of the main approaches in the seismic processing industry for imaging the subsurface structure of the Earth. While RTM provides qualitative advantages over its predecessors, it has a high computational cost warranting implementation on HPC architectures. We focus on three progressively more complex kernels extracted from RTM: for isotropic (ISO), vertical transverse isotropic (VTI) and tilted transverse isotropic (TTI) media. In this work, we examine performance optimization of forward wave modeling, which describes the computational kernels used in RTM, on emerging multi- and manycore processors and introduce a novel common subexpression elimination optimization for TTI kernels. We compare attained performance and energy efficiency in both the single-node and distributed memory environments in order to satisfy industry’s demands for fidelity, performance, and energy efficiency. Moreover, we discuss the interplay between architecture (chip and system) and optimizations (both on-node computation) highlighting the importance of NUMA-aware approaches to MPI communication. Ultimately, our results show we can improve CPU energy efficiency by more than 10× on Magny Cours nodes while acceleration via multiple GPUs can surpass the energy-efficient Intel Sandy Bridge by as much as 3.6×.
Nurhandoko, Bagus Endar B.; Wardaya, Pongga Dikdya; Adler, John; Siahaan, Kisko R.
2012-06-01
Seismic wave parameter plays very important role to characterize reservoir properties whereas pore parameter is one of the most important parameter of reservoir. Therefore, wave propagation phenomena in pore media is important to be studied. By referring this study, in-direct pore measurement method based on seismic wave propagation can be developed. Porosity play important role in reservoir, because the porosity can be as compartment of fluid. Many type of porosity like primary as well as secondary porosity. Carbonate rock consist many type of porosity, i.e.: inter granular porosity, moldic porosity and also fracture porosity. The complexity of pore type in carbonate rocks make the wave propagation in these rocks is more complex than sand reservoir. We have studied numerically wave propagation in carbonate rock by finite difference modeling in time-space domain. The medium of wave propagation was modeled by base on the result of pattern recognition using artificial neural network. The image of thin slice of carbonate rock is then translated into the velocity matrix. Each mineral contents including pore of thin slice image are translated to velocity since mineral has unique velocity. After matrix velocity model has been developed, the seismic wave is propagated numerically in this model. The phenomena diffraction is clearly shown while wave propagates in this complex carbonate medium. The seismic wave is modeled in various frequencies. The result shows dispersive phenomena where high frequency wave tends to propagate in matrix instead pores. In the other hand, the low frequency waves tend to propagate through pore space even though the velocity of pore is very low. Therefore, this dispersive phenomena of seismic wave propagation can be the future indirect measurement technology for predicting the existence or intensity of pore space in reservoir rock. It will be very useful for the future reservoir characterization.
Towards a new technique to construct a 3D shear-wave velocity model based on converted waves
Hetényi, G.; Colavitti, L.
2017-12-01
A 3D model is essential in all branches of solid Earth sciences because geological structures can be heterogeneous and change significantly in their lateral dimension. The main target of this research is to build a crustal S-wave velocity structure in 3D. The currently popular methodologies to construct 3D shear-wave velocity models are Ambient Noise Tomography (ANT) and Local Earthquake Tomography (LET). Here we propose a new technique to map Earth discontinuities and velocities at depth based on the analysis of receiver functions. The 3D model is obtained by simultaneously inverting P-to-S converted waveforms recorded at a dense array. The individual velocity models corresponding to each trace are extracted from the 3D initial model along ray paths that are calculated using the shooting method, and the velocity model is updated during the inversion. We consider a spherical approximation of ray propagation using a global velocity model (iasp91, Kennett and Engdahl, 1991) for the teleseismic part, while we adopt Cartesian coordinates and a local velocity model for the crust. During the inversion process we work with a multi-layer crustal model for shear-wave velocity, with a flexible mesh for the depth of the interfaces. The RFs inversion represents a complex problem because the amplitude and the arrival time of different phases depend in a non-linear way on the depth of interfaces and the characteristics of the velocity structure. The solution we envisage to manage the inversion problem is the stochastic Neighbourhood Algorithm (NA, Sambridge, 1999), whose goal is to find an ensemble of models that sample the good data-fitting regions of a multidimensional parameter space. Depending on the studied area, this method can accommodate possible independent and complementary geophysical data (gravity, active seismics, LET, ANT, etc.), helping to reduce the non-linearity of the inversion. Our first focus of application is the Central Alps, where a 20-year long dataset of
Modeling Gravitational-Wave Sources for Pulsar Timing Arrays
Simon, Joseph J.
The recent direct detections of gravitational waves (GWs) from merging black holes by the Laser Interferometer Gravitational-wave Observatory (LIGO) marks the beginning of the era of GW astronomy and promises to transform fundamental physics. In the coming years, there is hope for detections across the mass scale of binary black holes. Pulsar Timing Arrays (PTAs) are galactic-scale low-frequency (nHz - muHz) GW observatories, which aim to directly detect GWs from binary supermassive black holes (SMBHs) (≥ 107M solar masses). The frequency and black hole mass range that PTAs are sensitive to is orders of magnitude different from those LIGO is observing, making PTAs a comparable observatory on the GW spectrum. Understanding the link between binary SMBHs and the gravitational radiation detected by PTAs is crucial to the community's capability of making meaningful scientific statements using PTA observations. This dissertation discusses the creation of a state-of-the-art observational-based simulation framework built to provide critical answers to many open questions surrounding the link between PTA data and binary SMBHs. Binary SMBHs are predicted products of galaxy mergers, and are a crucial step in galaxy formation theories. Recent PTA upper limits on the gravitational radiation in the nanohertz frequency band are impacting our understanding of the binary SMBH population. But as upper limits grow more constraining, what can be implied about galaxy evolution? In this dissertation, I will provide insights into this question by investigating which astrophysical parameters have the largest impact on GW predictions, developing direct translations between PTA limits and measured values for the parameters of galaxy evolution, and exploring how the use of different galaxy evolution parameters effects the characterization of the GW signal. During the extended interaction between SMBHs and their host galaxy throughout inspiral, there is the potential for many
Wave basin model tests of technical-biological bank protection
Eisenmann, J.
2012-04-01
Sloped embankments of inland waterways are usually protected from erosion and other negative im-pacts of ship-induced hydraulic loads by technical revetments consisting of riprap. Concerning the dimensioning of such bank protection there are several design rules available, e.g. the "Principles for the Design of Bank and Bottom Protection for Inland Waterways" or the Code of Practice "Use of Standard Construction Methods for Bank and Bottom Protection on Waterways" issued by the BAW (Federal Waterways Engineering and Research Institute). Since the European Water Framework Directive has been put into action special emphasis was put on natural banks. Therefore the application of technical-biological bank protection is favoured. Currently design principles for technical-biological bank protection on inland waterways are missing. The existing experiences mainly refer to flowing waters with no or low ship-induced hydraulic loads on the banks. Since 2004 the Federal Waterways Engineering and Research Institute has been tracking the re-search and development project "Alternative Technical-Biological Bank Protection on Inland Water-ways" in company with the Federal Institute of Hydrology. The investigation to date includes the ex-amination of waterway sections where technical- biological bank protection is applied locally. For the development of design rules for technical-biological bank protection investigations shall be carried out in a next step, considering the mechanics and resilience of technical-biological bank protection with special attention to ship-induced hydraulic loads. The presentation gives a short introduction into hydraulic loads at inland waterways and their bank protection. More in detail model tests of a willow brush mattress as a technical-biological bank protec-tion in a wave basin are explained. Within the scope of these tests the brush mattresses were ex-posed to wave impacts to determine their resilience towards hydraulic loads. Since the
Preliminary Modeling of Global Seismic Wave Propagation in the Whole Mars
Toyokuni, G.; Ishihara, Y.; Takenaka, H.
2011-03-01
Global seismic wave propagation in the whole Mars is simulated by an accurate and efficient numerical scheme which has been developed for the Earth. Simple Mars models are used to obtain preliminary results of martian seismic waveform modeling.
Mathematical model of snake-type multi-directional wave generation
Muarif; Halfiani, Vera; Rusdiana, Siti; Munzir, Said; Ramli, Marwan
2018-01-01
Research on extreme wave generation is one intensive research on water wave study because the fact that the occurrence of this wave in the ocean can cause serious damage to the ships and offshore structures. One method to be used to generate the wave is self-correcting. This method controls the signal on the wavemakers in a wave tank. Some studies also consider the nonlinear wave generation in a wave tank by using numerical approach. Study on wave generation is essential in the effectiveness and efficiency of offshore structure model testing before it can be operated in the ocean. Generally, there are two types of wavemakers implemented in the hydrodynamic laboratory, piston-type and flap-type. The flap-type is preferred to conduct a testing to a ship in deep water. Single flap wavemaker has been explained in many studies yet snake-type wavemaker (has more than one flap) is still a case needed to be examined. Hence, the formulation in controlling the wavemaker need to be precisely analyzed such that the given input can generate the desired wave in the space-limited wave tank. By applying the same analogy and methodhology as the previous study, this article represents multi-directional wave generation by implementing snake-type wavemakers.
Puleo, J.A.; Mouraenko, O.; Hanes, D.M.
2004-01-01
Six one-dimensional-vertical wave bottom boundary layer models are analyzed based on different methods for estimating the turbulent eddy viscosity: Laminar, linear, parabolic, k—one equation turbulence closure, k−ε—two equation turbulence closure, and k−ω—two equation turbulence closure. Resultant velocity profiles, bed shear stresses, and turbulent kinetic energy are compared to laboratory data of oscillatory flow over smooth and rough beds. Bed shear stress estimates for the smooth bed case were most closely predicted by the k−ω model. Normalized errors between model predictions and measurements of velocity profiles over the entire computational domain collected at 15° intervals for one-half a wave cycle show that overall the linear model was most accurate. The least accurate were the laminar and k−ε models. Normalized errors between model predictions and turbulence kinetic energy profiles showed that the k−ω model was most accurate. Based on these findings, when the smallest overall velocity profile prediction error is required, the processing requirements and error analysis suggest that the linear eddy viscosity model is adequate. However, if accurate estimates of bed shear stress and TKE are required then, of the models tested, the k−ω model should be used.
Directory of Open Access Journals (Sweden)
Markel Penalba
2017-07-01
Full Text Available Considering the full dynamics of the different conversion stages from ocean waves to the electricity grid is essential to evaluate the realistic power flow in the drive train and design accurate model-based control formulations. The power take-off system for wave energy converters (WECs is one of the essential parts of wave-to-wire (W2W models, for which hydraulic transmissions are a robust solution and offer the flexibility to design specific drive-trains for specific energy absorption requirements of different WECs. The potential hydraulic drive train topologies can be classified into two main configuration groups (constant-pressure and variable-pressure configurations, each of which uses specific components and has a particular impact on the preceding and following stages of the drive train. The present paper describes the models for both configurations, including the main nonlinear dynamics, losses and constraints. Results from the mathematical model simulations are compared against experimental results obtained from two independent test rigs, which represent the two main configurations, and high-fidelity software. Special attention is paid to the impact of friction in the hydraulic cylinder and flow and torque losses in the hydraulic motor. Results demonstrate the effectiveness of the models in reproducing experimental results, capturing friction effects and showing similar losses.
Real time wave forecasting using wind time history and numerical model
Jain, Pooja; Deo, M. C.; Latha, G.; Rajendran, V.
Operational activities in the ocean like planning for structural repairs or fishing expeditions require real time prediction of waves over typical time duration of say a few hours. Such predictions can be made by using a numerical model or a time series model employing continuously recorded waves. This paper presents another option to do so and it is based on a different time series approach in which the input is in the form of preceding wind speed and wind direction observations. This would be useful for those stations where the costly wave buoys are not deployed and instead only meteorological buoys measuring wind are moored. The technique employs alternative artificial intelligence approaches of an artificial neural network (ANN), genetic programming (GP) and model tree (MT) to carry out the time series modeling of wind to obtain waves. Wind observations at four offshore sites along the east coast of India were used. For calibration purpose the wave data was generated using a numerical model. The predicted waves obtained using the proposed time series models when compared with the numerically generated waves showed good resemblance in terms of the selected error criteria. Large differences across the chosen techniques of ANN, GP, MT were not noticed. Wave hindcasting at the same time step and the predictions over shorter lead times were better than the predictions over longer lead times. The proposed method is a cost effective and convenient option when a site-specific information is desired.
Directory of Open Access Journals (Sweden)
L. Sun
2007-10-01
Full Text Available In order to study the filter effect of the background winds on the propagation of gravity waves, a three-dimensional transfer function model is developed on the basis of the complex dispersion relation of internal gravity waves in a stratified dissipative atmosphere with background winds. Our model has successfully represented the main results of the ray tracing method, e.g. the trend of the gravity waves to travel in the anti-windward direction. Furthermore, some interesting characteristics are manifest as follows: (1 The method provides the distribution characteristic of whole wave fields which propagate in the way of the distorted concentric circles at the same altitude under the control of the winds. (2 Through analyzing the frequency and wave number response curve of the transfer function, we find that the gravity waves in a wave band of about 15–30 min periods and of about 200–400 km horizontal wave lengths are most likely to propagate to the 300-km ionospheric height. Furthermore, there is an obvious frequency deviation for gravity waves propagating with winds in the frequency domain. The maximum power of the transfer function with background winds is smaller than that without background winds. (3 The atmospheric winds may act as a directional filter that will permit gravity wave packets propagating against the winds to reach the ionospheric height with minimum energy loss.
Lee Miller à travers la Roumanie, l’appareil photo à la main (1946
Directory of Open Access Journals (Sweden)
Adrian-Silvan Ionescu
2012-01-01
Full Text Available A former model and fashion photographer turned war photographer, Lee Miller visited Romania twice, in 1938 and 1946 respectively. After her second visit she published her impressions and pictures, under the title of Roumania, in Vogue magazine. Besides the published material there are her manuscripts from The Lee Miller Achives at Farley Farm House, East Sussex, England, on which this paper is based. She crossed the border coming from Hungary in early February 1946. Heading for Sibiu her car, a Chevrolet Sedan, slipping on the ice-covered road, stopped on a snowbank far off in the ditch. While looking for help in the nearby village she and her companions left the car unguarded to discover it plundered of everything, wheels included.On a Sunday afternoon she had the privilege of being received by King Mihai I and Queen Mother Elena with whom she talked exstensively. She also took magnificent pictures with the Royal Family in the imposing Peleş Castle. At Sinaia, „the summer capital of Roumania” she had also the opportunity to portray Dinu Brătianu and Iuliu Maniu, the two elderly statesmen. Maniu was surrounded by friends and party members, among whom was young Corneliu Coposu, his private secretary.Moving to Bucharest, she met old friends such as Harri Brauner and his wife, Lena Constante, with whom she wandered through the country eight years ago. Lena and Elena Pătrășcanu, wife of Lucrețiu Pătrășcanu, Minister of Justice, have started a successful marionette theatre where Lee took nice pictures. Other were taken on the streets, with peasants, street vendors and their customers. Harri took her to a bistro where they met Maria Lătărețu, the celebrating folk singer whom Brauner recorded many times. They enjoyed her songs. Suffering from fibrositis, Lee Miller undertook a peculiar treatment in a gypsy village where the inhabitants were dancing bears trainers. She was massaged by a bear weighing about 300 pounds while Brauner took
Recognition of sine wave modeled consonants by normal hearing and hearing-impaired individuals
Balachandran, Rupa
Sine wave modeling is a parametric tool for representing the speech signal with a limited number of sine waves. It involves replacing the peaks of the speech spectrum with sine waves and discarding the rest of the lower amplitude components during synthesis. It has the potential to be used as a speech enhancement technique for hearing-impaired adults. The present study answers the following basic questions: (1) Are sine wave synthesized speech tokens more intelligible than natural speech tokens? (2) What is the effect of varying the number of sine waves on consonant recognition in quiet? (3) What is the effect of varying the number of sine waves on consonant recognition in noise? (4) How does sine wave modeling affect the transmission of speech feature in quiet and in noise? (5) Are there differences in recognition performance between normal hearing and hearing-impaired listeners? VCV syllables representing 20 consonants (/p/, /t/, /k/, /b/, /d/, /g/, /f/, /theta/, /s/, /∫/, /v/, /z/, /t∫/, /dy/, /j/, /w/, /r/, /l/, /m/, /n/) in three vowel contexts (/a/, /i/, /u/) were modeled with 4, 8, 12, and 16 sine waves. A consonant recognition task was performed in quiet, and in background noise (+10 dB and 0 dB SNR). Twenty hearing-impaired listeners and six normal hearing listeners were tested under headphones at their most comfortable listening level. The main findings were: (1) Recognition of unprocessed speech was better that of sine wave modeled speech. (2) Asymptotic performance was reached with 8 sine waves in quiet for both normal hearing and hearing-impaired listeners. (3) Consonant recognition performance in noise improved with increasing number of sine waves. (4) As the number of sine waves was decreased, place information was lost first, followed by manner, and finally voicing. (5) Hearing-impaired listeners made more errors then normal hearing listeners, but there were no differences in the error patterns made by both groups.
Topics in Computational Modeling of Shock and Wave Propagation
National Research Council Canada - National Science Library
Gazonas, George A; Main, Joseph A; Laverty, Rich; Su, Dan; Santare, Michael H; Raghupathy, R; Molinari, J. F; Zhou, F
2006-01-01
This report contains reprints of four papers that focus on various aspects of shock and wave propagation in cellular, viscoelastic, microcracked, and fragmented media that appear in the Proceedings...
Measurement and modelling of bed shear induced by solitary waves
Digital Repository Service at National Institute of Oceanography (India)
JayaKumar, S.
horizontal continental shelf. Measurements of bed shear stress, surface elevation and flow velocities were carried out. Periodic waves were also generated and the bed shear stresses measured over a horizontal bed were found to be comparable with the earlier...
Nooruslikud juubilarid: fotokelder Lee 20 ja fotomuuseum 30 / Mall Parmas, Betty Ester-Väljaots
Parmas, Mall
2013-01-01
Peeter Toominga algatusel 1992. aastal asutatud Lee fotokeldrist. Loetletud fotomuuseumis oma töid eksponeerinud fotograafid. Ülevaatenäitus "Lee fotokelder 20" 17. jaanuarist 20. märtsini, koostaja Betty Ester-Väljaots
Lake St. Clair: Storm Wave and Water Level Modeling
2013-06-01
moving synoptic , and meso-scale meteorological events as they crossed Lake Michigan. It was observed at the onset of this study that Lake St...significant wave height, and a negative bias in the wave period estimates. All of these results present a different picture than the previous tests. As in...simulation forcing parameters: Input the ADCIRC mesh (fort.14) and the water level adjustment to the synoptic lake level (fort.13) for a specific storm
Ionospheric conductance distribution and MHD wave structure: observation and model
Directory of Open Access Journals (Sweden)
F. Budnik
Full Text Available The ionosphere influences magnetohydrodynamic waves in the magnetosphere by damping because of Joule heating and by varying the wave structure itself. There are different eigenvalues and eigensolutions of the three dimensional toroidal wave equation if the height integrated Pedersen conductivity exceeds a critical value, namely the wave conductance of the magnetosphere. As a result a jump in frequency can be observed in ULF pulsation records. This effect mainly occurs in regions with gradients in the Pedersen conductances, as in the auroral oval or the dawn and dusk areas. A pulsation event recorded by the geostationary GOES-6 satellite is presented. We explain the observed change in frequency as a change in the wave structure while crossing the terminator. Furthermore, selected results of numerical simulations in a dipole magnetosphere with realistic ionospheric conditions are discussed. These are in good agreement with the observational data.
Key words. Ionosphere · (Ionosphere · magnetosphere interactions · Magnetospheric physics · Magnetosphere · ionosphere interactions · MHD waves and instabilities.
Ionospheric conductance distribution and MHD wave structure: observation and model
Directory of Open Access Journals (Sweden)
F. Budnik
1998-02-01
Full Text Available The ionosphere influences magnetohydrodynamic waves in the magnetosphere by damping because of Joule heating and by varying the wave structure itself. There are different eigenvalues and eigensolutions of the three dimensional toroidal wave equation if the height integrated Pedersen conductivity exceeds a critical value, namely the wave conductance of the magnetosphere. As a result a jump in frequency can be observed in ULF pulsation records. This effect mainly occurs in regions with gradients in the Pedersen conductances, as in the auroral oval or the dawn and dusk areas. A pulsation event recorded by the geostationary GOES-6 satellite is presented. We explain the observed change in frequency as a change in the wave structure while crossing the terminator. Furthermore, selected results of numerical simulations in a dipole magnetosphere with realistic ionospheric conditions are discussed. These are in good agreement with the observational data.Key words. Ionosphere · (Ionosphere · magnetosphere interactions · Magnetospheric physics · Magnetosphere · ionosphere interactions · MHD waves and instabilities.
Realistic Modeling of Fast MHD Wave Trains in Coronal Active Regions
Ofman, Leon; Sun, Xudong
2017-08-01
Motivated by recent SDO/AIA observations we have developed realistic modeling of quasi-periodic, fast-mode propagating MHD wave trains (QFPs) using 3D MHD model initiated with potential magnetic field extrapolated from the solar coronal boundary. Localized quasi-periodic pulsations associated with C-class flares that drive the waves (as deduced from observations) are modeled with transverse periodic displacement of magnetic field at the lower coronal boundary. The modeled propagating speed and the form of the wave expansions matches the observed fast MHD waves speed >1000 km/s and topology. We study the parametric dependence of the amplitude, propagation, and damping of the waves for a range of key model parameters, such as the background temperature, density, and the location of the flaring site within the active region. We investigate the interaction of multiple QFP wave trains excited by adjacent flaring sources. We use the model results to synthesize EUV intensities in multiple AIA channels and obtain the model parameters that best reproduce the properties of observed QFPs, such as the recent DEM analysis. We discuss the implications of our modeling results for the seismological application of QFPs for the diagnostic of the active region field, flare pulsations, end estimate the energy flux carried by the waves.
Model for small arms fire muzzle blast wave propagation in air
Aguilar, Juan R.; Desai, Sachi V.
2011-11-01
Accurate modeling of small firearms muzzle blast wave propagation in the far field is critical to predict sound pressure levels, impulse durations and rise times, as functions of propagation distance. Such a task being relevant to a number of military applications including the determination of human response to blast noise, gunfire detection and localization, and gun suppressor design. Herein, a time domain model to predict small arms fire muzzle blast wave propagation is introduced. The model implements a Friedlander wave with finite rise time which diverges spherically from the gun muzzle. Additionally, the effects in blast wave form of thermoviscous and molecular relaxational processes, which are associated with atmospheric absorption of sound were also incorporated in the model. Atmospheric absorption of blast waves is implemented using a time domain recursive formula obtained from numerical integration of corresponding differential equations using a Crank-Nicholson finite difference scheme. Theoretical predictions from our model were compared to previously recorded real world data of muzzle blast wave signatures obtained by shooting a set different sniper weapons of varying calibers. Recordings containing gunfire acoustical signatures were taken at distances between 100 and 600 meters from the gun muzzle. Results shows that predicted blast wave slope and exponential decay agrees well with measured data. Analysis also reveals the persistency of an oscillatory phenomenon after blast overpressure in the recorded wave forms.
Lee-Yang-inspired functional with a density-dependent neutron-neutron scattering length
Grasso, M.; Lacroix, D.; Yang, C. J.
2017-05-01
Inspired by the low-density Lee-Yang expansion for the energy of a dilute Fermi gas of density ρ and momentum kF, we introduce here a Skyrme-type functional that contains only s -wave terms and provides, at the mean-field level, (i) a satisfactory equation of state for neutron matter from extremely low densities up to densities close to the equilibrium point, and (ii) a good-quality equation of state for symmetric matter at density scales around the saturation point. This is achieved by using a density-dependent neutron-neutron scattering length a (ρ ) which satisfies the low-density limit (for Fermi momenta going to zero) and has a density dependence tuned in such a way that the low-density constraint |a (ρ ) kF|≤1 is satisfied at all density scales.
A Numerical Implementation of a Nonlinear Mild Slope Model for Shoaling Directional Waves
Directory of Open Access Journals (Sweden)
Justin R. Davis
2014-02-01
Full Text Available We describe the numerical implementation of a phase-resolving, nonlinear spectral model for shoaling directional waves over a mild sloping beach with straight parallel isobaths. The model accounts for non-linear, quadratic (triad wave interactions as well as shoaling and refraction. The model integrates the coupled, nonlinear hyperbolic evolution equations that describe the transformation of the complex Fourier amplitudes of the deep-water directional wave field. Because typical directional wave spectra (observed or produced by deep-water forecasting models such as WAVEWATCH III™ do not contain phase information, individual realizations are generated by associating a random phase to each Fourier mode. The approach provides a natural extension to the deep-water spectral wave models, and has the advantage of fully describing the shoaling wave stochastic process, i.e., the evolution of both the variance and higher order statistics (phase correlations, the latter related to the evolution of the wave shape. The numerical implementation (a Fortran 95/2003 code includes unidirectional (shore-perpendicular propagation as a special case. Interoperability, both with post-processing programs (e.g., MATLAB/Tecplot 360 and future model coupling (e.g., offshore wave conditions from WAVEWATCH III™, is promoted by using NetCDF-4/HD5 formatted output files. The capabilities of the model are demonstrated using a JONSWAP spectrum with a cos2s directional distribution, for shore-perpendicular and oblique propagation. The simulated wave transformation under combined shoaling, refraction and nonlinear interactions shows the expected generation of directional harmonics of the spectral peak and of infragravity (frequency <0.05 Hz waves. Current development efforts focus on analytic testing, development of additional physics modules essential for applications and validation with laboratory and field observations.
Modeling Gravitational Wave Sources For Pulsar Timing Arrays
Simon, Joseph
2018-01-01
Pulsar Timing Arrays (PTAs) are galactic-scale low-frequency (nHz - μHz) gravitational wave (GW) observatories, which aim to directly detect GWs from binary supermassive black holes (SMBHs) (≥ 107 M⊙). Binary SMBHs are predicted products of galaxy mergers, and are a crucial step in galaxy formation theories. Understanding the link between binary SMBHs and the gravitational radiation detected by PTAs is crucial to the community's capability of making meaningful scientific statements using PTA observations. Recent PTA upper limits on the gravitational radiation in the nanohertz frequency band are impacting our understanding of the binary SMBH population. But as upper limits grow more constraining, what can be implied about galaxy evolution? In this talk, I will provide insights into this question with investigations into which astrophysical parameters have the largest impact on GW predictions, direct translations between PTA limits and measured values for the parameters of galaxy evolution, and explorations into how the use of different galaxy evolution parameters effects the characterization of the GW signal.The inspiral of binary SMBHs creates extended interaction between the black holes and their host galaxy, and there is the potential for many electromagnetic tracers to accompany the binary's evolution. This talk will also highlight work incorporating models of electromagnetic radiation from binary SMBHs to investigate the potential for jointly detecting a binary's electromagnetic and gravitational radiation. The detection of a single `multi-messenger' source would provide a unique window into a pivotal stage of galaxy evolution, and would revolutionize the understanding of late-stage galaxy evolution.
Lee Miller, une battante sur tous les fronts
Directory of Open Access Journals (Sweden)
Anaïs Boutot
2009-06-01
Full Text Available L’art photographique de Lee Miller, à l’image de sa vie, revêt de multiples facettes. Après avoir été devant l’objectif en tant que mannequin puis égérie du Paris surréaliste, elle passe derrière l’objectif pour devenir photographe de mode, reporter de guerre ou encore portraitiste. L’exposition L’Art de Lee Miller, présentée au Jeu de Paume du 21 octobre 2008 au 4 janvier 2009 et accompagnée d’un ouvrage paru en français chez Hazan mettait en avant une quête d’identité et d’indépendance qui ...
Economist Innovation Award for Tim Berners-Lee
2003-01-01
In September, Tim Berners-Lee, who invented the World Wide Web at CERN and is now Director of the W3C World Wide Web Consortium, received the 2nd Economist Annual Innovation Award in Computing. With the award The Economist, a British weekly newspaper, recognises individuals responsible for breakthroughs in Bioscience, Computing, Energy and the Environment, and Telecommunications that have a profound impact on industry. A fifth award is given in a special "No Boundaries" category, observing innovation that transcends industries. Candidates for the awards are proposed by The Economist readers and writers, and by a group of judges. Tim Berners-Lee received the Computing award for his global hypertext project, to be known as the World Wide Web, which "forever altered the way information is shared" and is a huge contribution to the efficiency of the scientific community. Based on a programme for storing information using random associations called "Enquire", it...
What Lee Raymond actually said in Beijing [15th WPC
International Nuclear Information System (INIS)
Raymond, Lee.
1997-01-01
When Lee Raymond, Chairman and Chief Executive Officer, Exxon Corporation gave this keynote address at the recent World Petroleum Congress in Beijing, he drew attention to the way economic growth alleviates poverty and to the close linkage between economic growth and energy use. He also drew attention to the weakness of the scientific evidence for climate change being caused by fossil fuel burning and his doubts about the wisdom of setting targets for the reduction of CO 2 emissions. At a press conference after the presentation Lee Raymond assented to the suggestion that the European oil companies have been hijacked by the environmentalists. Petroleum Review has reproduced the full text of the speech so that readers can judge for themselves the merits of the arguments and their likely impact on the Kyoto conference. (UK)
Multi-channel analysis of surface waves MASW of models with high shear-wave velocity contrast
Ivanov, J.; Miller, R.D.; Peterie, S.; Zeng, C.; Xia, J.; Schwenk, T.
2011-01-01
We use the multi-channel analysis of surface waves MASW method to analyze synthetic seismic data calculated using models with high shear-wave velocity Vs contrast. The MASW dispersion-curve images of the Rayleigh wave are obtained using various sets of source-offset and spread-size configurations from the synthetic seismic data and compared with the theoretically calculated fundamental- and higher-mode dispersion-curves. Such tests showed that most of the dispersion-curve images are dominated by higher-mode energy at the low frequencies, especially when analyzing data from long receiver offsets and thus significantly divert from numerically expected dispersion-curve trends, which can lead to significant Vs overestimation. Further analysis showed that using data with relatively short spread lengths and source offsets can image the desired fundamental-mode of the Rayleigh wave that matches the numerically expected dispersion-curve pattern. As a result, it was concluded that it might be possible to avoid higher-mode contamination at low frequencies at sites with high Vs contrast by appropriate selection of spread size and seismic source offset. ?? 2011 Society of Exploration Geophysicists.
Mathematical and numerical modeling of the AquaBuOY wave energy converter
Energy Technology Data Exchange (ETDEWEB)
Wacher, A.; Nielsen, K.
2008-12-15
We have introduced a mathematical model of the vertical dynamics of the AquaBuOY's IPS buoy and hose-pump power take off system. The numerical results obtained proved to be very accurate as compared to real life data of Finavera's fiftieth and tenth scales of the AquaBuOY. The numerical implementation of the model is extremely fast for the regular wave regime and nearly real time for the irregular wave regime, however the results in the irregular wave regime are far more accurate than for regular waves. The model and method have proved to be robust, efficient and accurate however future work is recommended in the time integration scheme used to solve the ordinary differential equations in the irregular wave regime as it would be useful for optimization over many variables to make the numerical integration faster. (Author)
Digital Repository Service at National Institute of Oceanography (India)
Samiksha, S.V.; Polnikov, V.G.; Vethamony, P.; Rashmi, R.; Pogarskii, F.; Sudheesh, K.
have been successful in predicting the sea state reasonably accurately on global as well as regional scales. It may be noted that besides the time required for the calculations, the issue of model accuracy is the most important, since... important source terms governing the dynamics of the surface gravity wave evolution (for e.g., Hasselmann et al., 1973; Phillips, 1977, 1985; Komen et al., 1994; Janssen, 2004, Violante- Carvalho et al., 2004). The physics of these source functions...
The double-gradient model of flapping instability with oblique wave vector
Korovinskiy, Daniil; Kiehas, Stefan
2017-04-01
The double-gradient model of magnetotail flapping oscillations/instability is generalized for the case of oblique propagation in the equatorial plane. The transversal direction Y (in GSM reference system) of the wave vector is found to be preferable, showing the highest growth rates of kink and sausage double-gradient unstable modes. Growth rates decrease with the wave vector rotating toward the X direction. It is found that neither waves nor instability with a wave vector pointing toward the Earth/magnetotail can develop.
High-order Boussinesq-type modelling of nonlinear wave phenomena in deep and shallow water
DEFF Research Database (Denmark)
Madsen, Per A.; Fuhrman, David R.
2010-01-01
In this work, we start with a review of the development of Boussinesq theory for water waves covering the period from 1872 to date. Previous reviews have been given by Dingemans,1 Kirby,2,3 and Madsen & Schäffer.4 Next, we present our most recent high-order Boussinesq-type formulation valid...... for fully nonlinear and highly dispersive waves traveling over a rapidly varying bathymetry. Finally, we cover applications of this Boussinesq model, and we study a number of nonlinear wave phenomena in deep and shallow water. These include (1) Kinematics in highly nonlinear progressive deep-water waves; (2...
Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models
International Nuclear Information System (INIS)
Hsu, Cheng-Hsiung; Yang, Tzi-Sheng
2013-01-01
The purpose of this work is to investigate the existence, uniqueness, monotonicity and asymptotic behaviour of travelling wave solutions for a general epidemic model arising from the spread of an epidemic by oral–faecal transmission. First, we apply Schauder's fixed point theorem combining with a supersolution and subsolution pair to derive the existence of positive monotone monostable travelling wave solutions. Then, applying the Ikehara's theorem, we determine the exponential rates of travelling wave solutions which converge to two different equilibria as the moving coordinate tends to positive infinity and negative infinity, respectively. Finally, using the sliding method, we prove the uniqueness result provided the travelling wave solutions satisfy some boundedness conditions. (paper)
Spreading speed and travelling waves for a spatially discrete SIS epidemic model
International Nuclear Information System (INIS)
Zhang, Kate Fang; Zhao Xiaoqiang
2008-01-01
This paper is devoted to the study of the asymptotic speed of spread and travelling waves for a spatially discrete SIS epidemic model. By appealing to the theory of spreading speeds and travelling waves for monotonic semiflows, we establish the existence of asymptotic speed of spread and show that it coincides with the minimal wave speed for monotonic travelling waves. This also gives an affirmative answer to an open problem presented by Rass and Radcliffe (2003 Spatial Deterministic Epidemics (Mathematical Surveys and Monographs vol 102) (Providence, RI: American Mathematical Society)) in the case of discrete spatial habitat
Structural Modeling and Analysis of a Wave Energy Converter Applying Dynamical Substructuring Method
DEFF Research Database (Denmark)
Zurkinden, Andrew Stephen; Damkilde, Lars; Gao, Zhen
2013-01-01
This paper deals with structural modeling and analysis of a wave energy converter. The device, called Wavestar, is a bottom fixed structure, located in a shallow water environment at the Danish Northwest coast. The analysis is concentrated on a single float and its structural arm which connects...... the WEC to a jackup structure. The wave energy converter is characterized by having an operational and survival mode. The survival mode drastically reduces the exposure to waves and therfore to the wave loads. Structural response analysis of the Wavestar arm is carried out in this study. Due...
Fate of grape flavor precursors during storage on yeast lees.
Loscos, Natalia; Hernández-Orte, Purificación; Cacho, Juan; Ferreira, Vicente
2009-06-24
The effect of the addition of a grape flavor precursor extract to a grape juice, before or after fermentation with three different Saccharomyces cerevisiae yeast strains, on the evolution of the wine aroma composition during a 9-month aging period on yeast lees has been studied. Wine aroma compounds were determined by gas chromatography-mass spectrometry after alcoholic fermentation and after 3 and 9 months of storage. The aging of wine on lees caused important changes in the aroma profiles of wines, making the concentrations of three terpenes, norisoprenoids (except beta-damascenone and beta-ionone), 4-allyl-2,6-dimethoxyphenol, ethyl vanillate, syringaldehyde, and ethyl cinnamate increase, whereas the concentrations of most of the rest of compounds tended to decrease. Lees are responsible for the observed increasing trends, except for linalool and alpha-terpineol, and also for a large part of the observed decrements. As expected, the addition of precursors brings about an increment in the levels of most terpenes, norisoprenoids, vanillins, and ethyl cinnamate, and it is after an aging time when differences linked to the level of precursors in the must become more evident. The timing of the addition of precursors has a minor influence, except for beta-damascenone, vanillin, and syringaldehyde, for which supplementation after fermentation is more effective. It has also been observed that the precursor fraction makes the levels of vinylphenols decrease. Finally, it has also been found that lees from different yeast strains may have a slightly different abilities to release volatile compounds derived from precursors.
Gettysburg: A Study of Lee’s Command Effectiveness, 1863
2011-03-21
scholar of military history it is not necessary to focus strictly on the tactics of a single battle, or campaign, or even an entire war. To fully...the second day was the Peach Orchard and ultimately Cemetery Hill.48 The Peach Orchard was carried at a heavy cost but attacks on Little Round Top...Union troops to occupy the desired ground of the Peach Orchard and obtain positions on Little Round Top. Knowing Longstreet’s nature, Lee did not
Tim Berners-Lee, World Wide Web inventor
1994-01-01
Former physicist, Tim Berners-Lee invented the World Wide Web as an essential tool for high energy physics at CERN from 1989 to 1994. Together with a small team he conceived HTML, http, URLs, and put up the first server and the first 'what you see is what you get' browser and html editor. Tim is now Director of the Web Consortium W3C, the International Web standards body based at INRIA, MIT and Keio University.
Triniti daripada Perspektif Taoisme: Analisis Pemikiran Jung Young Lee
Directory of Open Access Journals (Sweden)
ZURAIZA HUSIN
2016-06-01
Full Text Available Jung Young Lee is a Korean-born theologian who employs creatively the doctrine of the Trinity from an Asian worldview. This article aims to analyze Lee’s approaches of the Trinity with the Yin-Yang symbolism. The main reference is based on the book written by him entitled ‘The Trinity in Asian Perspective (1996’. Lee has turned his attention to the topic of Trinity through the lens of the culture and thought patterns of his own milieu. One of the leading point in presenting Yin-Yang principle as Trinitarian thinking, Lee examines the interpretation of the term “in” in the Bible, "Believe me that I am in the Father and the Father is in me" (John 14:11. The statement leads to the point that Yin and Yang cannot exist without each other because relationality is given priority than individuality. The idea is based on the terminology of ‘both/and’. So, ‘and’ indicates a Trinitarian statement, there is interdependence and unification. With reference to Trinity, the Father and the Son are One because of ‘and’. In addition, the same concept implements to the Holy Spirit. Lee views ‘and’ is not only a linking principle in both-and thinking but also the principle that is ‘between’ two. When ‘two’ exists, the third also exist between them. Based on the idea of ‘middle’, represents the connecting element between two, which contributes for the existence of the Third. Accordingly, the Spirit is the third element in the Trinity relationship.
Ganiev, R. F.; Reviznikov, D. L.; Rogoza, A. N.; Slastushenskiy, Yu. V.; Ukrainskiy, L. E.
2017-03-01
A description of a complex approach to investigation of nonlinear wave processes in the human cardiovascular system based on a combination of high-precision methods of measuring a pulse wave, mathematical methods of processing the empirical data, and methods of direct numerical modeling of hemodynamic processes in an arterial tree is given.
Feasibility analysis of real-time physical modeling using WaveCore processor technology on FPGA
Verstraelen, Martinus Johannes Wilhelmina; Pfeifle, Florian; Bader, Rolf
2015-01-01
WaveCore is a scalable many-core processor technology. This technology is specifically developed and optimized for real-time acoustical modeling applications. The programmable WaveCore soft-core processor is silicon-technology independent and hence can be targeted to ASIC or FPGA technologies. The
Modeling linear Rayleigh wave sound fields generated by angle beam wedge transducers
Directory of Open Access Journals (Sweden)
Shuzeng Zhang
2017-01-01
Full Text Available In this study, the reciprocity theorem for elastodynamics is transformed into integral representations, and the fundamental solutions of wave motion equations are obtained using Green’s function method that yields the integral expressions of sound beams of both bulk and Rayleigh waves. In addition to this, a novel surface integral expression for propagating Rayleigh waves generated by angle beam wedge transducers along the surface is developed. Simulation results show that the magnitudes of Rayleigh wave displacements predicted by this model are not dependent on the frequencies and sizes of transducers. Moreover, they are more numerically stable than those obtained by the 3-D Rayleigh wave model. This model is also applicable to calculation of Rayleigh wave beams under the wedge when sound sources are assumed to radiate waves in the forward direction. Because the proposed model takes into account the actual calculated sound sources under the wedge, it can be applied to Rayleigh wave transducers with different wedge geometries. This work provides an effective and general tool to calculate linear Rayleigh sound fields generated by angle beam wedge transducers.
FISIC - a full-wave code to model ion cyclotron resonance heating of tokamak plasmas
International Nuclear Information System (INIS)
Kruecken, T.
1988-08-01
We present a user manual for the FISIC code which solves the integrodifferential wave equation in the finite Larmor radius approximation in fully toroidal geometry to simulate ICRF heating experiments. The code models the electromagnetic wave field as well as antenna coupling and power deposition profiles in axisymmetric plasmas. (orig.)
The variational 2D Boussinesq model for wave propagation over a shoal
Adytia, D.; van Groesen, Embrecht W.C.
2011-01-01
The Variational Boussinesq Model (VBM) for waves (Klopman et al. 2010) is based on the Hamiltonian structure of gravity surface waves. In its approximation, the fluid potential in the kinetic energy is approximated by the sum of its value at the free surface and a linear combination of vertical
Model Testing of the Wave Energy Converter Seawave Slot-Cone Generator
DEFF Research Database (Denmark)
Kofoed, Jens Peter
This report presents the results of a preliminary experimental study of the wave energy convert (WEC) Seawave Slot-Cone Generator (SSG). SSG is a WEC utilizing wave overtopping in multiple reservoirs. In the present SSG setup three reservoirs has been used. Model tests have been performed using...
High-order Boussinesq-type modelling of nonlinear wave phenomena in deep and shallow water
DEFF Research Database (Denmark)
Madsen, Per A.; Fuhrman, David R.
2010-01-01
In this work, we start with a review of the development of Boussinesq theory for water waves covering the period from 1872 to date. Previous reviews have been given by Dingemans,1 Kirby,2,3 and Madsen & Schäffer.4 Next, we present our most recent high-order Boussinesq-type formulation valid...... for fully nonlinear and highly dispersive waves traveling over a rapidly varying bathymetry. Finally, we cover applications of this Boussinesq model, and we study a number of nonlinear wave phenomena in deep and shallow water. These include (1) Kinematics in highly nonlinear progressive deep-water waves; (2......) Kinematics in progressive solitary waves; (3) Reflection of solitary waves from a vertical wall; (4) Reflection and diffraction around a vertical plate; (5) Quartet and quintet interactions and class I and II instabilities; (6) Extreme events from focused directionally spread waveelds; (7) Bragg scattering...
Generalized Sagdeev potential theory for shock waves modeling
Akbari-Moghanjoughi, M.
2017-05-01
In this paper, we develop an innovative approach to study the shock wave propagation using the Sagdeev potential method. We also present an analytical solution for Korteweg de Vries Burgers (KdVB) and modified KdVB equation families with a generalized form of the nonlinearity term which agrees well with the numerical one. The novelty of the current approach is that it is based on a simple analogy of the particle in a classical potential with the variable particle energy providing one with a deeper physical insight into the problem and can easily be extended to more complex physical situations. We find that the current method well describes both monotonic and oscillatory natures of the dispersive-diffusive shock structures in different viscous fluid configurations. It is particularly important that all essential parameters of the shock structure can be deduced directly from the Sagdeev potential in small and large potential approximation regimes. Using the new method, we find that supercnoidal waves can decay into either compressive or rarefactive shock waves depending on the initial wave amplitude. Current investigation provides a general platform to study a wide range of phenomena related to nonlinear wave damping and interactions in diverse fluids including plasmas.
Ocean-Wave Coupled Modeling in COAMPS-TC: A Study of Hurricane Ivan (2004)
2013-08-15
input of the Stokes Drift Current ( SDC ) calculated from the SWAN wave spectra to NCOM, is examined. The models indicate that the SDC was on the order...of 10 -25% of the near-surface Eulerian current during Ivan. Recent studies of the importance of the SDC and the resulting Langmuir turbulence on...model coupling, which included the input of the Stokes Drift Current ( SDC ) calculated from the SWAN wave spectra to NCOM, is examined. The models indi
An Integrative Wave Model for the Marginal Ice Zone Based on a Rheological Parameterization
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. An Integrative Wave model for the Marginal Ice Zone...people.clarkson.edu/~hhshen LONG-TERM GOALS To enhance wave forecasting models such as WAVEWATCH III (WW3) so that they can predict the marginal ice zone (MIZ...Antarctic marginal ice zone were used to evaluate the viscoelastic ice damping models. The 2012 data came from two buoys separated by over 100km
DEFF Research Database (Denmark)
Burcharth, Hans F.; Andersen, Thomas Lykke; Meinert, Palle
2008-01-01
This paper discusses the influence of wave load sampling frequency on calculated sliding distance in an overall stability analysis of a monolithic caisson. It is demonstrated by a specific example of caisson design that for this kind of analyses the sampling frequency in a small scale model could...... be as low as 100 Hz in model scale. However, for design of structure elements like the wave wall on the top of a caisson the wave load sampling frequency must be much higher, in the order of 1000 Hz in the model. Elastic-plastic deformations of foundation and structure were not included in the analysis....
Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.
Directory of Open Access Journals (Sweden)
Hau-Tieng Wu
Full Text Available We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.
Czech Academy of Sciences Publication Activity Database
Kolínský, Petr; Málek, Jiří; Brokešová, J.
2011-01-01
Roč. 15, č. 1 (2011), s. 81-104 ISSN 1383-4649 R&D Projects: GA AV ČR IAA300460602; GA AV ČR IAA300460705; GA ČR(CZ) GA205/06/1780 Institutional research plan: CEZ:AV0Z30460519 Keywords : love waves * phase velocity dispersion * frequency-time analysis Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.326, year: 2011 www.springerlink.com/content/w3149233l60111t1/
Acoustic Wave Propagation in Snow Based on a Biot-Type Porous Model
Sidler, R.
2014-12-01
Despite the fact that acoustic methods are inexpensive, robust and simple, the application of seismic waves to snow has been sparse. This might be due to the strong attenuation inherent to snow that prevents large scale seismic applications or due to the somewhat counterintuitive acoustic behavior of snow as a porous material. Such materials support a second kind of compressional wave that can be measured in fresh snow and which has a decreasing wave velocity with increasing density of snow. To investigate wave propagation in snow we construct a Biot-type porous model of snow as a function of porosity based on the assumptions that the solid frame is build of ice, the pore space is filled with a mix of air, or air and water, and empirical relationships for the tortuosity, the permeability, the bulk, and the shear modulus.We use this reduced model to investigate compressional and shear wave velocities of snow as a function of porosity and to asses the consequences of liquid water in the snowpack on acoustic wave propagation by solving Biot's differential equations with plain wave solutions. We find that the fast compressional wave velocity increases significantly with increasing density, but also that the fast compressional wave velocity might be even lower than the slow compressional wave velocity for very light snow. By using compressional and shear strength criteria and solving Biot's differential equations with a pseudo-spectral approach we evaluate snow failure due to acoustic waves in a heterogeneous snowpack, which we think is an important mechanism in triggering avalanches by explosives as well as by skiers. Finally, we developed a low cost seismic acquisition device to assess the theoretically obtained wave velocities in the field and to explore the possibility of an inexpensive tool to remotely gather snow water equivalent.
Effects of wave-induced forcing on a circulation model of the North Sea
Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian
2017-01-01
The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution Nucleus for European Modelling of the Ocean (NEMO) model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force, the sea-state-dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water-level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state-dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water-level and current predictions.
Active Absorption of Irregular Gravity Waves in BEM-Models
DEFF Research Database (Denmark)
Brorsen, Michael; Frigaard, Peter
1992-01-01
The boundary element method is applied to the computation of irregular gravity waves. The boundary conditions at the open boundaries are obtained by a digital filtering technique, where the surface elevations in front of the open boundary are filtered numerically yielding the velocity to be presc......The boundary element method is applied to the computation of irregular gravity waves. The boundary conditions at the open boundaries are obtained by a digital filtering technique, where the surface elevations in front of the open boundary are filtered numerically yielding the velocity...
An Improved Coupling of Numerical and Physical Models for Simulating Wave Propagation
DEFF Research Database (Denmark)
Yang, Zhiwen; Liu, Shu-xue; Li, Jin-xuan
2014-01-01
An improved coupling of numerical and physical models for simulating 2D wave propagation is developed in this paper. In the proposed model, an unstructured finite element model (FEM) based Boussinesq equations is applied for the numerical wave simulation, and a 2D piston-type wavemaker is used...... for the physical wave generation. An innovative scheme combining fourth-order Lagrange interpolation and Runge-Kutta scheme is described for solving the coupling equation. A Transfer function modulation method is presented to minimize the errors induced from the hydrodynamic invalidity of the coupling model and....../or the mechanical capability of the wavemaker in area where nonlinearities or dispersion predominate. The overall performance and applicability of the coupling model has been experimentally validated by accounting for both regular and irregular waves and varying bathymetry. Experimental results show...
Idier, Déborah; Falqués, Albert; Rohmer, Jérémy; Arriaga, Jaime
2017-09-01
The instability mechanisms for self-organized kilometer-scale shoreline sand waves have been extensively explored by modeling. However, while the assumed bathymetric perturbation associated with the sand wave controls the feedback between morphology and waves, its effect on the instability onset has not been explored. In addition, no systematic investigation of the effect of the physical parameters has been done yet. Using a linear stability model, we investigate the effect of wave conditions, cross-shore profile, closure depth, and two perturbation shapes (P1: cross-shore bathymetric profile shift, and P2: bed level perturbation linearly decreasing offshore). For a P1 perturbation, no instability occurs below an absolute critical angle θc0≈ 40-50°. For a P2 perturbation, there is no absolute critical angle: sand waves can develop also for low-angle waves. In fact, the bathymetric perturbation shape plays a key role in low-angle wave instability: such instability only develops if the curvature of the depth contours offshore the breaking zone is larger than the shoreline one. This can occur for the P2 perturbation but not for P1. The analysis of bathymetric data suggests that both curvature configurations could exist in nature. For both perturbation types, large wave angle, small wave period, and large closure depth strongly favor instability. The cross-shore profile has almost no effect with a P1 perturbation, whereas large surf zone slope and gently sloping shoreface strongly enhance instability under low-angle waves for a P2 perturbation. Finally, predictive statistical models are set up to identify sites prone to exhibit either a critical angle close to θc0 or low-angle wave instability.
Chaos induced by breakup of waves in a spatial epidemic model with nonlinear incidence rate
International Nuclear Information System (INIS)
Sun, Gui-Quan; Jin, Zhen; Liu, Quan-Xing; Li, Li
2008-01-01
Spatial epidemiology is the study of spatial variation in disease risk or incidence, including the spatial patterns of the population. The spread of diseases in human populations can exhibit large scale patterns, underlining the need for spatially explicit approaches. In this paper, the spatiotemporal complexity of a spatial epidemic model with nonlinear incidence rate, which includes the behavioral changes and crowding effect of the infective individuals, is investigated. Based on both theoretical analysis and computer simulations, we find out when, under the parameters which can guarantee a stable limit cycle in the non-spatial model, spiral and target waves can emerge. Moreover, two different kinds of breakup of waves are shown. Specifically, the breakup of spiral waves is from the core and the breakup of target waves is from the far-field, and both kinds of waves become irregular patterns at last. Our results reveal that the spatiotemporal chaos is induced by the breakup of waves. The results obtained confirm that diffusion can form spiral waves, target waves or spatial chaos of high population density, which enrich the findings of spatiotemporal dynamics in the epidemic model
ALTWAVE: Toolbox for use of satellite L2P altimeter data for wave model validation
Appendini, Christian M.; Camacho-Magaña, Víctor; Breña-Naranjo, José Agustín
2016-03-01
To characterize some of the world's ocean physical processes such as its wave height, wind speed and sea surface elevation is a major need for coastal and marine infrastructure planning and design, tourism activities, wave power and storm surge risk assessment, among others. Over the last decades, satellite remote sensing tools have provided quasi-global measurements of ocean altimetry by merging data from different satellite missions. While there is a widely use of altimeter data for model validation, practical tools for model validation remain scarce. Our purpose is to fill this gap by introducing ALTWAVE, a MATLAB user-oriented toolbox for oceanographers and coastal engineers developed to validate wave model results based on visual features and statistical estimates against satellite derived altimetry. Our toolbox uses altimetry information from the GlobWave initiative, and provides a sample application to validate a one year wave hindcast for the Gulf of Mexico. ALTWAVE also offers an effective toolbox to validate wave model results using altimeter data, as well as a guidance for non-experienced satellite data users. This article is intended for wave modelers with no experience using altimeter data to validate their results.
Emulating Spherical Wave Channel Models in Multi-probe Anechoic Chamber Setups
DEFF Research Database (Denmark)
Fan, Wei; Carreño, Xavier; Nielsen, Jesper Ødum
2015-01-01
Spherical wave channel modeling has attracted huge research attention for massive multiple-input multiple-output (MIMO) and short-distance MIMO systems. Current research work in multi-probe anechoic chamber systems is limited to reproduce radio channels assuming planar wavefronts. There is a need...... to emulate spherical wave channel models in multi-probe anechoic chamber setups. In this paper, a technique based on the field synthesis principle is proposed to approximate spherical waves emitted from arbitrarily located point sources with arbitrary polarizations. Simulation results show that static...... spherical waves can be reproduced with a limited number of probes, and the field synthesis accuracy of spherical wave depends on the location of the source point....
Towards a new tool to develop a 3-D shear-wave velocity model from converted waves
Colavitti, Leonardo; Hetényi, György
2017-04-01
The main target of this work is to develop a new method in which we exploit converted waves to construct a fully 3-D shear-wave velocity model of the crust. A reliable 3-D model is very important in Earth sciences because geological structures may vary significantly in their lateral dimension. In particular, shear-waves provide valuable complementary information with respect to P-waves because they usually guarantee a much better correlation in terms of rock density and mechanical properties, reducing the interpretation ambiguities. Therefore, it is fundamental to develop a new technique to improve structural images and to describe different lithologies in the crust. In this study we start from the analysis of receiver functions (RF, Langston, 1977), which are nowadays largely used for structural investigations based on passive seismic experiments, to map Earth discontinuities at depth. The RF technique is also commonly used to invert for velocity structure beneath single stations. Here, we plan to combine two strengths of RF method: shear-wave velocity inversion and dense arrays. Starting from a simple 3-D forward model, synthetic RFs are obtained extracting the structure along a ray to match observed data. During the inversion, thanks to a dense stations network, we aim to build and develop a multi-layer crustal model for shear-wave velocity. The initial model should be chosen simple to make sure that the inversion process is not influenced by the constraints in terms of depth and velocity posed at the beginning. The RFs inversion represents a complex problem because the amplitude and the arrival time of different phases depend in a non-linear way on the depth of interfaces and the characteristics of the velocity structure. The solution we envisage to manage the inversion problem is the stochastic Neighbourhood Algorithm (NA, Sambridge, 1999a, b), whose goal is to find an ensemble of models that sample the good data-fitting regions of a multidimensional parameter
Blast wave injury prediction models for complex scenarios
Teland, J.A.; Doormaal, J.C.A.M. van
2012-01-01
Blast waves from explosions can cause lethal injuries to humans. Development of injury criteria has been ongoing for many years, but with the main focus on free field conditions. However, with terrorist actions as a new threat, explosions in urban areas have become of much more interest. Urban areas
Travelling wave solutions to nonlinear physical models by means of ...
Indian Academy of Sciences (India)
This paper presents the ﬁrst integral method to carry out the integration of nonlinear partial differential equations in terms of travelling wave solutions. For illustration, three important equations of mathematical physics are analytically investigated. Through the established ﬁrst integrals, exact solutions are successfully ...
Finite-difference modelling of anisotropic wave scattering in discrete ...
Indian Academy of Sciences (India)
A M Ekanem
2018-04-05
Apr 5, 2018 ... fractured hydrocarbon reservoirs to complement the use of other seismic attributes. Despite the con- certed effort in research and development related to seismic characterization of fractured reservoirs using anisotropic wave scattering, pragmatic uti- lization of this attribute in geophysical exploration.
Modelling Bathymetric Control of Near Coastal Wave Climate: Report 3
1992-02-01
squares method developed by Funke and Mansard (1980) was used to separate incident and reflected waves. The gage layout relative to the bar field is...propagation over sinusoidally varying topography," Journal of Fluid Mechanics, 144, 419- 433. Funke, E.R. and Mansard , E.P.D., 1980, "Measurement of
An implicit discontinuous Galerkin finite element model for water waves
van der Vegt, Jacobus J.W.; Tomar, S.K.; Yao, Z.H.; Yuan, M.W.; Zhong, W.X.
2004-01-01
An overview is given of a discontinuous Galerkin finite element method for linear free surface water waves. The method uses an implicit time integration method which is unconditionally stable and does not suffer from the frequently encountered mesh dependent saw-tooth type instability at the free
An implicit discontinuous Galerkin finite element model for water waves
van der Vegt, Jacobus J.W.; Ambati, V.R.; Bokhove, Onno
2005-01-01
We discuss a new higher order accurate discontinuous Galerkin finite element method for non-linear free surface gravity waves. The algorithm is based on an arbitrary Lagrangian Eulerian description of the flow field using deforming elements and a moving mesh, which makes it possible to represent
Testing the blast wave model with Swift GRBs
Curran, P.A.; Starling, R.L.C.; van der Horst, A.J.; Wijers, R.A.M.J.
2009-01-01
The complex structure of the light curves of Swift Gamma-Ray Bursts (GRBs) has made the identification of breaks, and the interpretation of the blast wave caused by the burst, more difficult than in the pre-Swift era. We aim to identify breaks, which are possibly hidden, and to constrain the blast
Measurement and modeling of bed shear stress under solitary waves
Digital Repository Service at National Institute of Oceanography (India)
Jayakumar, S.; Guard, P.A.; Baldock, T.E.
Direct measurements of bed shear stresses (using a shear cell apparatus) generated by non-breaking solitary waves are presented. The measurements were carried out over a smooth bed in laminar and transitional flow regimes (~ 10 sup (4) < R sub (e...
Boussinesq Modeling of Waves, Currents and Sediment Transport
2006-04-01
Port, Coastal and Ocean Engrng., 97, pp 155-165, 1971 [21] Chanson, H., The Hydraulics of Open Channel Flow, Arnold , 338 Euston Road, London, NW1...abhand. k6n. b6hhmischen gesel . wiss., Prague, 1802 [65] Gobbi, M. F. and J. T. Kirby, Wave evolution over submerged sills: tests of a high- order
Gravitational Jaynes–Cummings model beyond the rotating wave ...
Indian Academy of Sciences (India)
The results in the atom–ﬁeld system beyond the rotating wave approximation with the gravity show that the quantum properties are not completely suppressed under certain conditions. Author Affiliations. M Mohammadi1. Department of Physics, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan, Iran. Dates.
Travelling wave solutions to nonlinear physical models by means
Indian Academy of Sciences (India)
This paper presents the ﬁrst integral method to carry out the integration of nonlinear partial differential equations in terms of travelling wave solutions. For illustration, three important equations of mathematical physics are analytically investigated. Through the established ﬁrst integrals, exact solutions are successfully ...
Finite-difference modelling of anisotropic wave scattering in discrete ...
Indian Academy of Sciences (India)
2
attribute in geophysical exploration is still restricted perhaps as a result of the ambiguity in its. 51 quantification and difficulty in its interpretation in terms of rock properties (Jeng et al., 1999,. 52. MacBeth, 1999; Rongrong et al., 2006). Thus, the task of using anisotropic wave scattering for fracture. 53 prediction in the Earth's ...
Nonlinear wave propagation studies, dispersion modeling, and signal parameters correction
Czech Academy of Sciences Publication Activity Database
Převorovský, Zdeněk
..: ..., 2004, 00. [European Workshop on FP6-AERONEWS /1./. Naples (IT), 13.09.2004-16.09.2004] EU Projects: European Commission(XE) 502927 - AERO-NEWS Institutional research plan: CEZ:AV0Z2076919 Keywords : nodestructive testing * nonlinear elastic wave spectroscopy Subject RIV: BI - Acoustics
2015-09-30
Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave
Khatun, Mahfuza; Mehrpouyan, Hani; Matolak, David; Guvenc, Ismail
2017-01-01
Millimeter-wave (mmWave) communications will play a key role in enhancing the throughput, reliability, and security of next generation wireless networks. These advancements are achieved through the large bandwidth available in this band and through the use of highly directional links that will be used to overcome the large pathloss at these frequencies. Although the terrestrial application of mmWave systems is advancing at a rapid pace, the use of mmWave communication systems in aviation systems or airports is still in its infancy. This can be attributed to the challenges related to radio technology and lack of development, and characterization of mmWave wireless channels for the aviation field and the airport environment. Consequently, one of our goals is to develop methodologies that support mmWave air to ground links, and various links at airports, by applying new localization schemes that allow for application of highly directional links that can be deployed over longer distances despite the high path loss at mmWave frequencies. However, a very thorough understanding of the mmWave channel models are needed to enable such new applications. To this end, in this paper, we present a survey of the current channel models in the mmWave band. The 3-dimensional statistical channel model is also reviewed and its parameters and typical characteristics for this model are identified and computed through simulation for the Boise metropolitan area.
Rogue waves: Classification, measurement and data analysis, and hyperfast numerical modeling
Osborne, A. R.
2010-07-01
The last twenty years has seen the birth and subsequent evolution of a fundamental new idea in nonlinear wave research: Rogue waves, freak waves or extreme events in the wave field dynamics can often be classified as coherent structure solutions of the requisite nonlinear partial differential wave equations (PDEs). Since a large number of generic nonlinear PDEs occur across many branches of physics, the approach is widely applicable to many fields including the dynamics of ocean surface waves, internal waves, plasma waves, acoustic waves, nonlinear optics, solid state physics, geophysical fluid dynamics and turbulence (vortex dynamics and nonlinear waves), just to name a few. The first goal of this paper is to give a classification scheme for solutions of this type using the inverse scattering transform (IST) with periodic boundary conditions. In this context the methods of algebraic geometry give the solutions of particular PDEs in terms of Riemann theta functions. In the classification scheme the Riemann spectrum fully defines the coherent structure solutions and their mutual nonlinear interactions. I discuss three methods for determining the Riemann spectrum: (1) algebraic-geometric loop integrals, (2) Schottky uniformization and (3) the Nakamura-Boyd approach. I give an overview of several nonlinear wave equations and graph some of their coherent structure solutions using theta functions. The second goal is to discuss how theta functions can be used for developing data analysis (nonlinear Fourier) algorithms; nonlinear filtering techniques allow for the extraction of coherent structures from time series. The third goal is to address hyperfast numerical models of nonlinear wave equations (which are thousands of times faster than traditional spectral methods).
DEFF Research Database (Denmark)
Kærgaard, Kasper Hauberg; Fredsøe, Jørgen
2013-01-01
The present work applies the shoreline model from part 1 to a real environment. In part 1, a numerical shoreline model which could handle the development of arbitrarily shaped shorelines was applied to consider the development of shoreline undulations on an unstable shoreline exposed to incoming...... waves with a directional spreading. In this paper, these findings are extended to firstly include the effect of a varying wave climate on the shoreline morphology and secondly, to tune the model to two naturally occurring shorelines. It is found that the effect of a variable wave climate is to slow down...... the development of the morphology and in some cases to inhibit the formation of shore-parallel spits at the crest of the undulations. On one of the natural shorelines, the west coast of Namibia, the shore is exposed to very obliquely waves from one main direction. Here, the shoreline model is able to describe...
Directory of Open Access Journals (Sweden)
Kumar Rajneesh
2012-01-01
Full Text Available The aim of the present paper is to study the wave propagation in anisotropic viscoelastic medium in the context of the theory threephase- lag model of thermoelasticity. It is found that there exist two quasi-longitudinal waves (qP1, qP2 and two transverse waves (qS1, qS2. The governing equations for homogeneous transversely isotropic thermoviscoelastic are reduced as a special case from the considered model. Different characteristics of waves like phase velocity, attenuation coefficient, specific loss and penetration depth are computed from the obtained results. Viscous effect is shown graphically on different resulting quantities for two-phase-lag model and three-phase-lag model of thermoelasticity. Some particular cases of interest are also deduced from the present investigation.
Costet, Alexandre; Melki, Lea; Sayseng, Vincent; Hamid, Nadira; Nakanishi, Koki; Wan, Elaine; Hahn, Rebecca; Homma, Shunichi; Konofagou, Elisa
2017-12-01
Echocardiography is often used in the clinic for detection and characterization of myocardial infarction. Electromechanical wave imaging (EWI) is a non-invasive ultrasound-based imaging technique based on time-domain incremental motion and strain estimation that can evaluate changes in contractility in the heart. In this study, electromechanical activation is assessed in infarcted heart to determine whether EWI is capable of detecting and monitoring infarct formation. Additionally, methods for estimating electromechanical wave (EW) velocity are presented, and changes in the EW propagation velocity after infarct formation are studied. Five (n = 5) adult mongrels were used in this study. Successful infarct formation was achieved in three animals by ligation of the left anterior descending (LAD) coronary artery. Dogs were survived for a few days after LAD ligation and monitored daily with EWI. At the end of the survival period, dogs were sacrificed and TTC (tetrazolium chloride) staining confirmed the formation and location of the infarct. In all three dogs, as soon as day 1 EWI was capable of detecting late-activated and non-activated regions, which grew over the next few days. On final day images, the extent of these regions corresponded to the location of infarct as confirmed by staining. EW velocities in border zones of infarct were significantly lower post-infarct formation when compared to baseline, whereas velocities in healthy tissues were not. These results indicate that EWI and EW velocity might help with the detection of infarcts and their border zones, which may be useful for characterizing arrhythmogenic substrate.
The isolated perfused kidney of the pig: new model to evaluate shock wave-induced lesions.
Köhrmann, K U; Back, W; Bensemann, J; Florian, J; Weber, A; Kahmann, F; Rassweiler, J; Alken, P
1994-04-01
Little is known about the mechanisms and determining factors of shock wave-induced kidney trauma. After classification of the renal lesion in a canine model, we attempted to establish an ex vivo model using the isolated kidney of the pig perfused by Tyrode's solution under physiologic conditions. After shock wave application on the Modulith SL 20, vessel lesions were evaluated by microangiography to determine the size and frequency of dye extravasation in the different areas of the organ. Variation of the focus localization caused different patterns of lesions that characterized the pathway of the shock wave. In particular, constant petechial extravasation in the cortex was observed. The generator voltage correlated with the diameter and the frequency of the lesion area. The number of shock waves primarily affected the incidence of vessel rupture in the regions adjacent to the focal zone. Light microscopy revealed dose-dependent necrosis of tubular cells up to gap-like parenchymal defects. Even after application of the minimal shock wave doses, electron microscopy demonstrated vacuolization of tubular cells in the shock wave focus. Traumatic junctions between capillaries and the tubulur system can explain clinically observed macrohematuria without renal hematomas. With this model, it was possible to evaluate localization and dose dependence of shock wave-induced kidney trauma with high sensitivity and reproducibility. Further advantages of the model were easy availability and the fact that studies on living animals were not necessary. Therefore, standardization and comparison of different lithotripters becomes possible.
Real time device for biosensing: design of a bacteriophage model using love acoustic waves.
Tamarin, O; Comeau, S; Déjous, C; Moynet, D; Rebière, D; Bezian, J; Pistré, J
2003-05-01
Love wave sensors (ST-cut quartz substrate with interdigital transducers, SiO(2) guiding layer and sensitive coating) have been receiving a great deal of attention for a few years. Indeed, the wave coupled in a guiding layer confers a high gravimetric sensitivity and the shear horizontal (SH) polarization allows to work in liquid media. In this paper, an analytical method is proposed to calculate the Love wave phase velocity and the gravimetric sensitivity for a complete multilayer structure. This allows us to optimize the Love wave devices design in order to improve their gravimetric sensitivity in liquid media. As a model for virus or bacteria detection in liquids (drinking or bathing water, food em leader ) we design a model using M13 bacteriophage. The first step is the anti-M13 (AM13) monoclonal antibody grafting, on the device surface (SiO(2)). The second step is an immunoreaction in between the M13 bacteriophage and the AM13 antibody. The Love wave device allows to detect in real time the graft of the AM13 sensitive coating, as well as the immobilization of the M13 bacteriophages. With a pH change, the M13 bacteriophages can be removed from the sensor surface, in order to be numerated as plaque forming unit (pfu). Results on the sensitivity of Love waves are compared with similar immunological works with bulk acoustic wave devices, and demonstrate the high potentialities of Love waves sensors.
Directory of Open Access Journals (Sweden)
Z. Hashemiyan
2016-01-01
Full Text Available Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort.
Observation and Modeling of Tsunami-Generated Gravity Waves in the Earth’s Upper Atmosphere
2015-10-08
Observation and modeling of tsunami-generated gravity waves in the earth’s upper atmosphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6... perturbations caused by the GWs) as a function of space and time at the altitudes z=200-300 km. These perturbations will then be given to Dr. Makela to...for public release; distribution is unlimited. Observation and modeling of tsunami-generated gravity waves in the earth’s upper atmosphere Sharon
Applications of the 3-dim ICRH global wave code FISIC and comparison with other models
International Nuclear Information System (INIS)
Kruecken, T.; Brambilla, M.
1989-01-01
Numerical simulations of two ICRF heating experiments in ASDEX are presented, using the FISIC code to solve the integrodifferential wave equations in the finite Larmor radius (FLR) approximation model and of ray tracing. The different models show on the whole good agreement; we can however identify a few interesting toroidal effects, in particular on the efficiency of mode conversion and on the propagation of ion Bernstein waves. (author)
Applications of the 3-dim ICRH global wave code FISIC and comparison with other models
Energy Technology Data Exchange (ETDEWEB)
Kruecken, T.; Brambilla, M. (Association Euratom-Max-Planck-Institut fuer Plasmaphysik, Garching (Germany, F.R.))
1989-02-01
Numerical simulations of two ICRF heating experiments in ASDEX are presented, using the FISIC code to solve the integrodifferential wave equations in the finite Larmor radius (FLR) approximation model and of ray tracing. The different models show on the whole good agreement; we can however identify a few interesting toroidal effects, in particular on the efficiency of mode conversion and on the propagation of ion Bernstein waves. (author).
Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA
Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.
2014-12-01
The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the
Stem breakage of salt marsh vegetation under wave forcing: A field and model study
Vuik, Vincent; Suh Heo, Hannah Y.; Zhu, Zhenchang; Borsje, Bas W.; Jonkman, Sebastiaan N.
2018-01-01
One of the services provided by coastal ecosystems is wave attenuation by vegetation, and subsequent reduction of wave loads on flood defense structures. Therefore, stability of vegetation under wave forcing is an important factor to consider. This paper presents a model which determines the wave load that plant stems can withstand before they break or fold. This occurs when wave-induced bending stresses exceed the flexural strength of stems. Flexural strength was determined by means of three-point-bending tests, which were carried out for two common salt marsh species: Spartina anglica (common cord-grass) and Scirpus maritimus (sea club-rush), at different stages in the seasonal cycle. Plant stability is expressed in terms of a critical orbital velocity, which combines factors that contribute to stability: high flexural strength, large stem diameter, low vegetation height, high flexibility and a low drag coefficient. In order to include stem breakage in the computation of wave attenuation by vegetation, the stem breakage model was implemented in a wave energy balance. A model parameter was calibrated so that the predicted stem breakage corresponded with the wave-induced loss of biomass that occurred in the field. The stability of Spartina is significantly higher than that of Scirpus, because of its higher strength, shorter stems, and greater flexibility. The model is validated by applying wave flume tests of Elymus athericus (sea couch), which produced reasonable results with regards to the threshold of folding and overall stem breakage percentage, despite the high flexibility of this species. Application of the stem breakage model will lead to a more realistic assessment of the role of vegetation for coastal protection.
Realistic full wave modeling of focal plane array pixels.
Energy Technology Data Exchange (ETDEWEB)
Campione, Salvatore [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Electromagnetic Theory Dept.; Warne, Larry K. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Electromagnetic Theory Dept.; Jorgenson, Roy E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Electromagnetic Theory Dept.; Davids, Paul [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Applied Photonic Microsystems Dept.; Peters, David W. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Applied Photonic Microsystems Dept.
2017-11-01
Here, we investigate full-wave simulations of realistic implementations of multifunctional nanoantenna enabled detectors (NEDs). We focus on a 2x2 pixelated array structure that supports two wavelengths of operation. We design each resonating structure independently using full-wave simulations with periodic boundary conditions mimicking the whole infinite array. We then construct a supercell made of a 2x2 pixelated array with periodic boundary conditions mimicking the full NED; in this case, however, each pixel comprises 10-20 antennas per side. In this way, the cross-talk between contiguous pixels is accounted for in our simulations. We observe that, even though there are finite extent effects, the pixels work as designed, each responding at the respective wavelength of operation. This allows us to stress that realistic simulations of multifunctional NEDs need to be performed to verify the design functionality by taking into account finite extent and cross-talk effects.
Statistical multi-model climate projections of surface ocean waves in Europe
Perez, Jorge; Menendez, Melisa; Camus, Paula; Mendez, Fernando J.; Losada, Inigo J.
2015-12-01
In recent years, the impact of climate change on sea surface waves has received increasingly more attention by the climate community. Indeed, ocean waves reaching the coast play an important role in several processes concerning coastal communities, such as inundation and erosion. However, regional downscaling at the high spatial resolution necessary for coastal studies has received less attention. Here, we present a novel framework for regional wave climate projections and its application in the European region. Changes in the wave dynamics under different scenarios in the Northeast Atlantic Ocean and the Mediterranean are analyzed. The multi-model projection methodology is based on a statistical downscaling approach. The statistical relation between the predictor (atmospheric conditions) and the predictand (multivariate wave climate) is based on a weather type (WT) classification. This atmospheric classification is developed by applying the k-means clustering technique over historical offshore sea level pressure (SLP) fields. Each WT is linked to sea wave conditions from a wave hindcast. This link is developed by associating atmospheric conditions from reanalysis with multivariate local waves. This predictor-predictand relationship is applied to the daily SLP fields from global climate models (GCMs) in order to project future changes in regional wave conditions. The GCMs used in the multi-model projection are selected according to skill criteria. The application of this framework uses CMIP5-based wave climate projections in Europe. The low computational requirements of the statistical approach allow a large number of GCMs and climate change scenarios to be studied. Consistent with previous works on global wave climate projections, the estimated changes from the regional wave climate projections show a general decrease in wave heights and periods in the Atlantic Europe for the late twenty-first century. The regional projections, however, allow a more detailed
Improved Modeling and Prediction of Surface Wave Amplitudes
2017-05-31
data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented... advantages of the membrane surface wave technique are that 1) it is orders of magnitude faster than 3-dimensional finite-difference; and 2) it...0.5 km depth. Although the CMT sources should more accurately reproduce the observed signals from each event, they have two disadvantages : 1) in the
Wave propagation in fluids models and numerical techniques
Guinot, Vincent
2012-01-01
This second edition with four additional chapters presents the physical principles and solution techniques for transient propagation in fluid mechanics and hydraulics. The application domains vary including contaminant transport with or without sorption, the motion of immiscible hydrocarbons in aquifers, pipe transients, open channel and shallow water flow, and compressible gas dynamics. The mathematical formulation is covered from the angle of conservation laws, with an emphasis on multidimensional problems and discontinuous flows, such as steep fronts and shock waves. Finite
Waves and particles in the Fermi accelerator model. Numerical simulation
International Nuclear Information System (INIS)
Meplan, O.
1996-01-01
This thesis is devoted to a numerical study of the quantum dynamics of the Fermi accelerator which is classically chaotic: it is particle in a one dimensional box with a oscillating wall. First, we study the classical dynamics: we show that the time of impact of the particle with the moving wall and its energy in the wall frame are conjugated variables and that Poincare surface of sections in these variables are more understandable than the usual stroboscopic sections. Then, the quantum dynamics of this systems is studied by the means of two numerical methods. The first one is a generalization of the KKR method in the space-time; it is enough to solve an integral equation on the boundary of a space-time billiard. The second method is faster and is based on successive free propagations and kicks of potential. This allows us to obtain Floquet states which we can on one hand, compare to the classical dynamics with the help of Husimi distributions and on the other hand, study as a function of parameters of the system. This study leads us to nice illustrations of phenomenons such as spatial localizations of a wave packet in a vibrating well or tunnel effects. In the adiabatic situation, we give a formula for quasi-energies which exhibits a phase term independent of states. In this regime, there exist some particular situations where the quasi-energy spectrum presents a total quasi-degeneracy. Then, the wave packet energy can increase significantly. This phenomenon is quite surprising for smooth motion of the wall. The third part deals with the evolution of a classical wave in the Fermi accelerator. Using generalized KKR method, we show a surprising phenomenon: in most of situations (so long as the wall motion is periodic), a wave is localized exponentially in the well and its energy increases in a geometric way. (author). 107 refs., 66 figs., 5 tabs. 2 appends
Theoretical Model of Acoustic Wave Propagation in Shallow Water
Directory of Open Access Journals (Sweden)
Kozaczka Eugeniusz
2017-06-01
Full Text Available The work is devoted to the propagation of low frequency waves in a shallow sea. As a source of acoustic waves, underwater disturbances generated by ships were adopted. A specific feature of the propagation of acoustic waves in shallow water is the proximity of boundaries of the limiting media characterised by different impedance properties, which affects the acoustic field coming from a source situated in the water layer “deformed” by different phenomena. The acoustic field distribution in the real shallow sea is affected not only by multiple reflections, but also by stochastic changes in the free surface shape, and statistical changes in the seabed shape and impedance. The paper discusses fundamental problems of modal sound propagation in the water layer over different types of bottom sediments. The basic task in this case was to determine the acoustic pressure level as a function of distance and depth. The results of the conducted investigation can be useful in indirect determination of the type of bottom.
Second generation diffusion model of interacting gravity waves on the surface of deep fluid
Directory of Open Access Journals (Sweden)
A. Pushkarev
2004-01-01
Full Text Available We propose a second generation phenomenological model for nonlinear interaction of gravity waves on the surface of deep water. This model takes into account the effects of non-locality of the original Hasselmann diffusion equation still preserving important properties of the first generation model: physically consistent scaling, adherence to conservation laws and the existence of Kolmogorov-Zakharov solutions. Numerical comparison of both models with the original Hasselmann equation shows that the second generation models improves the angular distribution in the evolving wave energy spectrum.
Nonlinear whistler wave model for lion roars in the Earth's magnetosheath
Dwivedi, N. K.; Singh, S.
2017-09-01
In the present study, we construct a nonlinear whistler wave model to explain the magnetic field spectra observed for lion roars in the Earth's magnetosheath region. We use two-fluid theory and semi-analytical approach to derive the dynamical equation of whistler wave propagating along the ambient magnetic field. We examine the magnetic field localization of parallel propagating whistler wave in the intermediate beta plasma applicable to the Earth's magnetosheath. In addition, we investigate spectral features of the magnetic field fluctuations and the spectral slope value. The magnetic field spectrum obtained by semi-analytical approach shows a spectral break point and becomes steeper at higher wave numbers. The observations of IMP 6 plasma waves and magnetometer experiment reveal the existence of short period magnetic field fluctuations in the magnetosheath. The observation shows the broadband spectrum with a spectral slope of -4.5 superimposed with a narrow band peak. The broadband fluctuations appear due to the energy cascades attributed by low-frequency magnetohydrodynamic modes, whereas, a narrow band peak is observed due to the short period lion roars bursts. The energy spectrum predicted by the present theoretical model shows a similar broadband spectrum in the wave number domain with a spectral slope of -3.2, however, it does not show any narrow band peak. Further, we present a comparison between theoretical energy spectrum and the observed spectral slope in the frequency domain. The present semi-analytical model provides exposure to the whistler wave turbulence in the Earth's magnetosheath.
Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents
Kundu, Anjan; Mukherjee, Abhik; Naskar, Tapan
2014-01-01
Rogue waves are extraordinarily high and steep isolated waves, which appear suddenly in a calm sea and disappear equally fast. However, though the rogue waves are localized surface waves, their theoretical models and experimental observations are available mostly in one dimension, with the majority of them admitting only limited and fixed amplitude and modular inclination of the wave. We propose two dimensions, exactly solvable nonlinear Schrödinger (NLS) equation derivable from the basic hydrodynamic equations and endowed with integrable structures. The proposed two-dimensional equation exhibits modulation instability and frequency correction induced by the nonlinear effect, with a directional preference, all of which can be determined through precise analytic result. The two-dimensional NLS equation allows also an exact lump soliton which can model a full-grown surface rogue wave with adjustable height and modular inclination. The lump soliton under the influence of an ocean current appears and disappears preceded by a hole state, with its dynamics controlled by the current term. These desirable properties make our exact model promising for describing ocean rogue waves. PMID:24711719
International Nuclear Information System (INIS)
Paćko, P; Bielak, T; Staszewski, W J; Uhl, T; Spencer, A B; Worden, K
2012-01-01
This paper demonstrates new parallel computation technology and an implementation for Lamb wave propagation modelling in complex structures. A graphical processing unit (GPU) and computer unified device architecture (CUDA), available in low-cost graphical cards in standard PCs, are used for Lamb wave propagation numerical simulations. The local interaction simulation approach (LISA) wave propagation algorithm has been implemented as an example. Other algorithms suitable for parallel discretization can also be used in practice. The method is illustrated using examples related to damage detection. The results demonstrate good accuracy and effective computational performance of very large models. The wave propagation modelling presented in the paper can be used in many practical applications of science and engineering. (paper)
A boundary element model for diffraction of water waves on varying water depth
Energy Technology Data Exchange (ETDEWEB)
Poulin, Sanne
1997-12-31
In this thesis a boundary element model for calculating diffraction of water waves on varying water depth is presented. The varying water depth is approximated with a perturbed constant depth in the mild-slope wave equation. By doing this, the domain integral which is a result of the varying depth is no longer a function of the unknown wave potential but only a function of position and the constant depth wave potential. The number of unknowns is the resulting system of equations is thus reduced significantly. The integration procedures in the model are tested very thoroughly and it is found that a combination of analytical integration in the singular region and standard numerical integration outside works very well. The gradient of the wave potential is evaluated successfully using a hypersingular integral equation. Deviations from the analytical solution are only found on the boundary or very close to, but these deviations have no significant influence on the accuracy of the solution. The domain integral is evaluated using the dual reciprocity method. The results are compared with a direct integration of the integral, and the accuracy is quite satisfactory. The problem with irregular frequencies is taken care of by the CBIEM (or CHIEF-method) together with a singular value decomposition technique. This method is simple to implement and works very well. The model is verified using Homma`s island as a test case. The test cases are limited to shallow water since the analytical solution is only valid in this region. Several depth ratios are examined, and it is found that the accuracy of the model increases with increasing wave period and decreasing depth ratio. Short waves, e.g. wind generated waves, can allow depth variations up to approximately 2 before the error exceeds 10%, while long waves can allow larger depth ratios. It is concluded that the perturbation idea is highly usable. A study of (partially) absorbing boundary conditions is also conducted. (EG)
Gas transfer under breaking waves: experiments and an improved vorticity-based model
Directory of Open Access Journals (Sweden)
V. K. Tsoukala
2008-07-01
Full Text Available In the present paper a modified vorticity-based model for gas transfer under breaking waves in the absence of significant wind forcing is presented. A theoretically valid and practically applicable mathematical expression is suggested for the assessment of the oxygen transfer coefficient in the area of wave-breaking. The proposed model is based on the theory of surface renewal that expresses the oxygen transfer coefficient as a function of both the wave vorticity and the Reynolds wave number for breaking waves. Experimental data were collected in wave flumes of various scales: a small-scale experiments were carried out using both a sloping beach and a rubble-mound breakwater in the wave flume of the Laboratory of Harbor Works, NTUA, Greece; b large-scale experiments were carried out with a sloping beach in the wind-wave flume of Delft Hydraulics, the Netherlands, and with a three-layer rubble mound breakwater in the Schneideberg Wave Flume of the Franzius Institute, University of Hannover, Germany. The experimental data acquired from both the small- and large-scale experiments were in good agreement with the proposed model. Although the apparent transfer coefficients from the large-scale experiments were lower than those determined from the small-scale experiments, the actual oxygen transfer coefficients, as calculated using a discretized form of the transport equation, are in the same order of magnitude for both the small- and large-scale experiments. The validity of the proposed model is compared to experimental results from other researchers. Although the results are encouraging, additional research is needed, to incorporate the influence of bubble mediated gas exchange, before these results are used for an environmental friendly design of harbor works, or for projects involving waste disposal at sea.
Model for a collimated spin-wave beam generated by a single-layer spin torque nanocontact
Hoefer, M. A.; Silva, T. J.; Stiles, M. D.
2008-04-01
A model of spin-torque-induced magnetization dynamics based on semiclassical spin diffusion theory for a single-layer nanocontact is presented. The model incorporates effects due to the current-induced Oersted field and predicts the generation of a variety of spatially dependent, coherent, precessional magnetic wave structures. Directionally controllable collimated spin-wave beams, vortex spiral waves, and localized standing waves are found to be excited by the interplay of the Oersted field and the orientation of an applied field. These fields act as a spin-wave “corral” around the nanocontact that controls the propagation of spin waves in certain directions.
Testik, Firat Yener
An experimental and theoretical study has been conducted to obtain a fundamental understanding of the dynamics of the sand, water and a solid object interaction as progressive gravity waves impinge on a sloping beach. Aside from obvious scientific interest, this exceedingly complex physical problem is important for naval applications, related to the behavior of disk/cylindrical shaped objects (mines) in the coastal waters. To address this problem, it was divided into a set of simpler basic problems. To begin, nonlinear progressive waves were investigated experimentally in a wave tank for the case of a rigid (impermeable) sloping bottom. Parameterizations for wave characteristics were proposed and compared with the experiments. In parallel, a numerical wave tank model (NWT) was calibrated using experimental data from a single run, and wave field in the wave tank was simulated numerically for the selected experiments. Subsequently, a layer of sand was placed on the slope and bottom topography evolution processes (ripple and sandbar dynamics, bottom topography relaxation under variable wave forcing, etc.) were investigated experimentally. Models for those processes were developed and verified by experimental measurements. Flow over a circular cylinder placed horizontally on a plane wall was also studied. The far-flow field of the cylinder placed in the wave tank was investigated experimentally and numerical results from the NWT simulations were compared with the experimental data. In the mean time, the near-flow velocity/vorticity field around a short cylinder under steady and oscillatory flow was studied in a towing tank. Horseshoe vortex formation and periodic shedding were documented and explained. With the understanding gained through the aforementioned studies, dynamics and burial/scour around the bottom objects in the wave tank were studied. Possible scenarios on the behavior of the disk-shaped objects were identified and explained. Scour around 3D cylindrical
Parameter sensitivity and uncertainty analysis for a storm surge and wave model
Directory of Open Access Journals (Sweden)
L. A. Bastidas
2016-09-01
Full Text Available Development and simulation of synthetic hurricane tracks is a common methodology used to estimate hurricane hazards in the absence of empirical coastal surge and wave observations. Such methods typically rely on numerical models to translate stochastically generated hurricane wind and pressure forcing into coastal surge and wave estimates. The model output uncertainty associated with selection of appropriate model parameters must therefore be addressed. The computational overburden of probabilistic surge hazard estimates is exacerbated by the high dimensionality of numerical surge and wave models. We present a model parameter sensitivity analysis of the Delft3D model for the simulation of hazards posed by Hurricane Bob (1991 utilizing three theoretical wind distributions (NWS23, modified Rankine, and Holland. The sensitive model parameters (of 11 total considered include wind drag, the depth-induced breaking γB, and the bottom roughness. Several parameters show no sensitivity (threshold depth, eddy viscosity, wave triad parameters, and depth-induced breaking αB and can therefore be excluded to reduce the computational overburden of probabilistic surge hazard estimates. The sensitive model parameters also demonstrate a large number of interactions between parameters and a nonlinear model response. While model outputs showed sensitivity to several parameters, the ability of these parameters to act as tuning parameters for calibration is somewhat limited as proper model calibration is strongly reliant on accurate wind and pressure forcing data. A comparison of the model performance with forcings from the different wind models is also presented.
A deterministic combination of numerical and physical models for coastal waves
DEFF Research Database (Denmark)
Zhang, Haiwen
2006-01-01
nonlinearities, wave breaking, splash, mixing, and other such complicated physics. Physical models naturally include the real physics (at the model scale), but are limited by the physical size of the facility and must contend with the fact that different physical effects scale differently. An integrated use...... of numerical and physical modelling hence provides an attractive alternative to the use of either tool on it's own. The goal of this project has been to develop a deterministically combined numerical/physical model where the physical wave tank is enclosed in a much larger computational domain, and the two......Numerical and physical modelling are the two main tools available for predicting the influence of water waves on coastlines and structures placed in the near-shore environment. Numerical models can cover large areas at the correct scale, but are limited in their ability to capture strong...
Energy Technology Data Exchange (ETDEWEB)
Uesaka, S. [Kyoto University, Kyoto (Japan). Faculty of Engineering; Watanabe, T.; Sassa, K. [Kyoto University, Kyoto (Japan)
1997-05-27
Algorithm is constructed and a program developed for a full-wave inversion (FWI) method utilizing the elastic wave equation in seismic exploration. The FWI method is a method for obtaining a physical property distribution using the whole observed waveforms as the data. It is capable of high resolution which is several times smaller than the wavelength since it can handle such phenomena as wave reflection and dispersion. The method for determining the P-wave velocity structure by use of the acoustic wave equation does not provide information about the S-wave velocity since it does not consider S-waves or converted waves. In an analysis using the elastic wave equation, on the other hand, not only P-wave data but also S-wave data can be utilized. In this report, under such circumstances, an inverse analysis algorithm is constructed on the basis of the elastic wave equation, and a basic program is developed. On the basis of the methods of Mora and of Luo and Schuster, the correction factors for P-wave and S-wave velocities are formulated directly from the elastic wave equation. Computations are performed and the effects of the hypocenter frequency and vibration transmission direction are examined. 6 refs., 8 figs.
Directory of Open Access Journals (Sweden)
Paul C. Rivera
2006-01-01
Full Text Available A common approach in modeling the generation and propagation of tsunami is based on the assumption of a kinematic vertical displacement of ocean water that is analogous to the ocean bottom displacement during a submarine earthquake and the use of a non-dispersive long-wave model to simulate its physical transformation as it radiates outward from the source region. In this study, a new generation mechanism and the use of a highly-dispersive wave model to simulate tsunami inception, propagation and transformation are proposed. The new generation model assumes that transient ground motion during the earthquake can accelerate horizontal currents with opposing directions near the fault line whose successive convergence and divergence generate a series of potentially destructive oceanic waves. The new dynamic model incorporates the effects of earthquake moment magnitude, ocean compressibility through the buoyancy frequency, the effects of focal and water depths, and the orientation of ruptured fault line in the tsunami magnitude and directivity.For tsunami wave simulation, the nonlinear momentum-based wave model includes important wave propagation and transformation mechanisms such as refraction, diffraction, shoaling, partial reflection and transmission, back-scattering, frequency dispersion, and resonant wave-wave interaction. Using this model and a coarse-resolution bathymetry, the new mechanism is tested for the Indian Ocean tsunami of December 26, 2004. A new flooding and drying algorithm that consider waves coming from every direction is also proposed for simulation of inundation of low-lying coastal regions.It is shown in the present study that with the proposed generation model, the observed features of the Asian tsunami such as the initial drying of areas east of the source region and the initial flooding of western coasts are correctly simulated. The formation of a series of tsunami waves with periods and lengths comparable to observations
Global sensitivity analysis of a wave propagation model for arm arteries
Leguy, C.A.D.; Bosboom, E.M.H.; Belloum, A.S.Z.; Hoeks, A.P.G.; van de Vosse, F.N.
2011-01-01
Wave propagation models of blood flow and blood pressure in arteries play an important role in cardiovascular research. For application of these models in patient-specific simulations a number of model parameters, that are inherently subject to uncertainties, are required. The goal of this study is
Two-Mode Resonator and Contact Model for Standing Wave Piezomotor
DEFF Research Database (Denmark)
Andersen, B.; Blanke, Mogens; Helbo, J.
2001-01-01
The paper presents a model for a standing wave piezoelectric motor with a two bending mode resonator. The resonator is modelled using Hamilton's principle and the Rayleigh-Ritz method. The contact is modelled using the Lagrange Multiplier method under the assumption of slip and it is showed how...
Wave model for longitudinal dispersion: application to the laminar-flow tubular reactor
Kronberg, Alexandre E.; Benneker, A.H.; Benneker, A.H.; Westerterp, K.R.
1996-01-01
The wave model for longitudinal dispersion, published elsewhere as an alternative to the commonly used dispersed plug-flow model, is applied to the classic case of the laminar-flow tubular reactor. The results are compared in a wide range of situations to predictions by the dispersed plug-flow model
Design of a ship model for hydro-elastic experiments in waves
Directory of Open Access Journals (Sweden)
Marón Adolfo
2014-12-01
Full Text Available Large size ships have a very flexible construction resulting in low resonance frequencies of the structural eigen-modes. This feature increases the dynamic response of the structure on short period waves (springing and on impulsive wave loads (whipping. This dynamic response in its turn increases both the fatigue damage and the ultimate load on the structure; these aspects illustrate the importance of including the dynamic response into the design loads for these ship types. Experiments have been carried out using a segmented scaled model of a container ship in a Seakeeping Basin. This paper describes the development of the model for these experiments; the choice was made to divide the hull into six rigid segments connected with a flexible beam. In order to model the typical feature of the open structure of the containership that the shear center is well below the keel line of the vessel, the beam was built into the model as low as possible. The model was instrumented with accelerometers and rotation rate gyroscopes on each segment, relative wave height meters and pressure gauges in the bow area. The beam was instrumented with strain gauges to measure the internal loads at the position of each of the cuts. Experiments have been carried out in regular waves at different amplitudes for the same wave period and in long crested irregular waves for a matrix of wave heights and periods. The results of the experiments are compared to results of calculations with a linear model based on potential flow theory that includes the effects of the flexural modes. Some of the tests were repeated with additional links between the segments to increase the model rigidity by several orders of magnitude, in order to compare the loads between a rigid and a flexible model.
Design of a ship model for hydro-elastic experiments in waves
Marón, Adolfo; Kapsenberg, Geert
2014-12-01
Large size ships have a very flexible construction resulting in low resonance frequencies of the structural eigen-modes. This feature increases the dynamic response of the structure on short period waves (springing) and on impulsive wave loads (whipping). This dynamic response in its turn increases both the fatigue damage and the ultimate load on the structure; these aspects illustrate the importance of including the dynamic response into the design loads for these ship types. Experiments have been carried out using a segmented scaled model of a container ship in a Seakeeping Basin. This paper describes the development of the model for these experiments; the choice was made to divide the hull into six rigid segments connected with a flexible beam. In order to model the typical feature of the open structure of the containership that the shear center is well below the keel line of the vessel, the beam was built into the model as low as possible. The model was instrumented with accelerometers and rotation rate gyroscopes on each segment, relative wave height meters and pressure gauges in the bow area. The beam was instrumented with strain gauges to measure the internal loads at the position of each of the cuts. Experiments have been carried out in regular waves at different amplitudes for the same wave period and in long crested irregular waves for a matrix of wave heights and periods. The results of the experiments are compared to results of calculations with a linear model based on potential flow theory that includes the effects of the flexural modes. Some of the tests were repeated with additional links between the segments to increase the model rigidity by several orders of magnitude, in order to compare the loads between a rigid and a flexible model.
Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media
Zhang, K.; Luo, Y.; Xia, J.; Chen, C.
2011-01-01
Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity-stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10-16% when the frequency is above 10. Hz due to the velocity dispersion of P
Model for ICRF fast wave current drive in self-consistent MHD equilibria
International Nuclear Information System (INIS)
Bonoli, P.T.; Englade, R.C.; Porkolab, M.; Fenstermacher, M.E.
1993-01-01
Recently, a model for fast wave current drive in the ion cyclotron radio frequency (ICRF) range was incorporated into the current drive and MHD equilibrium code ACCOME. The ACCOME model combines a free boundary solution of the Grad Shafranov equation with the calculation of driven currents due to neutral beam injection, lower hybrid (LH) waves, bootstrap effects, and ICRF fast waves. The equilibrium and current drive packages iterate between each other to obtain an MHD equilibrium which is consistent with the profiles of driven current density. The ICRF current drive package combines a toroidal full-wave code (FISIC) with a parameterization of the current drive efficiency obtained from an adjoint solution of the Fokker Planck equation. The electron absorption calculation in the full-wave code properly accounts for the combined effects of electron Landau damping (ELD) and transit time magnetic pumping (TTMP), assuming a Maxwellian (or bi-Maxwellian) electron distribution function. Furthermore, the current drive efficiency includes the effects of particle trapping, momentum conserving corrections to the background Fokker Planck collision operator, and toroidally induced variations in the parallel wavenumbers of the injected ICRF waves. This model has been used to carry out detailed studies of advanced physics scenarios in the proposed Tokamak Physics Experiment (TPX). Results are shown, for example, which demonstrate the possibility of achieving stable equilibria at high beta and high bootstrap current fraction in TPX. Model results are also shown for the proposed ITER device
Wave propagation modeling in composites reinforced by randomly oriented fibers
Kudela, Pawel; Radzienski, Maciej; Ostachowicz, Wieslaw
2018-02-01
A new method for prediction of elastic constants in randomly oriented fiber composites is proposed. It is based on mechanics of composites, the rule of mixtures and total mass balance tailored to the spectral element mesh composed of 3D brick elements. Selected elastic properties predicted by the proposed method are compared with values obtained by another theoretical method. The proposed method is applied for simulation of Lamb waves in glass-epoxy composite plate reinforced by randomly oriented fibers. Full wavefield measurements conducted by the scanning laser Doppler vibrometer are in good agreement with simulations performed by using the time domain spectral element method.
Wave attenuation model for dephasing and measurement of ...
Indian Academy of Sciences (India)
Here kl1 and kl2 are the phase increments of the wave function in the absence of flux. θl1/L and θl2/L are the phase shifts due to flux in the upper and lower branches. Clearly, (θl1/L)+(θl2/L) = 2πΦ/Φ0, where Φ is the flux piercing the loop and Φ0 is the flux quantum hc/e. The transmission and reflection co- efficients in eq.
Directory of Open Access Journals (Sweden)
Keqin Yan
2017-01-01
Full Text Available This chapter presents a reliability study for an offshore jacket structure with emphasis on the features of nonconventional modeling. Firstly, a random set model is formulated for modeling the random waves in an ocean site. Then, a jacket structure is investigated in a pushover analysis to identify the critical wave direction and key structural elements. This is based on the ultimate base shear strength. The selected probabilistic models are adopted for the important structural members and the wave direction is specified in the weakest direction of the structure for a conservative safety analysis. The wave height model is processed in a P-box format when it is used in the numerical analysis. The models are applied to find the bounds of the failure probabilities for the jacket structure. The propagation of this wave model to the uncertainty in results is investigated in both an interval analysis and Monte Carlo simulation. The results are compared in context of information content and numerical accuracy. Further, the failure probability bounds are compared with the conventional probabilistic approach.
Traveling waves in a diffusive predator-prey model with holling type-III functional response
International Nuclear Information System (INIS)
Li Wantong; Wu Shiliang
2008-01-01
We establish the existence of traveling wave solutions and small amplitude traveling wave train solutions for a reaction-diffusion system based on a predator-prey model with Holling type-III functional response. The analysis is in the three-dimensional phase space of the nonlinear ordinary differential equation system given by the diffusive predator-prey system in the traveling wave variable. The methods used to prove the results are the shooting argument, invariant manifold theory and the Hopf bifurcation theorem
Wave propagation in magneto-electro-elastic nanobeams via two nonlocal beam models
Ma, Li-Hong; Ke, Liao-Liang; Wang, Yi-Ze; Wang, Yue-Sheng
2017-02-01
This paper makes the first attempt to investigate the dispersion behavior of waves in magneto-electro-elastic (MEE) nanobeams. The Euler nanobeam model and Timoshenko nanobeam model are developed in the formulation based on the nonlocal theory. By using the Hamilton's principle, we derive the governing equations which are then solved analytically to obtain the dispersion relations of MEE nanobeams. Results are presented to highlight the influences of the thermo-electro-magnetic loadings and nonlocal parameter on the wave propagation characteristics of MEE nanobeams. It is found that the thermo-electro-magnetic loadings can lead to the occurrence of the cut-off wave number below which the wave can't propagate in MEE nanobeams.
Study on p-Wave Attenuation in Hydrate-Bearing Sediments Based on BISQ Model
Directory of Open Access Journals (Sweden)
Chuanhui Li
2013-01-01
Full Text Available In hydrate-bearing sediments, the elastic wave attenuation characteristics depend on the elastic properties of the sediments themselves on the one hand, and on the other hand, they also depend on the hydrate occurrence state and hydrate saturation. Since the hydrate-bearing sediments always have high porosity, so they show significant porous medium characteristics. Based on the BISQ porous medium model which is the most widely used model to study the attenuation characteristics in the porous media, we focused on p-wave attenuation in hydrate-bearing sediments in Shenhu Area, South China Sea, especially in specific seismic frequency range, which lays a foundation for the identification of gas hydrates by using seismic wave attenuation in Shenhu Area, South China Sea. Our results depict that seismic wave attenuation is an effective attribute to identify gas hydrates.
Dynamical criteria for rogue waves in nonlinear Schrödinger models
International Nuclear Information System (INIS)
Calini, Annalisa; Schober, Constance M
2012-01-01
We investigate rogue waves in deep water in the framework of the nonlinear Schrödinger (NLS) and Dysthe equations. Amongst the homoclinic orbits of unstable NLS Stokes waves, we seek good candidates to model actual rogue waves. In this paper we propose two selection criteria: stability under perturbations of initial data, and persistence under perturbations of the NLS model. We find that requiring stability selects homoclinic orbits of maximal dimension. Persistence under (a particular) perturbation selects a homoclinic orbit of maximal dimension all of whose spatial modes are coalesced. These results suggest that more realistic sea states, described by JONSWAP power spectra, may be analyzed in terms of proximity to NLS homoclinic data. In fact, using the NLS spectral theory, we find that rogue wave events in random oceanic sea states are well predicted by proximity to homoclinic data of the NLS equation. (invited article)
A nonlinear model for the fluidization of marine mud by waves
Energy Technology Data Exchange (ETDEWEB)
Foda, M.A.; Hunt, J.R.; Chou, Hsien-Ter (Univ. of California, Berkeley (United States))
1993-04-15
The authors consider the problem of fluidization of mud deposits in shallow waters due to interactions with water waves. This is of increasing interest because of concerns that water pollutants, including heavy metals, pesticides, etc., are often found near surfaces of mud deposits. The authors look at the question of whether the cohesive properties of mud deposits exhibit nonlinear properties when they experience strains from water wave interactions. It is obvious that with large enough wave interactions the deposits become fluidized, and are not in that case truly nonlinear. In their modeling efforts they try to incorporate these ideas into a cohesive model where the magnitude of the water wave-sediment interaction has an influence on the type of response within the system.
Drag Forces in a Coupled Wave-Ice Model: Implementation and Testing
Orzech, M.; Shi, F.; Veeramony, J.
2017-12-01
We are developing a system for modeling the interactions between ocean surface waves and polar ice floes, which consists of a nonhydrostatic, finite-volume wave model (NHWAVE) coupled to a discrete element, particle-tracking ice model (LIGGGHTS). The effects of drag forces between fluid and ice were recently implemented in the coupled system. The drag formulations assume that the fluid velocity profile at the interface is logarithmic, leading to a drag coefficient that is a function of both grid size and a configurable roughness height. Net forcing vectors acting on the ice in each fluid cell are computed in the wave model and passed to the ice model at each time step. The vectors combine forces due to drag with additional forces due to dynamic pressure (buoyancy effects are computed separately in LIGGGHTS). This presentation will provide further details on these new features and summarize the results of several tests conducted to validate them.
Phenolic characterization of aging wine lees: Correlation with antioxidant activities.
Romero-Díez, R; Rodríguez-Rojo, S; Cocero, M J; Duarte, C M M; Matias, A A; Bronze, M R
2018-09-01
Aging wine lees are water-wastes produced during the wine aging inside wood barrels that can be considered as alternative sources of bioactive compounds. Phenolic characterization and antioxidant activity (AA) measurements of wines lees solid-liquid extracts have been undertaken on a dry extract (DE) basis. Solvents with different polarities (water, methanol, ethanol, two hydroalcoholic mixtures and acetone) were used. Total phenolic (TPC) and total flavonoid contents (TFC) were determined. The mixture of 75:25(v/v) EtOH:H 2 O showed the highest values with 254 mg GAE /g DE and 146 mg CATE /g DE respectively. HORAC, HOSC and FRAP were used to determine the AA of the extracts being also highest for the mixture of 75:25(v/v) EtOH:H 2 O (4690 µmol CAE /g DE , 4527 µmol TE /g DE and 2197 µmol TE /g DE , respectively). For ORAC method, methanol extract showed the best value with 2771 µmol TE /g DE . Correlations between TPC, TFC, phenolic compounds and AA were determined. Most relevant compounds contributing to AA were identified using data from mass spectrometry, being mainly anthocyanins. Copyright © 2018 Elsevier Ltd. All rights reserved.
T.D Lee and Lisa Randall visit ATLAS
Pauline Gagnon
Professor Tsung-Dao Lee, who received the Nobel Prize for Physics in 1957 for postulating that parity is not conserved in weak interactions, visited the ATLAS detector this month. He is seen here in the company of Peter Jenni, spokesperson for ATLAS. T.D. Lee is still very active at over 80, pursuing his theory work to this day. Professor Lisa Randall from Harvard University, the well-known theorist behind the Randall-Sundrum theory for extra dimensions, was also part of the group visiting the ATLAS detector. She is seen here with Fabiola Gianotti, deputy spokesperson for ATLAS. Lisa Randall's two initial papers have been quoted both more than 2500 times, making her the most cited theoretical physicist in the world in the last five years as of last autumn - a total of about 10,000 citations! One wonders here if Peter is pointing to a CP-violating graviton spotted in the ATLAS cavern... From left to right: Fabiola Gianotti, Gustaaf Brooijmans, convener of the ATLAS Exotics physics gro...
Modeling shock waves in an ideal gas: combining the Burnett approximation and Holian's conjecture.
He, Yi-Guang; Tang, Xiu-Zhang; Pu, Yi-Kang
2008-07-01
We model a shock wave in an ideal gas by combining the Burnett approximation and Holian's conjecture. We use the temperature in the direction of shock propagation rather than the average temperature in the Burnett transport coefficients. The shock wave profiles and shock thickness are compared with other theories. The results are found to agree better with the nonequilibrium molecular dynamics (NEMD) and direct simulation Monte Carlo (DSMC) data than the Burnett equations and the modified Navier-Stokes theory.
Grobbe, N.
2016-01-01
In this thesis, I study coupled poroelastic waves and electromagnetic fields in layered media. The focus is two-fold:1. Increase the theoretical and physical understanding of the seismo-electromagnetic phenomenon by analytically-based numerical modeling.2. Investigate the potential of seismo-electromagnetic interferometry.After presenting the governing equations that form the basis of the theoretical framework, I capture this system into a matrix-vector representation of the wave equation. I ...
Traveling waves in a delayed SIR model with nonlocal dispersal and nonlinear incidence
Zhang, Shou-Peng; Yang, Yun-Rui; Zhou, Yong-Hui
2018-01-01
This paper is concerned with traveling waves of a delayed SIR model with nonlocal dispersal and a general nonlinear incidence. The existence and nonexistence of traveling waves of the system are established respectively by Schauder's fixed point theorem and two-sided Laplace transform. It is also shown that the spread speed c is influenced by the dispersal rate of the infected individuals and the delay τ.
Efficient non-hydrostatic modelling of 3D wave-induced currents using a subgrid approach
Rijnsdorp, Dirk P.; Smit, Pieter B.; Zijlema, Marcel; Reniers, Ad J. H. M.
2017-08-01
Wave-induced currents are an ubiquitous feature in coastal waters that can spread material over the surf zone and the inner shelf. These currents are typically under resolved in non-hydrostatic wave-flow models due to computational constraints. Specifically, the low vertical resolutions adequate to describe the wave dynamics - and required to feasibly compute at the scales of a field site - are too coarse to account for the relevant details of the three-dimensional (3D) flow field. To describe the relevant dynamics of both wave and currents, while retaining a model framework that can be applied at field scales, we propose a two grid approach to solve the governing equations. With this approach, the vertical accelerations and non-hydrostatic pressures are resolved on a relatively coarse vertical grid (which is sufficient to accurately resolve the wave dynamics), whereas the horizontal velocities and turbulent stresses are resolved on a much finer subgrid (of which the resolution is dictated by the vertical scale of the mean flows). This approach ensures that the discrete pressure Poisson equation - the solution of which dominates the computational effort - is evaluated on the coarse grid scale, thereby greatly improving efficiency, while providing a fine vertical resolution to resolve the vertical variation of the mean flow. This work presents the general methodology, and discusses the numerical implementation in the SWASH wave-flow model. Model predictions are compared with observations of three flume experiments to demonstrate that the subgrid approach captures both the nearshore evolution of the waves, and the wave-induced flows like the undertow profile and longshore current. The accuracy of the subgrid predictions is comparable to fully resolved 3D simulations - but at much reduced computational costs. The findings of this work thereby demonstrate that the subgrid approach has the potential to make 3D non-hydrostatic simulations feasible at the scale of a
The effects of noise on binocular rivalry waves: a stochastic neural field model
Webber, Matthew A
2013-03-12
We analyze the effects of extrinsic noise on traveling waves of visual perception in a competitive neural field model of binocular rivalry. The model consists of two one-dimensional excitatory neural fields, whose activity variables represent the responses to left-eye and right-eye stimuli, respectively. The two networks mutually inhibit each other, and slow adaptation is incorporated into the model by taking the network connections to exhibit synaptic depression. We first show how, in the absence of any noise, the system supports a propagating composite wave consisting of an invading activity front in one network co-moving with a retreating front in the other network. Using a separation of time scales and perturbation methods previously developed for stochastic reaction-diffusion equations, we then show how extrinsic noise in the activity variables leads to a diffusive-like displacement (wandering) of the composite wave from its uniformly translating position at long time scales, and fluctuations in the wave profile around its instantaneous position at short time scales. We use our analysis to calculate the first-passage-time distribution for a stochastic rivalry wave to travel a fixed distance, which we find to be given by an inverse Gaussian. Finally, we investigate the effects of noise in the depression variables, which under an adiabatic approximation lead to quenched disorder in the neural fields during propagation of a wave. © 2013 IOP Publishing Ltd and SISSA Medialab srl.
Alfven Wave Reflection Model of Field-Aligned Currents at Mercury
Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James
2010-01-01
An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases. the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury's magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury's magnetosphere. c2009 Elsevier Inc. All rights reserved.