WorldWideScience

Sample records for led structures grown

  1. GaN-based LEDs grown by molecular beam epitaxy

    Science.gov (United States)

    Averbeck, Robert; Graber, A.; Tews, H.; Bernklau, D.; Barnhoefer, Ulrich; Riechert, Henning

    1998-04-01

    We report on the growth of GaN, InGaN and GaN/InGaN/GaN pn- junctions grown on sapphire by RF-plasma assisted MBE. MBE allows us to grow high quality nitrides with growth rates around 1 micrometers /h at relatively low temperatures. Thereby p- type doping with Mg and the incorporation of In in InGaN are greatly facilitated. Device-typical n- and p-type doping levels yield room temperature mobilities of 220 cm2/Vs and 10 cm2/Vs, respectively. InGaN with In contents of more than 40 percent is readily achieved. LEDs fabricated from heterostructures with a 4 nm InGaN layer show bright blue or green electroluminescence depending on the In content. Various effects in the electroluminescence caused by fluctuations in the conduction and valence band will be discussed, the most striking one a reduction in linewidth with increasing temperature.

  2. Photoelectrochemical liftoff of LEDs grown on freestanding c-plane GaN substrates

    KAUST Repository

    Hwang, David

    2016-09-23

    We demonstrate a thin-film flip-chip (TFFC) process for LEDs grown on freestanding c-plane GaN substrates. LEDs are transferred from a bulk GaN substrate to a sapphire submount via a photoelectrochemical (PEC) undercut etch. This PEC liftoff method allows for substrate reuse and exposes the N-face of the LEDs for additional roughening. The LEDs emitted at a wavelength of 432 nm with a turn on voltage of ~3 V. Etching the LEDs in heated KOH after transferring them to a sapphire submount increased the peak external quantum efficiency (EQE) by 42.5% from 9.9% (unintentionally roughened) to 14.1% (intentionally roughened).

  3. Comparative Phenotypical and Molecular Analyses of Arabidopsis Grown under Fluorescent and LED Light.

    Science.gov (United States)

    Seiler, Franka; Soll, Jürgen; Bölter, Bettina

    2017-06-13

    Comparative analyses of phenotypic and molecular traits of Arabidopsis thaliana grown under standardised conditions is still a challenge using climatic devices supplied with common light sources. These are in most cases fluorescent lights, which have several disadvantages such as heat production at higher light intensities, an invariable spectral output, and relatively rapid "ageing". This results in non-desired variations of growth conditions and lowers the comparability of data acquired over extended time periods. In this study, we investigated the growth behaviour of Arabidopsis Col0 under different light conditions, applying fluorescent compared to LED lamps, and we conducted physiological as well as gene expression analyses. By changing the spectral composition and/or light intensity of LEDs we can clearly influence the growth behaviour of Arabidopsis and thereby study phenotypic attributes under very specific light conditions that are stable and reproducible, which is not necessarily given for fluorescent lamps. By using LED lights, we can also roughly mimic the sun light emission spectrum, enabling us to study plant growth in a more natural-like light set-up. We observed distinct growth behaviour under the different light regimes which was reflected by physiological properties of the plants. In conclusion, LEDs provide variable emission spectra for studying plant growth under defined, stable light conditions.

  4. Comparative Phenotypical and Molecular Analyses of Arabidopsis Grown under Fluorescent and LED Light

    Directory of Open Access Journals (Sweden)

    Franka Seiler

    2017-06-01

    Full Text Available Comparative analyses of phenotypic and molecular traits of Arabidopsis thaliana grown under standardised conditions is still a challenge using climatic devices supplied with common light sources. These are in most cases fluorescent lights, which have several disadvantages such as heat production at higher light intensities, an invariable spectral output, and relatively rapid “ageing”. This results in non-desired variations of growth conditions and lowers the comparability of data acquired over extended time periods. In this study, we investigated the growth behaviour of Arabidopsis Col0 under different light conditions, applying fluorescent compared to LED lamps, and we conducted physiological as well as gene expression analyses. By changing the spectral composition and/or light intensity of LEDs we can clearly influence the growth behaviour of Arabidopsis and thereby study phenotypic attributes under very specific light conditions that are stable and reproducible, which is not necessarily given for fluorescent lamps. By using LED lights, we can also roughly mimic the sun light emission spectrum, enabling us to study plant growth in a more natural-like light set-up. We observed distinct growth behaviour under the different light regimes which was reflected by physiological properties of the plants. In conclusion, LEDs provide variable emission spectra for studying plant growth under defined, stable light conditions.

  5. Comparative Study of Lettuce and Radish Grown Under Red and Blue LEDs and White Fluorescent Lamps

    Science.gov (United States)

    Mickens, Matthew A.; Massa, Gioia; Newsham, Gerard; Wheeler, Raymond; Birmele, Michele

    2016-01-01

    Growing vegetable crops in space will be an essential part of sustaining astronauts during long-range missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop yield, there is also recent interest in analyzing the subtle effects of additional wavelengths on plant growth. For instance, since plants often look purplish gray under red and blue LEDs, the addition of green light allows easy recognition of disease and the assessment of plant health status. However, it is important to know if wavelengths outside the traditional red and blue wavebands have a direct effect on enhancing or hindering the mechanisms involved in plant growth. In this experiment, a comparative study was performed on two short cycle crops of red romaine lettuce (Lactuca sativa cv. "Outredgeous") and radish (Raphanus sativa cv. 'Cherry Bomb'), which were grown under two light treatments. The first treatment being red (630 nm) and blue (450 nm) LEDs alone, while the second treatment consisted of daylight tri-phosphor fluorescent lamps (CCT approximately 5000 K) at equal photosynthetic photon flux (PPF). The treatment effects were evaluated by measuring the fresh biomass produced, plant morphology and leaf dimensions, leaf chlorophyll content, and adenosine triphosphate (ATP) within plant leaf/storage root tissues.

  6. Effects of color temperatures (kelvin) of led bulbs on blood physiological variables of broilers grown to heavy weights

    Science.gov (United States)

    Light-emitting diode (LED) lighting is being used in the poultry industry to reduce energy usage in broiler production facilities. However, limited data are available comparing efficacy of different spectral distribution of LED bulbs on blood physiological variables of broilers grown to heavy weight...

  7. LED structure with enhanced mirror reflectivity

    Science.gov (United States)

    Bergmann, Michael; Donofrio, Matthew; Heikman, Sten; Schneider, Kevin S; Haberern, Kevin W; Edmond, John A

    2014-04-01

    Embodiments of the present invention are generally related to LED chips having improved overall emission by reducing the light-absorbing effects of barrier layers adjacent mirror contacts. In one embodiment, a LED chip comprises one or more LEDs, with each LED having an active region, a first contact under the active region having a highly reflective mirror, and a barrier layer adjacent the mirror. The barrier layer is smaller than the mirror such that it does not extend beyond the periphery of the mirror. In another possible embodiment, an insulator is further provided, with the insulator adjacent the barrier layer and adjacent portions of the mirror not contacted by the active region or by the barrier layer. In yet another embodiment, a second contact is provided on the active region. In a further embodiment, the barrier layer is smaller than the mirror such that the periphery of the mirror is at least 40% free of the barrier layer, and the second contact is below the first contact and accessible from the bottom of the chip.

  8. Luminaries-level structure improvement of LEDs for heat dissipation ...

    Indian Academy of Sciences (India)

    Heat dissipation enhancement of LED luminaries is of great significance to the large-scale application of LED. Luminaries-level structure improvement by the method of boring through-hole is adopted to intensify heat dissipation. Furthermore, the natural convection heat transfer process of LED luminaries is simulated by ...

  9. Structural, electrical and luminescent characteristics of ultraviolet light emitting structures grown by hydride vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    A.Y. Polyakov

    2017-03-01

    Full Text Available Electrical and luminescent properties of near-UV light emitting diode structures (LEDs prepared by hydride vapor phase epitaxy (HVPE were studied. Variations in photoluminescence and electroluminescence efficiency observed for LEDs grown under nominally similar conditions could be attributed to the difference in the structural quality (dislocation density, density of dislocations agglomerates of the GaN active layers, to the difference in strain relaxation achieved by growth of AlGaN/AlGaN superlattice and to the presence of current leakage channels in current confining AlGaN layers of the double heterostructure.

  10. Understanding the defect structure of solution grown zinc oxide

    International Nuclear Information System (INIS)

    Liew, Laura-Lynn; Sankar, Gopinathan; Handoko, Albertus D.; Goh, Gregory K.L.; Kohara, Shinji

    2012-01-01

    Zinc oxide (ZnO) is a wide bandgap semiconducting oxide with many potential applications in various optoelectronic devices such as light emitting diodes (LEDs) and field effect transistors (FETs). Much effort has been made to understand the ZnO structure and its defects. However, one major issue in determining whether it is Zn or O deficiency that provides ZnO its unique properties remains. X-ray absorption spectroscopy (XAS) is an ideal, atom specific characterization technique that is able to probe defect structure in many materials, including ZnO. In this paper, comparative studies of bulk and aqueous solution grown (≤90 °C) ZnO powders using XAS and x-ray pair distribution function (XPDF) techniques are described. The XAS Zn–Zn correlation and XPDF results undoubtedly point out that the solution grown ZnO contains Zn deficiency, rather than the O deficiency that were commonly reported. This understanding of ZnO short range order and structure will be invaluable for further development of solid state lighting and other optoelectronic device applications. - Graphical abstract: Highlights: ► ZnO powders have been synthesized through an aqueous solution method. ► Defect structure studied using XAS and XPDF. ► Zn–Zn correlations are less in the ZnO powders synthesized in solution than bulk. ► Zn vacancies are present in the powders synthesized. ► EXAFS and XPDF, when used complementary, are useful characterization techniques.

  11. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting

    Science.gov (United States)

    Goins, G. D.; Yorio, N. C.; Sanwo, M. M.; Brown, C. S.; Sager, J. C. (Principal Investigator)

    1997-01-01

    Red light-emitting diodes (LEDs) are a potential light source for growing plants in spaceflight systems because of their safety, small mass and volume, wavelength specificity, and longevity. Despite these attractive features, red LEDs must satisfy requirements for plant photosynthesis and photomorphogenesis for successful growth and seed yield. To determine the influence of gallium aluminium arsenide (GaAlAs) red LEDs on wheat photomorphogenesis, photosynthesis, and seed yield, wheat (Triticum aestivum L., cv. 'USU-Super Dwarf') plants were grown under red LEDs and compared to plants grown under daylight fluorescent (white) lamps and red LEDs supplemented with either 1% or 10% blue light from blue fluorescent (BF) lamps. Compared to white light-grown plants, wheat grown under red LEDs alone demonstrated less main culm development during vegetative growth through preanthesis, while showing a longer flag leaf at 40 DAP and greater main culm length at final harvest (70 DAP). As supplemental BF light was increased with red LEDs, shoot dry matter and net leaf photosynthesis rate increased. At final harvest, wheat grown under red LEDs alone displayed fewer subtillers and a lower seed yield compared to plants grown under white light. Wheat grown under red LEDs+10% BF light had comparable shoot dry matter accumulation and seed yield relative to wheat grown under white light. These results indicate that wheat can complete its life cycle under red LEDs alone, but larger plants and greater amounts of seed are produced in the presence of red LEDs supplemented with a quantity of blue light.

  12. Biochemical, photosynthetic and productive parameters of Chinese cabbage grown under blue-red LED assembly designed for space agriculture

    Science.gov (United States)

    Avercheva, Olga; Berkovich, Yuliy A.; Smolyanina, Svetlana; Bassarskaya, Elizaveta; Pogosyan, Sergey; Ptushenko, Vasiliy; Erokhin, Alexei; Zhigalova, Tatiana

    2014-06-01

    Currently light emitting diodes (LEDs) are considered to be most preferable source for space plant growth facilities. We performed a complex study of growth and photosynthesis in Chinese cabbage plants (Brassica chinensis L.) grown with continuous LED lighting based on red (650 nm) and blue (470 nm) LEDs with a red to blue photon ratio of 7:1. Plants grown with high-pressure sodium (HPS) lamps were used as a control. PPF levels used were about 100 μmol/(m2 s) (PPF 100) and nearly 400 μmol/(m2 s) (PPF 400). One group of plants was grown with PPF 100 and transferred to PPF 400 at the age of 12 days. Plants were studied at the age of 15 and 28 days (harvest age); some plants were left to naturally end their life cycle. We studied a number of parameters reflecting different stages of photosynthesis: photosynthetic pigment content; chlorophyll fluorescence parameters (photosystem II quantum yield, photochemical and non-photochemical chlorophyll fluorescence quenching); electron transport rate, proton gradient on thylakoid membranes (ΔpH), and photophosphorylation rate in isolated chloroplasts. We also tested parameters reflecting plant growth and productivity: shoot and root fresh and dry weight, sugar content and ascorbic acid content in shoots. Our results had shown that at PPF 100, plants grown with LEDs did not differ from control plants in shoot fresh weight, but showed substantial differences in photophosphorylation rate and sugar content. Differences observed in plants grown with PPF 100 become more pronounced in plants grown with PPF 400. Most parameters characterizing the plant photosynthetic performance, such as photosynthetic pigment content, electron transport rate, and ΔpH did not react strongly to light spectrum. Photophosphorylation rate differed strongly in plants grown with different spectrum and PPF level, but did not always reflect final plant yield. Results of the present work suggest that narrow-band LED lighting caused changes in Chinese

  13. Structural Reliability of the Nigerian Grown Abura Timber Bridge ...

    African Journals Online (AJOL)

    Structural reliability analysis was carried out on the Nigerian grown Abura timber, to ascertain its structural performance as timber bridge beams. Samples of the Nigerian grown Abura timber were bought from timber market, seasoned naturally and their structural/strength properties were determined at a moisture content of ...

  14. Comparative Phenotypical and Molecular Analyses of Arabidopsis Grown under Fluorescent and LED Light

    OpenAIRE

    Seiler, Franka; Soll, J?rgen; B?lter, Bettina

    2017-01-01

    Comparative analyses of phenotypic and molecular traits of Arabidopsis thaliana grown under standardised conditions is still a challenge using climatic devices supplied with common light sources. These are in most cases fluorescent lights, which have several disadvantages such as heat production at higher light intensities, an invariable spectral output, and relatively rapid “ageing”. This results in non-desired variations of growth conditions and lowers the comparability of data acquired ove...

  15. Inverted vertical algan deep ultraviolet leds grown on p-SiC substrates by molecular beam epitaxy

    Science.gov (United States)

    Nothern, Denis Maurice

    Deep ultraviolet light emitting diodes (UV LEDs) are an important emerging technology for a number of applications such as water/air/surface disinfection, communications, and epoxy curing. However, as of yet, deep UV LEDs grown on sapphire substrates are neither efficient enough nor powerful enough to fully serve these and other potential applications. The majority of UV LEDs reported so far in the literature are grown on sapphire substrates and their design consists of AlGaN quantum wells (QWs) embedded in an AlGaN p-i-n junction with the n-type layer on the sapphire. These devices suffer from a high concentration of threading defects originating from the large lattice mismatch between the sapphire substrate and AlGaN alloys. Other issues include the poor doping efficiency of the n- and particularly the p-AlGaN alloys, the extraction of light through the sapphire substrate, and the heat dissipation through the thermally insulating sapphire substrate. These problems have historically limited the internal quantum efficiency (IQE), injection efficiency (IE), and light extraction efficiency (EE) of devices. As a means of addressing these efficiency and power challenges, I have contributed to the development of a novel inverted vertical deep UV LED design based on AlGaN grown on p-SiC substrates. Starting with a p-SiC substrate that serves as the p-type side of the p-i-n junction largely eliminates the necessity for the notoriously difficult p-type doping of AlGaN alloys, and allows for efficient heat dissipation through the highly thermally conductive SiC substrate. UV light absorption in the SiC substrate can be addressed by first growing p-type doped distributed Bragg reflectors (DBRs) on top of the substrate prior to the deposition of the active region of the device. A number of n-AlGaN films, AlGaN/AlGaN multiple quantum wells, and p-type doped AlGaN DBRs were grown by molecular beam epitaxy (MBE). These were characterized in situ by reflected high energy electron

  16. Achieving Uniform Carriers Distribution in MBE Grown Compositionally Graded InGaN Multiple-Quantum-Well LEDs

    KAUST Repository

    Mishra, Pawan

    2015-05-06

    We investigated the design and growth of compositionally-graded InGaN multiple quantum wells (MQW) based light-emitting diode (LED) without an electron-blocking layer (EBL). Numerical investigation showed uniform carrier distribution in the active region, and higher radiative recombination rate for the optimized graded-MQW design, i.e. In0→xGa1→(1-x)N / InxGa(1-x)N / Inx→0Ga(1-x)→1N, as compared to the conventional stepped-MQW-LED. The composition-grading schemes, such as linear, parabolic, and Fermi-function profiles were numerically investigated for comparison. The stepped- and graded-MQW-LED were then grown using plasma assisted molecular beam epitaxy (PAMBE) through surface-stoichiometry optimization based on reflection high-energy electron-diffraction (RHEED) in-situ observations. Stepped- and graded-MQW-LED showed efficiency roll over at 160 A/cm2 and 275 A/cm2, respectively. The extended threshold current density roll-over (droop) in graded-MQW-LED is due to the improvement in carrier uniformity and radiative recombination rate, consistent with the numerical simulation.

  17. Comparative Study of Lettuce and Radish Grown Under Red and Blue Light-Emitting Diodes (LEDs) and White Fluorescent Lamps

    Science.gov (United States)

    Mickens, Matthew A.

    2012-01-01

    Growing vegetable crops in space will be an essential part of sustaining astronauts during long-term missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop production, there have also been recent interests in analyzing the subtle effects of green light on plant growth, and to determine if it serves as a source of growth enhancement or suppression. A comparative study was performed on two short cycle crops of lettuce (Outredgeous) and radish (Cherry Bomb) grown under two light treatments. The first treatment being red and blue LEDs, and the second treatment consisting of white fluorescent lamps which contain a portion of green light. In addition to comparing biomass production, physiological characterizations were conducted on how the light treatments influence morphology, water use, chlorophyll content, and the production of A TP within plant tissues.

  18. Luminaries-level structure improvement of LEDs for heat dissipation ...

    Indian Academy of Sciences (India)

    Furthermore, the natural convection heat transfer process of LED luminaries is simulated by computational fluid dynamics (CFD) model before and after the structural modification. As shown by computational results, boring through-hole is beneficial to develop bottomto-top natural convection, eliminate local circumfluence, ...

  19. Structure and growth process of vapor-grown carbon fibers

    Science.gov (United States)

    Koyama, T.; Endo, M.

    1983-01-01

    The structure, effect of heat, and growth process of vapor-grown carbon fibers are investigated. The growth process of the carbon fibers could be divided into three stages; nucleation, elongation, and thickening processes. Also, a multi-layered structure can be produced as well as graphitization.

  20. Influences of stress on the properties of GaN/InGaN multiple quantum well LEDs grown on Si (111) substrates

    Science.gov (United States)

    Liu, Ming-Gang; Yang, Yi-Bin; Xiang, Peng; Chen, Wei-Jie; Han, Xiao-Biao; Lin, Xiu-Qi; Lin, Jia-Li; Luo, Hui; Liao, Qiang; Zang, Wen-Jie; Wu, Zhi-Sheng; Liu, Yang; Zhang, Bai-Jun

    2015-06-01

    The influences of stress on the properties of InGaN/GaN multiple quantum wells (MQWs) grown on silicon substrate were investigated. The different stresses were induced by growing InGaN and AlGaN insertion layers (IL) respectively before the growth of MQWs in metal-organic chemical vapor deposition (MOCVD) system. High resolution x-ray diffraction (HRXRD) and photoluminescence (PL) measurements demonstrated that the InGaN IL introduced an additional tensile stress in n-GaN, which released the strain in MQWs. It is helpful to increase the indium incorporation in MQWs. In comparison with MQWs without the IL, the wavelength shows a red-shift. AlGaN IL introduced a compressive stress to compensate the tensile stress, which reduces the indium composition in MQWs. PL measurement shows a blue-shift of wavelength. The two kinds of ILs were adopted to InGaN/GaN MQWs LED structures. The same wavelength shifts were also observed in the electroluminescence (EL) measurements of the LEDs. Improved indium homogeneity with InGaN IL, and phase separation with AlGaN IL were observed in the light images of the LEDs. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274039 and 51177175), the National Basic Research Program of China (Grant Nos. 2010CB923201 and 2011CB301903), the Ph. D. Program Foundation of the Ministry of Education of China (Grant No. 20110171110021), the International Science and Technology Collaboration Program of China (Grant No. 2012DFG52260), the National High Technology Research and Development Program of China (Grant No. 2014AA032606), the International Science and Technology Collaboration Program of Guangdong Province, China (Grant No. 2013B051000041), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (Grant No. IOSKL2014KF17).

  1. Luminaries-level structure improvement of LEDs for heat dissipation ...

    Indian Academy of Sciences (India)

    Due to its significant advantages such as high efficiency, long lifetime, low power consump- tion, inconceivable controllability and high ... However, till now LED chip can only convert 20% of the input power into light while the rest 80% is converted ... the middle of computational domain. Turbulence natural convection and ...

  2. Strain analysis of InGaN/GaN multi quantum well LED structures

    Energy Technology Data Exchange (ETDEWEB)

    Sebnem Cetin, S.; Kemal Oeztuerk, M.; Oezcelik, S. [Department of Physics, Science Faculty, Gazi University, Ankara (Turkey); Photonics Application and Research Center, Gazi University, Ankara (Turkey); Oezbay, E. [Nanotechnology Research Center, Department of Physics, Department of Electrical and Electronics Engineering, Bilkent, Ankara (Turkey)

    2012-08-15

    Five period InGaN/GaN multi quantum well (MQW) light emitting diode (LED) structures were grown by a metalorganic chemical vapor deposition (MOCVD) system on c-plane sapphire. The structural characteristics as a strain-stress analysis of hexagonal epilayers MQWs were determined by using nondestructive high resolution x-ray diffraction (HRXRD) in detail. The strain/stress analysis in AlN, GaN, and InGaN thin films with a variation of the In molar fraction in the InGaN well layers was conducted based on the precise measurement of the lattice parameters. The a- and c-lattice parameters of the structures were calculated from the peak positions obtained by rocking the theta axis at the vicinity of the symmetric and asymmetric plane reflection angles, followed by the in-plane and out-of-plane strains. The biaxial and hydrostatic components of the strain were extracted from the obtained a- and c-direction strains values. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Effects of the number of wells on the performance of green InGaN/GaN LEDs with V-shape pits grown on Si substrates

    Science.gov (United States)

    Wu, Qingfeng; Zhang, Jianli; Mo, Chunlan; Wang, Xiaolan; Quan, Zhijue; Wu, Xiaoming; Pan, Shuan; Wang, Guangxu; Liu, Junlin; Jiang, Fengyi

    2018-02-01

    The effect of the number of wells on quantum efficiency and forward voltage of vertical green InGaN/GaN multiple quantum wells (MQWs) light-emitting diodes (LEDs) grown on Si substrate has been experimentally investigated. We have prepared three LED samples with 3, 5 and 7 wells. Electroluminescence measurement shows that the LED with 5 wells has the highest external quantum efficiency (EQE) and the lowest forward voltage. It is observed that V-shaped pits grow up in size and density with an increase in quantum well number by means of scan electron microscope. Due to more hole injection via V-shaped pits, a larger area ratio of pits as a result of more number of wells would bring a lower forward voltage and a higher EQE. However, besides the increasing series resistance would bring a higher forward voltage, the interface of MQWs would become rougher and deteriorate the emission efficiency when increasing the wells number.

  4. Enhanced light extraction of InGaN LEDs with photonic crystals grown on p-GaN using selective-area epitaxy and nanospherical-lens photolithography

    International Nuclear Information System (INIS)

    Zhao Linghui; Wei Tongbo; Wang Junxi; Zeng Yiping; Li Jinmin; Yan Qingfeng

    2013-01-01

    We report a new method for the fabrication of two-dimensional photonic crystal (PhC) hole arrays to improve the light extraction of GaN-based light-emitting diodes (LEDs). The PhC structures were realized using nanospherical-lens photolithography and the selective-area epitaxy method, which ensured the electrical properties of the LEDs through leaving the p-GaN damage-free. At a current of 350 mA, the light output power of LEDs with PhC hole arrays of 450 nm and 600 nm in diameter with the same lattice period of 900 nm were enhanced by 49.3% and 72.2%, respectively, compared to LEDs without a PhC. Furthermore, the LEDs with PhC hole structures showed an obviously smaller divergent angle compared with conventional LEDs, which is consistent with the results of finite-difference time-domain simulation. (semiconductor devices)

  5. High-quality uniaxial In(x)Ga(1-x)N/GaN multiple quantum well (MQW) nanowires (NWs) on Si(111) grown by metal-organic chemical vapor deposition (MOCVD) and light-emitting diode (LED) fabrication.

    Science.gov (United States)

    Ra, Yong-Ho; Navamathavan, R; Park, Ji-Hyeon; Lee, Cheul-Ro

    2013-03-01

    This article describes the growth and device characteristics of vertically aligned high-quality uniaxial p-GaN/InxGa1-xN/GaN multiple quantum wells (MQW)/n-GaN nanowires (NWs) on Si(111) substrates grown by metal-organic chemical vapor deposition (MOCVD) technique. The resultant nanowires (NWs), with a diameter of 200-250 nm, have an average length of 2 μm. The feasibility of growing high-quality NWs with well-controlled indium composition MQW structure is demonstrated. These resultant NWs grown on Si(111) substrates were utilized for fabricating vertical-type light-emitting diodes (LEDs). The steep and intense photoluminescence (PL) and cathodoluminescence (CL) spectra are observed, based on the strain-free NWs on Si(111) substrates. High-resolution transmission electron microscopy (HR-TEM) analysis revealed that the MQW NWs are grown along the c-plane with uniform thickness. The current-voltage (I-V) characteristics of these NWs exhibited typical p-n junction LEDs and showed a sharp onset voltage at 2.75 V in the forward bias. The output power is linearly increased with increasing current. The result indicates that the pulsed MOCVD technique is an effective method to grow uniaxial p-GaN/InxGa1-xN/GaN MQW/n-GaN NWs on Si(111), which is more advantageous than other growth techniques, such as molecular beam epitaxy. These results suggest the uniaxial NWs are promising to allow flat-band quantum structures, which can enhance the efficiency of LEDs.

  6. Structural and optical characteristics of InN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Kim, Je Won; Lee, Kyu Han; Hong, Sangsu

    2007-01-01

    The structural and electrical properties of InN/GaN multiple quantum wells, which were grown by metalorganic chemical vapor deposition, were characterized by transmission electron microscopy (TEM) and electroluminescence measurements. From the TEM micrographs, it was shown that the well layer was grown like a quantum dot. The well layer is expected to be the nano-size structures in the InN multiple quantum well layers. The multi-photon confocal laser scanning microscopy was used to investigate the optical properties of the light emitting diode (LED) structures with InN active layers. It was found that the two-photon excitation was possible in InN system. The pit density was measured by using the far-field optical technique. In the varied current conditions, the blue LED with the InN multiple quantum well structures did not have the wavelength shift. With this result, we can expect that the white LEDs with the InN multiple quantum well structures do not show the color temperature changes with the variations of applied currents

  7. GaAsBi/GaAs multi-quantum well LED grown by molecular beam epitaxy using a two-substrate-temperature technique

    Science.gov (United States)

    Kisan Patil, Pallavi; Luna, Esperanza; Matsuda, Teruyoshi; Yamada, Kohki; Kamiya, Keisuke; Ishikawa, Fumitaro; Shimomura, Satoshi

    2017-03-01

    We report a GaAs0.96Bi0.04/GaAs multiple quantum well (MQW) light emitting diode (LED) grown by molecular beam epitaxy using a two-substrate-temperature (TST) technique. In particular, the QWs and the barriers in the intrinsic region were grown at the different temperatures of {T}{{GaAsBi}} = 350 °C and {T}{{GaAs}} = 550 ^\\circ {{C}}, respectively. Investigations of the microstructure using transmission electron microscopy (TEM) reveal homogeneous MQWs free of extended defects. Furthermore, the local determination of the Bi distribution profile across the MQWs region using TEM techniques confirm the uniform Bi distribution, while revealing a slightly chemically graded GaAs-on-GaAsBi interface due to Bi surface segregation. Despite this small broadening, we found that Bi segregation is significantly reduced (up to 18% reduction) compared to previous reports on Bi segregation in GaAsBi/GaAs MQWs. Hence, the TST procedure proves as a very efficient method to reduce Bi segregation and thus increase the quality of the layers and interfaces. These improvements positively reflect in the optical properties. Room temperature photoluminescence and electroluminescence (EL) at 1.23 μm emission wavelength are successfully demonstrated using TST MQWs containing less Bi content than in previous reports. Finally, LED fabricated using the present TST technique show current-voltage (I-V) curves with a forward voltage of 3.3 V at an injection current of 130 mA under 1.0 kA cm-2 current excitation. These results not only demonstrate that TST technique provides optical device quality GaAsBi/GaAs MQWs but highlight the relevance of TST-based growth techniques on the fabrication of future heterostructure devices based on dilute bismides.

  8. Examining Young Recreational Male Soccer Players' Experience in Adult- and Peer-Led Structures

    Science.gov (United States)

    Imtiaz, Faizan; Hancock, David J.; Côté, Jean

    2016-01-01

    Purpose: Youth sport has the potential to be one of the healthiest and most beneficial activities in which children can partake. Participation in a combination of adult-led and peer-led sport structures appears to lead to favorable outcomes such as enhanced physical fitness, as well as social and emotional development. The purpose of the present…

  9. Novel thin-GaN LED structure adopted micro abraded surface to compare with conventional vertical LEDs in ultraviolet light

    Science.gov (United States)

    Chiang, Yen Chih; Lin, Chien Chung; Kuo, Hao Chung

    2015-04-01

    In this study, novel thin-GaN-based ultraviolet light-emitting diodes (NTG-LEDs) were fabricated using wafer bonding, laser lift-off, dry etching, textured surface, and interconnection techniques. Placing PN electrodes on the same side minimized the absorption caused by electrodes in conventional vertical injection light-emitting diodes (V-LEDs) and the current spreading was improved. The light output power (700 mA) of the NTG-LEDs was enhanced by 18.3% compared with that of the V-LEDs, and the external quantum efficiency (EQE) of the NTG-LEDs was also relatively enhanced by 20.0% compared with that of a reference device. When the current operations were 1,500 mA, the enhancements of the light output power and EQE were 27.4% and 27.2%, respectively. Additionally, the efficiency droop was improved by more than 15% at the same current level.

  10. Analysis and Comparison of Magnetic Structures in a Tapped Boost Converter for LED Applications

    DEFF Research Database (Denmark)

    Mira Albert, Maria del Carmen; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents an an alysis and comparison of magnetics structures in a tapped boost converter for LED applications. The magnetic structure is a coupled inductor which is analyzed in a conventional wire-wound core as well as in a planar structure for different interleaving winding arrangements...

  11. Core-shell GaN-ZnO moth-eye nanostructure arrays grown on a-SiO2/Si (1 1 1) as a basis for improved InGaN-based photovoltaics and LEDs

    Science.gov (United States)

    Rogers, D. J.; Sandana, V. E.; Gautier, S.; Moudakir, T.; Abid, M.; Ougazzaden, A.; Teherani, F. Hosseini; Bove, P.; Molinari, M.; Troyon, M.; Peres, M.; Soares, Manuel J.; Neves, A. J.; Monteiro, T.; McGrouther, D.; Chapman, J. N.; Drouhin, H.-J.; McClintock, R.; Razeghi, M.

    2015-06-01

    Self-forming, vertically-aligned, ZnO moth-eye-like nanoarrays were grown by catalyst-free pulsed laser deposition on a-SiO2/Si (1 1 1) substrates. X-Ray Diffraction (XRD) and Cathodoluminescence (CL) studies indicated that nanostructures were highly c-axis oriented wurtzite ZnO with strong near band edge emission. The nanostructures were used as templates for the growth of non-polar GaN by metal organic vapor phase epitaxy. XRD, scanning electron microscopy, energy dispersive X-ray microanalysis and CL revealed ZnO encapsulated with GaN, without evidence of ZnO back-etching. XRD showed compressive epitaxial strain in the GaN, which is conducive to stabilization of the higher indium contents required for more efficient green light emitting diode (LED) and photovoltaic (PV) operation. Angular-dependent specular reflection measurements showed a relative reflectance of less than 1% over the wavelength range of 400-720 nm at all angles up to 60°. The superior black-body performance of this moth-eye-like structure would boost LED light extraction and PV anti-reflection performance compared with existing planar or nanowire LED and PV morphologies. The enhancement in core conductivity, provided by the ZnO, would also improve current distribution and increase the effective junction area compared with nanowire devices based solely on GaN.

  12. Visualization of the 3D structures of small organisms via LED-SIM.

    Science.gov (United States)

    Ruan, Yongying; Dan, Dan; Zhang, Mengna; Bai, Ming; Lei, Ming; Yao, Baoli; Yang, Xingke

    2016-01-01

    Innovative new techniques that aid in the visualization of microscopic anatomical structures have improved our understanding of organismal biology significantly. It is often challenging to observe internal 3D structures, despite the use of techniques such as confocal laser scanning microscopy (CLSM), micro-computed tomography (Micro-CT), magnetic resonance imaging (MRI), focused ion beam scanning electron microscopy (FIB-SEM) and others. In the current paper, we assess LED-SIM (DMD-based LED-illumination structured illumination microscopy), which facilitates the acquisition of nano- and micro-3D structures of small organisms in a high-resolution format (500 nm in the XY-plane and 930 nm along the Z-axis). We compare other microstructural imaging techniques (involving conventional optical microscopy, CLSM and Micro-CT) with LED-SIM to assess the quality (e.g. resolution, penetration depth, etc.) of LED-SIM images, as well as to document the potential short-comings of LED-SIM. Based on these results we present an optimized set of protocols to ensure that LED-SIM arthropod and nematode samples with different cuticles or textures are prepared for analysis in an optimal manner. Six arthropod and nematode specimens were tested and shown to be suitable for LED-SIM imaging, which was found to yield high resolution 3D images. Although LED-SIM still must be thoroughly tested before it is widely accepted and the Z-axis resolution still requires improvement, this technique offers distinct high quality 3D images. LED-SIM can be highly effective and may provide high quality 3D images for zoological studies following the guidelines of sample preparation presented in the current paper.

  13. A novel structure of gel grown strontium cyanurate crystal and its structural, optical, electrical characterization

    Science.gov (United States)

    Divya, R.; Nair, Lekshmi P.; Bijini, B. R.; Nair, C. M. K.; Gopakumar, N.; Babu, K. Rajendra

    2017-12-01

    Strontium cyanurate crystals with novel structure and unique optical property like mechanoluminescence have been grown by conventional gel method. Transparent crystals were obtained. The single crystal X-ray diffraction analysis reveals the exquisite structure of the grown crystal. The crystal is centrosymmetric and has a three dimensional polymeric structure. The powder X ray diffraction analysis confirms its crystalline nature. The functional groups present in the crystal were identified by Fourier transform infrared spectroscopy. Elemental analysis confirmed the composition of the complex. A study of thermal properties was done by thermo gravimetric analysis and differential thermal analysis. The optical properties like band gap, refractive index and extinction coefficient were evaluated from the UV visible spectral analysis. The etching study was done to reveal the dislocations in the crystal which in turn explains mechanoluminescence emission. The mechanoluminescence property exhibited by the crystal makes it suitable for stress sensing applications. Besides being a centrosymmetric crystal, it also exhibits NLO behavior. Dielectric properties were studied and theoretical calculations of Fermi energy, valence electron plasma energy, penn gap and polarisability have been done.

  14. Structural properties of (GaIn)(AsN)/GaAs MQW structures grown by MOVPE

    International Nuclear Information System (INIS)

    Giannini, C.; Carlino, E.; Tapfer, L.; Hoehnsdorf, F.; Koch, J.; Stolz, W.

    2000-01-01

    In this work, the authors investigate the structural properties of (GaIn)(AsN)/GaAs multiple quantum wells (MQW) grown at low temperature by metalorganic vapor phase epitaxy. The structural properties, in particular the In- and N-incorporation, the lattice strain (strain modulation), the structural perfection of the metastable (GaIn)(AsN) material system and the structural quality of the (GaIn)(AsN)/GaAs interfaces are investigated by means of high-resolution x-ray diffraction, transmission electron microscopy (TEM), and secondary ion mass spectrometry. They demonstrate that (GaIn)(AsN) layers of high structural quality can be fabricated up to lattice mismatches of 4%. The experiments reveal that N and In atoms are localized in the quaternary material and no evidences of In-segregation or N-interdiffusion could be found. TEM analyses reveal a low defect density in the highly strained layers, but no clustering or interface undulation could be detected. High-resolution TEM images show that (GaIn)(AsN)/GaAs interfaces are slightly rougher than GaAs/(GaIn)(AsN) ones

  15. Structural and magnetic properties of Gd/Fe multilayers grown by pulsed laser deposition

    DEFF Research Database (Denmark)

    Kant, K. Mohan; Bahl, Christian Robert Haffenden; Pryds, Nini

    2010-01-01

    This work investigates the structural and the magnetic properties of Gd/Fe multilayered thin films grown by pulsed laser deposition onto Si (001) substrates at room temperature. he Fe layer thickness is varied from 70 to 150 nm and its effect on the structural and magnetic properties of Fe/Gd/Fe ...

  16. Effectiveness of structured, hospital-based, nurse-led atrial fibrillation clinics

    DEFF Research Database (Denmark)

    Qvist, Ina; Hendriks, Jeroen M L; Møller, Dorthe S

    2016-01-01

    -led, structured hospital AF clinics with the outcomes of a randomised trial of the efficacy of a nurse-led AF clinic, with respect to a composite outcome of cardiovascular-related hospitalisation and death. METHODS: All patients were referred to the AF nurse specialist by cardiologists. The AF nurse specialist......OBJECTIVE: A previous randomised trial showed that structured, nurse-led atrial fibrillation (AF) care is superior to conventional AF care, although further research is needed to determine the outcomes of such care in a real-world setting. We compared the outcomes of patients in real-world, nurse....... The composite primary end point occurred with an incidence rate of 8.0 (95% CI 6.1 to 10.4) per 100 person-years in the real-world population and 8.3 (95% CI 6.3 to 10.9) per 100 person-years in the clinical trial, with a crude HR of 0.83 (95% CI 0.56 to 1.23). CONCLUSIONS: Structured, nurse-led, hospital...

  17. structural reliability of the nigerian grown abura timber bridge beam

    African Journals Online (AJOL)

    ENGR. J. I. AGUWA

    2013-07-02

    Jul 2, 2013 ... hardwoods and Abura is one of them. Most timber used in the building construction are softwoods but in structures like bridges and railway sleepers, hardwoods are specially used. [5]. Construction activities using vast quantities of locally available raw materials are major steps towards industrialization and ...

  18. ZnO nanostructured microspheres and grown structures by thermal ...

    Indian Academy of Sciences (India)

    Synthesis of flower-shaped ZnO nanostructures composed of ZnO nanosticks was achieved by the solution process using zinc acetate dihydrate, sodium hydroxide and polyethylene glycol-20000 (PEG-20000) at 180°C for 4 h. The diameter of individual nanosticks was about 100 nm. Detailed structure characterizations ...

  19. The structural grading of young South African grown Pinus patula ...

    African Journals Online (AJOL)

    The young P. patula timber tested in this study had good bending strength (MOR) properties with higher characteristic grade values than required. The timber, however, had low stiffness and did not comply with the SANS 10163-1 requirements for mean modulus of elasticity on edge (MOEedge) for any of the structural ...

  20. Palladium-based on-wafer electroluminescence studies of GaN-based LED structures

    Energy Technology Data Exchange (ETDEWEB)

    Salcianu, C.O.; Thrush, E.J.; Humphreys, C.J. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Plumb, R.G. [Centre for Photonic Systems, Department of Engineering, University of Cambridge, Cambridge CB3 0FD (United Kingdom); Boyd, A.R.; Rockenfeller, O.; Schmitz, D.; Heuken, M. [AIXTRON AG, Kackertstr. 15-17, 52072 Aachen (Germany)

    2008-07-01

    Electroluminescence (EL) testing of Light Emitting Diode (LED) structures is usually done at the chip level. Assessing the optical and electrical properties of LED structures at the wafer scale prior to their processing would improve the cost effectiveness of producing LED-lamps. A non-destructive method for studying the luminescence properties of the structure at the wafer-scale is photoluminescence (PL). However, the relationship between the on-wafer PL data and the final device EL can be less than straightforward (Y. H Aliyu et al., Meas. Sci. Technol. 8, 437 (1997)) as the two techniques employ different carrier injection mechanisms. This paper provides an overview of some different techniques in which palladium is used as a contact in order to obtain on-wafer electroluminescence information which could be used to screen wafers prior to processing into final devices. Quick mapping of the electrical and optical characteristics was performed using either palladium needle electrodes directly, or using the latter in conjunction with evaporated palladium contacts to inject both electrons and holes into the active region via the p-type capping layer of the structure. For comparison, indium was also used to make contact to the n-layer so that electrons could be directly injected into that layer. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Differences in the structure of outpatient diabetes care between endocrinologist-led and general physician-led services.

    LENUS (Irish Health Repository)

    O Donnell, Máire

    2013-11-25

    Despite a shift in diabetes care internationally from secondary to primary care, diabetes care in the Republic of Ireland remains very hospital-based. Significant variation in the facilities and resources available to hospitals providing outpatient diabetes care have been reported in the UK. The aim of this study was to ascertain the structure of outpatient diabetes care in public hospitals in the Republic of Ireland and whether differences existed in services provided across hospitals.

  2. Study on the structural, optical, and electrical properties of the yellow light-emitting diode grown on free-standing (0001) GaN substrate

    Science.gov (United States)

    Deng, Gaoqiang; Zhang, Yuantao; Yu, Ye; Yan, Long; Li, Pengchong; Han, Xu; Chen, Liang; Zhao, Degang; Du, Guotong

    2018-04-01

    In this paper, GaN-based yellow light-emitting diodes (LEDs) were homoepitaxially grown on free-standing (0001) GaN substrates by metal-organic chemical vapor deposition. X-ray diffraction (XRD), photoluminescence (PL), and electroluminescence (EL) measurements were conducted to investigate the structural, optical, and electrical properties of the yellow LED. The XRD measurement results showed that the InGaN/GaN multiple quantum wells (MQWs) in the LED structure have good periodicity because the distinct MQWs related higher order satellite peaks can be clearly observed from the profile of 2θ-ω XRD scan. The low temperature (10 K) and room temperature PL measurement results yield an internal quantum efficiency of 16% for the yellow LED. The EL spectra of the yellow LED present well Gaussian distribution with relatively low linewidth (47-55 nm), indicating the homogeneous In-content in the InGaN quantum well layers in the yellow LED structure. It is believed that this work will aid in the future development of GaN on GaN LEDs with long emission wavelength.

  3. Effects of color temperatures (Kelvin) of LED bulbs on growth performance, carcass characteristics, and ocular welfare indices of broilers grown to heavy weights

    Science.gov (United States)

    Limited data are available for comparing light-emitting diode (LED) bulbs that are currently available in commercial broiler production facilities. We evaluated the effects of color temperatures (Kelvin) of LED bulbs on growth performance, carcass characteristics, and ocular welfare indices of broil...

  4. Structural and physical properties of InAlAs quantum dots grown on GaAs

    Science.gov (United States)

    Vasile, B. S.; Daly, A. Ben; Craciun, D.; Alexandrou, I.; Lazar, S.; Lemaître, A.; Maaref, M. A.; Iacomi, F.; Craciun, V.

    2018-04-01

    Quantum dots (QDs), which have particular physical properties due to the three dimensions confinement effect, could be used in many advanced optoelectronic applications. We investigated the properties of InAlAs/AlGaAs QDs grown by molecular beam epitaxy on GaAs/Al0.5Ga0.5As layers. The optical properties of QDs were studied by low-temperature photoluminescence (PL). Two bandgap transitions corresponding to the X-Sh and X-Ph energy structure were observed. The QDs structure was investigated using high-resolution X-ray diffraction (HRXRD) and high-resolution transmission electron microscopy (HRTEM). HRXRD investigations showed that the layers grew epitaxially on the substrate, with no relaxation. HRTEM investigations confirmed the epitaxial nature of the grown structures. In addition, it was revealed that the In atoms aggregated in some prismatic regions, forming areas of high In concentration, that were still in perfect registry with the substrate.

  5. Anisotropy of mosaic structure of GaAsP layers grown on GaAs substrates

    Energy Technology Data Exchange (ETDEWEB)

    Saka, T. [Daido Institute of Technology, 10-3, Takiharu-cho, Minami-ku, Nagoya 457-8530 (Japan); Kato, T. [Daido Steel Co. Ltd., 2-30, Daido-cho, Minami-ku, Nagoya 457-8545 (Japan); Jin, X.G.; Tanioku, M.; Ujihara, T.; Takeda, Y. [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yamamoto, N.; Nakagawa, Y.; Mano, A.; Okumi, S.; Yamamoto, M.; Nakanishi, T. [Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Horinaka, H.; Matsuyama, T. [Faculty of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Sakai 599-8531 (Japan); Yasue, T.; Koshikawa, T. [Fundamental Electronics Research Institute, Osaka Electro-Communication University, 18-8, Hatsu-cho, Neyagawa 572-8530 (Japan)

    2009-08-15

    The crystalline structure of GaAsP layers grown on GaAs and GaP(001) substrates, used for spin polarized photocathodes, has been investigated by X-ray diffraction. The layers on the GaAs substrate possess a mosaic structure observable by X-ray topography and consist of many large blocks. The mosaicity is anisotropic and the distribution of the mosaic is restricted within the (110) plane, and the blocks zigzag around the [110] direction. The layer grown on the GaP substrate was uniform and no mosaic was observed in the topographs. The results indicate that different mechanisms of strain release occur in GaAsP layers for tensile and compressive strains. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  6. Phosphor-Free Apple-White LEDs with Embedded Indium-Rich Nanostructures Grown on Strain Relaxed Nano-epitaxy GaN

    Directory of Open Access Journals (Sweden)

    Soh CB

    2010-01-01

    Full Text Available Abstract Phosphor-free apple-white light emitting diodes have been fabricated using a dual stacked InGaN/GaN multiple quantum wells comprising of a lower set of long wavelength emitting indium-rich nanostructures incorporated in multiple quantum wells with an upper set of cyan-green emitting multiple quantum wells. The light-emitting diodes were grown on nano-epitaxially lateral overgrown GaN template formed by regrowth of GaN over SiO2 film patterned with an anodic aluminum oxide mask with holes of 125 nm diameter and a period of 250 nm. The growth of InGaN/GaN multiple quantum wells on these stress relaxed low defect density templates improves the internal quantum efficiency by 15% for the cyan-green multiple quantum wells. Higher emission intensity with redshift in the PL peak emission wavelength is obtained for the indium-rich nanostructures incorporated in multiple quantum wells. The quantum wells grown on the nano-epitaxially lateral overgrown GaN has a weaker piezoelectric field and hence shows a minimal peak shift with application of higher injection current. An enhancement of external quantum efficiency is achieved for the apple-white light emitting diodes grown on the nano-epitaxially lateral overgrown GaN template based on the light -output power measurement. The improvement in light extraction efficiency, ηextraction, was found to be 34% for the cyan-green emission peak and 15% from the broad long wavelength emission with optimized lattice period.

  7. The characteristics of GaN-based blue LED on Si substrate

    International Nuclear Information System (INIS)

    Xiong Chuanbing; Jiang Fengyi; Fang Wenqing; Wang Li; Mo Chunnan; Liu Hechu

    2007-01-01

    InGaN multiple quantum well (MQW) light-emitting diodes (LEDs), grown by metalorganic chemical vapor deposition (MOCVD) on Si (1 1 1) substrates, were successfully bonded and transferred onto new Si substrate. After chemical etching Si substrate and inductively coupled plasma (ICP) etching buffer layer, vertical structure GaN blue LEDs were fabricated. The characteristics of the lateral structure LEDs (grown on Si substrate) and the vertical structure LEDs (bonded on new Si substrate) have been investigated, and the performance of the vertical structure LEDs have obviously been improved compared to the lateral structure LEDs. The improved performance is due to the smaller tensile stress and series resistance in the vertical LEDs than that in lateral LEDs. The electroluminescence difference between vertical LEDs chips and the vertical LEDs lamps can be explained by the difference in heat dissipation

  8. LSMO-STO(110) multilayered structure grown by metalorganic aerosol deposition

    International Nuclear Information System (INIS)

    Sapoval, Oleg; Belenchuk, Alexander; Canter, Valeriu; Zasavitsky, Efim; Moshnyaga, Vasily

    2013-01-01

    La 0.67 Sr 0.33 MnO 3 -SrTiO 3 multilayered structure was grown on SrTiO 3 (110) substrates by metalorganic aerosol deposition technique. The crystal structure was examined by X-ray analysis including simulation of diffraction and reflection patterns. The magneto transport properties of superlattice are presented. The critical thickness of (110)-oriented LSMO layers is lower than 7 perovskite unite cells. The oxygen stoichiometry provided due to high gas pressure conditions is responsible for reducing of critical thickness of LSMO layers at LSMO-STO(110) interfaces. (authors)

  9. An RNA-Seq Analysis of Grape Plantlets Grown in vitro Reveals Different Responses to Blue, Green, Red LED Light, and White Fluorescent Light.

    Science.gov (United States)

    Li, Chun-Xia; Xu, Zhi-Gang; Dong, Rui-Qi; Chang, Sheng-Xin; Wang, Lian-Zhen; Khalil-Ur-Rehman, Muhammad; Tao, Jian-Min

    2017-01-01

    Using an RNA sequencing (RNA-seq) approach, we analyzed the differentially expressed genes (DEGs) and physiological behaviors of "Manicure Finger" grape plantlets grown in vitro under white, blue, green, and red light. A total of 670, 1601, and 746 DEGs were identified in plants exposed to blue, green, and red light, respectively, compared to the control (white light). By comparing the gene expression patterns with the growth and physiological responses of the grape plantlets, we were able to link the responses of the plants to light of different spectral wavelengths and the expression of particular sets of genes. Exposure to red and green light primarily triggered responses associated with the shade-avoidance syndrome (SAS), such as enhanced elongation of stems, reduced investment in leaf growth, and decreased chlorophyll levels accompanied by the expression of genes encoding histone H3, auxin repressed protein, xyloglucan endotransglycosylase/hydrolase, the ELIP protein, and microtubule proteins. Furthermore, specific light treatments were associated with the expression of a large number of genes, including those involved in the glucan metabolic pathway and the starch and sucrose metabolic pathways; these genes were up/down-regulated in ways that may explain the increase in the starch, sucrose, and total sugar contents in the plants. Moreover, the enhanced root growth and up-regulation of the expression of defense genes accompanied with SAS after exposure to red and green light may be related to the addition of 30 g/L sucrose to the culture medium of plantlets grown in vitro . In contrast, blue light induced the up-regulation of genes related to microtubules, serine carboxypeptidase, chlorophyll synthesis, and sugar degradation and the down-regulation of auxin-repressed protein as well as a large number of resistance-related genes that may promote leaf growth, improve chlorophyll synthesis and chloroplast development, increase the ratio of chlorophyll a (chla

  10. Defect Structure of High-Temperature-Grown GaMnSb/GaSb

    International Nuclear Information System (INIS)

    Romanowski, P.; Bak-Misiuk, J.; Dynowska, E.; Domagala, J.Z.; Wojciechowski, T.; Jakiela, R.; Sadowski, J.; Barcz, A.; Caliebe, W.

    2010-01-01

    GaMnSb/GaSb(100) layers with embedded MnSb inclusions have been grown at 720 K using MBE technique. This paper presents the investigation of the defect structure of Ga1-xMnxSb layers with different content of manganese (up to x = 0.07). X-ray diffraction method using conventional and synchrotron radiation was applied. Dimensions and shapes of inclusions were detected by scanning electron microscopy. Depth profiles of elements were measured using secondary ion mass spectroscopy technique. (authors)

  11. Electrochromism and photocatalysis in dendrite structured Ti:WO3 thin films grown by sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Karuppasamy, A., E-mail: karuppasamy@psnacet.edu.in

    2015-12-30

    Graphical abstract: - Highlights: • Dendrite structured Ti doped WO{sub 3} (WTO) thin films are grown by co-sputtering. • Sputtering condition influences structure and surface morphology of WTO films. • Titanium doping and annealing lead to dendritic surface structures in WTO films. • Structural, optical, electrochromic and photocatalytic properties of WTO films. • Enhanced electrochromism and photocatalysis in dendrite structured WTO thin films. - Abstract: Titanium doped tungsten oxide (Ti:WO{sub 3}) thin films with dendrite surface structures were grown by co-sputtering titanium and tungsten in Ar + O{sub 2} atmosphere. Ti:WO{sub 3} thin films were deposited at oxygen flow rates corresponding to pressures in the range 1.0 × 10{sup −3}–5.0 × 10{sup −3} mbar. Argon flow rate and sputtering power densities for titanium (2 W/cm{sup 2}) and tungsten (3 W/cm{sup 2}) were kept constant. Ti:WO{sub 3} films deposited at an oxygen pressure of 5 × 10{sup −3} mbar are found to be better electrochromic and photocatalytic. They have high optical modulation (80% at λ = 550 nm), coloration efficiency (60 cm{sup 2}/C at λ = 550 nm), electron/ion storage and removal capacity (Qc: −22.01 mC/cm{sup 2}, Qa: 17.72 mC/cm{sup 2}), reversibility (80%) and methylene blue decomposition rate (−1.38 μmol/l d). The combined effects of titanium doping, dendrite surface structures and porosity leads to significant enhancement in the electrochromic and photocatalytic properties of Ti:WO{sub 3} films.

  12. Electrochromism and photocatalysis in dendrite structured Ti:WO3 thin films grown by sputtering

    International Nuclear Information System (INIS)

    Karuppasamy, A.

    2015-01-01

    Graphical abstract: - Highlights: • Dendrite structured Ti doped WO 3 (WTO) thin films are grown by co-sputtering. • Sputtering condition influences structure and surface morphology of WTO films. • Titanium doping and annealing lead to dendritic surface structures in WTO films. • Structural, optical, electrochromic and photocatalytic properties of WTO films. • Enhanced electrochromism and photocatalysis in dendrite structured WTO thin films. - Abstract: Titanium doped tungsten oxide (Ti:WO 3 ) thin films with dendrite surface structures were grown by co-sputtering titanium and tungsten in Ar + O 2 atmosphere. Ti:WO 3 thin films were deposited at oxygen flow rates corresponding to pressures in the range 1.0 × 10 −3 –5.0 × 10 −3 mbar. Argon flow rate and sputtering power densities for titanium (2 W/cm 2 ) and tungsten (3 W/cm 2 ) were kept constant. Ti:WO 3 films deposited at an oxygen pressure of 5 × 10 −3 mbar are found to be better electrochromic and photocatalytic. They have high optical modulation (80% at λ = 550 nm), coloration efficiency (60 cm 2 /C at λ = 550 nm), electron/ion storage and removal capacity (Qc: −22.01 mC/cm 2 , Qa: 17.72 mC/cm 2 ), reversibility (80%) and methylene blue decomposition rate (−1.38 μmol/l d). The combined effects of titanium doping, dendrite surface structures and porosity leads to significant enhancement in the electrochromic and photocatalytic properties of Ti:WO 3 films.

  13. Rhizobacterial Community Structures Associated with Native Plants Grown in Chilean Extreme Environments.

    Science.gov (United States)

    Jorquera, Milko A; Maruyama, Fumito; Ogram, Andrew V; Navarrete, Oscar U; Lagos, Lorena M; Inostroza, Nitza G; Acuña, Jacquelinne J; Rilling, Joaquín I; de La Luz Mora, María

    2016-10-01

    Chile is topographically and climatically diverse, with a wide array of diverse undisturbed ecosystems that include native plants that are highly adapted to local conditions. However, our understanding of the diversity, activity, and role of rhizobacteria associated with natural vegetation in undisturbed Chilean extreme ecosystems is very poor. In the present study, the combination of denaturing gradient gel electrophoresis and 454-pyrosequencing approaches was used to describe the rhizobacterial community structures of native plants grown in three representative Chilean extreme environments: Atacama Desert (ATA), Andes Mountains (AND), and Antarctic (ANT). Both molecular approaches revealed the presence of Proteobacteria, Bacteroidetes, and Actinobacteria as the dominant phyla in the rhizospheres of native plants. Lower numbers of operational taxonomic units (OTUs) were observed in rhizosphere soils from ATA compared with AND and ANT. Both approaches also showed differences in rhizobacterial community structures between extreme environments and between plant species. The differences among plant species grown in the same environment were attributed to the higher relative abundance of classes Gammaproteobacteria and Alphaproteobacteria. However, further studies are needed to determine which environmental factors regulate the structures of rhizobacterial communities, and how (or if) specific bacterial groups may contribute to the growth and survival of native plants in each Chilean extreme environments.

  14. Morphology and Structural Characterization of Carbon Nanowalls Grown via VHF-PECVD

    Science.gov (United States)

    Akmal Hasanudin, M.; Wahab, Y.; Ismail, A. K.; Zahid Jamal, Z. A.

    2018-03-01

    A 150 MHz very high frequency plasma enhanced chemical vapor deposition (150 MHz VHF-PECVD) system was utilized to fabricate two-dimensional carbon nanostructure from the mixture of methane and hydrogen. Morphology and structural properties of the grown nanostructure were investigated by FESEM imaging and Raman spectroscopy. Carbon nanowalls (CNW) with dense and wavy-like structure were successfully synthesized. The wavy-like morphology of CNW was found to be more distinct during growth at small electrode spacing and denser with increasing deposition time due to better flux of hydrocarbon radicals to the substrate and higher rate of reaction, respectively. Typical characteristics of CNW were observed from strong D band, narrow bandwidth of G band and single broad peak of 2D band of Raman spectra indicating the presence of disordered nanocrystalline graphite structure with high degree of graphitization.

  15. Light output improvement of GaN-based light-emitting diodes grown on Si (111) by a via-thin-film structure

    Science.gov (United States)

    Li, Zengcheng; Feng, Bo; Deng, Biao; Liu, Legong; Huang, Yingnan; Feng, Meixin; Zhou, Yu; Zhao, Hanmin; Sun, Qian; Wang, Huaibing; Yang, Xiaoli; Yang, Hui

    2018-04-01

    This work reports the fabrication of via-thin-film light-emitting diode (via-TF-LED) to improve the light output power (LOP) of blue/white GaN-based LEDs grown on Si (111) substrates. The as-fabricated via-TF-LEDs were featured with a roughened n-GaN surface and the p-GaN surface bonded to a wafer carrier with a silver-based reflective electrode, together with an array of embedded n-type via pillar metal contact from the p-GaN surface etched through the multiple-quantum-wells (MQWs) into the n-GaN layer. When operated at 350 mA, the via-TF-LED gave an enhanced blue LOP by 7.8% and over 3.5 times as compared to the vertical thin-film LED (TF-LED) and the conventional lateral structure LED (LS-LED). After covering with yellow phosphor that converts some blue photons into yellow light, the via-TF-LED emitted an enhanced white luminous flux by 13.5% and over 5 times, as compared with the white TF-LED and the white LS-LED, respectively. The significant LOP improvement of the via-TF-LED was attributed to the elimination of light absorption by the Si (111) epitaxial substrate and the finger-like n-electrodes on the roughened emitting surface. Project supported by the National Key R&D Program (Nos. 2016YFB0400100, 2016YFB0400104), the National Natural Science Foundation of China (Nos. 61534007, 61404156, 61522407, 61604168, 61775230), the Key Frontier Scientific Research Program of the Chinese Academy of Sciences (No. QYZDB-SSW-JSC014), the Science and Technology Service Network Initiative of the Chinese Academy of Sciences, the Key R&D Program of Jiangsu Province (No. BE2017079), the Natural Science Foundation of Jiangsu Province (No. BK20160401), and the China Postdoctoral Science Foundation (No. 2016M591944). This work was also supported by the Open Fund of the State Key Laboratory of Luminescence and Applications (No. SKLA-2016-01), the Open Fund of the State Key Laboratory on Integrated Optoelectronics (Nos. IOSKL2016KF04, IOSKL2016KF07), and the Seed Fund from SINANO

  16. Morphology evolution of hydrothermally grown ZnO nanostructures on gallium doping and their defect structures

    International Nuclear Information System (INIS)

    Pineda-Hernández, G.; Escobedo-Morales, A.; Pal, U.; Chigo-Anota, E.

    2012-01-01

    In the present article, the effect of gallium doping on the morphology, structural, and vibrational properties of hydrothermally grown ZnO nanostructures has been studied. It has been observed that incorporated gallium plays an important role on the growth kinetics and hence on the morphology evolution of the ZnO crystals. Ga doping in high concentration results in the contraction of ZnO unit cell, mainly along c-axis. Although Ga has high solubility in ZnO, heavy doping promotes the segregation of Ga atoms as a secondary phase. Incorporated Ga atoms strongly affect the vibrational characteristics of ZnO lattice and induce anomalous Raman modes. Possible mechanisms of morphology evolution and origin of anomalous Raman modes in Ga doped ZnO nanostructures are discussed. -- Highlights: ► Ga doped ZnO nanostructures were successfully grown by hydrothermal chemical route. ► Ga doping has strong effect on the resulting morphology of ZnO nanostructures. ► Anomalous vibrational modes in wurtzite ZnO lattice are induced by Ga doping. ► Incorporated Ga atoms accommodate at preferential lattice sites.

  17. Structure-Dependent Mechanical Properties of ALD-Grown Nanocrystalline BiFeO3 Multiferroics

    Directory of Open Access Journals (Sweden)

    Anna Majtyka

    2016-01-01

    Full Text Available The present paper pertains to mechanical properties and structure of nanocrystalline multiferroic BeFiO3 (BFO thin films, grown by atomic layer deposition (ALD on the Si/SiO2/Pt substrate. The usage of sharp-tip-nanoindentation and multiple techniques of structure examination, namely, grazing incidence X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectrometry, enabled us to detect changes in elastic properties (95 GPa≤E≤118 GPa and hardness (4.50 GPa≤H≤7.96 GPa of BFO after stages of annealing and observe their relation to the material’s structural evolution. Our experiments point towards an increase in structural homogeneity of the samples annealed for a longer time. To our best knowledge, the present report constitutes the first disclosure of nanoindentation mechanical characteristics of ALD-fabricated BeFiO3, providing a new insight into the phenomena that accompany structure formation and development of nanocrystalline multiferroics. We believe that our systematic characterization of the BFO layers carried out at consecutive stages of their deposition provides pertinent information which is needed to control and optimize its ALD fabrication.

  18. Optical and structural properties of MOVPE-grown GaInSb/GaSb quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, Viera, E-mail: viera.wagener@nmmu.ac.z [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Olivier, E.J.; Botha, J.R. [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2009-12-15

    This paper reports on the optical and structural properties of strained type-I Ga{sub 1-x}In{sub x}Sb quantum wells embedded in GaSb from a metal-organic vapour phase epitaxial growth perspective. Photoluminescence measurements and transmission electron microscopy were used to evaluate the effect of the growth temperature on the quality of Ga{sub 1-x}In{sub x}Sb strained layers with varied alloy compositions and thicknesses. Although the various factors contributing to the overall quality of the strained layers are difficult to separate, the quantum well characteristics are significantly altered by the growth temperature. Despite the high growth rates (approx2 nm/s), quantum wells grown at 607 deg. C display photoluminescence emissions with full-width at half-maximum of 3.5-5.0 meV for an indium solid content (x) up to 0.15.

  19. Optical and structural properties of MOVPE-grown GaInSb/GaSb quantum wells

    International Nuclear Information System (INIS)

    Wagener, Viera; Olivier, E.J.; Botha, J.R.

    2009-01-01

    This paper reports on the optical and structural properties of strained type-I Ga 1-x In x Sb quantum wells embedded in GaSb from a metal-organic vapour phase epitaxial growth perspective. Photoluminescence measurements and transmission electron microscopy were used to evaluate the effect of the growth temperature on the quality of Ga 1-x In x Sb strained layers with varied alloy compositions and thicknesses. Although the various factors contributing to the overall quality of the strained layers are difficult to separate, the quantum well characteristics are significantly altered by the growth temperature. Despite the high growth rates (∼2 nm/s), quantum wells grown at 607 deg. C display photoluminescence emissions with full-width at half-maximum of 3.5-5.0 meV for an indium solid content (x) up to 0.15.

  20. Structure and transport properties of the interface between CVD-grown graphene domains

    Science.gov (United States)

    Ogawa, Yui; Komatsu, Katsuyoshi; Kawahara, Kenji; Tsuji, Masaharu; Tsukagoshi, Kazuhito; Ago, Hiroki

    2014-06-01

    During the chemical vapor deposition (CVD) growth of graphene, graphene domains grown on a Cu surface merge together and form a uniform graphene sheet. For high-performance electronics and other applications, it is important to understand the interfacial structure of the merged domains, as well as their influence on the physical properties of graphene. We synthesized large hexagonal graphene domains with controlled orientations on a heteroepitaxial Cu film and studied the structure and properties of the interfaces between the domains mainly merged with the same angle. Although the merged domains have various interfaces with/without wrinkles and/or increased defect-related Raman D-band intensity, the intra-domain transport showed higher carrier mobility reaching 20 000 cm2 V-1 s-1 on SiO2 at 280 K (the mean value was 7200 cm2 V-1 s-1) than that measured for inter-domain areas, 6400 cm2 V-1 s-1 (mean value 2000 cm2 V-1 s-1). The temperature dependence of the mobility suggests that impurity scattering dominates at the interface even for the merged domains with the same orientation. This study highlights the importance of domain interfaces, especially on the carrier transport properties, in CVD-grown graphene.During the chemical vapor deposition (CVD) growth of graphene, graphene domains grown on a Cu surface merge together and form a uniform graphene sheet. For high-performance electronics and other applications, it is important to understand the interfacial structure of the merged domains, as well as their influence on the physical properties of graphene. We synthesized large hexagonal graphene domains with controlled orientations on a heteroepitaxial Cu film and studied the structure and properties of the interfaces between the domains mainly merged with the same angle. Although the merged domains have various interfaces with/without wrinkles and/or increased defect-related Raman D-band intensity, the intra-domain transport showed higher carrier mobility reaching 20

  1. Joint structure in high brightness light emitting diode (HB LED) packages

    International Nuclear Information System (INIS)

    Park, Jin-Woo; Yoon, Young-Bok; Shin, Sang-Hyun; Choi, Sang-Hyun

    2006-01-01

    We present the transmission electron microscopy (TEM) analysis of 1.5 μm-thick Au-20Sn solder joint between a high brightness light emitting diode (HB LED) and a Si heat sink. Due to intermetallic compound formation, global Sn depletion occurred in the thin solder, which raised the melting point of the solder and caused local incompleteness of bonding

  2. Electrical and structural properties of (Pd/Au) Schottky contact to as grown and rapid thermally annealed GaN grown by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Nirwal, Varun Singh, E-mail: varun.nirwal30@gmail.com; Singh, Joginder; Gautam, Khyati; Peta, Koteswara Rao [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021 (India)

    2016-05-06

    We studied effect of thermally annealed GaN surface on the electrical and structural properties of (Pd/Au) Schottky contact to Ga-polar GaN grown by molecular beam epitaxy on Si substrate. Current voltage (I-V) measurement was used to study electrical properties while X-ray diffraction (XRD) measurement was used to study structural properties. The Schottky barrier height calculated using I-V characteristics was 0.59 eV for (Pd/Au) Schottky contact on as grown GaN, which increased to 0.73 eV for the Schottky contact fabricated on 700 °C annealed GaN film. The reverse bias leakage current at -1 V was also significantly reduced from 6.42×10{sup −5} A to 7.31×10{sup −7} A after annealing. The value of series resistance (Rs) was extracted from Cheung method and the value of R{sub s} decreased from 373 Ω to 172 Ω after annealing. XRD results revealed the formation of gallide phases at the interface of (Pd/Au) and GaN for annealed sample, which could be the reason for improvement in the electrical properties of Schottky contact after annealing.

  3. Electronic excitation induced structural and optical modifications in InGaN/GaN quantum well structures grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Prabakaran, K.; Ramesh, R.; Jayasakthi, M.; Surender, S.; Pradeep, S. [Crystal Growth Centre, Anna University, Chennai (India); Balaji, M. [National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai (India); Asokan, K. [Inter-University Accelerator Centre, New Delhi (India); Baskar, K., E-mail: drbaskar2009@gmail.com [Crystal Growth Centre, Anna University, Chennai (India); Manonmaniam Sundaranar University, Tirunelveli (India)

    2017-03-01

    Highlights: • Effects on InGaN/GaN QW structures by Au{sup 7+} (100 MeV) ion have been investigated. • Structural defects of the irradiated InGaN/GaN QW structures are determined. • The intermixing effect in irradiated InGaN/GaN QW structures were understood. • Modified luminescence was observed in the PL spectra due to heavy ion irradiation. • Surface modification was observed due to the heavy ion irradiation. - Abstract: The present study focuses on the electronic excitation induced structural and optical properties of InGaN/GaN quantum well (QW) structures grown by metal organic chemical vapor deposition technique. These excitations were produced using Au{sup 7+} ion irradiation with 100 MeV energy. The X-ray rocking curves intensity and full width at half-maximum values corresponding to the planes of (0 0 0 2) and (1 0 −1 5) of the irradiated QW structures show the modifications in the screw and edge-type dislocation densities vary with the ion fluences. The structural characteristics using the reciprocal space mapping indicate the intermixing effects in InGaN/GaN QW structures. Atomic force microscopy images confirmed the presence of nanostructures and the surface modification due to heavy ion irradiation. The irradiated QW structures exhibited degraded photoluminescence intensity and a subsequent decrease in the yellow luminescence band intensity with the fluences of 1 × 10{sup 11} and 5 × 10{sup 12} ions/cm{sup 2} compared to the pristine QW structures.

  4. Structural and nonlinear optical properties of as-grown and annealed metallophthalocyanine thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zawadzka, A., E-mail: azawa@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Płóciennik, P.; Strzelecki, J. [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Pranaitis, M.; Dabos-Seignon, S.; Sahraoui, B. [LUNAM Université, Université d' Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 bd Lavoisier, 49045 Angers cedex (France)

    2013-10-31

    The paper presents the Third Harmonic Generation investigation of four metallophtalocyanine (MPc, M = Cu, Co, Mg and Zn) thin films. The investigated films were fabricated by Physical Vapor Deposition in high vacuum onto quartz substrates. MPc thin films were annealed after fabrication in ambient atmosphere for 12 h at the temperature equal to 150 °C or 250 °C. The Third Harmonic Generation spectra were measured to investigate the nonlinear optical properties and their dependence on the structure of the thin film after the annealing process. This approach allowed us to determine the electronic contribution of the third-order nonlinear optical susceptibility χ{sup <3>}{sub elec} of these MPc films and to investigate two theoretical models for explanation of the observed results. We find that the annealing process significantly changes the optical and structural properties of MPc thin films. - Highlights: • Metallophtalocyanine thin films were grown by Physical Vapor Deposition technique. • MPcs thin films were undergone an annealing process in ambient atmosphere. • Third Harmonic spectra were measured to investigate nonlinear optical properties. • The third order nonlinear optical susceptibility χ{sup <3>}{sub elec} was determined. • We report changing both nonlinear optical and structural properties of thin films.

  5. Growth, structural, optical, mechanical and quantum chemical analysis of unidirectional grown bis(guanidinium) 5-sulfosalicylate (BGSSA) single crystal

    Science.gov (United States)

    Sreedevi, R.; Saravana Kumar, G.; Amarsingh Bhabu, K.; Balu, T.; Murugakoothan, P.; Rajasekaran, T. R.

    2018-02-01

    Bis(guanidinium) 5-sulfosalicylate single crystal was grown by using Sankaranarayanan-Ramasamy (SR) method from the solution of methanol and water in equimolar ratio. Good quality crystal with 50 mm length and 10 mm in diameter was grown. The grown crystal was subjected to single crystal X-ray diffraction analysis to confirm the crystal structure and it was found to be orthorhombic. UV-Vis-NIR spectroscopic study revealed that the SR method grown crystal had good optical transparency with wide optical band gap of 4.4 eV. The presence of the functional groups and modes of vibrations were identified by FTIR spectroscopy recorded in the range 4000-400 cm-1. The mechanical strength of the grown crystal was confirmed using Vickers microhardness tester by applying load from 25 g to 100 g. Density functional theory (DFT) method with B3LYP/6-31-G (d,p) level basis set was employed and hence the optimized molecular geometry, first order hyperpolarizability, dipole moment, thermodynamic functions, molecular electrostatic potential and frontier molecular orbital analysis of the grown BGSSA sample was computed and analysed.

  6. Design of the optical structure of a LED light of airfield used on the taxiway centerline of bend

    Science.gov (United States)

    Ma, Xiaodan; Yang, Jianhong; Li, Lei

    2014-07-01

    Along with the continuous renewal of the light source, LED light source could have been used in the lights of airfield already. LED light source in the application will be more energy efficient. This paper designs the optical structure of the taxiway centerline light,which is used on the bend. Osram LT CPDP - KZ - 4 green LED has been chosen to be the light source.Optical components used in the structure, such as the prism, the lens, the scattering pieces, is designed on the basis of the optical design principles. The optical design principle include the edge-ray etendue conservation, conservation of energy and so on. Then, the structure is drawn and simulated. Completing these steps combines with software, such as ProE, Matlab and TracePro. To test the optical structure with Yuanfang GO-2000 distribution photometer. The test results meet the standards of the civil aviation administration's requirements. In order to further reduce energy consumption, and optimize the components on the premise of meeting the requirements of national standards. The paper reduces the input current from 900mA to 400mA by optimizing the components. The method of optimizing is combining the prism with scattering pieces and optimizing the lens surface. The optical structure of the taxiway centerline lights used on the bend after improving is more efficient and meet the requirements of national standards including chromaticity and light intensity.

  7. Luminescence and Structure of ZnO Grown by Physical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    R. García-Gutiérrez

    2012-01-01

    Full Text Available Nanostructured ZnO was deposited on different substrates (Si, SiO2, and Au/SiO2 by an enhanced physical vapor deposition technique that presents excellent luminescent properties. This technique consists in a horizontal quartz tube reactor that uses ultra-high purity Zn and UHP oxygen as precursors. The morphology and structure of ZnO grown in this work were studied by electron microscopy and X-ray diffraction. The XRD patterns revealed the highly crystalline phase of wurtzite polycrystalline structure, with a preferred (1011 growth direction. Room temperature cathodoluminescence studies revealed two features in the luminescence properties of the ZnO obtained by this technique, first a high-intensity narrow peak centered at 390 nm (~3.2 eV corresponding to a near band-to-band emission, and secondly, a broad peak centered around 517 nm (2.4 eV, the typical green-yellow luminescence, related to an unintentionally doped ZnO.

  8. Electronic structures of GeSi nanoislands grown on pit-patterned Si(001) substrate

    International Nuclear Information System (INIS)

    Ye, Han; Yu, Zhongyuan

    2014-01-01

    Patterning pit on Si(001) substrate prior to Ge deposition is an important approach to achieve GeSi nanoislands with high ordering and size uniformity. In present work, the electronic structures of realistic uncapped pyramid, dome, barn and cupola nanoislands grown in (105) pits are systematically investigated by solving Schrödinger equation for heavy-hole, which resorts to inhomogeneous strain distribution and nonlinear composition-dependent band parameters. Uniform, partitioned and equilibrium composition profile (CP) in nanoisland and inverted pyramid structure are simulated separately. We demonstrate the huge impact of composition profile on localization of heavy-hole: wave function of ground state is confined near pit facets for uniform CP, at bottom of nanoisland for partitioned CP and at top of nanoisland for equilibrium CP. Moreover, such localization is gradually compromised by the size effect as pit filling ratio or pit size decreases. The results pave the fundamental guideline of designing nanoislands on pit-patterned substrates for desired applications

  9. Electronic structures of GeSi nanoislands grown on pit-patterned Si(001) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Han, E-mail: Dabombyh@aliyun.com; Yu, Zhongyuan [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, P.R.China (China)

    2014-11-15

    Patterning pit on Si(001) substrate prior to Ge deposition is an important approach to achieve GeSi nanoislands with high ordering and size uniformity. In present work, the electronic structures of realistic uncapped pyramid, dome, barn and cupola nanoislands grown in (105) pits are systematically investigated by solving Schrödinger equation for heavy-hole, which resorts to inhomogeneous strain distribution and nonlinear composition-dependent band parameters. Uniform, partitioned and equilibrium composition profile (CP) in nanoisland and inverted pyramid structure are simulated separately. We demonstrate the huge impact of composition profile on localization of heavy-hole: wave function of ground state is confined near pit facets for uniform CP, at bottom of nanoisland for partitioned CP and at top of nanoisland for equilibrium CP. Moreover, such localization is gradually compromised by the size effect as pit filling ratio or pit size decreases. The results pave the fundamental guideline of designing nanoislands on pit-patterned substrates for desired applications.

  10. Impact of Nutrient Restriction on the Structure of Listeria monocytogenes Biofilm Grown in a Microfluidic System

    Directory of Open Access Journals (Sweden)

    Tamazight Cherifi

    2017-05-01

    Full Text Available Biofilm formation by the pathogen Listeria monocytogenes is a major concern in food industries. The aim of this work was to elucidate the effect of nutrient limitation on both biofilm architecture and on the viability of the bacteria in microfluidic growth conditions. Biofilm formation by two L. monocytogenes strains was performed in a rich medium (BHI and in a 10-fold diluted BHI (BHI/10 at 30°C for 24 h by using both static conditions and the microfluidic system Bioflux. In dynamic conditions, biofilms grown in rich and poor medium showed significant differences as well in structure and in the resulting biovolume. In BHI/10, biofilm was organized in a knitted network where cells formed long chains, whereas in the rich medium, the observed structure was homogeneous cellular multilayers. Biofilm biovolume production in BHI/10 was significantly higher than in BHI in these dynamic conditions. Interestingly, biovolume of dead cells in biofilms formed under limited nutrient conditions (BHI/10 was significantly higher than in biofilms formed in the BHI medium. In the other hand, in static conditions, biofilm is organized in a multilayer cells and dispersed cells in a rich medium BHI and poor medium BHI/10 respectively. There was significantly more biomass in the rich medium compared to BHI/10 but no difference was noted in the dead/damaged subpopulation showing how L. monocytogenes biofilm could be affected by the growth conditions. This work demonstrated that nutrient concentration affects biofilm structure and the proportion of dead cells in biofilms under microfluidic condition. Our study also showed that limited nutrients play an important role in the structural stability of L. monocytogenes biofilm by enhancing cell death and liberating extracellular DNA.

  11. Mosaic Structure Characterization of the AlInN Layer Grown on Sapphire Substrate

    Directory of Open Access Journals (Sweden)

    Engin Arslan

    2014-01-01

    Full Text Available The 150 nm thick, (0001 orientated wurtzite-phase Al1−xInxN epitaxial layers were grown by metal organic chemical vapor deposition on GaN (2.3 µm template/(0001 sapphire substrate. The indium (x concentration of the Al1−xInxN epitaxial layers was changed as 0.04, 0.18, 0.20, 0.47, and 0.48. The Indium content (x, lattice parameters, and strain values in the AlInN layers were calculated from the reciprocal lattice mapping around symmetric (0002 and asymmetric (10–15 reflection of the AlInN and GaN layers. The mosaic structure characteristics of the AlInN layers, such as lateral and vertical coherence lengths, tilt and twist angle, heterogeneous strain, and dislocation densities (edge and screw type dislocations of the AlInN epilayers, were investigated by using high-resolution X-ray diffraction measurements and with a combination of Williamson-Hall plot and the fitting of twist angles.

  12. Structural and luminescence properties of GaN nanowires grown using cobalt phthalocyanine as catalyst

    Science.gov (United States)

    Yadav, Shivesh; Rodríguez-Fernández, Carlos; de Lima, Mauricio M.; Cantarero, Andres; Dhar, Subhabrata

    2015-12-01

    Catalyst free methods have usually been employed to avoid any catalyst induced contamination for the synthesis of GaN nanowires with better transport and optical properties. Here, we have used a catalytic route to grow GaN nanowires, which show good optical quality. Structural and luminescence properties of GaN nanowires grown by vapor-liquid-solid technique using cobalt phthalocyanine as catalyst are systematically investigated as a function of various growth parameters such as the growth temperature and III/V ratio. The study reveals that most of the nanowires, which are several tens of microns long, grow along [ 10 1 ¯ 0 ] direction. Interestingly, the average wire diameter has been found to decrease with the increase in III/V ratio. It has also been observed that in these samples, defect related broad luminescence features, which are often present in GaN, are completely suppressed. At all temperatures, photoluminescence spectrum is found to be dominated only by a band edge feature, which comprises of free and bound excitonic transitions. Our study furthermore reveals that the bound excitonic feature is associated with excitons trapped in certain deep level defects, which result from the deficiency of nitrogen during growth. This transition has a strong coupling with the localized vibrational modes of the defects.

  13. Void Structures in Regularly Patterned ZnO Nanorods Grown with the Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Yu-Feng Yao

    2014-01-01

    Full Text Available The void structures and related optical properties after thermal annealing with ambient oxygen in regularly patterned ZnO nanrorod (NR arrays grown with the hydrothermal method are studied. In increasing the thermal annealing temperature, void distribution starts from the bottom and extends to the top of an NR in the vertical (c-axis growth region. When the annealing temperature is higher than 400°C, void distribution spreads into the lateral (m-axis growth region. Photoluminescence measurement shows that the ZnO band-edge emission, in contrast to defect emission in the yellow-red range, is the strongest under the n-ZnO NR process conditions of 0.003 M in Ga-doping concentration and 300°C in thermal annealing temperature with ambient oxygen. Energy dispersive X-ray spectroscopy data indicate that the concentration of hydroxyl groups in the vertical growth region is significantly higher than that in the lateral growth region. During thermal annealing, hydroxyl groups are desorbed from the NR leaving anion vacancies for reacting with cation vacancies to form voids.

  14. Influence of the Sonicare toothbrush on the structure and thickness of laboratory grown Streptococcus mutans biofilms.

    Science.gov (United States)

    Heersink, Joanna; Costerton, William J; Stoodley, Paul

    2003-04-01

    To evaluate the effect of powered brushing with the Sonicare electronic toothbrush on the structure and thickness reduction of S. mutans biofilms using digital time-lapse microscopy (DTLM) and confocal microscopy (CM) techniques. S. mutans biofilms grown on glass microscope slides on BHI and 2% sucrose were exposed to Sonicare for 15 seconds with the bristle tips just contacting the slide, and at distances of 0.5, 1.0, and 1.5 mm above the slide. With direct bristle contact, the reduction in biofilm thickness was greater than 99%. DTLM showed the break up and detachment of biofilm caused by the shear forces generated by the rapid bristle motion in real time. The Sonicare was shown to significantly reduce biofilm thickness even when the bristles were 1 mm above the biofilm. The percent biofilm thickness reduction was inversely proportional to the bristle distance. This study demonstrates the Sonicare toothbrush effectively removed biofilm from hard flat surfaces both by direct bristle contact and by fluid dynamic shear forces alone.

  15. Isolated starches from yams (Dioscorea sp) grown at the Venezuelan Amazons: structure and functional properties.

    Science.gov (United States)

    Pérez, Elevina; Rolland-Sabaté, Agnès; Dufour, Dominique; Guzmán, Romel; Tapia, María; Raymundez, Marìa; Ricci, Julien; Guilois, Sophie; Pontoire, Bruno; Reynes, Max; Gibert, Olivier

    2013-10-15

    This work aimed to characterize the molecular structure and functional properties of starches isolated from wild Dioscorea yams grown at the Amazons, using conventional and up-to-date methodologies. Among the high purity starches isolated (≥99%), the chain lengths were similar, whereas variations in gelatinization profile were observed. Starches have shown varied-shaped granules with monomodal distribution, and B-type crystallinity. Variations in amylose contents found by three analyses were hypothesized being related to intermediate material. Linear chain lengths were similar, and their amylopectins showed a dense, spherical conformation and similar molecular characteristics. The average molar mass and the radius of gyration of the chromatograms of the yam amylopectin, M¯W and R¯G were ranging between 174×10(6) g mol(-1) and 237×10(6) g mol(-1), and 201 nm and 233 nm, respectively. The white yams starches were more sensible to enzymes than the other two. All starches have shown a wide range of functional and nutritional properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Structural characterization of InN quantum dots grown by Metalorganic Vapour Phase Epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, J.G.; Gonzalez, D.; Sanchez, A.M.; Araujo, D.; Garcia, R. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Universidad de Cadiz, Apartado 40, Puerto Real, Cadiz (Spain); Ruffenach, S.; Briot, O. [Groupe d' Etude des Semiconducteurs, Universite Montpellier II, 34095 Montpellier (France)

    2006-06-15

    The effect of a low temperature GaN capping layer on the structural properties of InN quantum dots is reported. InN quantum dots grown onto sapphire using GaN buffer, with and without low temperature GaN capping layer, have been investigated by atomic force microscopy and transmission electron microscopy. The analysis revealed hexagonal shape quantum dots in both samples. Moreover, the GaN capping layer gives rise to a reduction in the dots aspect ratio. Moire fringe patterns, obtained in planar view geometry, were used to analyse the strain relaxation of the InN quantum dots. The Moire pattern measurements demonstrated that the uncapped InN quantum dot is almost fully relaxed. These results are related to the formation of a 60 misfit dislocation network in the InN/GaN interface. However, the capping layer not only generated a change of the aspect ratio, but also a decrease in the heterostructure plastic relaxation. The reason of this effect is discussed. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Epitaxially grown zinc-blende structured Mn doped ZnO nanoshell on ZnS nanoparticles

    International Nuclear Information System (INIS)

    Limaye, Mukta V.; Singh, Shashi B.; Date, Sadgopal K.; Gholap, R.S.; Kulkarni, Sulabha K.

    2009-01-01

    Zinc oxide in the bulk as well as in the nanocrystalline form is thermodynamically stable in the wurtzite structure. However, zinc oxide in the zinc-blende structure is more useful than that in the wurtzite structure due to its superior electronic properties as well as possibility of efficient doping. Therefore, zinc oxide shell is grown epitaxially on zinc sulphide core nanoparticles having zinc-blende structure. It is shown that doping of manganese could be achieved in zinc oxide nanoshell with zinc-blende structure

  18. Woody plant diversity and structure of shade-grown-coffee plantations in Northern Chiapas, Mexico

    Directory of Open Access Journals (Sweden)

    Lorena Soto-Pinto

    2001-12-01

    Full Text Available Shade-grown coffee is an agricultural system that contains some forest-like characteristics. However, structure and diversity are poorly known in shade coffee systems. In 61 coffee-growers’ plots of Chiapas, Mexico, structural variables of shade vegetation and coffee yields were measured, recording species and their use. Coffee stands had five vegetation strata. Seventy seven woody species mostly used as wood were found (mean density 371.4 trees per hectare. Ninety percent were native species (40% of the local flora, the remaining were introduced species, mainly fruit trees/shrubs. Diametric distribution resembles that of a secondary forest. Principal Coordinates Analysis grouped plots in four classes by the presence of Inga, however the majority of plots are diverse. There was no difference in equitability among groups or coffee yields. Coffee yield was 835 g clean coffee per shrub, or ca. 1668 kg ha-1. There is a significant role of shade-grown coffee as diversity refuge for woody plants and presumably associated fauna, as well as an opportunity for shade-coffee growers to participate in the new biodiversity-friendly-coffee marketEl café bajo sombra es un sistema agrícola que contiene algunas características de los bosques. Sin embargo, las características estructurales y de diversidad de la sombra del café son poco conocidas. En 61 parcelas de productores del norte de Chiapas, Mexico, se midieron variables estructurales de la vegetación de sombra y los rendimientos de café, registrando las especies y sus usos. Los cafetales presentaron cinco estratos de vegetación. Se encontraron 77 especies leñosas, la mayoría de uso maderable (densidad promedio de 371.4 árboles por hectárea. Noventa por ciento fueron especies nativas (40% de la flora local, el porcentaje restante fueron especies introducidas, principalmente árboles o arbustos frutales. La distribución diamétrica se asemeja a la distribución típica de bosques secundarios

  19. Structural and chemical characterization of terbia thin films grown on hexagonally close packed metal substrates

    Science.gov (United States)

    Cartas, William

    Rare earth oxides (REOs) exhibit favorable catalytic performance for a diverse set of chemical transformations, including both partial and complete oxidation reactions. I will discuss our efforts to develop thin film systems of terbia for model surface science investigations of a REO that is effectively reducible, and which is thus expected to promote complete oxidation chemistry of adsorbed species. The growth of terbia on Cu(111) is shown to produce a complex surface that exhibits multiple phases of the oxide as well as exposed substrate. Growing the film on Pt(111) results in more uniform, single phase, and closed film. We used low energy electron diffraction (LEED) and scanning tunneling microscopy (STM) to characterize the structural properties of terbia thin films grown on Pt(111) in ultrahigh vacuum (UHV) using physical vapor deposition. We find that the REO grows as a high quality Tb2O 3(111) film, and adopts oxygen-deficient fluorite structures wherein the metal cations form a hexagonal lattice in registry with the Pt(111) substrate, while oxygen vacancies are randomly distributed within the film. The Tb 2O3(111) films are thermally stable when heated to 1000 K in UHV. LEED and STM show that a fraction of the Tb2O3 forms hexagonal islands when first deposited, and further depositions typically result in three dimensional growth of the film. The Tb2O3 (111) / Pt(111) system produces a coincidence structure, seen very clearly in LEED images. We have also found that Tb2O3(111) films can be oxidized in UHV by exposure to plasma-generated atomic oxygen beams. The oxidized films have an estimated TbO2 stoichiometry and decompose to Tb2O3 during heating, with O2 desorption starting at about 500 K. Terbia films oxidized at 90 K show a weakly bound state of oxygen that is likely chemisorbed. Temperature programmed reaction spectroscopy (TPRS) studies using methanol show that increased oxygen in the film does not modify the chemical selectivity of the film; however

  20. Structural Modifications of Fructans in Aloe barbadensis Miller (Aloe Vera) Grown under Water Stress.

    Science.gov (United States)

    Salinas, Carlos; Handford, Michael; Pauly, Markus; Dupree, Paul; Cardemil, Liliana

    2016-01-01

    Aloe barbadensis Miller (Aloe vera) has a Crassulaceae acid metabolism which grants the plant great tolerance to water restrictions. Carbohydrates such as acemannans and fructans are among the molecules responsible for tolerating water deficit in other plant species. Nevertheless, fructans, which are prebiotic compounds, have not been described nor studied in Aloe vera, whose leaf gel is known to possess beneficial pharmaceutical, nutritional and cosmetic properties. As Aloe vera is frequently cultivated in semi-arid conditions, like those found in northern Chile, we investigated the effect of water deficit on fructan composition and structure. For this, plants were subjected to different irrigation regimes of 100%, 75%, 50% and 25% field capacity (FC). There was a significant increase in the total sugars, soluble sugars and oligo and polyfructans in plants subjected to water deficit, compared to the control condition (100% FC) in both leaf tips and bases. The amounts of fructans were also greater in the bases compared to the leaf tips in all water treatments. Fructans also increase in degree of polymerization with increasing water deficit. Glycosidic linkage analyses by GC-MS, led to the conclusion that there are structural differences between the fructans present in the leaves of control plants with respect to plants irrigated with 50% and 25% FC. Therefore, in non-stressed plants, the inulin, neo-inulin and neo-levan type of fructans predominate, while in the most stressful conditions for the plant, Aloe vera also synthesizes fructans with a more branched structure, the neofructans. To our knowledge, the synthesis and the protective role of neo-fructans under extreme water deficit has not been previously reported.

  1. Structural Modifications of Fructans in Aloe barbadensis Miller (Aloe Vera Grown under Water Stress.

    Directory of Open Access Journals (Sweden)

    Carlos Salinas

    Full Text Available Aloe barbadensis Miller (Aloe vera has a Crassulaceae acid metabolism which grants the plant great tolerance to water restrictions. Carbohydrates such as acemannans and fructans are among the molecules responsible for tolerating water deficit in other plant species. Nevertheless, fructans, which are prebiotic compounds, have not been described nor studied in Aloe vera, whose leaf gel is known to possess beneficial pharmaceutical, nutritional and cosmetic properties. As Aloe vera is frequently cultivated in semi-arid conditions, like those found in northern Chile, we investigated the effect of water deficit on fructan composition and structure. For this, plants were subjected to different irrigation regimes of 100%, 75%, 50% and 25% field capacity (FC. There was a significant increase in the total sugars, soluble sugars and oligo and polyfructans in plants subjected to water deficit, compared to the control condition (100% FC in both leaf tips and bases. The amounts of fructans were also greater in the bases compared to the leaf tips in all water treatments. Fructans also increase in degree of polymerization with increasing water deficit. Glycosidic linkage analyses by GC-MS, led to the conclusion that there are structural differences between the fructans present in the leaves of control plants with respect to plants irrigated with 50% and 25% FC. Therefore, in non-stressed plants, the inulin, neo-inulin and neo-levan type of fructans predominate, while in the most stressful conditions for the plant, Aloe vera also synthesizes fructans with a more branched structure, the neofructans. To our knowledge, the synthesis and the protective role of neo-fructans under extreme water deficit has not been previously reported.

  2. Optical and Micro-Structural Characterization of MBE Grown Indium Gallium Nitride Polar Quantum Dots

    KAUST Repository

    El Afandy, Rami

    2011-07-07

    Gallium nitride and related materials have ushered in scientific and technological breakthrough for lighting, mass data storage and high power electronic applications. These III-nitride materials have found their niche in blue light emitting diodes and blue laser diodes. Despite the current development, there are still technological problems that still impede the performance of such devices. Three-dimensional nanostructures are proposed to improve the electrical and thermal properties of III-nitride optical devices. This thesis consolidates the characterization results and unveils the unique physical properties of polar indium gallium nitride quantum dots grown by molecular beam epitaxy technique. In this thesis, a theoretical overview of the physical, structural and optical properties of polar III-nitrides quantum dots will be presented. Particular emphasis will be given to properties that distinguish truncated-pyramidal III-nitride quantum dots from other III-V semiconductor based quantum dots. The optical properties of indium gallium nitride quantum dots are mainly dominated by large polarization fields, as well as quantum confinement effects. Hence, the experimental investigations for such quantum dots require performing bandgap calculations taking into account the internal strain fields, polarization fields and confinement effects. The experiments conducted in this investigation involved the transmission electron microscopy and x-ray diffraction as well as photoluminescence spectroscopy. The analysis of the temperature dependence and excitation power dependence of the PL spectra sheds light on the carrier dynamics within the quantum dots, and its underlying wetting layer. A further analysis shows that indium gallium nitride quantum dots through three-dimensional confinements are able to prevent the electronic carriers from getting thermalized into defects which grants III-nitrides quantum dot based light emitting diodes superior thermally induced optical

  3. Structural characterization of one-dimensional ZnO-based nanostructures grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Sallet, Vincent; Falyouni, Farid; Marzouki, Ali; Haneche, Nadia; Sartel, Corinne; Lusson, Alain; Galtier, Pierre [Groupe d' Etude de la Matiere Condensee (GEMAC), CNRS-Universite de Versailles St-Quentin, Meudon (France); Agouram, Said [SCSIE, Universitat de Valencia, Burjassot (Spain); Enouz-Vedrenne, Shaima [Thales Research and Technology France, Palaiseau (France); Munoz-Sanjose, Vicente [Departamento de Fisica Aplicada y Electromagnetismo, Universitat de Valencia, Burjassot (Spain)

    2010-07-15

    Various one-dimensional (1D) ZnO-based nanostructures, including ZnO nano-wires (NWs) grown using vapour-liquid-solid (VLS) process, ZnO/ZnSe core/shell, nitrogen-doped ZnO and ZnMgO NWs were grown by metalorganic chemical vapour deposition (MOCVD). Transmission electron microscopy (TEM) analysis is presented. For all the samples, a high crystalline quality is observed. Some features are emphasized such as the gold contamination of ZnO wires grown under the metal droplets in the VLS process. It is concluded that MOCVD is a suitable technique for the realization of original ZnO nanodevices. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. Structure of AlAs/GaAs distributed Bragg reflector grown on Si substrate by metalorganic chemical vapor deposition

    OpenAIRE

    Takashi, Egawa; Takashi, Jimbo; Masayoshi, Umeno

    1995-01-01

    A vertical‐cavity surface‐emitting laser diode with 20 pairs of AlAs/GaAs distributed Bragg reflectors (DBRs) has been grown on a Si substrate using metalorganic chemical vapor deposition. Interfacial roughness and compositional profile of the AlAs/GaAs DBR structure were studied by cross‐sectional scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Auger electron spectroscopy. Cross‐sectional SEM and TEM observations reveal quasi‐periodic zigzag roughness and nonu...

  5. Tuning of electrical and structural properties of indium oxide films grown by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Wang, Ch.Y.; Cimalla, V.; Romanus, H.; Kups, Th.; Niebelschuetz, M.; Ambacher, O.

    2007-01-01

    Tuning of structural and electrical properties of indium oxide (In 2 O 3 ) films by means of metal organic chemical vapor deposition is demonstrated. Phase selective growth of rhombohedral In 2 O 3 (0001) and body-centered cubic In 2 O 3 (001) polytypes on (0001) sapphire substrates was obtained by adjusting the substrate temperature and trimethylindium flow rate. The specific resistance of the as-grown films can be tuned by about two orders of magnitude by varying the growth conditions

  6. Magnetic anisotropy and domain structure of manganese ferrite grown epitaxially on MgO

    NARCIS (Netherlands)

    van den Berg, Klaas; Lodder, J.C.; Mensinga, T.C.

    1976-01-01

    The properties of polycrystalline manganese ferrite thin films have been discussed in previous papers. The present study was undertaken to obtain supplementary information on the magnetic anisotropy and domain properties of the films. The ferrite films were grown epitaxially by an evaporation

  7. Interlayer exchange coupling, crystalline and magnetic structure in Fe/CsCl-FeSi multilayers grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Dekoster, J.; Degroote, S.; Meersschaut, J.; Moons, R.; Vantomme, A. [K.U. Leuven, Instituut voor Kern- en Stralingsfysica (Belgium); Bottyan, L.; Deak, L.; Szilagyi, E.; Nagy, D.L. [KFKI Research Institute for Particle and Nuclear Physics (Hungary); Baron, A.Q.R. [European Synchrotron Radiation Facility (France); Langouche, G. [K.U. Leuven, Instituut voor Kern- en Stralingsfysica (Belgium)

    1999-09-15

    Crystalline and magnetic structure as well as the interlayer exchange coupling in MBE grown Fe/FeSi multilayers are investigated. From conversion electron Moessbauer spectroscopy and ion beam channeling measurements the spacer FeSi material is found to be stabilized in a crystalline metastable metallic FeSi phase with the CsCl structure. Strong non-oscillatory interlayer exchange coupling is identified with magnetometry and synchrotron Moessbauer reflectometry. From the fits of the time spectrum and the resonant {phi}-{phi} scans a model for the sublayer magnetization of the multilayer is deduced.

  8. Multilayer epitaxial graphene grown on the SiC (000- 1) surface; structure and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sprinkle, M.; Hicks, J.; Tejeda, A.; Taleb-Ibrahimi, A.; Le Fevre, P.; Bertran, F.; Tinkey, H.; Clark, M.C.; Soukiassian, P.; Martinotti, D.; Hass, J.; Conrad, E.H. (CNRS-UMR); (CEAS); (GIT)

    2010-10-22

    We review the progress towards developing epitaxial graphene as a material for carbon electronics. In particular, we discuss improvements in epitaxial graphene growth, interface control and the understanding of multilayer epitaxial graphene's (MEG's) electronic properties. Although graphene grown on both polar faces of SiC will be discussed, our discussions will focus on graphene grown on the (000{bar 1}) C-face of SiC. The unique properties of C-face MEG have become apparent. These films behave electronically like a stack of nearly independent graphene sheets rather than a thin Bernal stacked graphite sample. The origins of multilayer graphene's electronic behaviour are its unique highly ordered stacking of non-Bernal rotated graphene planes. While these rotations do not significantly affect the inter-layer interactions, they do break the stacking symmetry of graphite. It is this broken symmetry that leads to each sheet behaving like isolated graphene planes.

  9. Structural characterization of Al xGa1-xSb films grown at low temperatures by liquid phase epitaxy

    International Nuclear Information System (INIS)

    Rosendo, E.; Diaz, T.; Martinez, J.; Juarez, H.; Juarez, G.

    2005-01-01

    High resolution X-ray diffraction (HRXRD) and far-infrared reflectivity techniques were applied to characterize Al x Ga 1-x Sb alloys. Layers of Al x Ga 1-x Sb grown by the liquid phase epitaxy technique and deposited on GaSb (100) substrates were obtained in the temperature range of 250 to 450 deg. C. From the HRXRD measurements it can be inferred that the films have good structural characteristics, this is because the lattice mismatch values were no bigger than 0.02% and from the rocking curves the Al concentration was ranged from 0.04 to 0.058. The presence of the ternary alloy in the films was confirmed by reflectivity. A change of the conductivity type in the film was observed for films grown at temperatures lower than 350 deg. C

  10. Enhanced photocatalytic properties of hierarchical three-dimensional TiO{sub 2} grown on femtosecond laser structured titanium substrate

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ting, E-mail: huangting@bjut.edu.cn; Lu, Jinlong; Xiao, Rongshi; Wu, Qiang; Yang, Wuxiong

    2017-05-01

    Highlights: • The hierarchical 3D-TiO{sub 2} is fabricated on femtosecond laser structured Ti substrate. • The formation mechanism of hierarchical 3D-TiO{sub 2} is proposed. • The structure-induced improvement of photocatalytic activity is reported. - Abstract: Three-dimensional micro-/nanostructured TiO{sub 2} (3D-TiO{sub 2}) fabricated on titanium substrate effectively improves its performance in photocatalysis, dye-sensitized solar cell and lithium-ion battery applications. In this study, the hierarchical 3D-TiO{sub 2} with anatase phase directly grown on femtosecond laser structured titanium substrate is reported. First, the primary columnar arrays were fabricated on the surface of titanium substrate by femtosecond laser structuring. Next, the secondary nano-sheet substructures were grown on the primary columnar arrays by NaOH hydrothermal treatment. Followed by ion-exchange process in HCl and annealing in the air, the hierarchical anatase 3D-TiO{sub 2} was achieved. The hierarchical anatase 3D-TiO{sub 2} exhibited enhanced performances in light harvesting and absorption ability compared to that of nano-sheet TiO{sub 2} grown on flat titanium surface without femtosecond laser structuring. The photocatalytic degradation of methyl orange reveals that photocatalytic efficiency of the hierarchical anatase 3D-TiO{sub 2} was improved by a maximum of 57% compared to that of nano-sheet TiO{sub 2} (55% vs 35%). Meanwhile, the hierarchical anatase 3D-TiO{sub 2} remained mechanically stable and constant in consecutive degradation cycles, which promises significance in practical application.

  11. LED lamp

    Science.gov (United States)

    Galvez, Miguel; Grossman, Kenneth; Betts, David

    2013-11-12

    There is herein described a lamp for providing white light comprising a plurality of light sources positioned on a substrate. Each of said light sources comprises a blue light emitting diode (LED) and a dome that substantially covers said LED. A first portion of said blue light from said LEDs is transmitted through said domes and a second portion of said blue light is converted into a red light by a first phosphor contained in said domes. A cover is disposed over all of said light sources that transmits at least a portion of said red and blue light emitted by said light sources. The cover contains a second phosphor that emits a yellow light in response to said blue light. The red, blue and yellow light combining to form the white light and the white light having a color rendering index (CRI) of at least about 80.

  12. Nurse-led action research project for expanding nurses′ role in patient education in Iran: Process, structure, and outcomes

    Directory of Open Access Journals (Sweden)

    Parvaneh Khorasani

    2015-01-01

    Full Text Available Background: Patient education is among the lowest met need of patients in Iran; therefore, expansion of that role can result in greater professional accountability. This study aimed to explain the practical science of the process, structure, and outcomes of a nurse-led action research project to expand the nurses′ role in patient education in Iran. Materials and Methods: This study was part of a participatory action research. Daily communications and monthly joint meetings were held from January 2012 to February 2014 for planning and management. These were based on the research protocol, and the conceptual framework included the Mobilizing for Action through Planning and Partnerships process by means of Leadership for Change skills. Data were produced and gathered through participant observations. Administrative data included project records, official documents, artifacts, news, and reports, which were analyzed through qualitative content analysis. Results: A participatory project was established with three groups of participants organized from both academic and clinical fields. These consisted of a "core research support team," "two steering committees," and community representatives of clients and professionals as "feedback groups." A seven-stage process, named the "Nurse Educators: Al-Zahra Role Expansion Action Research" (NEAREAR process, resulted from the project, in which strategic issues were gradually developed and implemented through 32 action plans and quality improvement cycles of action research. Audits and supervision evaluations showed meaningful changes in capacity building components. Conclusions: A nurse-led ad hoc structure with academic-clinical partnerships and strategic management process was suggested as a possible practical model for expanding nurses′ educational role in similar contexts. Implications and practical science introduced in this action research could also be applicable for top managers and health system

  13. Nurse-led action research project for expanding nurses' role in patient education in Iran: Process, structure, and outcomes.

    Science.gov (United States)

    Khorasani, Parvaneh; Rassouli, Maryam; Parvizy, Soroor; Zagheri-Tafreshi, Mansoureh; Nasr-Esfahani, Mahmood

    2015-01-01

    Patient education is among the lowest met need of patients in Iran; therefore, expansion of that role can result in greater professional accountability. This study aimed to explain the practical science of the process, structure, and outcomes of a nurse-led action research project to expand the nurses' role in patient education in Iran. This study was part of a participatory action research. Daily communications and monthly joint meetings were held from January 2012 to February 2014 for planning and management. These were based on the research protocol, and the conceptual framework included the Mobilizing for Action through Planning and Partnerships process by means of Leadership for Change skills. Data were produced and gathered through participant observations. Administrative data included project records, official documents, artifacts, news, and reports, which were analyzed through qualitative content analysis. A participatory project was established with three groups of participants organized from both academic and clinical fields. These consisted of a "core research support team," "two steering committees," and community representatives of clients and professionals as "feedback groups." A seven-stage process, named the "Nurse Educators: Al-Zahra Role Expansion Action Research" (NEAREAR) process, resulted from the project, in which strategic issues were gradually developed and implemented through 32 action plans and quality improvement cycles of action research. Audits and supervision evaluations showed meaningful changes in capacity building components. A nurse-led ad hoc structure with academic-clinical partnerships and strategic management process was suggested as a possible practical model for expanding nurses' educational role in similar contexts. Implications and practical science introduced in this action research could also be applicable for top managers and health system policy makers in a wider range of practice.

  14. Nurse-led action research project for expanding nurses’ role in patient education in Iran: Process, structure, and outcomes

    Science.gov (United States)

    Khorasani, Parvaneh; Rassouli, Maryam; Parvizy, Soroor; Zagheri-Tafreshi, Mansoureh; Nasr-Esfahani, Mahmood

    2015-01-01

    Background: Patient education is among the lowest met need of patients in Iran; therefore, expansion of that role can result in greater professional accountability. This study aimed to explain the practical science of the process, structure, and outcomes of a nurse-led action research project to expand the nurses’ role in patient education in Iran. Materials and Methods: This study was part of a participatory action research. Daily communications and monthly joint meetings were held from January 2012 to February 2014 for planning and management. These were based on the research protocol, and the conceptual framework included the Mobilizing for Action through Planning and Partnerships process by means of Leadership for Change skills. Data were produced and gathered through participant observations. Administrative data included project records, official documents, artifacts, news, and reports, which were analyzed through qualitative content analysis. Results: A participatory project was established with three groups of participants organized from both academic and clinical fields. These consisted of a “core research support team,” “two steering committees,” and community representatives of clients and professionals as “feedback groups.” A seven-stage process, named the “Nurse Educators: Al-Zahra Role Expansion Action Research” (NEAREAR) process, resulted from the project, in which strategic issues were gradually developed and implemented through 32 action plans and quality improvement cycles of action research. Audits and supervision evaluations showed meaningful changes in capacity building components. Conclusions: A nurse-led ad hoc structure with academic–clinical partnerships and strategic management process was suggested as a possible practical model for expanding nurses’ educational role in similar contexts. Implications and practical science introduced in this action research could also be applicable for top managers and health system

  15. The influence of growth parameters on the structure and composition of CuGaS2 epilayers grown by MOVPE

    International Nuclear Information System (INIS)

    Branch, M.S.; Berndt, P.R.; Leitch, A.W.R.; Botha, J.R.; Weber, J.

    2006-01-01

    The influence of various growth parameters on the composition and structure of MOVPE-grown CuGaS 2 is presented. The Cu content of the grown layers is shown to decrease in the direction of the carrier gas flow, whilst the Ga and S content are shown to increase. Changing the flow of Cu(hfac) 2 .Et 3 N to vary the I/III ratio in the vapour phase has a greater effect on the composition of grown epilayers than changing the flow of TEGa. This is indicative of Cu being the minority species present at the growth interface. A larger rate of decrease in the Cu content with an increase in both TEGa and DtBS flows suggests pre-reactions between Cu(hfac) 2 .Et 3 N and both TEGa and DtBS precursors. Lower substrate temperatures are suggested to be thermodynamically unfavourable for the growth of CuGaS 2 , yet enhance the formation of Ga x S y phases. The surface morphology of Cu-rich layers are typically inferior with a high density of crystallites, whilst Cu-poor epilayers are characteristically smooth with a single XRD reflection attributed to the (004) plane of c-axis-orientated epitaxial material

  16. Yield and yield structure of spring barley (Hodeum vulgare L. grown in monoculture after different stubble crops

    Directory of Open Access Journals (Sweden)

    Dorota Gawęda

    2012-12-01

    Full Text Available A field experiment was conducted in the period 2006- 2008 in the Uhrusk Experimental Farm belonging to the University of Life Sciences in Lublin. The experimental factor was the type of stubble crop ploughed in each year after harvest of spring barley: white mustard, lacy phacelia, winter rape, and a mixture of narrow-leaf lupin with field pea. In the experiment, successive spring barley crops were grown one after the other (in continuous monoculture. The aim of the experiment was to evaluate the effect of stubble crops used on the size and structure of barley yield. The three-year study showed an increasing trend in grain yield of spring barley grown after the mixture of legumes, lacy phacelia, and white mustard compared to its size in the treatment with no cover crop. Straw yield was significantly higher when barley was grown after the mixture of narrowleaf lupin with field pea than in the other treatments of the experiment. The type of ploughed-in stubble crop did not modify significantly plant height, ear length, and grain weight per ear. Growing the mixture of leguminous plants as a cover crop resulted in a significant increase in the density of ears per unit area in barley by an average of 14.7% relative to the treatment with winter rape. The experiment also showed the beneficial effect of the winter rape cover crop on 1000-grain weight of spring barley compared to that obtained in the treatments with white mustard and the mixture of legumes. All the cover crops caused an increase in the number of grains per ear of barley relative to that found in the control treatment. However, this increase was statistically proven only for the barley crops grown after lacy phacelia and the mixture of legumes.

  17. Characterization of as-grown and heavily irradiated GaN epitaxial structures by photoconductivity and photoluminescence

    International Nuclear Information System (INIS)

    Gaubas, E.; Jurs e-dot nas, S.; Tomasiunas, R.; Vaitkus, J.; Zukauskas, A.; Blue, A.; Rahman, M.; Smith, K.M.

    2005-01-01

    The influence of radiation defects on photoconductivity transients and photoluminescence (PL) spectra have been examined in semi-insulating GaN epitaxial layers grown on bulk n-GaN/sapphire substrates. Defects induced by 10-keV X-ray irradiation with a dose of 600Mrad and 100-keV neutrons with fluences of 5x10 14 and 10 16 cm -2 have been revealed through contact photoconductivity and microwave absorption transients. The amplitude of the initial photoconductivity decay is significantly reduced by the radiation defect density. A simultaneous decrease with radiation-induced defect density is also observed in the steady-state PL intensity of yellow, blue and ultraviolet bands peaked at 2.18, 2.85, and 3.42eV, respectively. The decrease of the PL intensity is accompanied by an increase of asymptotic decay lifetime, which is due to excess carrier multi-trapping. The decay can be described by the stretched exponential approximation exp[-(t/τ) α ] with different values of α in as-grown material (α∼0.7) and irradiated samples (α∼0.3). The value of the fracton dimension d s of the disordered structure, evaluated as d s =2α/(1-α), changes from 4.7 to 0.86 for as-grown and irradiated material, respectively, implying percolative carrier motion on an infinite cluster of dislocations net in the as-grown material and cluster fragmentation into finite fractons after irradiation

  18. Characterization for rbs of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide

    International Nuclear Information System (INIS)

    Pedrero, E.; Vigil, E.; Zumeta, I.

    1999-01-01

    The depth of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide was characterized using Rutherford Backscattering Spectrometry. Film depths are compared in function of bath and suspension parameters

  19. Bonding structure and morphology of chromium oxide films grown by pulsed-DC reactive magnetron sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gago, R., E-mail: rgago@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid (Spain); Vinnichenko, M. [Fraunhofer-Institut für Keramische Technologien und Systeme IKTS, D-01277 Dresden (Germany); Hübner, R. [Helmholtz-Zentrum Dresden – Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden (Germany); Redondo-Cubero, A. [Departamento de Física Aplicada and Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain)

    2016-07-05

    Chromium oxide (CrO{sub x}) thin films were grown by pulsed-DC reactive magnetron sputter deposition in an Ar/O{sub 2} discharge as a function of the O{sub 2} fraction in the gas mixture (ƒ) and for substrate temperatures, T{sub s}, up to 450 °C. The samples were analysed by Rutherford backscattering spectrometry (RBS), spectroscopic ellipsometry (SE), atomic force microscopy (AFM), scanning (SEM) and transmission (TEM) electron microscopy, X-ray diffraction (XRD), and X-ray absorption near-edge structure (XANES). On unheated substrates, by increasing ƒ the growth rate is higher and the O/Cr ratio (x) rises from ∼2 up to ∼2.5. Inversely, by increasing T{sub s} the atomic incorporation rate drops and x falls to ∼1.8. XRD shows that samples grown on unheated substrates are amorphous and that nanocrystalline Cr{sub 2}O{sub 3} (x = 1.5) is formed by increasing T{sub s}. In amorphous CrO{sub x}, XANES reveals the presence of multiple Cr environments that indicate the growth of mixed-valence oxides, with progressive promotion of hexavalent states with ƒ. XANES data also confirms the formation of single-phase nanocrystalline Cr{sub 2}O{sub 3} at elevated T{sub s}. These structural changes also reflect on the optical and morphological properties of the films. - Highlights: • XANES of CrO{sub x} thin films grown by pulsed-DC reactive magnetron sputtering. • Identification of mixed-valence amorphous CrO{sub x} oxides on unheated substrates. • Promotion of amorphous chromic acid (Cr{sup VI}) by increasing O{sub 2} partial pressure. • Production of single-phase Cr{sub 2}O{sub 3} films by increasing substrate temperature. • Correlation of bonding structure with morphological and optical properties.

  20. Dependencies of photoelectric properties of SiC/Si structures grown by the method of atoms substitution on synthesis time

    Science.gov (United States)

    Grashchenko, A. S.; Kukushkin, S. A.; Osipov, A. V.; Feoktistov, N. A.

    2017-07-01

    This paper is dedicated to an exploration of the photoelectric properties of Si-SiC structures grown by the substitution method on silicon substrates of (001) orientation. For the samples with the synthesis times of 40, 60, 90, 120 and 900 s, magnitudes of the saturation currents are determined and the coefficients of efficiency are calculated. The obtained dependencies of the photoelectric characteristics on the synthesis time are explained using the theory of formation of dilatation dipoles during the synthesis by the method of atoms substitution.

  1. Electrical properties of MOS structures on nitrogen-doped Czochralski-grown silicon: A positron annihilation study

    International Nuclear Information System (INIS)

    Slugen, V.; Harmatha, L.; Tapajna, M.; Ballo, P.; Pisecny, P.; Sik, J.; Koegel, G.; Krsjak, V.

    2006-01-01

    Measurements of interface trap density, effective generation lifetime (GL) and effective surface generation velocity have been performed using different methods on selected MOS structures prepared on nitrogen-doped Czochralski-grown (NCz) silicon. The application of the positron annihilation technique using a pulsed low energy positron system (PLEPS) focused on the detection of nitrogen-related defects in NCz silicon in the near surface region. In the case of p-type Cz silicon, all the results could be used for the testing of homogeneity. In n-type Cz silicon, positron annihilation was found insensitive to nitrogen doping

  2. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Joel Glenn [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  3. Structure, interface abruptness and strain relaxation in self-assisted grown InAs/GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Frigeri, Cesare, E-mail: frigeri@imem.cnr.it [CNR-IMEM Institute, Parma (Italy); Scarpellini, David [L–NESS and Dept. Materials Science, University of Milano Bicocca, Milano (Italy); Department of Industrial Engineering University of Rome Tor Vergata, Rome (Italy); Fedorov, Alexey [LNESS and CNR-IFN, Como (Italy); Bietti, Sergio; Somaschini, Claudio [L–NESS and Dept. Materials Science, University of Milano Bicocca, Milano (Italy); Grillo, Vincenzo [CNR-IMEM Institute, Parma (Italy); CNR-S3-NANO Center, Modena (Italy); Esposito, Luca; Salvalaglio, Marco; Marzegalli, Anna; Montalenti, Francesco [L–NESS and Dept. Materials Science, University of Milano Bicocca, Milano (Italy); Sanguinetti, Stefano [L–NESS and Dept. Materials Science, University of Milano Bicocca, Milano (Italy); LNESS and CNR-IFN, Como (Italy)

    2017-02-15

    Highlights: • We study 2 critical issues (interface abruptness and strain release) in InAs/GaAs NWs. • Structural and chemical interface sharpness ≤1.5 nm, better than in previous reports. • Simultaneous elastic and plastic relaxation is shown that agrees with FEM simulations. • Structural, chemical and strain release investigations were performed by STEM. • New MBE self-seeded method whereby InAs is grown by splitting In and As depositions. - Abstract: The structure, interface abruptness and strain relaxation in InAs/GaAs nanowires grown by molecular beam epitaxy in the Ga self-catalysed mode on (111) Si have been investigated by transmission electron microscopy. The nanowires had the zincblende phase. The InAs/GaAs interface was atomically and chemically sharp with a width around 1.5 nm, i.e. significantly smaller than previously reported values. This was achieved by the consumption of the Ga droplet and formation of a flat top facet of the GaAs followed by the growth of InAs by splitting the depositions of In and As. Both elastic and plastic strain relaxation took place simultaneously. Experimental TEM results about strain relaxation very well agree with linear elasticity theory calculations by the finite element methods.

  4. Structural and magnetic properties of nickel nanowires grown in porous anodic aluminium oxide template by electrochemical deposition technique

    Science.gov (United States)

    Nugraha Pratama, Sendi; Kurniawan, Yudhi; Muhammady, Shibghatullah; Takase, Kouichi; Darma, Yudi

    2018-03-01

    We study the formation of nickel nanowires (Ni NWs) grown in porous anodic aluminium oxide (AAO) template by the electrochemical deposition technique. Here, the initial AAO template was grown by anodization of aluminium substrate in sulphuric acid solution. The cross-section, crystal structure, and magnetic properties of Ni NWs system were characterized by field-emission SEM, XRD, and SQUID. As a result, the highly-ordered Ni NWs are observed with the uniform diameter of 27 nm and the length from 31 to 163 nm. Based on XRD spectra analysis, Ni NWs have the face-centered cubic structure with the lattice parameter of 0.35 nm and average crystallite size of 17.19 nm. From SQUID measurement at room temperature, by maintaining the magnetic field perpendicular to Ni NWs axis, the magnetic hysteresis of Ni NWs system show the strong ferromagnetism with the coercivity and remanence ratio of ∼148 Oe and ∼0.23, respectively. The magnetic properties are also calculated by means of generalized gradient approximation methods. From the calculation result, we show that the ferromagnetism behavior comes from Ni NWs without any contribution from AAO template or the substrate. This study opens the potential application of Ni NWs system for novel functional magnetic devices.

  5. The Luminescent Properties and Atomic Structures of As-Grown and Annealed Nanostructured Silicon Rich Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    N. D. Espinosa-Torres

    2016-01-01

    Full Text Available Not long ago, we developed a theoretical model to describe a set of chemical reactions that can potentially occur during the process of obtaining Silicon Rich Oxide (SRO films, an off stoichiometry material, notwithstanding the technique used to grow such films. In order to elucidate the physical chemistry properties of such material, we suggested the chemical reactions that occur during the process of growing of SRO films in particular for the case of the Low Pressure Chemical Vapor Deposition (LPCVD technique in the aforementioned model. The present paper represents a step further with respect to the previous (published work, since it is dedicated to the calculation by Density Functional Theory (DFT of the optical and electronic properties of the as-grown and annealed SRO structures theoretically predicted on the basis of the previous work. In this work, we suggest and evaluate either some types of molecules or resulting nanostructures and we predict theoretically, by applying the DFT, the contribution that they may have to the phenomenon of luminescence (PL, which is experimentally measured in SRO films. We evaluated the optical and electronic properties of both the as-grown and the annealed structures.

  6. Experimental phasing for structure determination using membrane-protein crystals grown by the lipid cubic phase method

    Science.gov (United States)

    Li, Dianfan; Pye, Valerie E.; Caffrey, Martin

    2015-01-01

    Despite the marked increase in the number of membrane-protein structures solved using crystals grown by the lipid cubic phase or in meso method, only ten have been determined by SAD/MAD. This is likely to be a consequence of the technical difficulties associated with handling proteins and crystals in the sticky and viscous hosting mesophase that is usually incubated in glass sandwich plates for the purposes of crystallization. Here, a four-year campaign aimed at phasing the in meso structure of the integral membrane diacylglycerol kinase (DgkA) from Escherichia coli is reported. Heavy-atom labelling of this small hydrophobic enzyme was attempted by pre-labelling, co-crystallization, soaking, site-specific mercury binding to genetically engineered single-cysteine mutants and selenomethionine incorporation. Strategies and techniques for special handling are reported, as well as the typical results and the lessons learned for each of these approaches. In addition, an assay to assess the accessibility of cysteine residues in membrane proteins for mercury labelling is introduced. The various techniques and strategies described will provide a valuable reference for future experimental phasing of membrane proteins where crystals are grown by the lipid cubic phase method. PMID:25615865

  7. Structural characterization of thick (11 anti 22) GaN layers grown by HVPE on m-plane sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Usikov, Alexander; Soukhoveev, Vitali; Shapovalov, Lisa; Syrkin, Alexander; Ivantsov, Vladimir; Scanlan, Bernard [Technologies and Devices International, Oxford Instruments Company, 12214 Plum Orchard Dr., Silver Spring, MD 20852 (United States); Nikiforov, Alexey [Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary' s Street, Boston, MA 02215 (United States); Strittmatter, Andre; Johnson, Noble [Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304 (United States); Zheng, Jian-Guo [Materials Characterization Center, LEXI/Calit2, University of California, Irvine, CA 92697 (United States); Spiberg, Philippe; El-Ghoroury, Hussein [Ostendo Technologies, Inc., 6185 Paseo del Norte, Ste. 200, Carlsbad, CA 92011 (United States)

    2010-06-15

    This paper reports structural characterization of thick (11 anti 22)-oriented GaN layers by means of XRD, TEM, and micro- CL. The semi-polar (11 anti 22) GaN layers were grown on m-plane sapphire substrates by HVPE. Their structural quality improved with thickness. Threading dislocation density of 3 x 10{sup 8} cm{sup -2} and stacking faults density of 4 x 10{sup 4} cm{sup -1} were measured at the surface of 20 {mu}m thick (11 anti 22) GaN layers. The semi-polar GaN layers were used as template substrates to grow InGaN/GaN MQW heterostructures by MOCVD that demonstrated optically pumped lasing at 500 nm wavelength. The results demonstrate the longest wavelength yet reported for a photo-pumped laser on template substrates. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  8. Structural characterisation of silicon-germanium virtual substrate- based heterostructures grown by low pressure chemical vapour deposition

    CERN Document Server

    Mihai-Dilliway, G D

    2002-01-01

    Silicon-germanium heterostructures incorporating compositionally graded virtual substrates are important for the fabrication of a variety of advanced electronic devices. Their successful application depends critically on their surface morphology and defect content. The aim of this research project is to characterise the way in which these structural properties are influenced by the growth parameters used in low pressure chemical vapour deposition (LPCVD) at the Southampton University Microelectronics Centre (SUMC). To this end, a comparative study of the surface quality and the distribution and density of misfit strain relaxation induced defects in SiGe virtual substrate-based heterostructures grown under varying conditions, was carried out. The growth parameters varied have been: growth temperature, initial and final Ge content, Ge concentration gradient, type of Ge grading profile (linear and stepwise) in the virtual substrate, and thickness and presence of a device structure in the capping layer of constan...

  9. Computational thermal analysis of cylindrical fin design parameters and a new methodology for defining fin structure in LED automobile headlamp cooling applications

    International Nuclear Information System (INIS)

    Sökmen, Kemal Furkan; Yürüklü, Emrah; Yamankaradeniz, Nurettin

    2016-01-01

    Highlights: • In the study, cooling of LED headlamps in automotive is investigated. • The study is based on free convection cooling of LED module. • Besides free convection, Monte Carlo model is used as radiation model as well. • A new algorithm is presented for designing optimum fin structure. • Suggested algorithm for optimum design is verified by various simulations. - Abstract: In this study, the effects of fin design, fin material, and free and forced convection on junction temperature in automotive headlamp cooling applications of LED lights are researched by using ANSYS CFX 14 software. Furthermore a new methodology is presented for defining the optimum cylindrical fin structure within the given limits. For measuring the performance of methodology, analyses are carried out for various ambient temperatures (25 °C, 50 °C and 80 °C) and different LED power dissipations (0.5 W, 0.75 W, 1 W and 1.25 W). Then, analyses are repeated at different heat transfer coefficients and different fin materials in order to calculate LED junction temperature in order to see if the fin structure proposed by the methodology is appropriate for staying below the given safety temperature limit. As a result, the suggested method has always proposed proper fin structures with optimum characteristics for given LED designs. As another result, for safe junction temperature ranges, it is seen that for all LED power dissipations, adding aluminum or copper plate behind the printed circuit board at low ambient temperatures is sufficient. Also, as the ambient temperature increases, especially in high powered LED lights, addition of aluminum is not sufficient and fin usage becomes essential. High heat transfer coefficient and using copper fin affect the junction temperature positively.

  10. Effect of lattice strain on structural and optical properties of ZnO nanorods grown by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Khyati, E-mail: khyati34@gmail.com; Nirwal, Varun Singh; Singh, Joginder; Peta, Koteswara Rao; Bhatnagar, P. K. [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021 (India); Singh, Inderpreet [Department of Electronics, SGTB KhalsaCollege, University of Delhi, Delhi-110007 (India)

    2016-05-06

    In this work, we have synthesized ZnO nanorods over ZnO seeds/ITO/glass substrate by the facile hydrothermal method. ZnO seeds are grown at different temperatures ranging from 150°C to 550°C in steps of 100°C. We have studied the effect of strain on the structural and optical properties of ZnO nanorods. It was observed that the growth temperature of seed layer has an influence over the lattice strain present in the nanorods. The as synthesized nanorods were characterized by scanning electron microscope (SEM), x-ray diffraction (XRD) and photoluminescence (PL). SEM images confirm the formation of dense arrays of vertically aligned nanorods on seeds which are grown at 350°C. In addition to this, XRD patterns reveal that these ZnO nanorods are preferentially oriented along (002) direction. The strain analysis based on the XRD results reveals that the minimum value of strain is obtained at 350°C which is attributed to the improved crystalline quality of the interface of seed layer and nanorods leading to their c-axis alignment and enhancement of ultraviolet emission as observed in the PL spectra.

  11. New Three-Dimensional Porous Electrode Concept: Vertically-Aligned Carbon Nanotubes Directly Grown on Embroidered Copper Structures

    Directory of Open Access Journals (Sweden)

    Noemí Aguiló-Aguayo

    2017-12-01

    Full Text Available New three-dimensional (3D porous electrode concepts are required to overcome limitations in Li-ion batteries in terms of morphology (e.g., shapes, dimensions, mechanical stability (e.g., flexibility, high electroactive mass loadings, and electrochemical performance (e.g., low volumetric energy densities and rate capabilities. Here a new electrode concept is introduced based on the direct growth of vertically-aligned carbon nanotubes (VA-CNTs on embroidered Cu current collectors. The direct growth of VA-CNTs was achieved by plasma-enhanced chemical vapor deposition (PECVD, and there was no application of any post-treatment or cleaning procedure. The electrochemical behavior of the as-grown VA-CNTs was analyzed by charge/discharge cycles at different specific currents and with electrochemical impedance spectroscopy (EIS measurements. The results were compared with values found in the literature. The as-grown VA-CNTs exhibit higher specific capacities than graphite and pristine VA-CNTs found in the literature. This together with the possibilities that the Cu embroidered structures offer in terms of specific surface area, total surface area, and designs provide a breakthrough in new 3D electrode concepts.

  12. Annealing Effect on the Structural and Optical Properties of Sputter-Grown Bismuth Titanium Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    José E. Alfonso

    2014-04-01

    Full Text Available The aim of this work is to assess the evolution of the structural and optical properties of BixTiyOz films grown by rf magnetron sputtering upon post-deposition annealing treatments in order to obtain good quality films with large grain size, low defect density and high refractive index similar to that of single crystals. Films with thickness in the range of 220–250 nm have been successfully grown. After annealing treatment at 600 °C the films show excellent transparency and full crystallization. It is shown that to achieve larger crystallite sizes, up to 17 nm, it is better to carry the annealing under dry air than under oxygen atmosphere, probably because the nucleation rate is reduced. The refractive index of the films is similar under both atmospheres and it is very high (n =2.5 at 589 nm. However it is still slightly lower than that of the single crystal value due to the polycrystalline morphology of the thin films.

  13. Microstructural Evolution and Domain Structures of Flux-grown Ferroelectric Thin Films

    Science.gov (United States)

    Burch, Matthew James

    Barium titanate is one of the most commonly utilized dielectric materials for commercial applications. As devices continue to scale smaller, it is necessary to find processing routes that allow for the integration of high-permittivity barium titanate into the thin film geometry. In the bulk, high permittivity barium titanate can be produced at high processing temperatures (>1250°C). This is several hundred degrees higher than many low temperature substrates are able to withstand, which makes integration of high-permittivity barium titanate onto these substrates a challenge.One method to lower the processing temperature and maintain bulk-like permittivity of barium titanate thin films is through the addition of a liquid forming flux. The fluxing agent increases the kinetics of the system while encouraging densification. This increase in kinetics results in large-grained, dense samples, with high dielectric properties at relatively low processing temperatures. In this dissertation, the underlying mechanisms of how the flux system actually impacts the microstructural evolution of physically vapor deposited barium titanate thin films on sapphire substrates is explored. The flux-system utilized is the barium-borate system (BaOB2O3). It will be shown that the flux system results in large-grained, dense barium titanate thin films grown on sapphire. However, the evolution of the microstructure depends on a complex interaction between the liquid forming flux, a reaction between the sapphire substrate and barium titanate, the resulting reactionary phase of BaAl2O4, and {111}-barium titanate twins. (Abstract shortened by ProQuest.).

  14. Amorphous MoS2 nanosheets grown on copper@nickel-phosphorous dendritic structures for hydrogen evolution reaction

    Science.gov (United States)

    Ahn, Byung-Wook; Kim, Tae-Yoo; Kim, Seok-Hun; Song, Young-Il; Suh, Su-Jeong

    2018-02-01

    In this study, we introduce highly active, efficient, and Pt-free electrodes (Cu@Ni-P@a-MoS2) fabricated on Ni foils, which have good conductivity and several a-MoS2 edge sites for the hydrogen evolution reaction (HER). A porous Cu dendritic structure on Ni foil was made by electro-plating utilizing hydrogen bubbles, and a Ni-P film that covered the dendritic structure was made by electro-less plating. Vertically grown a-MoS2 nanosheets were formed on the Cu@Ni-P dendritic structure by thermolysis. The structure has abundant active sites because of its particular structure, which was examined by SEM and TEM. XPS analysis was used to confirm that MoS2 was reduced completely, and the a-MoS2 nanosheet layer was characterized by Raman spectroscopy. Electrochemical experiments demonstrated that the electrode was highly effective for the HER with a low onset potential of 118.5 mV, and a current density of 10 and 100 mA/cm2 for 186 and 345 mV versus the reversible hydrogen electrode potential (vs RHE), respectively, a small Tafel slope of 60.5 mV/dec, and was stable after 2000 cycles. This study demonstrates that highly porous Cu@Ni-P@a-MoS2 electrodes, possessing a huge surface, are desirable for the HER and these findings will pave the way for a new form of highly efficient electrocatalysts.

  15. Nanostructured PLD-grown gadolinia doped ceria: Chemical and structural characterization by transmission electron microscopy techniques

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Wang, Hsiang-Jen; Heiroth, Sebastian

    2011-01-01

    The morphology as well as the spatially resolved elemental and chemical characterization of 10 mol% gadolinia doped ceria (CGO10) structures prepared by pulsed laser deposition (PLD) technique are investigated by scanning transmission electron microscopy accompanied with electron energy loss...... spectroscopy and energy dispersive X-ray spectroscopy. A dense, columnar and structurally inhomogeneous CGO10 film, i.e. exhibiting grain size refinement across the film thickness, is obtained in the deposition process. The cerium M4,5 edges, used to monitor the local electronic structure of the grains...

  16. Analysis on the structural, vibrational and defect states of chlorine treated polycrystalline cadmium telluride structures grown by e-beam evaporation

    International Nuclear Information System (INIS)

    Farid, Sidra; Mukherjee, Souvik; Jung, Hyeson; Stroscio, Michael A; Dutta, Mitra

    2015-01-01

    Temperature dependent photoluminescence (PL) measurements are performed in order to study the defect states in cadmium chloride treated polycrystalline cadmium telluride (CdTe) thin films grown by e-beam evaporation technique. Three luminescence bands are observed including a double peak emission at 1.577 eV and 1.573 eV corresponding to free electron-to- acceptor transition and a donor–acceptor pair (DAP) transition, respectively, along with a broad peak at 1.45 eV. This broad band emission is related to A-center chlorine based complex and also includes longitudinal (LO) phonon emission lines for CdTe spaced by ∼21 meV. Investigation into grain sizes revealed grains of 0.2 μm for as-grown films and ∼2–3 μm for chlorine activated films shown by atomic force microscopy (AFM). Raman analysis indicates that the films have been grown with excess of Te leading to p-type conductivity in the structure, whereas LO phonon mode of polycrystalline CdTe reveals quasi phonon modes nature. (paper)

  17. Effects of growth temperature and device structure on GaP solar cells grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Vaisman, M.; Tomasulo, S.; Masuda, T.; Lang, J. R.; Faucher, J.; Lee, M. L. [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511 (United States)

    2015-02-09

    Gallium phosphide (GaP) is an attractive candidate for wide-bandgap solar cell applications, possessing the largest bandgap of the III-arsenide/phosphides without aluminum. However, GaP cells to date have exhibited poor internal quantum efficiency (IQE), even for photons absorbed by direct transitions, motivating improvements in material quality and device structure. In this work, we investigated GaP solar cells grown by molecular beam epitaxy over a range of substrate temperatures, employing a much thinner emitter than in prior work. Higher growth temperatures yielded the best solar cell characteristics, indicative of increased diffusion lengths. Furthermore, the inclusion of an AlGaP window layer improved both open-circuit voltage and short wavelength IQE.

  18. Structural and electronic properties of InN nanowire network grown by vapor-liquid-solid method

    Directory of Open Access Journals (Sweden)

    B. K. Barick

    2015-05-01

    Full Text Available Growth of InN nanowires have been carried out on quartz substrates at different temperatures by vapor-liquid-solid (VLS technique using different thicknesses of Au catalyst layer. It has been found that a narrow window of Au layer thickness and growth temperature leads to multi-nucleation, in which each site acts as the origin of several nanowires. In this multi-nucleation regime, several tens of micrometer long wires with diameter as small as 20 nm are found to grow along [ 11 2 ̄ 0 ] direction (a-plane to form a dense network. Structural and electronic properties of these wires are studied. As grown nanowires show degenerate n-type behavior. Furthermore, x-ray photoemission study reveals an accumulation of electrons on the surface of these nanowires. Interestingly, the wire network shows persistence of photoconductivity for several hours after switching off the photoexcitation.

  19. Structural and electronic properties of InN nanowire network grown by vapor-liquid-solid method

    Science.gov (United States)

    Barick, B. K.; Rodríguez-Fernández, Carlos; Cantarero, Andres; Dhar, S.

    2015-05-01

    Growth of InN nanowires have been carried out on quartz substrates at different temperatures by vapor-liquid-solid (VLS) technique using different thicknesses of Au catalyst layer. It has been found that a narrow window of Au layer thickness and growth temperature leads to multi-nucleation, in which each site acts as the origin of several nanowires. In this multi-nucleation regime, several tens of micrometer long wires with diameter as small as 20 nm are found to grow along [ 11 2 ¯ 0 ] direction (a-plane) to form a dense network. Structural and electronic properties of these wires are studied. As grown nanowires show degenerate n-type behavior. Furthermore, x-ray photoemission study reveals an accumulation of electrons on the surface of these nanowires. Interestingly, the wire network shows persistence of photoconductivity for several hours after switching off the photoexcitation.

  20. Structural and electronic properties of InN nanowire network grown by vapor-liquid-solid method

    Energy Technology Data Exchange (ETDEWEB)

    Barick, B. K., E-mail: bkbarick@gmail.com, E-mail: subho-dh@yahoo.co.in; Dhar, S., E-mail: bkbarick@gmail.com, E-mail: subho-dh@yahoo.co.in [Department of Physics, Indian Institute of Technology, Bombay, Mumbai-400076 (India); Rodríguez-Fernández, Carlos; Cantarero, Andres [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain)

    2015-05-15

    Growth of InN nanowires have been carried out on quartz substrates at different temperatures by vapor-liquid-solid (VLS) technique using different thicknesses of Au catalyst layer. It has been found that a narrow window of Au layer thickness and growth temperature leads to multi-nucleation, in which each site acts as the origin of several nanowires. In this multi-nucleation regime, several tens of micrometer long wires with diameter as small as 20 nm are found to grow along [112{sup -}0] direction (a-plane) to form a dense network. Structural and electronic properties of these wires are studied. As grown nanowires show degenerate n-type behavior. Furthermore, x-ray photoemission study reveals an accumulation of electrons on the surface of these nanowires. Interestingly, the wire network shows persistence of photoconductivity for several hours after switching off the photoexcitation.

  1. Structural and electrical properties of single crystalline SrZrO 3 epitaxially grown on Ge (001)

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Z. H.; Ahmadi-Majlan, K.; Grimley, E. D.; Du, Y.; Bowden, M.; Moghadam, R.; LeBeau, J. M.; Chambers, S. A.; Ngai, J. H.

    2017-08-28

    We present structural and electrical characterization of SrZrO3 that has been epitaxially grown on Ge(001) by oxide molecular beam epitaxy. Single crystalline SrZrO3 can be nucleated on Ge via deposition at low temperatures followed by annealing at 550 ºC in ultra-high vacuum. Photoemission spectroscopy measurements reveal that SrZrO3 exhibits a type-I band arrangement with respect to Ge, with conduction and valence band offsets of 1.4 eV and 3.65 eV, respectively. As a standalone film, SrZrO3 exhibits several characteristics that are ideal for applications as a gate dielectric on Ge. We find that 4 nm thick films exhibit low leakage current densities, and a dielectric constant of κ ~ 25 that corresponds to an equivalent oxide thickness of 0.70 nm.

  2. Analysis of Side-Wall Structure of Grown-in Twin-Type Octahedral Defects in Czochralski Silicon

    Science.gov (United States)

    Ueki, Takemi; Itsumi, Manabu; Takeda, Tadao

    1998-04-01

    We analyzed the side-wall structure of grown-in octahedral defects in Czochralski silicon standard wafers for large-scale integrated circuits. There are two types of twin octahedral defects: an overlapping type and an adjacent type. In the twin octahedral defects of the overlapping type, a hole is formed in the connection part. The side-wall layer in the hole part is formed continually and is the same thickness as the side-wall layers of both octahedrons. In the twin octahedral defects of the adjacent type, a partition layer is formed in the connection part. Our electron energy-loss spectroscopy analyses identified that the side-wall layer includes SiO2.

  3. Effect of thermal annealing on structural properties of GeSn thin films grown by molecular beam epitaxy

    Science.gov (United States)

    Zhang, Z. P.; Song, Y. X.; Li, Y. Y.; Wu, X. Y.; Zhu, Z. Y. S.; Han, Y.; Zhang, L. Y.; Huang, H.; Wang, S. M.

    2017-10-01

    GeSn alloy with 7.68% Sn concentration grown by molecular beam epitaxy has been rapidly annealed at different temperatures from 300°C to 800°C. Surface morphology and roughness annealed below or equal to 500°C for 1 min have no obvious changes, while the strain relaxation rate increasing. When the annealing temperature is above or equal to 600°C, significant changes occur in surface morphology and roughness, and Sn precipitation is observed at 700°C. The structural properties are analyzed by reciprocal space mapping in the symmetric (004) and asymmetric (224) planes by high resolution X-ray diffraction. The lateral correlation length and the mosaic spread are extracted for the epi-layer peaks in the asymmetric (224) diffraction. The most suitable annealing temperature to improve both the GeSn lattice quality and relaxation rate is about 500°C.

  4. Broadband High-Performance Infrared Antireflection Nanowires Facilely Grown on Ultrafast Laser Structured Cu Surface.

    Science.gov (United States)

    Fan, Peixun; Bai, Benfeng; Long, Jiangyou; Jiang, Dafa; Jin, Guofan; Zhang, Hongjun; Zhong, Minlin

    2015-09-09

    Infrared antireflection is an essential issue in many fields such as thermal imaging, sensors, thermoelectrics, and stealth. However, a limited antireflection capability, narrow effective band, and complexity as well as high cost in implementation represent the main unconquered problems, especially on metal surfaces. By introducing precursor micro/nano structures via ultrafast laser beforehand, we present a novel approach for facile and uniform growth of high-quality oxide semiconductor nanowires on a Cu surface via thermal oxidation. Through the enhanced optical phonon dissipation of the nanowires, assisted by light trapping in the micro structures, ultralow total reflectance of 0.6% is achieved at the infrared wavelength around 17 μm and keeps steadily below 3% over a broad band of 14-18 μm. The precursor structures and the nanowires can be flexibly tuned by controlling the laser processing procedure to achieve desired antireflection performance. The presented approach possesses the advantages of material simplicity, structure reconfigurability, and cost-effectiveness for mass production. It opens a new path to realize unique functions by integrating semiconductor nanowires onto metal surface structures.

  5. Structural and magnetic phase transitions in chromium nitride thin films grown by rf nitrogen plasma molecular beam epitaxy

    Science.gov (United States)

    Alam, Khan; Disseler, Steven M.; Ratcliff, William D.; Borchers, Julie A.; Ponce-Pérez, Rodrigo; Cocoletzi, Gregorio H.; Takeuchi, Noboru; Foley, Andrew; Richard, Andrea; Ingram, David C.; Smith, Arthur R.

    2017-09-01

    A magnetostructural phase transition is investigated in single-crystal chromium nitride (CrN) thin films grown by rf plasma molecular beam epitaxy on MgO(001) substrates. While still within the vacuum environment following molecular beam epitaxy growth, in situ low-temperature scanning tunneling microscopy, and in situ variable low-temperature reflection high-energy electron diffraction are applied, revealing an atomically smooth and metallic CrN(001) surface, and an in-plane structural transition from 1 ×1 (primitive CrN unit cell) to √{2 }×√{2 }-R 45∘ with a transition temperature of (278 ±3 ) K, respectively. Ex situ temperature-dependent measurements using neutron diffraction are also performed, looking at the structural peaks and likewise revealing a first-order structural transition along the [111] out-of-plane direction, with transition temperatures of (268 ± 3) K. Turning to the magnetic peaks, neutron diffraction confirms a clear magnetic transition from paramagnetic at room temperature to antiferromagnetic at low temperatures with a sharp, first-order phase transition and a Néel temperature of (270 ±2 ) K or (280 ±2 ) K for two different films. In addition to the experimental measurements of structural and magnetic ordering, we also discuss results from first-principles theoretical calculations which explore various possible magnetostructural models.

  6. Nanostructured PLD-grown gadolinia doped ceria: Chemical and structural characterization by transmission electron microscopy techniques

    International Nuclear Information System (INIS)

    Rodrigo, K.; Wang, H.J.; Heiroth, S.; Pryds, N.; Kuhn, L. Theil; Esposito, V.; Linderoth, S.; Schou, J.; Lippert, T.

    2011-01-01

    The morphology as well as the spatially resolved elemental and chemical characterization of 10 mol% gadolinia doped ceria (CGO10) structures prepared by pulsed laser deposition (PLD) technique are investigated by scanning transmission electron microscopy accompanied with electron energy loss spectroscopy and energy dispersive X-ray spectroscopy. A dense, columnar and structurally inhomogeneous CGO10 film, i.e. exhibiting grain size refinement across the film thickness, is obtained in the deposition process. The cerium M 4,5 edges, used to monitor the local electronic structure of the grains, indicate apparent variation of the ceria valence state across and along the film. No element segregation to the grain boundaries is detected. These results are discussed in the context of solid oxide fuel cell applications.

  7. Study of structural and optical properties of ZnO films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Lemlikchi, S.; Abdelli-Messaci, S.; Lafane, S.; Kerdja, T.; Guittoum, A.; Saad, M.

    2010-01-01

    Wurtzite zinc oxides films (ZnO) were deposited on silicon (0 0 1) and corning glass substrates using the pulsed laser deposition technique. The laser fluence, target-substrate distance, substrate temperature of 300 deg. C were fixed while varying oxygen pressures from 2 to 500 Pa were used. It is observed that the structural properties of ZnO films depend strongly on the oxygen pressure and the substrate nature. The film crystallinity improves with decreasing oxygen pressure. At high oxygen pressure, the films are randomly oriented, whereas, at low oxygen pressures they are well oriented along [0 0 1] axis for Si substrates and along [1 0 3] axis for glass substrates. A honeycomb structure is obtained at low oxygen pressures, whereas microcrystalline structures were obtained at high oxygen pressures. The effect of oxygen pressure on film transparency, band gap E g and Urbach energies was investigated.

  8. Optical and micro-structural characterizations of MBE grown indium gallium nitride polar quantum dots

    KAUST Repository

    Elafandy, Rami T.

    2011-12-01

    Comparison between indium rich (27%) InGaN/GaN quantum dots (QDs) and their underlying wetting layer (WL) is performed by means of optical and structural characterizations. With increasing temperature, micro-photoluminescence (μPL) study reveals the superior ability of QDs to prevent carrier thermalization to nearby traps compared to the two dimensional WL. Thus, explaining the higher internal quantum efficiency of the QD nanostructure compared to the higher dimensional WL. Structural characterization (X-ray diffraction (XRD)) and transmission electron microscopy (TEM)) reveal an increase in the QD indium content over the WL indium content which is due to strain induced drifts. © 2011 IEEE.

  9. Crystalline .beta.-structure of PHBV grown epitaxially on silicate layers of MMT

    Czech Academy of Sciences Publication Activity Database

    Ublekov, F.; Baldrian, Josef; Nedkov, E.

    2009-01-01

    Roč. 47, č. 8 (2009), s. 751-755 ISSN 0887-6266 Institutional research plan: CEZ:AV0Z40500505 Keywords : beta-structure * biodegradable * biopolymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.586, year: 2009

  10. Estimation of age of the microbial carbonate structures grown at methane

    Science.gov (United States)

    Gulin, G. B.; Polikarpov, G. G.; Egorov, V. N.

    2003-04-01

    The 14C-dating of microbial carbonate structures, formed as a result of anaerobic oxidation of methane seeping from the Black Sea seafloor, has showed a gradual increase with depth of the age of carbonates of these buildups. Stable carbon isotope analyses of the carbonate structures and their initial components were used to evaluate contribution of carbon from methane and from the seawater bicarbonates to carbonate material of the microbial structures, showing that 35-55% of carbon in the carbonates is derived from the seeping methane. The given percentage allows calculation of the age of methane, which is assessed to be in the range of about 9300 to 14600 years before present for methane seeping from the shallowest microbial structures, found at the Black Sea shelf edge (~ 200 m of water depth). These time limits correspond to the last glacial period, when the Black Sea was a freshwater lake. Accordingly, the age of methane emanating from the deepest microbial structures (~ 2100 m of a depth) may be assessed as 32000 to 50000 years, suggesting an older sedimentary source of methane seeping from the abyssal Black Sea sediments. Comparing the radiocarbon age of the base and middle parts of the microbial structures gives an approximate time of origin of the deepest and sallowest microbial buildups as about 5300 and 3000 years before present, respectively. These dating corresponds to the first appearance of hydrogen sulfide in the deepest Black Sea waters and to stabilization of the upper boundary of anoxic zone around the present day level. Thus, the age of the Black Sea carbonate structures at different depths of the continental slope may reflect dynamics of the long-term rising of oxic/anoxic interface in the water column, which resulted in change from aerobic to anaerobic oxidation of the seeping methane when oxygen has depleted at the respective depth. This suggestion allows to consider the methane-derived microbial buildups as unique objects for further detailed

  11. Structural characterization of oxidized allotaxially grown CoSi2 layers by x-ray scattering

    International Nuclear Information System (INIS)

    Kaendler, I. D.; Seeck, O. H.; Schlomka, J.-P.; Tolan, M.; Press, W.; Stettner, J.; Kappius, L.; Dieker, C.; Mantl, S.

    2000-01-01

    A series of buried CoSi 2 layers prepared by a modified molecular beam epitaxy process (allotaxy) and a subsequent wet-oxidation process was investigated by x-ray scattering. The oxidation time which determines the depth in which the CoSi 2 layers are located within the Si substrates has been varied during the preparation. The electron density profiles and the structure of the interfaces were extracted from specular reflectivity and diffuse scattering measurements. Crystal truncation rod investigations yielded the structure on an atomic level (crystalline quality). It turns out that the roughness of the CoSi 2 layers increases drastically with increasing oxidation time, i.e., with increasing depth of the buried layers. Furthermore, the x-ray data reveal that the oxidation growth process is diffusion limited. (c) 2000 American Institute of Physics

  12. Structural and optical properties of ZnO films grown on silicon and ...

    Indian Academy of Sciences (India)

    TECS

    a hexagonal quartzite structure with space group P63mc, and cell parameters of a = 0⋅3250 nm, c = 0⋅5206 nm (Kubo et al 2000). It has a large exciton binding energy of. 60 meV (Marotti et al 2004) which indicates that ZnO is the material with most potential to realize the next gene- ration UV semiconductor laser. Silicon ...

  13. Electronic structure of monolayer 1T′-MoTe2 grown by molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Shujie Tang

    2018-02-01

    Full Text Available Monolayer transition metal dichalcogenides (TMDCs in the 1T′ structural phase have drawn a great deal of attention due to the prediction of quantum spin Hall insulator states. The band inversion and the concomitant changes in the band topology induced by the structural distortion from 1T to 1T′ phases are well established. However, the bandgap opening due to the strong spin-orbit coupling (SOC is only verified for 1T′-WTe2 recently and still debated for other TMDCs. Here we report a successful growth of high-quality monolayer 1T′-MoTe2 on a bilayer graphene substrate through molecular beam epitaxy. Using in situ angle-resolved photoemission spectroscopy (ARPES, we have investigated the low-energy electronic structure and Fermi surface topology. The SOC-induced breaking of the band degeneracy points between the valence and conduction bands is clearly observed by ARPES. However, the strength of SOC is found to be insufficient to open a bandgap, which makes monolayer 1T′-MoTe2 on bilayer graphene a semimetal.

  14. Structural changes induced spin-reorientation of ultrathin Mn films grown on Ag(001)

    International Nuclear Information System (INIS)

    Ouarab, N.; Haroun, A.; Baadji, N.

    2016-01-01

    The strained body centered tetragonal (bct) Mn ultrathin film from lattice parameter a=2.89 Å to lattice value of 2.73 Å induces anti-ferromagnetic behavior between Mn layers. The magnetic easy axis of Mn film was demonstrated theoretically to switch from the in-plane to out-of-plane by magneto-optical Kerr effect investigation. By including spin–orbit coupling in full potential linearized augmented plane waves and linearized muffin-tin orbitals methods, manganese ultrathin film displays different magnetic behaviors and the spin-reorientation transition is shown to be correlated to these structural changes. The calculated magnetic moment of manganese planes are enhanced and reach a value of ~4.02 μ B . The polar magneto-optical Kerr effect is calculated for a photon energy range extended to 15 eV. It shows a pronounced peak in visible light. - Highlights: • The applied strain in Mn-bct structure induces anti-ferromagnetic behavior. • The easy magnetization axis is demonstrated to be out-of-plane. • The magnetic moment of Mn-layers are enhanced and reach a value of ~4.02 μ B . • Kerr spectra show significant polar responses for Mn films in the visible range. • The prominent structures in the Kerr spectra have been identified.

  15. Electronic structure of monolayer 1T'-MoTe2 grown by molecular beam epitaxy

    Science.gov (United States)

    Tang, Shujie; Zhang, Chaofan; Jia, Chunjing; Ryu, Hyejin; Hwang, Choongyu; Hashimoto, Makoto; Lu, Donghui; Liu, Zhi; Devereaux, Thomas P.; Shen, Zhi-Xun; Mo, Sung-Kwan

    2018-02-01

    Monolayer transition metal dichalcogenides (TMDCs) in the 1T' structural phase have drawn a great deal of attention due to the prediction of quantum spin Hall insulator states. The band inversion and the concomitant changes in the band topology induced by the structural distortion from 1T to 1T' phases are well established. However, the bandgap opening due to the strong spin-orbit coupling (SOC) is only verified for 1T'-WTe2 recently and still debated for other TMDCs. Here we report a successful growth of high-quality monolayer 1T'-MoTe2 on a bilayer graphene substrate through molecular beam epitaxy. Using in situ angle-resolved photoemission spectroscopy (ARPES), we have investigated the low-energy electronic structure and Fermi surface topology. The SOC-induced breaking of the band degeneracy points between the valence and conduction bands is clearly observed by ARPES. However, the strength of SOC is found to be insufficient to open a bandgap, which makes monolayer 1T'-MoTe2 on bilayer graphene a semimetal.

  16. Structural transformations in MoO{sub x} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Lopez, M.A.; Haro-Poniatowski, E. [Departamento de Fisica, Laboratorio de Optica Cuantica, Universidad Autonoma Metropolitana Iztapalapa, Apdo. Postal 55-534, 09340, Mexico D. F. (Mexico); Escobar-Alarcon, L. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, 11801, Mexico D. F. (Mexico)

    2004-01-01

    In this work, laser-induced crystallization in MoO{sub x} thin films (1.8{<=}x{<=}2.1) is reported. This transformation involves a MoO{sub x} oxidation and subsequently a crystallization process from amorphous MoO{sub 3} to crystalline {alpha}MoO{sub 3}. For comparison purposes crystallization is induced thermally, in an oven, as well. The crystallization kinetics is monitored by Raman spectroscopy; a threshold in the energy density necessary to induce the phase transformation is determined in the case of photo-crystallization. This threshold depends on the type of substrate on which the film is deposited. For the thin films deposited on glass substrates, the structural transformation is from amorphous MoO{sub x} to the thermodynamically stable {alpha}MoO{sub 3} crystalline phase. For the thin films deposited on Si(100) the structural transformation is from amorphous MoO{sub x} to a mixture of {alpha}MoO{sub 3} and the thermodynamically unstable {beta}MoO{sub 3} crystalline phases. The structural transformations are also characterized by scanning electron microscopy and light-transmission experiments. (orig.)

  17. Structural changes induced spin-reorientation of ultrathin Mn films grown on Ag(001)

    Energy Technology Data Exchange (ETDEWEB)

    Ouarab, N., E-mail: ouarab_nourdine@yahoo.fr [Quantum Physics and Dynamical Systems Laboratory, Ferhat Abbas University of Sétif (Algeria); Semiconductor Technology Research Center for Energetic-(CRTSE), 02, Bd Frantz Fanon Algiers, BP N° 140 (Algeria); Haroun, A. [Quantum Physics and Dynamical Systems Laboratory, Ferhat Abbas University of Sétif (Algeria); Baadji, N. [School of Physics and CRANN, Trinity College, Dublin 2 (Ireland)

    2016-12-01

    The strained body centered tetragonal (bct) Mn ultrathin film from lattice parameter a=2.89 Å to lattice value of 2.73 Å induces anti-ferromagnetic behavior between Mn layers. The magnetic easy axis of Mn film was demonstrated theoretically to switch from the in-plane to out-of-plane by magneto-optical Kerr effect investigation. By including spin–orbit coupling in full potential linearized augmented plane waves and linearized muffin-tin orbitals methods, manganese ultrathin film displays different magnetic behaviors and the spin-reorientation transition is shown to be correlated to these structural changes. The calculated magnetic moment of manganese planes are enhanced and reach a value of ~4.02 μ{sub B}. The polar magneto-optical Kerr effect is calculated for a photon energy range extended to 15 eV. It shows a pronounced peak in visible light. - Highlights: • The applied strain in Mn-bct structure induces anti-ferromagnetic behavior. • The easy magnetization axis is demonstrated to be out-of-plane. • The magnetic moment of Mn-layers are enhanced and reach a value of ~4.02 μ{sub B}. • Kerr spectra show significant polar responses for Mn films in the visible range. • The prominent structures in the Kerr spectra have been identified.

  18. Photoluminescence and structural properties of unintentional single and double InGaSb/GaSb quantum wells grown by MOVPE

    Science.gov (United States)

    Ahia, Chinedu Christian; Tile, Ngcali; Botha, Johannes R.; Olivier, E. J.

    2018-04-01

    The structural and photoluminescence (PL) characterization of InGaSb quantum well (QW) structures grown on GaSb substrate (100) using atmospheric pressure Metalorganic Vapor Phase Epitaxy (MOVPE) is presented. Both structures (single and double-InGaSb QWs) were inadvertently formed during an attempt to grow capped InSb/GaSb quantum dots (QDs). In this work, 10 K PL peak energies at 735 meV and 740 meV are suggested to be emissions from the single and double QWs, respectively. These lines exhibit red shifts, accompanied by a reduction in their full-widths at half-maximum (FWHM) as the excitation power decreases. The presence of a GaSb spacer in the double QW was found to increase the strength of the PL emission, which consequently gives rise to a reduced blue-shift and broadening of the PL emission line observed for the double QW with an increase in laser power, while the low thermal activation energy for the quenching of the PL from the double QW is attributed to the existence of threading dislocations, as seen in the bright field TEM image for this sample.

  19. Manipulation of morphology and structure of the top of GaAs nanowires grown by molecular-beam epitaxy

    Science.gov (United States)

    Li, Lixia; Pan, Dong; Yu, Xuezhe; So, Hyok; Zhao, Jianhua

    2017-10-01

    Self-catalyzed GaAs nanowires (NWs) are grown on Si (111) substrates by molecular-beam epitaxy. The effect of different closing sequences of the Ga and As cell shutters on the morphology and structural phase of GaAs NWs is investigated. For the sequences of closing the Ga and As cell shutters simultaneously or closing the As cell shutter 1 min after closing the Ga cell shutter, the NWs grow vertically to the substrate surface. In contrast, when the As cell shutter is closed first, maintaining the Ga flux is found to be critical for the following growth of GaAs NWs, which can change the growth direction from [111] to . The evolution of the morphology and structural phase transition at the tips of these GaAs NWs confirm that the triple-phase-line shift mode is at work even for the growth with different cell shutter closing sequences. Our work will provide new insights for better understanding of the growth mechanism and realizing of the morphology and structure control of the GaAs NWs. Project supported partly by the MOST of China (No. 2015CB921503), the National Natural Science Foundation of China (Nos. 61504133, 61334006, 61404127), and Youth Innovation Promotion Association, CAS (No. 2017156).

  20. Defects in Arsenic Implanted p + -n- and n + -p- Structures Based on MBE Grown CdHgTe Films

    Science.gov (United States)

    Izhnin, I. I.; Fitsych, E. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Varavin, V. S.; Dvoretsky, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Bonchyk, A. Yu.; Savytskyy, H. V.; Świątek, Z.

    2018-02-01

    Complex studies of the defect structure of arsenic-implanted (with the energy of 190 keV) Cd x Hg 1-x Te ( x = 0.22) films grown by molecular-beam epitaxy are carried out. The investigations were performed using secondary-ion mass spectroscopy, transmission electron microscopy, optical reflection in the visible region of the spectrum, and electrical measurements. Radiation donor defects were studied in n +- p- and n +- n-structures obtained by implantation and formed on the basis of p-type and n-type materials, respectively, without activation annealing. It is shown that in the layer of the distribution of implanted ions, a layer of large extended defects with low density is formed in the near-surface region followed by a layer of smaller extended defects with larger density. A different character of accumulation of electrically active donor defects in the films with and without a protective graded-gap surface layer has been revealed. It is demonstrated that p +- n- structures are formed on the basis of n-type material upon activation of arsenic in the process of postimplantation thermal annealing with 100% activation of impurity and complete annihilation of radiation donor defects.

  1. Effects of tellurium concentration on the structure of melt-grown ZnSe crystals

    International Nuclear Information System (INIS)

    Atroshchenko, Lyubov V.; Galkin, Sergey N.; Rybalka, Irina A.; Voronkin, Evgeniy F.; Lalayants, Alexandr I.; Ryzhikov, Vladimir D.; Fedorov, Alexandr G.

    2005-01-01

    It has been shown that isovalent doping by tellurium positively affects the structural perfection of ZnSe crystals related to the completeness of the wurtzite-sphalerite phase transition. The optimum concentration range of tellurium in ZnSe crystals is 0.3-0.6 mass %. X-ray diffraction studies have shown that in ZnSe 1-x Te x crystals at tellurium concentrations below 0.3 mass % twinning and packing defects occur, while tellurium concentrations above 0.6 mass % lead to formation of tetragonal crystal lattice

  2. Nanoscale structural characterization of epitaxial graphene grown on off-axis 4H-SiC (0001

    Directory of Open Access Journals (Sweden)

    Yakimova Rositza

    2011-01-01

    Full Text Available Abstract In this work, we present a nanometer resolution structural characterization of epitaxial graphene (EG layers grown on 4H-SiC (0001 8° off-axis, by annealing in inert gas ambient (Ar in a wide temperature range (Tgr from 1600 to 2000°C. For all the considered growth temperatures, few layers of graphene (FLG conformally covering the 100 to 200-nm wide terraces of the SiC surface have been observed by high-resolution cross-sectional transmission electron microscopy (HR-XTEM. Tapping mode atomic force microscopy (t-AFM showed the formation of wrinkles with approx. 1 to 2 nm height and 10 to 20 nm width in the FLG film, as a result of the release of the compressive strain, which builds up in FLG during the sample cooling due to the thermal expansion coefficients mismatch between graphene and SiC. While for EG grown on on-axis 4H-SiC an isotropic mesh-like network of wrinkles interconnected into nodes is commonly reported, in the present case of a vicinal SiC surface, wrinkles are preferentially oriented in the direction perpendicular to the step edges of the SiC terraces. For each Tgr, the number of graphene layers was determined on very small sample areas by HR-XTEM and, with high statistics and on several sample positions, by measuring the depth of selectively etched trenches in FLG by t-AFM. Both the density of wrinkles and the number of graphene layers are found to increase almost linearly as a function of the growth temperature in the considered temperature range.

  3. Structured nurse-led follow-up for patients after discharge from the intensive care unit: Prospective quasi-experimental study.

    Science.gov (United States)

    Jónasdóttir, Rannveig J; Jones, Christina; Sigurdsson, Gisli H; Jónsdóttir, Helga

    2018-03-01

    The aim of this study was to describe a structured 3-month nurse-led follow-up of patients after discharge from intensive care and measure its effects on health status. Patients requiring intensive care stay frequently have lengthy and incomplete recovery suggesting need for additional support. The effects of intensive care nurse-led follow-up have not been sufficiently elucidated. A prospective, quasi-experimental study of patients who received structured nurse-led follow-up from intensive care nurses after discharge from intensive care until 3 months afterwards. The control group received usual care. Of 574 patients assessed for eligibility, from November 2012 - May 2015, 168 were assigned to the experimental group (N = 73) and the control group (N = 75). Primary outcome was health status, measured with eight scales of Short Form-36v2, before the intensive care admission and at four time points until 12 months after intensive care. A mixed effect model tested differences between the groups over time. Criteria for Reporting Development and Evaluation of Complex Interventions 2 guideline, guided the reporting of the intervention. The structured nurse-led follow-up did not improve patients' health status compared with usual care (mixed effect model, p = .078-.937). The structured nurse-led follow-up did not reveal an effect on the intensive care patients studied. Further examination of intensive care nurse-led follow-up is needed, taking into account the heterogeneity of the patient population, variations in length of ward stay, patients' health care needs during the first week at home after discharge from general ward and health status before intensive care admission. © 2017 John Wiley & Sons Ltd.

  4. Structural characterization and magnetic properties of L10-MnAl films grown on different underlayers by molecular beam epitaxy

    Science.gov (United States)

    Takata, Fumiya; Gushi, Toshiki; Anzai, Akihito; Toko, Kaoru; Suemasu, Takashi

    2018-03-01

    We grow MnAl films on different underlayers by molecular beam epitaxy (MBE), and investigate their structural and magnetic properties. L10-ordered MnAl films were successfully grown both on an MgO(0 0 1) single-crystalline substrate and on an Mn4N(0 0 1) buffer layer formed on MgO(0 0 1) and SrTiO3(0 0 1) substrates. For the MgO substrate, post rapid thermal annealing (RTA) drastically improved the crystalline quality and the degree of L10-ordering, whereas no improvement in the crystallinity was achieved by altering the substrate temperature (TS) during MBE growth. However, high-quality L10-MnAl films were formed on the Mn4N buffer layer by simply varying TS. Structural analysis using X-ray diffraction showed MnAl on an MgO substrate had a cubic structure whereas MnAl on the Mn4N buffer had a tetragonal structure. This difference in crystal structure affected the magnetic properties of the MnAl films. The uniaxial magnetic anisotropy constant (Ku) was drastically improved by inserting an Mn4N buffer layer. We achieved a perpendicular magnetic anisotropy of Ku = 5.0 ± 0.7 Merg/cm3 for MnAl/Mn4N film on MgO and 6.0 ± 0.2 Merg/cm3 on STO. These results suggest that Mn4N has potential as an underlayer for L10-MnAl.

  5. Diamond-like carbon layers grown by electrochemical method-structural study

    International Nuclear Information System (INIS)

    Kulesza, S.; Szatkowski, J.; Lulinska, E.; Kozanecki, M.

    2008-01-01

    A simple method of production of diamond-like carbon (DLC) thin films on various substrates by means of electrolysis of liquid hydrocarbons under ambient conditions is described in the paper. The amount of sp 3 -hybridized carbon clusters within deposited films is a key parameter of their structural quality, and is investigated using scanning electron microscopy (SEM), and Raman spectroscopy. Obtained results indicate that although the electrolysis generally leads to granular DLC films contaminated with graphitic inclusions, providing current density larger than 520 mA cm -2 at 1700 V, sp 3 -rich microcrystals with sharp edges can be found as well. Micro-Raman spectroscopic data strongly suggest that these microcrystals are minute diamonds, which eventually opens up a new perspective for a low-temperature synthesis of diamond-related materials

  6. Thermoelectric energy conversion in layered structures with strained Ge quantum dots grown on Si surfaces

    Science.gov (United States)

    Korotchenkov, Oleg; Nadtochiy, Andriy; Kuryliuk, Vasyl; Wang, Chin-Chi; Li, Pei-Wen; Cantarero, Andres

    2014-03-01

    The efficiency of the energy conversion devices depends in many ways on the materials used and various emerging cost-effective nanomaterials have promised huge potentials in highly efficient energy conversion. Here we show that thermoelectric voltage can be enhanced by a factor of 3 using layer-cake growth of Ge quantum dots through thermal oxidation of SiGe layers stacked in SiO2/Si3N4 multilayer structure. The key to achieving this behavior has been to strain the Ge/Si interface by Ge dots migrating to Si substrate. Calculations taking into account the carrier trapping in the dot with a quantum transmission into the neighboring dot show satisfactory agreement with experiments above ≈200 K. The results may be of interest for improving the functionality of thermoelectric devices based on Ge/Si.

  7. Large area LED package

    Science.gov (United States)

    Goullon, L.; Jordan, R.; Braun, T.; Bauer, J.; Becker, F.; Hutter, M.; Schneider-Ramelow, M.; Lang, K.-D.

    2015-03-01

    Solid state lighting using LED-dies is a rapidly growing market. LED-dies with the needed increasing luminous flux per chip area produce a lot of heat. Therefore an appropriate thermal management is required for general lighting with LEDdies. One way to avoid overheating and shorter lifetime is the use of many small LED-dies on a large area heat sink (down to 70 μm edge length), so that heat can spread into a large area while at the same time light also appears on a larger area. The handling with such small LED-dies is very difficult because they are too small to be picked with common equipment. Therefore a new concept called collective transfer bonding using a temporary carrier chip was developed. A further benefit of this new technology is the high precision assembly as well as the plane parallel assembly of the LED-dies which is necessary for wire bonding. It has been shown that hundred functional LED-dies were transferred and soldered at the same time. After the assembly a cost effective established PCB-technology was applied to produce a large-area light source consisting of many small LED-dies and electrically connected on a PCB-substrate. The top contacts of the LED-dies were realized by laminating an adhesive copper sheet followed by LDI structuring as known from PCB-via-technology. This assembly can be completed by adding converting and light forming optical elements. In summary two technologies based on standard SMD and PCB technology have been developed for panel level LED packaging up to 610x 457 mm2 area size.

  8. Structural, electrical, and optical characterization of coalescent p-n GaN nanowires grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kolkovsky, Vl. [Technische Universität Dresden, 01062 Dresden (Germany); Zytkiewicz, Z. R.; Sobanska, M.; Klosek, K. [Institute of Physics Polish Academy of Sciences, al. Lotnikow 32-46, 02-668 Warsaw (Poland); Korona, K. P. [Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland)

    2015-12-14

    The electrical, structural, and optical properties of coalescent p-n GaN nanowires (NWs) grown by molecular beam epitaxy on Si (111) substrate are investigated. From photoluminescence measurements the full width at half maximum of bound exciton peaks AX and DA is found as 1.3 and 1.2 meV, respectively. These values are lower than those reported previously in the literature. The current-voltage characteristics show the rectification ratio of about 10{sup 2} and the leakage current of about 10{sup −4} A/cm{sup 2} at room temperature. We demonstrate that the thermionic mechanism is not dominant in these samples and spatial inhomogeneties and tunneling processes through a ∼2 nm thick SiN{sub x} layer between GaN and Si could be responsible for deviation from the ideal diode behavior. The free carrier concentration in GaN NWs determined by capacitance-voltage measurements is about 4 × 10{sup 15 }cm{sup −3}. Two deep levels (H190 and E250) are found in the structures. We attribute H190 to an extended defect located at the interface between the substrate and the SiN{sub x} interlayer or near the sidewalls at the bottom of the NWs, whereas E250 is tentatively assigned to a gallium-vacancy- or nitrogen interstitials-related defect.

  9. Structural analysis of Gossypium hirsutum fibers grown under greenhouse and hydroponic conditions.

    Science.gov (United States)

    Natalio, Filipe; Tahir, Muhammad Nawaz; Friedrich, Norman; Köck, Margret; Fritz-Popovski, Gerhard; Paris, Oskar; Paschke, Reinhard

    2016-06-01

    Cotton is the one of the world's most important crops. Like any other crop, cotton growth/development and fiber quality is highly dependent on environmental factors. Increasing global weather instability has been negatively impacting its economy. Cotton is a crop that exerts an intensive pressure over natural resources (land and water) and demands an overuse of pesticides. Thus, the search for alternative cotton culture methods that are pesticide-free (biocotton) and enable customized standard fiber quality should be encouraged. Here we describe a culture of Gossypium hirsutum ("Upland" Cotton) utilizing a greenhouse and hydroponics in which the fibers are morphological similar to conventional cultures and structurally fit into the classical two-phase cellulose I model with 4.19nm crystalline domains surrounded by amorphous regions. These fibers exhibit a single crystalline form of cellulose I-Iß, monoclinic unit cell. Fiber quality bulk analysis shows an improved length, strength, whiteness when compared with soil-based cultures. Finally, we show that our fibers can be spun, used for production of non-woven fabrics and indigo-vat stained demonstrating its potential in industrial and commercial applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The atomic structure of the Si(111)-Pb buried interface grown on the Si(111)-(#sq root#3 x #sq root#3)-Pb reconstruction

    DEFF Research Database (Denmark)

    Howes, P.B.; Edwards, K.A.; Macdonald, J.E.

    1998-01-01

    that there are structural differences between the buried interfaces. We present surface X-ray diffraction measurements of the interface grown from the incommensurate Si(111)-(root 3 x root 3)-R30 degrees-Pb reconstruction and show that, in contrast to the starting surface, the interface comprises the junction between...

  11. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, N. S., E-mail: nsokolov@fl.ioffe.ru; Fedorov, V. V.; Korovin, A. M.; Suturin, S. M.; Baranov, D. A.; Gastev, S. V.; Krichevtsov, B. B.; Bursian, V. E.; Lutsev, L. V. [Ioffe Physical-Technical Institute of Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Maksimova, K. Yu.; Grunin, A. I. [Immanuel Kant Baltic Federal University, Kaliningrad 236041 (Russian Federation); Tabuchi, M. [Synchrotron Radiation Research Center, Nagoya University, Nagoya 464-8603 (Japan)

    2016-01-14

    Pulsed laser deposition has been used to grow thin (10–84 nm) epitaxial layers of Yttrium Iron Garnet Y{sub 3}Fe{sub 5}O{sub 12} (YIG) on (111)–oriented Gadolinium Gallium Garnet substrates at different growth conditions. Atomic force microscopy showed flat surface morphology both on micrometer and nanometer scales. X-ray diffraction measurements revealed that the films are coherent with the substrate in the interface plane. The interplane distance in the [111] direction was found to be by 1.2% larger than expected for YIG stoichiometric pseudomorphic film indicating presence of rhombohedral distortion in this direction. Polar Kerr effect and ferromagnetic resonance measurements showed existence of additional magnetic anisotropy, which adds to the demagnetizing field to keep magnetization vector in the film plane. The origin of the magnetic anisotropy is related to the strain in YIG films observed by XRD. Magneto-optical Kerr effect measurements revealed important role of magnetization rotation during magnetization reversal. An unusual fine structure of microwave magnetic resonance spectra has been observed in the film grown at reduced (0.5 mTorr) oxygen pressure. Surface spin wave propagation has been demonstrated in the in-plane magnetized films.

  12. N and Si Implantation Effect on Structural and Electrical Properties of Bridgman grown GaSe Single Crystal

    International Nuclear Information System (INIS)

    Karabulut, O.

    2004-01-01

    N and Si implantation to GaSe single crystals were carried out parallel to c-axis with ion beam of about 10 1 6 ions/cm 2 dose having energy values 30, 60 and 100 keV. Ion implantation modifications on Bridgman grown GaSe single crystals have been investigated by means of XRD, electrical conductivity, absorption and photoconductivity measurements. XRD measurements revealed that annealing results in a complete recovery of the crystalline nature that was moderately reduced upon implantation. It was observed that both N- and Siimplantation followed by annealing process decreased the resistivity values from 10 7 to 10 3 .-cm. The analysis of temperature dependent conductivity showed that at high temperature region above 200 K, the transport mechanism is dominated by thermal excitation in the doped and undoped GaSe samples. At lower temperatures, the conduction of carriers is dominated by variable range hopping mechanism in the implanted samples. Absorption and spectral photoconductivity measurements showed that the band edge is shifted in the implanted sample. All these modifications were attributed to the structural modifications and continuous shallow trap levels introduced upon implantation and annealing

  13. Comparative studies on structural feature of agar polysaccharides from Porphyra haitanensis grown in south and north China

    Science.gov (United States)

    Hongfeng, Gao; Minghou, Ji; Wenda, Cao

    1993-03-01

    The structural feature of agar polysaccharides from Porphyra haitanensis grown in south China and transplanted to the north was investigated by fractionation on DEAE—Sephadex A 50, chemical analysis, and infrared and13C-NMR spectroscopy. The agars composed mainly of charged molecules were eluted from DEAE—Sephadex A 50 with 1.0 mol/L NaCl solution from the southern P. haitanensis and with 0.5 mol/L NaCl from the northern one. The13C-NMR spectra showed that agarobiose [(1→3)-β- D-galactopyranosyl-(1→4)-3,6-anhydro-α- L-galactopyranose] and the biological precursor of agarobiose [(1→3)-β- D-galactopyra nosyl-(1→4)-6-sulfate-α- L-galactopyranose] were the major disaccharide repeating units in the charged fractions. The content of the biological precursor in the agar polysaccharides from southern P. haitanensis was higher than that in the northern one, the content of the biological precursor extracted from cold water was higher than that from hot water, and the content of 6-OMe- D-galactose in the southern P. haitanensis polysaccharides was higher than in the northern one. This distinct difference will be of significance for further study of the physiological characters of P. haitanensis.

  14. Structural, Optical Constants and Photoluminescence of ZnO Thin Films Grown by Sol-Gel Spin Coating

    Directory of Open Access Journals (Sweden)

    Abdel-Sattar Gadallah

    2013-01-01

    Full Text Available We report manufacturing and characterization of low cost ZnO thin films grown on glass substrates by sol-gel spin coating method. For structural properties, X-ray diffraction measurements have been utilized for evaluating the dominant orientation of the thin films. For optical properties, reflectance and transmittance spectrophotometric measurements have been done in the spectral range from 350 nm to 2000 nm. The transmittance of the prepared thin films is 92.4% and 88.4%. Determination of the optical constants such as refractive index, absorption coefficient, and dielectric constant in this wavelength range has been evaluated. Further, normal dispersion of the refractive index has been analyzed in terms of single oscillator model of free carrier absorption to estimate the dispersion and oscillation energy. The lattice dielectric constant and the ratio of free carrier concentration to free carrier effective mass have been determined. Moreover, photoluminescence measurements of the thin films in the spectral range from 350 nm to 900 nm have been presented. Electrical measurements for resistivity evaluation of the films have been done. An analysis in terms of order-disorder of the material has been presented to provide more consistency in the results.

  15. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties

    International Nuclear Information System (INIS)

    Sokolov, N. S.; Fedorov, V. V.; Korovin, A. M.; Suturin, S. M.; Baranov, D. A.; Gastev, S. V.; Krichevtsov, B. B.; Bursian, V. E.; Lutsev, L. V.; Maksimova, K. Yu.; Grunin, A. I.; Tabuchi, M.

    2016-01-01

    Pulsed laser deposition has been used to grow thin (10–84 nm) epitaxial layers of Yttrium Iron Garnet Y 3 Fe 5 O 12 (YIG) on (111)–oriented Gadolinium Gallium Garnet substrates at different growth conditions. Atomic force microscopy showed flat surface morphology both on micrometer and nanometer scales. X-ray diffraction measurements revealed that the films are coherent with the substrate in the interface plane. The interplane distance in the [111] direction was found to be by 1.2% larger than expected for YIG stoichiometric pseudomorphic film indicating presence of rhombohedral distortion in this direction. Polar Kerr effect and ferromagnetic resonance measurements showed existence of additional magnetic anisotropy, which adds to the demagnetizing field to keep magnetization vector in the film plane. The origin of the magnetic anisotropy is related to the strain in YIG films observed by XRD. Magneto-optical Kerr effect measurements revealed important role of magnetization rotation during magnetization reversal. An unusual fine structure of microwave magnetic resonance spectra has been observed in the film grown at reduced (0.5 mTorr) oxygen pressure. Surface spin wave propagation has been demonstrated in the in-plane magnetized films

  16. Investigation on structural, optical and electrical properties of Cp2Mg flow varied p-GaN grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Surender, S.; Pradeep, S.; Ramesh, R.; Baskar, K., E-mail: drbaskar2009@gmail.com [Crystal Growth Centre, Anna University, Chennai-600025 (India)

    2016-05-23

    In this work the effect of different concentration of Magnesium doped GaN (p-GaN) were systematically studied. The p-GaN epilayers were grown on c-plane sapphire substrate by horizontal flow Metal Organic Chemical Vapor Deposition (MOCVD) with various flow rates of 100 sccm to 300 sccm using bis-(cyclopentadienyl) - magnesium (Cp2Mg) precursor. The samples were subjected to structural, optical, morphological and electrical studies using High Resolution X-ray diffraction (HRXRD), room temperature photoluminescence (PL), Atomic Force Microscopy (AFM) and Hall measurement respectively. Results indicated that the Mg doped GaN of 200 sccm Cp2Mg has the root mean square (rms) roughness of about 0.3 nm for a scan area of 5×5 µm{sup 2} which has good two dimensional growth. Moreover, Hall measurements results shows that (200 sccm Cp2Mg) Mg-doped GaN possess the highest hole concentration of 5.4×10{sup 17}cm{sup −3} and resistivity of 1.7 Ωcm at room temperature.

  17. Structural, magnetic, dielectric and bonding properties of BiMnO3 grown by co-precipitation technique

    Directory of Open Access Journals (Sweden)

    S. Hanif

    Full Text Available In this work, powders of BiMnO3 (BMO are prepared by using co-precipitation method. The effect of sintering temperature on the physical properties is observed. The X-ray diffraction (XRD reveals monoclinic structure, while the surface morphology observed by scanning electron microscopy (SEM indicates sintering temperature dependent grain growth and an increased surface uniformity. The paramagnetic behavior is exhibited by the grown samples at room temperature (RT, which is due to the ordering temperature well below RT. The dielectric constant and the dielectric loss decay with frequency, which is due to the dipole relaxation. Moreover, Mn–O and Bi–O vibrational bands have been observed in the range 800–850 cm−1 and 500–600 cm−1, respectively. The prepared samples find potential application as a multiferroic material, with simultaneous control over both the magnetism and the dielectric characteristics. Keywords: Multiferroics, Paramagnetism, Co-precipitation, Dielectric constant, Surface morphology

  18. Effects of Various Parameters on Structural and Optical Properties of CBD-Grown ZnS Thin Films: A Review

    Science.gov (United States)

    Sinha, Tarkeshwar; Lilhare, Devjyoti; Khare, Ayush

    2018-02-01

    Zinc sulfide (ZnS) thin films deposited by chemical bath deposition (CBD) technique have proved their capability in a wide area of applications including electroluminescent and display devices, solar cells, sensors, and field emitters. These semiconducting thin films have attracted a much attention from the scientific community for industrial and research purposes. In this article, we provide a comprehensive review on the effect of various parameters on various properties of CBD-grown ZnS films. In the first part, we discuss the historical background of ZnS, its basic properties, and the advantages of the CBD technique. Detailed discussions on the film growth, structural and optical properties of ZnS thin films affected by various parameters, such as bath temperature and concentration, deposition time, stirring speed, complexing agents, pH value, humidity in the environment, and annealing conditions, are also presented. In later sections, brief information about the recent studies and findings is also added to explore the scope of research work in this field.

  19. Evolution of Structural and Optical Properties of ZnO Nanorods Grown on Vacuum Annealed Seed Crystallites

    Directory of Open Access Journals (Sweden)

    Waqar Khan

    2018-01-01

    Full Text Available In this study, the ambient condition for the as-coated seed layer (SL annealing at 350 °C is varied from air or nitrogen to vacuum to examine the evolution of structural and optical properties of ZnO nanorods (NRs. The NR crystals of high surface density (~240 rods/μm2 and aspect ratio (~20.3 show greatly enhanced (002 degree of orientation and crystalline quality, when grown on the SLs annealed in vacuum, compared to those annealed in air or nitrogen ambient. This is due to the vacuum-annealed SL crystals of a highly preferred orientation toward (002 and large grain sizes. X-ray photoelectron spectroscopy also reveals that the highest O/Zn atomic ratio of 0.89 is obtained in the case of vacuum-annealed SL crystals, which is due to the effective desorption of hydroxyl groups and other contaminants adsorbed on the surface formed during aqueous solution-based growth process. Near band edge emission (ultra violet range of 360–400 nm of the vacuum-annealed SLs is also enhanced by 44% and 33% as compared to those annealed in air and nitrogen ambient, respectively, in photoluminescence with significant suppression of visible light emission associated with deep level transition. Due to this improvement of SL optical crystalline quality, the NR crystals grown on the vacuum-annealed SLs produce ~3 times higher ultra violet emission intensity than the other samples. In summary, it is shown that the ZnO NRs preferentially grow along the wurtzite c-axis direction, thereby producing the high crystalline quality of nanostructures when they grow on the vacuum-annealed SLs of high crystalline quality with minimized impurities and excellent preferred orientation. The ZnO nanostructures of high crystalline quality achieved in this study can be utilized for a wide range of potential device applications such as laser diodes, light-emitting diodes, piezoelectric transducers and generators, gas sensors, and ultraviolet detectors.

  20. Efficient yellow and green emitting InGaN/GaN nanostructured QW materials and LEDs

    International Nuclear Information System (INIS)

    Nakajima, Yoshitake; Lin, Yenting; Dapkus, Paul Daniel

    2016-01-01

    Efficient green emitting LEDs and monolithic white light emitting LEDs require the extension of the range of efficient light emission in the GaN/InGaN materials system. We demonstrate high efficiency green and yellow light emitting multiple quantum well (MQW) structures grown on GaN nanostripe templates. The structures show promise for realizing high efficiency phosphor - free white LEDs. The nanostripe dimensions range from 100 to 300 nm and have separations that range from 300 nm to 1 μm. The MOCVD growth conditions strongly affect surfaces expressed in the GaN nanostripes whose sidewalls can be controlled to be nearly vertical or inclined and intersecting. Single quantum well (QW) structures are grown on these different stripes. Photoluminescence (PL) measurement shows that QW grown on stripes with the {10-11} surfaces and triangular shape emit the longest peak wavelength and highly efficient PL emission peak wavelengths as long as 570 nm are realized. PL and electroluminescence (EL) spectra show narrow linewidth that is comparable to the planar case and CL studies further demonstrate the uniform emission wavelength along the sidewalls of the structures. Finally, we have grown and fabricated green emitting LEDs on {10-11} faceted nanostripes with promising device characteristics. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Morphological dependent Indium incorporation in InGaN/GaN multiple quantum wells structure grown on 4° misoriented sapphire substrate

    Directory of Open Access Journals (Sweden)

    Teng Jiang

    2016-03-01

    Full Text Available The epitaxial layers of InGaN/GaN MQWs structure were grown on both planar and vicinal sapphire substrates by metal organic chemical vapor deposition. By comparing the epitaxial layers grown on planar substrate, the sample grown on 4° misoriented from c-plane toward m-plane substrate exhibited many variations both on surface morphology and optical properties according to the scanning electronic microscopy and cathodoluminescence (CL spectroscopy results. Many huge steps were observed in the misoriented sample and a large amount of V-shape defects located around the boundary of the steps. Atoms force microscopy images show that the steps were inclined and deep grooves were formed at the boundary of the adjacent steps. Phase separation was observed in the CL spectra. CL mapping results also indicated that the deep grooves could effectively influence the localization of Indium atoms and form an In-rich region.

  2. Wafer-scale controlled exfoliation of metal organic vapor phase epitaxy grown InGaN/GaN multi quantum well structures using low-tack two-dimensional layered h-BN

    Energy Technology Data Exchange (ETDEWEB)

    Ayari, Taha; Li, Xin; Voss, Paul L.; Ougazzaden, Abdallah, E-mail: aougazza@georgiatech-metz.fr [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Georgia Tech Lorraine, UMI 2958, Georgia Tech-CNRS, 57070 Metz (France); Sundaram, Suresh; El Gmili, Youssef [Georgia Tech Lorraine, UMI 2958, Georgia Tech-CNRS, 57070 Metz (France); Salvestrini, Jean Paul [Georgia Tech Lorraine, UMI 2958, Georgia Tech-CNRS, 57070 Metz (France); Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France)

    2016-04-25

    Recent advances in epitaxial growth have led to the growth of III-nitride devices on 2D layered h-BN. This advance has the potential for wafer-scale transfer to arbitrary substrates, which could improve the thermal management and would allow III-N devices to be used more flexibly in a broader range of applications. We report wafer scale exfoliation of a metal organic vapor phase epitaxy grown InGaN/GaN Multi Quantum Well (MQW) structure from a 5 nm thick h-BN layer that was grown on a 2-inch sapphire substrate. The weak van der Waals bonds between h-BN atomic layers break easily, allowing the MQW structure to be mechanically lifted off from the sapphire substrate using a commercial adhesive tape. This results in the surface roughness of only 1.14 nm on the separated surface. Structural characterizations performed before and after the lift-off confirm the conservation of structural properties after lift-off. Cathodoluminescence at 454 nm was present before lift-off and 458 nm was present after. Electroluminescence near 450 nm from the lifted-off structure has also been observed. These results show that the high crystalline quality ultrathin h-BN serves as an effective sacrificial layer—it maintains performance, while also reducing the GaN buffer thickness and temperature ramps as compared to a conventional two-step growth method. These results support the use of h-BN as a low-tack sacrificial underlying layer for GaN-based device structures and demonstrate the feasibility of large area lift-off and transfer to any template, which is important for industrial scale production.

  3. Effect of substrate temperature on the structure of amorphous oxygenated hydrocarbon films grown with a pulsed supersonic methane plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Fedoseeva, Yu. V., E-mail: fedoseeva@niic.nsc.ru [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Pozdnyakov, G.A. [Khristianovich Institute of Theoretical and Applied Mechanics, SB RAS, Novosibirsk 630090 (Russian Federation); Okotrub, A.V.; Kanygin, M.A. [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Nastaushev, Yu. V. [Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk 630090 (Russian Federation); Vilkov, O.Y. [St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Bulusheva, L.G. [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-11-01

    Highlights: • A deposition of supersonic methane plasma flow on silicon substrate produces amorphous oxygenated hydrocarbon (CO{sub x}H{sub y}) film. • The thickness, composition, and wettability of the film depend on the substrate temperature. • A rise of the substrate temperature from 500 to 700 °C promotes the sp{sup 3}-hybridization carbon formation. - Abstract: Since amorphous oxygenated hydrocarbon (CO{sub x}H{sub y}) films are promising engineering materials a study of the structure and composition of the films depending on the conditions of synthesis is important for controlling of their physicochemical properties. Here, we used the methods of scanning and transmission electron microscopy, X-ray photoelectron, near-edge X-ray absorption fine structure, Fourier transform infrared and Raman spectroscopy to reveal changes in the chemical connectivity of CO{sub x}H{sub y} films grown on silicon substrates heated to 300, 500, and 700 °C using a supersonic flow of methane plasma. It was found that the CO{sub x}H{sub y} films, deposited at 300 and 500 °C, were mainly composed of the sp{sup 2}-hybridized carbon areas with various oxygen species. A rise of the substrate temperature caused an increase of the portion of tetrahedral carbon atoms as well as carboxyl and hydroxyl groups. With growth of the substrate temperature, the film thickness reduced monotonically from 400 to 180 nm, while the film adhesion improved substantially. The films, deposited at lower temperatures, showed high hydrophilicity due to porosity and presence of oxygenated groups both at the surface and in the bulk.

  4. Optical properties and structure of HfO{sub 2} thin films grown by high pressure reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, F L [Departamento de Electronica y TecnologIa de Computadoras, Universidad Politecnica de Cartagena, Campus Universitario Muralla del Mar, E-30202 Cartagena (Spain); Toledano-Luque, M [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28040 Madrid (Spain); GandIa, J J [Departamento de EnergIa, CIEMAT, Avda. Complutense 22, E-28040 Madrid (Spain); Carabe, J [Departamento de EnergIa, CIEMAT, Avda. Complutense 22, E-28040 Madrid (Spain); Bohne, W [Hahn-Meitner-Institut Berlin, Abteilung SF4, D-14109 Berlin (Germany); Roehrich, J [Hahn-Meitner-Institut Berlin, Abteilung SF4, D-14109 Berlin (Germany); Strub, E [Hahn-Meitner-Institut Berlin, Abteilung SF4, D-14109 Berlin (Germany); Martil, I [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2007-09-07

    Thin films of hafnium oxide (HfO{sub 2}) have been grown by high pressure reactive sputtering on transparent quartz substrates (UV-grade silica) and silicon wafers. Deposition conditions were adjusted to obtain polycrystalline as well as amorphous films. Optical properties of the films deposited on the silica substrates were investigated by transmittance and reflectance spectroscopy in the ultraviolet, visible and near infrared range. A numerical analysis method that takes into account the different surface roughness of the polycrystalline and amorphous films was applied to calculate the optical constants (refractive index and absorption coefficient). Amorphous films were found to have a higher refractive index and a lower transparency than polycrystalline films. This is attributed to a higher density of the amorphous samples, which was confirmed by atomic density measurements performed by heavy-ion elastic recoil detection analysis. The absorption coefficient gave an excellent fit to the Tauc law (indirect gap), which allowed a band gap value of 5.54 eV to be obtained. The structure of the films (amorphous or polycrystalline) was found to have no significant influence on the nature of the band gap. The Tauc plots also give information about the structure of the films, because the slope of the plot (the Tauc parameter) is related to the degree of order in the bond network. The amorphous samples had a larger value of the Tauc parameter, i.e. more order than the polycrystalline samples. This is indicative of a uniform bond network with percolation of the bond chains, in contrast to the randomly oriented polycrystalline grains separated by grain boundaries.

  5. Structural and morphological characterizations of ZnO films grown on GaAs substrates by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Agouram, S.; Zuniga Perez, J.; Munoz-Sanjose, V. [Universitat de Valencia, Departamento de Fisica Aplicada y Electromagnetismo, Burjassot (Spain)

    2007-07-15

    ZnO films were grown on GaAs(100), GaAs(111)A and GaAs(111)B substrates by metal organic chemical vapour deposition (MOCVD). Diethylzinc (DEZn) and tertiarybutanol (t-butanol) were used as Zn and O precursors, respectively. The influence of the growth temperature and GaAs substrate orientation on the crystalline orientation and morphology of the ZnO grown films has been analysed. Crystallinity of grown films was studied by X-ray diffraction (XRD); thickness and morphology of ZnO films were investigated by scanning electron microscopy (SEM). SEM results reveal significant differences between morphologies depending on growth temperature but not significant differences were detected on the texture of grown films. (orig.)

  6. Structural and optical properties of GaSb films grown on AlSb/Si (100) by insertion of a thin GaSb interlayer grown at a low temperature

    International Nuclear Information System (INIS)

    Noh, Young Kyun; Kim, Moon Deock; Oh, Jae Eung; Yang, Woo Chul

    2010-01-01

    We have investigated the structural and the optical properties of GaSb films with a thin AlSb buffer layer and a GaSb interlayer grown on Si (100) substrates by using molecular beam epitaxy. Reflection high-energy electron diffraction and atomic force microscopy measurements of the thin AlSb buffer layers showed that the surface had uniformly-sized quantum dots with a low defect density. The surface roughness of a GaSb film with a thin GaSb interlayer grown at a low temperature was decreased by a factor of about 5 compared with the roughness of the GaSb film without the thin GaSb interlayer. In addition, double-crystal X-ray diffraction and photoluminescence results showed that the structural and the optical properties of the GaSb layer with the GaSb interlayer were improved significantly. We suggest that the significant reduction of the dislocation density in the GaSb film was due to the dislocations being prevented from propagating into the GaSb overlayer by the thin GaSb interlayer.

  7. Synthesis of In0.1Ga0.9N/GaN structures grown by MOCVD and MBE for high speed optoelectronics

    KAUST Repository

    Alshehri, Bandar

    2016-06-07

    In this work, we report a comparative investigation of InxGa1-xN (SL) and InxGa1-xN/GaN (MQW) structures with an indium content equivalent to x=10%. Both structures are grown on (0001) sapphire substrates using MOCVD and MBE growth techniques. Optical properties are evaluated for samples using PL characteristics. Critical differences between the resulting epitaxy are observed. Microstructures have been assessed in terms of crystalline quality, density of dislocations and surface morphology. We have focused our study towards the fabrication of vertical PIN photodiodes. The technological process has been optimized as a function of the material structure. From the optical and electrical characteristics, this study demonstrates the benefit of InGaN/GaN MQW grown by MOCVD in comparison with MBE for high speed optoelectronic applications.

  8. Optical and structural properties of Mn-doped ZnO nanorods grown by aqueous chemical growth for spintronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Strelchuk, V.V. [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45 Nauky pr., 03028 Kyiv (Ukraine); Nikolenko, A.S., E-mail: nikolenko_mail@ukr.net [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45 Nauky pr., 03028 Kyiv (Ukraine); Kolomys, O.F.; Rarata, S.V.; Avramenko, K.A.; Lytvyn, P.M. [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45 Nauky pr., 03028 Kyiv (Ukraine); Tronc, P. [Centre National de la Recherche Scientifique, Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris, 10 rue Vauquelin, 75005 Paris (France); Chey, Chan Oeurn; Nur, Omer; Willander, Magnus [Department of Science and Technology, Linköping University, 601 74 Norrköping (Sweden)

    2016-02-29

    The effect of Mn-doping on the structural, morphological, optical and magnetic properties of the ZnO:Mn nanorods (NRs) synthesized by aqueous chemical process is reported. Grown ZnO:Mn NRs are shown to have hexagonal end facets and the diameters increasing with nominal Mn content. Optical absorption measurements show a decrease in optical band gap with increase of Mn concentration. Raman spectroscopy revealed significant modification of the lattice vibrational properties of the ZnO matrix upon Mn doping. The additional Mn-related vibrational mode, intensity of which increases with amount of Mn can be regarded as an evidence of Mn incorporation into the host lattice of the ZnO. At high Mn concentrations, coexistence of hexagonal Zn{sub 1−x}Mn{sub x}O phase along with the secondary phases of ZnMn{sub 2}O{sub 4} cubic spinel is revealed. Magnetic properties of ZnO:Mn NRs are studied by combinatorial atomic force microscopy and magnetic force microscopy imaging, and obtained clear magnetic contrast at room temperature provides a strong evidence of ferromagnetic behavior. - Highlights: • Synthesis of Mn-doped ZnO nanorods by hydrothermal method is demonstrated. • Doping with Mn significantly changes the morphology of ZnO nanorods. • Additional Mn-induced Raman modes evidence incorporation of Mn into ZnO matrix. • Formation of secondary ZnMn{sub 2}O{sub 4} spinel phase is found at high Mn concentrations. • Contrast MFM images of ZnO:Mn nanorods indicate ferromagnetism at room temperature.

  9. Structural identification of lipopeptide biosurfactants produced by Bacillus subtilis strains grown on the media obtained from renewable natural resources.

    Science.gov (United States)

    Paraszkiewicz, Katarzyna; Bernat, Przemysław; Kuśmierska, Anna; Chojniak, Joanna; Płaza, Grażyna

    2018-03-01

    The aim of the study was to identify and characterize lipopeptide (LP) biosurfactants produced by two Bacillus subtilis strains (KP7 and I'-1a) grown on various media prepared from renewable natural resources: two different brewery wastewaters (BW#4 and BW#6), 2% beet molasses (M), apple peels extract (APE) supplemented with 0.25% of yeast extract (YE) or 0.25% peptone (P), and similarly supplemented carrot peels extract (CPE). In all used media both strains retained their individual LP production signature characterized by surfactin and iturin overproduction exhibited by KP7 and I'-1a strain, respectively. The production level and the structural diversity of synthesized LPs were dependent on the medium composition. In the CPE+YE medium it was higher than the yield obtained in Luria-Bertani (140.6 and 100.3 mg L -1 , respectively). Surfactins were produced by both strains as a mixture of four homologues (C13-C16) with the domination of variant C14. All other broths prepared from renewable resources strongly stimulated the iturin production by I'-1a strain with the exception of BW media. The highest iturin concentration (428.7 mg L -1 ) obtained in the CPE+P culture of I'-1a strain was about seven-fold higher than in LB. In all cultures only iturin A was identified. Among four iturin homologues (C13-16) produced by I'-1a strain, the highest relative contents of C16 variant (70-80%) were calculated for samples obtained from APE+P and CPE+P media. The obtained data indicate that the waste composition has an influence on both the types and amounts of biosurfactants produced by studied B. subtilis strains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Psychological recovery after intensive care: Outcomes of a long-term quasi-experimental study of structured nurse-led follow-up.

    Science.gov (United States)

    Jónasdóttir, Rannveig J; Jónsdóttir, Helga; Gudmundsdottir, Berglind; Sigurdsson, Gisli H

    2018-02-01

    To compare psychological recovery of patients receiving structured nurse-led follow-up and patients receiving usual care after intensive care discharge. Quasi-experimental study. Single centre, university hospital, mixed intensive care patient population. Symptoms of post-traumatic stress disorder, anxiety and depression measured three and four times over 12 months after intensive care discharge. Disturbing memories of the intensive care stay and psychological reactions (that one's life was in danger, threat to physical integrity, intense fear, helplessness, horror) three months after intensive care. A mixed effect model tested differences between the groups over time and regression model predicted post-traumatic stress at three months. The experimental group had significantly more symptoms of post-traumatic stress and anxiety than the control group over the 12 months. Patients from both groups had severe symptoms of post-traumatic stress. Patients with post-traumatic stress at three months had disturbing memories and psychological reactions. The structured nurse-led follow-up did not improve patients' measured outcomes of psychological recovery after intensive care. Patients with severe symptoms of post-traumatic stress are of concern. Emphasis needs to be placed on disturbing memories of the intensive care stay and psychological reactions when constructing intensive care nurse-led follow-up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Structural Characterization and Antimicrobial Activity of a Biosurfactant Obtained From Bacillus pumilus DSVP18 Grown on Potato Peels

    Science.gov (United States)

    Sharma, Deepak; Ansari, Mohammad Javed; Gupta, Sonam; Al Ghamdi, Ahmad; Pruthi, Parul; Pruthi, Vikas

    2015-01-01

    Background: Biosurfactants constitute a structurally diverse group of surface-active compounds derived from microorganisms. They are widely used industrially in various industrial applications such as pharmaceutical and environmental sectors. Major limiting factor in biosurfactant production is their production cost. Objectives: The aim of this study was to investigate biosurfactant production under laboratory conditions with potato peels as the sole source of carbon source. Materials and Methods: A biosurfactant-producing bacterial strain (Bacillus pumilus DSVP18, NCBI GenBank accession no. GQ865643) was isolated from motor oil contaminated soil samples. Biochemical characteristics of the purified biosurfactant were determined and its chemical structure was analyzed. Stability studies were performed and biological activity of the biosurfactant was also evaluated. Results: The strain, when grown on modified minimal salt media supplemented with 2% potato peels as the sole carbon source, showed the ability to reduce Surface Tension (ST) value of the medium from 72 to 28.7 mN/m. The isolated biosurfactant (3.2 ± 0.32 g/L) was stable over a wide range of temperatures (20 - 120 ºC), pH (2-12) and salt concentrations (2 - 12%). When characterized using high-performance liquid chromatography (HPLC) and Fourier transform infrared spectroscopy, it was found to be a lipopeptide in nature, which was further confirmed by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (mass peak 1044.60) and nuclear magnetic resonance (NMR) studies. Data showed that the isolated biosurfactant at the concentration range of 30 - 35 µg/ml had strong antimicrobial activity when tested against standard strains of Bacillus cereus, Escherichia coli, Salmonella enteritidis, Staphylococcus aureus and Paenibacillus larvae. Conclusions: Potato peels were proved to be potentially useful substrates for biosurfactant production by B. pumilus DSVP18. The strain possessed a

  12. Structural characterization of niobium oxide thin films grown on SrTiO3 (111) and (La,Sr)(Al,Ta)O3 (111) substrates

    Science.gov (United States)

    Dhamdhere, Ajit R.; Hadamek, Tobias; Posadas, Agham B.; Demkov, Alexander A.; Smith, David J.

    2016-12-01

    Niobium oxide thin films have been grown by molecular beam epitaxy on SrTiO3 (STO) (111) and (La0.18Sr0.82)(Al0.59Ta0.41)O3 (LSAT) (111) substrates. Transmission electron microscopy (TEM) confirmed the formation of high quality films with coherent interfaces. Films grown with higher oxygen pressure on STO (111) resulted in a (110)-oriented NbO2 phase with a distorted rutile structure, which can be described as body-centered tetragonal. The a lattice parameter of NbO2 was determined to be ˜13.8 Å in good agreement with neutron diffraction results published in the literature. Films grown on LSAT (111) at lower oxygen pressure produced the NbO phase with a defective rock salt cubic structure. The NbO lattice parameter was determined to be a ≈ 4.26 Å. The film phase/structure identification from TEM was in good agreement with in situ x-ray photoelectron spectroscopy measurements that confirmed the dioxide and monoxide phases, respectively. The atomic structure of the NbO2/STO and NbO/LSAT interfaces was determined based on comparisons between high-resolution electron micrographs and image simulations.

  13. Benefits and limitations of an employer-led, structured logbook to promote self-directed learning in the clinical workplace.

    Science.gov (United States)

    Dale, Vicki H M; Pierce, Stephanie E; May, Stephen A

    2013-01-01

    A structured logbook, consisting of a competency log and a learning contract, was designed and implemented as part of a two-week structured work placement for final-year veterinary students to help them become more self-directed in the workplace. The competency log encompassed 48 core skills and, along with the learning contract, was reviewed at the start and end of the placement. To assess their perceptions of the logbook in promoting self-directed learning, students and supervisors were asked to complete a questionnaire pre- and post-placement and to participate in focus groups (students) and interviews (supervisors) after the placement. The study found significant increases pre- to post-placement in students' perceived levels of competence in all 48 skills and their confidence in being self-directed. However, student attitudes toward the logbook significantly decreased in terms of it encouraging supervisors to take a clearly designed role in structuring learning and facilitating alignment of employer and student expectations. Although supervisors were generally positive about the logbook, some had not been able to review it with their students, which affected students' perceptions of the logbook's usefulness. Some supervisors felt they had not received enough training, and most, erroneously, believed the logbook to be an external research initiative rather than having been designed by the head of their own organization. This study demonstrated that a structured logbook may be useful in helping students become more self-directed; however, supervisor support for the logbook is critical. To facilitate this, supervisors require training and support from senior management.

  14. Magnetic-mechanical-electrical-optical coupling effects in GaN-based LED/rare-earth terfenol-D structures.

    Science.gov (United States)

    Peng, Mingzeng; Zhang, Yan; Liu, Yudong; Song, Ming; Zhai, Junyi; Wang, Zhong Lin

    2014-10-22

    A multi-field coupling structure is designed and investigated, which combines GaN-based optoelectronic devices and Terfenol-D. The abundant coupling effects and multifunctionalities among magnetics, mechanics, electrics, and optics are investigated by a combination of non-magnetic GaN-based piezoelectronic optoelectronic characteristics and the giant magnetomechanical properties of Terfenol-D. A few potential new areas of studies are proposed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of annealing on structural and optical properties of Cu2ZnSnS4 thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Surgina, G.D.; Nevolin, V.N.; Sipaylo, I.P.; Teterin, P.E.; Medvedeva, S.S.; Lebedinsky, Yu.Yu.; Zenkevich, A.V.

    2015-01-01

    In this work, we compare the effect of different types of thermal annealing on the morphological, structural and optical properties of Cu 2 ZnSnS 4 (CZTS) thin films grown by reactive Pulsed Laser Deposition in H 2 S flow. Rutherford backscattering spectrometry, atomic force microscopy, X-ray diffraction, Raman spectroscopy and optical spectrophotometry data reveal dramatic increase of the band gap and the crystallite size without the formation of secondary phases upon annealing in N 2 at the optimized conditions. - Highlights: • Cu 2 ZnSnS 4 (CZTS) thin films were grown at room temperature. • Reactive Pulsed Laser Deposition in H 2 S flow was used as a growth method. • Effect of annealing conditions on CZTS structural and optical properties is revealed. • Both the grain size and the band gap of CZTS film increase following the annealing. • Annealing in N 2 effectively inhibits the formation of Sn x S secondary phases.

  16. A Systematic Study of the Relationship among the Morphological, Structural and Photoelectrochemical Properties of ZnO Nanorods Grown Using the Microwave Chemical Bath Deposition Method

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sungjin; Ryu, Hyukhyun [Inje University, Gimhae (Korea, Republic of); Lee, Won-Jae [Dong-Eui University, Busan (Korea, Republic of)

    2017-08-15

    In this study, zinc oxide (ZnO) nanostructures were grown on a ZnO seed layer/fluorine-doped tin oxide (FTO) substrate for different growth durations ranging from 5 to 40 min using the microwave chemical bath deposition method. We studied the effect of growth duration on the morphological, structural, optical and photoelectrochemical properties of the ZnO nanostructures. From this study, we found that the photoelectrochemical properties of the ZnO nanostructures were largely affected by their morphological and structural properties. As a result, we obtained the highest photocurrent density of 0.46 mA/cm{sup 2} (at 1.5 V vs. SCE) from the sample grown for 30 min.

  17. Improved performance of UV-LED by p-AlGaN with graded composition

    KAUST Repository

    Yan, Jianchang

    2010-11-02

    AlGaN-based ultraviolet light emitting diodes (UV-LEDs) on AlN/sapphire template were grown by metal organic chemical vapour deposition. The AlN template was characterized by atomic force microscopy and high resolution X-ray diffraction. Atomic force microscopy image shows that the AlN surface is very flat, while high resolution X-ray diffraction results prove the good crystalline quality of the AlN template. A novel structure UV-LED which has several p-AlGaN layers with graded composition is compared with a common structure UV-LED which has a single p-Al0.5Ga0.5N layer. The forward bias voltage at 20 mA driving current for the novel structure UV-LED is nearly 3 V higher than that of the common structure UV-LED, however, the electroluminescence intensity of the former is over two times higher than that of the latter. The total quantum efficiency of the novel structure UV-LED is more than 50% higher than that of the common structure UV-LED. The improvement is considered to be the result of better holes injection efficiency in the novel structure UV-LED. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Recent Advances of Graphitic Carbon Nitride-Based Structures and Applications in Catalyst, Sensing, Imaging, and LEDs

    Science.gov (United States)

    Wang, Aiwu; Wang, Chundong; Fu, Li; Wong-Ng, Winnie; Lan, Yucheng

    2017-10-01

    The graphitic carbon nitride (g-C3N4) which is a two-dimensional conjugated polymer has drawn broad interdisciplinary attention as a low-cost, metal-free, and visible-light-responsive photocatalyst in the area of environmental remediation. The g-C3N4-based materials have excellent electronic band structures, electron-rich properties, basic surface functionalities, high physicochemical stabilities and are "earth-abundant." This review summarizes the latest progress related to the design and construction of g-C3N4-based materials and their applications including catalysis, sensing, imaging, and white-light-emitting diodes. An outlook on possible further developments in g-C3N4-based research for emerging properties and applications is also included.

  19. Defect attributed variations of the photoconductivity and photoluminescence in the HVPE and MOCVD as-grown and irradiated GaN structures

    International Nuclear Information System (INIS)

    Gaubas, E.; Pobedinskas, P.; Vaitkus, J.; Uleckas, A.; Zukauskas, A.; Blue, A.; Rahman, M.; Smith, K.M.; Aujol, E.; Beaumont, B.; Faurie, J.-P.; Gibart, P.

    2005-01-01

    The effect of native and radiation induced defects on the photoconductivity transients and photoluminescence spectra have been examined in GaN epitaxial layers of 2.5 and 12μm thickness grown on bulk n-GaN/sapphire substrates by metal-organic chemical vapor deposition (MOCVD). For comparison, free-standing GaN as-grown samples of 500μm thickness, fabricated by hydride vapor phase epitaxy (HVPE), were investigated. Manifestation of defects induced by 10-keV X-ray irradiation with the dose of 600Mrad and 100-keV neutrons with the fluences of 5x10 14 and 10 16 cm -2 as well as of 24GeV/c protons with fluence 10 16 cm -2 have been revealed through contact photoconductivity and microwave absorption transients. The amplitude of the initial photoconductivity decay is significantly reduced by the native and radiation defects density. Synchronous decrease of the steady-state PL intensity of yellow, blue and ultraviolet bands peaked at 2.18, 2.85, and 3.42eV, respectively, with density of radiation-induced defects is observed. The decrease of the PL intensity is accompanied by an increase of asymptotic decay lifetime in the photoconductivity transients, which is due to excess-carrier multi-trapping. The decay fits the stretched exponent approximation exp[-(t/τ) α ] with the different factors α in as-grown material (α∼0.7) and irradiated samples (α∼0.3). The fracton dimension d s of disordered structure changes from 4.7 to 0.86 for as-grown and irradiated material, respectively, and it implies the percolative carrier motion on an infinite cluster of dislocations net in the as-grown material and cluster fragmentation into finite fractons after irradiations

  20. Multilayer epitaxial graphene grown on the (SiC 000 1-bar ) surface; structure and electronic properties

    International Nuclear Information System (INIS)

    Sprinkle, M; Hicks, J; Tinkey, H; Clark, M C; Hass, J; Conrad, E H; Tejeda, A; Taleb-Ibrahimi, A; Le Fevre, P; Bertran, F; Soukiassian, P; Martinotti, D

    2010-01-01

    We review the progress towards developing epitaxial graphene as a material for carbon electronics. In particular, we discuss improvements in epitaxial graphene growth, interface control and the understanding of multilayer epitaxial graphene's (MEG's) electronic properties. Although graphene grown on both polar faces of SiC will be discussed, our discussions will focus on graphene grown on the (0 0 0 1-bar ) C-face of SiC. The unique properties of C-face MEG have become apparent. These films behave electronically like a stack of nearly independent graphene sheets rather than a thin Bernal stacked graphite sample. The origins of multilayer graphene's electronic behaviour are its unique highly ordered stacking of non-Bernal rotated graphene planes. While these rotations do not significantly affect the inter-layer interactions, they do break the stacking symmetry of graphite. It is this broken symmetry that leads to each sheet behaving like isolated graphene planes.

  1. Effects of Uniaxial and Biaxial Strain on Few-Layered Terrace Structures of MoS₂ Grown by Vapor Transport.

    Science.gov (United States)

    McCreary, Amber; Ghosh, Rudresh; Amani, Matin; Wang, Jin; Duerloo, Karel-Alexander N; Sharma, Ankit; Jarvis, Karalee; Reed, Evan J; Dongare, Avinash M; Banerjee, Sanjay K; Terrones, Mauricio; Namburu, Raju R; Dubey, Madan

    2016-03-22

    One of the most fascinating properties of molybdenum disulfide (MoS2) is its ability to be subjected to large amounts of strain without experiencing degradation. The potential of MoS2 mono- and few-layers in electronics, optoelectronics, and flexible devices requires the fundamental understanding of their properties as a function of strain. While previous reports have studied mechanically exfoliated flakes, tensile strain experiments on chemical vapor deposition (CVD)-grown few-layered MoS2 have not been examined hitherto, although CVD is a state of the art synthesis technique with clear potential for scale-up processes. In this report, we used CVD-grown terrace MoS2 layers to study how the number and size of the layers affected the physical properties under uniaxial and biaxial tensile strain. Interestingly, we observed significant shifts in both the Raman in-plane mode (as high as -5.2 cm(-1)) and photoluminescence (PL) energy (as high as -88 meV) for the few-layered MoS2 under ∼1.5% applied uniaxial tensile strain when compared to monolayers and few-layers of MoS2 studied previously. We also observed slippage between the layers which resulted in a hysteresis of the Raman and PL spectra during further applications of strain. Through DFT calculations, we contended that this random layer slippage was due to defects present in CVD-grown materials. This work demonstrates that CVD-grown few-layered MoS2 is a realistic, exciting material for tuning its properties under tensile strain.

  2. Structural and Morphological Difference Between Ti/TiN/TiCN Coatings Grown in Multilayer and Graded Form

    International Nuclear Information System (INIS)

    Restrepo, E.; Baena, A.; Agudelo, C.; Castillo, H.; Devia, A.; Marino, A.

    2006-01-01

    Thin films can be grown in super-lattice, multilayers and graded form, having each one advantages and disadvantages. The difference between multilayer and graded coatings is the interface. In multilayers the interface is abrupt and in graded coatings it is diffuse. The interface influences many chemical and physical properties of the materials, and its choice depends on the application. Graded coatings have the advantage of having gradual properties such as thermal expansion coefficient and lattice parameter, avoiding adherence problems due to good match between their component materials. In this work the comparison between some properties of coatings grown as multilayer and graded is performed. The materials are produced using the sputtering DC technique because of its facility to control the deposition parameters and generate a slow growth. The target is a disc of titanium and the samples are made of stainless steel 304. The working gases are argon, nitrogen and methane, which are mixed according to the material to be produced, i.e. Ti layer is grown with argon, the TiN film is produced with a mixture of argon and nitrogen, and the TiCN material is obtained mixing argon, nitrogen and methane. These materials are characterized with AFM in order to determine grain size and with XPS studying the chemical composition and performing depth profiles

  3. Micro-light-emitting diodes with III–nitride tunnel junction contacts grown by metalorganic chemical vapor deposition

    Science.gov (United States)

    Hwang, David; Mughal, Asad J.; Wong, Matthew S.; Alhassan, Abdullah I.; Nakamura, Shuji; DenBaars, Steven P.

    2018-01-01

    Micro-light-emitting diodes (µLEDs) with tunnel junction (TJ) contacts were grown entirely by metalorganic chemical vapor deposition. A LED structure was grown, treated with UV ozone and hydrofluoric acid, and reloaded into the reactor for TJ regrowth. The silicon doping level of the n++-GaN TJ was varied to examine its effect on voltage. µLEDs from 2.5 × 10‑5 to 0.01 mm2 in area were processed, and the voltage penalty of the TJ for the smallest µLED at 20 A/cm2 was 0.60 V relative to that for a standard LED with indium tin oxide. The peak external quantum efficiency of the TJ LED was 34%.

  4. Micro-light-emitting diodes with III–nitride tunnel junction contacts grown by metalorganic chemical vapor deposition

    KAUST Repository

    Hwang, David

    2017-12-13

    Micro-light-emitting diodes (µLEDs) with tunnel junction (TJ) contacts were grown entirely by metalorganic chemical vapor deposition. A LED structure was grown, treated with UV ozone and hydrofluoric acid, and reloaded into the reactor for TJ regrowth. The silicon doping level of the n++-GaN TJ was varied to examine its effect on voltage. µLEDs from 2.5 × 10−5 to 0.01 mm2 in area were processed, and the voltage penalty of the TJ for the smallest µLED at 20 A/cm2 was 0.60 V relative to that for a standard LED with indium tin oxide. The peak external quantum efficiency of the TJ LED was 34%.

  5. The influence of growth parameters on the structure and composition of CuGaS{sub 2} epilayers grown by MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Branch, M.S. [Physics Department, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)]. E-mail: Matthew.Branch@nmmu.ac.za; Berndt, P.R. [Physics Department, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Leitch, A.W.R. [Physics Department, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Botha, J.R. [Physics Department, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Weber, J. [Institute for Low Temperature Physics, University of Technology, D-01062 Dresden (Germany)

    2006-04-01

    The influence of various growth parameters on the composition and structure of MOVPE-grown CuGaS{sub 2} is presented. The Cu content of the grown layers is shown to decrease in the direction of the carrier gas flow, whilst the Ga and S content are shown to increase. Changing the flow of Cu(hfac){sub 2}.Et{sub 3}N to vary the I/III ratio in the vapour phase has a greater effect on the composition of grown epilayers than changing the flow of TEGa. This is indicative of Cu being the minority species present at the growth interface. A larger rate of decrease in the Cu content with an increase in both TEGa and DtBS flows suggests pre-reactions between Cu(hfac){sub 2}.Et{sub 3}N and both TEGa and DtBS precursors. Lower substrate temperatures are suggested to be thermodynamically unfavourable for the growth of CuGaS{sub 2}, yet enhance the formation of Ga{sub x}S{sub y} phases. The surface morphology of Cu-rich layers are typically inferior with a high density of crystallites, whilst Cu-poor epilayers are characteristically smooth with a single XRD reflection attributed to the (004) plane of c-axis-orientated epitaxial material.

  6. Influence of deposition temperature on the structural and morphological properties of Be3N2 thin films grown by reactive laser ablation

    International Nuclear Information System (INIS)

    Chale-Lara, F.; Farias, M.H.; De la Cruz, W.; Zapata-Torres, M.

    2010-01-01

    Be 3 N 2 thin films have been grown on Si(1 1 1) substrates using the pulsed laser deposition method at different substrate temperatures: room temperature (RT), 200 deg. C, 400 deg. C, 600 deg. C and 700 deg. C. Additionally, two samples were deposited at RT and were annealed after deposition in situ at 600 deg. C and 700 deg. C. In order to obtain the stoichiometry of the samples, they have been characterized in situ by X-ray photoelectron (XPS) and reflection electron energy loss spectroscopy (REELS). The influence of the substrate temperature on the morphological and structural properties of the films was investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The results show that all prepared films presented the Be 3 N 2 stoichiometry. Formation of whiskers with diameters of 100-200 nm appears at the surface of the films prepared with a substrate temperature of 600 deg. C or 700 deg. C. However, the samples grown at RT and annealed at 600 deg. C or 700 deg. C do not show whiskers on the surface. The average root mean square (RMS) roughness and the average grain size of the samples grown with respect the substrate temperature is presented. The films grown with a substrate temperature between the room temperature to 400 deg. C, and the sample annealed in situ at 600 deg. C were amorphous; while the αBe 3 N 2 phase was presented on the samples with a substrate temperature of 600 deg. C, 700 deg. C and that deposited with the substrate at RT and annealed in situ at 700 deg. C.

  7. Influence of deposition temperature on the structural and morphological properties of Be{sub 3}N{sub 2} thin films grown by reactive laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Chale-Lara, F., E-mail: fabio_chale@yahoo.com.mx [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Apartado Postal 2681, Ensenada, Baja California, C.P. 22860 (Mexico); Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Apartado Postal 14, Ensenada CP 22860, Baja California (Mexico); Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-IPN, Unidad Altamira, Km. 14.5 Carretera Tampico-Puerto Industrial, Altamira, Tamaulipas (Mexico); Farias, M.H.; De la Cruz, W. [Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Apartado Postal 14, Ensenada CP 22860, Baja California (Mexico); Zapata-Torres, M. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-IPN, Legaria 694, Col. Irrigacion, Del. Miguel Hidalgo, Mexico D.F. (Mexico)

    2010-10-01

    Be{sub 3}N{sub 2} thin films have been grown on Si(1 1 1) substrates using the pulsed laser deposition method at different substrate temperatures: room temperature (RT), 200 deg. C, 400 deg. C, 600 deg. C and 700 deg. C. Additionally, two samples were deposited at RT and were annealed after deposition in situ at 600 deg. C and 700 deg. C. In order to obtain the stoichiometry of the samples, they have been characterized in situ by X-ray photoelectron (XPS) and reflection electron energy loss spectroscopy (REELS). The influence of the substrate temperature on the morphological and structural properties of the films was investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The results show that all prepared films presented the Be{sub 3}N{sub 2} stoichiometry. Formation of whiskers with diameters of 100-200 nm appears at the surface of the films prepared with a substrate temperature of 600 deg. C or 700 deg. C. However, the samples grown at RT and annealed at 600 deg. C or 700 deg. C do not show whiskers on the surface. The average root mean square (RMS) roughness and the average grain size of the samples grown with respect the substrate temperature is presented. The films grown with a substrate temperature between the room temperature to 400 deg. C, and the sample annealed in situ at 600 deg. C were amorphous; while the {alpha}Be{sub 3}N{sub 2} phase was presented on the samples with a substrate temperature of 600 deg. C, 700 deg. C and that deposited with the substrate at RT and annealed in situ at 700 deg. C.

  8. Structural and interfacial characteristics of thin (2 films grown by electron cyclotron resonance plasma oxidation on [100] Si substrates

    International Nuclear Information System (INIS)

    Nguyen, T.D.; Carl, D.A.; Hess, D.W.; Lieberman, M.A.; Gronsky, R.

    1991-04-01

    The feasibility of fabricating ultra-thin SiO 2 films on the order of a few nanometer thickness has been demonstrated. SiO 2 thin films of approximately 7 nm thickness have been produced by ion flux-controlled Electron Cyclotron Resonance plasma oxidation at low temperature on [100] Si substrates, in reproducible fashion. Electrical measurements of these films indicate that they have characteristics comparable to those of thermally grown oxides. The thickness of the films was determined by ellipsometry, and further confirmed by cross-sectional High-Resolution Transmission Electron Microscopy. Comparison between the ECR and the thermal oxide films shows that the ECR films are uniform and continuous over at least a few microns in lateral direction, similar to the thermal oxide films grown at comparable thickness. In addition, HRTEM images reveal a thin (1--1.5 nm) crystalline interfacial layer between the ECR film and the [100] substrate. Thinner oxide films of approximately 5 nm thickness have also been attempted, but so far have resulted in nonuniform coverage. Reproducibility at this thickness is difficult to achieve

  9. Multilayer epitaxial graphene grown on the (SiC 000 1-bar) surface; structure and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sprinkle, M; Hicks, J; Tinkey, H; Clark, M C; Hass, J; Conrad, E H [The Georgia Institute of Technology, Atlanta, Georgia 30332-0430 (United States); Tejeda, A [Institut Jean Lamour, CNRS - Univ. de Nancy - UPV-Metz, 54506 Vandoeuvre les Nancy (France); Taleb-Ibrahimi, A [UR1 CNRS/Synchrotron SOLEIL, Saint-Aubin, 91192 Gif sur Yvette (France); Le Fevre, P; Bertran, F [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette (France); Soukiassian, P; Martinotti, D [Commissariat a l' Energie Atomique, SIMA, DSM-IRAMIS-SPCSI, Saclay, 91191 Gif sur Yvette (France)

    2010-09-22

    We review the progress towards developing epitaxial graphene as a material for carbon electronics. In particular, we discuss improvements in epitaxial graphene growth, interface control and the understanding of multilayer epitaxial graphene's (MEG's) electronic properties. Although graphene grown on both polar faces of SiC will be discussed, our discussions will focus on graphene grown on the (0 0 0 1-bar) C-face of SiC. The unique properties of C-face MEG have become apparent. These films behave electronically like a stack of nearly independent graphene sheets rather than a thin Bernal stacked graphite sample. The origins of multilayer graphene's electronic behaviour are its unique highly ordered stacking of non-Bernal rotated graphene planes. While these rotations do not significantly affect the inter-layer interactions, they do break the stacking symmetry of graphite. It is this broken symmetry that leads to each sheet behaving like isolated graphene planes.

  10. A multiple p-n junction structure obtained from as-grown Czochralski silicon crystals by heat treatment - Application to solar cells

    Science.gov (United States)

    Chi, J. Y.; Gatos, H. C.; Mao, B. Y.

    1980-01-01

    Multiple p-n junctions have been prepared in as-grown Czochralski p-type silicon through overcompensation near the oxygen periodic concentration maxima by oxygen thermal donors generated during heat treatment at 450 C. Application of the multiple p-n-junction configuration to photovoltaic energy conversion has been investigated. A new solar-cell structure based on multiple p-n-junctions was developed. Theoretical analysis showed that a significant increase in collection efficiency over the conventional solar cells can be achieved.

  11. Nursing intensive care skills training: a nurse led, short, structured, and practical training program, developed and tested in a resource-limited setting.

    Science.gov (United States)

    De Silva, A Pubudu; Stephens, Tim; Welch, John; Sigera, Chathurani; De Alwis, Sunil; Athapattu, Priyantha; Dharmagunawardene, Dilantha; Olupeliyawa, Asela; de Abrew, Ashwini; Peiris, Lalitha; Siriwardana, Somalatha; Karunathilake, Indika; Dondorp, Arjen; Haniffa, Rashan

    2015-04-01

    To assess the impact of a nurse-led, short, structured training program for intensive care unit (ICU) nurses in a resource-limited setting. A training program using a structured approach to patient assessment and management for ICU nurses was designed and delivered by local nurse tutors in partnership with overseas nurse trainers. The impact of the course was assessed using the following: pre-course and post-course self-assessment, a pre-course and post-course Multiple Choice Questionnaire (MCQ), a post-course Objective Structured Clinical Assessment station, 2 post-course Short Oral Exam (SOE) stations, and post-course feedback questionnaires. In total, 117 ICU nurses were trained. Post-MCQ scores were significantly higher when compared with pre-MCQ (P electrocardiogram analysis). The course was highly rated by participants, with 98% believing that this was a useful experience. Nursing Intensive Care Skills Training was highly rated by participants and was effective in improving the knowledge of the participants. This sustainable short course model may be adaptable to other resource-limited settings. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Sex worker-led structural interventions in India: a case study on addressing violence in HIV prevention through the Ashodaya Samithi collective in Mysore.

    Science.gov (United States)

    Reza-Paul, Sushena; Lorway, Rob; O'Brien, Nadia; Lazarus, Lisa; Jain, Jinendra; Bhagya, M; Fathima Mary, P; Venukumar, K T; Raviprakash, K N; Baer, James; Steen, Richard

    2012-01-01

    Structural interventions have the capacity to improve the outcomes of HIV/AIDS interventions by changing the social, economic, political or environmental factors that determine risk and vulnerability. Marginalized groups face disproportionate barriers to health, and sex workers are among those at highest risk of HIV in India. Evidence in India and globally has shown that sex workers face violence in many forms ranging from verbal, psychological and emotional abuse to economic extortion, physical and sexual violence and this is directly linked to lower levels of condom use and higher levels of sexually transmitted infections (STIs), the most critical determinants of HIV risk. We present here a case study of an intervention that mobilized sex workers to lead an HIV prevention response that addresses violence in their daily lives. This study draws on ethnographic research and project monitoring data from a community-led structural intervention in Mysore, India, implemented by Ashodaya Samithi. Qualitative and quantitative data were used to characterize baseline conditions, community responses and subsequent outcomes related to violence. In 2004, the incidence of reported violence by sex workers was extremely high (> 8 incidents per sex worker, per year) but decreased by 84 per cent over 5 years. Violence by police and anti-social elements, initially most common, decreased substantially after a safe space was established for sex workers to meet and crisis management and advocacy were initiated with different stakeholders. Violence by clients, decreased after working with lodge owners to improve safety. However, initial increases in intimate partner violence were reported, and may be explained by two factors: (i) increased willingness to report such incidents; and (ii) increased violence as a reaction to sex workers' growing empowerment. Trafficking was addressed through the establishment of a self-regulatory board (SRB). The community's progressive response to violence

  13. Influence of cation off-stoichiometry on structural and transport properties of (Ba,La)SnO3 epitaxial thin films grown by pulsed laser deposition

    Science.gov (United States)

    Ozaki, Yusuke; Kan, Daisuke; Shimakawa, Yuichi

    2017-06-01

    We investigate the influences of cation off-stoichiometry on structural and transport properties of 3% La-doped BaSnO3 (BLSO) epitaxial thin films grown on SrTiO3 substrates by pulsed laser deposition. We show that cation off-stoichiometry, namely, Sn excess and Sn deficiency, is introduced by variations in either laser fluence or the cation composition of the target used for the film growth and that the cation off-stoichiometry influences the properties of the grown films. While all films investigated in this study undergo relaxations from the substrate-induced strain, the out-of-plane lattice constant decreases with the increase in the Sn content in the film. The electrical conductivity, carrier concentration, and mobility are strongly dependent on the type of the cation off-stoichiometry (Sn excess and Sn deficiency). The highest room-temperature mobility, 35 cm2/V-1s-1, is seen for a film grown by ablating the stoichiometric target with a fluence of 1.6 J/cm2, which keeps the cation ratio in the film close to the stoichiometric one. The conductivity and the carrier concentration of the Sn-excess films grown with the fluence smaller than 1.6 J/cm2 are as high as 2 × 103 S/cm and 5 × 1020 cm-3, respectively, while the mobility remains as low as 25 cm2/V-1s-1. The observed carrier concentration is slightly higher than that calculated from the stoichiometric composition of BLSO, implying that the excess Sn in the films provides additional carriers and also acts as scattering centers for the carriers. On the other hand, no measurable electrical conduction is observed in the Sn-deficient films grown with a fluence greater than 1.6 J/cm2, indicating that the carriers provided by the dopants are trapped by defects due to the Sn deficiency. We also show that cation off-stoichiometry influences the surface morphology of the films. Our results highlight that the cation stoichiometry of the BLSO films is an important factor influencing their properties.

  14. Effect of cesium assistance on the electrical and structural properties of indium tin oxide films grown by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jaewon; Hwang, Cheol Seong; Park, Sung Jin; Yoon, Neung Ku [Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 151-742 (Korea, Republic of); Sorona Inc., Pyeongtaek, Gyeonggi 451-841 (Korea, Republic of)

    2009-07-15

    Indium tin oxide (ITO) thin films were deposited by cesium (Cs)-assisted dc magnetron sputtering in an attempt to achieve a high performance at low temperatures. The films were deposited on SiO{sub 2}/Si wafer and glass (Eagle 2000) substrates at a substrate temperature of 100 degree sign C with a Cs vapor flow during the deposition process. The ITO thin films deposited in the presence of Cs vapor showed better crystallinity than the control films grown under normal Ar/O{sub 2} plasma conditions. The resistivity of the films with the Cs assistance was lower than that of the control films. The lowest resistivity of 6.2x10{sup -4} {Omega} cm, which is {approx}20% lower than that of the control sample, was obtained without any postdeposition thermal annealing. The surface roughness increased slightly when Cs vapor was added. The optical transmittance was >80% at wavelengths ranging from 380 to 700 nm.

  15. Effect of annealing on structural and optical properties of Cu{sub 2}ZnSnS{sub 4} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Surgina, G.D., E-mail: silvereye@bk.ru [National Research Nuclear University “Moscow Engineering Physics Institute”, Moscow 115409 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region 141700 (Russian Federation); Nevolin, V.N. [National Research Nuclear University “Moscow Engineering Physics Institute”, Moscow 115409 (Russian Federation); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); Sipaylo, I.P.; Teterin, P.E. [National Research Nuclear University “Moscow Engineering Physics Institute”, Moscow 115409 (Russian Federation); Medvedeva, S.S. [Immanuel Kant Baltic Federal University, Kaliningrad 236041 (Russian Federation); Lebedinsky, Yu.Yu.; Zenkevich, A.V. [National Research Nuclear University “Moscow Engineering Physics Institute”, Moscow 115409 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region 141700 (Russian Federation)

    2015-11-02

    In this work, we compare the effect of different types of thermal annealing on the morphological, structural and optical properties of Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films grown by reactive Pulsed Laser Deposition in H{sub 2}S flow. Rutherford backscattering spectrometry, atomic force microscopy, X-ray diffraction, Raman spectroscopy and optical spectrophotometry data reveal dramatic increase of the band gap and the crystallite size without the formation of secondary phases upon annealing in N{sub 2} at the optimized conditions. - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films were grown at room temperature. • Reactive Pulsed Laser Deposition in H{sub 2}S flow was used as a growth method. • Effect of annealing conditions on CZTS structural and optical properties is revealed. • Both the grain size and the band gap of CZTS film increase following the annealing. • Annealing in N{sub 2} effectively inhibits the formation of Sn{sub x}S secondary phases.

  16. Domain structure and magnetic properties of epitaxial SrRuO sub 3 films grown on SrTiO sub 3 (100) substrates by ion beam sputtering

    CERN Document Server

    Oh, S H

    2000-01-01

    The domain structure of epitaxial SrRuO sub 3 thin films grown on SrTiO sub 3 (100) substrates by using ion beam sputtering has been investigated with transmission electron microscopy (TEM) and X-ray diffraction (XRD). The SrRuO sub 3 films grown in the present study revealed a unique cube-on-cube epitaxial relationship, i.e., (100) sub S sub R sub O ll (100) sub S sub T sub O , [010] sub S sub R sub O ll [101] sub S sub T sub O , prevailing with a cubic single-domain structure. The cubic SrRuO sub 3 thin films that were inherently with free from RuO sub 6 octahedron tilting exhibited higher resistivity with suppressed magnetic properties. The Curie temperature of the thin films was suppressed by 60 K from 160 K for the bulk specimen, and the saturation magnetic moment was reduced by a significant amount. The tetragonal distortion of the SrRuO sub 3 thin films due to coherent growth with the substrate seemed to result in a strong magnetic anisotropy.

  17. Effects of glass elements on the structural evolution of in situ grown ferroelectric perovskite crystals in sol-gel derived glass-ceramics

    International Nuclear Information System (INIS)

    Yao, K.; Zhu, W.

    1997-01-01

    Several ABO 3 perovskite ferroelectric crystals, PbTiO 3 , Pb(Zr,Ti)O 3 , and BaTiO 3 have been in situ grown from amorphous gels with glass elements, and the structural evolution has been systematically investigated using x-ray diffraction (XRD), infrared spectra (IR), differential thermal analysis (DTA), thermogravimetric analysis (TGA), and dielectric measurements. It is found that in the Si-contained glass-ceramic systems, Si and B glass elements are incorporated into the crystalline structures, resulting in the variation of the crystallization process, change of lattice constant, and dielectric properties. Some metastable phases expressed by a general formula A x B y G z O w (A=Pb and Ba; B=Zr and Ti; G for glass elements, especially for Si) have been observed and discussed. copyright 1997 Materials Research Society

  18. Study of the optical properties and structure of ZnSe/ZnO thin films grown by MOCVD with varying thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Jabri, S., E-mail: slaheddine.jabri@fst.rnu.tn [Unité des nanomatériaux et photoniques, Faculté des Sciences de Tunis, Campus Universitaire Ferhat Hachad, El Manar, 2092 Tunis (Tunisia); Amiri, G.; Sallet, V. [Groupe d’Etude de la Matière Condensée, CNRS-Université de Versailles St Quentin, Université Paris-Saclay, 45 avenue des Etats Unis, 78035 Versailles Cedex (France); Souissi, A. [Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l’Energie, Technopole Borj Cedria, B.P. 95, Hammammlif 2050 (Tunisia); Meftah, A. [Unité des nanomatériaux et photoniques, Faculté des Sciences de Tunis, Campus Universitaire Ferhat Hachad, El Manar, 2092 Tunis (Tunisia); Galtier, P. [Groupe d’Etude de la Matière Condensée, CNRS-Université de Versailles St Quentin, Université Paris-Saclay, 45 avenue des Etats Unis, 78035 Versailles Cedex (France); Oueslati, M. [Unité des nanomatériaux et photoniques, Faculté des Sciences de Tunis, Campus Universitaire Ferhat Hachad, El Manar, 2092 Tunis (Tunisia)

    2016-05-15

    ZnSe layers were grown on ZnO substrates by the metal organic chemical vapor deposition technique. A new structure appeared at lower thicknesses films. The structural properties of the thin films were studied by the X-ray diffraction (XRD) and Raman spectroscopy methods. First, Raman selection rules are explicitly put forward from a theoretical viewpoint. Second, experimentally-retrieved-intensities of the Raman signal as a function of polarization angle of incident light are fitted to the obtained theoretical dependencies in order to confirm the crystallographic planes of zinc blend ZnSe thin film, and correlate with DRX measurements. Raman spectroscopy has been used to characterize the interfacial disorder that affects energy transport phenomena at ZnSe/ZnO interfaces and the Photoluminescence (PL) near the band edge of ZnSe thin films.

  19. LED-roulette : LED's vervangen balletje

    NARCIS (Netherlands)

    Goossens, P.

    2007-01-01

    Iedereen waagt wel eens een gokje, in een loterij of misschien ook in een casino. Wie droomt er immers niet van om op een gemakkelijke manier rijk te worden? Met de hier beschreven LED-roulette valt weliswaar weinig te winnen, maar het is wel een uitstekende manier om het roulettespel thuis te

  20. Optimization of structural and growth parameters of metamorphic InGaAs photovoltaic converters grown by MOCVD

    International Nuclear Information System (INIS)

    Rybalchenko, D. V.; Mintairov, S. A.; Salii, R. A.; Shvarts, M. Z.; Timoshina, N. Kh.; Kalyuzhnyy, N. A.

    2017-01-01

    Metamorphic Ga 0.76 In 0.24 As heterostructures for photovoltaic converters are grown by the MOCVD (metal–organic chemical vapor deposition) technique. It is found that, due to the valence-band offset at the p-In 0.24 Al 0.76 As/p-In 0.24 Ga 0.76 As (wide-gap window/emitter) heterointerface, a potential barrier for holes arises as a result of a low carrier concentration in the wide-gap material. The use of an InAlGaAs solid solution with an Al content lower than 40% makes it possible to raise the hole concentration in the widegap window up ~9 × 10 18 cm –3 and completely remove the potential barrier, thereby reducing the series resistance of the device. The parameters of an GaInAs metamorphic buffer layer with a stepwise In content profile are calculated and its epitaxial growth conditions are optimized, which improves carrier collection from the n-GaInAs base region and provides a quantum efficiency of 83% at a wavelength of 1064 nm. Optimization of the metamorphic heterostructure of the photovoltaic converter results in that its conversion efficiency for laser light with a wavelength of 1064 nm is 38.5%.

  1. Photoluminescence quenching, structures, and photovoltaic properties of ZnO nanostructures decorated plasma grown single walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Aïssa, Brahim, E-mail: brahim.aissa@mpbc.ca [University of Quebec, Centre Énergie, Matériaux et Télécommunications, INRS-EMT (Canada); Nedil, Mourad [Telebec Wireless Underground Communication Laboratory, UQAT (Canada); Belaidi, Abdelhak; Isaifan, Rima J. [Hamad Bin Khalifa University, Qatar Foundation, Qatar Environment and Energy Research Institute (Qatar); Bentouaf, Ali [University Hassiba Ben Bouali, Physics Department, Faculty of Science (Algeria); Fauteux, Christian; Therriault, Daniel [École Polytechnique de Montréal, Laboratory for Multiscale Mechanics (LM2), Mechanical Engineering Department (Canada)

    2017-05-15

    Zinc oxide (ZnO) nanostructures were successfully grown directly on single walled carbon nanotubes (SWCNT) template through the CO{sub 2} laser-induced chemical liquid deposition (LCLD) process. Photoluminescence (PL) of the deposited ZnO/SWCNT hybrid composites exhibits, at room temperature, a narrow near UV band located at 390 nm with no emission bands in the visible region, indicating a high degree of crystalline quality of the ZnO nanostructures. Moreover, when the relative SWCNT loads are varied within the composites, the PL intensity and the diffused optical reflectance diminish in comparison with those of ZnO alone, owing to the transfer of photo-excited electrons from ZnO to the SWCNT, and the enhancement of the optical absorbance, respectively. Finally, these ZnO/SWCNT hybrid composites are integrated into a heterojunction photovoltaic-based device, using PEDOT:PSS on ITO/glass substrate. The devices show an evident p–n junction behavior in the dark, and a clear I–V curve shift downward when illuminated with an open-circuit voltage of 1.1 V, a short circuit current density of 14.05 μA cm{sup −2}, and a fill factor of ∼35%. These results indicate that these composites fabricated via LCLD process could be promising for optoelectronic and energy-harvesting devices.

  2. Photoluminescence quenching, structures, and photovoltaic properties of ZnO nanostructures decorated plasma grown single walled carbon nanotubes

    Science.gov (United States)

    Aïssa, Brahim; Nedil, Mourad; Belaidi, Abdelhak; Isaifan, Rima J.; Bentouaf, Ali; Fauteux, Christian; Therriault, Daniel

    2017-05-01

    Zinc oxide (ZnO) nanostructures were successfully grown directly on single walled carbon nanotubes (SWCNT) template through the CO2 laser-induced chemical liquid deposition (LCLD) process. Photoluminescence (PL) of the deposited ZnO/SWCNT hybrid composites exhibits, at room temperature, a narrow near UV band located at 390 nm with no emission bands in the visible region, indicating a high degree of crystalline quality of the ZnO nanostructures. Moreover, when the relative SWCNT loads are varied within the composites, the PL intensity and the diffused optical reflectance diminish in comparison with those of ZnO alone, owing to the transfer of photo-excited electrons from ZnO to the SWCNT, and the enhancement of the optical absorbance, respectively. Finally, these ZnO/SWCNT hybrid composites are integrated into a heterojunction photovoltaic-based device, using PEDOT:PSS on ITO/glass substrate. The devices show an evident p-n junction behavior in the dark, and a clear I- V curve shift downward when illuminated with an open-circuit voltage of 1.1 V, a short circuit current density of 14.05 μA cm-2, and a fill factor of ˜35%. These results indicate that these composites fabricated via LCLD process could be promising for optoelectronic and energy-harvesting devices.

  3. Zno Micro/Nanostructures Grown on Sapphire Substrates Using Low-Temperature Vapor-Trapped Thermal Chemical Vapor Deposition: Structural and Optical Properties.

    Science.gov (United States)

    Hu, Po-Sheng; Wu, Cheng-En; Chen, Guan-Lin

    2017-12-21

    In this research, the Zn(C₅H₇O₂)₂·xH₂O-based growth of ZnO micro/nanostructures in a low temperature, vapor-trapped chemical vapor deposition system was attempted to optimize structural and optical properties for potential biomedical applications. By trapping in-flow gas molecules and Zinc vapor inside a chamber tube by partially obstructing a chamber outlet, a high pressure condition can be achieved, and this experimental setup has the advantages of ease of synthesis, being a low temperature process, and cost effectiveness. Empirically, the growth process proceeded under a chamber condition of an atmospheric pressure of 730 torr, a controlled volume flow rate of input gas, N₂/O₂, of 500/500 Standard Cubic Centimeters per Minute (SCCM), and a designated oven temperature of 500 °C. Specifically, the dependence of structural and optical properties of the structures on growth duration and spatially dependent temperature were investigated utilizing scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), and ultraviolet-visible transmission spectroscopy. The experimental results indicate that the grown thin film observed with hexagonal structures and higher structural uniformity enables more prominent structural and optical signatures. XRD spectra present the dominant peaks along crystal planes of (002) and (101) as the main direction of crystallization. In addition, while the structures excited with laser wavelength of 325 nm emit a signature radiation around 380 nm, an ultraviolet lamp with a wavelength of 254 nm revealed distinctive photoluminescence peaks at 363.96 nm and 403.52 nm, elucidating different degrees of structural correlation as functions of growth duration and the spatial gradient of temperature. Transmittance spectra of the structures illustrate typical variation in the wavelength range of 200 nm to 400 nm, and its structural correlation is less significant when compared with PL.

  4. Zno Micro/Nanostructures Grown on Sapphire Substrates Using Low-Temperature Vapor-Trapped Thermal Chemical Vapor Deposition: Structural and Optical Properties

    Directory of Open Access Journals (Sweden)

    Po-Sheng Hu

    2017-12-01

    Full Text Available In this research, the Zn(C5H7O22·xH2O-based growth of ZnO micro/nanostructures in a low temperature, vapor-trapped chemical vapor deposition system was attempted to optimize structural and optical properties for potential biomedical applications. By trapping in-flow gas molecules and Zinc vapor inside a chamber tube by partially obstructing a chamber outlet, a high pressure condition can be achieved, and this experimental setup has the advantages of ease of synthesis, being a low temperature process, and cost effectiveness. Empirically, the growth process proceeded under a chamber condition of an atmospheric pressure of 730 torr, a controlled volume flow rate of input gas, N2/O2, of 500/500 Standard Cubic Centimeters per Minute (SCCM, and a designated oven temperature of 500 °C. Specifically, the dependence of structural and optical properties of the structures on growth duration and spatially dependent temperature were investigated utilizing scanning electron microscopy, X-ray diffraction (XRD, photoluminescence (PL, and ultraviolet-visible transmission spectroscopy. The experimental results indicate that the grown thin film observed with hexagonal structures and higher structural uniformity enables more prominent structural and optical signatures. XRD spectra present the dominant peaks along crystal planes of (002 and (101 as the main direction of crystallization. In addition, while the structures excited with laser wavelength of 325 nm emit a signature radiation around 380 nm, an ultraviolet lamp with a wavelength of 254 nm revealed distinctive photoluminescence peaks at 363.96 nm and 403.52 nm, elucidating different degrees of structural correlation as functions of growth duration and the spatial gradient of temperature. Transmittance spectra of the structures illustrate typical variation in the wavelength range of 200 nm to 400 nm, and its structural correlation is less significant when compared with PL.

  5. Effects of ultrathin AlAs interfacial layer on the structure and optical properties of GaInP epilayer grown on germanium

    International Nuclear Information System (INIS)

    Jia, S.P.; Chen, G.F.; He, W.; Dai, P.; Chen, J.X.; Lu, S.L.; Yang, H.

    2014-01-01

    Highlights: • GaInP with an ultrathin AlAs interfacial layers was grown on Ge by MOVPE. • The 5 Å AlAs results in a decrease of PL intensity from the Ge-based complexes. • The increase of AlAs thickness from 5 Å to 5 nm did not improve inhibiting effect. • The incorporation of AlAs results in an increased ordered degree of GaInP. - Abstract: Structure and optical properties of GaInP epilayer with the ultrathin interfacial layers grown on germanium by metal–organic vapor-phase epitaxy (MOVPE) were characterized by high resolution transmission electron microscopy (HRTEM), photoluminescence (PL), Raman as well as surface morphology measurement. A five angstroms (5 Å) AlAs interfacial layer results in the decrease of PL intensity arising from the emission of [Ge (Ga,In) − V (Ga,In) ] complex. With the incorporation of AlAs interfacial layer, an increased ordered degree of GaInP epilayer is observed. On the basis of the combination of step–terrace-reconstruction (STR) mode with the dimer-induced-stress model, a CuPt-B type ordering of GaInP which is related to AlAs reconstruction with 2× periodicity process is proposed to explain this effect. Long range order occurs as a consequence of the minimization of the strain energy with increased interfacial layer thickness from 5 Å to 5 nm

  6. Effects of ultrathin AlAs interfacial layer on the structure and optical properties of GaInP epilayer grown on germanium

    Energy Technology Data Exchange (ETDEWEB)

    Jia, S.P. [Key Lab. for New Type of Functional Materials in Hebei Province, School of Material and Engineering, Hebei University of Technology, Tianjin 300130 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Chen, G.F. [Key Lab. for New Type of Functional Materials in Hebei Province, School of Material and Engineering, Hebei University of Technology, Tianjin 300130 (China); He, W. [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Department of Teaching Basic Courses, The Chinese People' s Armed Police Force Academy, Langfang, Hebei Province 065000 (China); Dai, P.; Chen, J.X. [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Lu, S.L., E-mail: sllu2008@sinano.ac.cn [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Yang, H. [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China)

    2014-10-30

    Highlights: • GaInP with an ultrathin AlAs interfacial layers was grown on Ge by MOVPE. • The 5 Å AlAs results in a decrease of PL intensity from the Ge-based complexes. • The increase of AlAs thickness from 5 Å to 5 nm did not improve inhibiting effect. • The incorporation of AlAs results in an increased ordered degree of GaInP. - Abstract: Structure and optical properties of GaInP epilayer with the ultrathin interfacial layers grown on germanium by metal–organic vapor-phase epitaxy (MOVPE) were characterized by high resolution transmission electron microscopy (HRTEM), photoluminescence (PL), Raman as well as surface morphology measurement. A five angstroms (5 Å) AlAs interfacial layer results in the decrease of PL intensity arising from the emission of [Ge{sub (Ga,In)} − V{sub (Ga,In)}] complex. With the incorporation of AlAs interfacial layer, an increased ordered degree of GaInP epilayer is observed. On the basis of the combination of step–terrace-reconstruction (STR) mode with the dimer-induced-stress model, a CuPt-B type ordering of GaInP which is related to AlAs reconstruction with 2× periodicity process is proposed to explain this effect. Long range order occurs as a consequence of the minimization of the strain energy with increased interfacial layer thickness from 5 Å to 5 nm.

  7. Structure and polymer form of poly-3-hydroxyalkanoates produced by Pseudomonas oleovorans grown with mixture of sodium octanoate/undecylenic acid and sodium octanoate/5-phenylvaleric acid.

    Science.gov (United States)

    Ho, I-Ching; Yang, Sheng-Pin; Chiu, Wen-Yen; Huang, Shih-Yow

    2007-01-30

    PHAs (poly-3-hydroxyalkanoates) obtained by Pseudomonas oleovorans grown with mixed carbon sources were investigated. Mixed carbon sources were sodium octanoate/undecylenic acid and sodium octanoate/5-phenylvaleric acid. Effect of carbon source in pre-culture on PHAs structure was investigated. Main fermentation was conducted with mixture of sodium octanoate/undecylenic acid, and PHA contained both saturated and unsaturated units. When more undecylenic acid was used in the medium, the ratio of unsaturated unit increased and the T(g) of the products also changed. The PHA grown with mixture of sodium octanoate and undecylenic acid was a random copolymer, which was determined by DSC analysis. Using mixed carbon sources of sodium octanoate and 5-phenylvaleric acid, highest dry cell weight and PHA concentration were obtained when 0.02g or 0.04g of 5-phenylvaleric acid were added in 50mL medium. Cultured with sodium octanoate and 5-phenylvaleric acid, PHA containing HO (3-hydroxyoctanoate) unit and HPV (3-hydroxy-5-phenylvalerate) unit was produced. T(g) of the products fell between those of pure PHO and pure PHPV. By means of DSC analysis and fractionation method, the PHA obtained was regarded as a random copolymer.

  8. Structural and magnetoelectric properties of Ga2-xFexO3 single crystals grown by a floating-zone method

    International Nuclear Information System (INIS)

    Arima, T.; Higashiyama, D.; Goto, T.; Miyasaka, S.; Kimura, T.; Kaneko, Y.; He, J.P.; Oikawa, K.; Kamiyama, T.; Kumai, R.; Tokura, Y.

    2004-01-01

    Lattice-structural, magnetic, and magnetoelectric (ME) properties have been investigated for single crystals of prototypical polar ferrimagnet Ga 2-x Fe x O 3 (0.8≤x≤1.4) as melt-grown by a floating-zone (FZ) method. Magnetization measurements show that the saturated magnetization as well as the ferrimagnetic phase transition temperature (T C ) increases with as increase of Fe content x, while the coercive force decreases. A neutron powder diffraction study indicates fairly low ordering of Ga and Fe arrangement at cation sites, which is likely related to the lower T C in the FZ crystals than in the corresponding flux-grown crystals. Coefficients of linear and quadratic ME effects have been obtained with measurements of change in electric polarization induced by sweeping a magnetic field. Electric polarization was largely modulated in a magnetic field applied parallel to the direction of spontaneous magnetization, but not in a field parallel to that of the spontaneous polarization. A simple model to explain the sharp contrast is presented

  9. Structural Properties of Zinc Oxide Nanorods Grown on Al-Doped Zinc Oxide Seed Layer and Their Applications in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Kyung Ho Kim

    2014-03-01

    Full Text Available We fabricated zinc oxide (ZnO nanorods (NRs with Al-doped ZnO (AZO seed layers and dye-sensitized solar cells (DSSCs employed the ZnO NRs between a TiO2 photoelectrode and a fluorine-doped SnO2 (FTO electrode. The growth rate of the NRs was strongly dependent on the seed layer conditions, i.e., thickness, Al dopant and annealing temperature. Attaining a large particle size with a high crystallinity of the seed layer was vital to the well-aligned growth of the NRs. However, the growth was less related to the substrate material (glass and FTO coated glass. With optimized ZnO NRs, the DSSCs exhibited remarkably enhanced photovoltaic performance, because of the increase of dye absorption and fast carrier transfer, which, in turn, led to improved efficiency. The cell with the ZnO NRs grown on an AZO seed layer annealed at 350 °C showed a short-circuit current density (JSC of 12.56 mA/cm2, an open-circuit voltage (VOC of 0.70 V, a fill factor (FF of 0.59 and a power conversion efficiency (PCE, η of 5.20% under air mass 1.5 global (AM 1.5G illumination of 100 mW/cm2.

  10. Role of surface energy on the morphology and optical properties of GaP micro & nano structures grown on polar and non-polar substrates

    Science.gov (United States)

    Roychowdhury, R.; Kumar, Shailendra; Wadikar, A.; Mukherjee, C.; Rajiv, K.; Sharma, T. K.; Dixit, V. K.

    2017-10-01

    Role of surface energy on the morphology, crystalline quality, electronic structure and optical properties of GaP layer grown on Si (001), Si (111), Ge (111) and GaAs (001) is investigated. GaP layers are grown on four different substrates under identical growth kinetics by metal organic vapour phase epitaxy. The atomic force microscopy images show that GaP layer completely covers the surface of GaAs substrate. On the other hand, the surfaces of Si (001), Si (111), Ge (111) substrates are partially covered with crystallographically morphed GaP island type micro and nano-structures. Origin of these crystallographically morphed GaP island is explained by the theoretical calculation of surface energy of the layer and corresponding substrates respectively. The nature of GaP island type micro and nano-structures and layers are single crystalline with existence of rotational twins on Si and Ge (111) substrates which is confirmed by the phi, omega and omega/2theta scans of high resolution x-ray diffraction. The electronic valence band offsets between the GaP and substrates have been determined from the valence band spectra of ultraviolet photoelectron spectroscopy. The valence electron plasmon of GaP are investigated by studying the energy values of Ga (3d) core level along with loss peaks in the energy dependent photoelectron spectra. The peak observed within the range of 3-6 eV from the Ga (3d) core level in the photoelectron spectra are associated to inter band transitions as their energy values are estimated from the pseudo dielectric function by the spectroscopic ellipsometry.

  11. Laser MBE-grown CoFeB epitaxial layers on MgO: Surface morphology, crystal structure, and magnetic properties

    Science.gov (United States)

    Kaveev, Andrey K.; Bursian, Viktor E.; Krichevtsov, Boris B.; Mashkov, Konstantin V.; Suturin, Sergey M.; Volkov, Mikhail P.; Tabuchi, Masao; Sokolov, Nikolai S.

    2018-01-01

    Epitaxial layers of CoFeB were grown on MgO by means of laser molecular beam epitaxy using C o40F e40B20 target. The growth was combined with in situ structural characterization by three-dimensional reciprocal space mapping obtained from reflection high energy electron diffraction (RHEED) data. High-temperature single stage growth regime was adopted to fabricate CoFeB layers. As confirmed by the atomic force microscopy, the surface of CoFeB layers consists of closely spaced nanometer sized islands with dimensions dependent on the growth temperature. As shown by RHEED and XRD analysis, the CoFeB layers grown at high-temperature on MgO(001) possess body centered cubic (bcc) crystal structure with the lattice constant a =2.87 Å close to that of the C o75F e25 alloy. It was further shown that following the same high-temperature growth technique the MgO/CoFeB/MgO(001) heterostructures can be fabricated with top and bottom MgO layers of the same crystallographic orientation. The CoFeB layers were also grown on the GaN(0001) substrates using MgO(111) as a buffer layer. In this case, the CoFeB layers crystallize in bcc crystal structure with the (111) axis perpendicular to the substrate surface. The magnetic properties of the CoFeB/MgO (001) heterostructures have been investigated by measuring magnetization curves with a vibrating sample magnetometer as well as by performing magneto-optical Kerr effect (MOKE) and ferromagnetic resonance (FMR) studies. FMR spectra were obtained for the variety of the magnetic field directions and typically consisted of a single relatively narrow resonance line. The magnetization orientations and the resonance conditions were calculated in the framework of a standard magnetic energy minimization procedure involving a single K1 c cubic term for the magnetocrystalline anisotropy. This allows a fairly accurate description of the angular dependences of the resonance fields—both in-plane and out-of-plane. It was shown that CoFeB layers exhibit

  12. Study of the Morphological, Structural, Optical and Photoelectrochemical Properties of Zinc Oxide Nanorods Grown Using a Microwave Chemical Bath Deposition Method

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sungjin; Ryu, Hyukhyun [Inje University, Gimhae (Korea, Republic of); Lee, Won-Jae [Dong-Eui University, Busan (Korea, Republic of)

    2017-04-15

    In this study, zinc oxide (ZnO) nanostructures were grown on a ZnO-buffered fluorine-doped tin oxide (FTO) substrate using a microwave chemical bath deposition method with different zinc oxide precursor concentrations from 0.01 to 0.5 M. We investigated the effects of the zinc oxide precursor concentration on the morphological, structural, optical and photoelectrochemical properties of the ZnO nanostructures. From this work, we found that ZnO one-dimensional structures mainly grew along the (002) plane, and the nanorod length, diameter, surface area and photoelectrochemical properties were largely dependent on the precursor concentration. That is, the photoelectrochemical properties were affected by the morphological and structural properties of the ZnO. The morphological, structural, optical and photoelectrochemical properties of the ZnO nanostructure were investigated by field emission scanning electron microscopy (FE-SEM) and atomic force microscope (AFM), X-ray diffraction (XRD), UV-visible spectroscopy and 3-electrode potentiostat. We obtained the highest photocurrent density of 0.37 mA/cm{sup 2} (at 1.1 V vs. SCE) from the precursor concentration of 0.07 M, which resulted in ZnO nanostructures with proper length and diameter, large surface area and good structural properties.

  13. Photoelectrical characteristics of metal–insulator–semiconductor structures based on graded-gap HgCdTe grown by molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Voitsekhovskii, A.V., E-mail: vav@elefot.tsu.ru [Department of Radiophysics, Tomsk State University, Lenin av., 36, 634050, Tomsk (Russian Federation); Laboratory of Optical Electronics, Siberian Physical Technical Institute TSU, Novosobornaya sq., 1, 634050, Tomsk (Russian Federation); Nesmelov, S.N., E-mail: nes@elefot.tsu.ru [Laboratory of Optical Electronics, Siberian Physical Technical Institute TSU, Novosobornaya sq., 1, 634050, Tomsk (Russian Federation); Dzyadukh, S.M. [Laboratory of Optical Electronics, Siberian Physical Technical Institute TSU, Novosobornaya sq., 1, 634050, Tomsk (Russian Federation)

    2014-01-31

    Metal–insulator–semiconductor structures based on HgCdTe are grown by molecular-beam epitaxy. Near-surface graded-gap layers with high CdTe content are formed on both sides of the epitaxial HgCdTe film. Photoelectrical characteristics of these structures are studied experimentally and theoretically. For structures based on n-Hg{sub 1−x}Cd{sub x}Te (x = 0.21–0.23), the formation of a near-surface graded-gap layer leads to an increase in the differential resistance of the space charge region due to the suppression of tunneling. The temperature dependences of the differential resistance calculated with account to different mechanisms of generation of minority charge carriers are similar to the experimental dependences of the photoelectromotive force. - Highlights: • The metal–insulator–semiconductor structures based on HgCdTe were studied. • Photoelectrical properties of such structures were investigated. • Mechanisms of generation of minority carriers were studied. • Creation of near-surface graded-gap layers suppresses tunneling.

  14. Structure and mechanical properties of a eutectic high-temperature Nb-Si alloy grown by directional solidification

    Science.gov (United States)

    Karpov, M. I.; Vnukov, V. I.; Korzhov, V. P.; Stroganova, T. S.; Zheltyakova, I. S.; Prokhorov, D. V.; Gnesin, I. B.; Kiiko, V. M.; Kolobov, Yu. R.; Golosov, E. V.; Nekrasov, A. N.

    2014-04-01

    The structure and the short-term high-temperature strength of Ni-18.7 at % Si (Nb-Nb3Si eutectic) alloys fabricated by vacuum electron-beam zone melting and induction melting in an argon atmosphere are studied. The structure of the samples prepared by vacuum electron-beam zone melting is characterized by the presence of primary Nb5Si3 intermetallic precipitates and the absence of its secondary precipitates. The structure of the samples prepared by induction melting in an argon atmosphere has two characteristic zones, namely, eutectic and eutectoid ones.

  15. Effect of vanadium substitution on structural and electrical properties of sol-gel grown nanostructured zinc oxide

    Science.gov (United States)

    Boricha, Hetal; Rajyaguru, Bhargav; Gadani, Keval; Rathod, K. N.; Shrimali, V. G.; Udeshi, Bhagyashree; Keshvani, M. J.; Joshi, A. D.; Pandya, D. D.; Solanki, P. S.; Shah, N. A.

    2017-05-01

    In the present communication, we report the results on the structural and electrical studies on nanostructured pure (ZnO) and Vanadium (V) doped Zn0.95V0.05O samples synthesized using low cost Sol-Gel technique. To understand the structural properties and their dependence on V substitution, X-Ray diffraction (XRD) measurement was carried out for both the samples understudy. XRD results reveal the single phasic wurtzite nature of both the samples showing hexagonal unit cell structure. A minor phase of ZnV2O6 is observed in V doped ZnO sample. Improved dielectric permittivity, enhanced ac conductivity (σac) and suppression in impedance have been discussed on the basis of structural modifications by the substitution of V in ZnO, enhanced charge carrier concentration, charge carrier polarization and correlated barrier hopping due to the localized state.

  16. Broadband Radiometric LED Measurements.

    Science.gov (United States)

    Eppeldauer, G P; Cooksey, C C; Yoon, H W; Hanssen, L M; Podobedov, V B; Vest, R E; Arp, U; Miller, C C

    2016-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed.

  17. X-ray Topographic Investigations of Domain Structure in Czochralski Grown PrxLa1-xAlO3 Crystals

    International Nuclear Information System (INIS)

    Wieteska, K.; Wierzchowski, W.; Malinowska, A.; Turczynski, S.; Pawlak, D.A.; Lukasiewicz, T.; Lefeld-Sosnowska, M.; Graeff, W.

    2010-01-01

    In the present paper X-ray diffraction topographic techniques were applied to a number of samples cut from Czochralski grown Pr x La 1-x AlO 3 crystals with different ratio of praseodymium and lanthanum. Conventional and synchrotron X-ray topographic investigations revealed differently developed domain structures dependent on the composition of mixed praseodymium lanthanum aluminium perovskites. Some large mosaic blocks were observed together with the domains. In the best crystals, X-ray topographs revealed striation fringes and individual dislocations inside large domains. Synchrotron topographs allowed us to indicate that the domains correspond to three different crystallographic planes, and to evaluate the lattice misorientation between domains in the range of 20-50 arc min (authors)

  18. Design of Electrically Conductive Structural Composites by Modulating Aligned CVD-Grown Carbon Nanotube Length on Glass Fibers.

    Science.gov (United States)

    He, Delong; Fan, Benhui; Zhao, Hang; Lu, Xiaoxin; Yang, Minhao; Liu, Yu; Bai, Jinbo

    2017-01-25

    Function-integration in glass fiber (GF) reinforced polymer composites is highly desired for developing lightweight structures and devices with improved performance and structural health monitoring. In this study, homogeneously aligned carbon nanotube (CNT) shell was in situ grafted on GF by chemical vapor deposition (CVD). It was demonstrated that the CNT shell thickness and weight fraction can be modulated by controlling the CVD conditions. The obtained hierarchical CNTs-GF/epoxy composites show highly improved electrical conductivity and thermo-mechanical and flexural properties. The composite through-plane and in-plane electrical conductivities increase from a quasi-isolator value to ∼3.5 and 100 S/m, respectively, when the weight fraction of CNTs grafted on GF fabric varies from 0% to 7%, respectively. Meanwhile, the composite storage modulus and flexural modulus and strength improve as high as 12%, 21%, and 26%, respectively, with 100% retention of the glass transition temperature. The reinforcing mechanisms are investigated by analyzing the composite microstructure and the interfacial adhesion and wetting properties of CNTs-GF hybrids. Moreover, the specific damage-related resistance variation characteristics could be employed to in situ monitor the structural health state of the composites. The outstanding electrical and structural properties of the CNTs-GF composites were due to the specific interfacial and interphase structures created by homogeneously grafting aligned CNTs on each GF of the fabric.

  19. Structural characterization of metastable hcp-Ni thin films epitaxially grown on Au(100) single-crystal underlayers

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Tanaka, Takahiro; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    Ni(1120) epitaxial thin films with hcp structure were prepared on Au(100) single-crystal underlayers at 100 deg. C by ultra high vacuum molecular beam epitaxy. The detailed film structure is studied by in situ reflection high energy electron diffraction, x-ray diffraction, and transmission electron microscopy. The hcp-Ni film consists of two types of variants whose c-axes are rotated around the film normal by 90 deg. each other. An atomically sharp boundary is recognized between the film and the underlayer, where misfit dislocations are introduced. Presence of such dislocations seems to relieve the strain caused by the lattice mismatch between the film and the underlayer.

  20. Surface structures of normal paraffins and cyclohexane monolayers and thin crystals grown on the (111) crystal face of platinum. A low-energy electron diffraction study

    International Nuclear Information System (INIS)

    Firment, L.E.; Somorjai, G.A.

    1977-01-01

    The surfaces of the normal paraffins (C 3 --C 8 ) and cyclohexane have been studied using low-energy electron diffraction (LEED). The samples were prepared by vapor deposition on the (111) face of a platinum single crystal in ultrahigh vacuum, and were studied both as thick films and as adsorbed monolayers. These molecules form ordered monolayers on the clean metal surface in the temperature range 100--220 K and at a vapor flux corresponding to 10 -7 Torr. In the adsorbed monolayers of the normal paraffins (C 4 --C 8 ), the molecules lie with their chain axes parallel to the Pt surface and Pt[110]. The paraffin monolayer structures undergo order--disorder transitions as a function of temperature. Multilayers condensed upon the ordered monolayers maintained the same orientation and packing as found in the monolayers. The surface structures of the growing organic crystals do not corresond to planes in their reported bulk crystal structures and are evidence for epitaxial growth of pseudomorphic crystal forms. Multilayers of n-octane and n-heptane condensed upon disordered monolayers have also grown with the (001) plane of the triclinic bulk crystal structures parallel to the surface. n-Butane has three monolayer structures on Pt(111) and one of the three is maintained during growth of the crystal. Cyclohexane forms an ordered monolayer, upon which a multilayer of cyclohexane grows exhibiting the (001) surface orientation of the monoclinic bulk crystal structure. Surface structures of saturated hydrocarbons are found to be very susceptible to electron beam induced damage. Surface charging interferes with LEED only at sample thicknesses greater than 200 A

  1. Structural characterisation of the exopolysaccharide produced by Lactobacillus delbrückii subspecies bulgaricus rr grown in skimmed milk

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Gruter, M.; Leeflang, B.R.; Kuiper, J.; Kamerling, J.P.

    1993-01-01

    The exopolysaccharide of Lactobacillus delbrückii subsp. bulgaricus rr. isolated from skimmed milk, is a heteropolymer of D-galactopyranosyl, D-glucopyranosyl, and L-rhamnopyranosyl residues in the molar ratio 5:1:1. The structure was established by linkage analysis and 1D and 2D NMR spectroscopy of

  2. Structural and electrical properties of AlN layers grown on silicon by reactive RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Bazlov, N., E-mail: n.bazlov@spbu.ru; Pilipenko, N., E-mail: nelly.pilipenko@gmail.com; Vyvenko, O.; Petrov, Yu.; Mikhailovskii, V.; Ubyivovk, E. [St. Petersburg State University, Ulyanovskaya 1, Petrodvorets, St.Petersburg (Russian Federation); Kotina, I. [St. Petersburg Nuclear Physics Institute, Gatchina, Leningradskii oblast, 188300 (Russian Federation); Zharinov, V. [INPAC—Institute for Nanoscale Physics and Chemistry, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2016-06-17

    AlN films of different thicknesses were deposited on n-Si (100) substrates by reactive radio frequency (rf) magnetron sputtering. Dependences of structure and electrical properties on thickness of deposited films were researched. The structures of the films were analyzed with scanning electron microscopy (SEM) and with transmitting electron microscopy (TEM). Electrical properties of the films were investigated on Au-AlN-(n-Si) structures by means of current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) techniques. Electron microscopy investigations had shown that structure and chemical composition of the films were thickness stratified. Near silicon surface layer was amorphous aluminum oxide one contained traps of positive charges with concentration of about 4 × 10{sup 18} cm{sup −3}. Upper layers were nanocrystalline ones consisted of both wurzite AlN and cubic AlON nanocrystals. They contained traps both positive and negative charges which were situated within 30 nm distance from silicon surface. Surface densities of these traps were about 10{sup 12} cm{sup −2}. Electron traps with activation energies of (0.2 ÷ 0.4) eV and densities of about 10{sup 10} cm{sup −2} were revealed on interface between aluminum oxide layer and silicon substrate. Their densities varied weakly with the film thickness.

  3. Dansk LED - Museumsbelysning

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Dam-Hansen, Carsten; Thorseth, Anders

    Projektet har til formål at anvende dansk forskning inden for optik og lys til at realisere innovative energieffektive LED lyssystemer til museumsbranchen.......Projektet har til formål at anvende dansk forskning inden for optik og lys til at realisere innovative energieffektive LED lyssystemer til museumsbranchen....

  4. Design and Fabrication of Multi Quantum well based GaN/InGaN Blue LED

    Science.gov (United States)

    Meel, K.; Mahala, P.; Singh, S.

    2018-03-01

    This paper presents the optimization of the multi-quantum well based Light Emitting Diode (LED) structure. We investigate the electrical and optical properties of the device on several factors like well width, barrier width, the number of quantum wells and then optimize the structure. The device is optimized for a well width and barrier width of 3nm and 6nm respectively, consisting of five quantum wells. Simulations were carried out using Silvaco ATLAS TCAD simulation program (Silvaco International, USA). The optimized structure was grown by MOCVD and fabricated. The I-V characteristic was also measured.

  5. Electron beam induced coloration and luminescence in layered structure of WO3 thin films grown by pulsed dc magnetron sputtering

    International Nuclear Information System (INIS)

    Karuppasamy, A.; Subrahmanyam, A.

    2007-01-01

    Tungsten oxide thin films have been deposited by pulsed dc magnetron sputtering of tungsten in argon and oxygen atmosphere. The as-deposited WO 3 film is amorphous, highly transparent, and shows a layered structure along the edges. In addition, the optical properties of the as-deposited film show a steplike behavior of extinction coefficient. However, the electron beam irradiation (3.0 keV) of the as-deposited films results in crystallization, coloration (deep blue), and luminescence (intense red emission). The above changes in physical properties are attributed to the extraction of oxygen atoms from the sample and the structural modifications induced by electron bombardment. The present method of coloration and luminescence has a potential for fabricating high-density optical data storage device

  6. Study of Structural and Optical Properties of Zinc Oxide Rods Grown on Glasses by Chemical Spray Pyrolysis

    OpenAIRE

    Sonmez, Erdal; Aydin, Serdar; Yilmaz, Mehmet; Yurtcan, Mustafa Tolga; Karacali, Tevhit; Ertugrul, Mehmet

    2012-01-01

    We have investigated morphological and optical properties of zinc oxide rods. Highly structured ZnO layers comprising with well-shaped hexagonal rods were prepared by spray pyrolysis deposition of zinc chloride aqueous solutions at ~550∘C. The rods were characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, photoluminescence, and ultraviolet and visible absorption spectroscopy measurements. The deposition of the 0.1 mol/L solution at ~550∘C resulted in crys...

  7. SEM and Raman spectroscopy analyses of laser-induced periodic surface structures grown by ethanol-assisted femtosecond laser ablation of chromium

    Science.gov (United States)

    Bashir, Shazia; Shahid Rafique, M.; Nathala, Chandra S. R.; Ajami, Ali; Husinsky, Wolfgang

    2015-05-01

    The effect of fluence and pulse duration on the growth of nanostructures on chromium (Cr) surfaces has been investigated upon irradiation of femtosecond (fs) laser pulses in a liquid confined environment of ethanol. In order to explore the effect of fluence, targets were exposed to 1000 pulses at various peak fluences ranging from 4.7 to 11.8 J cm-2 for pulse duration of ∼25 fs. In order to explore the effect of pulse duration, targets were exposed to fs laser pulses of various pulse durations ranging from 25 to 100 fs, for a constant fluence of 11.8 J cm-2. Surface morphology and structural transformations have been analyzed by scanning electron microscopy and Raman spectroscopy, respectively. After laser irradiation, disordered sputtered surface with intense melting and cracking is obtained at the central ablated areas, which are augmented with increasing laser fluence due to enhanced thermal effects. At the peripheral ablated areas, where local fluence is approximately in the range of 1.4-4 mJ cm-2, very well-defined laser-induced periodic surface structures (LIPSS) with periodicity ranging from 270 to 370 nm along with dot-like structures are formed. As far as the pulse duration is concerned, a significant effect on the surface modification of Cr has been revealed. In the central ablated areas, for the shortest pulse duration (25 fs), only melting has been observed. However, LIPSS with dot-like structures and droplets have been grown for longer pulse durations. The periodicity of LIPSS increases and density of dot-like structures decreases with increasing pulse duration. The chemical and structural modifications of irradiated Cr have been revealed by Raman spectroscopy. It confirms the formation of new bands of chromium oxides and enol complexes or Cr-carbonyl compounds. The peak intensities of identified bands are dependent upon laser fluence and pulse duration.

  8. Magnitude differences in agronomic, chemical, nutritional, and structural features among different varieties of forage corn grown on dry land and irrigated land.

    Science.gov (United States)

    Xin, Hangshu; Abeysekara, Samen; Zhang, Xuewei; Yu, Peiqiang

    2015-03-11

    In this study, eight varieties of corn forage grown in semiarid western Canada (including Pioneer P2501, Pioneer P39m26, Pioneer P7443, Hyland HL3085, Hyland HLBaxxos, Hyland HLR219, Hyland HLSR22, and Pickseed Silex BT) were selected to explore the effect of irrigation implementation in comparison with nonirrigation on (1) agronomic characteristics, (2) basic chemical profiles explored by using a near-infrared reflectance (NIR) system, and (3) protein and carbohydrate internal structural parameters revealed by using an attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) system. Also, principal component analysis (PCA) was performed on spectroscopic data for clarification of differences in molecular structural makeup among the varieties. The results showed that irrigation treatment significantly increased (P corn forages. Significant interactions of irrigation treatment and corn variety were observed on most agronomic characteristics (DM yield, T/ha, days to tasseling, days to silking) and crude fiber (CF) and ether extract (EE) contents as well as some spectral data such as cellulosic compounds (CELC) peak intensity, peak ratios of CHO third peak to CELC, α-helix to β-sheet, and CHO third peak to amide I. Additionally, the spectral ratios of chemical functional groups that related to structural and nonstructural carbohydrates and protein polymers in forages did not remain constant over corn varieties cultivated with and without water treatment. Moreover, different cultivars had different growth, structure, and nutrition performances in this study. Although significant differences could be found in peak intensities, PCA results indicated some structural similarities existed between two treated corn forages with the exception of HL3085 and HLBaxxos. In conclusion, irrigation and corn variety had interaction effects on agronomic, chemical, nutritional, and structural features. Further study on the optimum level of irrigation for corn

  9. Semiconductor lasers and herterojunction leds

    CERN Document Server

    Kressel, Henry

    2012-01-01

    Semiconductor Lasers and Heterojunction LEDs presents an introduction to the subject of semiconductor lasers and heterojunction LEDs. The book reviews relevant basic solid-state and electromagnetic principles; the relevant concepts in solid state physics; and the p-n junctions and heterojunctions. The text also describes stimulated emission and gain; the relevant concepts in electromagnetic field theory; and the modes in laser structures. The relation between electrical and optical properties of laser diodes; epitaxial technology; binary III-V compounds; and diode fabrication are also consider

  10. Extracting light out of LEDs

    Science.gov (United States)

    Muschaweck, Julius; Wiesmann, Christopher

    2013-08-01

    `External quantum efficiency', that is, the number of photons generated per electron passing through the p-n junction of an LED is probably the most important number to quantify the performance of an LED chip. Although advances in epitaxy have increased the fraction of radiative recombination to extremely high values, the extraction of the precious photons that are trapped in a high refractive index crystal is still tricky. In this brief tutorial, we look at the physics of light extraction both from a geometrical optics/thermodynamic and a wave optics point of view, discussing both random and deterministic surface structures.

  11. Influence of oxygen flow rate on the structural, optical and electrical properties of ZnO films grown by DC magnetron sputtering

    Science.gov (United States)

    Gobbiner, Chaya Ravi; Ali Avanee Veedu, Muhammed; Kekuda, Dhananjaya

    2016-04-01

    Zinc oxide thin films were deposited on glass substrates at different oxygen flow rates by DC reactive magnetron sputtering. The oxygen flow rate was found to be one of the crucial parameters which influence structural, optical and electrical properties of grown films. The structural and optical characterization of the deposited films was carried out using X-ray diffraction and UV-visible spectroscopy, respectively. Swanepoel envelope and Drude-Lorentz (DL) models were applied to extract the optoelectronic parameters such as refractive index, dispersion energy and plasma frequency. Structurally, grain size was found to decrease with increase in oxygen flow rate during deposition. Moreover, all the films exhibited preferred (002) orientation confirming c-axis orientation of the films perpendicular to the substrate. For a particular range of oxygen flow rates, columnar growth was achieved. Marginal increase in the optical band gap from 3.14 to 3.22 eV was observed as the oxygen flow rate increased from 3 to 10 sccm. Calculated plasma frequency from the DL model was found to be in the infrared region. It has decreased as oxygen flow rate increased with the value from 1.625 × 1014 rad/s (862 cm-1) to 1.072 × 1014 rad/s (568 cm-1).

  12. X-ray absorption near-edge structure of GaN with high Mn concentration grown on SiC

    Science.gov (United States)

    Sancho-Juan, O.; Cantarero, A.; Garro, N.; Cros, A.; Martínez-Criado, G.; Salomé, M.; Susini, J.; Olguín, D.; Dhar, S.

    2009-07-01

    By means of x-ray absorption near-edge structure (XANES) several Ga1-xMnxN (0.03grown by molecular beam epitaxy on [0001] SiC substrates. The low mismatch between GaN and SiC allows for a good quality and homogeneity of the material. The measurements were performed in fluorescence mode around both the Ga and Mn K edges. All samples studied present a similar Mn ionization state, very close to 2+, and tetrahedral coordination. In order to interpret the near-edge structure, we have performed ab initio calculations using the full potential linear augmented plane wave method as implemented in the Wien2k code. The calculations show the appearance of a Mn bonding \\mathrm {t_{2}}\\uparrow band localized in the gap region, and the corresponding anti-bonding state \\mathrm {t_{2}}\\downarrow , which seem to be responsible for the double structure which appears at the pre-edge absorption region. The shoulders and main absorption peak of the XANES spectra are attributed to transitions from the Mn(1s) band to the conduction bands, which are partially dipole allowed because of the Mn(4p) contribution to these bands.

  13. X-ray absorption near-edge structure of GaN with high Mn concentration grown on SiC

    Energy Technology Data Exchange (ETDEWEB)

    Sancho-Juan, O; Cantarero, A; Garro, N; Cros, A [Materials Science Institute, University of Valencia, PO Box 22085, E46071 Valencia (Spain); Martinez-Criado, G; Salome, M; Susini, J [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble (France); Olguin, D [Dept. de Fisica, CINVESTAV-IPN, 07300 Mexico D F (Mexico); Dhar, S [Experimentalphysik, Universitaet Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg (Germany)

    2009-07-22

    By means of x-ray absorption near-edge structure (XANES) several Ga{sub 1-x}Mn{sub x}N (0.03grown by molecular beam epitaxy on [0001] SiC substrates. The low mismatch between GaN and SiC allows for a good quality and homogeneity of the material. The measurements were performed in fluorescence mode around both the Ga and Mn K edges. All samples studied present a similar Mn ionization state, very close to 2+, and tetrahedral coordination. In order to interpret the near-edge structure, we have performed ab initio calculations using the full potential linear augmented plane wave method as implemented in the Wien2k code. The calculations show the appearance of a Mn bonding t{sub 2}arrow up band localized in the gap region, and the corresponding anti-bonding state t{sub 2}arrow down, which seem to be responsible for the double structure which appears at the pre-edge absorption region. The shoulders and main absorption peak of the XANES spectra are attributed to transitions from the Mn(1s) band to the conduction bands, which are partially dipole allowed because of the Mn(4p) contribution to these bands.

  14. Structural properties of Bi{sub 2−x}Mn{sub x}Se{sub 3} thin films grown via molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Babakiray, Sercan; Johnson, Trent A.; Borisov, Pavel; Holcomb, Mikel B.; Lederman, David, E-mail: david.lederman@mail.wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Marcus, Matthew A. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Tarafder, Kartick [Department of Physics, BITS-Pilani Hyderabad Campus, Secunderabad, Andhra Pradesh 500078 (India)

    2015-07-28

    The effects of Mn doping on the structural properties of the topological insulator Bi{sub 2}Se{sub 3} in thin film form were studied in samples grown via molecular beam epitaxy. Extended x-ray absorption fine structure measurements, supported by density functional theory calculations, indicate that preferential incorporation occurs substitutionally in Bi sites across the entire film volume. This finding is consistent with x-ray diffraction measurements which show that the out of plane lattice constant expands while the in plane lattice constant contracts as the Mn concentration is increased. X-ray photoelectron spectroscopy indicates that the Mn valency is 2+ and that the Mn bonding is similar to that in MnSe. The expansion along the out of plane direction is most likely due to weakening of the Van der Waals interactions between adjacent Se planes. Transport measurements are consistent with this Mn{sup 2+} substitution of Bi sites if additional structural defects induced by this substitution are taken into account.

  15. Effects of substrate temperature, substrate orientation, and energetic atomic collisions on the structure of GaN films grown by reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Schiaber, Ziani S.; Lisboa-Filho, Paulo N.; Silva, José H. D. da [Universidade Estadual Paulista, UNESP, Bauru, São Paulo 17033-360 (Brazil); Leite, Douglas M. G. [Universidade Federal de Itajubá, UNIFEI, Itajubá, Minas Gerais 37500-903 (Brazil); Bortoleto, José R. R. [Universidade Estadual Paulista, UNESP, Sorocaba, São Paulo 18087-180 (Brazil)

    2013-11-14

    The combined effects of substrate temperature, substrate orientation, and energetic particle impingement on the structure of GaN films grown by reactive radio-frequency magnetron sputtering are investigated. Monte-Carlo based simulations are employed to analyze the energies of the species generated in the plasma and colliding with the growing surface. Polycrystalline films grown at temperatures ranging from 500 to 1000 °C clearly showed a dependence of orientation texture and surface morphology on substrate orientation (c- and a-plane sapphire) in which the (0001) GaN planes were parallel to the substrate surface. A large increase in interplanar spacing associated with the increase in both a- and c-parameters of the hexagonal lattice and a redshift of the optical bandgap were observed at substrate temperatures higher than 600 °C. The results showed that the tensile stresses produced during the film's growth in high-temperature deposition ranges were much larger than the expected compressive stresses caused by the difference in the thermal expansion coefficients of the film and substrate in the cool-down process after the film growth. The best films were deposited at 500 °C, 30 W and 600 °C, 45 W, which corresponds to conditions where the out diffusion from the film is low. Under these conditions the benefits of the temperature increase because of the decrease in defect density are greater than the problems caused by the strongly strained lattice that occurr at higher temperatures. The results are useful to the analysis of the growth conditions of GaN films by reactive sputtering.

  16. Structural and magnetic properties of Co-doped ZnO thin films grown by ultrasonic spray pyrolysis method

    Science.gov (United States)

    Baghdad, R.; Lemée, N.; Lamura, G.; Zeinert, A.; Hadj-Zoubir, N.; Bousmaha, M.; Bezzerrouk, M. A.; Bouyanfif, H.; Allouche, B.; Zellama, K.

    2017-04-01

    Cobalt-doped ZnO thin films with several different percentage of Co from 0 up to 15 at% were synthesized via a cheap, simple and versatile method i.e. ultrasonic spray pyrolysis at atmospheric pressure and a substrate temperature of 350 °C. The structure of the as-prepared samples was characterized by X-ray diffraction (XRD), Raman spectroscopy and FTIR. The Co-doping effect is revealed by the presence of three additional peaks around 235, 470 and 538 cm-1 respect to the Raman spectra of the unsubstituted film. Fourier transform infrared spectroscopy (FTIR) put in evidence the decrease of the bond force constant f with increasing Co-doping. By ultra-violet visible near infrared (UV-Vis-NIR) spectroscopy on Co-doped samples it was possible to show the presence of additional absorption bands at approximately 570, 620 and 660 nm suggesting that Co2+ ions do not change their oxidation when substituted to zinc and the ZnO lattice does not change its wurtzite structure as well. Finally, all our samples exhibit a paramagnetic behavior without any trace of intrinsic room temperature ferromagnetism.

  17. Structural, morphological and local electric properties of TiO2 thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Gyoergy, E; Pino, A Perez del; Sauthier, G; Figueras, A; Alsina, F; Pascual, J

    2007-01-01

    Titanium dioxide (TiO 2 ) thin films were synthesized on (1 0 0) Si substrates by reactive pulsed laser deposition (PLD) technique. A frequency quadrupled Nd : YAG (λ = 266 nm, τ FWHM ≅ 5 ns, ν = 10 Hz) laser source was used for the irradiations of metallic Ti targets. The experiments were performed in controlled oxygen atmosphere. Crystallinity, surface morphology and local electric properties of the obtained oxide thin films were investigated by x-ray diffractometry, micro-Raman spectroscopy and current sensing atomic force microscopy. An inter-relation was found between the surface morphology, the crystalline structure and the nano-scale electric properties which open the possibility of synthesizing by the PLD technique TiO 2 thin films with tunable functional properties for future applications such as photocatalysts, gas sensors or solar energy converters

  18. Determination of the Solid Electrolyte Interphase Structure Grown on a Silicon Electrode Using a Fluoroethylene Carbonate Additive

    Energy Technology Data Exchange (ETDEWEB)

    Veith, Gabriel M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Doucet, Mathieu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Data Analysis and Visualization Division; Sacci, Robert L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Vacaliuc, Bogdan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Research Accelerator Division; Baldwin, J. Kevin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Browning, James F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Division

    2017-07-24

    In this work we explore how an electrolyte additive (fluorinated ethylene carbonate – FEC) mediates the thickness and composition of the solid electrolyte interphase formed over a silicon anode in situ as a function of state-of-charge and cycle. We show the FEC condenses on the surface at open circuit voltage then is reduced to C-O containing polymeric species around 0.9 V (vs. Li/Li+). The resulting film is about 50 Å thick. Upon lithiation the SEI thickens to 70 Å and becomes more organic-like. With delithiation the SEI thins by 13 Å and becomes more inorganic in nature, consistent with the formation of LiF. This thickening/thinning is reversible with cycling and shows the SEI is a dynamic structure. We compare the SEI chemistry and thickness to 280 Å thick SEI layers produced without FEC and provide a mechanism for SEI formation using FEC additives.

  19. Effect of nitrogen incorporation on the structural, optical and dielectric properties of reactive sputter grown ITO films

    Energy Technology Data Exchange (ETDEWEB)

    Gartner, M.; Stroescu, H. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Marin, A., E-mail: alexmarin@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Osiceanu, P. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Anastasescu, M., E-mail: manastasescu@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Stoica, M.; Nicolescu, M.; Duta, M.; Preda, S. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Aperathitis, E.; Pantazis, A.; Kampylafka, V. [FORTH-IESL, Crete (Greece); Modreanu, M. [Tyndall National Institute, University College Cork, Cork (Ireland); Zaharescu, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania)

    2014-09-15

    Highlights: • Graded optical model for ITON films is presented. • ITON thin films retain an amorphous structure even after RTA at 500 °C in N{sub 2} ambient. • The lowest resistivity was 2 × 10{sup −3} Ω cm for films deposited in 75%N{sub 2} and RTA at 500 °C. • Films deposited in 75% N{sub 2} and RTA at 500 °C have degenerate semiconductor behavior. • Chemical composition before and after RTA has been analyzed by XPS depth profiling. - Abstract: The changes in the optical, microstructural and electrical properties, following the nitrogen incorporation into indium tin oxide thin films are investigated. The films are formed by r.f. sputtering from an indium-tin-oxide (80% In{sub 2}O{sub 3}–20% SnO{sub 2}) target in a mixture of Ar and N{sub 2} plasma (75% N{sub 2}–25% Ar and 100% N{sub 2} respectively) on fused silica glass substrate. The impact of rapid thermal annealing (up to 500 °C, in N{sub 2} ambient) on the properties of indium tin oxynitride (ITON) thin films is also reported. The UV–vis–NIR ellipsometry (SE) characterization of ITON films was performed assuming several realistic approaches based on various oscillator models, using a chemical composition gradient depth profiling, in agreement with the X-ray photoelectron spectroscopy measurements. The Hall measurements show that the ITON films prepared by r.f. sputtering in 75% N{sub 2} and annealed at 500 °C behave as degenerate semiconductors. X-ray diffraction analysis proved that ITON thin films retain an amorphous structure even after RTA at 500 °C in N{sub 2} ambient and atomic force microscopy showed the formation of continuous and smooth ITON thin films, with a morphology consisting in quasispherical nanometric particles.

  20. Growth of monolithic full-color GaN-based LED with intermediate carrier blocking layers

    International Nuclear Information System (INIS)

    El-Ghoroury, Hussein S.; Yeh, Milton; Chen, J. C.; Li, X.; Chuang, Chih-Li

    2016-01-01

    Specially designed intermediate carrier blocking layers (ICBLs) in multi-active regions of III-nitride LEDs were shown to be effective in controlling the carrier injection distribution across the active regions. In principle, the majority of carriers, both holes and electrons, can be guided into targeted quantum wells and recombine to generate light of specific wavelengths at controlled current-densities. Accordingly we proposed and demonstrated a novel monolithic InGaN-based LED to achieve three primary colors of light from one device at selected current densities. This LED structure, which has three different sets of quantum wells separated with ICBLs for three primary red-green-blue (RGB) colors, was grown by metal-organic chemical vapor deposition (MOCVD). Results show that this LED can emit light ranging from 460 to 650 nm to cover the entire visible spectrum. The emission wavelength starts at 650 nm and then decreases to 460 nm or lower as the injection current increases. In addition to three primary colors, many other colors can be obtained by color mixing techniques. To the best of our knowledge, this is the first demonstration of monolithic full-color LED grown by a simple growth technique without using re-growth process.

  1. LED roadway luminaires evaluation.

    Science.gov (United States)

    2012-02-01

    This research explores whether LED roadway luminaire technologies are a viable future solution to providing roadway lighting. Roadway lighting : enhances highway safety and traffic flow during limited lighting conditions. The purpose of this evaluati...

  2. Surface plasmon enhanced LED

    OpenAIRE

    Vučković, Jelena; Lončar, Marko; Painter, Oskar; Scherer, Axel

    2000-01-01

    Summary form only given. We designed and fabricated an LED based on a thin semiconductor membrane (λ/2) with silver mirrors. A large spontaneous emission enhancement and a high modulation speed are obtainable due to the strong localization of the electromagnetic field in the microcavity. The coupling to surface plasmon modes which are subsequently scattered out by means of a grating is used to improve the extraction efficiency of the LED. The bottom mirror is thick and unpatterned. The top mi...

  3. Harvesting and cryo-cooling crystals of membrane proteins grown in lipidic mesophases for structure determination by macromolecular crystallography.

    Science.gov (United States)

    Li, Dianfan; Boland, Coilín; Aragao, David; Walsh, Kilian; Caffrey, Martin

    2012-09-02

    An important route to understanding how proteins function at a mechanistic level is to have the structure of the target protein available, ideally at atomic resolution. Presently, there is only one way to capture such information as applied to integral membrane proteins (Figure 1), and the complexes they form, and that method is macromolecular X-ray crystallography (MX). To do MX diffraction quality crystals are needed which, in the case of membrane proteins, do not form readily. A method for crystallizing membrane proteins that involves the use of lipidic mesophases, specifically the cubic and sponge phases(1-5), has gained considerable attention of late due to the successes it has had in the G protein-coupled receptor field(6-21) (www.mpdb.tcd.ie). However, the method, henceforth referred to as the in meso or lipidic cubic phase method, comes with its own technical challenges. These arise, in part, due to the generally viscous and sticky nature of the lipidic mesophase in which the crystals, which are often micro-crystals, grow. Manipulating crystals becomes difficult as a result and particularly so during harvesting(22,23). Problems arise too at the step that precedes harvesting which requires that the glass sandwich plates in which the crystals grow (Figure 2)(24,25) are opened to expose the mesophase bolus, and the crystals therein, for harvesting, cryo-cooling and eventual X-ray diffraction data collection. The cubic and sponge mesophase variants (Figure 3) from which crystals must be harvested have profoundly different rheologies(4,26). The cubic phase is viscous and sticky akin to a thick toothpaste. By contrast, the sponge phase is more fluid with a distinct tendency to flow. Accordingly, different approaches for opening crystallization wells containing crystals growing in the cubic and the sponge phase are called for as indeed different methods are required for harvesting crystals from the two mesophase types. Protocols for doing just that have been

  4. Structural properties, crystal quality and growth modes of MOCVD-grown AlN with TMAl pretreatment of sapphire substrate

    KAUST Repository

    Sun, Haiding

    2017-08-08

    The growth of high quality AlN epitaxial films relies on precise control of the initial growth stages. In this work, we examined the influence of the trimethylaluminum (TMAl) pretreatment of sapphire substrates on the structural properties, crystal quality and growth modes of heteroepitaxial AlN films on (0001) sapphire substrates. Without the pretreatment, the AlN films nucleated on the smooth surface but exhibited mixed crystallographic Al- (N-) polarity, resulting in rough AlN film surfaces. With increasing the pretreatment time from 1 to 5 s, the N-polarity started to be impeded. However, small islands were formed on sapphire surface due to the decompostion of TMAl. As a result, small voids became noticeable at the nucleation layer (NL) because the growth started as quasi three-dimensional (3D) but transformed to 2D mode as the film grew thicker and got coalesced, leading to smoother and Al-polar films. On the other hand, longer pretreatment time of 40 s formed large 3D islands on sapphire, and thus initiated a 3D-growth mode of the AlN film, generating Al-polar AlN nanocolumns with different facets, which resulted into rougher film surfaces. The epitaxial growth modes and their correlation with the AlN film crystal quality under different TMAl pretreatments are also discussed.

  5. Structure Shift of GaN Among Nanowall Network, Nanocolumn, and Compact Film Grown on Si (111) by MBE.

    Science.gov (United States)

    Zhong, Aihua; Fan, Ping; Zhong, Yuanting; Zhang, Dongping; Li, Fu; Luo, Jingting; Xie, Yizhu; Hane, Kazuhiro

    2018-02-13

    Structure shift of GaN nanowall network, nanocolumn, and compact film were successfully obtained on Si (111) by plasma-assisted molecular beam epitaxy (MBE). As is expected, growth of the GaN nanocolumns was observed in N-rich condition on bare Si, and the growth shifted to compact film when the Ga flux was improved. Interestingly, if an aluminum (Al) pre-deposition for 40 s was carried out prior to the GaN growth, GaN grows in the form of the nanowall network. Results show that the pre-deposited Al exits in the form of droplets with typical diameter and height of ~ 80 and ~ 6.7 nm, respectively. A growth model for the nanowall network is proposed and the growth mechanism is discussed. GaN grows in the area without Al droplets while the growth above Al droplets is hindered, resulting in the formation of continuous GaN nanowall network that removes the obstacles of nano-device fabrication.

  6. Genetic Structure and Molecular Variability Analysis of Citrus sudden death-associated virus Isolates from Infected Plants Grown in Brazil

    Directory of Open Access Journals (Sweden)

    Emilyn Emy Matsumura

    2016-12-01

    Full Text Available Citrus sudden death-associated virus (CSDaV is a monopartite positive-sense single-stranded RNA virus that was suggested to be associated with citrus sudden death (CSD disease in Brazil. Here, we report the first study of the genetic structure and molecular variability among 31 CSDaV isolates collected from both symptomatic and asymptomatic trees in CSD-affected areas. Analyses of partial nucleotide sequences of five domains of the CSDaV genomic RNA, including those encoding for the methyltransferase, the multi-domain region (MDR, the helicase, the RNA-dependent RNA polymerase and the coat protein, showed that the MDR coding region was the most diverse region assessed here, and a possible association between this region and virus adaption to different host or plant tissues is considered. Overall, the nucleotide diversity (π was low for CSDaV isolates, but the phylogenetic analyses revealed the predominance of two main groups, one of which showed a higher association with CSD-symptomatic plants. Isolates obtained from CSD-symptomatic plants, compared to those obtained from asymptomatic plants, showed higher nucleotide diversity, nonsynonymous and synonymous substitution rates and number of amino acid changes on the coding regions located closer to the 5’ end region of the genomic RNA. This work provides new insights into the genetic diversity of the CSDaV, giving support for further epidemiological studies.

  7. Structural and Morphological Properties of Nanostructured ZnO Particles Grown by Ultrasonic Spray Pyrolysis Method with Horizontal Furnace

    Directory of Open Access Journals (Sweden)

    G. Flores-Carrasco

    2014-01-01

    Full Text Available ZnO nanoparticles were synthesized in a horizontal furnace at 500°C using different zinc nitrate hexahydrate concentrations (0.01 and 0.1 M as reactive solution by ultrasonic spray pyrolysis method. The physical-chemical properties of synthesized ZnO nanoparticles have been characterized by thermogravimetric analysis (TGA, X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS, and high resolution transmission electron microscopy (HRTEM. With the TGA is has optimized the temperature at which the initial reactive (Zn(NO32·6H2O, is decomposed completely to give way to its corresponding oxide, ZnO. SEM revealed secondary particles with a quasispherical shape that do not change significantly with the increasing of precursor solution concentration as well as some content of the broken spheres. Increasing the precursor solution concentration leads to the increase in the average size of ZnO secondary particles from 248±73 to 470±160 nm; XRD reveals the similar tendency for the crystallite size which changes from 23±4 to 45±4 nm. HRTEM implies that the secondary particles are with hierarchical structure composed of primary nanosized subunits. These results showed that the precursor concentration plays an important role in the evolution on the size, stoichiometry, and morphology of ZnO nanoparticles.

  8. Study of Structural and Optical Properties of Zinc Oxide Rods Grown on Glasses by Chemical Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    Erdal Sonmez

    2012-01-01

    Full Text Available We have investigated morphological and optical properties of zinc oxide rods. Highly structured ZnO layers comprising with well-shaped hexagonal rods were prepared by spray pyrolysis deposition of zinc chloride aqueous solutions at ~550∘C. The rods were characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, photoluminescence, and ultraviolet and visible absorption spectroscopy measurements. The deposition of the 0.1 mol/L solution at ~550∘C resulted in crystals with a diameter of 400–1000 nm and length of 500–2000 nm. Sharp near-band edge emission peaks, centered at 3844 and 3680 Å, dominated the PL spectra of ZnO at 300 K and 6.2 K, respectively. In addition to this, absorption coefficient was determined by absorption measurement. X-ray diffraction, scanning electron microscopy and atomic force microscopy, results suggest that ZnO rods, prepared by spray pyrolysis, have high crystalline quality. This is desirable in nanotechnology applications.

  9. Structural and magnetic ordering of CrNb3S6 single crystals grown by gas transport method

    Science.gov (United States)

    Borisenko, E. B.; Berezin, V. A.; Kolesnikov, N. N.; Gartman, V. K.; Matveev, D. V.; Shakhlevich, O. F.

    2017-07-01

    Paramagnetic layered semiconductor NbS2 doped with some transition metals can transform into ferromagnetic material. That is why such materials are promising candidates for spintronic devices. It is found that only at certain concentrations of a doping metal T crystallographic ordering is possible, which is essential for magnetic ordering of ternary compounds TNbS2. In particular, CrNb3S6 crystals are studied, which form almost completely ordered superstructure with intercalated Cr between NbS2 layers. The main difficulty in crystal growth is reaching stoichiometry of the compound. This problem is solved in the developed method of two-staged gas transport chemical reaction. This new approach provides growth of CrNb3S6 single crystals of several millimeters in diameter and 0.3-0.5 mm thickness. X-ray phase analysis (XRD) of powders is performed to identify all phases involved in synthesis and growth of the crystals. High frequency absorption in external periodic magnetic field as a function of temperature and intensity of magnetic field is used to estimate the temperature of ferromagnetic transition in CrNb3S6 single crystals. The Curie temperature is estimated as 115 K. Growth of CrNb3S6 crystals from vapor phase is studied in detail and full analysis of phase transitions during growth is given. It has been shown that using of high frequency absorption in the crystal provides reliable estimation of the point of ferromagnetic transition in this semiconductor. The authors are grateful to the Physical Science Department of Russian Academy of Sciences for financial support of the studies in the frameworks of the program "Physics of new materials and structures" (project no. 00-12-10).

  10. Light Emitting Diode (LED)

    Science.gov (United States)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.

  11. Light Emitting Diodes (LEDs)

    Science.gov (United States)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. 'A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back,' said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.

  12. Led-sukellusvalaisin

    OpenAIRE

    Saarelainen, Mikko

    2012-01-01

    Opinnäytetyön aiheena on LED ja sen käyttö sukellusvalaisimissa. Työn tarkoitus oli tutkia miten LED toimii ja miten se soveltuu käytettäväksi sukellusvalaisimessa, sekä syventää omaa tietoutta valosta, mitä se on ja miten sitä mitataan. Työssä käydään läpi LEDin ominaisuuksia ja miten se eroaa muista sukellusvalaisimissa käytetyistä lampuista. Työ on toteutettu tutustumalla LEDiin ja valoon käyttämällä erilaisia lähteitä ja päivittämällä nykyinen sukellusvalaisimeni LED-sukellusvalaisime...

  13. [LED lights in dermatology].

    Science.gov (United States)

    Noé, C; Pelletier-Aouizerate, M; Cartier, H

    2017-04-01

    The use in dermatology of light-emitting diodes (LEDs) continues to be surrounded by controversy. This is due mainly to poor knowledge of the physicochemical phases of a wide range of devices that are difficult to compare to one another, and also to divergences between irrefutable published evidence either at the level of in vitro studies or at the cellular level, and discordant clinical results in a variety of different indications: rejuvenation, acne, wound healing, leg ulcers, and cutaneous inflammatory or autoimmune processes. Therapeutic LEDs can emit wavelengths ranging from the ultraviolet, through visible light, to the near infrared (247-1300 nm), but only certain bands have so far demonstrated any real value. We feel certain that if this article remains factual, then readers will have a different, or at least more nuanced, opinion concerning the use of such LED devices in dermatology. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Effects of Rapid Thermal Annealing on the Structural, Electrical, and Optical Properties of Zr-Doped ZnO Thin Films Grown by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Jingjin Wu

    2016-08-01

    Full Text Available The 4 at. % zirconium-doped zinc oxide (ZnO:Zr films grown by atomic layer deposition (ALD were annealed at various temperatures ranging from 350 to 950 °C. The structural, electrical, and optical properties of rapid thermal annealing (RTA treated ZnO:Zr films have been evaluated to find out the stability limit. It was found that the grain size increased at 350 °C and decreased between 350 and 850 °C, while creeping up again at 850 °C. UV–vis characterization shows that the optical band gap shifts towards larger wavelengths. The Hall measurement shows that the resistivity almost keeps constant at low annealing temperatures, and increases rapidly after treatment at 750 °C due to the effect of both the carrier concentration and the Hall mobility. The best annealing temperature is found in the range of 350–550 °C. The ZnO:Zr film-coated glass substrates show good optical and electrical performance up to 550 °C during superstrate thin film solar cell deposition.

  15. Electrical, optical, and structural properties of thin films with tri-layers of AZO/ZnMgO/AZO grown by filtered vacuum arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gontijo, Leonardo C. [Instituto Federal do Espirito Santo, Programa de Pos-Graduacao em Engenharia Metalurgica e de Materiais, CEP 29444-030 Vitoria, ES (Brazil); Cunha, Alfredo G. [Universidade Federal do Espirito Santo, Departamento de Fisica, CEP 29075-910 Vitoria, ES (Brazil); Nascente, Pedro A.P., E-mail: nascente@ufscar.br [Universidade Federal de Sao Carlos, Departamento de Engenharia de Materiais, CEP 13565-905 Sao Carlos, SP (Brazil)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer AZO/ZnMgO/AZO tri-layered films were grown by FCAD filtered cathodic arc deposition. Black-Right-Pointing-Pointer The films were highly transparent and presented excellent electrical resistivity. Black-Right-Pointing-Pointer The films presented optical transmittance in the visible light higher than 80%. - Abstract: Transparent conductive oxides (TCO) are indispensable as front electrode for most of thin film electronic devices such as transparent electrodes for flat panel displays, photovoltaic cells, windshield defrosters, transparent thin film transistors, and low emissivity windows. Thin films of aluminum-doped zinc oxide (AZO) have shown to be one of the most promising TCOs. In this study, three layered Al-doped ZnO (AZO)/ZnMgO/AZO heterostructures were prepared by filtered cathodic arc deposition (FCAD) on glass substrates. The objective is to find a set of parameters that will allow for improved optical and electrical properties of the films such as low resistivity, high mobility, high number of charge carriers, and high transmittance. We have investigated the effect of modifications in thickness and doping of the ZnMgO inner layer on the structural, electrical, and optical characteristics of the stacked heterostructures.

  16. Oxygen flux influence on the morphological, structural and optical properties of Zn1-xMgxO thin films grown by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Su, S.C.; Lu, Y.M.; Zhang, Z.Z.; Li, B.H.; Shen, D.Z.; Yao, B.; Zhang, J.Y.; Zhao, D.X.; Fan, X.W.

    2008-01-01

    The Zn 1-x Mg x O thin films were grown on Al 2 O 3 substrate with various O 2 flow rates by plasma-assisted molecular beam epitaxy (P-MBE). The growth conditions were optimized by the characterizations of morphology, structural and optical properties. The Mg content of the Zn 1-x Mg x O thin film increases monotonously with decreasing the oxygen flux. X-ray diffractometer (XRD) measurements show that all the thin films are preferred (0 0 2) orientated. By transmittance and absorption measurements, it was found that the band gap of the film decreases gradually with increasing oxygen flow rate. The surface morphology dependent on the oxygen flow rate was also studied by field emission scanning electron microscopy (FE-SEM). The surface roughness became significant with increasing oxygen flow rate, and the nanostructures were formed at the larger flow rate. The relationship between the morphology and the oxygen flow rate of Zn 1-x Mg x O films was discussed

  17. Effects of Rapid Thermal Annealing on the Structural, Electrical, and Optical Properties of Zr-Doped ZnO Thin Films Grown by Atomic Layer Deposition.

    Science.gov (United States)

    Wu, Jingjin; Zhao, Yinchao; Zhao, Ce Zhou; Yang, Li; Lu, Qifeng; Zhang, Qian; Smith, Jeremy; Zhao, Yongming

    2016-08-13

    The 4 at. % zirconium-doped zinc oxide (ZnO:Zr) films grown by atomic layer deposition (ALD) were annealed at various temperatures ranging from 350 to 950 °C. The structural, electrical, and optical properties of rapid thermal annealing (RTA) treated ZnO:Zr films have been evaluated to find out the stability limit. It was found that the grain size increased at 350 °C and decreased between 350 and 850 °C, while creeping up again at 850 °C. UV-vis characterization shows that the optical band gap shifts towards larger wavelengths. The Hall measurement shows that the resistivity almost keeps constant at low annealing temperatures, and increases rapidly after treatment at 750 °C due to the effect of both the carrier concentration and the Hall mobility. The best annealing temperature is found in the range of 350-550 °C. The ZnO:Zr film-coated glass substrates show good optical and electrical performance up to 550 °C during superstrate thin film solar cell deposition.

  18. Structural, electrical, and optical properties of polycrystalline NbO{sub 2} thin films grown on glass substrates by solid phase crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Shoichiro [Kanagawa Academy of Science and Technology (KAST), Kawasaki (Japan); Kamisaka, Hideyuki [Department of Chemistry, The University of Tokyo (Japan); Hirose, Yasushi; Hasegawa, Tetsuya [Kanagawa Academy of Science and Technology (KAST), Kawasaki (Japan); Department of Chemistry, The University of Tokyo (Japan)

    2017-03-15

    We investigated the structural, electrical, and optical properties of polycrystalline NbO{sub 2} thin films on glass substrates. The NbO{sub 2} films were crystallized from amorphous precursor films grown by pulsed laser deposition at various oxygen partial pressures (P{sub O2}). The electrical and optical properties of the precursor films systematically changed with P{sub O2}, demonstrating that the oxygen content of the precursor films can be finely controlled with P{sub O2}. The precursors were crystallized into polycrystalline NbO{sub 2} films by annealing under vacuum at 600 C. The NbO{sub 2} films possessed extremely flat surfaces with branching patterns. Even optimized films showed a low resistivity (ρ) of 2 x 10{sup 2} Ω cm, which is much lower than the bulk value of 1 x 10{sup 4} Ω cm, probably because of the inferior crystallinity of the films compared with that of a bulk NbO{sub 2} crystal. Both oxygen-rich and -poor NbO{sub 2} films showed lower ρ than that of the stoichiometric film. The NbO{sub 2} film with the highest ρ showed an indirect bandgap of 0.7 eV. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. High optical and structural quality of GaN epilayers grown on ( 2¯01) β-Ga2O3

    KAUST Repository

    Mumthaz Muhammed, Mufasila

    2014-07-28

    Producing highly efficient GaN-based optoelectronic devices has been a challenge for a long time due to the large lattice mismatch between III-nitride materials and the most common substrates, which causes a high density of threading dislocations. Therefore, it is essential to obtain alternative substrates with small lattice mismatches, appropriate structural, thermal and electrical properties, and a competitive price. Our results show that (2̄01) oriented β-Ga2O3 has the potential to be used as a transparent and conductive substrate for GaN-growth. Photoluminescence spectra of thick GaN layers grown on (2̄01) oriented β-Ga 2O3 are found to be dominated by intense bandedge emission. Atomic force microscopy studies show a modest threading dislocation density of ∼108cm-2. X-ray diffraction studies show the high quality of the single-phase wurtzite GaN thin film on (2̄01) β-Ga2O3 with in-plane epitaxial orientation relationships between the β-Ga2O3 and the GaN thin film defined by (010) β-Ga2O3 || (112̄0) GaN and (2̄01) β-Ga2O3 || (0001) GaN leading to a lattice mismatch of ∼4.7%. Complementary Raman spectroscopy indicates that the quality of the GaN epilayer is high. © 2014 AIP Publishing LLC.

  20. XPS analysis and structural and morphological characterization of Cu{sub 2}ZnSnS{sub 4} thin films grown by sequential evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, G. [Departamento de Física, Universidad Nacional de Colombia, Bogotá (Colombia); Calderón, C., E-mail: clcalderont@unal.edu.co [Departamento de Física, Universidad Nacional de Colombia, Bogotá (Colombia); Bartolo-Pérez, P. [Departamento de Física Aplicada, CINVESTAV-IPN, Mérida, Yuc. (Mexico)

    2014-06-01

    This work describes a procedure to grow single phase Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films with tetragonal-kesterite type structure, through sequential evaporation of the elemental metallic precursors under sulphur vapor supplied from an effusion cell. X-ray diffraction analysis (XRD) is mostly used for phase identification but cannot clearly distinguish the formation of secondary phases such as Cu{sub 2}SnS{sub 3} (CTS) because both compounds have the same diffraction pattern; therefore the use of a complementary technique is needed. Raman scattering analysis was used to distinguish these phases. The influence of the preparation conditions on the morphology and phases present in CZTS thin films were investigated through measurements of scanning electron microscopy (SEM) and XRD, respectively. From transmittance measurements, the energy band gap of the CZTS films was estimated to be around 1.45 eV. The limitation of XRD to identify some of the remaining phases after the growth process are investigated and the results of Raman analysis on the phases formed in samples grown by this method are presented. Further, the influence of the preparation conditions on the homogeneity of the chemical composition in the volume was studied by X-ray photoelectron spectroscopy (XPS) analysis.

  1. Structural and optical studies of GaN pn-junction with AlN buffer layer grown on Si (111) by RF plasma enhanced MBE

    Energy Technology Data Exchange (ETDEWEB)

    Yusoff, Mohd Zaki Mohd; Hassan, Zainuriah; Woei, Chin Che; Hassan, Haslan Abu; Abdullah, Mat Johar [Nano-Optoelectronics Research and Technology Laboratory School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia and Department of Applied Sciences Universiti Teknologi MARA (UiTM) 13500 Permatang Pauh, Penang (Malaysia); Department of Applied Sciences Universiti Teknologi MARA (UiTM) 13500 Permatang Pauh, Penang (Malaysia)

    2012-06-29

    GaN pn-junction grown on silicon substrates have been the focus in a number of recent reports and further effort is still necessary to improve its crystalline quality for practical applications. GaN has the high n-type background carrier concentration resulting from native defects commonly thought to be nitrogen vacancies. In this work, we present the growth of pn-junction of GaN on Si (111) substrate using RF plasma-enhanced molecular beam epitaxy (MBE). Both of the layers show uniformity with an average thickness of 0.709 {mu}m and 0.095 {mu}m for GaN and AlN layers, respectively. The XRD spectra indicate that no sign of cubic phase of GaN are found, so it is confirmed that the sample possessed hexagonal structure. It was found that all the allowed Raman optical phonon modes of GaN, i.e. the E2 (low), E1 (high) and A1 (LO) are clearly visible.

  2. Material and device studies for the development of ultra-violet light emitting diodes (UV-LEDS) along polar, non-polar and semi-polar directions

    Science.gov (United States)

    Chandrasekaran, Ramya

    Over the past few years, significant effort was dedicated to the development of ultraviolet light emitting diodes (UV-LEDs) for a variety of applications. Such applications include chemical and biological detection, water purification and solid-state lighting. III-Nitride LEDs based on multiple quantum wells (MQWs) grown along the conventional [0001] (polar) direction suffer from the quantum confined Stark effect (QCSE), due to the existence of strong electric fields that arise from spontaneous and piezoelectric polarization. Thus, there is strong motivation to develop MQW-based III-nitride LED structures grown along non-polar and semi-polar directions. The goal of this dissertation is to develop UV-LEDs along the [0001] polar and [11 2¯ 0] non-polar directions by the method of Molecular Beam Epitaxy (MBE). The polar and non-polar LEDs were grown on the C-plane and R-plane sapphire substrates respectively. This work is a combination of materials science studies related to the nucleation, growth and n- and p-type doping of III-nitride films on these two substrates, as well as device studies related to fabrication and characterization of UV-LEDs. It was observed that the crystallographic orientation of the III-nitride films grown on R-plane sapphire depends strongly on the kinetic conditions of growth of the Aluminum Nitride (AIN) buffer. Specifically, growth of the AIN buffer under group III-rich conditions leads to nitride films having the (11 2¯ 0) non polar planes parallel to the sapphire surface, while growth of the buffer under nitrogen rich conditions leads to nitride films with the (11 2¯ 6) semi-polar planes parallel to the sapphire surface. The electron concentration and mobility for the films grown along the polar, non-polar and semi-polar directions were investigated. P-type doping of Gallium Nitride (GaN) films grown on the nonpolar (11 2¯ 0) plane do not suffer from polarity inversion and thus the material was doped p-type with a hole concentration

  3. Using AlN-Coated Heat Sink to Improve the Heat Dissipation of LED Packages

    Directory of Open Access Journals (Sweden)

    Jean Ming-Der

    2016-01-01

    Full Text Available This study optimizes aluminum nitride (AlN ceramics, in order to enhance the thermal performance of light-emitting diode (LED packages. AlN coatings are grown on copper/ aluminum substrates as a heat interface material, using an electrostatic spraying process. The effect of the deposition parameters on the coatings is determined. The thermal performance of AlN coated Cu/Al substrates is evaluated in terms of the heat dissipated and compared by measuring the LED case temperature. The structure and properties of the coating are also examined a scanning electron microscopy (SEM. In sum, the thermal performance of the LED is increased and good heat resistance characteristics are obtained. The results show that using AlN ceramic coating on a copper/aluminum substrate increases the thermal performance.

  4. Electron transport in unipolar InGaN/GaN multiple quantum well structures grown by NH3 molecular beam epitaxy

    KAUST Repository

    Browne, David A.

    2015-05-14

    © 2015 AIP Publishing LLC. Unipolar-light emitting diode like structures were grown by NH3 molecular beam epitaxy on c plane (0001) GaN on sapphire templates. Studies were performed to experimentally examine the effect of random alloy fluctuations on electron transport through quantum well active regions. These unipolar structures served as a test vehicle to test our 2D model of the effect of compositional fluctuations on polarization-induced barriers. Variables that were systematically studied included varying quantum well number from 0 to 5, well thickness of 1.5 nm, 3 nm, and 4.5 nm, and well compositions of In0.14Ga0.86N and In0.19Ga0.81N. Diode-like current voltage behavior was clearly observed due to the polarization-induced conduction band barrier in the quantum well region. Increasing quantum well width and number were shown to have a significant impact on increasing the turn-on voltage of each device. Temperature dependent IV measurements clearly revealed the dominant effect of thermionic behavior for temperatures from room temperature and above. Atom probe tomography was used to directly analyze parameters of the alloy fluctuations in the quantum wells including amplitude and length scale of compositional variation. A drift diffusion Schrödinger Poisson method accounting for two dimensional indium fluctuations (both in the growth direction and within the wells) was used to correctly model the turn-on voltages of the devices as compared to traditional 1D simulation models.

  5. Structural characterizations and optical properties of InSe and InSe:Ag semiconductors grown by Bridgman/Stockbarger technique

    Science.gov (United States)

    Gürbulak, Bekir; Şata, Mehmet; Dogan, Seydi; Duman, Songul; Ashkhasi, Afsoun; Keskenler, E. Fahri

    2014-11-01

    Undoped InSe and Ag doped InSe (InSe:Ag) single crystals have been grown by using the Bridgman/Stockbarger method. The freshly cleaved crystals have mirror-like surfaces even without using mechanical treatment. The structure and lattice parameters of the undoped InSe and InSe:Ag semiconductors have been analyzed using a X-ray diffractometer (XRD), Scanning electron microscopy (SEM) and energy dispersive X-rays (EDX) techniques. It is found that the InSe and InSe:Ag crystals had hexagonal structure, and calculated lattice constants were found to be a=4.002 Å and c=17.160 Å for InSe and a=4.619 Å and c=17.003 Å for InSe:Ag. The crystallite sizes have been calculated to be 40-150 nm for InSe and 75-120 nm for InSe:Ag from the SEM results. Ag doping causes a significant increase in the XRD peak intensity. It has been observed from EDX results that InSe contains In=57.12%, Se=38.08% and O=4.81%, respectively. Absorption measurements have been carried out in InSe and InSe:Ag samples in the temperature range 10-320 K with a step of 10 K. The first exciton energies for n=1 were calculated as 1.328, 1.260 eV in InSe and were 1.340, 1.282 eV in InSe:Ag at 10 K and 320 K, respectively.

  6. The compositional, structural, and magnetic properties of a Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN spin injecting hetero-structure grown by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhonghua; Huang, Shimin [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Tang, Kun, E-mail: ktang@nju.edu.cn [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Gu, Shulin, E-mail: slgu@nju.edu.cn [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Zhu, Shunming [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Ye, Jiandong [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Nanjing University Institute of Optoelectronics at Yangzhou, Yangzhou 225009 (China); Xu, Mingxiang [Department of Physics, Southeast University, Nanjing 210096 (China); Wang, Wei; Zheng, Youdou [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China)

    2016-12-01

    Highlights: • The Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN hetero-structure has been fabricated by MOCVD successfully. • The formation mechanism of different layers in sample was revealed in details. • The properties of the hetero-structure have been presented and discussed extensively. • The effect of Ga diffusion on the magnetic properties of Fe{sub 3}O{sub 4} film has been shown. - Abstract: In this article, the authors have designed and fabricated a Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN spin injecting hetero-structure by metal-organic chemical vapor deposition. The compositional, structural, and magnetic properties of the hetero-structure have been characterized and discussed. From the characterizations, the hetero-structure has been successfully grown generally. However, due to the unintentional diffusion of Ga ions from Ga{sub 2}O{sub 3}/GaN layers, the most part of the nominal Fe{sub 3}O{sub 4} layer is actually in the form of Ga{sub x}Fe{sub 3−x}O{sub 4} with gradually decreased x values from the Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3} interface to the Fe{sub 3}O{sub 4} surface. Post-annealing process can further aggravate the diffusion. Due to the similar ionic radius of Ga and Fe, the structural configuration of the Ga{sub x}Fe{sub 3−x}O{sub 4} does not differ from that of pure Fe{sub 3}O{sub 4}. However, the ferromagnetism has been reduced with the incorporation of Ga into Fe{sub 3}O{sub 4}, which has been explained by the increased Yafet-Kittel angles in presence of considerable amount of Ga incorporation. A different behavior of the magnetoresistance has been found on the as-grown and annealed samples, which could be modelled and explained by the competition between the spin-dependent and spin-independent conduction channels. This work has provided detailed information on the interfacial properties of the Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN spin injecting hetero-structure, which is the solid basis for further improvement and application of

  7. Structure-Processing-Property Interrelationships of Vapor Grown Carbon Nanofiber, Single-Walled Carbon Nanotube and Functionalized Single-Walled Carbon Nanotube - Polypropylene Nanocomposites

    Science.gov (United States)

    Radhakrishnan, Vinod Karumathil

    This dissertation describes the first use of a design of experiments approach to investigate the interrelationships between structure, processing, and properties of melt extruded polypropylene (PP) carbon nanomaterial composites. The effect of nanomaterial structure was evaluated by exploring the incorporation of vapor grown carbon nanofibers (VGCFs), or pristine or functionalized single-walled carbon nanotubes (SWNTs or C12SWNTs) in polypropylene, while the effect of processing was investigated by studying the influence of melt extrusion temperature, speed, and time. The nanomaterials and PP were combined by an initial mixing method prior to melt extrusion. The nanocomposite properties were characterized by a combination of morphological, rheological, and thermal methods. Preliminary investigations into the effects of the initial mixing method revealed that the distribution of nanomaterials obtained after the mixing had a considerable influence on the properties of the final melt extruded nanocomposite. Dry mixing (DM) resulted in minimal adhesion between nanomaterials and PP during initial mixing; the majority of nanomaterials descended to the bottom. Hot coagulation (HC) mixing resulted in extremely high degrees of interaction between the nanomaterials and PP chains. Rotary evaporation (RE) mixing resulted in nanomaterial distribution uniformity between that obtained from DM and HC. Employing design of experiments to investigate the effects of structure and processing conditions on melt extruded PP nanocomposite properties revealed several interesting effects. The effect of processing conditions varied depending on the degree of nanomaterial distribution in PP attained prior to melt processing. Increasing melt extrusion temperature increased the decomposition temperature (Td) of PP/C12SWNT obtained from HC mixing but decreased T d of PP/C12SWNT obtained from RE mixing. Higher melt extrusion screw speed, on the other hand, significantly improved the nanocomposite

  8. Grown on Novel Microcarriers

    Directory of Open Access Journals (Sweden)

    Torsten Falk

    2012-01-01

    Full Text Available Human retinal pigment epithelial (hRPE cells have been tested as a cell-based therapy for Parkinson’s disease but will require additional study before further clinical trials can be planned. We now show that the long-term survival and neurotrophic potential of hRPE cells can be enhanced by the use of FDA-approved plastic-based microcarriers compared to a gelatin-based microcarrier as used in failed clinical trials. The hRPE cells grown on these plastic-based microcarriers display several important characteristics of hRPE found in vivo: (1 characteristic morphological features, (2 accumulation of melanin pigment, and (3 high levels of production of the neurotrophic factors pigment epithelium-derived factor (PEDF and vascular endothelial growth factor-A (VEGF-A. Growth of hRPE cells on plastic-based microcarriers led to sustained levels (>1 ng/ml of PEDF and VEGF-A in conditioned media for two months. We also show that the expression of VEGF-A and PEDF is reciprocally regulated by activation of the GPR143 pathway. GPR143 is activated by L-DOPA (1 μM which decreased VEGF-A secretion as opposed to the previously reported increase in PEDF secretion. The hRPE microcarriers are therefore novel candidate delivery systems for achieving long-term delivery of the neuroprotective factors PEDF and VEGF-A, which could have a value in neurodegenerative conditions such as Parkinson’s disease.

  9. Design of a lighting system with high-power LEDs, large area electronics, and light management structure in the LUMENTILE European project

    Science.gov (United States)

    Carraro, L.; Simonetta, M.; Benetti, G.; Tramonte, A.; Capelli, G.; Benedetti, M.; Randone, E. M.; Ylisaukko-oja, A.; Keränen, K.; Facchinetti, T.; Giuliani, G.

    2017-02-01

    LUMENTILE (LUMinous ElectroNic TILE) is a project funded by the European Commission with the goal of developing a luminous tile with novel functionalities, capable of changing its color and interact with the user. Applications include interior/exterior tile for walls and floors covering, high-efficiency luminaries, and advertising under the form of giant video screens. High overall electrical efficiency of the tile is mandatory, as several millions of square meters are foreseen to be installed each year. Demand is for high uniformity of the illumination of the top tile surface, and for high optical extraction efficiency. These features are achieved by smart light management, using a new approach based on light guiding slab and spatially selective light extraction obtained using both diffusion and/or reflection from the top and bottom interfaces of the optical layer. Planar and edge configurations for the RGB LEDs are considered and compared. A square shape with side length from 20cm to 60cm is considered for the tiles. The electronic circuit layout must optimize the electrical efficiency, and be compatible with low-cost roll-to-roll production on flexible substrates. LED heat management is tackled by using dedicated solutions that allow operation in thermally harsh environment. An approach based on OLEDs has also been considered, still needing improvement on emitted power and ruggedness.

  10. Thermal management for LED applications

    CERN Document Server

    Poppe, András

    2014-01-01

    Thermal Management for LED Applications provides state-of-the-art information on recent developments in thermal management as it relates to LEDs and LED-based systems and their applications. Coverage begins with an overview of the basics of thermal management including thermal design for LEDs, thermal characterization and testing of LEDs, and issues related to failure mechanisms and reliability and performance in harsh environments. Advances and recent developments in thermal management round out the book with discussions on advances in TIMs (thermal interface materials) for LED applications, advances in forced convection cooling of LEDs, and advances in heat sinks for LED assemblies. This book also: Presents a comprehensive overview of the basics of thermal management as it relates to LEDs and LED-based systems Discusses both design and thermal management considerations when manufacturing LEDs and LED-based systems Covers reliability and performance of LEDs in harsh environments Has a hands-on applications a...

  11. Efficient Planar Structured Perovskite Solar Cells with Enhanced Open-Circuit Voltage and Suppressed Charge Recombination Based on a Slow Grown Perovskite Layer from Lead Acetate Precursor.

    Science.gov (United States)

    Li, Cong; Guo, Qiang; Wang, Zhibin; Bai, Yiming; Liu, Lin; Wang, Fuzhi; Zhou, Erjun; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao

    2017-12-06

    For planar structured organic-inorganic hybrid perovskite solar cells (PerSCs) with the poly(3,4-ethylenedioxythiophene:polystyrene sulfonate) (PEDOT:PSS) hole transport layer, the open-circuit voltage (V oc ) of the device is limited to be about 1.0 V, resulting in inferior performance in comparison with TiO 2 -based planar counterparts. Therefore, increasing V oc of the PEDOT:PSS-based planar device is an important way to enhance the efficiency of the PerSCs. Herein, we demonstrate a novel approach for perovskite film formation and the film is formed by slow growth from lead acetate precursor via a one-step spin-coating process without the thermal annealing (TA) process. Because the perovskite layer grows slowly and naturally, high-quality perovskite film can be achieved with larger crystalline particles, less defects, and smoother surface morphology. Ultraviolet absorption, X-ray diffraction, scanning electron microscopy, steady-state fluorescence spectroscopy (photoluminescence), and time-resolved fluorescence spectroscopy are used to clarify the crystallinity, morphology, and internal defects of perovskite thin films. The power conversion efficiency of p-i-n PerSCs based on slow-grown film (16.33%) shows greatly enhanced performance compared to that of the control device based on traditional thermally annealed perovskite film (14.33%). Furthermore, the V oc of the slow-growing device reaches 1.12 V, which is 0.1 V higher than that of the TA device. These findings indicate that slow growth of the perovskite layer from lead acetate precursor is a promising approach to achieve high-quality perovskite film for high-performance PerSCs.

  12. Deslumbramiento en dispositivos led

    OpenAIRE

    Ixtaina, Rubén Pablo; Presso, Matías; Ferreyra, Joaquín

    2012-01-01

    En el presente trabajo se presenta un estudio realizado en el LAL a dispositivos para señalización (semáforos, balizas, barrales lumínicos) con tecnología led. Las mediciones tradicionales de intensidad luminosa se complementaron con el análisis de la luminancia de los dispositivos, evaluada para diversas aperturas angula-res. Los resultados obtenidos marcan un notorio incre-mento en las luminancias puntuales, para valores de emisión globales comparables a los obtenidos en dispo-sitivos conve...

  13. Structural and spectroscopic characterization of Ce0.4Zr0.6O2 crystalline rods grown by the Laser Floating Zone method

    Directory of Open Access Journals (Sweden)

    Várez, A.

    2008-06-01

    Full Text Available A structural and spectroscopic characterization of crystalline rods of Ce0.4Zr0.6O2 grown by the laser floating zone (LFZ method is presented. A precursor rod of Ce0.4Zr0.6O2 composition was sintered at 1500 ºC in air atmosphere and then processed by the LFZ technique with a CO2 laser. The processed material was characterized by XRD, SEM and Raman spectroscopy. In the as-grown, dark-color processed rod, the Raman spectrum evolves radially from a t’-like one, corresponding to Ce0.37Zr0.63O2 composition, at the edge of the rod, to a very broad and weak, cubic-like one, at the center. The degree of cerium reduction and oxygen non-stoichiometry were determined through measurements of the electronic Raman spectrum of Ce3+. A strong Ce3+ signal was found at the core of the rod, indicating strong reduction, whereas no Ce3+ signal was detected at the edge. To restore oxygen and Ce4+ content a section of the fiber was reoxidized at 620 ºC for 24 h. A very homogeneous spectrum was found in the reoxidized sample, that was assigned to a t’-phase of composition Ce0.42Zr0.58O2.Presentamos una caracterización estructural y espectroscópica de fibras cristalinas de Ce0.4Zr0.6O2 crecidas mediante fusión zonal asistida por láser (LFZ. Una barra del material precursor, de composición Ce0.4Zr0.6O2, fue sinterizada a 1500 ºC en atmósfera de aire y después procesada por LFZ con un láser de CO2. El material procesado fue caracterizado por difracción de rayos X, microscopía electrónica de barrido y espectroscopía Raman. En la fibra recién procesada, de color gris oscuro, el espectro Raman varía radialmente desde un espectro de tipo t’, correspondiente a una composición Ce0.37Zr0.63O2, en el borde de la fibra, hasta un espectro muy ensanchado y débil, de aspecto cúbico, en el centro. El grado de reducción del cerio y la no estequiometría del oxígeno se determinaron a través de las medidas del Raman electrónico del Ce3+. La señal de Ce3

  14. Studies on the growth aspects, structural, thermal, dielectric and third order nonlinear optical properties of solution grown 4-methylpyridinium p-nitrophenolate single crystal

    Science.gov (United States)

    Devi, S. Reena; Kalaiyarasi, S.; Zahid, I. MD.; Kumar, R. Mohan

    2016-11-01

    An ionic organic optical crystal of 4-methylpyridinium p-nitrophenolate was grown from methanol by slow evaporation method at ambient temperature. Powder and single crystal X-ray diffraction studies revealed the crystal system and its crystalline perfection. The rocking curve recorded from HRXRD study confirmed the crystal quality. FTIR spectral analysis confirmed the functional groups present in the title compound. UV-visible spectral study revealed the optical window and band gap of grown crystal. The thermal, electrical and surface laser damage threshold properties of harvested crystal were examined by using TGA/DTA, LCR/Impedance Analyzer and Nd:YAG laser system respectively. The third order nonlinear optical property of grown crystal was elucidated by Z-scan technique.

  15. Shoot-and-Trap: Use of specific X-ray damage to study structural protein dynamics by temperature-control led cryo-crystallography

    International Nuclear Information System (INIS)

    Colletier, J.P.; Sanson, B.; Weik, M.; Bourgeois, D.; Fournier, D.; Bourgeois, D.; Silman, I.; Sussman, J.L.

    2008-01-01

    Although X-ray crystallography is the most widely used method for macromolecular structure determination, it does not provide dynamical information, and either experimental tricks or complementary experiments must be used to overcome the inherently static nature of crystallographic structures. Here we used specific X-ray damage during temperature-controlled crystallographic experiments at a third-generation synchrotron source to trigger and monitor (Shoot-and-Trap) structural changes putatively involved in an enzymatic reaction. In particular, a non-hydrolyzable substrate analogue of acetylcholinesterase, the 'off-switch' at cholinergic synapses, was radio-cleaved within the buried enzymatic active site. Subsequent product clearance, observed at 150 K but not at 100 K, indicated exit from the active site possibly via a 'backdoor'. The simple strategy described here is, in principle, applicable to any enzyme whose structure in complex with a substrate analogue is available and, therefore, could serve as a standard procedure in kinetic crystallography studies. (authors)

  16. Development of highly durable deep-ultraviolet AlGaN-based LED multichip array with hemispherical encapsulated structures using a selected resin through a detailed feasibility study

    Science.gov (United States)

    Nagai, Shoko; Yamada, Kiho; Hirano, Akira; Ippommatsu, Masamichi; Ito, Masahiro; Morishima, Naoki; Aosaki, Ko; Honda, Yoshio; Amano, Hiroshi; Akasaki, Isamu

    2016-08-01

    To replace mercury lamps with AlGaN-based deep-ultraviolet (DUV) LEDs, a simple and low-cost package with increased light extraction efficiency (LEE) is indispensable. Therefore, resin encapsulation is considered to be a key technology. However, the photochemical reactions induced by DUV light cause serious problems, and conventional resins cannot be used. In the former part of this study, a comparison of a silicone resin and fluorine polymers was carried out in terms of their suitability for encapsulation, and we concluded that only one of the fluorine polymers can be used for encapsulation. In the latter part, the endurance of encapsulation using the selected fluorine polymer was investigated, and we confirmed that the selected fluorine polymer can guarantee a lifetime of over 6,000 h at a wavelength of 265 nm. Furthermore, a 3 × 4 array module of encapsulated dies on a simple AlN submount was fabricated, demonstrating the possibility of W/cm2-class lighting.

  17. Structural and optical properties of self-catalytic GaAs:Mn nanowires grown by molecular beam epitaxy on silicon substrates

    DEFF Research Database (Denmark)

    Gas, Katarzyna; Sadowski, Janusz; Kasama, Takeshi

    2013-01-01

    Mn-doped GaAs nanowires were grown in the self-catalytic growth mode on the oxidized Si(100) surface by molecular beam epitaxy and characterized by scanning and transmission electron microscopy, Raman scattering, photoluminescence, cathodoluminescence, and electron transport measurements. The tra...

  18. Tapering-induced enhancement of light extraction efficiency of nanowire deep ultraviolet LED by theoretical simulations

    KAUST Repository

    Lin, Ronghui

    2018-04-21

    A nanowire (NW) structure provides an alternative scheme for deep ultraviolet light emitting diodes (DUV-LEDs) that promises high material quality and better light extraction efficiency (LEE). In this report, we investigate the influence of the tapering angle of closely packed AlGaN NWs, which is found to exist naturally in molecular beam epitaxy (MBE) grown NW structures, on the LEE of NW DUV-LEDs. It is observed that, by having a small tapering angle, the vertical extraction is greatly enhanced for both transverse magnetic (TM) and transverse electric (TE) polarizations. Most notably, the vertical extraction of TM emission increased from 4.8% to 24.3%, which makes the LEE reasonably large to achieve high-performance DUV-LEDs. This is because the breaking of symmetry in the vertical direction changes the propagation of the light significantly to allow more coupling into radiation modes. Finally, we introduce errors to the NW positions to show the advantages of the tapered NW structures can be projected to random closely packed NW arrays. The results obtained in this paper can provide guidelines for designing efficient NW DUV-LEDs.

  19. GaN-Ready Aluminum Nitride Substrates for Cost-Effective, Very Low Dislocation Density III-Nitride LEDs

    International Nuclear Information System (INIS)

    Schujman, Sandra; Schowalter, Leo

    2011-01-01

    The objective of this project was to develop and then demonstrate the efficacy of a cost effective approach for a low defect density substrate on which AlInGaN LEDs can be fabricated. The efficacy of this 'GaN-ready' substrate would then be tested by growing high efficiency, long lifetime InxGa1-xN blue LEDs. The approach used to meet the project objectives was to start with low dislocation density AlN single-crystal substrates and grow graded Al x Ga 1-x N layers on top. Pseudomorphic Al x Ga 1-x N epitaxial layers grown on bulk AlN substrates were used to fabricate light emitting diodes and demonstrate better device performance as a result of the low defect density in these layers when benched marked against state-of-the-art LEDs fabricated on sapphire substrates. The pseudomorphic LEDs showed excellent output powers compared to similar wavelength devices grown on sapphire substrates, with lifetimes exceeding 10,000 hours (which was the longest time that could reliably be estimated). In addition, high internal quantum efficiencies were demonstrated at high driving current densities even though the external quantum efficiencies were low due to poor photon extraction. Unfortunately, these pseudomorphic LEDs require high Al content so they emit in the ultraviolet. Sapphire based LEDs typically have threading dislocation densities (TDD) > 10 8 cm -2 while the pseudomorphic LEDs have TDD (le) 10 5 cm -2 . The resulting TDD, when grading the Al x Ga 1-x N layer all the way to pure GaN to produce a 'GaN-ready' substrate, has varied between the mid 10 8 down to the 10 6 cm -2 . These inconsistencies are not well understood. Finally, an approach to improve the LED structures on AlN substrates for light extraction efficiency was developed by thinning and roughening the substrate.

  20. Structural and electrical properties of high-quality 0.41 μm-thick InSb films grown on GaAs (1 0 0) substrate with InxAl1−xSb continuously graded buffer

    International Nuclear Information System (INIS)

    Shin, Sang Hoon; Song, Jin Dong; Lim, Ju Young; Koo, Hyun Cheol; Kim, Tae Geun

    2012-01-01

    High-quality InSb was grown on a GaAs (1 0 0) substrate with an InAlSb continuously graded buffer (CGB). The temperatures of In, Al K-cells and substrate were modified during the growth of InAlSb CGB. The cross-section TEM image reveals that the defects due to lattice-mismatch disappear near lateral structures in CGB. The measured electron mobility of 0.41 μm-thick InSb was 46,300 cm 2 /Vs at 300 K. These data surpass the electron mobility of state-of-the-art InSb grown by other methods with similar thickness of InSb.

  1. Crystal structure of (110) oriented La0.7Sr0.3MnO3 grown on (001) silicon

    International Nuclear Information System (INIS)

    Sinha, Umesh Kumar; Sahoo, Antarjami; Padhan, Prahallad

    2016-01-01

    The mixed valance perovskite manganites have attracted a considerable attention due to their colossal magnetoresistance behavior. In particular, La 0.7 Sr 0.3 MnO 3 (LSMO) show half metallicity and possess Curie temperature (T C ) above room temperature, which makes this material an attractive candidate for spintronic device application. Thin films of LSMO were grown on (001) oriented Silicon (Si) using sputtering technique

  2. Micro structural, electrical and optical properties of highly (2 2 0) oriented spinel Mn–Co–Ni–O film grown by radio frequency magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei; Zhang, Leibo; Ouyang, Cheng; Wu, Jing [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083 (China); Huang, Zhiming, E-mail: zmhuang@mail.sitp.ac.cn [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083 (China); Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083 (China); Xu, Xiao-feng [College of science, Donghua Unversity, Shanghai (China)

    2014-08-30

    Highlights: • Highly (2 2 0) oriented Mn{sub 1.4}Co{sub 1.0}Ni{sub 0.6}O{sub 4} (MCN) films are grown by radio frequency sputtering method. • Post annealed MCN samples show a resistivity of 240–250 Ω cm and NTC value of 4% K{sup −1} at 295 K. • Improved oxygen stoichiometry and fine reproducibility are achieved after post annealing process. • Indirect optical band gaps are about 0.51 eV for as-grown MCN films and 0.57 eV for post annealed ones. - Abstract: Spinel AB{sub 2}O{sub 4} oxide Mn{sub 1.4}Co{sub 1.0}Ni{sub 0.6}O{sub 4} (MCN) films are fabricated on Al{sub 2}O{sub 3} amorphous substrate by radio frequency (RF) magnetron sputtering method at different sputtering powers. The surface morphology and microstructure of the films are studied by SEM, atomic force microscopy (AFM) and X-ray diffraction. A major advance is the sputtering deposition of highly oriented MCN thin films. Variable temperature electrical properties of the as-grown and post annealed samples are investigated in 230–325 K temperature range. The dependence of electrical properties on growth conditions is discussed in detail. The resistivity of annealed MCN films is about 240–250 Ω cm with a negative temperature coefficient of about 4% K{sup −1} at room temperature, which is a breakthrough for thermal sensing application by RF sputtering method. Optical properties of the MCN samples are studied within 0.33-10 μm band, and the optical bandgaps for the as-grown and post annealed MCN samples are about 0.51 eV and 0.57 eV, respectively.

  3. Structural, electrical and optical properties of indium tin oxide thin film grown by metal organic chemical vapor deposition with tetramethyltin-precursor

    Science.gov (United States)

    Zhuo, Yi; Chen, Zimin; Tu, Wenbin; Ma, Xuejin; Wang, Gang

    2018-01-01

    Tin-doped indium oxide (ITO) is grown by metal organic chemical vapor deposition (MOCVD) using tetramethyltin (TDMASn) as tin precursor. The as-grown ITO films are polycrystalline with (111) and (100) textures. A gradual transition of crystallographic orientation from (111) preferred to (100) preferred is observed as the composition of tin changes. By precisely controlling the Sn doping, the ITO thin films present promising optical and electrical performances at either near-infrared-visible or visible-near-ultraviolet ranges. At low Sn doping level, the as-grown ITO possesses high electron mobility of 48.8 cm2 V‑1 s‑1, which results in high near-infrared transmittance and low resistivity. At higher Sn doping level, high carrier concentration (8.9 × 1020 cm‑3) and low resistivity (3 × 10‑4 Ω cm) are achieved. The transmittance is 97.8, 99.1, and 82.3% at the wavelength of 550, 365, and 320 nm, respectively. The results strongly suggest that MOCVD with TDMASn as tin precursor is an effective method to fabricate high quality ITO thin film for near-infrared, visible light, and near-ultraviolet application.

  4. InGaN/GaN Nanowire LEDs and Lasers

    KAUST Repository

    Zhao, Chao

    2016-01-01

    The large specific surface, and the associated high density of surface states was found to limit the light output power and quantum efficiency of nanowire-array devices, despite their potential for addressing the “green-gap” and efficiency-droop issues. The phonon and carrier confinement in nanowires also led to junction heating, and reduced heat dissipation. In this paper, we will present our studies on effective surface states passivation in InGaN/GaN quantum-disks (Qdisks)-in-nanowire light-emitting diodes (LEDs) and lasers grown on silicon (Si), as well as our recent work on nanowires LEDs grown on bulk-metal, a non-conventional substrate.

  5. Structural features of epitaxial NiFe2O4 thin films grown on different substrates by direct liquid injection chemical vapor deposition

    Science.gov (United States)

    Datta, R.; Loukya, B.; Li, N.; Gupta, A.

    2012-04-01

    NiFe2O4 (NFO) thin films are grown on four different substrates, i.e., Lead Zinc Niobate-Lead Titanate (PZN-PT), Lead Magnesium Niobate-Lead Titanate (PMN-PT), MgAl2O4 (MAO) and SrTiO3 (STO), by a direct liquid injection chemical vapor deposition technique (DLI-CVD) under optimum growth conditions where relatively high growth rate (˜20 nm/min), smooth surface morphology and high saturation magnetization values in the range of 260-290 emu/ cm3 are obtained. The NFO films with correct stoichiometry (Ni:Fe=1:2) grow epitaxially on all four substrates, as confirmed by energy dispersive X-ray spectroscopy, transmission electron microscopy and x-ray diffraction. While the films on PMN-PT and PZN-PT substrates are partially strained, essentially complete strain relaxation occurs for films grown on MAO and STO. The formations of threading dislocations along with dark diffused contrast areas related to antiphase domains having a different cation ordering are observed on all four substrates. These crystal defects are correlated with lattice mismatch between the film and substrate and result in changes in magnetic properties of the films. Atomic resolution HAADF imaging and EDX line profiles show formation of a sharp interface between the film and the substrate with no inter-diffusion of Pb or other elements across the interface. Antiphase domains are observed to originate at the film-substrate interface.

  6. Structural characterization of ZnTe grown by atomic-layer-deposition regime on GaAs and GaSb (100) oriented substrates

    Energy Technology Data Exchange (ETDEWEB)

    Castillo-Ojeda, Roberto Saúl [Universidad Politécnica de Pachuca (Mexico); Díaz-Reyes, Joel; Peralta-Clara, María de la Cruz; Veloz-Rendón, Julieta Salomé, E-mail: joel_diaz_reyes@hotmail.com [Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tlaxcala, (Mexico); Galván-Arellano, Miguel [Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (Mexico); Anda-Salazar, Francisco de [Instituto de Investigación en Comunicación Óptica, Universidad Autónoma de San Luis Potosí (Mexico); Contreras-Rascon, Jorge Indalecio [Departamento de Física, Universidad de Sonora (Mexico)

    2017-10-15

    This work presents the characterization of ZnTe nano layers grown on GaAs and GaSb (100) substrates by the Atomic Layer Deposition (ALD) regime. Under certain conditions, the alternating exposition of a substrate surface to the element vapours makes possible the growth of atomic layers in a reactor where the atmosphere is high-purity hydrogen. ZnTe was grown simultaneously on GaAs and GaSb at the same run, allowing, a comparison between the effects produced by the superficial processes due to the different used substrates, thereby eliminating possible unintended changes of growth parameters. Nano layers on GaSb maintained their shiny appearance even at temperatures near 420°C. It was found that for exposure times below 2.5 s there was not growth on GaAs, while for GaSb the shortest time was 1.5 s at 385°C. By HRXRD the peak corresponding to (004) diffraction plane of ZnTe was identified and investigated, the FWHM resulted very wide (600-800 arcsec) indicating a highly distorted lattice mainly due to mosaicity. Raman scattering shows the peak corresponding to LO-ZnTe, which is weak and slightly shifted in comparison with the reported for the bulk ZnTe at 210 cm{sup -1}. Additionally, the measurements suggest that the crystalline quality have a dependence with the growth temperature. (author)

  7. Structural and superconducting properties of (Y,Gd)Ba2Cu3O7-δ grown by MOCVD on samarium zirconate buffered IBAD-MgO

    International Nuclear Information System (INIS)

    Stan, L; Holesinger, T G; Maiorov, B; Feldmann, D M; Usov, I O; DePaula, R F; Civale, L; Foltyn, S R; Jia, Q X; Chen, Y; Selvamanickam, V

    2008-01-01

    Textured samarium zirconate (SZO) films have been grown by reactive cosputtering directly on an ion beam assisted deposited (IBAD) MgO template, without an intermediate homoepitaxial MgO layer. The subsequent growth of 0.9 μm thick (Y,Gd)Ba 2 Cu 3 O 7-δ ((Y, Gd)BCO) films by metal organic chemical vapor deposition (MOCVD) yielded well textured films with a full width at half maximum of 1.9 0 and 3.4 0 for the out-of-plane and in-plane texture, respectively. Microstructural characterizations of the SZO buffered samples revealed clean interfaces. This indicates that the SZO not only provides a diffusion barrier, but also functions as a buffer for (Y, Gd)BCO grown by MOCVD. The achievement of self-field critical current densities (J c ) of over 2 MA cm -2 at 75.5 K is another proof of the effectiveness of SZO as a buffer on the IBAD-MgO template. The in-field measurements revealed an asymmetric angular dependence of J c and a shift of the ab-plane maxima due to the tilted nature of the template and (Y,Gd) 2 O 3 particles existing in the (Y, Gd)BCO matrix. The present results are especially important because they demonstrate that high temperature superconducting coated conductors with simpler architecture can be fabricated using commercially viable processes

  8. High-Modulation-Speed LEDs Based on III-Nitride

    Science.gov (United States)

    Chen, Hong

    III-nitride InGaN light-emitting diodes (LEDs) enable wide range of applications in solid-state lighting, full-color displays, and high-speed visible-light communication. Conventional InGaN quantum well LEDs grown on polar c-plane substrate suffer from quantum confined Stark effect due to the large internal polarization-related fields, leading to a reduced radiative recombination rate and device efficiency, which limits the performance of InGaN LEDs in high-speed communication applications. To circumvent these negative effects, non-trivial-cavity designs such as flip-chip LEDs, metallic grating coated LEDs are proposed. This oral defense will show the works on the high-modulation-speed LEDs from basic ideas to applications. Fundamental principles such as rate equations for LEDs/laser diodes (LDs), plasmonic effects, Purcell effects will be briefly introduced. For applications, the modal properties of flip-chip LEDs are solved by implementing finite difference method in order to study the modulation response. The emission properties of highly polarized InGaN LEDs coated by metallic gratings are also investigated by finite difference time domain method.

  9. Structural Characterization of Lateral-grown 6H-SiC am-plane Seed Crystals by Hot Wall CVD Epitaxy

    Science.gov (United States)

    Goue, Ouloide Yannick; Raghothamachar, Balaji; Dudley, Michael; Trunek, Andrew J.; Neudeck, Philip G.; Woodworth, Andrew A.; Spry, David J.

    2014-01-01

    The performance of commercially available silicon carbide (SiC) power devices is limited due to inherently high density of screw dislocations (SD), which are necessary for maintaining polytype during boule growth and commercially viable growth rates. The NASA Glenn Research Center (GRC) has recently proposed a new bulk growth process based on axial fiber growth (parallel to the c-axis) followed by lateral expansion (perpendicular to the c-axis) for producing multi-faceted m-plane SiC boules that can potentially produce wafers with as few as one SD per wafer. In order to implement this novel growth technique, the lateral homoepitaxial growth expansion of a SiC fiber without introducing a significant number of additional defects is critical. Lateral expansion is being investigated by hot wall chemical vapor deposition (HWCVD) growth of 6H-SiC am-plane seed crystals (0.8mm x 0.5mm x 15mm) designed to replicate axially grown SiC single crystal fibers. The post-growth crystals exhibit hexagonal morphology with approximately 1500 m (1.5 mm) of total lateral expansion. Preliminary analysis by synchrotron white beam x-ray topography (SWBXT) confirms that the growth was homoepitaxial, matching the polytype of the respective underlying region of the seed crystal. Axial and transverse sections from the as grown crystal samples were characterized in detail by a combination of SWBXT, transmission electron microscopy (TEM) and Raman spectroscopy to map defect types and distribution. X-ray diffraction analysis indicates the seed crystal contained stacking disorders and this appears to have been reproduced in the lateral growth sections. Analysis of the relative intensity for folded transverse acoustic (FTA) and optical (FTO) modes on the Raman spectra indicate the existence of stacking faults. Further, the density of stacking faults is higher in the seed than in the grown crystal. Bundles of dislocations are observed propagating from the seed in m-axis lateral directions

  10. Epitaxial growth of group III-nitride films by pulsed laser deposition and their use in the development of LED devices

    Science.gov (United States)

    Li, Guoqiang; Wang, Wenliang; Yang, Weijia; Wang, Haiyan

    2015-11-01

    Recently, pulsed laser deposition (PLD) technology makes viable the epitaxial growth of group III-nitrides on thermally active substrates at low temperature. The precursors generated from the pulsed laser ablating the target has enough kinetic energy when arriving at substrates, thereby effectively suppressing the interfacial reactions between the epitaxial films and the substrates, and eventually makes the film growth at low temperature possible. So far, high-quality group III-nitride epitaxial films have been successfully grown on a variety of thermally active substrates by PLD. By combining PLD with other technologies such as laser rastering technique, molecular beam epitaxy (MBE), and metal-organic chemical vapor deposition (MOCVD), III-nitride-based light-emitting diode (LED) structures have been realized on different thermally active substrates, with high-performance LED devices being demonstrated. This review focuses on the epitaxial growth of group III-nitrides on thermally active substrates by PLD and their use in the development of LED devices. The surface morphology, interfacial property between film and substrate, and crystalline quality of as-grown group III-nitride films by PLD, are systematically reviewed. The corresponding solutions for film homogeneity on large size substrates, defect control, and InGaN films growth by PLD are also discussed in depth, together with introductions to some newly developed technologies for PLD in order to realize LED structures, which provides great opportunities for commercialization of LEDs on thermally active substrates.

  11. Correlation between atomic structure and magnetic properties of La0.7Ca0.3MnO3 thin films grown on SrTiO3 (1 0 0)

    International Nuclear Information System (INIS)

    Rubio-Zuazo, J.; Andres, A. de; Taboada, S.; Prieto, C.; Martinez, J.L.; Castro, G.R.

    2005-01-01

    The crystallographic structure of La 0.7 Ca 0.3 MnO 3 (LCMO) ultra-thin films grown on SrTiO 3 (0 0 1) has been investigated by surface X-ray diffraction (SXD) and the correlation between their transport and magnetic properties and crystallographic structure is discussed. LCMO thin films in a thickness range between 2.4 and 27 nm were grown by DC-sputtering on SrTiO 3 (0 0 1). We distinguish two different crystallographic structures associated to the 2.4 and 27 nm thin films, respectively. The 27 nm film structure corresponds to a tetragonal perovskite (space group Pbnm), as has been reported for bulk LCMO. For the 2.4 nm film the La/Ca ions are located at the regular position of an ideal perovskite and the MnO 6 octahedrons are aligned along the c-axis. The MnO 2 stacking layer (basal plane) is distorted and coplanar to the a-b crystallographic axis with an anti-correlation between octahedron layers. This observed distortion is not compatible with the Pbnm space group. The new phase, which cannot be excluded to coexist at the interface of thicker films, can be described, as an example, through an I4/mcm or Pbcn space group. Based on the observed structure, plausible models to explain their transport and magnetic behaviour are proposed. For the 2.4 nm film, an octahedron in-plane (basal plane) distortion induced by the substrate is observed. Thicker films behave structurally and magnetically as bulk-like materials

  12. LED driver for stroboscopic interferometry

    Science.gov (United States)

    Paulin, T.; Heikkinen, V.; Kassamakov, I.; Hæggström, E.

    2012-04-01

    Three different types of white light emitting diodes (LEDs) and three types of single color LEDs were tested as light sources for stroboscopic scanning white light interferometry (SSWLI) for dynamic (MEMS) characterization. Short, intense, light pulses and low duty cycle (DC-10 MHz), and can drive single LEDs at 5A peak current (0.7% duty cycle at 1 MHz). The shortest measured electrical pulses were 6.2 +/- 0.1 ns FDHM. The minimum measured Full Duration at Half Maximum (FDHM) of the optical pulse was 8.4 +/- 0.1 ns using nonphosphor white LED and 32.1 +/- 0.1 ns using white phosphor-converted LED (0.7 % duty cycle at 1 MHz in both cases). The minimum optical pulse FDHM for a single color blue/green LED was 6.4 +/- 0.1 ns. The maximum intensity of these pulses was 630 +/- 40 μW and 540 +/- 30 μW, respectively. All types of white LEDs could be used for stroboscopic SWLI measurements at frequencies up to 2 MHz. For higher frequencies, non-phosphor white LEDs must be used together with a cyan LED to avoid ringing in the SWLI interferogram.

  13. Nobel Prize for blue LEDs

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2015-01-01

    A brief review of lighting technologies is presented. Unavoidable restrictions for incandescent light bulbs caused by the Planck distribution and properties of the human eye are illustrated. The efficiency and luminous efficacy of thermal radiation are calculated for various temperatures; the results clearly show the limitations for thermal radiators. The only way to overcome these limitations is using non-thermal radiators, such as fluorescent lamps and light-emitting diodes (LEDs). Unique advantages of LEDs undoubtedly made a revolution in this field. A crucial element of this progress is the blue LEDs (Nobel Prize 2014). Some experiments with a blue and a green LED are described: (i) the luminescence triggered in a green-yellow phosphor inside a white LED by the blue LED; (ii) radiant spectra and ‘efficiency droop’ in the LEDs; (iii) modulation of the blue LED up to 4 MHz; and (iv) the h/e ratio from the turn-on voltage of the green LED. The experiments are suitable for undergraduate laboratories and usable as classroom demonstrations. (paper)

  14. Nobel Prize for blue LEDs

    Science.gov (United States)

    Kraftmakher, Yaakov

    2015-05-01

    A brief review of lighting technologies is presented. Unavoidable restrictions for incandescent light bulbs caused by the Planck distribution and properties of the human eye are illustrated. The efficiency and luminous efficacy of thermal radiation are calculated for various temperatures; the results clearly show the limitations for thermal radiators. The only way to overcome these limitations is using non-thermal radiators, such as fluorescent lamps and light-emitting diodes (LEDs). Unique advantages of LEDs undoubtedly made a revolution in this field. A crucial element of this progress is the blue LEDs (Nobel Prize 2014). Some experiments with a blue and a green LED are described: (i) the luminescence triggered in a green-yellow phosphor inside a white LED by the blue LED; (ii) radiant spectra and ‘efficiency droop’ in the LEDs; (iii) modulation of the blue LED up to 4 MHz; and (iv) the h/e ratio from the turn-on voltage of the green LED. The experiments are suitable for undergraduate laboratories and usable as classroom demonstrations.

  15. Structural and electronic properties of InN epitaxial layer grown on c-plane sapphire by chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Barick, Barun Kumar, E-mail: bkbarick@gmail.com; Prasad, Nivedita; Saroj, Rajendra Kumar; Dhar, Subhabrata [Department of Physics, Indian Institute of Technology, Bombay, Mumbai 400076 (India)

    2016-09-15

    Growth of InN epilayers on c-plane sapphire substrate by chemical vapor deposition technique using pure indium metal and ammonia as precursors has been systematically explored. It has been found that [0001] oriented indium nitride epitaxial layers with smooth surface morphology can be grown on c-plane sapphire substrates by optimizing the growth conditions. Bandgap of the film is observed to be Burstein–Moss shifted likely to be due to high background electron concentration. It has been found that the concentration of this unintentional doping decreases with the increase in the growth temperature and the ammonia flux. Epitaxial quality on the other hand deteriorates as the growth temperature increases. Moreover, the morphology of the deposited layer has been found to change from flat top islands to faceted mounds as the flow rate of ammonia increases. This phenomenon is expected to be related to the difference in surface termination character at low and high ammonia flow rates.

  16. Synthesis, structural, optical and thermal properties of N-methyl-N-aryl benzamide organic single crystals grown by a slow evaporation technique

    Science.gov (United States)

    Prabukanthan, P.; Lakshmi, R.; Harichandran, G.; Kumar, C. Sudarsana

    2018-03-01

    The organic materials, N-methyl-N-aryl benzamides were synthesized from benzoylation of N-methyl-4-nitrobenzenamine (MNBA) using suitably substituted benzoyl chlorides. The products were purified by recrystallization and their single crystal were grown by a slow evaporation technique. The crystals were characterized by FTIR, UV-Vis-NIR, 1H &13C NMR, and single & powder X-ray diffraction. Thermal stability of the crystals was studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Dielectric and NLO properties of MNPB, FMNPB and MMNPB crystals were studied. The second harmonic generation (SHG) has been confirmed by the Kurtz powder test for all these crystals and the SHG efficiency of MMNPB crystal was found to be 2.25 times higher than that of KDP crystal.

  17. Structural and compositional characterization of Bi{sub 1−x}Sb{sub x} nanowire arrays grown by pulsed deposition to improve growth uniformity

    Energy Technology Data Exchange (ETDEWEB)

    Cassinelli, M. [Material Research Department, GSI Helmholtz Centre for Heavy Ion Research GmbH, Plankstr. 1, 64291 Darmstadt (Germany); Technische Universität Darmstadt, Material- und Geowisenschaften, Petersenstrasse 23, 64287 Darmstadt (Germany); Müller, S. [Material Research Department, GSI Helmholtz Centre for Heavy Ion Research GmbH, Plankstr. 1, 64291 Darmstadt (Germany); Aabdin, Z.; Peranio, N.; Eibl, O. [Institute for Applied Physics, Auf der Morgenstelle 10, 72076 Tübingen (Germany); Trautmann, C. [Material Research Department, GSI Helmholtz Centre for Heavy Ion Research GmbH, Plankstr. 1, 64291 Darmstadt (Germany); Technische Universität Darmstadt, Material- und Geowisenschaften, Petersenstrasse 23, 64287 Darmstadt (Germany); Toimil-Molares, M.E. [Material Research Department, GSI Helmholtz Centre for Heavy Ion Research GmbH, Plankstr. 1, 64291 Darmstadt (Germany)

    2015-12-15

    Arrays of Bi{sub 1−x}Sb{sub x} nanowire with various compositions (0 ⩽ x ⩽ 1) are grown in etched ion-track membranes by pulsed electrochemical deposition. Nanowires of diameter from 130 nm down to 18 nm are characterized by means of X-ray diffraction and high-resolution electron microscopy combined with electron diffraction and energy dispersive X-ray analysis. Compared to potentiostatic deposition, the pulsed synthesis method leads to a more uniform growth and higher filling rate of the wires across the entire template. By tuning the deposition parameters, we demonstrate excellent control over the wire composition and crystallographic orientation. The deposition process presented facilitates the development of future nanowire-based thermoelectric sensors, which are expected to exhibit a higher sensitivity and a faster response compared to thin film sensors.

  18. Growth and coalescence control of inclined c-axis polar and semipolar GaN multilayer structures grown on Si(111), Si(112), and Si(115) by metalorganic vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Szymański, Tomasz, E-mail: tomasz.szymanski@pwr.edu.pl; Wośko, Mateusz; Paszkiewicz, Bartłomiej; Paszkiewicz, Bogdan; Paszkiewicz, Regina [The Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Sankowska, Iwona [The Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warszawa (Poland)

    2016-09-15

    Herein, silicon substrates in alternative orientations from the commonly used Si(111) were used to enable the growth of polar and semipolar GaN-based structures by the metalorganic vapor phase epitaxy method. Specifically, Si(112) and Si(115) substrates were used for the epitaxial growth of nitride multilayer structures, while the same layer schemes were also deposited on Si(111) for comparison purposes. Multiple approaches were studied to examine the influence of the seed layers and the growth process conditions upon the final properties of the GaN/Si(11x) templates. Scanning electron microscope images were acquired to examine the topography of the deposited samples. It was observed that the substrate orientation and the process conditions allow control to produce an isolated GaN block growth or a coalesced layer growth, resulting in inclined c-axis GaN structures under various forms. The angles of the GaN c-axis inclination were determined by x-ray diffraction measurements and compared with the results obtained from the analysis of the atomic force microscope (AFM) images. The AFM image analysis method to determine the structure tilt was found to be a viable method to estimate the c-axis inclination angles of the isolated blocks and the not-fully coalesced layers. The quality of the grown samples was characterized by the photoluminescence method conducted at a wide range of temperatures from 77 to 297 K, and was correlated with the sample degree of coalescence. Using the free-excitation peak positions plotted as a function of temperature, analytical Bose-Einstein model parameters were fitted to obtain further information about the grown structures.

  19. New dental applications with LEDs

    DEFF Research Database (Denmark)

    Argyraki, A.; Ou, Yiyu; Petersen, Paul Michael

    Visible and ultraviolet LEDs will in the future give rise to new dental applications. Fluorescence imaging, photodynamic therapy and photoactivated disinfection are important future candidates for diagnostics and treatment in dentistry.......Visible and ultraviolet LEDs will in the future give rise to new dental applications. Fluorescence imaging, photodynamic therapy and photoactivated disinfection are important future candidates for diagnostics and treatment in dentistry....

  20. Silicone materials for LED packaging

    Science.gov (United States)

    Bahadur, Maneesh; Norris, Ann W.; Zarisfi, Afrooz; Alger, James S.; Windiate, Christopher C.

    2006-08-01

    Silicone based materials have attracted considerable attention from light emitting diode (LED) manufacturers for use as encapsulants and lenses for many high brightness LED (HB LED) devices. Currently silicones function in two key roles in HB LED devices, (1) as protective lenses and (2) stress relieving encapsulants for wire bond protection. The key attributes of silicones that make them attractive as light path materials for high brightness HB LEDs include their high transparency in the UV-visible region, controlled refractive index (RI), stable thermo-mechanical properties, and tuneable modulus from soft gels to hard resins. This paper will describe recent developments in moldable silicone hard resin materials. Progress on cavity moldable and liquid injection moldable (LIM) silicone compositions for discreet components is described. Also, an example of liquid injection overmolding is presented.

  1. Graphic Grown Up

    Science.gov (United States)

    Kim, Ann

    2009-01-01

    It's no secret that children and YAs are clued in to graphic novels (GNs) and that comics-loving adults are positively giddy that this format is getting the recognition it deserves. Still, there is a whole swath of library card-carrying grown-up readers out there with no idea where to start. Splashy movies such as "300" and "Spider-Man" and their…

  2. Effects of temperature and Mo2C layer on stress and structural properties in CVD diamond film grown on Mo foil

    International Nuclear Information System (INIS)

    Long, Fen; Wei, Qiuping; Yu, Z.M.; Luo, Jiaqi; Zhang, Xiongwei; Long, Hangyu; Wu, Xianzhe

    2013-01-01

    Highlights: •Polycrystalline diamond films were grown on Mo foil substrates by HF-CVD. •We investigated the temperature dependence of the film stress for each sample. •We show that how the thermal stress and intrinsic stress affects the total stress. •The stress of Mo foil substrate obtained by XRD was investigated in this study. •The effect of Mo 2 C interface layer for stress of multilayer system was considered. -- Abstract: Polycrystalline diamond films have been prepared by hot-filament-assisted chemical vapor deposition (HFCVD) on Mo foils. The morphology, growth rate, phase composition, element distribution and residual stress of the films at different temperature were investigated by field-emission scanning electron microscopy, Raman spectrum, field emission electron probe microanalysis and X-ray diffraction. Results show that the residual stress of the diamond films is compressive. The thermal stress plays a decisive role in the total stress, while the intrinsic stress can change the trend of the total stress. The residual stress of substrate gradually changes from tensile stress to compressive stress with the increase of the deposited temperature. A Mo 2 C interlayer is formed during deposition process, and this layer has an important influence on the stresses of films and substrates

  3. AgGaSe2 thin films grown by chemical close-spaced vapor transport for photovoltaic applications: structural, compositional and optical properties.

    Science.gov (United States)

    Merschjann, C; Mews, M; Mete, T; Karkatzinou, A; Rusu, M; Korzun, B V; Schorr, S; Schubert-Bischoff, P; Seeger, S; Schedel-Niedrig, Th; Lux-Steiner, M-Ch

    2012-05-02

    Thin films of chalcopyrite AgGaSe(2) have been successfully grown on glass and glass/molybdenum substrates using the technique of chemical close-spaced vapor transport. The high crystallinity of the samples is confirmed by grazing-incidence x-ray diffraction, scanning and transmission electron microscopy, and optical transmission/reflection spectroscopy. Here, two of the three expected direct optical bandgaps are found at 1.77(2) and 1.88(6) eV at 300 K. The lowest bandgap energy at 4 K is estimated to be 1.82(3) eV. Photoluminescence spectroscopy has further revealed the nature of the point defects within the AgGaSe(2), showing evidence for the existence of very shallow acceptor levels of 5(1) and 10(1) meV, and thus suggesting the AgGaSe(2) phase itself to exhibit a p-type conductivity. At the same time, electrical characterization by Hall, Seebeck and four-point-probe measurements indicate properties of a compensated semiconductor. The electrical properties of the investigated thin films are mainly influenced by the presence of Ag(2)Se and Ga(2)O(3) nanometer-scaled surface layers, as well as by Ag(2)Se inclusions in the bulk and Ag clusters at the layers' rear side. © 2012 IOP Publishing Ltd

  4. Atomically resolved interface structure of a vanadium sesquioxide(0 0 0 1) film grown on Cu 3Au(0 0 1)

    Science.gov (United States)

    Niehus, H.; Calderon, H. A.; Freitag, B.; Stavale, F.; Achete, C. A.

    2008-06-01

    Heterointerfaces between oxides and metals are of wide-ranging importance. High resolution transmission electron microscopy (HRTEM) with spherical aberration (Cs) image correction has been used to unravel the metal-oxide interface on an atomic scale. The method is exemplified at the interface of a thin two-dimensional monocrystalline film of V 2O 3(0 0 0 1) grown on a Cu 3Au(0 0 1) sample. At the interface an extra vanadium monolayer is introduced between the part of the Cu 3Au substrate and the oxide layer. The location of the extra vanadium is not related with the V 2O 3 crystallography but instead connected to the Cu 3Au(0 0 1) metal side. The oxide layer ends at the interface with the quasi-hexagonal close packed oxygen layer of bulk truncated V 2O 3(0 0 0 1). The stacking sequence of oxygen columns follows visibly the vanadium oxide part and is directionally decoupled from the Cu 3Au(0 0 1)-V region. The HRTEM images show not only the position of the metal atoms but clearly also the oxygen sites which makes this method well suited for the investigation of metal oxide interfaces.

  5. Fabrication and electrical characterization of homo- and hetero-structure Si/SiGe nanowire Tunnel Field Effect Transistor grown by vapor-liquid-solid mechanism

    Science.gov (United States)

    Brouzet, V.; Salem, B.; Periwal, P.; Alcotte, R.; Chouchane, F.; Bassani, F.; Baron, T.; Ghibaudo, G.

    2016-04-01

    We demonstrate the fabrication and electrical characterization of Ω -gate Tunnel Field Effect Transistors (TFET) based on p-Si/i-Si/n+Si0.7Ge0.3 heterostructure nanowires grown by Chemical Vapor Deposition (CVD) using the vapor-liquid-solid (VLS) mechanism. The electrical performances of the p-Si/i-Si/n+Si0.7Ge0.3 heterostructure TFET device are presented and compared to Si and Si0.7Ge0.3 homostructure nanowire TFETs. We observe an improvement of the electrical performances of TFET with p-Si/i-Si/n+Si0.7Ge0.3 heterostructure nanowire (HT NW). The optimized devices present an Ion current of about 245 nA at VDS = -0.5 V and VGS = -3 V with a subthreshold swing around 135 mV/dec. Finally, we show that the electrical results are in good agreement with numerical simulation using Kane's Band-to-Band Tunneling model.

  6. Effects of buffer layer on the structural and electrical properties of InAsSb epilayers grown on GaAs(001)

    International Nuclear Information System (INIS)

    Jayavel, P.; Nakamura, S.; Koyama, T.; Hayakawa, Y.

    2006-01-01

    InAsSb ternary epilayers with arsenic composition of 0.5 have been grown on GaAs(001) substrates. Linear-graded and step-graded InAsSb buffer layers with an InSb layer have been used to relax lattice mismatch between the epilayer and substrate. X-ray diffraction results of the epilayers indicate that an enhancement in the peak intensity of the buffer layer samples is due to improved crystalline quality of the epilayers. We find that the growth technique of the buffer layer strongly influences the surface morphology and roughness of the epilayer. Hall effect measurements of the step-graded buffer layer samples show an order of magnitude higher electron mobility than the direct and linear-graded buffer layer samples. These results demonstrate that high crystalline quality and electron mobility of the InAs 0.5 Sb 0.5 ternary epilayers can be achieved by using the step-graded InAsSb buffer layers. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Fabrication of nano-patterned sapphire substrates and their application to the improvement of the performance of GaN-based LEDs

    International Nuclear Information System (INIS)

    Gao Haiyong; Yan Fawang; Zhang Yang; Li Jinmin; Zeng Yiping; Wang Guohong

    2008-01-01

    Nano-patterned sapphire substrates (NPSSs) were fabricated by a chemical wet etching technology using nano-sized SiO 2 as masks. The NPSS was applied to improve the performance of GaN-based light emitting diodes (LEDs). GaN-based LEDs on NPSSs were grown by metal organic chemical vapour deposition. The characteristics of LEDs grown on NPSSs and conventional planar sapphire substrates were studied. The light output powers of the LEDs fabricated on NPSSs were considerably enhanced compared with that of the conventional LEDs grown on planar sapphire substrates

  8. Light pipes for LED measurements

    Science.gov (United States)

    Floyd, S. R.; Thomas, E. F., Jr.

    1976-01-01

    Light pipe directly couples LED optical output to single detector. Small area detector measures total optical output of diode. Technique eliminates thermal measurement problems and channels optical output to remote detector.

  9. Practical lighting design with LEDs

    CERN Document Server

    Lenk, Ron

    2016-01-01

    The second edition of Practical Lighting Design with LEDs has been revised and updated to provide the most current information for developing light-emitting diodes products. The authors, noted authorities in the field, offer a review of the most relevant topics including optical performance, materials, thermal design, and modeling and measurement. Comprehensive in scope, the text covers all the information needed to design LEDs into end products.

  10. In-situ metrology in multiwafer reactors during MOVPE of AIN-based UV-LEDs (Conference Presentation)

    Science.gov (United States)

    Knauer, Arne; Brunner, Frank; Kolbe, Tim; Hagedorn, Sylvia; Kueller, Viola; Weyers, Markus

    2017-02-01

    UV-LEDs are of great interest for applications like disinfection, gas sensing, and phototherapy. The cost sensitive LEDs are commonly grown by MOVPE on transparent AlN/sapphire templates. The large thermal and lattice mismatch between AlN and sapphire generates a very high dislocation density (DD) and causes big challenges in strain management. The threading dislocation density should be reduced to the order of low 108cm-2 for high internal efficiency of the AlGaN based UV-LED structures. The TDD will be reduced mainly by dislocation annihilation during the growth of thick Al(Ga)N layers, which is a challenge in terms of strain management. We present how in-situ reflectometry and curvature measurement (EpiCurveTT(at)LayTec) in commercial multiwafer growth reactors helps to optimize the growth processes concerning growth rates, surface roughening and avoidance of layer cracking on 2inch substrates and enhance the reproducibility of epitaxial growth. The growth of up to 3 μm thick planar AlN templates and up-to 10 μm thick AlN/sapphire templates by epitaxial lateral overgrowth of stripe patterned templates for UV-C LED structures will be highlighted. The implementation of different types of AlN/GaN superlattices for the subsequent growth of up to 5μm thick Al0.5Ga0.5N layer for UVB LED structures will be shown. Correlations to ex-situ measurements like X-ray diffraction and TEM analysis of defects in the LED structures will be shown. Some challenges of in-situ control through very narrow viewports as in Close Coupled Showerhead reactors will be discussed as well as the influence of silicon doping on curvature and dislocation density in Al(Ga)N layers.

  11. Light out-coupling from LEDs by means of metal nanoparticles; Lichtauskopplung aus LEDs mittels Metallnanoteilchen

    Energy Technology Data Exchange (ETDEWEB)

    Goehler, Tino

    2010-12-17

    The external quantum efficiency of light-emitting diodes (LEDs) based on Al- GaAs/InGaAlP is limited by total internal reflection because of the high refractive index (typically between 3 and 4) of the semiconductor. Metal nanoparticles (MNP) deposited on the surface of the LED can be used as dipole scatterers in order to enhance the emission of the LED. In this thesis, first, single gold nanoparticles of various sizes deposited on such an LED were investigated. A clear enhancement is detected as long as the dipole plasmon resonance of the particle is at a shorter wavelength than the LED emission. If the plasmon resonance coincides with the LED emission or is at a larger wavelength, the enhancement turns into suppression. Numerical simulations indicate that this latter effect is mainly caused by the particle quadrupole resonance producing extra absorption. Arrays of MNPs can be produced by a special mask technique called ''Fischer pattern nanolithography'' and manipulated in shape and size by additional steps. Originally, the MNPs produced by this technique are triangular in shape and turn out to suppress the LED emission. After transformation of the particles to spheres, a clear enhancement was detected. Light that would otherwise remain trapped inside the substrate is coupled out by resonant plasmonic scattering. Investigations on analogous structures on a transparent high-index material (GaP) indicate a stronger coupling between the particles than expected on the basis of literature data. (orig.)

  12. Structural and magnetic properties of La0.7Sr0.3MnO3 ferromagnetic thin film grown on PMN-PT by sol–gel method

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2017-08-01

    Full Text Available We report the preparation of epitaxial La0.7Sr0.3MnO3 thin films grown on (001-oriented 0.72Pb(Mg1∕3Nb2∕3O3-0.28PbTiO3 substrates by the sol–gel technique. The phase structure, magnetic properties and magnetoresistance of the samples are investigated by using high solution X-ray diffraction, atomic force microscopy, physical property measurement system, respectively. The La0.7Sr0.3MnO3 thin films display a well-defined hysteresis loop and typical ferromagnetism behavior at lower temperature. High magnetoresistance at 5T of 42% appears at 227K for La0.7Sr0.3MnO3 thin film.

  13. Effect of Zn-doping on the structural and optical properties of BaTiO3 thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Fasasi, A.Y.; Maaza, M.; Rohwer, E.G.; Knoessen, D.; Theron, Ch.; Leitch, A.; Buttner, U.

    2008-01-01

    Thin films of zinc oxide doped barium titanate (BaZn x Ti 1-x O 3 ) have been prepared by pulsed laser ablation using different targets having zinc composition varying between x = 1 to 5 wt.% at a step of 1 wt.% on corning glass microscope slide and silicon substrates. X-ray diffraction analyses showed films to be of tetragonal phase with an average grain size of 20 nm and c/a ratio of 1.08 indicating lattice expansion due to ZnO incorporation. Atomic force microscopy studies of the prepared thin films indicated smooth surfaces with average roughness of 1.84 and 4.6 nm for as-deposited and sintered specimens respectively. Scanning electron microscopy showed films to be smooth and uniform. UV-Visible as well as Fourier Transform Infrared transmission measurements showed a transmission of more than 80% in the visible and 5-20% in the near infrared. The transmittance is strongly affected by annealing. There is a dependence of band gap energy on film thickness as well as on the amount of ZnO added. High ZnO dopant level led to an increase in the band gap

  14. Effect of Zn-doping on the structural and optical properties of BaTiO{sub 3} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fasasi, A.Y. [Centre for Energy Research and Development, Obafemi Awolowo University, Ile-Ife, Osun State (Nigeria); Nano-Sciences Laboratories, Materials Research Group, iThemba LABS, National Research Foundation, P. O. Box 722, Somerset West 7129 (South Africa)], E-mail: ayfasasi@yahoo.co.uk; Maaza, M. [Nano-Sciences Laboratories, Materials Research Group, iThemba LABS, National Research Foundation, P. O. Box 722, Somerset West 7129 (South Africa); Rohwer, E.G. [Laser Research Institute, Department of Physics, University of Stellenbosch, Stellenbosch, Western Cape (South Africa); Knoessen, D. [Department of Physics, University of Western Cape, Private Bag X1001, Belville (South Africa); Theron, Ch. [Nano-Sciences Laboratories, Materials Research Group, iThemba LABS, National Research Foundation, P. O. Box 722, Somerset West 7129 (South Africa); Leitch, A. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Buttner, U. [Department of Electrical Engineering, University of Stellenbosch, Stellenbosch, Western Cape (South Africa)

    2008-07-31

    Thin films of zinc oxide doped barium titanate (BaZn{sub x}Ti{sub 1-x}O{sub 3}) have been prepared by pulsed laser ablation using different targets having zinc composition varying between x = 1 to 5 wt.% at a step of 1 wt.% on corning glass microscope slide and silicon substrates. X-ray diffraction analyses showed films to be of tetragonal phase with an average grain size of 20 nm and c/a ratio of 1.08 indicating lattice expansion due to ZnO incorporation. Atomic force microscopy studies of the prepared thin films indicated smooth surfaces with average roughness of 1.84 and 4.6 nm for as-deposited and sintered specimens respectively. Scanning electron microscopy showed films to be smooth and uniform. UV-Visible as well as Fourier Transform Infrared transmission measurements showed a transmission of more than 80% in the visible and 5-20% in the near infrared. The transmittance is strongly affected by annealing. There is a dependence of band gap energy on film thickness as well as on the amount of ZnO added. High ZnO dopant level led to an increase in the band gap.

  15. X-ray absorption near-edge structure of GaN with high Mn concentration grown on SiC

    International Nuclear Information System (INIS)

    Sancho-Juan, O; Cantarero, A; Garro, N; Cros, A; Martinez-Criado, G; Salome, M; Susini, J; Olguin, D; Dhar, S

    2009-01-01

    By means of x-ray absorption near-edge structure (XANES) several Ga 1-x Mn x N (0.03 2 ↑ band localized in the gap region, and the corresponding anti-bonding state t 2 ↓, which seem to be responsible for the double structure which appears at the pre-edge absorption region. The shoulders and main absorption peak of the XANES spectra are attributed to transitions from the Mn(1s) band to the conduction bands, which are partially dipole allowed because of the Mn(4p) contribution to these bands.

  16. Enhancement of near-UV GaN LED light extraction efficiency by GaN/sapphire template patterning

    International Nuclear Information System (INIS)

    Ali, M; Svensk, O; Riuttanen, L; Suihkonen, S; Törmä, P T; Sopanen, M; Lipsanen, H; Kruse, M; Romanov, A E; Odnoblyudov, M A; Bougrov, V E

    2012-01-01

    We present near-UV GaN light-emitting diodes (LEDs) grown on patterned GaN/sapphire templates with improved material quality and light extraction efficiency. Enhancement of light extraction efficiency is attributed to voids generated at the GaN/sapphire interface. The sidewall inclination angle of the voids can be controlled from nearly vertical (∼ 85°) to fully inclined (∼ 60°) by changing the initial patterning dimensions. Light extraction efficiency and material quality improve with a decreasing void sidewall angle. A 20% increase in the light output is observed at 20 mA of input current for LED structures with ∼60° inclined sidewall voids. (fast track communication)

  17. GaN grown on nano-patterned sapphire substrates

    Science.gov (United States)

    Jing, Kong; Meixin, Feng; Jin, Cai; Hui, Wang; Huaibing, Wang; Hui, Yang

    2015-04-01

    High-quality gallium nitride (GaN) film was grown on nano-patterned sapphire substrates (NPSS) and investigated using XRD and SEM. It was found that the optimum thickness of the GaN buffer layer on the NPSS is 15 nm, which is thinner than that on micro-patterned sapphire substrates (MPSS). An interesting phenomenon was observed for GaN film grown on NPSS:GaN mainly grows on the trench regions and little grows on the sidewalls of the patterns at the initial growth stage, which is dramatically different from GaN grown on MPSS. In addition, the electrical and optical properties of LEDs grown on NPSS were characterized. Project supported by the Suzhou Nanojoin Photonics Co., Ltd and the High-Tech Achievements Transformation of Jiangsu Province, China (No.BA2012010).

  18. Strain-Dependence of the Structure and Ferroic Properties of Epitaxial NiTiO3 Thin Films Grown on Different Substrates

    Directory of Open Access Journals (Sweden)

    Tamas Varga

    2015-01-01

    Full Text Available Polarization-induced weak ferromagnetism has been predicted a few years back in perovskite MTiO3 (M = Fe, Mn, and Ni. We set out to stabilize this metastable perovskite structure by growing NiTiO3 epitaxially on different substrates and to investigate the dependence of polar and magnetic properties on strain. Epitaxial NiTiO3 films were deposited on Al2O3, Fe2O3, and LiNbO3 substrates by pulsed laser deposition and characterized using several techniques. The effect of substrate choice on lattice strain, film structure, and physical properties was investigated. Our structural data from X-ray diffraction and electron microscopy shows that substrate-induced strain has a marked effect on the structure and crystalline quality of the films. Physical property measurements reveal a dependence of the weak ferromagnetism and lattice polarization on strain and highlight our ability to control the ferroic properties in NiTiO3 thin films by the choice of substrate. Our results are also consistent with the theoretical prediction that the ferromagnetism in acentric NiTiO3 is polarization induced. From the substrates studied here, the perovskite substrate LiNbO3 proved to be the most promising one for strong multiferroism.

  19. Structural and optical properties of ZnO nanostructures grown by aerosol spray pyrolysis: candidates for room temperature methane and hydrogen gas sensing

    CSIR Research Space (South Africa)

    Motaung, DE

    2013-08-01

    Full Text Available We report on the synthesis of ZnO films by aerosol spray pyrolysis method at different deposition times.The surface morphology, crystal structure and the cross-sectional analysis of the prepared ZnO filmswere characterized by X-ray diffraction (XRD...

  20. Evaluation of light-emitting diodes (LED) effect on skin biology (in vitro study).

    Science.gov (United States)

    Chabert, R; Fouque, L; Pinacolo, S; Garcia-Gimenez, N; Bonnans, M; Cucumel, K; Domloge, N

    2015-11-01

    Interest in anti-aging approaches has grown significantly in recent years. The most popular are the non invasive methods to decrease the signs of aging. One such method is LED-based therapy. This study investigated the potential of two different wavelengths, 590 nm and 630 nm, combined or not, in the photobiomodulation of proteins involved in the slowdown of the skin aging. These in vitro results on cell viability, cell shape, and mitochondrial function support and build on previous studies suggested that LED treatment is safe. Regarding its biological functions, our data indicated that the combination of two different wavelengths acted in synergy to enhance the impact of each irradiation alone. Combined, the LED wavelengths could improve in vitro the cell shape, the cell proliferation, and the level of major proteins involved in the healing process. These benefits may lead to reinforcement of the skin organization and structure. This hypothesis will be checked in future clinical studies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation

    Science.gov (United States)

    Yorio, N. C.; Goins, G. D.; Kagie, H. R.; Wheeler, R. M.; Sager, J. C.

    2001-01-01

    Radish (Raphanus sativus L. cv. Cherriette), lettuce (Lactuca sativa L. cv. Waldmann's Green), and spinach (Spinacea oleracea L. cv. Nordic IV) plants were grown under 660-nm red light-emitting diodes (LEDs) and were compared at equal photosynthetic photon flux (PPF) with either plants grown under cool-white fluorescent lamps (CWF) or red LEDs supplemented with 10% (30 micromoles m-2 s-1) blue light (400-500 nm) from blue fluorescent (BF) lamps. At 21 days after planting (DAP), leaf photosynthetic rates and stomatal conductance were greater for plants grown under CWF light than for those grown under red LEDs, with or without supplemental blue light. At harvest (21 DAP), total dry-weight accumulation was significantly lower for all species tested when grown under red LEDs alone than when grown under CWF light or red LEDs + 10% BF light. Moreover, total dry weight for radish and spinach was significantly lower under red LEDs + 10% BF than under CWF light, suggesting that addition of blue light to the red LEDs was still insufficient for achieving maximal growth for these crops.

  2. Eshelby Twist as a Possible Source of Lattice Rotation in a Perfectly Ordered Protein/Silica Structure Grown by a Simple Organism.

    Science.gov (United States)

    Zlotnikov, Igor; Werner, Peter; Fratzl, Peter; Zolotoyabko, Emil

    2015-11-11

    The formation mechanism of a perfectly ordered protein/silica structure in the axial filament of the anchor spicule of the silica sponge Monorhaphis chuni is suggested. Experimental evidence shows that the growth of this architecture is realized by a thermodynamically driven dislocation-mediated spiral growth mechanism, resulting in a specific rotation of the mesoscopic crystal lattice (Eshelby twist). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing.

    Science.gov (United States)

    Xiong, Wu; Zhao, Qingyun; Zhao, Jun; Xun, Weibing; Li, Rong; Zhang, Ruifu; Wu, Huasong; Shen, Qirong

    2015-07-01

    In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen.

  4. 3D Atomic-Scale Insights into Anisotropic Core-Shell-Structured InGaAs Nanowires Grown by Metal-Organic Chemical Vapor Deposition.

    Science.gov (United States)

    Qu, Jiangtao; Du, Sichao; Burgess, Tim; Wang, Changhong; Cui, Xiangyuan; Gao, Qiang; Wang, Weichao; Tan, Hark Hoe; Liu, Hui; Jagadish, Chennupati; Zhang, Yingjie; Chen, Hansheng; Khan, Mansoor; Ringer, Simon; Zheng, Rongkun

    2017-08-01

    III-V ternary InGaAs nanowires have great potential for electronic and optoelectronic device applications; however, the 3D structure and chemistry at the atomic-scale inside the nanowires remain unclear, which hinders tailoring the nanowires for specific applications. Here, atom probe tomography is used in conjunction with a first-principles simulation to investigate the 3D structure and chemistry of InGaAs nanowires, and reveals i) the nanowires form a spontaneous core-shell structure with a Ga-enriched core and an In-enriched shell, due to different growth mechanisms in the axial and lateral directions; ii) the shape of the core evolves from hexagon into Reuleaux triangle and grows larger, which results from In outward and Ga inward interdiffusion occurring at the core-shell interface; and iii) the irregular hexagonal shell manifests an anisotropic growth rate on {112}A and {112}B facets. Accordingly, a model in terms of the core-shell shape and chemistry evolution is proposed, which provides fresh insights into the growth of these nanowires. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Significant structural change in both O- and N-linked carbohydrate moieties of the antigenic galactomannan from Aspergillus fumigatus grown under different culture conditions.

    Science.gov (United States)

    Kudoh, Atsushi; Okawa, Yoshio; Shibata, Nobuyuki

    2015-01-01

    Invasive aspergillosis is an important cause of morbidity and mortality in immunocompromised patients. Diagnosis of this infection frequently employs detection of the circulating galactomannan in the patient serum using enzyme immunoassay (EIA), a highly sensitive and specific system. Although there are many structural studies of the galactomannan of Aspergillus fumigatus, some inconsistencies are present in these results. In this study, to clarify the relationship between the growth conditions and structure of the galactomannans, we cultured A. fumigatus using two distinct yeast/fungal cultivation media, i.e. the yeast extract-peptone-dextrose (YPD) medium and yeast nitrogen base (YNB) medium. Galactomannans prepared from the resulting culture supernatants were structurally characterized by (1)H and (13)C nuclear magnetic resonance, methylation analysis, acetolysis and α-mannosidase degradation. These assays revealed that the galactomannan from the YPD cultivation had short β-1,5-linked galactofuranose (Galf) oligosaccharide chains in both the O- and N-linked carbohydrate moieties, while the galactomannan from the YNB cultivation incorporated long Galf oligosaccharide chains. The galactomannans derived from the two culture conditions significantly differed in reactivity based on the EIA diagnostic system. We also demonstrated the presence of a novel Galf-containing branched oligosaccharide in the O-linked moiety. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. White LED motorcycle headlamp design

    Science.gov (United States)

    Sun, Wen-Shing

    2015-09-01

    The motorcycle headlamp is composed of a white LED module, an elliptical reflector, a parabolic reflector and a toric lens. We use non-sequential ray to improve the optical efficiency of the compound reflectors. Using the toric lens can meet ECE_113 regulation and obtain a good uniformity.

  7. UV-LED photopolymerised monoliths

    Czech Academy of Sciences Publication Activity Database

    Abele, S.; Nie, F.; Foret, František; Paull, B.; Macka, M.

    2008-01-01

    Roč. 133, č. 7 (2008), s. 864-866 ISSN 0003-2654 R&D Projects: GA AV ČR KAN400310651 Institutional research plan: CEZ:AV0Z40310501 Keywords : photopolymerisation * UV-LED * polymethacrylate monolith Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.761, year: 2008

  8. Architecture-Led Safety Process

    Science.gov (United States)

    2016-12-01

    Contents Acknowledgments iv Abstract v 1 Introduction 1 2 Architecture -Led Processes and ALSA 2 3 ALSA Practices 5 3.1 Example System 8 4 Identify... Architecture Models 13 5 Identify Operational Hazards and Hazard Contributors 15 5.1 System Partitioning 15 5.2 Operational Context as a Control

  9. Effects of hydrogen on the structural and optical properties of MoSe2 grown by hot filament chemical vapor deposition

    Science.gov (United States)

    Wang, B. B.; Zhu, M. K.; Levchenko, I.; Zheng, K.; Gao, B.; Xu, S.; Ostrikov, K.

    2017-10-01

    The role of reactive environment and hydrogen specifically in growth and structure of molybdenum selenide (MoSe2) nanomaterials is presently debated, and it is not clear whether hydrogen can promote the growth of MoSe2 sheets and alter their electronic properties. To find efficient, convenient methods for controlling the nucleation, growth and resultant properties of MoSe2 nanomaterials, MoSe2 nanoflakes were synthesized on silicon substrates by hot filament chemical vapor deposition using molybdenum trioxide and selenium powders in pure hydrogen, nitrogen gases and hydrogen-nitrogen mixtures. The structures and composition of synthesized MoSe2 nanoflakes were studied using the advanced characterization instruments including field emission scanning electron microscopy, micro-Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectrometry. The analysis of the growth process indicates that hydrogen can improve the formation of MoSe2 nanoflakes and significantly alter their properties due to the high reduction capacity of hydrogen and the creation of more nucleation centers of MoSe2 nanoflakes on the silicon surface. The study of photoluminescent (PL) properties reveals that the MoSe2 nanoflakes can generate a strong PL band at about 631 nm, differently from the plain MoSe2 nanoflakes. The major difference in the PL properties may be related to the edges of MoSe2 nanoflakes. These results can be used to control the growth and structure of MoSe2-based nanomaterials and contribute to the development of advanced MoSe2-based optoelectronic devices.

  10. Integrated LED-based luminaire for general lighting

    Science.gov (United States)

    Dowling, Kevin J.; Lys, Ihor A.; Williamson, Ryan C.; Roberge, Brian; Roberts, Ron; Morgan, Frederick; Datta, Michael Jay; Mollnow, Tomas Jonathan

    2016-08-30

    Lighting apparatus and methods employing LED light sources are described. The LED light sources are integrated with other components in the form of a luminaire or other general purpose lighting structure. Some of the lighting structures are formed as Parabolic Aluminum Reflector (PAR) luminaires, allowing them to be inserted into conventional sockets. The lighting structures display beneficial operating characteristics, such as efficient operation, high thermal dissipation, high output, and good color mixing.

  11. Integrated LED-based luminare for general lighting

    Science.gov (United States)

    Dowling, Kevin J.; Lys, Ihor A.; Roberge, Brian; Williamson, Ryan C.; Roberts, Ron; Datta, Michael; Mollnow, Tomas; Morgan, Frederick M.

    2013-03-05

    Lighting apparatus and methods employing LED light sources are described. The LED light sources are integrated with other components in the form of a luminaire or other general purpose lighting structure. Some of the lighting structures are formed as Parabolic Aluminum Reflector (PAR) luminaires, allowing them to be inserted into conventional sockets. The lighting structures display beneficial operating characteristics, such as efficient operation, high thermal dissipation, high output, and good color mixing.

  12. Effect of nitrogen in the electronic structure of GaAsN and GaInAs(N) compounds grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Ben Bouzid, S.; Bousbih, F.; Chtourou, R.; Harmand, J.C.; Voisin, P.

    2004-01-01

    We have performed spectroscopic measurements in order to investigate the exciton localization mechanism and the bandgap energies of GaAsN in three regimes: (i) doped; (ii) intermediate doped-alloy; and (iii) alloy and the transition energies in strained GaInAsN/GaAs quantum wells laser structures. Low temperature photoluminescence spectrum of GaAsN layer in doped regime shows several features of excitons bound to nitrogen complexes. In the intermediate doped-alloy regime, these bound states are tightly coupled to form a wide band below the GaAsN bandgap energy. We have used the band anticrossing model to simulate the evolution of the GaAsN bandgap energies versus nitrogen composition. We have found that incorporation of 1% nitrogen shifts the bandgap energy of about 225 meV. The interband transitions in GaInAsN/GaAs quantum wells (QWs) structures are investigated using photovoltage measurements and can be identified using the envelope function formalism taking into account the effects of strain and the bandgap lowering due to the presence of nitrogen

  13. Diversity and structure of landraces of Agave grown for spirits under traditional agriculture: A comparison with wild populations of A. angustifolia (Agavaceae) and commercial plantations of A. tequilana.

    Science.gov (United States)

    Vargas-Ponce, Ofelia; Zizumbo-Villarreal, Daniel; Martínez-Castillo, Jaime; Coello-Coello, Julián; Colunga-Garcíamarín, Patricia

    2009-02-01

    Traditional farming communities frequently maintain high levels of agrobiodiversity, so understanding their agricultural practices is a priority for biodiversity conservation. The cultural origin of agave spirits (mezcals) from west-central Mexico is in the southern part of the state of Jalisco where traditional farmers cultivate more than 20 landraces of Agave angustifolia Haw. in agroecosystems that include in situ management of wild populations. These systems, rooted in a 9000-year-old tradition of using agaves as food in Mesoamerica, are endangered by the expansion of commercial monoculture plantations of the blue agave variety (A. tequilana Weber var. Azul), the only agave certified for sale as tequila, the best-known mezcal. Using intersimple sequence repeats and Bayesian estimators of diversity and structure, we found that A. angustifolia traditional landraces had a genetic diversity (H(BT) = 0.442) similar to its wild populations (H(BT) = 0.428) and a higher genetic structure ((B) = 0.405; (B) =0. 212). In contrast, the genetic diversity in the blue agave commercial system (H(B) = 0.118) was 73% lower. Changes to agave spirits certification laws to allow the conservation of current genetic, ecological and cultural diversity can play a key role in the preservation of the traditional agroecosystems.

  14. Dc and ac electrical response of MOCVD grown GaN in p-i-n structure, assessed through I-V and admittance measurement

    Science.gov (United States)

    Ayarcı Kuruoğlu, Neslihan; Özdemir, Orhan; Bozkurt, Kutsal; Sundaram, Suresh; Salvestrini, Jean-Paul; Ougazzaden, Abdallah; Gaimard, Quentin; Belahsene, Sofiane; Merghem, Kamel; Ramdane, Abderrahim

    2017-12-01

    The electrical response of gallium nitride (GaN), produced through metal-organic chemical vapor deposition in a p-i-n structure was investigated through temperature-dependent current-voltage (I-V) and admittance measurement. The I-V curves showed double diode behavior together with several distinct regions in which trap-assisted tunnelling current has been identified at low and moderate forward/reverse direction and space charge limited current (SCLC) at large forward/reverse bias. The value of extracted energy (˜200 meV in forward and  ˜70 meV in reverse direction) marked the tunnelling entity as electron and heavy hole in the present structure. These values were also obtained in space charge limited regime and considered as minority carriers which might originate the experimentally observed negative capacitance issue at low frequencies over the junction under both forward and reverse bias directions. Analytically derived expression for the admittance in the revised versions of SCLC model was also applied to explain the inductance effect, yielding good fits to the experimentally measured admittance data.

  15. Effect of thickness on the structural and optical properties of CuO thin films grown by successive ionic layer adsorption and reaction

    Energy Technology Data Exchange (ETDEWEB)

    Akaltun, Yunus, E-mail: yakaltun@erzincan.edu.tr

    2015-11-02

    CuO thin films were synthesised on glass substrates at room temperature using successive ionic layer adsorption and reaction (SILAR) method. The effect of film thickness on characteristic parameters such as the structural, morphological and optical properties of the films was investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies showed that all of the films exhibited polycrystalline structure with monoclinic phases and covered the glass substrates well. The crystalline and morphology of the films improved with increasing film thickness. The optical band gap decreased from 2.03 to 1.79 eV depending on the film thickness. The refractive index (n), electron effective mass (m{sub e}{sup ⁎}/m{sub o}) and static and frequency dielectric constants (ε{sub o}, ε{sub ∞}) were determined using the energy band gap values. - Highlights: • CuO thin films were deposited using SILAR method. • The electron effective mass, refractive index, dielectric constant values were calculated. • Characterisation of the films has been performed using XRD, SEM, Raman and optical measurements. • The d values of the planes of with thickness show no variation.

  16. LED light recycling using double prisms

    Science.gov (United States)

    Ouyang, George; Li, Kenneth

    2013-09-01

    A novel LED recycling scheme using double prisms is presented. Two identical triangular prisms with square bases, one cross-stacked on top of the other, are tight-fit into a mirrored light tunnel. The whole prism/light tunnel assembly is then mounted on top of a square LED source, whose emitting area is the same as that of the base plane of the said prism/light tunnel assembly. Each prism acts as a tapered-down light guide in one dimension, which selectively retro-reflects high angle light along that direction. The outer light tunnel serves as a mirrored wall that folds back any light that escapes outside the two prisms. For a given collection cone angle, the height of the two prisms is optimized using ASAP, a commercial ray-tracing software. Simulation and experimental results show promise in significantly increasing the brightness of the LED sources within the collection cone. Specifically for a 4x recycling ratio a 70% recycling gain in center illuminance has been achieved (i.e., illuminance measured in the forward direction). This scheme has advantages over previous recycling configurations due to its compactness and ease of mounting. For example, compared to Wavien's spherical reflector approach that has been previously published, the current recycling configuration is much smaller in size because instead of fitting a much larger mirrored reflector on top of the LED source, this time we're using a structure that has the same lateral dimensions as those of the LED source itself. Further improvement is also possible if optimization of various system parameters is carried out.

  17. LED lamp power management system and method

    Science.gov (United States)

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A. M.

    2013-03-19

    An LED lamp power management system and method including an LED lamp having an LED controller 58; a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 reduces power loss in one of the channel switch 62 and the shunt switch 68 when LED lamp electronics power loss (P.sub.loss) exceeds an LED lamp electronics power loss limit (P.sub.lim); and each of the channel switches 62 receives a channel switch control signal 63 from the LED controller 58 and each of the shunt switches 68 receives a shunt switch control signal 69 from the LED controller 58.

  18. LED lamp color control system and method

    Science.gov (United States)

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A.M.

    2013-02-05

    An LED lamp color control system and method including an LED lamp having an LED controller 58; and a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 determines whether the LED source 80 is in a feedback controllable range, stores measured optical flux for the LED source 80 when the LED source 80 is in the feedback controllable range, and bypasses storing the measured optical flux when the LED source 80 is not in the feedback controllable range.

  19. Local structure and morphological evolution of ZnTPP molecules grown on Fe(001)-p(1 × 1)O studied by STM and NEXAFS

    Science.gov (United States)

    Picone, Andrea; Giannotti, Dario; Brambilla, Alberto; Bussetti, Gianlorenzo; Calloni, Alberto; Yivlialin, Rossella; Finazzi, Marco; Duò, Lamberto; Ciccacci, Franco; Goldoni, Andrea; Verdini, Alberto; Floreano, Luca

    2018-03-01

    When used as substrates, thin metal-oxide (MO) layers can perturb the physical and chemical properties of molecules in contact with the surface. To study the molecule-MO layer interaction, we focused our investigation on a prototypical interface, namely zinc tetraphenylporphyrin (ZnTPP) film on Fe(001)-p(1 × 1)O. In a previous study, we found that no significant change of the electronic structure takes place at the monolayer (ML) coverage either in the core level photoemission spectra or in the highest occupied molecular orbitals (HOMOs). However, molecules showed the occurrence of a commensurate (5 × 5) diffraction pattern that indicates a certain degree of interaction with the substrate. In order to better understand the effective molecule/metal decoupling operated by the FeO layer, we performed a combined investigation based on a scanning tunneling microscopy (STM) study of the self-assembled ZnTPP molecular layer and on a near edge X-ray absorption fine structure spectroscopy (NEXAFS). Molecules are found to lie almost parallel to the substrate, even if the central macrocycle displays a characteristic small saddle-like distortion (symmetry from D4h to D2h drives the azimuthal orientation with respect to the substrate and determines the co-existence of four equivalent (5 × 5) ZnTPP domains, following the substrate four-fold symmetry. The comparison with films of increasing thickness shows that, beyond the second layer, the molecules gradually tilt-off the surface (by at least 40°) ordering into 3D islands. The NEXAFS resonances of the lowest unoccupied orbitals (LUMOs) do not display significant changes from the monolayer to the multilayer thickness range, apart from minor modification of the LUMOs relative intensity. The latter variation may be associated with the change of spatial spread of the molecular orbitals in the contact layer due to the saddle-like distortion.

  20. Uniform LED illuminator for miniature displays

    Science.gov (United States)

    Medvedev, Vladimir; Pelka, David G.; Parkyn, William A.

    1998-10-01

    The Total Internally Reflecting (TIR) lens is a faceted structure composed of prismatic elements that collect a source's light over a much larger angular range than a conventional Fresnel lens. It has been successfully applied to the efficient collimation of light from incandescent and fluorescent lamps, and from light-emitting diodes (LEDs). A novel LED-powered collimating backlight is presented here, for uniformly illuminating 0.25'-diagonal miniature liquid- crystal displays, which are a burgeoning market for pagers, cellular phones, digital cameras, camcorders, and virtual- reality displays. The backlight lens consists of a central dual-asphere refracting section and an outer TIR section, properly curved with a curved exit face.

  1. Celebrity-led development organisations

    DEFF Research Database (Denmark)

    Budabin, Alexandra Cosima; Rasmussen, Louise Mubanda; Richey, Lisa Ann

    2017-01-01

    The past decade has seen a frontier open up in international development engagement with the entrance of new actors such as celebrity-led organisations. We explore how such organisations earn legitimacy with a focus on Madonna’s Raising Malawi and Ben Affleck’s Eastern Congo Initiative. The study...... draws from organisational materials, interviews, mainstream news coverage, and the texts of the celebrities themselves to investigate the construction of authenticity, credibility, and accountability. We find these organisations earn legitimacy and flourish rapidly amid supportive elite networks...... for funding, endorsements, and expertise. We argue that the ways in which celebrity-led organisations establish themselves as legitimate development actors illustrate broader dynamics of the machinery of development....

  2. Green (In,Ga,Al)P-GaP light-emitting diodes grown on high-index GaAs surfaces

    Science.gov (United States)

    Ledentsov, N. N.; Shchukin, V. A.; Lyytikäinen, J.; Okhotnikov, O.; Cherkashin, N. A.; Shernyakov, Yu M.; Payusov, A. S.; Gordeev, N. Y.; Maximov, M. V.; Schlichting, S.; Nippert, F.; Hoffmann, A.

    2015-03-01

    We report on green (550-560 nm) electroluminescence (EL) from (Al0.5Ga0.5)0.5In0.5P-(Al0.8Ga0.2)0.5In0.5P double p-i-n heterostructures with monolayer-scale tensile strained GaP insertions in the cladding layers and light-emitting diodes (LEDs) based thereupon. The structures are grown side-by-side on high-index and (100) GaAs substrates by molecular beam epitaxy. Cross-sectional transmission electron microscopy studies indicate that GaP insertions are flat, thus the GaP-barrier substrate orientation-dependent heights should match the predictions of the flat model. At moderate current densities (~500 A/cm2) the EL intensity of the structures is comparable for all substrate orientations. Opposite to the (100)-grown strictures, the EL spectra of (211) and (311)-grown devices are shifted towards shorter wavelengths (~550 nm at room temperature). At high current densities (>1 kA/cm2) a much higher EL intensity is achieved for the devices grown on high-index substrates. The integrated intensity of (311)-grown structures gradually saturates at current densities above 4 kA/cm2, whereas no saturation is revealed for (211)-grown structures up to the current densities above 14 kA/cm2. We attribute the effect to the surface orientation-dependent engineering of the GaP band structure which prevents the escape of the nonequilibrium electrons into the indirect conduction band minima of the p- doped (Al0.8Ga0.2)0.5In0.5P cladding layers.

  3. Luminescent ceramics for LED conversion

    Science.gov (United States)

    Raukas, M.; Wei, G.; Bergenek, K.; Kelso, J.; Zink, N.; Zheng, Y.; Hannah, M.; Stough, M.; Wirth, R.; Linkov, A.; Jermann, F.; Eisert, D.

    2011-03-01

    Many LED-based applications would benefit from more efficient and/or high lumen output devices that enable usage in both white and single color illumination schemes. In the present article we briefly review the materials research history leading to optical ceramic converters and discuss their typical characteristics. Recently demonstrated high performance values in terms of efficacy and external quantum efficiency in orange (amber) spectral region are described.

  4. Effects of thermal annealing on the optical, spectroscopic, and structural properties of tris (8-hydroxyquinolinate) gallium films grown on quartz substrates

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Fahmi Fariq, E-mail: fahmi982@gmail.com [Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Department of Physics, Faculty of Science and Engineering, University of Koya, Koya, Kurdistan Region (Iraq); Sulaiman, Khaulah [Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2011-10-03

    Highlights: {yields} Achieving a broad absorption band for Gaq3 covering the whole UV and some parts of visible spectra. {yields} Increasing photoluminescence emission to five times stronger than that of pristine film. {yields} Conformational changes towards the formation of crystalline {alpha}-Gaq3 polymorph. {yields} Determination of glass transition temperature for Gaq3 (T{sub g} 182 deg. C) and Alq3 (T{sub g} = 173 deg. C). {yields} Improving and understanding the physical properties of Gaq3 film by means of thermal treatment. - Abstract: In this study we report the optical, spectroscopic, and structural properties of vacuum deposited tris (8-hydroxyquinolinate) gallium film upon thermal annealing in the temperature range from 85 deg. C to 255 deg. C under a flowing nitrogen gas for 10 min. The optical UV-vis-NIR and luminescence spectroscopy measurements were performed to estimate the absorption bands, optical energy gap (E{sub g}), and photoluminescence (PL) of the films. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) techniques were used to probe the spectroscopic and structural nature of the films. We show that, by annealing the films from 85 deg. C to 235 deg. C, it is possible to achieve an enhanced absorption and increased photoluminescence to five times stronger than that of the pristine film. The PL quenching at 255 deg. C was attributed to the presence of plainer chains allow easy going for excitons to a long distance due to the crystalline region formation of {alpha}-Gaq3 polymorph. The reduction in E{sub g} and infrared absorption bands upon annealing were referred to the enhancement in {pi}-{pi} interchain interaction and conformational changes by re-arrangement of the Gaq3 quinolinate ligands, respectively. Stokes shift for the films were observed and calculated. From the differential scanning calorimetry, DSC measurements, higher glass transition temperature was observed for Gaq3 (T{sub g} = 182 deg. C) compared to

  5. Enhanced photoelectrochemical activity of electro-synthesized CdS-Bi{sub 2}S{sub 3} composite films grown with self-designed cross-linked structure

    Energy Technology Data Exchange (ETDEWEB)

    Jana, A.; Bhattacharya, C. [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, West Bengal (India); Datta, J., E-mail: jayati_datta@rediffmail.co [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, West Bengal (India)

    2010-09-01

    In the present investigation thin semiconductor films of CdS, Bi{sub 2}S{sub 3} and their intermixed composite films have been electro-synthesized onto conducting glass substrate from nonaqueous bath containing various levels of the precursor salts of Cd{sup 2+} and Bi{sup 3+}. Spectrophotometric measurements determine the band gap energies of the composite films at {approx}2.53 eV and {approx}1.37 eV corresponding to the binary systems CdS and Bi{sub 2}S{sub 3}, respectively. The film matrices exhibit a unique structure of cross-linked nanoporous Bi{sub 2}S{sub 3} mesh containing spherical shaped CdS crystals distributed uniformly on the top of the surface as detected from the morphological studies through scanning electron microscopy and transmission electron microscopy. X-ray diffraction studies show crystalline structure of the films of which the chemical compositions were determined through energy dispersive analysis of X-ray. The film matrices enriched with Cd exhibit high dielectric property as obtained from the capacitance measurement and substantial thermal stability derived from thermogravimetry and differential thermal analysis. These films are found to be highly fluorescent in nature when subjected to spectrofluorimetric analysis. The Raman spectral data exhibit characteristic peaks that are associated with Cd-S and Bi-S bonds as well as the defects created by metal oxides. The spectrum also demonstrates that the changes in the relative position of the overtone bands are associated with compositional variation of the film surface. The study of electrochemical polarization of different films, derives the inherent stability of the matrices towards dissolution. This was followed by anodic stripping voltammetry to estimate the dissolved cations during polarization. Photoelectrochemical measurements demonstrate n-type semiconductivity of the films with high order of donor density and reasonable photoactivity under illuminated condition. It may be summarized

  6. Automotive LED lamp lighted appearance

    Science.gov (United States)

    Conn, Lawrence G.; Bennett, Larry R.

    2001-05-01

    The automotive optical engineer has an entirely new set of rules to follow for a 'smooth lighted appearance' with the introduction of LEDs into the automotive signal lighting market. To move away from the 'polka-dot' appearance long associated with the usage of LEDs as the light source for automotive lighting, and give the consumer a smooth lighted appearance to his lamp, there are several optical parameters that must be observed. The number and type of LEDs used, the size of the optical elements used, the spacing of the optical elements, plus many other factors all play a critical role and must be considered in the solution to the 'smooth lighted appearance' in an automotive signal lamp. The 'smooth lighted appearance' in an automotive signal lamp has long been a difficult problem to which there is more than one solution. The most visually pleasing and effective solution is not always the most easily obtainable solution since photometry requirements and smooth lighted appearance can be diametric goals. Subsequently the most cost effective and the easily 'doable' solution may not give the ultimate in aesthetically pleasing results for the consumer. Therefore, it is the purpose and intent of this paper to outline the parameters that need to be considered to obtain a 'smooth lighted appearance' for an automotive signal lamp, and to clarify the methods and 'tools' that are required to meet this goal.

  7. Effect of applied voltage on the structural properties of SnO2 nanostuctures grown on indium-tin-oxide coated glass substrates.

    Science.gov (United States)

    Lee, Dea Uk; Yun, Dong Yeol; No, Young Soo; Hwang, Jun Ho; Lee, Chang Hun; Kim, Tae Whan

    2013-11-01

    SnO2 nanostuctures were formed on indium-tin-oxide (ITO)-coated glass substrates by using an electrochemical deposition (ECD) method. X-ray photoelectron spectroscopy (XPS) spectra showed the existence of elemental Sn and O in the samples, indicative of the formation of SnO2 materials. An XPS spectrum showing the O 1s peak at a binding energy of 531.5 eV indicated that the oxygen atoms were bonded to the SnO2. Field-emission scanning electron microscopy (FE-SEM) images showed that the samples formed by using the ECD method had SnO2 nanostructures with a size between 280 and 350 nm. FE-SEM images showed that the size of the SnO2 nanostructures formed at 65 degrees C for 30 min increased with decreasing applied voltage. X-ray diffraction (XRD) patterns showed that the SnO2 nanostrucures had tetragonal structures with cell parameters of a = 4.738 A and c = 3.187 A. XRD results showed that the peak intensity of the (110) plane increased with decreasing applied voltage, indicative of a preferencial orientation of the (110) plane.

  8. A study on the structural and mechanical properties of nanocrystalline CuS thin films grown by chemical bath deposition technique

    International Nuclear Information System (INIS)

    Mukherjee, Nillohit; Sinha, Arijit; Khan, Gobinda Gopal; Chandra, Debraj; Bhaumik, Asim; Mondal, Anup

    2011-01-01

    We report a chemical route for the deposition of nanocrystalline thin films of CuS, using aqueous solutions of Cu(CH 3 COO) 2 , SC(NH 2 ) 2 and N(CH 2 CH 2 OH) 3 [triethanolamine, i.e. TEA] in proper concentrations and ratios. The films were structurally characterized using X-ray diffraction technique (XRD), field emission scanning electron microscopy (FESEM) and optical analysis [both photo luminescence (PL) and ultraviolet-visible (UV-vis)]. Optical studies showed a large blue shift in the band gap energy of the films due to quantum confinement effect exerted by the nanocrystals. From both XRD and FESEM analyses, formation of CuS nanocrystals with sizes within 10-15 nm was evident. A study on the mechanical properties was carried out using nanoindentation and nanoscratch techniques, which showed good mechanical stability and high adherence of the films with the bottom substrate. Such study on the mechanical properties of the CuS thin films is being reported here for the first time. Current-voltage (I-V) measurements were also carried out for the films, which showed p-type conductivity.

  9. Control of grown-in defects and oxygen precipitates in silicon wafers with DZ-IG structure by ultrahigh-temperature rapid thermal oxidation

    Science.gov (United States)

    Maeda, Susumu; Sudo, Haruo; Okamura, Hideyuki; Nakamura, Kozo; Sueoka, Koji; Izunome, Koji

    2018-04-01

    A new control technique for achieving compatibility between crystal quality and gettering ability for heavy metal impurities was demonstrated for a nitrogen-doped Czochralski silicon wafer with a diameter of 300 mm via ultra-high temperature rapid thermal oxidation (UHT-RTO) processing. We have found that the DZ-IG structure with surface denuded zone and the wafer bulk with dense oxygen precipitates were formed by the control of vacancies in UHT-RTO process at temperature exceeding 1300 °C. It was also confirmed that most of the void defects were annihilated from the sub-surface of the wafer due to the interstitial Si atoms that were generated at the SiO2/Si interface. These results indicated that vacancies corresponded to dominant species, despite numerous interstitial silicon injections. We have explained these prominent features by the degree of super-saturation for the interstitial silicon due to oxidation and the precise thermal properties of the vacancy and interstitial silicon.

  10. Hydroxyapatite growth on multiwall carbon nanotubes grown on titanium fibers from a titanium sheet

    KAUST Repository

    Chetibi, Loubna

    2013-09-27

    Nano-hydroxyapatite (HA) was grown on functionalized multiwalled carbon nanotubes (MWCNTs) deposited on TiO2 nanofibers (NFs) that were hydrothermally grown on Ti metal sheets. The HA was electrochemically grown on the MWCNTs/TiO2 porous layer. It was found that the HA grows on the MWCNTs/TiO2 NFs in the form of dense coating with nanorice grain-shaped. The incorporation of MWCNTs between HA and TiO2 NFs has led to higher adhesion strength as measured by micro-scratching test indicating the benefit of MWCNTs on the improving the bonding strength of HA layer. The obtained coatings exhibit excellent corrosion resistance in simulated body fluid. It is expected that this simple route for preparing the new HA/MWCNTs/TiO2/Ti-layered structure might be used not only in the biomedical field, but also in catalysis and biological sensing among others. © 2013 Springer Science+Business Media New York.

  11. Annealing temperature dependent structural and magnetic properties of MnFe{sub 2}O{sub 4} nanoparticles grown by sol-gel auto-combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Bhandare, S.V. [Department of Physics, Gulbarga University, Gulbarga 585106 (India); Kumar, R.; Anupama, A.V.; Choudhary, H.K. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Jali, V.M., E-mail: vmjali@gmail.com [Department of Physics, Gulbarga University, Gulbarga 585106 (India); Sahoo, B., E-mail: bsahoo@mrc.iisc.ernet.in [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)

    2017-07-01

    Highlights: • Phase pure MnFe{sub 2}O{sub 4} samples were prepared by sol-gel auto-combustion method. • Annealing MnFe{sub 2}O{sub 4} below ∼500 °C, two spinel phases were observed indicating partial oxidation of Mn{sup 2+} to Mn{sup 3+}. • Oxidation of Mn{sup 2+} to Mn{sup 3+} results in decrease in lattice parameter of the spinel lattice. • Annealing at ≥ 600 °C, MnFe{sub 2}O{sub 4} decomposes into crystalline α-Mn{sub 2}O{sub 3} and α-Fe{sub 2}O{sub 3} along with amorphous-FeO phase. - Abstract: Manganese ferrite (MnFe{sub 2}O{sub 4}) nanoparticles were synthesized by sol-gel auto-combustion method using manganese nitrate and ferric nitrate as precursors and citric acid as a fuel. Scanning electron micrographs show irregularly shaped morphology of the particles. The as-prepared samples were annealed at 400, 500, 600 and 800 °C for 2 h in air. The phase identification and structural characterizations were performed using powder X-ray diffraction technique along with Mössbauer spectroscopy. Magnetization loops and {sup 57}Fe Mössbauer spectra were measured at RT. After annealing the sample at or below ∼ 500 °C, we observed two different spinel phases corresponding to two different lattice parameters. This is originating due to the partial oxidation of Mn{sup 2+} to Mn{sup 3+}. At high annealing temperatures (∼ 600 °C or above) the spinel MnFe{sub 2}O{sub 4} phase decomposes into crystalline α-Mn{sub 2}O{sub 3} and α-Fe{sub 2}O{sub 3} phases, and amorphous FeO phase.

  12. Are nurse-led chemotherapy clinics really nurse-led? An ethnographic study.

    Science.gov (United States)

    Farrell, Carole; Walshe, Catherine; Molassiotis, Alex

    2017-04-01

    The number of patients requiring ambulatory chemotherapy is increasing year on year, creating problems with capacity in outpatient clinics and chemotherapy units. Although nurse-led chemotherapy clinics have been set up to address this, there is a lack of evaluation of their effectiveness. Despite a rapid expansion in the development of nursing roles and responsibilities in oncology, there is little understanding of the operational aspects of nurses' roles in nurse-led clinics. To explore nurses' roles within nurse-led chemotherapy clinics. A focused ethnographic study of nurses' roles in nurse-led chemotherapy clinics, including semi-structured interviews with nurses. Four chemotherapy units/cancer centres in the UK PARTICIPANTS: Purposive sampling was used to select four cancer centres/units in different geographical areas within the UK operating nurse-led chemotherapy clinics. Participants were 13 nurses working within nurse-led chemotherapy clinics at the chosen locations. Non-participant observation of nurse-led chemotherapy clinics, semi-structured interviews with nurse participants, review of clinic protocols and associated documentation. 61 nurse-patient consultations were observed with 13 nurses; of these 13, interviews were conducted with 11 nurses. Despite similarities in clinical skills training and prescribing, there were great disparities between clinics run by chemotherapy nurses and those run by advanced nurse practitioners. This included the number of patients seen within each clinic, operational aspects, nurses' autonomy, scope of practice and clinical decision-making abilities. The differences highlighted four different levels of nurse-led chemotherapy clinics, based on nurses' autonomy and scope of clinical practice. However, this was heavily influenced by medical consultants. Several nurses perceived they were undertaking holistic assessments, however they were using medical models/consultation styles, indicating medicalization of nurses' roles

  13. Structural, magnetic and optical properties of a dilute magnetic semiconductor based on Ce{sub 1−x}Co{sub x}O{sub 2} thin film grown on LaAlO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Waleed E., E-mail: w_e_mahmoud@yahoo.com [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Suez Canal University, Faculty of Science, Department of Physics, Ismailia (Egypt); Al-Ghamdi, A.A. [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Al-Agel, F.A. [Hail University, College of Science, Department of Physics, Hail (Saudi Arabia); Al-Arfaj, E. [Umm Alqura University, Department of Physics, Makkah (Saudi Arabia); Qassim University, College of Science, Physics Department, Buraidah 5145 (Saudi Arabia); Shokr, F.S. [King Abdulaziz University, Faculty of Science & Arts, Department of Physics, Rabigh (Saudi Arabia); Al-Gahtany, S.A. [King Abdulaziz University, Faculty of Science for Girls, Department of Physics, Jeddah (Saudi Arabia); Alshahrie, Ahmed [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Jalled, Ouissem [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Laboratory of Applied Mineral Chemistry, Department of Chemistry, University Tunis ElManar, Faculty of Sciences, Campus 2092, Tunis (Tunisia); Bronstein, L.M. [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Texas State University-San Marcos, Department of Chemistry and Biochemistry, 601 University Dr., San Marcos, TX 78666 (United States); Beall, Gary W. [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Indiana University, Department of Chemistry, Bloomington, IN 47405 (United States)

    2015-12-15

    Highlights: • Co doped CeO{sub 2} was grown on LaAlO{sub 3} (0 0 1) via a modified sol–gel spin-coating technique. • The concentration of the Co ions was varied from 1 to 15 at.%. • The incorporation of 5 at.% of Mn ions was found to provide formation of exceptionally magnetic moment. • This amount demonstrated a giant magnetic moment of 1.09 μ{sub B}/Co. • This amount reduced the optical band gap and enhanced the optical performance. - Abstract: The enhancement of the room temperature ferromagnetism and optical properties of the dilute magnetic metal oxides is a crucial clue to construct spin-based optoelectronic devices. In this work, Ce{sub 1−x}Co{sub x}O{sub 2} (0.01 ≤ x ≤0.15) thin films were prepared via ethylene glycol modified sol–gel spin coating technique on the LaAlO{sub 3} (0 0 1) substrate to enhance their room temperature ferromagnetism and optical properties. The structures, magnetic and optical properties of the prepared films were characterized by X-ray diffraction, atomic force microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, SQUID magnetometer, X-ray photoelectron spectroscopy and UV–vis spectrophotometer. The results demonstrated that a single phase cubic structure was formed, implying the substitution of Co ions into the Ce ions sites. The prepared films showed room temperature ferromagnetism with saturation magnetic moment of 1.09 μ{sub B}/Co was achieved for 5 at.% Co-doped CeO{sub 2}. This film exhibited high optical transparency of 85% and low optical band energy gap of 3.39 eV. The improved magnetic and optical properties are argued to the increase of the density of the oxygen vacancies into the cerium oxide crystal structure due to the incorporation of Co ions.

  14. Highly uniform AlAs/GaAs, InGa(Al)P/GaAs and InGaAs(P)/InP structures grown in a three 2″ wafer close-spaced vertical rotating disk reactor

    Science.gov (United States)

    Vanhollebeke, K.; Considine, L.; Moerman, I.; Demeester, P.; Thrush, E. J.; Crawley, J. A.

    1998-12-01

    Previously we have reported the MOVPE growth of uniform AlGaAs/GaAs and InGaAs(P)/InP structures grown in a three 2″ wafer close-spaced vertical disk reactor at reduced pressure (76 Torr) [X. Zhang, I. Moerman, C. Sys, P. Demeester, J.A. Crawley, E.J. Thrush, J. Crystal Growth 170 (1997) 83-87]. Extending this work we now report photoluminescence (PL) and X-ray (DXRD) results for growth at 700 Torr including the In(Al)GaP materials system. For AlAs/GaAs layers we have achieved a total thickness variation within ±2% for the three wafers over a radial distance of 48 mm in both the x and y directions and a standard deviation ( σ n) of 0.69% measured by DXRD. In the InGaAs system we have achieved a standard deviation of 0.869 nm in the PL wavelength over all three wafers excluding the outer 2 mm. The best composition uniformity we have obtained in the InGaAsP system yields a standard deviation of 1.8 nm in PL wavelength over a 48 mm radial distance. For InGaP we have obtained an indium composition variation within the wafer of 0.203%.

  15. Comparative study of structural and electro-optical properties of ZnO:Ga films grown by steered cathodic arc plasma evaporation and sputtering on plastic and their application on polymer-based organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chih-Hao, E-mail: dataman888@hotmail.com [R& D Division, Walsin Technology Corporation, Kaohsiung, Taiwan (China); Hsiao, Yu-Jen [National Nano Device Laboratories, National Applied Research Laboratories, Tainan, Taiwan (China); Hwang, Weng-Sing [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2016-08-01

    Ga-doped ZnO (GZO) films with various thicknesses (105–490 nm) were deposited on PET substrates at a low temperature of 90 °C by a steered cathodic arc plasma evaporation (steered CAPE), and a GZO film with a thickness of 400 nm was deposited at 90 °C by a magnetron sputtering (MS) for comparison. The comparative analysis of the microstructure, residual stress, surface morphology, electrical and optical properties, chemical states, and doping efficiency of the films produced by the steered CAPE and MS processes was performed, and the effect of thickness on the CAPE-grown GZO films was investigated in detail. The results showed that the GZO films grown by steered CAPE exhibited higher crystallinity and lower internal stress than those deposited by MS. The transmittance and electrical properties were also enhanced for the steered CAPE-grown films. The figure of merit (Φ = T{sup 10}/R{sub s}, where T is the transmittance and R{sub s} is the sheet resistance in Ω/□). was used to evaluate the performance of the electro-optical properties. The GZO films with a thickness of 400 nm deposited by CAPE had the highest Φ value, 1.94 × 10{sup −2} Ω{sup −1}, a corresponding average visible transmittance of 88.8% and resistivity of 6.29 × 10{sup −4} Ω·cm. In contrast, the Φ value of MS-deposited GZO film with a thickness of 400 nm is only 1.1 × 10{sup −3} Ω{sup −1}. This can be attributed to the increase in crystalline size, [0001] preferred orientation, decrease in stacking faults density and Ar contamination in steered CAPE-grown films, leading to increases in the Hall mobility and carrier density. In addition, the power conversion efficiency (PCE) of organic solar cells was significantly improved by using the CAPE-grown GZO electrode, and the PCE values were 1.2% and 1.7% for the devices with MS-grown and CAPE-grown GZO electrodes, respectively. - Highlights: • ZnO:Ga (GZO) films were grown on PET by steered cathodic arc plasma evaporation (CAPE

  16. High-power UV-B LEDs with long lifetime

    Science.gov (United States)

    Rass, Jens; Kolbe, Tim; Lobo-Ploch, Neysha; Wernicke, Tim; Mehnke, Frank; Kuhn, Christian; Enslin, Johannes; Guttmann, Martin; Reich, Christoph; Mogilatenko, Anna; Glaab, Johannes; Stoelmacker, Christoph; Lapeyrade, Mickael; Einfeldt, Sven; Weyers, Markus; Kneissl, Michael

    2015-03-01

    UV light emitters in the UV-B spectral range between 280 nm and 320 nm are of great interest for applications such as phototherapy, gas sensing, plant growth lighting, and UV curing. In this paper we present high power UV-B LEDs grown by MOVPE on sapphire substrates. By optimizing the heterostructure design, growth parameters and processing technologies, significant progress was achieved with respect to internal efficiency, injection efficiency and light extraction. LED chips emitting at 310 nm with maximum output powers of up to 18 mW have been realized. Lifetime measurements show approximately 20% decrease in emission power after 1,000 operating hours at 100 mA and 5 mW output power and less than 30% after 3,500 hours of operation, thus indicating an L50 lifetime beyond 10,000 hours.

  17. Diamond structures grown from polymer composite nanofibers

    Czech Academy of Sciences Publication Activity Database

    Potocký, Štěpán; Kromka, Alexander; Babchenko, Oleg; Rezek, Bohuslav; Martinová, L.; Pokorný, P.

    2013-01-01

    Roč. 5, č. 6 (2013), s. 519-521 ISSN 2164-6627 R&D Projects: GA ČR GAP108/12/0910; GA ČR GAP205/12/0908 Institutional support: RVO:68378271 Keywords : chemical vapour deposition * composite polymer * nanocrystalline diamond * nanofiber sheet * SEM Subject RIV: BM - Solid Matter Physics ; Magnetism

  18. Practical lighting design with LEDs

    CERN Document Server

    Lenk, Ron

    2011-01-01

    "This book covers all of the information needed to design LEDs into end-products. It is a practical guide, primarily explaning how things are done by practicing engineers. Equations are used only for practical calculations, and are kept to the level of high-school algebra. There are numerous drawings and schematics showing how things such as measurements are actually made, and showing curcuits that actually work. There are practical notes and examples embedded in the text that give pointers and how-to guides on many of the book's topics. After reading each chapter of the book, readers will have the knowledge to implement practical designs. This book will be kept as a reference tool for years to come"--

  19. Highly efficient InGaN-based light emitting devices grown on nanoscale patterned substrates by MOCVD

    Science.gov (United States)

    Lin, Chien-Chung; Chiu, Ching-Hsueh; Huang, H. W.; Chang, Shih-Pang; Kuo, Hao-Chung; Chang, Chun-Yen

    2011-12-01

    Highly efficient InGaN-base light emitting diodes are crucial for next generation solid state lighting. However, drawbacks in substrate materials such as lattice and thermal expansion coefficient mismatches hold back the lamination efficiency improvement. In the past, patterned sapphire sustrate (PSS) has been proven to be effect to enhance the LED's performance. In this work, we reviewed several promising nano-scale technologies which successfully increase the output of LED through better material quality and light extraction. First, we presented a study of high-performance blue emission GaN LEDs using GaN nanopillars (NPs). It exhibits smaller blue shift in electroluminescent peak wavelength and great enhancement of the light output (70% at 20 mA) compared with the conventional LEDs. Secondly, GaN based LEDs with nano-hole patterned sapphire (NHPSS) by nano-imprint lithography are fabricated structure grown on sapphire substrate. At an injection current of 20mA, the LED with NHPSS increased the light output power of LEDs by 1.33 times, and the wall-plug efficiency is 30% higher at 20mA indicating that it had larger light extraction efficiency (LEE). Finally, we fabricated the high performance electrical pumping GaN-based semipolar {10-11} nano-pyramid LEDs on c-plane sapphire substrate by selective area epitaxy (SAE). The emission wavelength only blue-shifted about 5nm as we increased the forward current from 40 to 200mA, and the quantum confine stark effect (QCSE) had been remarkably suppressed on semipolar surface at long emission wavelength region. These results manifest the promising role of novel nanotechnology in the future III-nitride light emitters.

  20. Microstructures of InN film on 4H-SiC (0001) substrate grown by RF-MBE

    Science.gov (United States)

    Jantawongrit, P.; Sanorpim, S.; Yaguchi, H.; Orihara, M.; Limsuwan, P.

    2015-08-01

    InN film was grown on 4H-SiC (0001) substrate by RF plasma-assisted molecular beam epitaxy (RF-MBE). Prior to the growth of InN film, an InN buffer layer with a thickness of ∼5.5 nm was grown on the substrate. Surface morphology, microstructure and structural quality of InN film were investigated. Micro-structural defects, such as stacking faults and anti-phase domain in InN film were carefully investigated using transmission electron microscopy (TEM). The results show that a high density of line contrasts, parallel to the growth direction (c-axis), was clearly observed in the grown InN film. Dark field TEM images recorded with diffraction vectors g=11\\bar{2}0 and g = 0002 revealed that such line contrasts evolved from a coalescence of the adjacent misoriented islands during the initial stage of the InN nucleation on the substrate surface. This InN nucleation also led to a generation of anti-phase domains. Project supported by the Thailand Center of Excellence in Physics (ThEP) and the King Mongkut's University of Technology Thonburi under The National Research University Project. One of the authors (S. Sanorpim) was supported by the National Research Council of Thailand (NRCT) and the Thai Government Stimulus Package 2 (TKK2555), under the Project for Establishment of Comprehensive Center for Innovative Food, Health Products and Agriculture.

  1. LEDs light up the world

    Energy Technology Data Exchange (ETDEWEB)

    Mather, N.

    2004-06-30

    A lighting system using light-emitting diodes, and privately financed by a Canadian engineering professor at the University of Calgary, has been set up in a village in Nepal in 2000. Since then, through the efforts of the 'Light Up The World' Foundation, established by Dr. Irvine-Halliday, projects have lit up thousands of homes in the Philippines, India, Afghanistan, the Galapagos Islands, Mexico, Sri Lanka, and Angola. Although the goal of the project is primarily to provide lighting for reading and writing for school-children, the project has been the source of many other advantages; creation of enterprise, increased employment, enhanced income, gender equality, and improvements in health and safety among them. Since LED lamps in most cases replace kerosene lamps, the system also has significant environmental benefits. The system as originally envisioned creates electricity by pedal-powered generator, or by solar panels connected to a battery, depending on what is available at each home. Each home is connected to the power supply and supplied with low-energy diode lamps. The lights are extremely efficient and many homes can be equipped with them using less energy than it takes to power a single 100-watt light bulb. 5 photos.

  2. Large-area, laterally-grown epitaxial semiconductor layers

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jung; Song, Jie; Chen, Danti

    2017-07-18

    Structures and methods for confined lateral-guided growth of a large-area semiconductor layer on an insulating layer are described. The semiconductor layer may be formed by heteroepitaxial growth from a selective growth area in a vertically-confined, lateral-growth guiding structure. Lateral-growth guiding structures may be formed in arrays over a region of a substrate, so as to cover a majority of the substrate region with laterally-grown epitaxial semiconductor tiles. Quality regions of low-defect, stress-free GaN may be grown on silicon.

  3. Molecular Beam Epitaxy-Grown InGaN Nanomushrooms and Nanowires for White Light Source Applications

    KAUST Repository

    Gasim, Anwar A.

    2012-01-01

    We report the observation of coexisting InGaN nanomushrooms and nanowires grown via MBE. Photoluminescence characterization shows that the nanostructures emit yellow and blue light, respectively. The combined emission is promising for white-LEDs.

  4. Peer-led and professional-led group interventions for people with co-occurring disorders: a qualitative study.

    Science.gov (United States)

    Pallaveshi, Luljeta; Balachandra, Krishna; Subramanian, Priya; Rudnick, Abraham

    2014-05-01

    This pilot study evaluated the experience of people with co-occurring disorders (mental illness and addiction) in relation to peer-led and professional-led group interventions. The study used a qualitative (phenomenological) approach to evaluate the experience of a convenience sample of 6 individuals with co-occurring disorders who participated in up to 8 sessions each of both peer-led and professional-led group interventions (with a similar rate of attendance in both groups). The semi-structured interview data were coded and thematically analyzed. We found 5 themes within and across the 2 interventions. In both groups, participants experienced a positive environment and personal growth, and learned, albeit different things. They were more comfortable in the peer-led group and acquired more knowledge and skills in the professional-led group. Offering both peer-led and professional-led group interventions to people with co-occurring disorders may be better than offering either alone.

  5. Fokusgruppeinterview som led i en evalueringsproces

    DEFF Research Database (Denmark)

    Andersen-Mølgaard, Hanna; Harrit, Ole

    2006-01-01

    Teoretiske begrundelser og perspektiver, responsiv-konstruktivistisk evaluering, fokusgruppeinterview som led i BIKVAmodellen, eksempler, vurdering og perspektivering......Teoretiske begrundelser og perspektiver, responsiv-konstruktivistisk evaluering, fokusgruppeinterview som led i BIKVAmodellen, eksempler, vurdering og perspektivering...

  6. Evaluation of LED vehicular and pedestrian modules.

    Science.gov (United States)

    2009-04-01

    This study was conducted to verify the compliance of vehicular and pedestrian LED traffic signal modules with the Institute : of Transportation Engineers specifications; and to assess drivers preferences of the LED modules. Four vehicular modules ...

  7. Goniometric characterization of LED based greenhouse lighting

    DEFF Research Database (Denmark)

    Thorseth, Anders; Lindén, Johannes; Corell, Dennis Dan

    2015-01-01

    This paper describes a demonstration of goniospectroradiometry for characterizations of new light emitting diode (LED) based luminaries for enhanced photosynthesis in greenhouses. It highlights the differences between measurement of the traditional high pressure sodium (HPS) luminaries and the LED...

  8. Goniometric characterization of LED based greenhouse lighting

    DEFF Research Database (Denmark)

    Thorseth, Anders; Lindén, Johannes; Corell, Dennis Dan

    2015-01-01

    This paper describes a demonstration of goniospectroradiometry for characterizations of new light emitting diode (LED) based luminaries for enhanced photosynthesis in greenhouses. It highlights the differences between measurement of the traditional high pressure sodium (HPS) luminaries and the LED...... based luminaries. The LED based luminaries are compared to traditional HPS luminaries; in terms of energy efficiency with regard to the photosynthetic photon flux, and the LED luminaries were found to be more effective than the HPS luminaries...

  9. The design, fabrication, and characterization of silicon-germanium optoelectronic devices grown by molecular beam epitaxy

    Science.gov (United States)

    Sustersic, Nathan Anthony

    In recent years, Ge and SiGe devices have been actively investigated for potential optoelectronic applications such as germanium solar cells for long wavelength absorption, quantum-dot intermediate band solar cells (IBSCs), quantum-dot infrared photodetectors (QDIPs) and germanium light-emitting diodes (LEDs). Current research into SiGe based optoelectronic devices is heavily based on nanostructures which employ quantum confinement and is at a stage where basic properties are being studied in order to optimize growth conditions necessary for incorporation into future devices. Ge and SiGe based devices are especially attractive due to ease of monolithic integration with current Si-based CMOS processing technology, longer carrier lifetime, and reduced phonon scattering. Defect formation and transformation was studied in SiGe layers grown on Si and Ge (100) substrates. The epitaxial layers were grown with molecular beam epitaxy (MBE) and characterized by X-ray measurements in order to study the accommodation of elastic strain energy in the layers. The accommodation of elastic strain energy specifies the amount of point defects created on the growth surface which may transform into extended crystalline defects in the volume of the layers. An understanding of crystalline defects in high lattice mismatched epitaxial structures is critical in order to optimize growth procedures so that epitaxial structures can be optimized for specific devices such as Ge based solar cells. Considering the optimization of epitaxial layers based on the structural transformation of point defects, Ge solar cells were fabricated and investigated using current-voltage measurements and quantum efficiency data. These Ge solar cells, optimized for long wavelength absorption, were fabricated to be employed in a bonded Ge/Si solar cell device. The doping of self-assembled Ge quantum dot structures grown on Si (100) was investigated using atomic force microscopy (AFM) and photoluminescence (PL

  10. LED belichting tijdens het voortrekken van lelie

    NARCIS (Netherlands)

    Kok, B.J.; Wildschut, J.

    2010-01-01

    De laatste jaren staat het gebruik van LED-lampen in de tuinbouw in de belangstelling. Uit vele onderzoeken is al gebleken dat LED-lampen op dit moment nog geen alternatief zijn voor de SON-T lampen. Het grote voordeel van LED-lampen is dat ze monochromatisch licht van alle mogelijke golflengtes

  11. ‘No Blue’ White LED

    DEFF Research Database (Denmark)

    Ou, Haiyan; Corell, Dennis Dan; Dam-Hansen, Carsten

    2010-01-01

    This paper explored the feasibility of making a white LED light source by color mixing method without using the blue color. This ‘no blue’ white LED has potential applications in photolithography room illumination, medical treatment and biophotonics research. A no-blue LED was designed, and the p...

  12. Structural, magnetic and electronic properties of pulsed-laser-deposition grown SrFeO3‑δ thin films and SrFeO3‑δ /La2/3Ca1/3MnO3 multilayers

    Science.gov (United States)

    Perret, E.; Sen, K.; Khmaladze, J.; Mallett, B. P. P.; Yazdi-Rizi, M.; Marsik, P.; Das, S.; Marozau, I.; Uribe-Laverde, M. A.; de Andrés Prada, R.; Strempfer, J.; Döbeli, M.; Biškup, N.; Varela, M.; Mathis, Y.-L.; Bernhard, C.

    2017-12-01

    We studied the structural, magnetic and electronic properties of SrFeO3-δ (SFO) thin films and SrFeO3-δ /La2/3 Ca1/3 MnO3 (LCMO) superlattices that have been grown with pulsed laser deposition (PLD) on La0.3 Sr0.7 Al0.65 Ta0.35 O3 (LSAT) substrates. X-ray reflectometry and scanning transmission electron microscopy (STEM) confirm the high structural quality of the films and flat and atomically sharp interfaces of the superlattices. The STEM data also reveal a difference in the interfacial layer stacking with a SrO layer at the LCMO/SFO and a LaO layer at the SFO/LCMO interfaces along the PLD growth direction. The x-ray diffraction (XRD) data suggest that the as grown SFO films and SFO/LCMO superlattices have an oxygen-deficient SrFeO3-δ structure with I4/ mmm space group symmetry (δ≤slant 0.2 ). Subsequent ozone annealed SFO films are consistent with an almost oxygen stoichiometric structure (δ ≈ 0 ). The electronic and magnetic properties of these SFO films are similar to the ones of corresponding single crystals. In particular, the as grown SrFeO3-δ films are insulating whereas the ozone annealed films are metallic. The magneto-resistance effects of the as grown SFO films have a similar magnitude as in the single crystals, but extend over a much wider temperature range. Last but not least, for the SFO/LCMO superlattices we observe a rather large exchange bias effect that varies as a function of the cooling field.

  13. A comprehensive study of ferromagnetic resonance and structural properties of iron-rich nickel ferrite (Ni{sub x}Fe{sub 3−x}O{sub 4}, x≤1) films grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pachauri, Neha; Khodadadi, Behrouz [Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, Alabama 35487 (United States); Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, Alabama 35487 (United States); Singh, Amit V. [Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, Alabama 35487 (United States); Mohammadi, Jamileh Beik [Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, Alabama 35487 (United States); Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, Alabama 35487 (United States); Martens, Richard L. [Central Analytical Facility (CAF), The University of Alabama, Tuscaloosa, Alabama 35487 (United States); LeClair, Patrick R.; Mewes, Claudia; Mewes, Tim [Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, Alabama 35487 (United States); Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, Alabama 35487 (United States); Gupta, Arunava [Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, Alabama 35487 (United States)

    2016-11-01

    We report a detailed study of the structural and ferromagnetic resonance properties of spinel nickel ferrite (NFO) films, grown on (100)-oriented cubic MgAl{sub 2}O{sub 4} substrates by direct liquid injection chemical vapor deposition (DLI-CVD) technique. Three different compositions of NFO films (Ni{sub x}Fe{sub 3−x}O{sub 4} where x=1, 0.8, 0.6) deposited at optimized growth temperature of 600 °C are characterized using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Vibrating Sample Magnetometry (VSM), and broadband ferromagnetic resonance (FMR) techniques. XRD confirms the growth of epitaxial, single crystalline Ni{sub x}Fe{sub 3−x}O{sub 4} films. The out-of-plane lattice constant (c) obtained for Ni{sub 0.8}Fe{sub 2.2}O{sub 4} film is slightly higher than the bulk value (0.833 nm), indicating only partial strain relaxation whereas for the other two compositions (x=1 and x=0.6) films exhibit complete relaxation. The in-plane and out-of-plane FMR linewidths measurements at 10 GHz give the lowest values of 458 Oe and 98 Oe, respectively, for Ni{sub 0.8}Fe{sub 2.2}O{sub 4} film as compared to the other two compositions. A comprehensive frequency (5–40 GHz) and temperature (10–300 K) dependent FMR study of the Ni{sub 0.8}Fe{sub 2.2}O{sub 4} sample for both in-lane and out-of-plane configurations reveals two magnon scattering (TMS) as the dominant in-plane relaxation mechanism. It is observed that the TMS contribution to the FMR linewidth scales with the saturation magnetization M{sub s}. In-plane angle-dependent FMR measurements performed on the same sample show that the ferromagnetic resonance field (H{sub res}) and the FMR linewidth (ΔH) have a four-fold symmetry that is consistent with the crystal symmetry of the spinel. SEM measurements show formation of pyramid-like microstructures at the surface of the Ni{sub 0.8}Fe{sub 2.2}O{sub 4} sample, which can explain the observed four-fold symmetry of the FMR linewidth.

  14. Structure and superconductivity of (Li1-x Fe x )OHFeSe single crystals grown using A x Fe2-y Se2 (A  =  K, Rb, and Cs) as precursors.

    Science.gov (United States)

    Yu, G; Zhang, G Y; Ryu, G H; Lin, C T

    2016-01-13

    We present results on the hydrothermal growth of ([Formula: see text])OHFeSe single crystals using floating-zone-grown [Formula: see text] (A  =  K, Rb, and Cs) as precursors. The growth proceeds by the hydrothermal ion exchange of Li/Fe-O-H for K, Rb, and Cs, resulting in a stacking layer of ([Formula: see text])OH sandwiched between the FeSe layers. Optimal growth parameters are achieved using high quality A 0.80Fe1.81Se2 single crystals added to the mixtures of LiOH, H2O, Fe and C(NH2)2Se in an autoclave and subsequently heated to 120 °C for 2 d, to obtain highest quality single crystals. The obtained crystals have lateral dimensions up to centimeters, with the final size related to that of the precursor crystal used. All ([Formula: see text])OHFeSe single crystals show a superconducting transition temperature T c  >  42 K, regardless of the phase of the precursor such as superconducting K0.80Fe1.81Se2 (T c  =  29.31 K) or non-superconducting Rb0.80Fe1.81Se2 or poor-superconducting Cs0.80Fe1.81Se2 (T c  =  28.67 K). The T c and transition width ΔT vary in the obtained single crystals, due to the inhomogeneity of the ionic exchange. X-ray diffraction analysis demonstrates that the 245 insulating phase is absent in the ion-exchanged single crystals, while it is observed in the [Formula: see text] precursors. Comparative studies of the structure, magnetization, and superconductivity on the parent A 0.80Fe1.81Se2 and the ion-exchanged ([Formula: see text])OHFeSe crystals are discussed. A phase diagram including antiferromagnetic spin density wave and superconducting phases is also proposed.

  15. Plant growth with Led lighting systems

    International Nuclear Information System (INIS)

    Campiotti, C.A.; Bernardini, A.; Di Carlo, F.; Scoccianti, M.; Alonzo, G.; Carlino, M.; Dondi, F.; Bibbiani, C.

    2009-01-01

    Leds lighting is highly relevant for the horticultural industry. Compared to other light sources used for plant production, leds have several properties which are potentially useful in relation to horticulture. However, although LEDs technology has raised strong interest in research for extraterrestrial agriculture, current LEDs panel costs are still too high for commercial adoption in greenhouse sector, and their electrical efficacies do not compete with those of high-pressure sodium lamps, but several manufactures are working to address these issues. When LEDs become practical, their ability to based light sources specifically suitable for photosynthesis and other horticulturally relevant plant properties (i.e. low radiated heat; lighting from within the canopy) will render the narrow band spectrum of LEDs of particular interest for providing light to greenhouse horticulture. A general description of LEDs application and their technical characteristics is briefly reported. [it

  16. Abbreviated epitaxial growth mode (AGM) method for reducing cost and improving quality of LEDs and lasers

    Science.gov (United States)

    Tansu, Nelson; Chan, Helen M; Vinci, Richard P; Ee, Yik-Khoon; Biser, Jeffrey

    2013-09-24

    The use of an abbreviated GaN growth mode on nano-patterned AGOG sapphire substrates, which utilizes a process of using 15 nm low temperature GaN buffer and bypassing etch-back and recovery processes during epitaxy, enables the growth of high-quality GaN template on nano-patterned AGOG sapphire. The GaN template grown on nano-patterned AGOG sapphire by employing abbreviated growth mode has two orders of magnitude lower threading dislocation density than that of conventional GaN template grown on planar sapphire. The use of abbreviated growth mode also leads to significant reduction in cost of the epitaxy. The growths and characteristics of InGaN quantum wells (QWs) light emitting diodes (LEDs) on both templates were compared. The InGaN QWs LEDs grown on the nano-patterned AGOG sapphire demonstrated at least a 24% enhancement of output power enhancement over that of LEDs grown on conventional GaN templates.

  17. Generation of solar spectrum by using LEDs

    Science.gov (United States)

    Lu, Pengzhi; Yang, Hua; Pei, Yanrong; Li, Jing; Xue, Bin; Wang, Junxi; Li, Jinmin

    2016-09-01

    Light emitting diode (LED) has been recognized as an applicable light source for indoor and outdoor lighting, city beautifying, landscape facilities, and municipal engineering etc. Conventional LED has superior characteristics such as long life time, low power consumption, high contrast, and wide viewing angle. Recently, LED with high color-rendering index and special spectral characteristics has received more and more attention. This paper is intended to report a solar spectrum simulated by multichip LED light source. The typical solar spectrum of 5500k released by CIE was simulated as a reference. Four types of LEDs with different spectral power distributions would be used in the LED light source, which included a 430nm LED, a 480nm LED, a 500nm LED and a white LED. In order to obtain better simulation results, the white LED was achieved by a 450nm LED chip with the mixture of phosphor. The phosphor combination was prepared by mixing green phosphor, yellow phosphor and red phosphor in a certain proportion. The multichip LED light source could provide a high fidelity spectral match with the typical solar spectrum of 5500k by adjusting injection current to each device. The luminous flux, CIE chromaticity coordinate x, y, CCT, and Ra were 104.7 lm, 0.3337, 0.3681, 5460K, and 88.6, respectively. Because of high color-rendering index and highly match to the solar spectrum, the multichip LED light source is a competitive candidate for applications where special spectral is required, such as colorimetric measurements, visual inspection, gemstone identification and agriculture.

  18. LED lamp incorporating remote phosphor with heat dissipation features

    Science.gov (United States)

    Tong, Tao; Letoquin, Ronan; Keller, Bernd; Tarsa, Eric

    2016-11-22

    An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and a remote planar phosphor carrier having at least one conversion material. The phosphor carrier can be remote to the light sources and mounted to the heat sink so that heat from the phosphor carrier spreads into the heat sink. The phosphor carrier can comprise a thermally conductive transparent material and a phosphor layer, with an LED based light source mounted to the heat sink such that light from the light source passes through the phosphor carrier. At least some of the LED light is converted by the phosphor carrier, with some lamp embodiments emitting a white light combination of LED and phosphor light. The phosphor arranged according to the present invention can operate at lower temperature to thereby operate at greater phosphor conversion efficiency and with reduced heat related damage to the phosphor.

  19. Integrated parabolic nanolenses on MicroLED color pixels

    Science.gov (United States)

    Demory, Brandon; Chung, Kunook; Katcher, Adam; Sui, Jingyang; Deng, Hui; Ku, Pei-Cheng

    2018-04-01

    A parabolic nanolens array coupled to the emission of a nanopillar micro-light emitting diode (LED) color pixel is shown to reduce the far field divergence. For a blue wavelength LED, the total emission is 95% collimated within a 0.5 numerical aperture zone, a 3.5x improvement over the same LED without a lens structure. This corresponds to a half-width at half-maximum (HWHM) line width reduction of 2.85 times. Using a resist reflow and etchback procedure, the nanolens array dimensions and parabolic shape are formed. Experimental measurement of the far field emission shows a HWHM linewidth reduction by a factor of 2x, reducing the divergence over the original LED.

  20. Controlling the shell microstructure in a low-temperature-grown SiNWs and correlating it to the performance of the SiNWs-based micro-supercapacitor

    Directory of Open Access Journals (Sweden)

    Ankur Soam

    2016-05-01

    Full Text Available Abstract We report here the effect of a controlled modification of the shell microstructure around the crystalline core of a silicon nanowire (SiNW grown at a low (320 °C temperature by the hot wire chemical vapor processing (HWCVP method. We demonstrate these effects through the evaluation of the performance of a micro-supercapacitor (µ-SC device fabricated with these SiNWs having different shell structures. It is to be emphasized that the shell microstructure could be modified through a controlled interplay of the process parameters during the growth. A careful optimization of the shell microstructure in these nanowires during its low-temperature deposition has led to a µ-SC with capacitance value of 94 µF/cm2. This result opens up exciting opportunities for HWCVP-grown SiNWs to be employed for on-chip µ-SC and other low-temperature applications.

  1. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing

    Energy Technology Data Exchange (ETDEWEB)

    Tuenge, Jason R.; Hollomon, Brad; Dillon, Heather E.; Snowden-Swan, Lesley J.

    2013-03-01

    This report covers the third part of a larger U.S. Department of Energy (DOE) project to assess the life-cycle environmental and resource impacts in the manufacturing, transport, use, and disposal of light-emitting diode (LED) lighting products in relation to incumbent lighting technologies. All three reports are available on the DOE website (www.ssl.energy.gov/tech_reports.html). • Part 1: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent and LED Lamps; • Part 2: LED Manufacturing and Performance; • Part 3: LED Environmental Testing. Parts 1 and 2 were published in February and June 2012, respectively. The Part 1 report included a summary of the life-cycle assessment (LCA) process and methodology, provided a literature review of more than 25 existing LCA studies of various lamp types, and performed a meta-analysis comparing LED lamps with incandescent and compact fluorescent lamps (CFLs). Drawing from the Part 1 findings, Part 2 performed a more detailed assessment of the LED manufacturing process and used these findings to provide a comparative LCA taking into consideration a wider range of environmental impacts. Both reports concluded that the life-cycle environmental impact of a given lamp is dominated by the energy used during lamp operation—the upstream generation of electricity drives the total environmental footprint of the product. However, a more detailed understanding of end-of-life disposal considerations for LED products has become increasingly important as their installation base has grown. The Part 3 study (reported herein) was undertaken to augment the LCA findings with chemical analysis of a variety of LED, CFL, and incandescent lamps using standard testing procedures. A total of 22 samples, representing 11 different models, were tested to determine whether any of 17 elements were present at levels exceeding California or Federal regulatory thresholds for hazardous waste. Key findings include: • The selected

  2. Importance of 'blue' photon levels for lettuce seedlings grown under red-light-emitting diodes

    Science.gov (United States)

    Hoenecke, M. E.; Bula, R. J.; Tibbitts, T. W.

    1992-01-01

    Light-emitting diodes (LEDs) with high-intensity output are being studied as a photosynthetic light source for plants. High-output LEDs have peak emission at approximately 660 nm concentrated in a waveband of +/- 30 nm. Lettuce (Lactuca sativa Grand Rapids') seedlings developed extended hypocotyls and elongated cotyledons when grown under these LEDs as a sole source of irradiance. This extension and elongation was prevented when the red LED radiation was supplemented with more than 15 micromoles m-2 s-1 of 400- to 500-nm photons from blue fluorescent lamps. Blue radiation effects were independent of the photon level of the red radiation.

  3. Testing Finance-Led, Export-Led and Import-Led Growth Hypotheses on Four Sub-Saharan African Economies

    OpenAIRE

    Evans, Olaniyi

    2013-01-01

    This study carries out an empirical examination of the finance-led, export-led and import-led growth hypothesis for four of the largest Sub-Saharan African economies namely South Africa, Nigeria, Ghana and Kenya. Within a multivariate Vector-Auto Regressive (VAR) framework, the concept of Granger causality is employed to determine the direction of causation between exports and output, duly taking into account the stationarity properties of the time series data. With further substantiation fro...

  4. Anisotropic Friction of Wrinkled Graphene Grown by Chemical Vapor Deposition.

    Science.gov (United States)

    Long, Fei; Yasaei, Poya; Yao, Wentao; Salehi-Khojin, Amin; Shahbazian-Yassar, Reza

    2017-06-21

    Wrinkle structures are commonly seen on graphene grown by the chemical vapor deposition (CVD) method due to the different thermal expansion coefficient between graphene and its substrate. Despite the intensive investigations focusing on the electrical properties, the nanotribological properties of wrinkles and the influence of wrinkle structures on the wrinkle-free graphene remain less understood. Here, we report the observation of anisotropic nanoscale frictional characteristics depending on the orientation of wrinkles in CVD-grown graphene. Using friction force microscopy, we found that the coefficient of friction perpendicular to the wrinkle direction was ∼194% compare to that of the parallel direction. Our systematic investigation shows that the ripples and "puckering" mechanism, which dominates the friction of exfoliated graphene, plays even a more significant role in the friction of wrinkled graphene grown by CVD. The anisotropic friction of wrinkled graphene suggests a new way to tune the graphene friction property by nano/microstructure engineering such as introducing wrinkles.

  5. LEDs for general and horticultural lighting

    OpenAIRE

    Girón González, Emilio

    2012-01-01

    The work begins with an introductory part about Light Emitting Diode (or LEDs) and how these devices work. This report also shows an overview of different artificial light sources such as incandescent lamps, fluorescents tube and high-intensity discharge (HID) lamps. The LED lighting is more energy-efficient than other artificial lighting, since they require less energy to operate. The following part of the work reports LEDs for General Lighting that describes some basic concepts such as spec...

  6. System Reliability for LED-Based Products

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J Lynn; Mills, Karmann; Lamvik, Michael; Yaga, Robert; Shepherd, Sarah D; Bittle, James; Baldasaro, Nick; Solano, Eric; Bobashev, Georgiy; Johnson, Cortina; Evans, Amy

    2014-04-07

    Results from accelerated life tests (ALT) on mass-produced commercially available 6” downlights are reported along with results from commercial LEDs. The luminaires capture many of the design features found in modern luminaires. In general, a systems perspective is required to understand the reliability of these devices since LED failure is rare. In contrast, components such as drivers, lenses, and reflector are more likely to impact luminaire reliability than LEDs.

  7. Structural and thermal characterization of La5Ca9Cu24O41 thin films grown by pulsed laser deposition on (1 1 0) SrTiO3 substrates

    International Nuclear Information System (INIS)

    Svoukis, E.; Athanasopoulos, G.I.; Altantzis, Th.; Lioutas, Ch.; Martin, R.S.; Revcolevschi, A.; Giapintzakis, J.

    2012-01-01

    In the present study stoichiometric, b-axis oriented La 5 Ca 9 Cu 24 O 41 thin films were grown by pulsed laser deposition on (1 1 0) SrTiO 3 substrates in the temperature range 600–750 °C. High resolution transmission electron microscopy was employed to investigate the growth mechanism and the epitaxial relationship between the SrTiO 3 substrates and the La 5 Ca 9 Cu 24 O 41 films grown at 700 °C. The 3-ω method was used to measure the cross-plane thermal conductivity of La 5 Ca 9 Cu 24 O 41 films in the temperature range 50–350 K. The observed glass-like behavior is attributed to atomic-scale defects, grain boundaries and an interfacial layer formed between film and substrate.

  8. Air-void embedded GaN-based light-emitting diodes grown on laser drilling patterned sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao; Li, Yufeng; Wang, Shuai; Feng, Lungang; Xiong, Han; Yun, Feng, E-mail: fyun2010@mail.xjtu.edu.cn [Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics and Information Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Solid-State Lighting Engineering Research Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Su, Xilin [Shaanxi Supernova Lighting Technology Co., Ltd., Xi’an, Shaanxi 710075 (China)

    2016-07-15

    Air-void structure was introduced in GaN-based blue light-emitting diodes (LED) with one-step growth on periodic laser drilling patterned sapphire substrate, which free of any photolithography or wet/dry etching process. The influence of filling factors (FF) of air-void on crystal quality and optical performance were investigate. Transmission electron microscopy images and micro-Raman spectroscopy indicated that the dislocation was bended and the partially compressed strain was released. When FF was 55.43%, compared with the LED structure grown on flat sapphire substrate, the incorporation of air-void was observed to reduce the compressed stress of ∼20% and the luminance intensity has improved by 128%. Together with the simulated reflection intensity enhancement by finite difference time-domain (FDTD) method, we attribute the enhanced optical performance to the combined contribution of strong back-side light reflection of air-void and better GaN epitaxial quality. This approach provides a simple replacement to the conventional air-void embedded LED process.

  9. Solid State Lighting LED Manufacturing Roundtable Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-03-31

    Summary of a meeting of LED experts to develop proposed priority tasks for the Manufacturing R&D initiative, including task descriptions, discussion points, recommendations, and presentation highlights.

  10. Effects of AlN buffer layers on the structural and the optical properties of GaN epilayers grown on Al2O3 substrates by using plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Jeon, Heechang; Lee, Seungjoo; Kumar, Sunil; Kang, Taewon; Lee, Namhyun; Kim, Taewhan

    2014-01-01

    GaN epilayers on AlN buffer layers with various thicknesses were grown on sapphire substrates by using plasma-assisted molecular-beam epitaxy. The GaN epilayer with an AlN buffer layer was much smaller than the GaN epilayer without an AlN buffer layer. The crystal quality of the GaN active layer was improved by utilizing an AlN layer, which acted as a nucleation layer. The reduced defect density promoted GaN coalition. The double-crystal rocking curves and the photoluminescence spectra showed that the GaN epilayer grown on a 4-nm AlN buffer layer had the best quality among the several kinds of samples. The photoluminescence intensity of the GaN epilayer which is related to the density of the crystal defects was lower when an AlN buffer layer was used the thin AlN nucleation layer protected against stain propagation. These results indicate that GaN epilayers grown on AIN buffer layers hold promise for applications in short-wavelength optoelectronic devices.

  11. Confocal Raman studies in determining crystalline nature of PECVD grown Si nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Nafis; Bhargav, P. Balaji; Ramasamy, P. [SSN Research Centre, Kalavakkam-603110, Tamilnadu (India); Department of Physics, SSN College of Engineering, Kalavakkam-603110, Tamilnadu (India); Sivadasan, A. K.; Tyagi, A. K.; Dhara, S., E-mail: dhara@igcar.gov.in [Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Amirthapandian, S.; Panigrahi, B. K. [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Bhattacharya, S. [SSN Research Centre, Kalavakkam-603110, Tamilnadu (India)

    2015-06-24

    Silicon nanowires of diameter ∼200 nm and length of 2-4 µm are grown in the plasma enhanced chemical vapour deposition technique using nanoclustered Au catalyst assisted vapour-liquid-solid process. The crystallinity in the as-grown and annealed samples is studied using confocal Raman spectroscopic studies. Amorphous phase is formed in the as-grown samples. Structural studies using high resolution transmission electron microscopy confirm the polycrystalline nature in the annealed sample.

  12. Positron Spectroscopy of Hydrothermally Grown Actinide Oxides

    Science.gov (United States)

    2014-03-27

    POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES THESIS Edward C. Schneider...United States Government. AFIT-ENP-14-M-33 POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES THESIS...33 POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES Edward C. Schneider, BS Captain, USAF Approved

  13. LEDs: revolution or evolution? Part One

    Energy Technology Data Exchange (ETDEWEB)

    Roush, M.

    2000-11-01

    The historical evolution, the current state of light emitting diodes (LEDs), future implications and the promise of this technology for the lighting industry are explored. Some of the misconceptions relative to that promise are dispelled and some of the less obvious benefits that this technology could deliver in the future are discussed. As far as misconceptions are concerned, it is not true that LEDs will deliver light forever at a fraction of the energy of conventional light sources, or that they come in an infinite variety of colours and cost just pennies. Although LEDs per se may last a long time, the fact is that their true life expectancy is only as long as the wiring and the connection within the system, and they are certainly limited. Energy efficiency is another misconception. The truth is that white LEDs (the best for illumination purposes) are limited to less than 10 lumen per Watt, which is hardly a revolutionary improvement over incandescent light sources. Equally disappointing is the misconception concerning price. In actual fact, LEDs in lighting applications are very new and it would require mass production in the millions before LED lighting packages could become inexpensive. At the same time, LEDs have many advantages that are not commonly known. Compactness, very high level of light utilization, high life expectancy and nearly flat mortality curve are some of these. Operating on direct current lends LED installations to battery and solar applications (as for example solar LED road studs to aid in night driving). The absence of ultraviolet emissions in LEDs is another lesser known, but important feature, especially in applications where material degradation is a major concern (as in stores and museums). In general, all indicators point to a bright future for LEDs as their application progresses from decoration to illumination. This topic will be further explored in Part Two of this article. 4 figs.

  14. Microscopic characterisation of suspended graphene grown by chemical vapour deposition

    NARCIS (Netherlands)

    Bignardi, L.; Dorp, W.F. van; Gottardi, S.; Ivashenko, O.; Dudin, P.; Barinov, A.; de Hosson, J.T.M.; Stöhr, M.; Rudolf, P.

    2013-01-01

    We present a multi-technique characterisation of graphene grown by chemical vapour deposition (CVD) and thereafter transferred to and suspended on a grid for transmission electron microscopy (TEM). The properties of the electronic band structure are investigated by angle-resolved photoelectron

  15. Seed-to-seed growth of superdwarf wheat and arabidopsis using red light-emitting diodes (LED's): A report on baseline tests conducted for NASA's proposed Plant Research Unit (PRU)

    Science.gov (United States)

    Goins, G. D.; Yorio, N. C.; Sanwo, M. M.; Brown, C. S.

    1996-01-01

    To determine the influence of narrow-spectrum red light-emitting diodes (LED's) on plant growth and seed production, wheat (Triticum aestivum L.cv Superdwarf) and Arabidopsis (Arabidopsis thaliana (L.) Heynh, race Columbia) plants were grown under red LED's (peak emission 660 nm) and compared to plants grown under daylight fluorescent (white) light and red LED's supplemented with either 1 percent or 10 percent blue fluorescent (BF) light. Wheat growth under red LED's alone appeared normal, whereas Arabidopsis under red LED's alone developed curled leaf margins and a spiraling growth pattern. Both wheat and Arabidopsis under red LED's alone or red LED's + 1 percent BF light had significantly lower seed yield than plants grown under white light. However, the addition of 10 percent BF light to red LED's partially alleviated the adverse effect of red LED's on yield. Irrespective of the light treatment, viable seeds were produced by wheat(75-92 percent germination rate) and Arabidopsis (85-100 percent germination rate). These results indicate that wheat, and to a lesser extent Arabidopsis, can be successfully grown under red LED's alone, but supplemental blue light is required with red LED's to sufficiently match the growth characteristics and seed yield associated with plants grown under white light.

  16. On the switching speed of SOI LEDs

    NARCIS (Netherlands)

    Schmitz, Jurriaan; de Vries, R.; Salm, Cora; Hoang, T.; Hueting, Raymond Josephus Engelbart; Holleman, J.

    2008-01-01

    Recently, we presented a novel design for a silicon LED in SmartCUT™ SOI wafers. It exhibits a record quantum efficiency for SOI-based silicon LEDs and opens the way to the integration of light emitters in a VLSI process on SOI. In this paper, we present first experimental and modeling results

  17. Led-licht biedt mogelijkheden in broeierij

    NARCIS (Netherlands)

    Neefjes, H.; PPO Bomen-bollen,

    2010-01-01

    Onderzoekers van PPO Lisse hebben de mogelijkheden van led-licht verkend bij met name lelie en tulp. Bij lelie bieden leds perspectief in de voortrek. Tulp kan er bijna de hele broeifase van profiteren. Veel licht is niet nodig, maar meerlagenteelt is een voorwaarde.

  18. Reduced Component Count RGB LED Driver

    NARCIS (Netherlands)

    De Pedro, I.; Ackermann, B.

    2008-01-01

    The goal of this master thesis is to develop new drive and contrololutions, for creating white light from mixing the light of different-color LEDs, aiming at a reduced component count resulting in less space required by the electronics and lower cost. It evaluates the LED driver concept proposed in

  19. Led Zeppelin reklaamib Narvat / Anti Ronk

    Index Scriptorium Estoniae

    Ronk, Anti

    2007-01-01

    Ilmus Narva-teemaline kahest CD-st koosnev album, kus ühel plaadil on 60 minutit videot linna vaatamisväärsuste ja informatsiooniga, teisel - briti rockansambli Led Zeppelini teosed Narva sümfooniaorkestri ja rockansambli Led R esituses

  20. Advances in LEDs for automotive applications

    Science.gov (United States)

    Bhardwaj, Jy; Peddada, Rao; Spinger, Benno

    2016-03-01

    High power LEDs were introduced in automotive headlights in 2006-2007, for example as full LED headlights in the Audi R8 or low beam in Lexus. Since then, LED headlighting has become established in premium and volume automotive segments and beginning to enable new compact form factors such as distributed low beam and new functions such as adaptive driving beam. New generations of highly versatile high power LEDs are emerging to meet these application needs. In this paper, we will detail ongoing advances in LED technology that enable revolutionary styling, performance and adaptive control in automotive headlights. As the standards which govern the necessary lumens on the road are well established, increasing luminance enables not only more design freedom but also headlight cost reduction with space and weight saving through more compact optics. Adaptive headlighting is based on LED pixelation and requires high contrast, high luminance, smaller LEDs with high-packing density for pixelated Matrix Lighting sources. Matrix applications require an extremely tight tolerance on not only the X, Y placement accuracy, but also on the Z height of the LEDs given the precision optics used to image the LEDs onto the road. A new generation of chip scale packaged (CSP) LEDs based on Wafer Level Packaging (WLP) have been developed to meet these needs, offering a form factor less than 20% increase over the LED emitter surface footprint. These miniature LEDs are surface mount devices compatible with automated tools for L2 board direct attach (without the need for an interposer or L1 substrate), meeting the high position accuracy as well as the optical and thermal performance. To illustrate the versatility of the CSP LEDs, we will show the results of, firstly, a reflector-based distributed low beam using multiple individual cavities each with only 20mm height and secondly 3x4 to 3x28 Matrix arrays for adaptive full beam. Also a few key trends in rear lighting and impact on LED light

  1. High Performance Green LEDs by Homoepitaxial

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, Christian; Schubert, E Fred

    2009-11-22

    This work's objective was the development of processes to double or triple the light output power from green and deep green (525 - 555 nm) AlGaInN light emitting diode (LED) dies within 3 years in reference to the Lumileds Luxeon II. The project paid particular effort to all aspects of the internal generation efficiency of light. LEDs in this spectral region show the highest potential for significant performance boosts and enable the realization of phosphor-free white LEDs comprised by red-green-blue LED modules. Such modules will perform at and outperform the efficacy target projections for white-light LED systems in the Department of Energy's accelerated roadmap of the SSL initiative.

  2. White LEDs with limit luminous efficacy

    Science.gov (United States)

    Lisitsyn, V. M.; Lukash, V. S.; Stepanov, S. A.; Yangyang, Ju

    2016-01-01

    In most promising widespread gallium nitride based LEDs emission is generated in the blue spectral region with a maximum at about 450 nm which is converted to visible light with the desired spectrum by means of phosphor. The thermal energy in the conversion is determined by the difference in the energies of excitation and emission quanta and the phosphor quantum yield. Heat losses manifest themselves as decrease in the luminous efficacy. LED heating significantly reduces its efficiency and life. In addition, while heating, the emission generation output and the efficiency of the emission conversion decrease. Therefore, the reduction of the energy losses caused by heating is crucial for LED development. In this paper, heat losses in phosphor-converted LEDs (hereinafter chips) during spectrum conversion are estimated. The limit values of the luminous efficacy for white LEDs are evaluated.

  3. White LEDs with limit luminous efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Lisitsyn, V. M.; Stepanov, S. A., E-mail: stepanovsa@tpu.ru; Yangyang, Ju [National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Lukash, V. S. [JSC Research Institute of Semiconductor Devices, 99a Krasnoarmeyskaja St., Tomsk, 634050 (Russian Federation)

    2016-01-15

    In most promising widespread gallium nitride based LEDs emission is generated in the blue spectral region with a maximum at about 450 nm which is converted to visible light with the desired spectrum by means of phosphor. The thermal energy in the conversion is determined by the difference in the energies of excitation and emission quanta and the phosphor quantum yield. Heat losses manifest themselves as decrease in the luminous efficacy. LED heating significantly reduces its efficiency and life. In addition, while heating, the emission generation output and the efficiency of the emission conversion decrease. Therefore, the reduction of the energy losses caused by heating is crucial for LED development. In this paper, heat losses in phosphor-converted LEDs (hereinafter chips) during spectrum conversion are estimated. The limit values of the luminous efficacy for white LEDs are evaluated.

  4. Harmonics Monitoring Survey on LED Lamps

    Directory of Open Access Journals (Sweden)

    Abdelrahman Ahmed Akila

    2017-03-01

    Full Text Available Light Emitting Diode (LED lamps are being increasingly used in many applications. These LED lamps operate using a driver, which is a switching device. Hence, LED lamps will be a source of harmonics in the power system. These harmonics if not well treated, may cause severe performance and operational problems. In this paper, harmonics (amplitude and phase angles generated by both LED lamps and conventional fluorescent lamps will be studied practically. Then they will be analyzed and evaluated. Compared to each other harmonics generated by both LED and conventional florescent lamps, self mitigation may occur based on the phase angle of these harmonics. All data will be measured using power analyzer and will be done on a sample of actual lamps.

  5. Spatial layout optimization design of multi-type LEDs lighting source based on photoelectrothermal coupling theory

    Science.gov (United States)

    Xue, Lingyun; Li, Guang; Chen, Qingguang; Rao, Huanle; Xu, Ping

    2018-03-01

    Multiple LED-based spectral synthesis technology has been widely used in the fields of solar simulator, color mixing, and artificial lighting of plant factory and so on. Generally, amounts of LEDs are spatially arranged with compact layout to obtain the high power density output. Mutual thermal spreading among LEDs will produce the coupled thermal effect which will additionally increase the junction temperature of LED. Affected by the Photoelectric thermal coupling effect of LED, the spectrum of LED will shift and luminous efficiency will decrease. Correspondingly, the spectral synthesis result will mismatch. Therefore, thermal management of LED spatial layout plays an important role for multi-LEDs light source system. In the paper, the thermal dissipation network topology model considering the mutual thermal spreading effect among the LEDs is proposed for multi-LEDs system with various types of power. The junction temperature increment cased by the thermal coupling has the great relation with the spatial arrangement. To minimize the thermal coupling effect, an optimized method of LED spatial layout for the specific light source structure is presented and analyzed. The results showed that layout of LED with high-power are arranged in the corner and low-power in the center. Finally, according to this method, it is convenient to determine the spatial layout of LEDs in a system having any kind of light source structure, and has the advantages of being universally applicable to facilitate adjustment.

  6. Structural study of ZnSe films grown on substrate with In{sub x}Ga{sub 1-x}As and Al{sub 1-x}Ga{sub x}As buffer layers: strain, relaxation and lattice parameter

    Energy Technology Data Exchange (ETDEWEB)

    Perez Ladron de Guevara, H.; Gaona-Couto, A.; Vidal, M.A. [Instituto de Investigacion En Comunicacion Optica (IICO), Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico)]. E-mail: mavidal@cactus.iico.uaslp.mx; Luyo Alvarado, J.; Melendez Lira, M.; Lopez-Lopez, M. [Departamento de Fisica, Centro de Investigacion y Estudios Avanzados del IPN, Mexico DF (Mexico)

    2002-06-21

    ZnSe layers of various thickness were grown on (001) GaAs substrates, using In{sub x}Ga{sub 1-x}As or Al{sub 1-x}Ga{sub x}As as buffer layers by molecular beam epitaxy and were studied by high-resolution x-ray diffraction. The principal structural characteristics of ZnSe layer and buffer layer were determined using several reflections, such as (004) and two pairs of coupled asymmetric reflections, namely (224), (-2-24) and (115) (-1-15). In order to evaluate their validity, the experimental data obtained from these reflections were handled by means of two known expressions found in the literature. We have found the relaxation process of ZnSe layers is well described by a geometrical model including the thermal strain and small strain due to work hardening. The relaxation process is faster for ZnSe grown on ternary buffer layers despite the fact that, some buffer layers are pseudomorphically grown to the substrate; therefore we conclude that not only the lattice mismatches have effect on the relaxation process but also the surface state of the buffer layer has an influence in this process. (author)

  7. Design of an Oximeter Based on LED-LED Configuration and FPGA Technology

    OpenAIRE

    Stojanovic, Radovan; Karadaglic, Dejan

    2013-01-01

    A fully digital photoplethysmographic (PPG) sensor and actuator has been developed. The sensing circuit uses one Light Emitting Diode (LED) for emitting light into human tissue and one LED for detecting the reflectance light from human tissue. A Field Programmable Gate Array (FPGA) is used to control the LEDs and determine the PPG and Blood Oxygen Saturation (SpO2). The configurations with two LEDs and four LEDs are developed for measuring PPG signal and Blood Oxygen Saturation (SpO2). N-LEDs...

  8. Promising oxonitridosilicate phosphor host Sr3Si2O4N2: synthesis, structure, and luminescence properties activated by Eu2+ and Ce3+/Li+ for pc-LEDs.

    Science.gov (United States)

    Wang, Xiao-Ming; Wang, Chun-Hai; Kuang, Xiao-Jun; Zou, Ru-Qiang; Wang, Ying-Xia; Jing, Xi-Ping

    2012-03-19

    A novel oxonitridosilicate phosphor host Sr(3)Si(2)O(4)N(2) was synthesized in N(2)/H(2) (6%) atmosphere by solid state reaction at high temperature using SrCO(3), SiO(2), and Si(3)N(4) as starting materials. The crystal structure was determined by a Rietveld analysis on powder X-ray and neutron diffraction data. Sr(3)Si(2)O(4)N(2) crystallizes in cubic symmetry with space group Pa ̅3, Z = 24, and cell parameter a = 15.6593(1) Å. The structure of Sr(3)Si(2)O(4)N(2) is constructed by isolated and highly corrugated 12 rings which are composed of 12 vertex-sharing [SiO(2)N(2)] tetrahedra with bridging N and terminal O to form three-dimensional tunnels to accommodate the Sr(2+) ions. The calculated band structure shows that Sr(3)Si(2)O(4)N(2) is an indirect semiconductor with a band gap ≈ 2.84 eV, which is close to the experimental value ≈ 2.71 eV from linear extrapolation of the diffuse reflection spectrum. Sr(3-x)Si(2)O(4)N(2):xEu(2+) shows a typical emission band peaking at ~600 nm under 460 nm excitation, which perfectly matches the emission of blue InGaN light-emitting diodes. For Ce(3+)/Li(+)-codoped Sr(3)Si(2)O(4)N(2), one excitation band is in the UV range (280-350 nm) and the other in the UV blue range (380-420 nm), which matches emission of near-UV light-emitting diodes. Emission of Sr(3-2x)Si(2)O(4)N(2):xCe(3+),xLi(+) shows a asymmetric broad band peaking at ~520 nm. The long-wavelength excitation and emission of Eu(2+) and Ce(3+)/Li(+)-doped Sr(3)Si(2)O(4)N(2) make them attractive for applications in phosphor-converted white light-emitting diodes. © 2012 American Chemical Society

  9. Germanium nanowires grown using different catalyst metals

    Energy Technology Data Exchange (ETDEWEB)

    Gouveia, R.C., E-mail: riama@ifsp.edu.br [Departamento de Física – NanO Lab, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235 – SP 310, São Carlos, CEP 13565-905 (Brazil); Área de Ciências, Instituto Federal de Educação Ciência e Tecnologia de São Paulo, Rua Américo Ambrósio, 269, Jd. Canaã, Sertãozinho, CEP 14169-263 (Brazil); Kamimura, H.; Munhoz, R.; Rodrigues, A.D. [Departamento de Física – NanO Lab, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235 – SP 310, São Carlos, CEP 13565-905 (Brazil); Leite, E.R. [Departamento de Química – LIEC, Universidade Federal de São Carlos, São Carlos, CEP 13565-905 (Brazil); Chiquito, A.J. [Departamento de Física – NanO Lab, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235 – SP 310, São Carlos, CEP 13565-905 (Brazil)

    2016-11-01

    Germanium nanowires have been synthesized by the well known vapor-liquid-solid growth mechanism using gold, silver, cooper, indium and nickel as catalyst metals. The influence of metal seeds on nanowires structural and electronic transport properties was also investigated. Electron microscopy images demonstrated that, despite differences in diameters, all nanowires obtained presented single crystalline structures. X-ray patterns showed that all nanowires were composed by germanium with a small amount of germanium oxide, and the catalyst metal was restricted at the nanowires' tips. Raman spectroscopy evidenced the long range order in the crystalline structure of each sample. Electrical measurements indicated that variable range hopping was the dominant mechanism in carrier transport for all devices, with similar hopping distance, regardless the material used as catalyst. Then, in spite of the differences in synthesis temperatures and nanowires diameters, the catalyst metals have not affected the composition and crystalline quality of the germanium nanowires nor the carrier transport in the germanium nanowire network devices. - Highlights: • Ge nanowires were grown by VLS method using Au, Ag, Cu, In and Ni as catalysts. • All nanowires presented high single crystalline quality and long range order. • Devices showed semiconducting behavior having VRH as dominant transport mechanism. • The metal catalyst did not influence structural properties or the transport mechanism.

  10. White LED with High Package Extraction Efficiency

    International Nuclear Information System (INIS)

    Yi Zheng; Stough, Matthew

    2008-01-01

    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W e using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat generated

  11. FREQUENCY CHARACTERISTICS OF MODERN LED PHOSPHOR MATERIALS

    Directory of Open Access Journals (Sweden)

    Maxim S. Fudin

    2014-11-01

    Full Text Available Frequency characteristics of modern LED phosphor materials have been considered for the purpose of assessing the prospects of phosphor-based LEDs in wireless communication data systems which use optical wavelengths. The measurements have been carried out on the dependence of the emission intensity of single LEDs and LED chip-on-board modules with phosphors based on yttrium-aluminum and lutetium-aluminum garnets (with or without addition of nitridebased phosphors as well as silicate-based phosphors, on the frequency of electric pulses exciting the emission. It was shown that from the point of view of data transmission rate, garnet-based phosphors (including systems with added nitride phosphors are more promising than silicate–based ones. Garnet-based materials can be used in optical communication data systems with bandwidth (without extra modulation applied up to 3 MHz with single–chip LEDs and up to 4.5 MHz with 9- chip LED chip-on-board modules. The results of the work indicate that a significant part of white LEDs used in general lighting systems can be even now used for data transfer, for example, in systems assisting positioning in closed spaces to facilitate people searching necessary rooms or objects

  12. High Power UV LED Industrial Curing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  13. Molecular Beam Epitaxy-Grown InGaN Nanowires and Nanomushrooms for Solid State Lighting

    KAUST Repository

    Gasim, Anwar A.

    2012-05-01

    InGaN is a promising semiconductor for solid state lighting thanks to its bandgap which spans the entire visible regime of the electromagnetic spectrum. InGaN is grown heteroepitaxially due to the absence of a native substrate; however, this results in a strained film and a high dislocation density—two effects that have been associated with efficiency droop, which is the disastrous drop in efficiency of a light-emitting diode (LED) as the input current increases. Heteroepitaxially grown nanowires have recently attracted great interest due to their property of eliminating the detrimental effects of the lattice mismatch and the corollary efficiency droop. In this study, InGaN nanowires were grown on a low-cost Si (111) substrate via molecular beam epitaxy. Unique nanostructures, taking the form of mushrooms, have been observed in localized regions on the samples. These nanomushrooms consist of a nanowire body with a wide cap on top. Photoluminescence characterization revealed that the nanowires emit violet-blue, whilst the nanomushrooms emit a broad yellow-orange-red luminescence. The simultaneous emission from the nanowires and nanomushrooms forms white light. Structural characterization of a single nanomushroom via transmission electron microscopy revealed a simultaneous increase in indium and decrease in gallium at the interface between the body and the cap. Furthermore, the cap itself was found to be indium-rich, confirming it as the source of the longer wavelength yellow-orange-red luminescence. It is believed that the nanomushroom cap formed as a consequence of the saturation of growth on the c-plane of the nanowire. It is proposed that the formation of an indium droplet on the tip of the nanowire saturated growth on the c-plane, forcing the indium and gallium adatoms to incorporate on the sidewall m-planes instead, but only at the nanowire tip. This resulted in the formation of a mushroom-like cap on the tip. How and why the indium droplets formed is not

  14. Kansas highway LED illumination manual : a guide for the use of LED lighting systems.

    Science.gov (United States)

    2015-12-01

    The research project was aimed to assist the Kansas Department of Transportation (KDOT) in the development of a Highway LED Illumination Manual for guiding the upcoming implementation of successful LED roadway lighting systems in Kansas to replace th...

  15. Kansas highway LED illumination manual : a guide for the use of LED lighting systems : [technical summary].

    Science.gov (United States)

    2015-12-01

    The research project was aimed to assist the Kansas Department of Transportation (KDOT) in the development of a Highway LED Illumination Manual for guiding the upcoming implementation of successful LED roadway lighting systems in Kansas to replace th...

  16. Synthesis, Crystal Structure, and Luminescence Properties of Tunable Red-Emitting Nitride Solid Solutions (Ca1-xSrx)16Si17N34:Eu2+for White LEDs.

    Science.gov (United States)

    Chen, Hang; Ding, Jianyan; Ding, Xin; Wang, Xicheng; Cao, Yaxin; Zhao, Zhengyan; Wang, Yuhua

    2017-09-18

    A series of nitride solid solutions (Ca 1-x Sr x ) 16 Si 17 N 34 :0.03Eu 2+ were successfully synthesized through the conventional solid-state method. The electronic crystal structure and photoluminescence characteristics were studied in detail. The excitation in the near-ultraviolet and blue regions of the samples shows a broad band in the 250-550 nm range, which can match well with the n-UV and blue lighting-emitting diode chips. Partial substitution of Ca 2+ by Sr 2+ results in a redshift emission, and the impacts of Sr content on the luminescence were researched in detail. Under 410 nm excitation, the phosphor exhibited tunable red emission from 616 to 653 nm by changing the concentration of Sr 2+ . Based on the crystal data, the emission can be fitted into three distinguished Gaussian components, which are attributed to the different Eu 2+ luminescence centers occupied in three disparate Ca 2+ (Sr 2+ ) lattice sites. The temperature quenching property of the phosphor was also investigated, and the good thermal stability of the phosphors was analyzed through the activation energy for thermal quenching. And the obtained CCT values from 2642 to 2817 K are suitable for a warm white light region. All the results indicated that the phosphors have possible application in the warm white light-emitting diodes.

  17. LED traffic signal management system : final report.

    Science.gov (United States)

    2016-06-01

    This research originated from the opportunity to develop a methodology to assess when LED (Light Emitting Diode) traffic signal modules begin to fail to meet the Institute of Transportation Engineers (ITE) performance specification for luminous inten...

  18. Significant growth in. LED use predicted.

    Science.gov (United States)

    Simpson, Mike

    2012-03-01

    Although LED lighting has its critics, a number of whom (see article 'LED--panacea or marketing hype', HEJ--February 2012) are concerned about what they claim are some manufacturers' 'exaggerated claims' about lighting efficiency and lamp lifetime, Philips Lighting believes that, such are the advances being made in this innovative lighting technology, that LED's overall share of the European lighting market will have risen from around 7% in 2008 to 25% by 2020 and that, a decade later, it will account for a remarkable 75% of lighting sales. In the UK, Philips' technical and design director for Lighting, Mike Simpson, told HEJ editor, Jonathan Baillie, healthcare estates and facilities managers are increasingly recognising the potential to save energy, reduce carbon emissions, and cut maintenance costs, using LED.

  19. Surface Emitting, High Efficiency Near-Vacuum Ultraviolet Light Source with Aluminum Nitride Nanowires Monolithically Grown on Silicon.

    Science.gov (United States)

    Zhao, S; Djavid, M; Mi, Z

    2015-10-14

    To date, it has remained challenging to realize electrically injected light sources in the vacuum ultraviolet wavelength range (∼200 nm or shorter), which are important for a broad range of applications, including sensing, surface treatment, and photochemical analysis. In this Letter, we have demonstrated such a light source with molecular beam epitaxially grown aluminum nitride (AlN) nanowires on low cost, large area Si substrate. Detailed angle dependent electroluminescence studies suggest that, albeit the light is TM polarized, the dominant light emission direction is from the nanowire top surface, that is, along the c axis, due to the strong light scattering effect. Such an efficient surface emitting device was not previously possible using conventional c-plane AlN planar structures. The AlN nanowire LEDs exhibit an extremely large electrical efficiency (>85%), which is nearly ten times higher than the previously reported AlN planar devices. Our detailed studies further suggest that the performance of AlN nanowire LEDs is predominantly limited by electron overflow. This study provides important insight on the fundamental emission characteristics of AlN nanowire LEDs and also offers a viable path to realize an efficient surface emitting near-vacuum ultraviolet light source through direct electrical injection.

  20. LED til væksthuse

    DEFF Research Database (Denmark)

    Dam-Hansen, Carsten; Thorseth, Anders; Rosenqvist, Eva

    2012-01-01

    Den teknologiske udvikling indenfor Lys Emitterende Dioder (LED) går imod stadig større lysmængder og stadig større effektivitet. Kombineret med fordele som lang levetid, dæmpbarhed og ingen varmestråling gør det, at LED baserede lyskilder/lamper i stigende grad benyttes til belysningsformål og kan...

  1. LED Shipboard Lighting: A Comparative Analysis

    Science.gov (United States)

    2009-12-01

    viability of retrofitting the Navy fleet with newer lighting technology . C. RESEARCH QUESTION The research project provided to NPS by Dr. Larry Schuette...LED is a key component in today’s lighting technology . Modern households use LEDs in such components as digital video disc, (DVD) readers...manufactures that the Navy is serious in implementing lighting technology with a multi- year demonstration seeing the benefits provided by the manufactures

  2. Building an intelligence-led security program

    CERN Document Server

    Liska, Allan

    2014-01-01

    As recently as five years ago, securing a network meant putting in a firewall, intrusion detection system, and installing antivirus software on the desktop. Unfortunately, attackers have grown more nimble and effective, meaning that traditional security programs are no longer effective. Today's effective cyber security programs take these best practices and overlay them with intelligence. Adding cyber threat intelligence can help security teams uncover events not detected by traditional security platforms and correlate seemingly disparate events across the network. Properly-implemented inte

  3. Epitaxially-grown Gallium Nitride on Gallium Oxide substrate for photon pair generation in visible and telecomm wavelengths

    KAUST Repository

    Awan, Kashif M.

    2016-08-11

    Gallium Nitride (GaN), along with other III-Nitrides, is attractive for optoelectronic and electronic applications due to its wide direct energy bandgap, as well as high thermal stability. GaN is transparent over a wide wavelength range from infra-red to the visible band, which makes it suitable for lasers and LEDs. It is also expected to be a suitable candidate for integrated nonlinear photonic circuits for a wide range of applications from all-optical signal processing to quantum computing and on-chip wavelength conversion. Despite its abundant use in commercial devices, there is still need for suitable substrate materials to reduce high densities of threading dislocations (TDs) and other structural defects like stacking faults, and grain boundaries. All these defects degrade the optical quality of the epi-grown GaN layer as they act as non-radiative recombination centers.

  4. THE PHOTODYNAMIC EFFECT OF LED-MAGNETIC EXPOSURE TO PHOTOINACTIVATION OF AEROBIC PHOTOSYNTETIC BACTERIA

    Directory of Open Access Journals (Sweden)

    Suryani Dyah Astuti

    2014-01-01

    Full Text Available All photosynthetic bacteria have a major pigment of bacteriochlorophyl and accessor pigment e.g. the carotenoids, which both have an important role in photosynthesis process. This study aim to explore the exogenous organic photosensitizer from photosyntetic bacteria for photodynamic therapy application. This study is an experimental research aiming to test the potential illumination ofLED with wavelength 409, 430, 528 and 629 nm, and power optimization and time exposure LED-magnetic for optimum photo activation Rhodococcus growth. The reseach design use a factorial completely randomized design with factor ofpower and exposure time. The number ofbacterial colonies grown measure using ofTotal Plate Count (TPC methods. The result ofanova test shows that irradiation treatment with LED 409 nm, 430 nm, 528 nm and 629 nm significantly affects on bacterial colony growth. LED 409 nm exposure has the greatest potential to boost the growth ofbacterial colonies by 77%. LED exposure and the addition of1.8 mT magnetic field increases bacterial colony growth by 98%. Results of optimization of LED and magnetic fields show power 46 mW and a 40 minute (energy dose 110 J/cm2 optimum growth ofbacterial colonies increase by 184%. So LED and magnetic illumination has potentially increased the viability ofan aerob photosyntetic bacteria colonies.

  5. Influence of variation of electrical parameters values of RGB LEDs on the radiation uniformity of LED displays at minimal luminosity grade

    Directory of Open Access Journals (Sweden)

    Veleschuk V. P.

    2017-06-01

    Full Text Available The emission uniformity of LED chips in the entire range of brightness and colors is the problem in LED displays manufacture process. It was approved that at lowering brightness gradations appearing the radiation nonuniformity between LED chips, and the higher disorders will be seen on the lesser emission levels. The RGB LED chips, observed by us, were based on AlGaInP (red, In0.3Ga0.7N/GaN (green, and In0,2Ga0,8NN/ GaN (blue and had nominal working current 20 mA. Analysis of the current-voltage characteristics and capacitance-voltage characteristics showed the presence of inhomogeneous semiconductor junctions and ohmic contacts in blue LEDs structures that are the source of possible irregularities in the final emission of LED displays. The variation of voltages (at current 10 mA were 2.81—2.98 V for blue structures, and 1.9—2.0 V for red ones. Some of the blue structures had additional parasite current-flow mechanism at low current. Rise time and fall time of electroluminescence pulse of blue structures were measured. The shortest LED pulse time in LED displays is limited by duration of 6—8 ns. The quality of LED displays may be improved by implementating the preliminary control of LED chips in a narrower range of voltage variation at operating currents, or more narrow interval of I—V variation. This additional LEDs sorting will of course reduce the percentage of the total amount of light-emitting diodes, but may improve the image (video, photo quality at translations by using a lower brightness gradations.

  6. Key Topics in Producing New Ultraviolet Led and Laser Devices Based on Transparent Semiconductor Zinc Oxide

    International Nuclear Information System (INIS)

    Tuezemen, S.

    2004-01-01

    Recently, it has been introduced that ZnO as II-VI semiconductor is promising various technological applications, especially for optoelectronic short wavelength light emitting devices due to its wide and direct band gap profile. The most important advantage of ZnO over the other currently used wide band gap semiconductors such as GaN is that its nearly 3 times higher exciton binding energy (60 meV), which permits efficient excitonic emission at room temperature and above. As-grown ZnO is normally n-type because of the Zn-rich defects such as zinc interstitials (Zn i ) oxygen vacancies (Vo), natively acting as shallow donors and main source of n-type conductivity in as-grown material. Therefore, making p-type ZnO has been more difficult due to unintentional compensation of possible acceptors by these residual donors. In order to develop electro luminescent and laser devices based on the ultraviolet (UV) exciton emission of ZnO, it will be important to fabricate good p-n junctions. Attempts to observe p-type conductivity in ours and our collaborators' laboratories in USA, either by co-doping with N or tuning O pressure have been first successful achievements, resulting in hole concentrations up to 10 1 9 cm - 3 in reactively sputtered thin layers of ZnO. Moreover, in order to produce ZnO based quantum well lasers similar to the previously introduced n-AlGaAs/GaAs/p-AlGaAs structures; we have attempted to grow Zn 1 -xSn x O thin films to enlarge the band gap energy. An increase up to 170 meV has been observed in Zn 1 -xSn x O thin films and this is enough barrier to be able to trap electron-hole pairs in quantum well structures. As a result, two important key issues; p-type conductivity and enhancement of the band gap energy in order to step forward towards the production of electro luminescent UV LEDs and quantum well lasers have been investigated and will be presented in this study

  7. LEDS GP Success Story: Fostering Coordinated LEDS Support in Kenya (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-03-01

    The LEDS Global Partnership (LEDS GP) strives to advance climate-resilient, low-emission development through catalyzing collaboration, information exchange, and action on the ground. The Government of Kenya is a key LEDS GP member and offers an inspiring example of how LEDS GP is having an impact globally. The 2012 LEDS Collaboration in Action workshop in London provided an interactive space for members to share experiences on cross-ministerial LEDS leadership and to learn about concrete development impacts of LEDS around the world. Inspired by these stories, the Kenya's Ministry of State for Planning, National Development and Vision 2030 (MPND) began to collaborate closely with the Ministry of Environment and Mineral Resources to create strong links between climate change action and development in the country, culminating in the integration of Kenya's National Climate Change Action Plan and the country's Medium Term Development Plan.

  8. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light

    Science.gov (United States)

    Schuerger, A. C.; Brown, C. S.; Stryjewski, E. C.

    1997-01-01

    Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.

  9. CdS and Cd-Free Buffer Layers on Solution Phase Grown Cu2ZnSn(SxSe1- x)4 :Band Alignments and Electronic Structure Determined with Femtosecond Ultraviolet Photoemission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Richard; Barkhouse, Aaron; Wang, Wei; Yu, Luo; Shao, Xiaoyan; Mitzi, David; Hiroi, Homare; Sugimoto, Hiroki

    2013-12-02

    The heterojunctions formed between solution phase grown Cu2ZnSn(SxSe1- x)4(CZTS,Se) and a number of important buffer materials including CdS, ZnS, ZnO, and In2S3, were studied using femtosecond ultraviolet photoemission spectroscopy (fs-UPS) and photovoltage spectroscopy. With this approach we extract the magnitude and direction of the CZTS,Se band bending, locate the Fermi level within the band gaps of absorber and buffer and measure the absorber/buffer band offsets under flatband conditions. We will also discuss two-color pump/probe experiments in which the band bending in the buffer layer can be independently determined. Finally, studies of the bare CZTS,Se surface will be discussed including our observation of mid-gap Fermi level pinning and its relation to Voc limitations and bulk defects.

  10. Structural and superconducting properties of (Y,Gd)Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} grown by MOCVD on samarium zirconate buffered IBAD-MgO

    Energy Technology Data Exchange (ETDEWEB)

    Stan, L; Holesinger, T G; Maiorov, B; Feldmann, D M; Usov, I O; DePaula, R F; Civale, L; Foltyn, S R; Jia, Q X [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States); Chen, Y; Selvamanickam, V [SuperPower, Incorporated, 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2008-10-01

    Textured samarium zirconate (SZO) films have been grown by reactive cosputtering directly on an ion beam assisted deposited (IBAD) MgO template, without an intermediate homoepitaxial MgO layer. The subsequent growth of 0.9 {mu}m thick (Y,Gd)Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} ((Y, Gd)BCO) films by metal organic chemical vapor deposition (MOCVD) yielded well textured films with a full width at half maximum of 1.9{sup 0} and 3.4{sup 0} for the out-of-plane and in-plane texture, respectively. Microstructural characterizations of the SZO buffered samples revealed clean interfaces. This indicates that the SZO not only provides a diffusion barrier, but also functions as a buffer for (Y, Gd)BCO grown by MOCVD. The achievement of self-field critical current densities (J{sub c}) of over 2 MA cm{sup -2} at 75.5 K is another proof of the effectiveness of SZO as a buffer on the IBAD-MgO template. The in-field measurements revealed an asymmetric angular dependence of J{sub c} and a shift of the ab-plane maxima due to the tilted nature of the template and (Y,Gd){sub 2}O{sub 3} particles existing in the (Y, Gd)BCO matrix. The present results are especially important because they demonstrate that high temperature superconducting coated conductors with simpler architecture can be fabricated using commercially viable processes.

  11. Fabrication and Crystal Structure of [REMO3/ABO3] (A =Ca, La, B =Fe, Mn, RE =Bi, La, M =Fe, Fe0.8Mn0.2) Superlattices Grown by Pulsed Laser Deposition Method

    Science.gov (United States)

    Takase, K.; Watabe, Y.; Iwata, N.; Oikawa, T.; Hashimoto, T.; Huijben, M.; Rijnders, G.; Yamamoto, H.

    2014-03-01

    The superlattices of [REMO3/ABO3] (RE =Bi, La, M =Fe, Fe0.8Mn0.2 A =Ca, La, B =Fe, Mn) were prepared by Pulsed laser deposition (PLD) method grown on SrTiO3(STO)(100) for the novel materials which show ferromagnetic and ferroelectric properties with giant magnetoelectric effect at room temperature. When the superlattices were prepared, seven units LaFeO3(LFO) film was deposited first, and the required pulses for other materials to grow seven units were calculated using the growth rate ratio and the growth rate of the last three units of LFO. One of the superlattices, [7 units - BiFe0.8Mn0.2O3(BFMO) / 7 units - CaMnO3(CMO)] stacking for 14 times, the satellite peaks from -2 to +1 were observed. From the fitting to the X-ray reflection spectra, thickness of BFMO and CMO in [BFMO/CMO] one cycle was 2.139nm (5.3 units) and 2.042nm (5.5 units). Although the deposited number of units was definitely less than seven, the satellite peaks are derived from the superstructure. Reciprocal space mapping shows the in-plain lattice constant of [BFMO/CMO] superlattices was not fitted to that of substrate. The calculated in-plain lattice parameter was 0.382 nm longer than the value of 0.3732 nm, which is the bulk CMO and in-plain lattice parameter of CMO thin film grown on STO(001) substrate. This study is supported by Grant-in-Aid for Scientific Research (C), KAKENHI 25420295, and Nihon University Multidisciplinary Research Grant for 2013.

  12. Design of LED projector based on gradient-index lens

    Science.gov (United States)

    Qian, Liyong; Zhu, Xiangbing; Cui, Haitian; Wang, Yuanhang

    2018-01-01

    In this study, a new type of projector light path is designed to eliminate the deficits of existing projection systems, such as complex structure and low collection efficiency. Using a three-color LED array as the lighting source, by means of the special optical properties of a gradient-index lens, the complex structure of the traditional projector is simplified. Traditional components, such as the color wheel, relay lens, and mirror, become unnecessary. In this way, traditional problems, such as low utilization of light energy and loss of light energy, are solved. With the help of Zemax software, the projection lens is optimized. The optimized projection lens, LED, gradient-index lens, and digital micromirror device are imported into Tracepro. The ray tracing results show that both the utilization of light energy and the uniformity are improved significantly.

  13. Affordable underwater wireless optical communication using LEDs

    Science.gov (United States)

    Pilipenko, Vladimir; Arnon, Shlomi

    2013-09-01

    In recent years the need for high data rate underwater wireless communication (WC) has increased. Nowadays, the conventional technology for underwater communication is acoustic. However, the maximum data rate that acoustic technology can provide is a few kilobits per second. On the other hand, emerging applications such as underwater imaging, networks of sensors and swarms of underwater vehicles require much faster data rates. As a result, underwater optical WC, which can provide much higher data rates, has been proposed as an alternative means of communication. In addition to high data rates, affordable communication systems become an important feature in the development requirements. The outcome of these requirements is a new system design based on off-the-shelf components such as blue and green light emitting diodes (LEDs). This is due to the fact that LEDs offer solutions characterized by low cost, high efficiency, reliability and compactness. However, there are some challenges to be met when incorporating LEDs as part of the optical transmitter, such as low modulation rates and non linearity. In this paper, we review the main challenges facing the incorporation of LEDs as an integral part of underwater WC systems and propose some techniques to mitigate the LED limitations in order to achieve high data rate communication

  14. Zernike polynomials for photometric characterization of LEDs

    International Nuclear Information System (INIS)

    Velázquez, J L; Ferrero, A; Pons, A; Campos, J; Hernanz, M L

    2016-01-01

    We propose a method based on Zernike polynomials to characterize photometric quantities and descriptors of light emitting diodes (LEDs) from measurements of the angular distribution of the luminous intensity, such as total luminous flux, BA, inhomogeneity, anisotropy, direction of the optical axis and Lambertianity of the source. The performance of this method was experimentally tested for 18 high-power LEDs from different manufacturers and with different photometric characteristics. A small set of Zernike coefficients can be used to calculate all the mentioned photometric quantities and descriptors. For applications not requiring a great accuracy such as those of lighting design, the angular distribution of the luminous intensity of most of the studied LEDs can be interpolated with only two Zernike polynomials. (paper)

  15. White LED phosphors: the next step

    Science.gov (United States)

    Yamamoto, Hajime

    2010-02-01

    Application of white LEDs is extended toward high-output light sources, e.g. for automotive headlights, and better spectral matching with optical filters for LCD backlighting. To meet such new demands, phosphor materials have been investigated with focus on their luminescence spectra, temperature characteristics and reliability. The conventional yellow phosphor based on Y3Al5O12:Ce3+ has excellent performance as a single phosphor combined with a blue LED. More recently developed nitrido- or oxonitrido-silicates activated with Eu2+ are also promising materials showing green to red luminescence depending on a composition and high thermal and chemical stability. And yet, demands for specific application have been made clear and strong. This paper reviews the present status and challenging goals of phosphors in the next stage further to make progress in white LEDs.

  16. Luminaries-level structure improvement of LEDs for heat dissipation ...

    Indian Academy of Sciences (India)

    petitive in the market. Furthermore, most existent efficient heat dissipation technologies, which inevitably utilize moving mechanical components, such as pump, .... 0.04. – 0.03. – 0.02. – 0.01. 0. 10. 20. 30. 40. 50. 60. 70. 80 β / o. – 0.06. – 0.04. – 0.02. 0. 0.02. 0.04. 0.06. Figure 5. Coordination of velocity and heat flow field.

  17. LED module with high index lens

    Energy Technology Data Exchange (ETDEWEB)

    Bierhuizen, Serge J.; Wang, Nanze Patrick; Eng, Gregory W.; Sun, Decai; Wei, Yajun

    2017-09-05

    An array of housings with housing bodies and lenses is molded, or an array of housing bodies is molded and bonded with lenses to form an array of housings with housing bodies and lenses. Light-emitting diodes (LEDs) are attached to the housings in the array. An array of metal pads may be bonded to the back of the array or insert molded with the housing array to form bond pads on the back of the housings. The array is singulated to form individual LED modules.

  18. Intelligent styring af dynamisk LED belysning

    DEFF Research Database (Denmark)

    Thorseth, Anders; Corell, Dennis Dan; Hansen, Søren Stentoft

    Denne slutrapport giver en kort beskrivelse af arbejdet, der er udført af DTU Fotonik i projektet ”Intelligent styring af dynamisk LED belysning” støttet af EUDP. Arbejdet er udført i perioden 2011‐2012 i samarbejde med Lighten.......Denne slutrapport giver en kort beskrivelse af arbejdet, der er udført af DTU Fotonik i projektet ”Intelligent styring af dynamisk LED belysning” støttet af EUDP. Arbejdet er udført i perioden 2011‐2012 i samarbejde med Lighten....

  19. Effects of LEDs on chlorophyll fluorescence and secondary metabolites in Phalaenopsis

    DEFF Research Database (Denmark)

    Ouzounis, T.; Fretté, X.; Rosenqvist, Eva

    2015-01-01

    h per day. The temperature in the greenhouse compartments was set to 24/18°C day/night, respectively. The three light treatments were (1) 40% Blue 60% Red, (2) 100% Red, and (3) 100% White (Control). The plants were harvested before flowering and plant growth was recorded at the end......Light emitting diodes (LEDs) are solid-state semiconductor devices that have been integrated in current greenhouse systems the last decades as they provide the opportunity to control light spectrum. Commercial production of potted orchids under LEDs has increased throughout the world the past...... decades with Phalaenopsis being one of the most valuable potted crops. The experiment took place from January to April 2013 using plantlets of Phalaenopsis 'Vivien' and 'Purple star'. Plants were grown under a purpose-built LED array from Philips yielding approximately 200 μmol/m2s at plant height for 16...

  20. Final report LED solutions for public lighting; Eindrapportage LED oplossingen voor openbare verlichting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-04-15

    This report examines if and how LED can be used for public lighting on a large scale. Pilot projects in 29 municipalities were assessed to test the usefulness of LED lighting. This final report provides answers to the questions that relate to the feasibility of the deployment of LED in public lighting and provides some practical pointers. [Dutch] Er is onderzocht of, en zo ja op welke wijze, LED grootschalig toegepast kan worden in de openbare verlichting (OVL). In 29 gemeenten in Nederland zijn proefprojecten geevalueerd om LED verlichting te toetsen op bruikbaarheid. Deze eindrapportage geeft antwoord op vragen die betrekking hebben op de haalbaarheid van de toepassing van LED binnen de OVL en geeft wat praktische aandachtspunten.

  1. Design of an oximeter based on LED-LED configuration and FPGA technology.

    Science.gov (United States)

    Stojanovic, Radovan; Karadaglic, Dejan

    2013-01-04

    A fully digital photoplethysmographic (PPG) sensor and actuator has been developed. The sensing circuit uses one Light Emitting Diode (LED) for emitting light into human tissue and one LED for detecting the reflectance light from human tissue. A Field Programmable Gate Array (FPGA) is used to control the LEDs and determine the PPG and Blood Oxygen Saturation (S(p)O(2)). The configurations with two LEDs and four LEDs are developed for measuring PPG signal and Blood Oxygen Saturation (S(p)O(2)). N-LEDs configuration is proposed for multichannel S(p)O(2) measurements. The approach resulted in better spectral sensitivity, increased and adjustable resolution, reduced noise, small size, low cost and low power consumption.

  2. Design of an Oximeter Based on LED-LED Configuration and FPGA Technology

    Directory of Open Access Journals (Sweden)

    Radovan Stojanovic

    2013-01-01

    Full Text Available A fully digital photoplethysmographic (PPG sensor and actuator has been developed. The sensing circuit uses one Light Emitting Diode (LED for emitting light into human tissue and one LED for detecting the reflectance light from human tissue. A Field Programmable Gate Array (FPGA is used to control the LEDs and determine the PPG and Blood Oxygen Saturation (SpO2. The configurations with two LEDs and four LEDs are developed for measuring PPG signal and Blood Oxygen Saturation (SpO2. N-LEDs configuration is proposed for multichannel SpO2 measurements. The approach resulted in better spectral sensitivity, increased and adjustable resolution, reduced noise, small size, low cost and low power consumption.

  3. Calcium impurity as a source of non-radiative recombination in (In,Ga)N layers grown by molecular beam epitaxy

    KAUST Repository

    Young, E. C.

    2016-11-23

    Ca as an unintentional impurity has been investigated in III-nitride layers grown by molecular beam epitaxy (MBE). It is found that Ca originates from the substrate surface, even if careful cleaning and rinsing procedures are applied. The initial Ca surface coverage is ∼1012 cm−2, which is consistent with previous reports on GaAs and silicon wafers. At the onset of growth, the Ca species segregates at the growth front while incorporating at low levels. The incorporation rate is strongly temperature dependent. It is about 0.03% at 820 °C and increases by two orders of magnitude when the temperature is reduced to 600 °C, which is the typical growth temperature for InGaN alloy. Consequently, [Ca] is as high as 1018 cm−3 in InGaN/GaN quantum well structures. Such a huge concentration might be detrimental for the efficiency of light emitting diodes (LEDs) if one considers that Ca is potentially a source of Shockley-Read-Hall (SRH) defects. We thus developed a specific growth strategy to reduce [Ca] in the MBE grown LEDs, which consisted of burying Ca in a low temperature InGaN/GaN superlattice (SL) before the growth of the active region. Finally, two LED samples with and without an SL were fabricated. An increase in the output power by one order of magnitude was achieved when Ca was reduced in the LED active region, providing evidence for the role of Ca in the SRH recombination.

  4. Competitiveness of organically grown cereals

    Directory of Open Access Journals (Sweden)

    Jaroslav Jánský

    2007-01-01

    Full Text Available The contribution is aimed at the assessment of recommended crop management practices of chosen cereals for organic farming. To increase competitiveness, these practices are modified depending on soil and climatic conditions, and on a way of production use. Furthermore, impacts of the recommended crop management practices on economics of growing chosen cereals are evaluated and compared with economic results obtained under conventional farming. It is assumed that achieved results will contribute to the increase in proportion of arable crops in the Czech Republic where organic production offer does not meet current demands.When evaluating results of growing individual cereal species in a selective set of organic farms, triticale, spelt and spring barley (in this ranking can be considered as profitable crops. Moreover, triticale and spelt have even higher gross margin under organic farming than under conventional farming (by 62 % in triticale. Oat brings losses, however, it is important for livestock production. Winter wheat seems to be also unprofitable since less grain is produced at lower imputs per hectare and only part of it is produced in quality “bio”, i.e. marketed for higher prices. Rye also brings losses under organic farming, particularly due to lower yields, similarly to the other mentioned cereals. Special cereal species that are still neglected in organic farming systems are of potential use. Durum wheat has vitreous kernels with a high content of quality gluten which is used for pasta production. It can be grown in the maize production area on fertile soils only.

  5. Properties of GaN-based nanopillar-shaped crystals grown on a multicrystalline Si substrate

    Science.gov (United States)

    Fujiwara, Atomu; Sato, Yuichi

    2018-01-01

    The growth of gallium nitride-based nanopillar-shaped crystals on the multicrystalline silicon substrate that is widely employed in solar cells is presented here for the first time. The nanopillar-shaped crystals are successfully grown on the multicrystalline substrate in a manner similar to the structures grown on other substrates. Structural variations and a highly enhanced band edge emission in the photoluminescence spectrum have been observed using germanium doping.

  6. Heterostructures for Increased Quantum Efficiency in Nitride LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Robert F. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2010-09-30

    Task 1. Development of an advanced LED simulator useful for the design of efficient nitride-based devices. Simulator will contain graphical interface software that can be used to specify the device structure, the material parameters, the operating conditions and the desired output results. Task 2. Theoretical and experimental investigations regarding the influence on the microstructure, defect concentration, mechanical stress and strain and IQE of controlled changes in the chemistry and process route of deposition of the buffer layer underlying the active region of nitride-based blue- and greenemitting LEDs. Task 3. Theoretical and experimental investigations regarding the influence on the physical properties including polarization and IQE of controlled changes in the geometry, chemistry, defect density, and microstructure of components in the active region of nitride-based blue- and green-emitting LEDs. Task 4. Theoretical and experimental investigations regarding the influence on IQE of novel heterostructure designs to funnel carriers into the active region for enhanced recombination efficiency and elimination of diffusion beyond this region. Task 5. Theoretical and experimental investigations regarding the influence of enhanced p-type doping on the chemical, electrical, and microstructural characteristics of the acceptor-doped layers, the hole injection levels at Ohmic contacts, the specific contact resistivity and the IQE of nitride-based blue- and green-emitting LEDs. Development and optical and electrical characterization of reflective Ohmic contacts to n- and p-type GaN films.

  7. Biologically inspired LED lens from cuticular nanostructures of firefly lantern

    Science.gov (United States)

    Kim, Jae-Jun; Lee, Youngseop; Kim, Ha Gon; Choi, Ki-Ju; Kweon, Hee-Seok; Park, Seongchong; Jeong, Ki-Hun

    2012-01-01

    Cuticular nanostructures found in insects effectively manage light for light polarization, structural color, or optical index matching within an ultrathin natural scale. These nanostructures are mainly dedicated to manage incoming light and recently inspired many imaging and display applications. A bioluminescent organ, such as a firefly lantern, helps to out-couple light from the body in a highly efficient fashion for delivering strong optical signals in sexual communication. However, the cuticular nanostructures, except the light-producing reactions, have not been well investigated for physical principles and engineering biomimetics. Here we report a unique observation of high-transmission nanostructures on a firefly lantern and its biological inspiration for highly efficient LED illumination. Both numerical and experimental results clearly reveal high transmission through the nanostructures inspired from the lantern cuticle. The nanostructures on an LED lens surface were fabricated by using a large-area nanotemplating and reconfigurable nanomolding with heat-induced shear thinning. The biologically inspired LED lens, distinct from a smooth surface lens, substantially increases light transmission over visible ranges, comparable to conventional antireflection coating. This biological inspiration can offer new opportunities for increasing the light extraction efficiency of high-power LED packages. PMID:23112185

  8. Effect of 3C-SiC intermediate layer in GaN—based light emitting diodes grown on Si(111) substrate

    Science.gov (United States)

    Zhu, Youhua; Wang, Meiyu; Li, Yi; Tan, Shuxin; Deng, Honghai; Guo, Xinglong; Yin, Haihong; Egawa, Takashi

    2017-03-01

    GaN-based light emitting diodes (LEDs) have been grown by metalorganic chemical vapor deposition on Si(111) substrate with and without 3C-SiC intermediate layer (IL). Structural property has been characterized by means of atomic force microscope, X-ray diffraction, and transmission electron microscope measurements. It has been revealed that a significant improvement in crystalline quality of GaN and superlattice epitaxial layers can be achieved by using 3C-SiC as IL. Regarding of electrical and optical characteristics, it is clearly observed that the LEDs with its IL have a smaller leakage current and higher light output power comparing with the LEDs without IL. The better performance of LEDs using 3C-SiC IL can be contributed to both of the improvements in epitaxial layers quality and light extraction efficiency. As a consequence, in terms of optical property, a double enhancement of the light output power and external quantum efficiency has been realized.

  9. LED Lighting in a Performing Arts Building

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N. J.; Kaye, S. M. [Univ. of Florida, Gainesville, FL (United States); Coleman, P. M. [Univ. of Florida, Gainesville, FL (United States); Wilkerson, A. M.; Perrin, T. E.; Sullivan, G. P. [Efficiency Solutions, Inc., Richland, WA (United States)

    2014-07-31

    At the University of Florida in Gainesville, the DOE Solid-State Lighting GATEWAY program evaluated LED architectural and theatrical lighting in four academic/performance-related spaces within the Nadine McGuire Theatre + Dance Pavilion. Due to a wise choice of products and luminaire light distributions, the change brought significant quality improvements including improved controllability and color.

  10. Preliminary investigations of piezoelectric based LED luminary

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Andersen, Michael A. E.; Meyer, Kaspar Sinding

    2011-01-01

    This paper presents a preliminary study of PT (Piezoelectric Transformer) based SMPS’s (Switch Mode Power Supplies) for LED luminary. The unique properties of PTs (efficiency, power density and EMI) make them highly suitable for this application. Power stage topologies, rectifiers circuits...

  11. Photobiocatalytic alcohol oxidation using LED light sources

    NARCIS (Netherlands)

    Rauch, M.C.R.; Schmidt, S.; Arends, I.W.C.E.; oppelt, K.; Kara, S; Hollmann, F.

    2016-01-01

    The photocatalytic oxidation of NADH using a flavin photocatalyst and a simple blue LED light source is reported. This in situ NAD+ regeneration system can be used to promote biocatalytic, enantioselective oxidation reactions. Compared to the traditional use of white light bulbs this method enables

  12. NASA Ames UV-LED Poster Overview

    Science.gov (United States)

    Jaroux, Belgacem Amar

    2015-01-01

    UV-LED is a small satellite technology demonstration payload being flown on the Saudisat-4 spacecraft that is demonstrating non-contacting charge control of an isolated or floating mass using new solid-state ultra-violet light emitting diodes (UV-LEDs). Integrated to the rest of the spacecraft and launched on a Dnepr in June 19, 2014, the project is a collaboration between the NASA Ames Research Center (ARC), Stanford University, and King Abdulaziz City for Science and Technology (KACST). Beginning with its commissioning in December, 2015, the data collected by UV-LED have validated a novel method of charge control that will improve the performance of drag-free spacecraft allowing for concurrent science collection during charge management operations as well as reduce the mass, power and volume required while increasing lifetime and reliability of a charge management subsystem. UV-LED continues to operate, exploring new concepts in non-contacting charge control and collecting data crucial to understanding the lifetime of ultra-violet light emitting diodes in space. These improvements are crucial to the success of ground breaking missions such as LISA and BBO, and demonstrates the ability of low cost small satellite missions to provide technological advances that far exceed mission costs.

  13. Child-Led Enquiry in Primary Science

    Science.gov (United States)

    Dunlop, Lynda; Compton, Kirsty; Clarke, Linda; McKelvey-Martin, Valerie

    2015-01-01

    This research describes and evaluates the application of a child-led approach to scientific enquiry (the Community of Scientific Enquiry, CoSE) to children aged 8-11 (Key Stage 2) in Northern Ireland. Primary teachers were introduced to CoSE at a workshop and asked to evaluate its implementation with their class. Results from children (n = 364)…

  14. Impact of LED irradiance on plant photosynthesis and action spectrum of plantlet

    Science.gov (United States)

    Naznin, Most Tahera; Lefsrud, Mark G.

    2014-09-01

    Light emitting diodes (LEDs) can be selected to target the wavelengths absorbed by plantlets, enabling the users to customize the wavelengths of light required for maximum production. The primary purpose of this experiment was to test the effect of different ratios of red to blue LEDs on tomato plantlets photosynthetic action spectrum. Four light treatments including: red LED (100%) and three ratios of red (661 nm) to blue (449 nm) light (5:1, 10:1 and 19:1) at 60 umol m-2 s-1 for this study. The tomato plantlets cultured without blue light showed a three and half-fold decrease in photosynthesis rate. The highest photosynthetic action spectrum was observed at 10:1 but was not significantly difference from the 5:1 and the lowest action spectrum was observed at 100% red LED light. The tomato plantlets grown without the blue light showed a single-fold increase in plantlet height but were not significantly different from the 10:1 red to blue LED light. This research will allow for improved selection of LED lighting for plant tissue culture.

  15. Growth, characterization and dielectric property studies of gel grown ...

    Indian Academy of Sciences (India)

    Single crystals of barium succinate (BaC4H4O4) were grown in silica gel medium using controlled chemical reaction method. Plate-like single crystals of size up to 3 × 2 × 0.2 mm3 was obtained. Single crystal X-ray diffraction (XRD) studies confirmed that structure of the title compound is tetragonal. Powder X-ray diffraction ...

  16. Infrared light-emitting diode radiation causes gravitropic and morphological effects in dark-grown oat seedlings

    Science.gov (United States)

    Johnson, C. F.; Brown, C. S.; Wheeler, R. M.; Sager, J. C.; Chapman, D. K.; Deitzer, G. F.

    1996-01-01

    Oat (Avena sativa cv Seger) seedlings were irradiated with IR light-emitting diode (LED) radiation passed through a visible-light-blocking filter. Infrared LED irradiated seedlings exhibited differences in growth and gravitropic response when compared to seedlings grown in darkness at the same temperature. Thus, the oat seedlings in this study were able to detect IR LED radiation. These findings call into question the use of IR LED as a safe-light for some photosensitive plant response experiments. These findings also expand the defined range of wavelengths involved in radiation-gravity (light-gravity) interactions to include wavelengths in the IR region of the spectrum.

  17. Non-Destructive Inspection Methods for LEDs Using Real-Time Displaying Optical Coherence Tomography

    OpenAIRE

    Suhwan Kim; Jeehyun Kim; Unsang Jung; Nam Hyun Cho

    2012-01-01

    In this study, we report the applicability of two different Optical Coherence Tomography (OCT) technologies for inspecting Light Emitting Diode (LED) structures. Sectional images of a LED were captured using a Spectral Domain OCT (SD-OCT) system and a Swept Source OCT (SS-OCT) system. Their center wavelengths are 850 and 1,310 nm, respectively. We acquired cross-sectional two dimensional (2D) images of a normal LED and extracted sectional profiles to inspect possible wire disconnection that m...

  18. Heat Transfer Characteristics in High Power LED Packaging

    Directory of Open Access Journals (Sweden)

    Chi-Hung Chung

    2014-03-01

    Full Text Available This study uses the T3Ster transient thermal resistance measuring device to investigate the effects to heat transfer performances from different LED crystal grains, packaging methods and heat-sink substrates through the experimental method. The experimental parameters are six different types of LED modules that are made alternatively with the crystal grain structure, the die attach method and the carrying substrate. The crystal grain structure includes the lateral type, flip chip type and vertical type. The die attach method includes silver paste and the eutectic structure. The carrying substrates are aluminum oxide (Alumina and aluminum nitride (AIN ceramic substrates and metal core PCB (MCPCB. The experimental results show that, under the conditions of the same crystal grain and die attach method, the thermal resistance values for the AIN substrate and the Alumina substrate are 2.1K/W and 5.1K/W, respectively and the total thermal resistance values are 7.3K/W and 10.8K/W. Compared to the Alumina substrate, the AIN substrate can effectively lower the total thermal resistance value by 32.4%. This is because the heat transfer coefficient of the AIN substrate is higher than that of the Alumina substrate, thus effectively increasing its thermal conductivity. In addition, under the conditions of the same crystal grain and the same substrate, the packaging methods are using silver paste and the eutectic structure for die attach. Their thermal resistance values are 5.7K/W and 2.7K/W, respectively, with a variance of 3K/W. Comparisons of the crystal grain structure show that the thermal resistance for the flip chip type is lower than that of the traditional lateral type by 0.9K/W. This is because the light emitting layer of the flip chip crystal grain is closer to the heat-sink substrate, shortening the heat dissipation route, and thus lowering the thermal resistance value. For the total thermal resistance, the crystal grain structure has a lesser

  19. Conduction-driven cooling of LED-based automotive LED lighting systems for abating local hot spots

    Science.gov (United States)

    Saati, Ferina; Arik, Mehmet

    2018-02-01

    Light-emitting diode (LED)-based automotive lighting systems pose unique challenges, such as dual-side packaging (front side for LEDs and back side for driver electronics circuit), size, harsh ambient, and cooling. Packaging for automotive lighting applications combining the advanced printed circuit board (PCB) technology with a multifunctional LED-based board is investigated with a focus on the effect of thermal conduction-based cooling for hot spot abatement. A baseline study with a flame retardant 4 technology, commonly known as FR4 PCB, is first compared with a metal-core PCB technology, both experimentally and computationally. The double-sided advanced PCB that houses both electronics and LEDs is then investigated computationally and experimentally compared with the baseline FR4 PCB. Computational models are first developed with a commercial computational fluid dynamics software and are followed by an advanced PCB technology based on embedded heat pipes, which is computationally and experimentally studied. Then, attention is turned to studying different heat pipe orientations and heat pipe placements on the board. Results show that conventional FR4-based light engines experience local hot spots (ΔT>50°C) while advanced PCB technology based on heat pipes and thermal spreaders eliminates these local hot spots (ΔT<10°C), leading to a higher lumen extraction with improved reliability. Finally, possible design options are presented with embedded heat pipe structures that further improve the PCB performance.

  20. Ultraviolet-A LED Based on Quantum-disks-in-AlGaN-nanowires - Optimization and Device Reliability

    KAUST Repository

    Janjua, Bilal

    2018-03-16

    Group-III nitride-based ultraviolet (UV) quantum-disks (Qdisks) nanowires (NWs) light-emitting diodes grown on silicon substrates offer a scalable, environment-friendly, compact, and low-cost solution for numerous applications such as solid-state lighting, spectroscopy, and biomedical. However, the internal quantum efficiency, injection efficiency, and extraction efficiency need to be further improved. The focus of this paper encompasses investigations based on structural optimization, device simulation, and device reliability. To optimize a UV-A (320-400 nm) device structure we utilize the self-assembled quantum-disk-NWs with varying quantum-disks thickness to study carrier separation in active-region and implement an improved p-contact-layer to increase output power. By simulation, we found a 100° improvement in the direct recombination rate for samples with thicker Qdisks thickness of 1.2 nm compared to the sample with 0.6 nm-thick Qdisks. Moreover, the sample with graded top Mg-doped AlGaN layer in conjunction with thin Mg-doped GaN layer shows 10° improvement in the output power compared to the samples with thicker top Mg-doped GaN absorbing contact layer. A fitting with ABC model revealed the increase in non-radiative recombination centers in the active region after a soft stress-test. This work aims to shed light on the research efforts required for furthering the UV NWs LED research for practical applications.

  1. Characterization of potassium bromide crystals grown in the aqueous solution of picric acid

    Energy Technology Data Exchange (ETDEWEB)

    Maheswari, J. Uma, E-mail: umak.anand@gmail.com [Department of Physics, The M.D.T.Hindu College, Tirunelveli 627010, Tamilnadu (India); Krishnan, C. [Department of Physics, Arignar Anna College, Aralvoymoli 629301, Tamilnadu (India); Kalyanaraman, S. [Physics Research Centre, Sri Paramakalyani College, Alwarkurichi 627412, Tamilnadu (India); Selvarajan, P. [Department of Physics, Aditanar College of Arts and Science, Tiruchendur 628216, Tamilnadu (India)

    2016-12-01

    Potassium bromide crystals were grown in the aqueous solution of picric acid by slow evaporation technique at room temperature. X-ray Diffraction (XRD) analysis ensures that the grown sample is in Fm3m space group and FCC structure. Energy Dispersive X-ray Spectroscopy (EDX) reveals the presence of elements in the title compound. UV–Vis-NIR spectrum reveals that the grown sample is a promising nonlinear optical (NLO) material. FTIR analysis confirms the functional groups present in the sample. The thermogravimetric (TG) and differential thermogravimetric (DTA) analyses ensure that the sample material is thermally stable up to 160 °C. The second harmonic efficiency of the sample is 1.3 times greater than that of standard KDP. The mechanical strength of the grown sample is estimated by Vickers microhardness tester. The electrical properties were investigated by impedance analysis and the results of various studies of the grown crystals are discussed.

  2. CooLED - efficient LED bulbs with custrom optics - final report

    DEFF Research Database (Denmark)

    Wolff, Jesper; Corell, Dennis Dan; Dam-Hansen, Carsten

    Denne rapport indeholder en beskrivelse af arbejdet udført i og resultaterne af forsknings- og udviklingsprojektet EUDP 64012-0226, CooLED – en ny generation LED Lyskilde for det tidsløse high-end marked....

  3. Sustainable LED Fluorescent Light Replacement Technology

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-09-30

    Ilumisys and the National Center for Manufacturing Sciences (NCMS) partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle – i.e. to develop a sustainable design and manufacturing strategy that addresses product manufacturing, use, recycling and disposal scenarios for LED-based lighting. Based on the knowledge gained from extensive product tear-down studies of fluorescent and screw-in lighting products, lifecycle assessment tools, and accelerated lifecycle testing protocols, an interactive Sustainable LED Design Guide has been developed to aid architectural and lighting designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product. Critical information developed for the lifecycle analysis and product feature comparisons is the useful life of the lighting product as well as its performance. The Design Guide is available at www.ncms.org, and was developed based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs. This report describes the main project tasks, results and innovative features of the lifecycle assessment (LCA)-based design tools, and the key considerations driving the sustainable design of LED lighting systems. The Design Guide incorporates the following three novel features for efficiently evaluating LED lighting features in value-chains: Bill-of-Materials (BOM) Builder – Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life: Environmental Impact Review – Designs are comparable

  4. Low-Cost Illumination-Grade LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Epler, John [Philips Lumileds Lighting Company LLC, San Jose, CA (United States)

    2013-08-31

    Solid State Lighting is a cost-effective, energy-conserving technology serving a rapidly expand- ing multi-billion dollar market. This program was designed to accelerate this lighting revolution by reducing the manufacturing cost of Illumination-Grade LEDs. The technical strategy was to investigate growth substrate alternatives to standard planar sapphire, select the most effective and compatible option, and demonstrate a significant increase in Lumen/$ with a marketable LED. The most obvious alternate substrate, silicon, was extensively studied in the first two years of the program. The superior thermal and mechanical properties of Si were expected to improve wavelength uniformity and hence color yield in the manufacture of high-power illumination- grade LEDs. However, improvements in efficiency and epitaxy uniformity on standard c-plane sapphire diminished the advantages of switching to Si. Furthermore, the cost of sapphire decreased significantly and the cost of processing Si devices using our thin film process was higher than expected. We concluded that GaN on Si was a viable technology but not a practical option for Philips Lumileds. Therefore in 2012 and 2013, we sought and received amendments which broadened the scope to include other substrates and extended the time of execution. Proprietary engineered substrates, off-axis (non-c-plane) sapphire, and c-plane patterned sapphire substrates (PSS) were all investigated in the final 18 months of this program. Excellent epitaxy quality was achieved on all three candidates; however we eliminated engineered substrates and non-c-plane sapphire because of their higher combined cost of substrate, device fabrication and packaging. Ultimately, by fabricating a flip-chip (FC) LED based upon c-plane PSS we attained a 42% reduction in LED manufacturing cost relative to our LUXEON Rebel product (Q1-2012). Combined with a flux gain from 85 to 102 Lm, the LUXEON Q delivered a 210% increase in Lm/$ over this time period. The

  5. Lifetime prediction of LED lighting systems considering thermal coupling between LED sources and drivers

    DEFF Research Database (Denmark)

    Alfarog, Azzarn Orner; Qu, Xiaohui; Wang, Huai

    2017-01-01

    The lifetime prediction of LED lighting system is important to guide the designers to fulfill the design specifications and to benchmark the cost-competitiveness of different lighting technologies. Currently, the lifetime of LED system is usually predicted from the source part and the driver part...... separately, and then the thermal design is also optimized independently. In practice, the LED source and driver are usually compacted in a single fixture. The heat dissipated from LED source and driver will be coupled together and affect the heat transfer performance, which may degrade the whole system...... and accelerate the failure. In this paper, a new thermal model concerning the thermal coupling is proposed with Finite Element Method (FEM) simulation for parameter acquirement. The proposed model has a better estimation of the thermal stresses of key components in the LED lamps and therefore an improved...

  6. Universal fixture design for body mounted LED lights

    Science.gov (United States)

    Hajra, Debdyut

    2017-09-01

    Today LED headlamps, armbands and ankle-bands, shoe-lights etc. have become very popular. These find extensive use in search and rescue operations, mining, carving, etc. and are also used by individuals during hiking, trekking, running, etc. during dark hours. They serve two main purposes: they provide sufficient illumination in low light conditions and they are used to indicate the presence of a person after dark. These have the same basic requirements. They must produce sufficient light, have high durability, long battery life, must be light weight and energy efficient. This paper discusses possibilities of designing a universal LED fixture can be designed so that it meets the respective needs of everyone irrespective of their background and industry. It discusses the materials to be used for its different body parts, innovative clip design for attachment with support structures like head and armbands, helmets, shoes, etc.

  7. LED i Københavns Kommunes gadebelysning

    DEFF Research Database (Denmark)

    Bülow, Katja

    2016-01-01

    Artiklen i denne udgivelse formidler resultatet af en undersøgelse, hvor de visuelle forhold i Københavns Kommunes gader undersøges som resultat af gadens belysning. Der lægges vægt på metoden bag undersøgelsen og på hvordan indførelsen af LED forandrer belysningen i gaderne.......Artiklen i denne udgivelse formidler resultatet af en undersøgelse, hvor de visuelle forhold i Københavns Kommunes gader undersøges som resultat af gadens belysning. Der lægges vægt på metoden bag undersøgelsen og på hvordan indførelsen af LED forandrer belysningen i gaderne....

  8. EVALUATING THE CULTURE-LED REGENERATION

    Directory of Open Access Journals (Sweden)

    D'Angelo Francesca

    2010-12-01

    Full Text Available The aim of the paper is to propose a new approach to urban planning, evaluating the culture-led regeneration processes. In the last few years, the cultural turn in urban planning played a central role in the urban studies. In this way we try to elaborate a more robust perspective interpreting the complex phenomenology emerging from the culture-led regeneration processes. Within the concept of complexity we discuss about the metabolic process that are the processes necessary to transform energy, material and information in goods and service functional to the complex urban system life. The approach that will be employed is the MuSIASEM that is based on several novel concept and an innovative methods never applied in this research field.

  9. Notes on LED Installations in Street Illumination

    Directory of Open Access Journals (Sweden)

    Elisabeta Spunei

    2014-09-01

    Full Text Available The paper presents a study made on choosing LED street lighting installations, such that the quality requirements for exterior artificial lighting are fulfilled. We analyze two types of LED street lighting installations from a technical point of view, together with lighting level and brightness values obtained during the measurements. Following on the field measurements, the lighting quality parameters are calculated, and, for the lighting installation with the best performance, optimal mounting suggestions are made. The optimal quality parameters are calculated by simulations using the Dialux software. The same software and the same light sources we also compute an optimal street lighting by determining the size of the installation that provides the best lighting parameter values.

  10. Optical design of a LED searchlight system

    Science.gov (United States)

    Gong, Chen; Xu, Haiping; Liang, Jinhua; Liu, Yunfei; Yuan, Zengquan

    2018-01-01

    A 1200m visible searchlight system is designed based on photometry and application of geometric optics. To generate intensity distribution of this relatively powerful light beam we propose to use a high power LED and several refractive optical elements, which are composed of two plane-convex lenses and a conventional Fresnel lens. Two plane-convex lenses enable refraction of the side rays from the LED to the front direction which incident on the Fresnel lens. Fresnel lens, in its turn, concentrate the light flux and provide a nearly collimated beam to meet the requirement of forming a well-illuminated area across the road in the far field. Simulation data shows that this searchlight allow generating an appropriate illumination distribution for the long range requirements. A proof-of-concept prototype producing acceptable illuminance is developed.

  11. Distributed dimming control for LED lighting.

    Science.gov (United States)

    Lee, Sang Hyun; Kwon, Jae Kyun

    2013-11-04

    This paper presents a distributed energy-saving lighting strategy for the arrangements of a lighting network consisting of a group of light-emitting diode (LED) lamps and users. LED lamps have a dimming support feature to meet the illuminance requirements imposed by individual users. Both groups interact with each other via visible light communication (VLC) or other wireless communication features. This work aims to identify a configuration of lamps leading to the maximal energy saving in adaptive and distributed ways. To this end, a distributed assignment strategy is developed based on a message-passing framework where only local interactions among lamps and users are allowed for calculations and exchanges of the information on their status. The simulation results show that the proposed algorithm outperforms other distributed algorithms in a range of indoor lighting configurations.

  12. Lampu Pintar Berbasis LED Dengan Multi Sensor

    OpenAIRE

    Ramdan, Ade; Prajitno, Dicky Rianto; Herlan, Herlan; Gojali, Elli Ahmad

    2013-01-01

    In this paper, we propose a LED-based smart lamp prototype that integrated with sensor. The smart lamp use information of people and lighting confirmation, to turn on or turn off the lamp automatically. In addition, the sensor calculates and balances flash and ambient light exposure to decrease the light, so that can make energy efficiently in use. PIR (Passive Infrared Receiver) and Ultrasonic sensor is preferred to detect people condition in one place and LDR (Light Dependent Resistant) is ...

  13. Preliminary investigations of piezoelectric based LED luminary

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Andersen, Michael A. E.; Meyer, Kaspar Sinding

    2011-01-01

    This paper presents a preliminary study of PT (Piezoelectric Transformer) based SMPS’s (Switch Mode Power Supplies) for LED luminary. The unique properties of PTs (efficiency, power density and EMI) make them highly suitable for this application. Power stage topologies, rectifiers circuits, modul....... The prototype constitutes a light source equivalent to the 40 W incandescent bulb. Experimental results shows, that the prototype are capable of ZVS and dimming (the later trough use of burst mode control)....

  14. Band alignment studies of Al2O3/CuGaO2 and ZnO/CuGaO2 hetero-structures grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Ajimsha, R.S.; Das, Amit K.; Joshi, M.P.; Kukreja, L.M.

    2014-01-01

    Highlights: • Band offset studies at the interface of Al 2 O 3 /CuGaO 2 and ZnO/CuGaO 2 hetero-structures were performed using X-ray photoelectron spectroscopy. • Valance band offsets (VBO) of these hetero-structures were obtained from respective XPS peak positions and VB spectra using Kraut's equation. • Al 2 O 3 /CuGaO 2 interface exhibited a type I band alignment with valance band offset (VBO) of 4.05 eV whereas type II band alignment was observed in ZnO/CuGaO 2 hetero-structure with a VBO of 2.32 eV. • Schematic band alignment diagram for the interface of these hetero-structures has been constructed. • Band offset and alignment studies of these heterojunctions are important for gaining insight to the design of various optoelectronic devices based on such hetero-structures. - Abstract: We have studied the band offset and alignment of pulsed laser deposited Al 2 O 3 /CuGaO 2 and ZnO/CuGaO 2 hetero-structures using photoelectron spectroscopy. Al 2 O 3 /CuGaO 2 interface exhibited a type I band alignment with valance band offset (VBO) of 4.05 eV whereas type II band alignment was observed in ZnO/CuGaO 2 hetero-structure with a VBO of 2.32 eV. Schematic band alignment diagram for the interface of these hetero-structures has been constructed. Band offset and alignment studies of these heterojunctions are important for gaining insight to the design of various optoelectronic devices based on such hetero-structures

  15. Eu-, Tb-, and Dy-Doped Oxyfluoride Silicate Glasses for LED Applications

    DEFF Research Database (Denmark)

    Zhu, C.F.; Wang, J.; Zhang, M.M.

    2014-01-01

    Luminescence glass is a potential candidate for the light-emitting diodes (LEDs) applications. Here, we study the structural and optical properties of the Eu-, Tb-, and Dy-doped oxyfluoride silicate glasses for LEDs by means of X-ray diffraction, photoluminescence spectra, Commission Internationale...

  16. UV LED lighting for automated crystal centring

    International Nuclear Information System (INIS)

    Chavas, Leonard M. G.; Yamada, Yusuke; Hiraki, Masahiko; Igarashi, Noriyuki; Matsugaki, Naohiro; Wakatsuki, Soichi

    2011-01-01

    A low-cost light-emitting diode (LED) UV source has been developed for facilitating macromolecular sample centring in the X-ray beam. A direct outcome of the exponential growth of macromolecular crystallography is the continuously increasing demand for synchrotron beam time, both from academic and industrial users. As more and more projects entail screening a profusion of sample crystals, fully automated procedures at every level of the experiments are being implemented at all synchrotron facilities. One of the major obstacles to achieving such automation lies in the sample recognition and centring in the X-ray beam. The capacity of UV light to specifically react with aromatic residues present in proteins or with DNA base pairs is at the basis of UV-assisted crystal centring. Although very efficient, a well known side effect of illuminating biological samples with strong UV sources is the damage induced on the irradiated samples. In the present study the effectiveness of a softer UV light for crystal centring by taking advantage of low-power light-emitting diode (LED) sources has been investigated. The use of UV LEDs represents a low-cost solution for crystal centring with high specificity

  17. Export-led Growth Hypothesis: Turkey Application

    Directory of Open Access Journals (Sweden)

    İsmail KÜÇÜKAKSOY

    2015-12-01

    Full Text Available This paper aims to investigate validity of “Export-led Growth Hypothesis” for Turkey using quarterly data in period from 2003:Q1 to 2015:Q1. Hypothesis argues that there is causality relationship from real export to real Gross Domestic Product (GDP. Johansen cointegration test, Gregory-Hansen cointegration test, Toda-Yamamoto causality test, Fully Modified Ordinary Least Squares (FMOLS, Canonical cointegrating regression (CCR and Dynamic ordinary least squares (DOLS methods were used in this study. Findings can be summarized as follows: a According to Johansen cointegration test there is no relationship among variables in the long-run whereas Gregory-Hansen cointegration test has determined relationship in the long-run; b According to Toda-Yamamoto causality test there is bidirectional causality between real export and real GDP. This finding proves the validity of “Export-led Growth Hypothesis” for Turkey; c According to FMOLS, CCR, DOLS methods a 1% increase in the real export increases the real GDP by 1.5195%, 1.5552%, 1.3171% respectively in the long-run. These methods prove the validity of “Export-led Growth Hypothesis” for Turkey.

  18. Graded nanowire ultraviolet LEDs by polarization engineering

    Science.gov (United States)

    Carnevale, Santino D.; Kent, Thomas F.; Phillips, Patrick J.; Sarwar, A. T. M. Golam; Klie, Robert F.; Rajan, Siddharth; Myers, Roberto C.

    2012-10-01

    Given the large thermal activation energy of acceptors in high %Al AlGaN, a new approach is needed to control p-type conductivity in this material. One promising alternative to using impurity doping with thermal activation is using the intrinsic characteristics of the III-nitrides to activate dopants with polarization-induced charge in graded heterostructures. In this work polarization-induced activation of dopants is used in graded AlGaN nanowires grown by plasma-assisted molecular beam epitaxy to form ultraviolet light-emitting diodes. Electrical and optical characterization is provided, showing clear diode behavior and electroluminescent emission at 336nm. Variable temperature electrical measurements show little change in device performance at cryogenic temperatures, proving that dopant ionization is polarizationinduced rather than thermally activated.

  19. Characterization of YBa2Cu3O7−δ Films With Various Porous Structures Grown by Metalorganic Decomposition Route

    DEFF Research Database (Denmark)

    Yue, Zhao; Qureishy, T.; Mikheenko, P.

    2016-01-01

    crystalline substrates (i.e., LaAlO3 and La-doped CeO2 buffered YSZ). The samples were investigated by X-ray diffraction, scanning electron microscopy, a vibrating sample magnetometer, and a magnetooptical imaging technique. All three films show highly epitaxial growth and good superconducting properties (Tc...... chemistry or by regulating the processing parameters during the film heat treatment. In this work, three YBCO films with various porous structures, namely, a fully dense sample, a cell-structured sample with dense regions surrounded by a porous structure, and a highly porous sample, were deposited on single....... The pinning behaviors in the films related to the nanoporous structures, characterized by magnetic moment measurements and visualized by magneto-optical imaging, will be discussed in detail....

  20. Zinc Oxide Nanocolumns Periodically Grown on Silica Nanosphere Monolayers

    Science.gov (United States)

    Mateo, D.; Wright, N.; Ostoski, A.; Mukherjee, P.; Witanachchi, S.

    ZnO nanocolumns (NCs) are promising building blocks for many existing and emerging applications owing to their unique optical, electrical, and piezoelectric properties. Specifically, the ZnO NCs could be used as seed layer for the growth of other oxide materials. Nanocolumnar ZnO is generally grown in randomly distributed arrays, where the entire substrate is covered and only through lithographic methods is selectivity of growth location achieved. We propose a method to be able to grow ZnO NCs in hexagonally closed packed structure with location tunability. Langmuir-Blodgett was used to construct a self-assembled monolayer of SNSs (3.5 μm, 1.18 μm, 850nm, 500nm and 250nm in diameter) on silicon substrates. Z-axis oriented ZnO NCs were grown on top of the spheres using the glancing angle pulsed laser deposition (GAPLD) technique. Column arrays grown in smaller SNSs diameter were vertical and grew in an hcp structure on top of each sphere. ZnO NCs aspect ratios were found to be dependent on underlying sphere size.

  1. Nanomechanics of Individual Carbon Nanotubes from Pyrolytically Grown Arrays

    Science.gov (United States)

    Gao, Ruiping; Wang, Zhong L.; Bai, Zhigang; de Heer, Walter A.; Dai, Liming; Gao, Mei

    2000-07-01

    The bending modulus of individual carbon nanotubes from aligned arrays grown by pyrolysis was measured by in situ electromechanical resonance in transmission electron microscopy (TEM). The bending modulus of nanotubes with point defects was ~30 GPa and that of nanotubes with volume defect was 2-3 GPa. The time-decay constant of nanotube resonance in a vacuum of 10-4 Torr was ~85 μs. A femtogram nanobalance was demonstrated based on nanotube resonance; it has the potential for measuring the mass of chain-structured large molecules. The in situ TEM provides a powerful approach towards nanomechanics of fiberlike nanomaterials with well-characterized defect structures.

  2. Present and future applications of magnetic nanostructures grown by FEBID

    Science.gov (United States)

    De Teresa, J. M.; Fernández-Pacheco, A.

    2014-12-01

    Currently, magnetic nanostructures are routinely grown by focused electron beam induced deposition (FEBID). In the present article, we review the milestones produced in the topic in the past as well as the future applications of this technology. Regarding past milestones, we highlight the achievement of high-purity cobalt and iron deposits, the high lateral resolution obtained, the growth of 3D magnetic deposits, the exploration of magnetic alloys and the application of magnetic deposits for Hall sensing and in domain-wall conduit and magnetologic devices. With respect to future perspectives of the topic, we emphasize the potential role of magnetic nanostructures grown by FEBID for applications related to highly integrated 2D arrays, 3D nanowires devices, fabrication of advanced scanning-probe systems, basic studies of magnetic structures and their dynamics, small sensors (including biosensors) and new applications brought by magnetic alloys and even exchange biased systems.

  3. Present and future applications of magnetic nanostructures grown by FEBID

    Energy Technology Data Exchange (ETDEWEB)

    Teresa, J.M. de [CSIC-Universidad de Zaragoza, Departamento de Fisica de la Materia Condensada, Instituto de Ciencia de Materiales de Aragon (ICMA), Saragossa (Spain); Universidad de Zaragoza, Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragon (INA), Saragossa (Spain); Fernandez-Pacheco, A. [University of Cambridge, TFM Group, Cavendish Laboratory, Cambridge (United Kingdom)

    2014-12-15

    Currently, magnetic nanostructures are routinely grown by focused electron beam induced deposition (FEBID). In the present article, we review the milestones produced in the topic in the past as well as the future applications of this technology. Regarding past milestones, we highlight the achievement of high-purity cobalt and iron deposits, the high lateral resolution obtained, the growth of 3D magnetic deposits, the exploration of magnetic alloys and the application of magnetic deposits for Hall sensing and in domain-wall conduit and magnetologic devices. With respect to future perspectives of the topic, we emphasize the potential role of magnetic nanostructures grown by FEBID for applications related to highly integrated 2D arrays, 3D nanowires devices, fabrication of advanced scanning-probe systems, basic studies of magnetic structures and their dynamics, small sensors (including biosensors) and new applications brought by magnetic alloys and even exchange biased systems. (orig.)

  4. Conductivity and scaling properties of chemically grown granular silver films

    Science.gov (United States)

    Peterson, M. S. M.; Deutsch, M.

    2009-09-01

    We address room-temperature conductivities of chemically grown silver films. Disordered, granular silver films are grown using a modified Tollens reaction. Thick, polycrystalline films are transparent at visible wavelengths, with crystallinity similar to that of silver powders. The measured conductivities are close to those measured by I. V. Antonets, L. N. Kotov, S. V. Nekipelov, and Ye. A. Golubev, Tech. Phys. 49, 306 (2004) in amorphous silver films, however the thickness where bulk conductivity is reached is anomalously high. While measured resistance values do not obey a scaling relation in thickness, accounting for the films' structural porosity through geometrical rescaling of the thickness leads to emergence of the well-known percolation power-law scaling, albeit that of two-dimensional percolating films.

  5. Structural analysis of a phosphide-based epitaxial structure with a buried oxidized AlAs sacrificial layer

    Science.gov (United States)

    Englhard, M.; Reuters, B.; Baur, J.; Klemp, C.; Zaumseil, P.; Schroeder, T.; Skibitzki, O.

    2017-06-01

    Phosphide-based thin-film light-emitting diodes (TF-LEDs) lattice-matched to GaAs are well established in optoelectronics in the wavelength range between 550 and 650 nm. In this work, we investigate the impact of oxidized AlAs to overlying phosphide-based pseudomorphically grown epitaxial structures. Oxidation of a buried AlAs sacrificial layer allows the separation of the grown TF-LED epitaxy from its substrates and enables an oxidation lift-off process. To evaluate the strain effect of progressing oxidation on the structure of the chip, we perform high-resolution x-ray diffraction analysis on as-grown, mesa-structured, semi-oxidized, and completely laterally oxidized chips. At each state, a pseudomorphic phosphide-based InAlP layer is found. The InAlP layer exhibits a tensile out-of-plane strain of approximately 0.20% and a compressive in-plane strain of approx. -0.19%. Additionally, scanning transmission electron microscopy, energy-dispersive x-ray spectroscopy, and μ-photoluminescence were used for investigation of the boundary zone of the oxidation front of AlAs, the interfaces between phosphide-based semiconductors (InAlP/InGaAlP) and oxidized amorphous AlAs and the light emission of InGaAlP multiple quantum wells.

  6. "Light-box" accelerated growth of poinsettias: LED-only illumination

    Science.gov (United States)

    Weerasuriya, Charitha; Detez, Stewart; Hock Ng, Soon; Hughes, Andrew; Callaway, Michael; Harrison, Iain; Katkus, Tomas; Juodkazis, Saulius

    2018-01-01

    For the current commercialized agricultural industry which requires a reduced product lead time to customer and supply all year round, an artificial light emitting diodes (LEDs)-based illumination has high potential due to high efficiency of electrical-to-light conversion. The main advantage of the deployed Red Green Blue Amber LED lighting system is colour mixing capability, which means ability to generate all the colours in the spectrum by using three or four primary colours LEDs. The accelerated plant growth was carried out in a "light-box" which was made to generate an artificial day/night cycle by moving the colour mixing ratio along the colour temperature curve of the chromaticity diagram. The control group of plants form the same initial batch was grown on the same shelf in a greenhouse at the same conditions with addition of artificial illumination by incandescent lamps for few hours. Costs and efficiency projections of LED lamps for horticultural applications is discussed together with required capital investment. The total cost of the "light-box" including LED lamps and electronics was 850 AUD.

  7. Effect of Pulse Nanosecond Volume Discharge in Air at Atmospheric Pressure on Electrical Properties of Mis Structures Based on p-HgCdTe Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.; Grigor'ev, D. V.; Tarasenko, V. F.; Shulepov, M. A.

    2015-11-01

    The effect of the pulse nanosecond volume discharge in air at atmospheric pressure on the admittance of MIS structures based on MBE graded-gap p-Hg0.78Cd0.22Te is studied in a wide range of frequencies and temperatures. It is shown that the impact of the discharge leads to significant changes in electrical characteristics of MIS structures (the density of positive fixed charge increases), to the changes in the nature of the hysteresis of capacitance-voltage characteristics, and to an increase in the density of surface states. A possible reason for the changes in the characteristics of MIS structures after exposure to the discharge is substantial restructuring of the defect-impurity system of the semiconductor near the interface.

  8. Yield of lettuce grown in aquaponic system using different substrates

    Directory of Open Access Journals (Sweden)

    Rodrigo A. Jordan

    Full Text Available ABSTRACT In the aquaponic system, the characteristics of the materials used as substrate directly affect plant development, because besides acting as a support base, they must present a surface to fix microorganisms, responsible for the conversion of nutrients into forms more easily available to plants. Thus, the objective of this study was to evaluate the effect of four growing substrates on the yield of lettuce grown in aquaponic system. The experimental design was randomized blocks with four treatments, which corresponded to the substrates, and six replicates. Plants were grown using the nutrient film technique (NFT system. The substrates used in the experiment were: coconut shell fiber with crushed stone #3, expanded vermiculite, zeolite and phenolic foam. The treatment with phenolic foam was considered as the least suitable for lettuce cultivation in aquaponic system, because it caused lower yield (20.8 t ha-1. The treatment using coconut shell fiber with crushed stone #3 was considered as the most adequate, since it led to higher yield (39.9 t ha-1 compared with the other substrates analyzed.

  9. Efficient light extraction from GaN LEDs using gold-coated ZnO nanoparticles

    KAUST Repository

    Alhadidi, A.

    2015-11-01

    We experimentally demonstrate the effect of depositing gold-coated ZnO nanoparticles on the surface of GaN multi-quantum well LED structures. We show that this method can significantly increase the amount of extracted light.

  10. Buurtzorg: nurse-led community care.

    Science.gov (United States)

    Monsen, Karen A; de Blok, Jos

    2013-01-01

    Buurtzorg is a nurse-led, nurse-run organization of self-managed teams that provide home care to patients in their neighborhoods. Championing humanity over bureaucracy, autonomous teams work with primary care providers, community supports, and family resources to bring patients to optimal functioning as quickly as possible. The award-winning organization grew out of a common sense approach based on principles of trust, autonomy, creativity, simplicity, and collaboration. These organizational principles translate into highly effective and efficient care, satisfied patients, and enthusiastic nurses. The model is being replicated worldwide, with teams starting in Minnesota, Sweden, Japan, and other countries.

  11. Wheat Under LED's (Light Emitting Diodes)

    Science.gov (United States)

    2004-01-01

    Astroculture is a suite of technologies used to produce and maintain a closed controlled environment for plant growth. The two most recent missions supported growth of potato, dwarf wheat, and mustard plants, and provided scientists with the first opportunity to conduct true plant research in space. Light emitting diodes have particular usefulness for plant growth lighting because they emit a much smaller amount of radiant heat than do conventional lighting sources and because they have potential of directing a higher percentage of the emitted light onto plants surfaces. Furthermore, the high output LED's have emissions in the 600-700 nm waveband, which is of highest efficiency for photosynthesis by plants.

  12. Someone Has Led This Child To Believe

    OpenAIRE

    Louise, Regina

    2015-01-01

    ABSTRACTSOMEONE HAS LED THIS CHILD TO BELIEVE is a true story and continuation of the best-selling memoir Somebody’s Someone. After 12 year-old Regina Louise, tired of being beaten, battles and escapes an illegal guardian; she jumps from a two-story window and runs to a local police station where she is taken into custody, locked in a holding cell, and delivered to the Edgar Children’s Shelter, in Martinez California. Regina is closed off about her parents, her past…until she meets Jeanne Ke...

  13. Moral Issues in Intelligence-led Policing

    DEFF Research Database (Denmark)

    The core baseline of Intelligence-led Policing is the aim of increasing efficiency and quality of police work, with a focus on crime analysis and intelligence methods as tools for informed and objective decisions both when conducting targeted, specialized operations and when setting strategic...... priorities. This book critically addresses the proliferation of intelligence logics within policing from a wide array of scholarly perspectives. It considers questions such as: •How are precautionary logics becoming increasingly central in the dominant policing strategies? •What kind of challenges...... and the blurred and confrontational lines that can be observed between prevention, intelligence and investigation in police work....

  14. Structural and superconducting characteristics of YBa2Cu3O7 films grown by fluorine-free metal-organic deposition route

    DEFF Research Database (Denmark)

    Zhao, Yue; Chu, Jingyuan; Qureishy, Thomas

    2018-01-01

    in the ab plane and is little influenced by the LAO twinning underneath, implying the severe structural disorder most likely associated with the large amount of small-angle grain boundaries. Moreover, the higher density of stacking faults was also detected by XRD θ-2θ, scan in the LF-MOD film...

  15. TEM EDS analysis of epitaxially-grown self-assembled indium islands

    Directory of Open Access Journals (Sweden)

    Jasmine Sears

    2017-05-01

    Full Text Available Epitaxially-grown self-assembled indium nanostructures, or islands, show promise as nanoantennas. The elemental composition and internal structure of indium islands grown on gallium arsenide are explored using Transmission Electron Microscopy (TEM Energy Dispersive Spectroscopy (EDS. Several sizes of islands are examined, with larger islands exhibiting high (>94% average indium purity and smaller islands containing inhomogeneous gallium and arsenic contamination. These results enable more accurate predictions of indium nanoantenna behavior as a function of growth parameters.

  16. Measuring progress towards a primary care-led NHS.

    Science.gov (United States)

    Miller, P; Craig, N; Scott, A; Walker, A; Hanlon, P

    1999-07-01

    The push towards a 'primary care-led' National Health Service (NHS) has far-reaching implications for the future structure of the NHS. The policy involves both a growing emphasis on the role of primary care practitioners in the commissioning of health services, and a change from hospital to primary and community settings for a range of services and procedures. Although the terminology has changed, this emphasis remains in the recent Scottish Health Service White Paper and its English counterpart. To consider three questions in relation to this policy goal. First, does the evidence base support the changes? Secondly, what is the scale of the changes that have occurred? Thirdly, what are the barriers to the development of a primary care-led NHS? Programme budgets were compiled to assess changes over time in the balance of NHS resource allocation with respect to primary and secondary care. Total NHS revenue expenditure for the 15 Scottish health boards was grouped into four blocks or 'programmes': primary care, secondary care, community services, and a residual. The study period was 1991/2 to 1995/6. Expenditure data were supplied by the Scottish Office. Ambiguity of definitions and the absence of good data cause methodological difficulties in evaluating the scale and the appropriateness of the shift. The data that are available suggest that, at the aggregate level, there have been changes over time in the balance of resource allocation between care settings: relative investment into primary care has increased. It would appear that this investment is relatively small and from growth money rather than a 'shift' from secondary care. In addition, the impact of GP-led commissioning is variable but limited. General practitioners' (GPs') attitudes to the policy suggest that progress towards a primary care-led NHS will continue to be patchy. The limited shift to date, alongside evidence of ambivalent attitudes to the shift on the part of GPs, suggest that this is a policy

  17. Dominant transverse-electric polarized emission from 298 nm MBE-grown AlN-delta-GaN quantum well ultraviolet light-emitting diodes

    Science.gov (United States)

    Liu, Cheng; Ooi, Yu Kee; Islam, S. M.; Xing, Huili Grace; Jena, Debdeep; Zhang, Jing

    2017-02-01

    III-nitride based ultraviolet (UV) light emitting diodes (LEDs) are of considerable interest in replacing gas lasers and mercury lamps for numerous applications. Specifically, AlGaN quantum well (QW) based LEDs have been developed extensively but the external quantum efficiencies of which remain less than 10% for wavelengths <300 nm due to high dislocation density, difficult p-type doping and most importantly, the physics and band structure from the three degeneration valence subbands. One solution to address this issue at deep UV wavelengths is by the use of the AlGaN-delta-GaN QW where the insertion of the delta-GaN layer can ensure the dominant conduction band (C) - heavyhole (HH) transition, leading to large transverse-electric (TE) optical output. Here, we proposed and investigated the physics and polarization-dependent optical characterizations of AlN-delta- GaN QW UV LED at 300 nm. The LED structure is grown by Molecular Beam Epitaxy (MBE) where the delta-GaN layer is 3-4 monolayer (QW-like) sandwiched by 2.5-nm AlN sub-QW layers. The physics analysis shows that the use of AlN-delta-GaN QW ensures a larger separation between the top HH subband and lower-energy bands, and strongly localizes the electron and HH wave functions toward the QW center and hence resulting in 30-time enhancement in TEpolarized spontaneous emission rate, compared to that of a conventional Al0.35Ga0.65N QW. The polarization-dependent electroluminescence measurements confirm our theoretical analysis; a dominant TE-polarized emission was obtained at 298 nm with a minimum transverse-magnetic (TM) polarized emission, indicating the feasibility of high-efficiency TEpolarized UV emitters based on our proposed QW structure.

  18. Glow curves and the emission of flux-grown BaFCl:Na crystals

    International Nuclear Information System (INIS)

    Somaiah, K.; Hari Babu, V.

    1984-01-01

    The thermoluminescence glow curves and the emission spectra of flux-grown BaFCl:Na crystals were recorded. An additional TL peak at 320 K, an optical absorption band at 570nm and an emission peak at 490 nm have been seen in X/γ-irradiated crystals. Bleaching, room-temperature annealing and high-temperature emission results led us to conclude that the sodium impurity is responsible for the additional glow peak optical absorption band and emission peak. (author)

  19. An investigation on LED customer’ behavior

    Directory of Open Access Journals (Sweden)

    Samaneh Sadat Khoramgah

    2013-03-01

    Full Text Available The recent advances in technology have created a challenge for customer on purchasing electronic devises since the cycle of media production such as TV, Mobile devices, etc. are getting short and people need to replace them by new products. The recent emerge of Light Emitting Diode (LED television has attracted many people and there is a concern to study the impact of important factors on customer behavior in this business. This paper presents an empirical study to study the effects of six variables including customer perception, motivation, cognitive learning, attitude, information and price on customer behavior for LED televisions produced by an Iranian firm in Tehran, Iran. The study designs a questionnaire consists of 27 questions and distributes it among some people who are potential customers of this product. We use multiple regression analysis to study the behavior of different factors on customer behavior. The results of our survey indicate that cognitive learning had the most influencing impact (0.22 on customer behavior followed by price (0.219, motivation (0.203, attitude (0.193, information (0.183 and perception (0.145.

  20. UV LED lighting for automated crystal centring.

    Science.gov (United States)

    Chavas, Leonard M G; Yamada, Yusuke; Hiraki, Masahiko; Igarashi, Noriyuki; Matsugaki, Naohiro; Wakatsuki, Soichi

    2011-01-01

    A direct outcome of the exponential growth of macromolecular crystallography is the continuously increasing demand for synchrotron beam time, both from academic and industrial users. As more and more projects entail screening a profusion of sample crystals, fully automated procedures at every level of the experiments are being implemented at all synchrotron facilities. One of the major obstacles to achieving such automation lies in the sample recognition and centring in the X-ray beam. The capacity of UV light to specifically react with aromatic residues present in proteins or with DNA base pairs is at the basis of UV-assisted crystal centring. Although very efficient, a well known side effect of illuminating biological samples with strong UV sources is the damage induced on the irradiated samples. In the present study the effectiveness of a softer UV light for crystal centring by taking advantage of low-power light-emitting diode (LED) sources has been investigated. The use of UV LEDs represents a low-cost solution for crystal centring with high specificity.