Sample records for led light emitting

  1. Light Emitting Diode (LED) (United States)


    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.

  2. Light Emitting Diodes (LEDs) (United States)


    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. 'A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back,' said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.

  3. Wheat Under LED's (Light Emitting Diodes) (United States)


    Astroculture is a suite of technologies used to produce and maintain a closed controlled environment for plant growth. The two most recent missions supported growth of potato, dwarf wheat, and mustard plants, and provided scientists with the first opportunity to conduct true plant research in space. Light emitting diodes have particular usefulness for plant growth lighting because they emit a much smaller amount of radiant heat than do conventional lighting sources and because they have potential of directing a higher percentage of the emitted light onto plants surfaces. Furthermore, the high output LED's have emissions in the 600-700 nm waveband, which is of highest efficiency for photosynthesis by plants.

  4. Blue laser diode (LD) and light emitting diode (LED) applications

    International Nuclear Information System (INIS)

    Bergh, Arpad A.


    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography. As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc. Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity. Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Investigation of Light-Emitting Diode (LED) Point Light Source Color Visibility against Complex Multicolored Backgrounds (United States)


    ARL-TR-8214 ● NOV 2017 US Army Research Laboratory Investigation of Light-Emitting Diode (LED) Point Light Source Color...ARL-TR-8214 ● NOV 2017 US Army Research Laboratory Investigation of Light-Emitting Diode (LED) Point Light Source Color Visibility against...instructions, searching existing data sources , gathering and maintaining the data needed, and completing and reviewing the collection information. Send

  6. Time effectiveness of Ultraviolet C light (UVC) emitted by Light Emitting Diodes (LEDs) in reducing stethoscope contamination


    Messina, Gabriele; Fattorini, Mattia; Nante, Nicola; Rosadini, Daniele; Serafini, Andrea; Tani, Marco; Cevenini, Gabriele


    Today it is well demonstrated that stethoscopes can be as contaminated as hands, which are a recognized source of Health-Care Associated Infections (HCAIs). Ultraviolet C (UVC) light has proven disinfection capacity and the innovative UVC technology of Light Emitting Diode (LED) shows several potential benefits. To verify whether the use of UVC LEDs is effective and reliable in stethoscope membrane disinfection after prolonged use, a pre-post intervention study was conducted. A total of 1668 ...

  7. Light emitting diode (LED) use in artificial lighting for broiler chicken production


    Santana,Mayara R. de; Garcia,Rodrigo G.; Naas,Irenilza de A.; Paz,Ibiara C. de L. A.; Caldara,Fabiana R.; Barreto,Bruna


    Light emitting diode (LED) has been used in commercial poultry industry by presenting superior energy savings and providing feasibility on production process. The objective of this research was to evaluate performance and carcass yield of broiler chickens exposed to different LED colors compared with fluorescent lamps. For that, two experiments (E1 and E2) were performed and 2,646 Cobb® chickens were used. In experiment E1, male birds were exposed to 20 lux artificial lighting with red, yello...

  8. Stolephorus sp Behavior in Different LED (Light Emitting Diode) Color and Light Intensities (United States)

    Fitri Aristi, D. P.; Ramadanita, I. A.; Hapsari, T. D.; Susanto, A.


    This research aims to observe anchovy (Stolephorus sp) behavior under different LED light intensities that affect eye physiology (cell cone structure). The materials used were Stolephorus sp taken from the waters off Jepara and 13 and 10 watt light emitting diode (LED). The research method was an experiment conducted from March through August 2015 in the waters off Jepara. Data analysis of visual histology and fish respond was carried out at the fishing gear material laboratory, anatomy and cultivate. Cone cell structure (mosaic cone) of Stolephorus sp forms a connected regular square pattern with every single cone surrounded by four double cones, which indicate that anchovies are sensitive to light. The 13 watt LED (628 lux) has faster response than the 10 watt LED (531 lux) as it has wider and higher emitting intensity, which also attracts fish to gather quicker.

  9. Light-Emitting Diode (LED) Traps Improve the Light-Trapping of Anopheline Mosquitoes. (United States)

    Costa-Neta, B M; da Silva, A A; Brito, J M; Moraes, J L P; Rebêlo, J M M; Silva, F S


    Numerous advantages over the standard incandescent lamp favor the use of light-emitting diodes (LEDs) as an alternative and inexpensive light source for sampling medically important insects in surveillance studies. Previously published studies examined the response of mosquitoes to different wavelengths, but data on anopheline mosquito LED attraction are limited. Center for Disease Control and Prevention-type light traps were modified by replacing the standard incandescent lamp with 5-mm LEDs, one emitting at 520 nm (green) and the other at 470 nm (blue). To test the influence of moon luminosity on LED catches, the experiments were conducted during the four lunar phases during each month of the study period. A total of 1,845 specimens representing eight anopheline species were collected. Anopheles (Nyssorhynchus) evansae (35.2%) was the most frequently collected, followed by An. (Nys.) triannulatus (21.9%), An. (Nys.) goeldii (12.9%), and An. (Nys.) argyritarsis (11.5%). The green LED was the most attractive light source, accounting for 43.3% of the individuals collected, followed by the blue (31.8%) and control (24.9%) lights. The LED traps were significantly more attractive than the control, independent of the lunar phase. Light trapping of anopheline mosquitoes was more efficient when the standard incandescent lamp was replaced with LEDs, regardless of the moon phase. The efficiency of LEDs improves light trapping results, and it is suggested that the use of LEDs as an attractant for anopheline mosquitoes should be taken into consideration when sampling anopheline mosquitoes. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email:

  10. Light emitting diodes (LED): applications in forest and native plant nurseries (United States)

    Thomas D. Landis; Jeremiah R. Pinto; R. Kasten Dumroese


    It was quotes like this that made us want to learn more about light emitting diodes (LED). Other than knowing that LEDs were the latest innovation in artificial lighting, we knew that we had a lot to learn. So we started by reviewing some of the basics. The following review is a brief synopsis of how light affects plants and some discussion about LED lighting. If you...

  11. Best practices : bus signage for persons with visual impairments : light-emitting diode (LED) signs (United States)


    This best-practices report provides key information regarding the use of Light-Emitting Diode (LED) sign technologies to present destination and route information on transit vehicles. It will assist managers and engineers in the acquisition and use o...

  12. Retinal endoilluminator toxicity of xenon and light-emitting diode (LED) light source: rabbit model. (United States)

    Aydin, Bahri; Dinç, Erdem; Yilmaz, S Necat; Altiparmak, U Emrah; Yülek, Fatma; Ertekin, Sevda; Yilmaz, Mustafa; Yakın, Mehmet


    This study evaluates retinal toxicity due to endoillumination with the light-emitting diode (LED) light source in comparison to endoillumination with xenon light source. Twenty-five eyes of 14 New Zealand pigmented rabbits were used in the study. The LED light (Omesis Medical Systems, Turkey) group was composed of 7 right eyes, while the other 7 right eyes constituted the xenon group (420 nm filter, 357mW/cm(2)) (Bright Star; DORC, Zuidland, Netherlands). Eleven untreated left eyes composed the control group. Twenty gauge pars plana incision 1.5 mm behind the limbus was performed in the right eyes. Twenty gauge bullet type fiberoptic endoilluminator was inserted into the eye from the incision without any pars plana vitrectomy. Fiberoptic endoilluminator was placed in such a way that it was directed toward visual streak of the rabbit retina with a 5 mm distance to retinal surface. Endoillumination was then applied for 20 min with a maximum light intensity for LED and xenon light. In left control eyes, no surgical procedure and no endoillumination were performed. One week after the endoillumination procedure, both eyes of the rabbits were enucleated following electroretinography. Sections stained with hematoxylin and eosin to evaluate morphologic changes. Retina tissues were assessed by active caspase-3 staining. There was no difference in the shape of the waveforms recorded in the eyes endoilluminated with LED light and xenon light sources compared to control eyes both before and after endoillumination application (p > 0.05). Microscopic evaluation of the retinas with hematoxylin and eosin staining demonstrated that all study groups have normal histologic properties similar to control group. No apoptosis positive cells were found within all sections in all groups. When the LED light source is used with maximum power and limited duration for endoillumination in rabbit eyes it does not produce phototoxic effects that may be detectable by electrophysiology

  13. Light Emitting Diode (LED) circular traffic signal lifetime management system. (United States)


    The objective of this research is to build lifetime curves for red, yellow, and green LED circular traffic signals through 20,000-hr. accelerated stress testing of samples operating under Louisianas environmental conditions.

  14. Biological Research in Canisters (BRIC) - Light Emitting Diode (LED) (United States)

    Levine, Howard G.; Caron, Allison


    The Biological Research in Canisters - LED (BRIC-LED) is a biological research system that is being designed to complement the capabilities of the existing BRIC-Petri Dish Fixation Unit (PDFU) for the Space Life and Physical Sciences (SLPS) Program. A diverse range of organisms can be supported, including plant seedlings, callus cultures, Caenorhabditis elegans, microbes, and others. In the event of a launch scrub, the entire assembly can be replaced with an identical back-up unit containing freshly loaded specimens.

  15. Electronic homogeneity of nanowire heterostructure Light Emitting Diodes (LEDs) (United States)

    Selcu, Camelia; May, Brelon J.; Sarwar, A. T. M. Golam; Myers, Roberto C.

    In addition to low defect densities and great tunability bandgap within a single heterostructure, the possibility of growing (Al, In,_) GaN nanowire heterostructure LEDs on different substrates while maintaining their high electronic and optical properties makes them very attractive. We investigated the electronic homogeneity of the (Al, In,_) GaN nanowire ensemble by acquiring current maps at certain applied biases using conductive AFM. By taken IVs on individual nanowires, we found that different wires have different turn on voltages and that some of the nanowires degrade due to the applied bias.

  16. Time Effectiveness of Ultraviolet C Light (UVC) Emitted by Light Emitting Diodes (LEDs) in Reducing Stethoscope Contamination. (United States)

    Messina, Gabriele; Fattorini, Mattia; Nante, Nicola; Rosadini, Daniele; Serafini, Andrea; Tani, Marco; Cevenini, Gabriele


    Today it is well demonstrated that stethoscopes can be as contaminated as hands, which are a recognized source of Health-Care Associated Infections (HCAIs). Ultraviolet C (UVC) light has proven disinfection capacity and the innovative UVC technology of Light Emitting Diode (LED) shows several potential benefits. To verify whether the use of UVC LEDs is effective and reliable in stethoscope membrane disinfection after prolonged use, a pre-post intervention study was conducted. A total of 1668 five-minute cycles were performed on two UVC LEDs to simulate their use; thereafter, their disinfection capacity was tested on stethoscope membranes used on a previously auscultated volunteer. Then, a further 1249 cycles were run and finally the LEDs were tested to assess performance in reducing experimental contamination by Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli on the stethoscope membrane. Baseline volunteer contamination identified 104 Colony Forming Units (CFUs) while treated Petri dishes had 12 and 15 CFUs (p bacteria: in particular, after treatment no CFU were observed for S. aureus and E. coli. UVC LEDs demonstrated the capacity to maintain high levels of disinfection after more than 240 h of use and they were effective against common microorganisms that are causative agents of HCAIs.

  17. Time Effectiveness of Ultraviolet C Light (UVC Emitted by Light Emitting Diodes (LEDs in Reducing Stethoscope Contamination

    Directory of Open Access Journals (Sweden)

    Gabriele Messina


    Full Text Available Today it is well demonstrated that stethoscopes can be as contaminated as hands, which are a recognized source of Health-Care Associated Infections (HCAIs. Ultraviolet C (UVC light has proven disinfection capacity and the innovative UVC technology of Light Emitting Diode (LED shows several potential benefits. To verify whether the use of UVC LEDs is effective and reliable in stethoscope membrane disinfection after prolonged use, a pre-post intervention study was conducted. A total of 1668 five-minute cycles were performed on two UVC LEDs to simulate their use; thereafter, their disinfection capacity was tested on stethoscope membranes used on a previously auscultated volunteer. Then, a further 1249 cycles were run and finally the LEDs were tested to assess performance in reducing experimental contamination by Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli on the stethoscope membrane. Baseline volunteer contamination identified 104 Colony Forming Units (CFUs while treated Petri dishes had 12 and 15 CFUs (p < 0.001. Statistically significant differences (p < 0.001 were also found relating to the reduction of specific bacteria: in particular, after treatment no CFU were observed for S. aureus and E. coli. UVC LEDs demonstrated the capacity to maintain high levels of disinfection after more than 240 h of use and they were effective against common microorganisms that are causative agents of HCAIs.

  18. The Use of Light-Emitting Diodes (LEDs) as Green and Red/Far-Red Light Sources in Plant Physiology. (United States)

    Jackson, David L.; And Others


    The use of green, red, and far-red light-emitting diodes (LEDs) as light sources for plant physiological studies is outlined and evaluated. Indicates that LED lamps have the advantage over conventional light sources in that they are lightweight, low-cost, portable, easily constructed, and do not require color filters. (Author/DH)

  19. Enhanced biomass production and lipid accumulation of Picochlorum atomus using light-emitting diodes (LEDs). (United States)

    Ra, Chae Hun; Kang, Chang-Han; Jung, Jang-Hyun; Jeong, Gwi-Taek; Kim, Sung-Koo


    The effects of light-emitting diode (LED) wavelength, light intensity, nitrate concentration, and time of exposure to different LED wavelength stresses in a two-phase culture on lipid production were evaluated in the microalga, Picochlorum atomus. The biomass produced by red LED light was higher than that produced by purple, blue, green, or yellow LED and fluorescent lights from first phase of two-phase culture. The highest lipid production of P. atomus was 50.3% (w/w) with green LED light at 2days of second phase as light stress. Fatty acid analysis of the microalgae showed that palmitic acid (C16:0) and linolenic acid (C18:3) accounted for 84-88% (w/w) of total fatty acids from P. atomus. The two-phase culture of P. atomus is suitable for biofuel production due to higher lipid productivity and favorable fatty acid composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting in Leavenworth, KS

    Energy Technology Data Exchange (ETDEWEB)

    Myer, Michael; Kinzey, Bruce R.; Curry, Ku' uipo


    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a commercial parking lot lighting application, under the U.S. Department of Energy (DOE) Solid-State Lighting Technology GATEWAY Demonstration Program. The parking lot is for customers and employees of a Walmart Supercenter in Leavenworth, Kansas and this installation represents the first use of the LED Parking Lot Performance Specification developed by the DOE’s Commercial Building Energy Alliance. The application is a parking lot covering more than a half million square feet, lighted primarily by light-emitting diodes (LEDs). Metal halide wall packs were installed along the building facade. This site is new construction, so the installed baseline(s) were hypothetical designs. It was acknowledged early on that deviating from Walmart’s typical design would reduce the illuminance on the site. Walmart primarily uses 1000W pulse-start metal halide (PMH) lamps. In order to provide a comparison between both typical design and a design using conventional luminaires providing a lower illuminance, a 400W PMH design was also considered. As mentioned already, the illuminance would be reduced by shifting from the PMH system to the LED system. The Illuminating Engineering Society of North America (IES) provides recommended minimum illuminance values for parking lots. All designs exceeded the recommended illuminance values in IES RP-20, some by a wider margin than others. Energy savings from installing the LED system compared to the different PMH systems varied. Compared to the 1000W PMH system, the LED system would save 63 percent of the energy. However, this corresponds to a 68 percent reduction in illuminance as well. In comparison to the 400W PMH system, the LED system would save 44 percent of the energy and provide similar minimum illuminance values at the time of relamping. The LED system cost more than either of the PMH systems when comparing initial costs

  1. Joint structure in high brightness light emitting diode (HB LED) packages

    International Nuclear Information System (INIS)

    Park, Jin-Woo; Yoon, Young-Bok; Shin, Sang-Hyun; Choi, Sang-Hyun


    We present the transmission electron microscopy (TEM) analysis of 1.5 μm-thick Au-20Sn solder joint between a high brightness light emitting diode (HB LED) and a Si heat sink. Due to intermetallic compound formation, global Sn depletion occurred in the thin solder, which raised the melting point of the solder and caused local incompleteness of bonding

  2. Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy (United States)

    Sato, Kazuhide; Watanabe, Rira; Hanaoka, Hirofumi; Nakajima, Takahito; Choyke, Peter L.; Kobayashi, Hisataka


    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein we compare two NIR-light sources; light emitting diodes (LEDs) and Lasers, for their effectiveness in NIR-PIT. A photosensitizer, IRDye-700DX, conjugated to panitumumab (pan-IR700), was incubated with EGFR-expressing A431 and MDA-MB-468-luc cells. NIR-light was provided by LEDs or Lasers at the same light dose. Laser-light produced more cytotoxicity and greater reductions in IR700-fluorescence intensity than LED-light. Laser-light also produced more cytotoxicity in vivo in both cell lines. Assessment of super-enhanced permeability and retention (SUPR) effects were stronger with Laser than LED. These results suggest that Laser-light produced significantly more cytotoxic effects compared to LEDs. Although LED is less expensive, Laser-light produces superior results in NIR-PIT. PMID:26885688

  3. Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy. (United States)

    Sato, Kazuhide; Watanabe, Rira; Hanaoka, Hirofumi; Nakajima, Takahito; Choyke, Peter L; Kobayashi, Hisataka


    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein we compare two NIR-light sources; light emitting diodes (LEDs) and Lasers, for their effectiveness in NIR-PIT. A photosensitizer, IRDye-700DX, conjugated to panitumumab (pan-IR700), was incubated with EGFR-expressing A431 and MDA-MB-468-luc cells. NIR-light was provided by LEDs or Lasers at the same light dose. Laser-light produced more cytotoxicity and greater reductions in IR700-fluorescence intensity than LED-light. Laser-light also produced more cytotoxicity in vivo in both cell lines. Assessment of super-enhanced permeability and retention (SUPR) effects were stronger with Laser than LED. These results suggest that Laser-light produced significantly more cytotoxic effects compared to LEDs. Although LED is less expensive, Laser-light produces superior results in NIR-PIT.

  4. How to distinguish scattered and absorbed light from re-emitted light for white LEDs?

    NARCIS (Netherlands)

    Meretska, Maryna; Lagendijk, Aart; Thyrrestrup Nielsen, Henri; Mosk, Allard; IJzerman, Wilbert; Vos, Willem L.


    We have studied the light transport through phosphor diffuser plates that are used in commercial solid-state lighting modules (Fortimo). These polymer plates contain YAG:Ce+3 phosphor particles that scatter, absorb and re-emit incident light in the visible wavelength range (400-700 nm). To

  5. Reliability study of opto-coupled semiconductor devices and Light Emitting Diodes (LED) (United States)

    Maurer, R. C.; Weissflug, V. A.; Sisul, E. V.


    Opto-coupler and light emitting diode (LED) failure mechanisms and associated activation energies were determind from the results of environmental and accelerated lift tests of over 2,400 devices. The evaluation program included LED phototransistor opto-couplers from three sources, LED photoamplifier opto-couplers from a single source, and discrete infrared emitting LEDs from two sources. Environmental tests to evaluate device mechanical integrity included power cycling (10,000 cycles), temperature cycling (500 cycles) and a sequence of monitored shock, monitored vibration and constant acceleration. Multiple temperature operating life tests were conducted at ambient temperatures between 25 C and 200 C. Opto-couplers were operated in both the 'on' and 'off' states during life testing.

  6. Image quality of a novel light-emitting diode (LED)-illuminated colonoscope. (United States)

    Sasaki, Sho; Nishikawa, Jun; Yanai, Hideo; Nakamura, Munetaka; Nishimura, Junichi; Goto, Atsushi; Kiyotoki, Shu; Saito, Mari; Hamabe, Kouichi; Tanabe, Ryo; Nakamura, Yohei; Tokiyama, Hiroshi; Hashimoto, Shinichi; Okamoto, Takeshi; Higaki, Shingo; Kurai, Satoshi; Ogihara, Hiroyuki; Hamamoto, Yoshihiko; Sakaida, Isao


    Light-emitting diodes (LEDs) are used widely for their high luminous efficiency and durability. We developed a novel prototype high definition endoscope with white LEDs and evaluated the image quality it produced against a commercial endoscope with conventional light source. The specifications of both colonoscopes were identical, except for the LED light source at the tip of the prototype. We examined 20 patients with rectal or sigmoid colon lesions and the image quality was evaluated in 40 images (one image from the LED colonoscope and one from the conventional colonoscope for each lesion) by three endoscopists. We additionally evaluated the 17 videos recorded with the LED colonoscope that were available. Image quality, mucosal and vascular color, and luminous distribution and intensity were scored on a 5-point scale. The mean score for vascular color given by one evaluator was significantly higher using the LED colonoscope than using the conventional colonoscope. The mean scores for mucosal color and luminous intensity from another evaluator were significantly lower with the LED colonoscope than with the conventional colonoscope. There were no significant differences in the luminous distribution scores for any of the evaluators. The image quality of the videos was evaluated as being similar with both colonoscopes. Image quality from the LED and conventional colonoscopes were similar, although the luminous intensity of the LEDs is inferior to that of the conventional light source at the present time. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Deep Ultraviolet Light Emitting Diode (LED)-Based Sensing of Sulfur Dioxide. (United States)

    Michel, Anna P M; Kapit, Jason


    With the recent development of deep ultraviolet (DUV) light emitting diodes (LEDs) comes the possibility of targeting absorption bands of several gases, including sulfur dioxide (SO 2 ). SO 2 has strong absorption bands in the 300 nm spectral region. The low cost and small size of DUV LEDs, coupled with their spectral coverage, makes them viable sources for new gas sensors. Here, we demonstrate the capability to use absorption spectroscopy with a balanced detection scheme using a 300 nm DUV LED source for SO 2 detection at concentrations ranging from less than 1 ppm to 50 ppm.

  8. White light-emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model. (United States)

    Shang, Yu-Man; Wang, Gen-Shuh; Sliney, David; Yang, Chang-Hao; Lee, Li-Ling


    Light-emitting diodes (LEDs) deliver higher levels of blue light to the retina than do conventional domestic light sources. Chronic exposure to high-intensity light (2,000-10,000 lux) has previously been found to result in light-induced retinal injury, but chronic exposure to relatively low-intensity (750 lux) light has not been previously assessed with LEDs in a rodent model. We examined LED-induced retinal neuronal cell damage in the Sprague-Dawley rat using functional, histological, and biochemical measurements. We used blue LEDs (460 nm) and full-spectrum white LEDs, coupled with matching compact fluorescent lights, for exposures. Pathological examinations included electroretinogram, hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC), and transmission electron microscopy (TEM). We also measured free radical production in the retina to determine the oxidative stress level. H&E staining and TEM revealed apoptosis and necrosis of photoreceptors, which indicated blue-light induced photochemical injury of the retina. Free radical production in the retina was increased in LED-exposed groups. IHC staining demonstrated that oxidative stress was associated with retinal injury. Although we found serious retinal light injury in LED groups, the compact fluorescent lamp (CFL) groups showed moderate to mild injury. Our results raise questions about adverse effects on the retina from chronic exposure to LED light compared with other light sources that have less blue light. Thus, we suggest a precautionary approach with regard to the use of blue-rich "white" LEDs for general lighting. Shang YM, Wang GS, Sliney D, Yang CH, Lee LL. 2014. White light-emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model. Environ Health Perspect 122:269-276;

  9. Effectiveness of composite resin polymerization using light-emitting diodes (LEDs) or halogen-based light-curing units


    Micali,Bianca; Basting,Roberta Tarkany


    The clinical performance of composite resins is greatly influenced by the quality of the light-curing unit used. The aim of this study was to compare the efficiency of a commercial light-emitting diode (LED) with that of a halogen-based light-curing unit by means of dye penetration of a micro hybrid composite resin. The composite resin evaluated was Filtek Z250 (3M Dental). The composite was filled into acrylic moulds that were randomly polymerized for 40 seconds by each of the light-emitting...

  10. NASA sponsored Light Emitting Diode (LED) development helps in cancer treatment (United States)


    What started out as an attempt to develop a light which would allow for the growth of plants in space led to a remarkable discovery: The Light Emitting Diode (LED). This device through extensive study and experimentation has developed into a tool used by surgeons in the fight against brain cancer in children. Pictured is a mock-up of brain surgery being performed. By encapsulating the end of the LED with a balloon, light is diffused over a larger area of the brain allowing the surgeon a better view. This is one of many programs that begin as research for the space program, and through extensive study end up benefitting all of mankind.

  11. Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives. (United States)

    Glemser, M; Heining, M; Schmidt, J; Becker, A; Garbe, D; Buchholz, R; Brück, T


    The quality and regulation of the incident light is crucial in microalgae cultivation processes. Depending on wavelength, spectrum, and intensity, growth characteristics and biochemical composition of these organisms vary. With mainly fluorescent lamps (FL) used previously for illumination, such variabilities could not be studied adequately due to their broad emission spectrum. In contrast, light-emitting diodes (LEDs) emit a very narrow wavelength band and enable flexible photobioreactor designs due to their small size. This review provides a condensed overview on the application of LEDs in microalgal cultivation processes. It summarizes the current availability and applicability of LED technologies as an illumination source for research-focused photobioreactor systems. A particular focus is the use of narrow-wavelength LEDs to address fundamental as well as applied aspects of light color on algae biomass and value-added compound formation. In this respect, the application of internal and external illumination systems is reviewed together with trends in the industrial use of LED systems to intensify algae process efficiency.

  12. Tradeoff between laser diodes and light-emitting diodes (LEDs) for the common weapon control system (United States)

    Greenwell, R. A.


    The use of laser diodes or light emitting diodes (LEDs) for the ground-launched cruise missile (GLCM) is comparatively evaluated. Source characteristics of interest, including radiated power output, spectral width and peak emission, modulation bandwidth, size coupling efficiency, lifetime, rise time, and price, are presented for noncoherent LED and the coherent laser diode. The advantages and disadvantages of laser diodes and LEDs are briefly discussed, and nuclear explosion effects on these instruments, including catastrophic damage, transient ionization effects, and permanent degradation, are summarized. A link analysis of the cable parameters required for the GLCM fiber optic data link is given, arriving at power levels consistent with a LED-PIN link. Two LEDs which meet these requirements are briefly discussed.

  13. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review. (United States)

    Song, Kai; Mohseni, Madjid; Taghipour, Fariborz


    Ultraviolet (UV) disinfection is an effective technology for the inactivation of pathogens in water and is of growing interest for industrial application. A new UV source - ultraviolet light-emitting diode (UV-LED) - has emerged in the past decade with a number of advantages compared to traditional UV mercury lamps. This promising alternative raises great interest in the research on application of UV-LEDs for water treatment. Studies on UV-LED water disinfection have increased during the past few years. This article presents a comprehensive review of recent studies on UV-LEDs with various wavelengths for the inactivation of different microorganisms. Many inconsistent and incomparable data were found from published studies, which underscores the importance of establishing a standard protocol for studying UV-LED inactivation of microorganisms. Different UV sensitivities to UV-LEDs and traditional UV lamps were observed in the literature for some microorganisms, which requires further investigation for a better understanding of microorganism response to UV-LEDs. The unique aspects of UV-LEDs improve inactivation effectiveness by applying LED special features, such as multiple wavelengths and pulsed illumination; however, more studies are needed to investigate the influencing factors and mechanisms. The special features of UV-LEDs offer the flexibility of novel reactor designs for a broad application of UV-LED reactors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effect of multi-wavelength irradiation on color characterization with light-emitting diodes (LEDs) (United States)

    Park, Hyeong Ju; Song, Woosub; Lee, Byeong-Il; Kim, Hyejin; Kang, Hyun Wook


    In the current study, a multi-wavelength light-emitting diode (LED)-integrated CMOS imaging device was developed to investigate the effect of various wavelengths on multiple color characterization. Various color pigments (black, red, green, and blue) were applied on both white paper and skin phantom surfaces for quantitative analysis. The artificial skin phantoms were made of polydimethylsiloxane (PDMS) mixed with coffee and TiO2 powder to emulate the optical properties of the human dermis. The customized LED-integrated imaging device acquired images of the applied pigments by sequentially irradiating with the LED lights in the order of white, red, green, and blue. Each color pigment induced a lower contrast during illumination by the light with the equivalent color. However, the illumination by light with the complementary (opposite) color increased the signal-to-noise ratio by up to 11-fold due to the formation of a strong contrast ( i.e., red LED = 1.6 ± 0.3 vs. green LED = 19.0 ± 0.6 for red pigment). Detection of color pigments in conjunction with multi-wavelength LEDs can be a simple and reliable technique to estimate variations in the color pigments quantitatively.

  15. Effects of white light-emitting diode (LED) exposure on retinal pigment epithelium in vivo. (United States)

    Jaadane, Imene; Villalpando Rodriguez, Gloria Elisa; Boulenguez, Pierre; Chahory, Sabine; Carré, Samuel; Savoldelli, Michèle; Jonet, Laurent; Behar-Cohen, Francine; Martinsons, Christophe; Torriglia, Alicia


    Ageing and alteration of the functions of the retinal pigment epithelium (RPE) are at the origin of lost of vision seen in age-related macular degeneration (AMD). The RPE is known to be vulnerable to high-energy blue light. The white light-emitting diodes (LED) commercially available have relatively high content of blue light, a feature that suggest that they could be deleterious for this retinal cell layer. The aim of our study was to investigate the effects of "white LED" exposure on RPE. For this, commercially available white LEDs were used for exposure experiments on Wistar rats. Immunohistochemical stain on RPE flat mount, transmission electron microscopy and Western blot were used to exam the RPE. LED-induced RPE damage was evaluated by studying oxidative stress, stress response pathways and cell death pathways as well as the integrity of the outer blood-retinal barrier (BRB). We show that white LED light caused structural alterations leading to the disruption of the outer blood-retinal barrier. We observed an increase in oxidized molecules, disturbance of basal autophagy and cell death by necrosis. We conclude that white LEDs induced strong damages in rat RPE characterized by the breakdown of the BRB and the induction of necrotic cell death. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. Caenorhabditis elegans as a model to study the impact of exposure to light emitting diode (LED) domestic lighting. (United States)

    Abdel-Rahman, Fawzia; Okeremgbo, Bethel; Alhamadah, Fatimah; Jamadar, Sakha; Anthony, Kevin; Saleh, Mahmoud A


    This study aimed to investigate the biological impact of exposure on domestic light emitting diodes (LED) lighting using the free-living nematode Caenorhabditis elegans as a model. Nematodes were separately exposed to white LED light covering the range of 380-750 nm, blue light at 450 nm and black light at 380-420 nm for one life cycle (egg to adult) with dark exposure as the control. Each light range induced stress to the nematode C. elegans such as reducing the number of the hatched eggs and/or delayed the maturation of the hatched eggs to the adult stage. In addition, it lowered or prevented the ability of adults to lay eggs and impaired the locomotion in the exposed worms. The observed type of biological stress was also associated with the production of reactive oxygen species (ROS) as compared to nematodes grown in the dark. It is concluded that the blue light component of white LED light may cause health problems, and further investigation is required to test commercial brands of white LEDs that emit different amounts of blue light.

  17. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation (United States)

    Yorio, N. C.; Goins, G. D.; Kagie, H. R.; Wheeler, R. M.; Sager, J. C.


    Radish (Raphanus sativus L. cv. Cherriette), lettuce (Lactuca sativa L. cv. Waldmann's Green), and spinach (Spinacea oleracea L. cv. Nordic IV) plants were grown under 660-nm red light-emitting diodes (LEDs) and were compared at equal photosynthetic photon flux (PPF) with either plants grown under cool-white fluorescent lamps (CWF) or red LEDs supplemented with 10% (30 micromoles m-2 s-1) blue light (400-500 nm) from blue fluorescent (BF) lamps. At 21 days after planting (DAP), leaf photosynthetic rates and stomatal conductance were greater for plants grown under CWF light than for those grown under red LEDs, with or without supplemental blue light. At harvest (21 DAP), total dry-weight accumulation was significantly lower for all species tested when grown under red LEDs alone than when grown under CWF light or red LEDs + 10% BF light. Moreover, total dry weight for radish and spinach was significantly lower under red LEDs + 10% BF than under CWF light, suggesting that addition of blue light to the red LEDs was still insufficient for achieving maximal growth for these crops.

  18. Is light-emitting diode phototherapy (LED-LLLT) really effective? (United States)

    Kim, Won-Serk; Calderhead, R Glen


    Low level light therapy (LLLT) has attracted attention in many clinical fields with a new generation of light-emitting diodes (LEDs) which can irradiate large targets. To pain control, the first main application of LLLT, have been added LED-LLLT in the accelerated healing of wounds, both traumatic and iatrogenic, inflammatory acne and the patient-driven application of skin rejuvenation. Rationale and Applications: The rationale behind LED-LLLT is underpinned by the reported efficacy of LED-LLLT at a cellular and subcellular level, particularly for the 633 nm and 830 nm wavelengths, and evidence for this is presented. Improved blood flow and neovascularization are associated with 830 nm. A large variety of cytokines, chemokines and macromolecules can be induced by LED phototherapy. Among the clinical applications, non-healing wounds can be healed through restoring the collagenesis/collagenase imbalance in such examples, and 'normal' wounds heal faster and better. Pain, including postoperative pain, postoperative edema and many types of inflammation can be significantly reduced. Experimental and clinical evidence: Some personal examples of evidence are offered by the first author, including controlled animal models demonstrating the systemic effect of 830 nm LED-LLLT on wound healing and on induced inflammation. Human patients are presented to illustrate the efficacy of LED phototherapy on treatment-resistant inflammatory disorders. Provided an LED phototherapy system has the correct wavelength for the target cells, delivers an appropriate power density and an adequate energy density, then it will be at least partly, if not significantly, effective. The use of LED-LLLT as an adjunct to conventional surgical or nonsurgical indications is an even more exciting prospect. LED-LLLT is here to stay.

  19. A Simple, Small-Scale Lego Colorimeter with a Light-Emitting Diode (LED) Used as Detector (United States)

    Asheim, Jonas; Kvittingen, Eivind V.; Kvittingen, Lise; Verley, Richard


    This article describes how to construct a simple, inexpensive, and robust colorimeter from a few Lego bricks, in which one light-emitting diode (LED) is used as a light source and a second LED as a light detector. The colorimeter is suited to various grades and curricula.

  20. Light-Emitting Diodes (LED) for Primary Animal Habitat Lighting in Highly Controlled Environments (United States)

    Winget, C. M.; Syrkin, N.; Heeke, D.; Mele, G.; Holley, D. C.; Dalton, Bonnie P. (Technical Monitor)


    Significant alterations in Biological Clock responses have been reported following sidereal time changes (e.g., Jet-lag), and exposure to microgravity (e.g., daytime sleepiness). Additionally, light reduces circulating melatonin (spectral specificity greatest between 450-500 nm). It was hypothesized that LEDs can replace the current light sources used in zero gravity and terrestrial research laboratories because of their small size, low mass, low energy consumption and long functional life. This report evaluates the capacity of LEDs to entrain the circadian system of rats as judged by measurement of overt behavioral circadian rhythms (activity, feeding, drinking). These data were collected in highly controlled environments similar to the shuttle Animal Enclosure Modules. Two groups were compared: control - animals exposed to standard cool-white fluorescent lights, and test - animals exposed to LEDs with a spectral power distribution matching the fluorescent lights. Gross locomotor activity, feeding and drinking frequencies were continuously monitored and stored at 10 minute intervals. Animals were exposed to the following photoperiods: 28 days of 12L:12D, 19 days of 24L:0D and 16 days of 12L:12D. Light intensities tested varied between 0.1 to 100 lux. Rats received food and water ad libitum, and temperature and humidity were controlled throughout the study. The general health status of all rats was acceptable for each day of this study. No incidents of aggressive behavior were observed. Growth, locomotor activity, food and water consumption were comparable for all groups of animals, i.e, the circadian characteristics of the animals under these conditions were comparable. These results indicate that LED arrays are as effective in maintaining circadian rhythm stability as the commonly used cool-white fluorescent light sources. LEDs with their flexible spectrum, low energy requirements and minimal heat production have advantages for some chronopharmacology studies and

  1. Effects of ultraviolet light emitting diodes (LEDs) on microbial and enzyme inactivation of apple juice. (United States)

    Akgün, Merve Pelvan; Ünlütürk, Sevcan


    In this study, the effects of Ultraviolet light-emitting diodes (UV-LEDs) on the inactivation of E. coli K12 (ATCC 25253), an indicator organism of E. coli O157:H7, and polyphneoloxidase (PPO) in cloudy apple juice (CAJ) were investigated. The clear (AJ) and cloudy apple juice were exposed to UV rays for 40min by using a UV device composed of four UV-LEDs with peak emissions at 254 and 280nm and coupled emissions as follows: 254/365, 254/405, 280/365, 280/405 and 254/280/365/405nm. UV-LEDs at 254nm achieved 1.6±0.1 log 10 CFU/mL inactivation of E. coli K12 at UV dose of 707.2mJ/cm 2 . The highest inactivation of E. coli K12 (2.0±0.1log 10 CFU/mL and 2.0±0.4log 10 CFU/mL) was achieved when the cloudy apple juice was treated with both 280nm and 280/365nm UV-LEDs. For clear apple juice the highest inactivation 4.4log 10 CFU/mL obtained for E. coli K12 was achieved using 4 lamps emitting light at 280nm for 40min exposure time. For the same treatment time, the experiments using a combination of lamps emitting light at 280 and 365nm (2lamp/2lamp) were resulted in 3.9±0.2log 10 CFU/mL reductions. UV-A and UV-C rays in combination showed a better inactivation effect on PPO than UV-C rays used separately. Residual activity of PPO in CAJ was reduced to 32.58% when treated with UV-LED in combination of UV-C (280nm) and UV-A (365nm) rays. Additionally, the total color change (ΔE) of CAJ subjected to combined UV-LED irradiation at 280/365nm was the lowest compared to other studied processing conditions. This study provides key implications for the future application of UV-LEDs to fruit juice pasteurization. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Slim planar apparatus for converting LED light into collimated polarized light uniformly emitted from its top surface. (United States)

    Teng, Tun-Chien; Tseng, Li-Wei


    This study proposes a slim planar apparatus for converting nonpolarized light from a light-emitting diode (LED) into an ultra-collimated linearly polarized beam uniformly emitted from its top surface. The apparatus was designed based on a folded-bilayer configuration comprising a light-mixing collimation element, polarization conversion element, and polarization-preserving light guide plate (PPLGP) with an overall thickness of 5 mm. Moreover, the apparatus can be extended transversally by connecting multiple light-mixing collimation elements and polarization conversion elements in a side-by-side configuration to share a considerably wider PPLGP, so the apparatus can have theoretically unlimited width. The simulation results indicate that the proposed apparatus is feasible for the maximal backlight modules in 39-inch liquid crystal panels. In the case of an apparatus with a 480 × 80 mm emission area and two 8-lumen LED light sources, the average head-on polarized luminance and spatial uniformity over the emission area was 5000 nit and 83%, respectively; the vertical and transverse angular distributions of the emitting light were only 5° and 10°, respectively. Moreover, the average degree of polarization and energy efficiency of the apparatus were 82% and 72%, respectively. As compared with the high-performance ultra-collimated nonpolarized backlight module proposed in our prior work, not only did the apparatus exhibit outstanding optical performance, but also the highly polarized light emissions actually increased the energy efficiency by 100%.

  3. Efficacy of new microprocessed phototherapy system with five high intensity light emitting diodes (Super LED). (United States)

    Martins, Bianca M R; de Carvalho, Manoel; Moreira, Maria E L; Lopes, José M A


    To evaluate the efficacy of a microprocessed phototherapy (PT) system with five high intensity light emitting diodes (Super LED) for the treatment of neonatal hyperbilirubinemia of premature infants. Randomized clinical trial using Super LED phototherapy in the study group and twin halogen spotlight phototherapy in the control group. A stratified blocked randomization, based on birth weight, was performed. The duration of phototherapy and the rate of decrease of total serum bilirubin (TSB) concentration in the first 24 hours of treatment were the main outcome measures. We studied 88 infants, 44 in the Super LED group and 44 in the halogen spotlight PT group. The demographic characteristics of the patients in both groups were similar. Infants in the Super LED group had a similar mean initial serum bilirubin level (10.1+/-2.4 mg%) to those receiving halogen spotlight treatment (10.9+/-2.0 mg%). After 24 hours of treatment, the decrease in total serum bilirubin levels was significantly greater in the Super LED group (27.9 vs. 10.7%, pphototherapy was significantly shorter in this group (36.8 h vs. 63.8 h, pLED phototherapy had reached serum bilirubin concentrations low enough to allow withdrawal of treatment (23 vs. 10, pLED phototherapy for treating hyperbilirubinemia in premature infants was significantly better than halogen phototherapy.

  4. Comparison of the alendronate and irradiation with a light-emitting diode (LED) on murine osteoclastogenesis. (United States)

    Sohn, Hong Moon; Ko, Youngjong; Park, Mineon; Kim, Bora; Park, Jung Eun; Kim, Donghwi; Moon, Young Lae; Lim, Wonbong


    Photomodulation therapy (PBMT) using light-emitting diode (LED) has been proposed as an alternative to conventional osteoporosis therapies. Our aim was to determine the effect of irradiation with a light-emitting diode on receptor activator of NF-κB ligand (RANKL)-mediated differentiation of mouse bone marrow macrophages into osteoclasts and compare it to alendronate treatment. The cells were irradiated with LED at 635±10 nm, 9-cm spot size, 5 mW/cm 2 , and 18 J for 60 min/day in a CO 2 incubator. The differentiation of irradiated and untreated RANKL-stimulated bone marrow macrophages into osteoclasts was evaluated by tartrate-resistant acid phosphatase (TRAP) staining and by molecular methods. These included assessing messenger RNA (mRNA) expression of osteoclastic markers such as TRAP, c-Fos, Atp6v0d2, DC-STAMP, NFATc1, cathepsin K, MMP9 and OSCAR; phosphorylation of various MAPKs, including extracellular signal-regulated kinase ERK1/2, P38, and JNK; NF-κB translocation; and resorption pit formation. Results were compared to those obtained with sodium alendronate. Production of reactive oxygen species was measured by a 2',7'-dihydrodichlorofluorescein diacetate assay. LED irradiation and alendronate inhibited mRNA expression of osteoclast-related genes, such as TRAP, c-Fos, and NFATc1, and reduced the osteoclast activity of RANKL-stimulated bone marrow macrophages. LED irradiation, but not alendronate, also inhibited the production of reactive oxygen species (ROS); phosphorylation of ERK, P38, and IκB; and NF-κB translocation. These findings suggest that LED irradiation downregulates osteoclastogenesis by ROS production; this effect could lead to reduced bone loss and may offer a new therapeutic tool for managing osteoporosis.

  5. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting on Lija Loop in Portland, OR

    International Nuclear Information System (INIS)

    Kinzey, Bruce R.; Myer, Michael


    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a residential street lighting application, under the U.S. Department of Energy GATEWAY Solid-State Lighting Technology Demonstration Program. In this project, eight 100W (nominal) high-pressure sodium cobra head fixtures were replaced with a like number of LED street light luminaires manufactured by Leotek, Inc. The Leotek product achieved an estimated payback in the Lija Loop installation of about 20 years for replacement scenarios and a much shorter 7.6 years for new installations. Much of the associated energy savings (55%) supporting these payback periods, however, were achieved by reducing average horizontal photopic illuminance a similar amount (53%). Examined from a different perspective, the measured performance suggests that the Leotek product is at approximate parity with the HPS cobra head in terms of average delivered photopic illumination for a given power consumption. HPS comprises the second most efficacious street lighting technology available, exceeded only by low pressure sodium (LPS). LPS technology is not considered suitable for most street lighting applications due to its monochromatic spectral output and poor color rendering ability; therefore, this LED product is performing at an efficiency level comparable to its primary competition in this application.

  6. Development of Key Technologies for White Lighting Based on Light-Emitting Diodes (LEDs)

    Energy Technology Data Exchange (ETDEWEB)

    Werner Goetz; Bill Imler; James Kim; Junko Kobayashi; Andrew Kim; Mike Krames; Rick Mann; Gerd Mueller-Mach; Anneli Munkholm; Jonathan Wierer


    This program was organized to focus on materials development issues critical to the acceleration of solid-state lighting, and was split into three major thrust areas: (1) study of dislocation density reduction for GaN grown on sapphire using 'cantilever epitaxy', and the impact of dislocation density on the performance of state-of-the-art high-power LEDs; (2) the evaluation of in situ techniques for monitoring gas phase chemistry and the properties of GaN-based layers during metal-organic vapor phase epitaxy (MOCVD), and (3) feasibility for using semiconductor nanoparticles ('quantum dots') for the down-conversion of blue or ultraviolet light to generate white light. The program included a partnership between Lumileds Lighting (epitaxy and device fabrication for high power LEDs) and Sandia National Laboratories (cantilever epitaxy, gas phase chemistry, and quantum dot synthesis). Key findings included: (1) cantilever epitaxy can provide dislocation density reduction comparable to that of more complicated approaches, but all in one epitaxial growth step; however, further improvements are required to realize significant gains in LED performance at high drive currents, (2) in situ tools can provide detailed knowledge about gas phase chemistry, and can be used to monitor and control epitaxial layer composition and temperature to provide improved yields (e.g., a fivefold increase in color targeting is demonstrated for 540nm LEDs), and (3) quantum efficiency for quantum dots is improved and maintained up to 70% in epoxy thin films, but further work is necessary to increase densification (absorption) and robustness before practical application to LEDs.

  7. Technology Analysis of Global Smart Light Emitting Diode (LED Development Using Patent Data

    Directory of Open Access Journals (Sweden)

    Sangsung Park


    Full Text Available Technological developments related to smart light emitting diode (LED systems have progressed rapidly in recent years. In this paper, patent documents related to smart LED technology are collected and analyzed to understand the technology development of smart LED systems. Most previous studies of the technology were dependent on the knowledge and experience of domain experts, using techniques such as Delphi surveys or technology road-mapping. These approaches may be subjective and lack robustness, because the results can vary according to the selected expert groups. We therefore propose a new technology analysis methodology based on statistical modeling to obtain objective and relatively stable results. The proposed method consists of visualization based on Bayesian networks and a linear count model to analyze patent documents related to smart LED technology. Combining these results, a global hierarchical technology structure is created that can enhance the sustainability in smart LED system technology. In order to show how this methodology could be applied to real-world problems, we carry out a case study on the technology analysis of smart LED systems.

  8. Potential environmental impacts of light-emitting diodes (LEDs): metallic resources, toxicity, and hazardous waste classification. (United States)

    Lim, Seong-Rin; Kang, Daniel; Ogunseitan, Oladele A; Schoenung, Julie M


    Light-emitting diodes (LEDs) are advertised as environmentally friendly because they are energy efficient and mercury-free. This study aimed to determine if LEDs engender other forms of environmental and human health impacts, and to characterize variation across different LEDs based on color and intensity. The objectives are as follows: (i) to use standardized leachability tests to examine whether LEDs are to be categorized as hazardous waste under existing United States federal and California state regulations; and (ii) to use material life cycle impact and hazard assessment methods to evaluate resource depletion and toxicity potentials of LEDs based on their metallic constituents. According to federal standards, LEDs are not hazardous except for low-intensity red LEDs, which leached Pb at levels exceeding regulatory limits (186 mg/L; regulatory limit: 5). However, according to California regulations, excessive levels of copper (up to 3892 mg/kg; limit: 2500), Pb (up to 8103 mg/kg; limit: 1000), nickel (up to 4797 mg/kg; limit: 2000), or silver (up to 721 mg/kg; limit: 500) render all except low-intensity yellow LEDs hazardous. The environmental burden associated with resource depletion potentials derives primarily from gold and silver, whereas the burden from toxicity potentials is associated primarily with arsenic, copper, nickel, lead, iron, and silver. Establishing benchmark levels of these substances can help manufacturers implement design for environment through informed materials substitution, can motivate recyclers and waste management teams to recognize resource value and occupational hazards, and can inform policymakers who establish waste management policies for LEDs.

  9. Effects of 940 nm light-emitting diode (led) on sciatic nerve regeneration in rats. (United States)

    Serafim, Karla Guivernau Gaudens; Ramos, Solange de Paula; de Lima, Franciele Mendes; Carandina, Marcelo; Ferrari, Osny; Dias, Ivan Frederico Lupiano; Toginho Filho, Dari de Oliveira; Siqueira, Cláudia Patrícia Cardoso Martins


    The objective of the present study was to evaluate the effect of 940 nm wavelength light emitting diode (LED) phototherapy on nerve regeneration in rats. Forty male Wistar rats weighing approximately 300 g each were divided into four groups: control (C); control submitted to LED phototherapy (CLed); Sciatic Nerve Lesion without LED phototherapy (L); Sciatic Nerve Lesion with LED phototherapy (LLed). The lesion was caused by crushing the right sciatic nerve. A dose of 4 J/cm(2) was used for ten consecutive days beginning on the first postoperative day. Groups C and L were submitted to the same procedure as the LLed group, but the equipment was turned off. The LED phototherapy with 940 nm wavelength reduced the areas of edema, the number of mononuclear cells present in the inflammatory infiltration, and increased functional recovery scores at 7, 14 and 21 days. The results suggest that the use of phototherapy at 940 nm after nerve damage improves morphofunctional recovery and nerve regeneration.

  10. Analysis and Design of Phase Change Thermal Control for Light Emitting Diode (LED) Spacesuit Helmet Lights (United States)

    Bue, Grant C.; Nguyen, Hiep X.; Keller, John R.


    LED Helmet Extravehicular Activity Helmet Interchangeable Portable (LEHIP) lights for the Extravehicular Mobility Unit (EMU) have been built and tested and are currently being used on the International Space Station. A design is presented of the passive thermal control system consisting of a chamber filled with aluminum foam and wax. A thermal math model of LEHIP was built and correlated by test to show that the thermal design maintains electronic components within hot and cold limits for a 7 hour spacewalk in the most extreme EVA average environments, and do not pose a hazard to the crew or to components of the EMU.

  11. Luminescence and the light emitting diode the basics and technology of leds and the luminescence properties of the materials

    CERN Document Server

    Williams, E W; Pamplin, BR


    Luminescence and the Light Emitting Diode: The Basics and Technology of LEDS and the Luminescence Properties of the Materials focuses on the basic physics and technology of light emitting diodes (LEDS) and pn junction lasers as well as their luminescence properties. Optical processes in semiconductors and the useful devices which can be made are discussed. Comprised of 10 chapters, this book begins with an introduction to the crystal structure and growth, as well as the optical and electrical properties of LED materials. The detailed fabrication of the LED is then considered, along with the lu

  12. White Light–Emitting Diodes (LEDs) at Domestic Lighting Levels and Retinal Injury in a Rat Model


    Shang, Yu-Man; Wang, Gen-Shuh; Sliney, David; Yang, Chang-Hao; Lee, Li-Ling


    Background: Light-emitting diodes (LEDs) deliver higher levels of blue light to the retina than do conventional domestic light sources. Chronic exposure to high-intensity light (2,000–10,000 lux) has previously been found to result in light-induced retinal injury, but chronic exposure to relatively low-intensity (750 lux) light has not been previously assessed with LEDs in a rodent model. Objective: We examined LED-induced retinal neuronal cell damage in the Sprague-Dawley rat using functiona...

  13. Generating Hydrated Electrons for Chemical Syntheses by Using a Green Light-Emitting Diode (LED). (United States)

    Naumann, Robert; Lehmann, Florian; Goez, Martin


    We present the first working system for accessing and utilizing laboratory-scale concentrations of hydrated electrons by photoredox catalysis with a green light-emitting diode (LED). Decisive are micellar compartmentalization and photon pooling in an intermediate that decays with second-order kinetics. The only consumable is the nontoxic and bioavailable vitamin C. A turnover number of 1380 shows the LED method to be on par with electron generation by high-power pulsed lasers, but at a fraction of the cost. The extreme reducing power of the electron and its long unquenched life as a ground-state species are synergistic. We demonstrate the applicability to the dechlorination, defluorination, and hydrogenation of compounds that are inert towards all other visible-light photoredox catalysts known to date. A comprehensive mechanistic investigation from microseconds to hours yields results of general validity for photoredox catalysis with photon pooling, allowing optimization and upscaling. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development of substrate-removal-free vertical ultraviolet light-emitting diode (RefV-LED

    Directory of Open Access Journals (Sweden)

    N. Kurose


    Full Text Available A vertical ultraviolet (UV light-emitting diode (LED that does not require substrate removal is developed. Spontaneous via holes are formed in n-AlN layer epitaxially grown on a high conductive n+Si substrate and the injected current flows directly from the p-electrode to high doped n+ Si substrate through p-AlGaN, multi-quantum wells, n-AlGaN and spontaneous via holes in n-AlN. The spontaneous via holes were formed by controlling feeding-sequence of metal-organic gas sources and NH3 and growth temperature in MOCVD. The via holes make insulating n-AlN to be conductive. We measured the current-voltage, current-light intensity and emission characteristics of this device. It exhibited a built-in voltage of 3.8 V and emission was stated at 350 nm from quantum wells with successive emission centered at 400 nm. This UV LED can be produced, including formation of n and p electrodes, without any resist process.

  15. Development of substrate-removal-free vertical ultraviolet light-emitting diode (RefV-LED)

    Energy Technology Data Exchange (ETDEWEB)

    Kurose, N., E-mail:; Aoyagi, Y. [The Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577 (Japan); Shibano, K.; Araki, T. [Department of Science and Technology, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577 (Japan)


    A vertical ultraviolet (UV) light-emitting diode (LED) that does not require substrate removal is developed. Spontaneous via holes are formed in n-AlN layer epitaxially grown on a high conductive n+Si substrate and the injected current flows directly from the p-electrode to high doped n{sup +} Si substrate through p-AlGaN, multi-quantum wells, n-AlGaN and spontaneous via holes in n-AlN. The spontaneous via holes were formed by controlling feeding-sequence of metal-organic gas sources and NH{sub 3} and growth temperature in MOCVD. The via holes make insulating n-AlN to be conductive. We measured the current-voltage, current-light intensity and emission characteristics of this device. It exhibited a built-in voltage of 3.8 V and emission was stated at 350 nm from quantum wells with successive emission centered at 400 nm. This UV LED can be produced, including formation of n and p electrodes, without any resist process.

  16. White Light–Emitting Diodes (LEDs) at Domestic Lighting Levels and Retinal Injury in a Rat Model (United States)

    Shang, Yu-Man; Wang, Gen-Shuh; Sliney, David; Lee, Li-Ling


    Background: Light-emitting diodes (LEDs) deliver higher levels of blue light to the retina than do conventional domestic light sources. Chronic exposure to high-intensity light (2,000–10,000 lux) has previously been found to result in light-induced retinal injury, but chronic exposure to relatively low-intensity (750 lux) light has not been previously assessed with LEDs in a rodent model. Objective: We examined LED-induced retinal neuronal cell damage in the Sprague-Dawley rat using functional, histological, and biochemical measurements. Methods: We used blue LEDs (460 nm) and full-spectrum white LEDs, coupled with matching compact fluorescent lights, for exposures. Pathological examinations included electroretinogram, hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC), and transmission electron microscopy (TEM). We also measured free radical production in the retina to determine the oxidative stress level. Results: H&E staining and TEM revealed apoptosis and necrosis of photoreceptors, which indicated blue-light induced photochemical injury of the retina. Free radical production in the retina was increased in LED-exposed groups. IHC staining demonstrated that oxidative stress was associated with retinal injury. Although we found serious retinal light injury in LED groups, the compact fluorescent lamp (CFL) groups showed moderate to mild injury. Conclusion: Our results raise questions about adverse effects on the retina from chronic exposure to LED light compared with other light sources that have less blue light. Thus, we suggest a precautionary approach with regard to the use of blue-rich “white” LEDs for general lighting. Citation: Shang YM, Wang GS, Sliney D, Yang CH, Lee LL. 2014. White light–emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model. Environ Health Perspect 122:269–276; PMID:24362357

  17. Blue light emitting diodes (LEDs) as an energy source in Chlorella fusca and Synechococcus nidulans cultures. (United States)

    Duarte, Jessica Hartwig; Costa, Jorge Alberto Vieira


    LEDs have narrow wavelength bands, which can influence microalgae biomass. This study pioneers the evaluation of blue LEDs as an energy source in Chlorella fusca and Synechococcus nidulans cultures. Blue LEDs increased the specific growth rate in Synechococcus nidulans LEB 115 cultures by 80% compared to the standard light used in indoor cultivations. Moreover, blue LEDs also induced lipid accumulation in Chlorella fusca LEB 111 cells, yielding concentrations of this bioproduct of up to 23% (ww -1 ). The chlorophylls and carotenoids were photostimulated proportionally to the LED light intensity. When the intensity of the blue LEDs was increased from 50 to 150μmolm -2 s -1 , the biomass accumulated up to 4.5 and 2.4 times more chlorophylls and carotenoids, respectively. The potential of blue LEDs as an alternative environmentally friendly light source to stimulate biomass and metabolite production for different purposes was demonstrated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The use of light-emitting diodes (LED in commercial layer production

    Directory of Open Access Journals (Sweden)

    R Borille


    Full Text Available Artificial lighting is one of the most powerful management tools available to commercial layer producers. Artificial light allows anticipating or delaying the beginning of lay, improving egg production, and optimizing feed efficiency. This study aimed at comparing the performance of commercial layers submitted to lighting using different LED colors or conventional incandescent lamps. The study was carried out in a layer house divided in isolated environments in order to prevent any influenced from the neighboring treatments. In total, 360 Isa Brown layers, with an initial age of 56 weeks, were used. The following light sources were used: blue LED, yellow LED, green LED, red LED, white LED, and 40W incandescent light. Birds in all treatment were submitted to a 17-h continuous lighting program, and were fed a corn and soybean meal-based diet. A completely randomized experimental design with subplots was applied, with 24 treatments (six light sources and four periods of three replicates. Egg production (% was significantly different (p0.05 by light source. It was concluded that the replacement of incandescent light bulbs by white and red LEDs does not cause any negative effect on the egg production of commercial layers.

  19. Analysis of complex samples using a portable multi-wavelength light emitting diode (LED) fluorescence spectrometer (United States)

    Spectroscopic analysis of chemically complex samples often requires an increase n the dimensionality of the measured response surface. This often involves the measurement of emitted light intensities as functions of both wavelengths of excitation and emission resulting in the generation of an excita...

  20. Development of infrared point-source light emitting diodes (LED) with a distributed Bragg reflector (DBR); Bragg hanshakyo wo mochiita sekigai ten kogen LED no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T.; Saka, T.; Hirotani, M.; Sone, H. [Daido Steel Co. Ltd., Nagoya (Japan)


    It has been required to develop LED with a small point-source for optical sensors and optical encoders. To fabricate a high efficiency point-source LED, the structure and fabrication process have been considered in which the current can be focused on a small light emitting region and the light can be obtained effectively from a small window. Thus, a high output point-source LED with a light emitting diameter 50{mu}m has been developed. A Bragg reflector with AlGaAs/AlAs multi-layer film was put on the n-GaAs substrate, and n-AlGaAs/p-GaAs/p-AlGaAs double hetero-structure layer and n-AlGaAs current block layer were put on the layer in the order. For making a small point-source LED, a part of the current block layer was opened by etching, and a current path was made by diffusing Zn from the surface. A structure was made in which the current can be concentrated only in a region immediately below the light collection part of p-AlGaAs light emitting layer. The LED was deposited by the epitaxial growth on the n-GaAs substrate using a vertical-type MOCVD apparatus under the atmospheric pressure. From the results of the continuous operation test, this system was considered to have sufficient reliability for the practical use. 7 refs., 7 figs., 1 tab.

  1. Low-level light emitting diode (LED) therapy suppresses inflammasome-mediated brain damage in experimental ischemic stroke. (United States)

    Lee, Hae In; Lee, Sae-Won; Kim, Nam Gyun; Park, Kyoung-Jun; Choi, Byung Tae; Shin, Yong-Il; Shin, Hwa Kyoung


    Use of photostimulation including low-level light emitting diode (LED) therapy has broadened greatly in recent years because it is compact, portable, and easy to use. Here, the effects of photostimulation by LED (610 nm) therapy on ischemic brain damage was investigated in mice in which treatment started after a stroke in a clinically relevant setting. The mice underwent LED therapy (20 min) twice a day for 3 days, commencing at 4 hours post-ischemia. LED therapy group generated a significantly smaller infarct size and improvements in neurological function based on neurologic test score. LED therapy profoundly reduced neuroinflammatory responses including neutrophil infiltration and microglia activation in the ischemic cortex. LED therapy also decreased cell death and attenuated the NLRP3 inflammasome, in accordance with down-regulation of pro-inflammatory cytokines IL-1β and IL-18 in the ischemic brain. Moreover, the mice with post-ischemic LED therapy showed suppressed TLR-2 levels, MAPK signaling and NF-kB activation. These findings suggest that by suppressing the inflammasome, LED therapy can attenuate neuroinflammatory responses and tissue damage following ischemic stroke. Therapeutic interventions targeting the inflammasome via photostimulation with LED may be a novel approach to ameliorate brain injury following ischemic stroke. Effect of post-ischemic low-level light emitting diode therapy (LED-T) on infarct reduction was mediated by inflammasome suppression. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting, I-35W Bridge, Minneapolis, Minnesota, Phase II Report

    Energy Technology Data Exchange (ETDEWEB)

    Kinzey, B. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Davis, R. G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    On the I-35W Bridge in Minneapolis, Minnesota, the GATEWAY program conducted a two-phase demonstration of LED roadway lighting on the main span, which is one of the country's oldest continuously operated exterior LED lighting installations. The Phase II report documents longer-term performance of the LED lighting system that was installed in 2008, and is the first report on the longer-term performance of LED lighting in the field.

  3. A Systematic Review of Light Emitting Diode (LED) Phototherapy for Treatment of Psoriasis: An Emerging Therapeutic Modality. (United States)

    Ho, Derek; Koo, Eugene; Mamalis, Andrew; Jagdeo, Jared


    Background: Psoriasis is a chronic, inflammatory skin condition. The economic burden of psoriasis is approximately $35.2 billion in the United States per year, and treatment costs are increasing at a higher rate than general inflation. Light emitting diode (LED) phototherapy may represent a cost-effective, efficacious, safe, and portable treatment modality for psoriasis. Objective: The goal of our manuscript is to review the published literature and provide evidence-based recommendations on LED phototherapy for the treatment of psoriasis. Methods & Materials: A search of the databases Pubmed, EMBASE, Web of Science, and CINAHL was performed on April 5, 2016. Key search terms were related to psoriasis and LED-based therapies. Results: A total of 7,793 articles were generated from the initial search and 5 original articles met inclusion criteria for our review. Grade of recommendation: B for LED-blue light. Grade of recommendation: C for LED-ultraviolet B, LED-red light, and combination LED-near-infrared and LED-red light. Conclusion: We envision further characterizing the effects of LED phototherapy to treat psoriasis in patients may increase adoption of LED-based modalities and provide clinicians and patients with new therapeutic options that balance safety, efficacy, and cost. J Drugs Dermatol. 2017;16(5):482-488..

  4. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting, I-35W Bridge, Minneapolis, Minnesota, Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Kinzey, B. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Myer, M. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    On the I-35W Bridge in Minneapolis, Minnesota, the GATEWAY program conducted a two-phase demonstration of LED roadway lighting on the main span, which is one of the country's oldest continuously operated exterior LED lighting installations. The Phase I report provides an overview of initial project results including lighting performance, economic performance, and potential energy savings.

  5. Comparative Study of Lettuce and Radish Grown Under Red and Blue Light-Emitting Diodes (LEDs) and White Fluorescent Lamps (United States)

    Mickens, Matthew A.


    Growing vegetable crops in space will be an essential part of sustaining astronauts during long-term missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop production, there have also been recent interests in analyzing the subtle effects of green light on plant growth, and to determine if it serves as a source of growth enhancement or suppression. A comparative study was performed on two short cycle crops of lettuce (Outredgeous) and radish (Cherry Bomb) grown under two light treatments. The first treatment being red and blue LEDs, and the second treatment consisting of white fluorescent lamps which contain a portion of green light. In addition to comparing biomass production, physiological characterizations were conducted on how the light treatments influence morphology, water use, chlorophyll content, and the production of A TP within plant tissues.

  6. Phosphors for near UV-Emitting LED's for Efficacious Generation of White Light

    Energy Technology Data Exchange (ETDEWEB)

    McKittrick, Joanna [Univ. of California, San Diego, CA (United States)


    1) We studied phosphors for near-UV (nUV) LED application as an alternative to blue LEDs currently being used in SSL systems. We have shown that nUV light sources could be very efficient at high current and will have significantly less binning at both the chip and phosphor levels. We identified phosphor blends that could yield 4100K lamps with a CRI of approximately 80 and LPWnUV,opt equal to 179 for the best performing phosphor blend. Considering the fact that the lamps were not optimized for light coupling, the results are quite impressive. The main bottleneck is an optimum blue phosphor with a peak near 440 nm with a full width half maximum of about 25 nm and a quantum efficiency of >95%. Unfortunately, that may be a very difficult task when we want to excite a phosphor at ~400 nm with a very small margin for Stokes shift. Another way is to have all the phosphors in the blend having the excitation peak at 400 nm or slightly shorter wavelength. This could lead to a white light source with no body color and optimum efficacy due to no self-absorption effects by phosphors in the blend. This is even harder than finding an ideal blue phosphor, but not necessarily impossible. 2) With the phosphor blends identified, light sources using nUV LEDs at high current could be designed with comparable efficacy to those using blue LEDs. It will allow us to design light sources with multiple wattages using the same chips and phosphor blends simply by varying the input current. In the case of blue LEDs, this is not currently possible because varying the current will lower the efficacy at high current and alter the color point. With improvement of phosphor blends, control over CRI could improve. Less binning at the chip level and also at the phosphor blend level could reduce the cost of SSL light sources. 3) This study provided a deeper understanding of phosphor characteristics needed for LEDs in general and nUV LEDs in particular. Two students received Ph.D. degrees and three

  7. Investigation regarding prevention of insufficiency fractures in children with severe cerebral palsy by Light-Emitting Diode (LED) irradiation


    Asagai, Yoshimi; Yamamoto, Kengo; Ohshiro, Toshio; Ohshiro, Takafumi


    Bone metabolism in children with severe fractures was examined, risk factors for fractures were characterized, and effects of LED (light-emitting diode) irradiation on the risk factors for fractures were investigated. Since insufficiency fracture in children with severe cerebral palsy can be caused without obvious external force in daily care, it is sometimes handled as a medical accident and can lead to a lawsuit. It is very important to explain the possibility of an insufficiency fracture t...

  8. Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays

    International Nuclear Information System (INIS)

    DenBaars, Steven P.; Feezell, Daniel; Kelchner, Katheryn; Pimputkar, Siddha; Pan, Chi-Chen; Yen, Chia-Chen; Tanaka, Shinichi; Zhao, Yuji; Pfaff, Nathan; Farrell, Robert; Iza, Mike; Keller, Stacia; Mishra, Umesh; Speck, James S.; Nakamura, Shuji


    Light-emitting diodes (LEDs) fabricated from gallium nitride (GaN) have led to the realization of high-efficiency white solid-state lighting. Currently, GaN white LEDs exhibit luminous efficacy greater than 150 lm W −1 , and external quantum efficiencies higher than 60%. This has enabled LEDs to compete with traditional lighting technologies, such as incandescent and compact fluorescent (CFL) lighting. Further improvements in materials quality and cost reduction are necessary for widespread adoption of LEDs for lighting. A review of the unique polarization anisotropy in GaN is included for the different crystal orientations. The emphasis on nonpolar and semipolar LEDs highlights high-power violet and blue emitters, and we consider the effects of indium incorporation and well width. Semipolar GaN materials have enabled the development of high-efficiency LEDs in the blue region and recent achievements of green laser diodes at 520 nm

  9. Monochromatic light-emitting diode (LED source in layers hens during the second production cycle

    Directory of Open Access Journals (Sweden)

    Rodrigo Borille


    Full Text Available ABSTRACTLight is an important environmental factor for birds, allowing not only their vision, but also influencing their physiological responses, such as behavioral and reproductive activity. The objective of this experiment was to evaluate the impact of different colors of monochromatic light (LED sources in laying hens production during the second laying cycle. The study was conducted in an experimental laying house during 70 days. A total of 300 laying hens Isa Brown® genetic strain, aged 95 weeks, in the second laying cycle were used in the study. The artificial light sources used were blue, yellow, green, red and white. The light regimen was continuous illumination of 17 h per day (12 h natural and 5 h artificial in a daily light regimen of 17L:5D (light: dark. The Latin Square design was adopted with five treatments (five colors divided into five periods, and five boxes, with six replicates of ten birds in each box. The production and egg quality were evaluated. The different colors of light source did not affect production parameters or egg quality (p > 0.05. The monochromatic light source may be considered as an alternative to artificial lighting in laying hens during the second production cycle.

  10. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting (United States)

    Goins, G. D.; Yorio, N. C.; Sanwo, M. M.; Brown, C. S.; Sager, J. C. (Principal Investigator)


    Red light-emitting diodes (LEDs) are a potential light source for growing plants in spaceflight systems because of their safety, small mass and volume, wavelength specificity, and longevity. Despite these attractive features, red LEDs must satisfy requirements for plant photosynthesis and photomorphogenesis for successful growth and seed yield. To determine the influence of gallium aluminium arsenide (GaAlAs) red LEDs on wheat photomorphogenesis, photosynthesis, and seed yield, wheat (Triticum aestivum L., cv. 'USU-Super Dwarf') plants were grown under red LEDs and compared to plants grown under daylight fluorescent (white) lamps and red LEDs supplemented with either 1% or 10% blue light from blue fluorescent (BF) lamps. Compared to white light-grown plants, wheat grown under red LEDs alone demonstrated less main culm development during vegetative growth through preanthesis, while showing a longer flag leaf at 40 DAP and greater main culm length at final harvest (70 DAP). As supplemental BF light was increased with red LEDs, shoot dry matter and net leaf photosynthesis rate increased. At final harvest, wheat grown under red LEDs alone displayed fewer subtillers and a lower seed yield compared to plants grown under white light. Wheat grown under red LEDs+10% BF light had comparable shoot dry matter accumulation and seed yield relative to wheat grown under white light. These results indicate that wheat can complete its life cycle under red LEDs alone, but larger plants and greater amounts of seed are produced in the presence of red LEDs supplemented with a quantity of blue light.

  11. Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. (United States)

    Cajochen, Christian; Frey, Sylvia; Anders, Doreen; Späti, Jakub; Bues, Matthias; Pross, Achim; Mager, Ralph; Wirz-Justice, Anna; Stefani, Oliver


    Many people spend an increasing amount of time in front of computer screens equipped with light-emitting diodes (LED) with a short wavelength (blue range). Thus we investigated the repercussions on melatonin (a marker of the circadian clock), alertness, and cognitive performance levels in 13 young male volunteers under controlled laboratory conditions in a balanced crossover design. A 5-h evening exposure to a white LED-backlit screen with more than twice as much 464 nm light emission {irradiance of 0,241 Watt/(steradian × m(2)) [W/(sr × m(2))], 2.1 × 10(13) photons/(cm(2) × s), in the wavelength range of 454 and 474 nm} than a white non-LED-backlit screen [irradiance of 0,099 W/(sr × m(2)), 0.7 × 10(13) photons/(cm(2) × s), in the wavelength range of 454 and 474 nm] elicited a significant suppression of the evening rise in endogenous melatonin and subjective as well as objective sleepiness, as indexed by a reduced incidence of slow eye movements and EEG low-frequency activity (1-7 Hz) in frontal brain regions. Concomitantly, sustained attention, as determined by the GO/NOGO task; working memory/attention, as assessed by "explicit timing"; and declarative memory performance in a word-learning paradigm were significantly enhanced in the LED-backlit screen compared with the non-LED condition. Screen quality and visual comfort were rated the same in both screen conditions, whereas the non-LED screen tended to be considered brighter. Our data indicate that the spectral profile of light emitted by computer screens impacts on circadian physiology, alertness, and cognitive performance levels. The challenge will be to design a computer screen with a spectral profile that can be individually programmed to add timed, essential light information to the circadian system in humans.

  12. An engineering method to estimate the junction temperatures of light-emitting diodes in multiple LED application

    International Nuclear Information System (INIS)

    Fu, Xing; Hu, Run; Luo, Xiaobing


    Acquiring the junction temperature of light emitting diode (LED) is essential for performance evaluation. But it is hard to get in the multiple LED applications. In this paper, an engineering method is presented to estimate the junction temperatures of LEDs in multiple LED applications. This method is mainly based on an analytical model, and it can be easily applied with some simple measurements. Simulations and experiments were conducted to prove the feasibility of the method, and the deviations among the results obtained by the present method with those by simulation as well as experiments are less than 2% and 3%, respectively. In the final part of this study, the engineering method was used to analyze the thermal resistances of a street lamp. The material of lead frame was found to affect the system thermal resistance mostly, and the choice of solder material strongly depended on the material of the lead frame.

  13. Ultrabroad linewidth orange-emitting nanowires LED for high CRI laser-based white lighting and gigahertz communications

    KAUST Repository

    Janjua, Bilal


    Group-III-nitride laser diode (LD)-based solid-state lighting device has been demonstrated to be droop-free compared to light-emitting diodes (LEDs), and highly energy-efficient compared to that of the traditional incandescent and fluorescent white light systems. The YAG:Ce3+ phosphor used in LD-based solid-state lighting, however, is associated with rapid degradation issue. An alternate phosphor/LD architecture, which is capable of sustaining high temperature, high power density, while still intensity- and bandwidth-tunable for high color-quality remained unexplored. In this paper, we present for the first time, the proof-of-concept of the generation of high-quality white light using an InGaN-based orange nanowires (NWs) LED grown on silicon, in conjunction with a blue LD, and in place of the compound-phosphor. By changing the relative intensities of the ultrabroad linewidth orange and narrow-linewidth blue components, our LED/LD device architecture achieved correlated color temperature (CCT) ranging from 3000 K to above 6000K with color rendering index (CRI) values reaching 83.1, a value unsurpassed by the YAG-phosphor/blue-LD counterpart. The white-light wireless communications was implemented using the blue LD through on-off keying (OOK) modulation to obtain a data rate of 1.06 Gbps. We therefore achieved the best of both worlds when orange-emitting NWs LED are utilized as “active-phosphor”, while blue LD is used for both color mixing and optical wireless communications.

  14. Comparison of Light Emitting Diodes (LED) and Fluorescent Light on Suppression of Pineal Melatonin in the Rat (United States)

    Winget, Charles M.; Heeke, D. S.; Holley, D. C.; Mele, G.; Brainard, G. C.; Hanifin, J. P.; Rollag, M. D.; Savage, Paul D. (Technical Monitor)


    To validate a novel LED array for use in animal habitat lighting by comparing its effectiveness to cool-white fluorescent (CWF) lighting in suppressing pineal gland melatonin. Male Sprague-Dawley rats, 175-200 g, were maintained under control conditions for 2 weeks (food and water ad lib, 12L: 12D CWF, 18 uW/square cm). Dark adapted animals (animals before lights on) were exposed to 5 min of LED or CWF light of similar spectral power distribution. Two groups of rats (LED vs. CWF) were compared at 5 light intensities (100, 40, 1, 1.0, and 0. 1 lux). A control group was placed into the exposure apparatus but not exposed to light. After exposure, pineal glands were rapidly removed and assayed for melatonin by RIA. Results. The dark-exposed control groups matched with the 5 intensity groups (100, 40, 10, 1.0, and 0.1 lux) showed mean + SEM pineal melatonin values of 1167 +/- 136, 1569 +/- 126, 353 +/- 34, 650 +/- 124, and 464 +/- 85, pg/ml respectively. The corresponding CWF exposure data were 393 1 41, 365 +34, 257 +/- 13, 218 +/- 42, and 239 +/- 71 pg/ml, respectively. Corresponding LED exposure data were 439 +/- 25, 462 +/- 50, 231 +/- 6, 164 +/- 12, and 158 +/- 12 pg/ml, respectively. Rats exposed to both experimental light conditions at all illuminances studied showed significant melatonin suppression (p less than 0.01, ANOVA). In no case was the melatonin suppression induced by LED illuminance significantly different from the melatonin suppression elicited by the same intensity of CWF light. The results show that a novel LED light source can suppress pineal melatonin equal to that of a conventional CWF light source.

  15. Demonstration Assessment of Light-Emitting Diode (LED) Retrofit Lamps at the Lobby of the Bonneville Power Administration, Portland, OR

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Naomi


    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in the lobby of the Bonneville Power Administration (BPA) headquarters building in Portland, Oregon. The project involved a simple retrofit of 32 track lights used to illuminate historical black-and-white photos and printed color posters from the 1930s and 1940s. BPA is a federal power marketing agency in the Northwestern United States, and selected this prominent location to demonstrate energy efficient light-emitting diode (LED) retrofit options that not only can reduce the electric bill for their customers but also provide attractive alternatives to conventional products, in this case accent lighting for BPA's historical artwork.

  16. Effects of white light-emitting diode (LED) light exposure with different correlated color temperatures (CCTs) on human lens epithelial cells in culture. (United States)

    Xie, Chen; Li, Xiuyi; Tong, Jianping; Gu, Yangshun; Shen, Ye


    Cataract is the major cause for legal blindness in the world. Oxidative stress on the lens epithelial cells (hLECs) is the most important factor in cataract formation. Cumulative light-exposure from widely used light-emitting diodes (LEDs) may pose a potential oxidative threat to the lens epithelium, due to the high-energy blue light component in the white-light emission from diodes. In the interest of perfecting biosafety standards for LED domestic lighting, this study analyzed the photobiological effect of white LED light with different correlated color temperatures (CCTs) on cultured hLECs. The hLECs were cultured and cumulatively exposed to multichromatic white LED light with CCTs of 2954, 5624, and 7378 K. Cell viability of hLECs was measured by Cell Counting Kit-8 (CCK-8) assay. DNA damage was determined by alkaline comet assay. Intracellular reactive oxygen species (ROS) generation, cell cycle, and apoptosis were quantified by flow cytometry. Compared with 2954 and 5624 K LED light, LED light having a CCT of 7378 K caused overproduction of intracellular ROS and severe DNA damage, which triggered G2 /M arrest and apoptosis. These results indicate that white LEDs with a high CCT could cause significant photobiological damage to hLECs. © 2014 The American Society of Photobiology.

  17. A Light-Emitting Diode- (LED-) Based Absorption Sensor for Simultaneous Detection of Carbon Monoxide and Carbon Dioxide. (United States)

    Thurmond, Kyle; Loparo, Zachary; Partridge, William; Vasu, Subith S


    A sensor was developed for simultaneous measurements of carbon monoxide (CO) and carbon dioxide (CO2) fluctuations in internal combustion engine exhaust gases. This sensor utilizes low-cost and compact light-emitting diodes (LEDs) that emit in the 3-5 µm wavelength range. An affordable, fast response sensor that can measure these gases has a broad application that can lead to more efficient, fuel-flexible engines and regulation of harmful emissions. Light emission from LEDs is spectrally broader and more spatially divergent when compared to that of lasers, which presented many design challenges. Optical design studies addressed some of the non-ideal characteristics of the LED emissions. Measurements of CO and CO2 were conducted using their fundamental absorption bands centered at 4.7 µm and 4.3 µm, respectively, while a 3.6 µm reference LED was used to account for scattering losses (due to soot, window deposits, etc.) common to the three measurement LEDs. Instrument validation and calibration was performed using a laboratory flow cell and bottled-gas mixtures. The sensor was able to detect CO2 and CO concentration changes as small as 30 ppm and 400 ppm, respectively. Because of the many control and monitor species with infra-red absorption features, which can be measured using the strategy described, this work demonstrates proof of concept for a wider range of fast (250 Hz) and low-cost sensors for gas measurement and process monitoring. © The Author(s) 2016.

  18. Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light emitting diode (LED) irradiation at night. (United States)

    Kondo, Satoru; Tomiyama, Hiroyuki; Rodyoung, Abhichartbut; Okawa, Katsuya; Ohara, Hitoshi; Sugaya, Sumiko; Terahara, Norihiko; Hirai, Nobuhiro


    The effects of blue and red light irradiation at night on abscisic acid (ABA) metabolism and anthocyanin synthesis were examined in grape berries. The expressions of VlMYBA1-2, VlMYBA2, UDP-glucose-flavonoid 3-O-glucosyltransferase (VvUFGT), 9-cis-epoxycarotenoid dioxygenase (VvNCED1), and ABA 8'-hydroxylase (VvCYP707A1) were also investigated. Endogenous ABA, its metabolite phaseic acid (PA), and the expressions of VvNCED1 and VvCYP707A1 were highest in red light-emitting diode (LED)-treated skin. In contrast, anthocyanin concentrations were highest in blue LED-treated skin, followed by red LED treatment. However, the expressions of VlMYBA1-2, VlMYBA2, and VvUFGT did not necessarily coincide with anthocyanin concentrations. The quality of coloring may depend on the amount of malvidin-based anthocyanin, which increased toward harvest in blue and red LED-treated skin, unlike in untreated controls. An increase in sugars was also observed in blue and red LED-treated skin. These results suggest that blue LED irradiation at night may be effective in increasing anthocyanin and sugar concentrations in grape berries. However, there is evidence that another factor may influence anthocyanin concentrations in grape berry skin significantly more than endogenous ABA: ABA concentrations were highest in red LED-treated skin, which had lower anthocyanin concentrations than blue LED-treated skin. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. [LED lights in dermatology]. (United States)

    Noé, C; Pelletier-Aouizerate, M; Cartier, H


    The use in dermatology of light-emitting diodes (LEDs) continues to be surrounded by controversy. This is due mainly to poor knowledge of the physicochemical phases of a wide range of devices that are difficult to compare to one another, and also to divergences between irrefutable published evidence either at the level of in vitro studies or at the cellular level, and discordant clinical results in a variety of different indications: rejuvenation, acne, wound healing, leg ulcers, and cutaneous inflammatory or autoimmune processes. Therapeutic LEDs can emit wavelengths ranging from the ultraviolet, through visible light, to the near infrared (247-1300 nm), but only certain bands have so far demonstrated any real value. We feel certain that if this article remains factual, then readers will have a different, or at least more nuanced, opinion concerning the use of such LED devices in dermatology. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Characterization of an Optical Device with an Array of Blue Light Emitting Diodes LEDS for Treatment of Neonatal Jaundice. (United States)

    Sebbe, Priscilla Fróes; Villaverde, Antonio G. J. Balbin; Nicolau, Renata Amadei; Barbosa, Ana Maria; Veissid, Nelson


    Phototherapy is a treatment that consists in irradiating a patient with light of high intensity, which promotes beneficial photochemical transformations in the irradiated area. The phototherapy for neonates is applied to break down the bilirubin, an organic pigment that is a sub product of the erythrocytes degradation, and to increase its excretion by the organism. Neonates should be irradiated with light of wavelength that the bilirubin can absorb, and with spectral irradiances between 4 and 16 μW/cm2/nm. The efficiency of the treatment depends on the irradiance and the area of the body that is irradiated. A convenient source of light for treatment of neonatal jaundice is the blue Light Emitter Diode (LED), emitting in the range of 400 to 500 nm, with power of the order of 10-150 mW. Some of the advantages for using LEDS are: low cost, operating long lifetime (over 100,000 hours), narrow emission linewith, low voltage power supply requirement and low heating. The aim of this work was to build and characterize a device for phototherapy treatment of neonatal jaundice. This consists of a blanket with 88 blue LEDs (emission peak at 472 nm), arranged in an 8×11 matrix, all connected in parallel and powered by a 5V-2A power supply. The device was characterized by using a spectroradiometer USB2000 (Ocean Optics Inc, USA), with a sensitivity range of 339-1019 nm. For determination of light spatial uniformity was used a calibrated photovoltaic sensor for measuring light intensity and mapping of the light intensity spatial distribution. Results indicate that our device shows a uniform spatial distribution for distances from the blanket larger than 10 cm, with a maximum of irradiance at such a distance. This device presenting a large and uniform area of irradiation, efficient wavelength emission and high irradiance seems to be promising for neonates' phototherapy treatment.

  1. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting at the I-35W Bridge, Minneapolis, MN

    Energy Technology Data Exchange (ETDEWEB)

    Kinzey, Bruce R.; Myer, Michael


    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology conducted in 2009 at the recently reconstructed I-35W bridge in Minneapolis, MN. The project was supported under the U.S. Department of Energy (DOE) Solid-State Lighting GATEWAY Technology Demonstration Program. Other participants in the demonstration project included the Minnesota Department of Transportation (Mn/DOT), Federal Highways Administration (FHWA), and BetaLED™ (a division of Ruud Lighting). Pacific Northwest National Laboratory (PNNL) conducted the measurements and analysis of the results. DOE has implemented a three-year evaluation of the LED luminaires in this installation in order to develop new longitudinal field data on LED performance in a challenging, real-world environment. This document provides information through the initial phase of the I-35W bridge project, up to and including the opening of the bridge to the public and the initial feedback received on the LED lighting installation from bridge users. Initial findings of the evaluation are favorable, with minimum energy savings level of 13% for the LED installation relative to the simulated base case using 250W high-pressure sodium (HPS) fixtures. The LEDs had an average illuminance level of 0.91 foot candles compared to 1.29 fc for the HPS lamps. The LED luminaires cost $38,000 more than HPS lamps, yielding a lengthy payback period, however the bridge contractor had offered to include the LED luminaires as part of the construction package at no additional cost. One potentially significant benefit of the LEDs in this installation is avoiding rolling lane closures on the heavily-traveled interstate bridge for the purpose of relamping the HPS fixtures. Rolling lane closures involve multiple crew members and various maintenance and safety vehicles, diversion of traffic, as well as related administrative tasks (e.g., approvals, scheduling, etc.). Mn/DOT records show an average cost of

  2. Compressive strength measurements of hybrid dental composites treated with dry heat and light emitting diodes (LED post cure treatment

    Directory of Open Access Journals (Sweden)

    Jenny Krisnawaty


    Full Text Available Hybrid composites are mostly used on large cavities as restorative dental materials, whether it is used directly or indirectly. The mechanical properties of composite resin shall increase if it is treated with post cure treatment. The aim of this study is to evaluate compressive strength differences between dry heat and Light Emitting Diodes (LED treatment on the hybrid dental composite. A quasi-experimental was applied on this research with a total of 30 samples that were divided into two groups. Each sample was tested using LLOYD Universal Testing Machine with 1 mm/min speed to evaluate the compressive strength. The compressive strength results were marked when the sample was broken. The results of two groups were then analyzed using t-test statistical calculation. The results of this study show that post cure treatment on hybrid composite using LED light box (194.138 MPa was lower than dry heat treatment (227.339 MPa, which was also significantly different from statistical analysis. It can be concluded that compressive strength of LED light box was lower than dry heat post-cure treatment on the hybrid composite resin.

  3. Development of constant-power driving control for light-emitting-diode (LED) luminaire

    KAUST Repository

    Huang, Bin-Juine


    The illumination of an LED may be affected by operating temperature even under constant-current condition. A constant-power driving technique is proposed in the present study for LED luminaire. A linear system dynamics model of LED luminaire is first derived and used in the design of the feedback control system. The PI controller was designed and tuned taking into account the control accuracy and robust properties with respect to plant uncertainty and variation of operating conditions. The control system was implemented on a microprocessor and used to control a 150W LED luminaire. The test result shows that the feedback system accurately controls the input power of LED luminaire to within 1.3 per cent error. As the ambient temperature changes from 0 to 40 °C, the LED illumination varies slightly (-1.7%) for constant-power driving, as compared to that of constant-current driving (-12%) and constant-voltage driving (+50%). The constant-power driving has revealed advantage in stabilizing the illumination of LED under large temperature variation. © 2012 Elsevier Ltd. All rights reserved.

  4. Speed Responses to Speed Humps as Affected by Time of Day and Light Conditions on a Residential Road with Light-Emitting Diode (LED Road Lighting

    Directory of Open Access Journals (Sweden)

    Annika K. Jägerbrand


    Full Text Available The speed-reducing effect of speed humps during darkness is important to ensure a consistent speed reduction and a decreased probability of accidents during darkness. This study examined the effects of speed humps, compared with a control location, on a residential road in Sweden with light-emitting diode (LED street lighting and a 30 km/h posted speed limit. Hypotheses tested were that: (I vehicle speed is higher during daylight than in darkness; (II speed at speed humps is lower than at control locations during both daylight and darkness; (III speed at humps is higher during daylight; (IV vehicle speed at humps is lower when luminance or visibility of the humps is greater; and, (V the road environment of speed humps is perceived as being similar by drivers. The results showed that vehicle speed at the control location was negligibly higher (+0.3 km/h during daylight than in darkness. Speed humps reduced driving speed by 20% when compared with the posted speed limit and the effect was not significantly different between daylight and darkness. Speed reduction for the three speed humps varied between 9% and 29% as compared with the posted speed limit. In this study, the LED road lighting that was placed directly above or in front of the hump achieved the highest luminance. This study could not reveal any significant differences in vehicle speed attributable to light conditions per se.


    Directory of Open Access Journals (Sweden)

    Muhammad Firdaus


    yang bersumber dari LED dengan cahaya monokromatis merah (M, biru (B, dan biru-merah (BM, serta cahaya dari lampu fluoresens sebagai kontrol (K. Puncak kepadatan sel terjadi pada hari ke-18 dengan kepadatan masing-masing sebanyak 5,56 x 104 sel/mL (M; 1,65 x 104 sel/mL (B; 4,15 x 104 sel/mL (BM; dan 4,56 x 104 sel/mL (K. Perlakuan pencahayaan LED dengan cahaya monokromatis merah mencapai biomassa panen tertinggi sebesar 3,91 mg/mL dengan kandungan protein 49,77%; lemak 19,61%; karbohidrat 6,15%; serat kasar 0,00%; dan abu 24,48%. Pencahayaan dengan LED merah berpotensi diaplikasikan sebagai sumber cahaya dalam produksi Spirulina.

  6. Research on the Effect of Electrical Signals on Growth of Sansevieria under Light-Emitting Diode (LED) Lighting Environment. (United States)

    Tian, Liguo; Meng, Qinghao; Wang, Liping; Dong, Jianghui; Wu, Hai


    The plant electrical signal has some features, e.g. weak, low-frequency and time-varying. To detect changes in plant electrical signals, LED light source was used to create a controllable light environment in this study. The electrical signal data were collected from Sansevieria leaves under the different illumination conditions, and the data was analyzed in time domain, frequency domain and time-frequency domain, respectively. These analyses are helpful to explore the relationship between changes in the light environment and electrical signals in Sansevieria leaves. The changes in the plant electrical signal reflected the changes in the intensity of photosynthesis. In this study, we proposed a new method to express plant photosynthetic intensity as a function of the electrical signal. That is, the plant electrical signal can be used to describe the state of plant growth.

  7. Potential environmental impacts from the metals in incandescent, compact fluorescent lamp (CFL), and light-emitting diode (LED) bulbs. (United States)

    Lim, Seong-Rin; Kang, Daniel; Ogunseitan, Oladele A; Schoenung, Julie M


    Artificial lighting systems are transitioning from incandescent to compact fluorescent lamp (CFL) and light-emitting diode (LED) bulbs in response to the U.S. Energy Independence and Security Act and the EU Ecodesign Directive, which leads to energy savings and reduced greenhouse gas emissions. Although CFLs and LEDs are more energy-efficient than incandescent bulbs, they require more metal-containing components. There is uncertainty about the potential environmental impacts of these components and whether special provisions must be made for their disposal at the end of useful life. Therefore, the objective of this study is to analyze the resource depletion and toxicity potentials from the metals in incandescent, CFL, and LED bulbs to complement the development of sustainable energy policy. We assessed the potentials by examining whether the lighting products are to be categorized as hazardous waste under existing U.S. federal and California state regulations and by applying life cycle impact-based and hazard-based assessment methods (note that "life cycle impact-based method" does not mean a general life cycle assessment (LCA) but rather the elements in LCA used to quantify toxicity potentials). We discovered that both CFL and LED bulbs are categorized as hazardous, due to excessive levels of lead (Pb) leachability (132 and 44 mg/L, respectively; regulatory limit: 5) and the high contents of copper (111,000 and 31,600 mg/kg, respectively; limit: 2500), lead (3860 mg/kg for the CFL bulb; limit: 1000), and zinc (34,500 mg/kg for the CFL bulb; limit: 5000), while the incandescent bulb is not hazardous (note that the results for CFL bulbs excluded mercury vapor not captured during sample preparation). The CFLs and LEDs have higher resource depletion and toxicity potentials than the incandescent bulb due primarily to their high aluminum, copper, gold, lead, silver, and zinc. Comparing the bulbs on an equivalent quantity basis with respect to the expected lifetimes of

  8. Evaluation of light-emitting diodes (LED) effect on skin biology (in vitro study). (United States)

    Chabert, R; Fouque, L; Pinacolo, S; Garcia-Gimenez, N; Bonnans, M; Cucumel, K; Domloge, N


    Interest in anti-aging approaches has grown significantly in recent years. The most popular are the non invasive methods to decrease the signs of aging. One such method is LED-based therapy. This study investigated the potential of two different wavelengths, 590 nm and 630 nm, combined or not, in the photobiomodulation of proteins involved in the slowdown of the skin aging. These in vitro results on cell viability, cell shape, and mitochondrial function support and build on previous studies suggested that LED treatment is safe. Regarding its biological functions, our data indicated that the combination of two different wavelengths acted in synergy to enhance the impact of each irradiation alone. Combined, the LED wavelengths could improve in vitro the cell shape, the cell proliferation, and the level of major proteins involved in the healing process. These benefits may lead to reinforcement of the skin organization and structure. This hypothesis will be checked in future clinical studies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. High power light emitting diode (LED) arrays versus halogen light polymerization of oral biomaterials: Barcol hardness, compressive strength and radiometric properties. (United States)

    Mills, Robin W; Uhl, Alexander; Blackwell, Gordon B; Jandt, Klaus D


    The clinical performance of light polymerized dental composites is greatly influenced by the quality of the light curing unit (LCU) used. Commonly used halogen LCUs have some specific drawbacks such as decreasing light output with time. This may result in a low degree of monomer conversion of the composites with negative clinical implications. Previous studies have shown that blue light emitting diode (LED) LCUs have the potential to polymerize dental composites without having the drawbacks of halogen LCUs. Since these studies were carried out LED technology has advanced significantly and commercial LED LCUs are now becoming available. This study investigates the Barcol hardness as a function of depth, and the compressive strength of dental composites that had been polymerized for 40 or 20s with two high power LED LCU prototypes, a commercial LED LCU, and a commercial halogen LCU. In addition the radiometric properties of the LCUs were characterized. The two high power prototype LED LCUs and the halogen LCU showed a satisfactory and similar hardness-depth performance whereas the hardness of the materials polymerized with the commercial LED LCU rapidly decreased with sample depth and reduced polymerization time (20 s). There were statistically significant differences in the overall compressive strengths of composites polymerized with different LCUs at the 95% significance level (p = 0.0016) with the two high power LED LCU prototypes and the halogen LCU forming a statistically homogenous group. In conclusion, LED LCU polymerization technology can reach the performance level of halogen LCUs. One of the first commercial LED LCUs however lacked the power reserves of the high power LED LCU prototypes.

  10. Improving the efficiency of GaP LED's which emit green light (United States)

    Ladany, I.; Kressel, H.


    A study of techniques for preparing n-type material and junctions which yield the most consistent high diode efficiency values high lighted the role that Ga vacancies and/or associated defects play in reducing the green luminescent efficiency of n-type GaP. A useful method for obtaining good quality material was developed. It is shown that junction formation at high temperatures in a process where the n to p transition occurs without removing the substrate from the furnace yields devices superior to those obtained by diffusion or double epitaxy in the conventional manner previously used for GaP junction formation.

  11. Evaluation of light-emitting diode (LED-835 NM) application over human gingival fibroblast: an in vitro study. (United States)

    Roncati, M; Lauritano, D; Cura, F; Carinci, F


    Since the laser and photomodulation were discovered over 50 years, they have been used for many applications in medicine and in dentistry also. In particular, light-emitting diodes therapy (LT) achieved a great success in medical treatment and photo-therapy. In the decades, LT has been used for several therapeutic purposes. Many beneficial effects have been demonstrated in vitro and in vivo, including antibacterial, antiviral, antitumor, cell differentiation, immune potentiating and tissue repair activities. Beneficial effects of LT have also been observed in clinical settings. Although there are lots of cell culture studies in low-level laser therapy, there are only a few cell culture studies in LT that have similar characteristics. The aim of this study was to investigate the effects of LT on primary human gingival fibroblast cells (HGF) on elastin (ELN) gene activation using Real Time PCR. ELN gene activation is directly connected with elastin protein production and HGF functionality. Human gingival tissue biopsies were obtained from three healthy patients during tooth extraction. The gingival specimens were fragmented with a scalpel and transferred in culture dishes containing Dulbecco’s modified Eagle medium supplemented with 20% fetal calf serum (FBS) and antibiotics, i.e. penicillin 100U/ml and streptomycin 100μg/ml. Cells were incubated in a humidified atmosphere of 5% CO2 at 37C. The medium was changed the next day and twice a week. After 15 days, the samples of gingival tissue were removed from the culture dishes. Cells were harvested after an additional 24 h incubation. Human gingival fibroblasts at the second passage were seeded on multiple 6-well plates. The cells stimulation was performed with a light-emitting diodes (LEDs) medical device type E-Light. The LED irradiation seems to be directly correlated with the elastin (ELN) gene activation. Interestingly, ELN gene expression in the cultured human gingival fibroblasts seems to be inversely related

  12. Practical, reliable and inexpensive assay of lycopene in tomato products based on the combined use of light emitting diode (LED) and the optothermal window

    NARCIS (Netherlands)

    Bicanic, D.D.; Cuypers, R.; Luterotti, S.; Sporec, M.; Zoppi, A.; Vugec, J.


    Light emitting diode (LED) combined with the concept of optothermal window (OW) is proposed as a new approach (LED-OW) to detect lycopene in a wide range of tomato-based products (tomato juice, tomato ketchup, tomato passata and tomato puree). Phytonutrient lycopene is a dominant antioxidant in

  13. LED (Light-Emitting Diode Road Lighting in Practice: An Evaluation of Compliance with Regulations and Improvements for Further Energy Savings

    Directory of Open Access Journals (Sweden)

    Annika K. Jägerbrand


    Full Text Available Light-emitting diode (LED road lighting has been widely implemented in recent years, but few studies have evaluated its performance after installation. This study investigated whether LED road lighting complies with minimum regulations in terms of traffic safety and whether improvements for energy efficiency are possible. Average road surface luminance (L, overall luminance uniformity (Uo, longitudinal luminance uniformity (UI, power density (PD and normalised power density (PN were evaluated for 14 roads (seven designed for vehicular traffic and seven for pedestrians and bicycles. Energy savings were calculated as the percentage reduction to the minimum level of the existing lighting class or a lower lighting class and by applying a dimming schedule. The results showed that LED road lighting for vehicular traffic roads generally fulfilled the requirements, whereas that for pedestrian and bicycle roads generally corresponded to the lowest lighting class for L, and often did not meet the statutory requirements for Uo and UI. By adapting lighting levels to the minimum requirement of the existing lighting class or by dropping to a lower lighting class, vehicular traffic roads could save 6%–35% on L to lighting class M5 and 23%–61% on L to lighting class M6. A dimming schedule could lead to energy savings of 49%. There is little potential for savings on pedestrian and bicycle roads, except by implementing a dimming schedule. Thus, in general, for vehicular, pedestrian and bicycle roads, a dimming schedule can save more energy than can be achieved in general by reducing lighting class. Furthermore, since a dimming schedule can be adjusted to traffic intensity, any potential risk of compromising traffic safety is minimised.

  14. LED-FISH: Fluorescence microscopy based on light emitting diodes for the molecular analysis of Her-2/neu oncogene amplification

    Directory of Open Access Journals (Sweden)

    Vollmer Ekkehard


    Full Text Available Abstract Light emitting diodes (LED, which are available as small monochromatic light sources with characteristic features such as maximum illumination power combined with minimum energy consumption and extremely long lifespan have already proved as a highly potential low-cost alternative for specific diagnostic applications in clinical medicine such as tuberculosis fluorescence microscopy. Likewise, the most reliable evaluation of Her-2/neu (c-erbB2 gene amplification, which has been established in the last few years for routine diagnosis in clinical pathology as determinant towards Herceptin-based treatment of patients with breast cancer, is based on fluorescence in situ hybridization (FISH and corresponding high priced fluorescence equipment. In order to test the possibility to utilize the advantages of low-cost LED technology on FISH analysis of c-erbB2 gene expression for routine diagnostic purposes, the applicability of a standard bright field Carl Zeiss Axiostar Plus microscope equipped with a Fraen AFTER* LED Fluorescence Microscope Kit for the detection of Her-2/neu gene signals was compared to an advanced Nikon Eclipse 80i fluorescence microscope in combination with a conventional 100W mercury vapor lamp. Both microscopes were fitted with the same Quicam FAST CCD digital camera to unequivocally compare the quality of the captured images. C-erbB2 gene expression was analyzed in 30 different human tissue samples of primary invasive breast cancer, following formalin fixation and subsequent paraffin-embedding. The Her2/neu gene signals (green were identifiable in the tumor cells in all cases and images of equal quality were captured under almost identical conditions by 480 nm (blue LED module equipped standard Axiostar microscope as compared to conventional fluorescence microscopy. In this first attempt, these monochromatic LED elements proved in principle to be suitable for the detection of Her-2/neu gene expression by FISH. Thus, our own

  15. Effect of light-emitting diode (LED) vs. fluorescent (FL) lighting on laying hens in aviary hen houses: Part 2 - Egg quality, shelf-life and lipid composition. (United States)

    Long, H; Zhao, Y; Xin, H; Hansen, H; Ning, Z; Wang, T


    In this 60-wk study, egg quality, egg shelf-life, egg cholesterol content, total yolk lipids, and yolk fatty acid composition of eggs produced by Dekalb white laying hens in commercial aviary houses with either light-emitting diode (LED) or fluorescent (FL) lighting were compared. All parameters were measured at 27, 40, and 60 wk of age, except for egg shelf-life, which was compared at 50 wk of age. The results showed that, compared to the FL regimen, the LED regimen resulted in higher egg weight, albumen height, and albumen weight at 27 wk of age, thicker shells at 40 wk of age, but lower egg weight at 60 wk of age. Egg quality change was similar between the lighting regimens during the 62-d egg storage study, indicating that LED lighting did not influence egg shelf-life. Eggs from both lighting regimens had similar cholesterol content. However, cholesterol concentration of the yolk (15.9 to 21.0 mg cholesterol/g wet weight yolk) observed in this study was higher than that of United States Department of Agriculture (USDA) database (10.85 mg/g). No significant differences in total lipids or fatty acid composition of the yolks were detected between the two lighting regimens. © 2015 Poultry Science Association Inc.

  16. Demonstration Assessment of Light Emitting Diode (LED) Walkway Lighting at the Federal Aviation Administration William J. Hughes Technical Center, in Atlantic City, New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Kinzey, Bruce R.; Myer, Michael


    This report documents the results of a collaborative project to demonstrate a solid state lighting (SSL) general illumination product in an outdoor area walkway application. In the project, six light-emitting diode (LED) luminaires were installed to replace six existing high pressure sodium (HPS) luminaires mounted on 14-foot poles on a set of exterior walkways and stairs at the Federal Aviation Administration (FAA) William J. Hughes Technical Center in Atlantic City, New Jersey, during December, 2007. The effort was a U.S. Department of Energy (DOE) SSL Technology Gateway Demonstration that involved a collaborative teaming agreement between DOE, FAA and Ruud Lighting (and their wholly owned division, Beta LED). Pre- and post-installation power and illumination measurements were taken and used in calculations of energy savings and related economic payback, while personnel impacted by the new lights were provided questionnaires to gauge their perceptions and feedback. The SSL product demonstrated energy savings of over 25% while maintaining illuminance levels and improving illuminance uniformity. PNNL's economic analysis yielded a variety of potential payback results depending on the assumptions used. In the best case, replacing HPS with the LED luminaire can yield a payback as low as 3 years. The new lamps were quite popular with the affected personnel, who gave the lighting an average score of 4.46 out of 5 for improvement.

  17. An Evaluation of Light-Emitting Diode (LED) Traps at Capturing Phlebotomine Sand Flies (Diptera: Psychodidae) in a Livestock Area in Brazil. (United States)

    Silva, F S; da Silva, A A; Rebêlo, J M M


    A study to evaluate the use of light-emitting diodes (LEDs) as an attractant for phlebotomine sand flies at two animal pens in a livestock area in Brazil was performed. Light-suction traps were operated overnight with the following light sources: green, blue, and incandescent (control) lights. In total, 22 individual collections were made at each site and 44 with each trap type. In total, 2,542 specimens belonging to 14 phlebotomine species were collected. The most abundant species in the light traps were Nyssomyia whitmani, Evandromyia evandroi, Micropygomyia goiana, Lutzomyia longipalpis, and Bichromomyia flaviscutellata Taking the two sites together, the green-LED light was the most attractive, followed by the blue and incandescent lights, and the difference between the green-LED and the control was statistically significant. Most species were green-biased at both sites, but some species-specific differences were observed. However, even with these differences, the standard incandescent light was outcompeted by LEDs. The green-LED-biased response observed in the present study, together with numerous advantages in favor of LEDs, suggests that the green-LED light source can be used as an effective substitute for the currently used incandescent bulb in monitoring traps for phlebotomine sand flies in Brazil. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email:

  18. Practical lighting design with LEDs

    CERN Document Server

    Lenk, Ron


    The second edition of Practical Lighting Design with LEDs has been revised and updated to provide the most current information for developing light-emitting diodes products. The authors, noted authorities in the field, offer a review of the most relevant topics including optical performance, materials, thermal design, and modeling and measurement. Comprehensive in scope, the text covers all the information needed to design LEDs into end products.

  19. Comparative evaluation of the effect of Light Emitting Diode (LED and Quartz Tungsten Halogen (QTH light curing units on color stability of Filtek Z350 XT

    Directory of Open Access Journals (Sweden)

    Behnaz Esmaeili


    Full Text Available Introduction:Discoloration of the resin-based composites is a common problem in restorative dentistry. There are many factors associated with the discoloration of dental materials in the oral environment. The purpose of this study was to evaluate the color changes in a nano-composite cured with a quartz-tungsten-halogen (QTH and light emitting diode (LED unit. Methods:80 disk-shaped specimens were prepared using Filtek Z350 XT.The specimens were cured with two LED units (Valo and BluephaseC5 and QTH Astralis7 ( with two different energy density (400 & 750 mW/Cm². The color of the materials was measured before and after immersing in tea and artificial saliva. Color change value (ΔE were calculated and analyzed by 2-way ANOVA and Tukey’s test. Results: In artificial saliva group, the composites cured with Astralis7 and BluephaseC5 showed significantly more color stability. In tea group, the composites cured with BluephaseC5 significantly had the least color change. Conclusions: The type of light curing unit does not affect the color stability. Exposure time and interaction between light source and photo initiator content in composite may be the most important factors affecting color stability.

  20. Null bactericidal effect of ultraviolet radiation emitted by LEDs.


    Francisco Alcántara Muñoz; Rafael Moreno-Rojas; Alicia Moreno Ortega; José Emilio Muñoz Cañete; Rafael Gómez Díaz


    This research has aimed to assess the bactericidal effect of ultraviolet light emitted by LEDS on the growth on Petri dishes of microorganisms whose legal limits in foods have been established. An electrically fed apparatus has been designed with precise timing and a camera to prevent light spillage, in which two ultraviolet radiation emission devices were connected by LED technology at different wavelengths: through an array of LEDS emitting at around 350nm, and a single specific...

  1. Effects of light-emitting diode (LED) with a mixture of wavelengths on the growth and lipid content of microalgae. (United States)

    Ra, Chae Hun; Sirisuk, Phunlap; Jung, Jang-Hyun; Jeong, Gwi-Taek; Kim, Sung-Koo


    Integrations of two-phase culture for cell growth and lipid accumulation using mixed LED and green LED wavelengths were evaluated with the microalgae, Phaeodactylum tricornutum, Isochrysis galbana, Nannochloropsis salina, and Nannochloropsis oceanica. Among the single and mixed LED wavelengths, mixed LED produced higher biomass of the four microalgae, reaching 1.03 g DCW/L I. galbana, followed by 0.95 g DCW/L P. tricornutum, 0.85 g DCW/L N. salina, and 0.62 g DCW/L N. oceanica than single LED or fluorescent lights at day 10. Binary combination of blue and red LEDs could produce the high biomass and photosynthetic pigments in the four microalgae. The highest lipid accumulation during second phase with the exposure to green LED wavelengths was 56.0% for P. tricornutum, 55.2% for I. galbana, 53.0% for N. salina, and 51.0% for N. oceanica. The major fatty acid in the four microalgae was palmitic acid (C16:0) accounting for 38.3-47.3% (w/w) of the total fatty acid content.

  2. A controlled trial of the Litebook light-emitting diode (LED light therapy device for treatment of Seasonal Affective Disorder (SAD

    Directory of Open Access Journals (Sweden)

    Telner John


    Full Text Available Abstract Background Recent research has emphasized that the human circadian rhythm system is differentially sensitive to short wavelength light. Light treatment devices using efficient light-emitting diodes (LEDs whose output is relatively concentrated in short wavelengths may enable a more convenient effective therapy for Seasonal Affective Disorder (SAD. Methods The efficacy of a LED light therapy device in the treatment of SAD was tested in a randomized, double-blind, placebo-controlled, multi-center trial. Participants aged 18 to 65 with SAD (DSM-IV major depression with seasonal pattern were seen at Baseline and Randomization visits separated by 1 week, and after 1, 2, 3 and 4 weeks of treatment. Hamilton Depression Rating Scale scores (SIGH-SAD were obtained at each visit. Participants with SIGH-SAD of 20 or greater at Baseline and Randomization visits were randomized to active or control treatment: exposure to the Litebook LED treatment device (The Litebook Company Ltd., Alberta, Canada which delivers 1,350 lux white light (with spectral emission peaks at 464 nm and 564 nm at a distance of 20 inches or to an inactivated negative ion generator at a distance of 20 inches, for 30 minutes a day upon awakening and prior to 8 A.M. Results Of the 26 participants randomized, 23 completed the trial. Mean group SIGH-SAD scores did not differ significantly at randomization. At trial end, the proportions of participants in remission (SIGH-SAD less than 9 were significantly greater (Fisher's exact test, and SIGH-SAD scores, as percent individual score at randomization, were significantly lower (t-test, with active treatment than with control, both in an intent-to-treat analysis and an observed cases analysis. A longitudinal repeated measures ANOVA analysis of SIGH-SAD scores also indicated a significant interaction of time and treatment, showing superiority of the Litebook over the placebo condition. Conclusion The results of this pilot study support

  3. Shear bond strength of metallic brackets photo-activated with light-emitting diode (LED at different exposure times

    Directory of Open Access Journals (Sweden)

    Emanuel Braga Rêgo


    Full Text Available The purpose of this study was to compare the shear bond strength of orthodontic metallic brackets photo-activated with two different light-curing sources at different exposure times: halogen light (XL 1500, 3M ESPE and LED light (Ortholux, 3M Unitek. Sixty bovine permanent lower incisors were inserted into PVC tubes containing plaster. The buccal surfaces were cleaned with pumice and water, and then etched with 37% phosphoric acid gel. The XT Primer bonding agent (3M Unitek was applied to the enamel surfaces and the metallic pre-coated brackets (Transbond APC II system, 3M Unitek were attached to upper central incisors. The teeth were randomly divided into four groups (n=15. In Group I (Control, halogen light was used for 40 seconds, while in Groups II, III, and IV were light-cured with LED light unit for 40, 10, and 5 seconds, respectively. The teeth were stored in distilled water at 37°C for 24 hours. The brackets were submitted to shear bond strength test in universal testing machine (Instron at a crosshead speed of 0.5 mm/minute. Shear bond strength means (MPa were 4.87 for Group I; 5.89 for Group II; 4.83 for Group III, and 4.39 for Group IV. Tukey's test detected no statistically significant differences among the groups regarding the shear bond strength (p>0.05. Neither of the types of light-curing sources or exposure times influenced the shear bond strength of metallic brackets.

  4. Goniometric characterization of LED based greenhouse lighting

    DEFF Research Database (Denmark)

    Thorseth, Anders; Lindén, Johannes; Corell, Dennis Dan


    This paper describes a demonstration of goniospectroradiometry for characterizations of new light emitting diode (LED) based luminaries for enhanced photosynthesis in greenhouses. It highlights the differences between measurement of the traditional high pressure sodium (HPS) luminaries and the LED...

  5. Effect of red and blue light emitting diodes "CRB-LED" on in vitro organogenesis of date palm (Phoenix dactylifera L.) cv. Alshakr. (United States)

    Al-Mayahi, Ahmed Madi Waheed


    The objective of the present study is to determine the effect of light source on enhancement of shoot multiplication, phytochemicals, as well as, antioxidant enzyme activities of in vitro cultures of date palm cv. Alshakr. In vitro-grown buds were cultured on Murashige and Skoog (MS) medium and incubated under a conventional white fluorescent light (control), and combinations of red + blue light emitting diode (18:2) (CRB-LED). Results revealed that the treatment of CRB-LED showed a significant increase in the number of shoots compared with the white florescent light. Total soluble carbohydrate "TSCH" (7.10 mg g(-1) DW.), starch (1.63 mg g(-1) DW.) and free amino acids (2.90 mg g(-1) DW.) were significantly higher in CRB-LED (p < 0.05). Additionally, CRB-LED induced a higher peroxidase activity (25.50 U ml(-1)) compared with the white fluorescent light treatment (19.74 U ml(-1)) as control treatment. Potassium, magnesium and sodium contents in (3.62, 13.99 and 2.76 mg g(-1) DW.) were increased in in vitro shoots under CRB-LED treatment in comparison with fluorescent light (p < 0.05). Protein profile showed the appearance of newly bands with the molecular weight of 38 and 60 kDa at the treatment CRB-LED compared with control treatment. Our results demonstrate the positive effects of CRB-LED light during the course of date palm tissue cultures.

  6. Trapping of Rift Valley Fever (RVF vectors using Light Emitting Diode (LED CDC traps in two arboviral disease hot spots in Kenya

    Directory of Open Access Journals (Sweden)

    Tchouassi David P


    Full Text Available Abstract Background Mosquitoes’ response to artificial lights including color has been exploited in trap designs for improved sampling of mosquito vectors. Earlier studies suggest that mosquitoes are attracted to specific wavelengths of light and thus the need to refine techniques to increase mosquito captures following the development of super-bright light-emitting diodes (LEDs which emit narrow wavelengths of light or very specific colors. Therefore, we investigated if LEDs can be effective substitutes for incandescent lamps used in CDC light traps for mosquito surveillance, and if so, determine the best color for attraction of important Rift Valley Fever (RFV vectors. Methods The efficiency of selected colored LED CDC light traps (red, green, blue, violet, combination of blue-green-red (BGR to sample RVF vectors was evaluated relative to incandescent light (as control in a CDC light trap in two RVF hotspots (Marigat and Ijara districts in Kenya. In field experiments, traps were baited with dry ice and captures evaluated for Aedes tricholabis, Ae. mcintoshi, Ae. ochraceus, Mansonia uniformis, Mn. africana and Culex pipiens, following Latin square design with days as replicates. Daily mosquito counts per treatment were analyzed using a generalized linear model with Negative Binomial error structure and log link using R. The incidence rate ratios (IRR that mosquito species chose other treatments instead of the control, were estimated. Results Seasonal preference of Ae.mcintoshi and Ae. ochraceus at Ijara was evident with a bias towards BGR and blue traps respectively in one trapping period but this pattern waned during another period at same site with significantly low numbers recorded in all colored traps except blue relative to the control. Overall results showed that higher captures of all species were recorded in control traps compared to the other LED traps (IRR  Conclusion Based on our trapping design and color, none of the LEDs

  7. Disinfection of B. SUBTILIS Cells in Suspension Using Ultraviolet Light Emitting Diodes (leds) in the Presence of TiO2 (United States)

    Province, Dennis W.; O'Neil, Shannon; Higgins, Keri; Smith, Paul J.; Dooley, Kristin; Curtis, Joey; Grippo, Adam M.; Rino, John W.; Allen, Susan D.


    The concentration of vegetative Bacillus subtilis (B. subtilis) in phosphate buffered saline decreased when subjected to ultraviolet (UV) light from light emitting diodes (LEDs) in the presence of 0.01% Degussa P25 titanium dioxide (TiO2) as compared to a sample that contained bacteria only, a sample of bacteria that contained 0.01% TiO2, and bacteria that was subjected to the same UV light but no TiO2. The starting concentration of each sample was on the order of 104 colony forming units per milliliter (CFU/mL) and the time required for complete kill was less than 100min when the peak wavelength was 370 nm for the four LED light source at a total LED power of 0.8 milliWatts (mW), decreasing to less than 75 min for a total LED power of 3 mW. Changing the peak wavelength by 7 nm to 377 nm decreased the kill of vegetative B. subtilis to less than 1 log at 100 min for 5 mW total LED power. This work was performed under Federal Contract W9113M-09-C-0136 in support of the Radiance Technologies, Inc., prime contract from US Army SMDC, Huntsville, AL.

  8. Evaluation of light-emitting diode (LED-660 nm) application over primary osteoblast-like cells on titanium surfaces: an in vitro study. (United States)

    Cankaya, Abdulkadir Burak; Erdem, Mehmet Ali; Erdem, Arzu Pınar; Erguven, Mine; Aybar, Buket; Kasapoglu, Cetin; Bilir, Ayhan


    The goal of this study was to evaluate the behavior of neonatal rat calvarial osteoblast-like cells cultured on different implant surfaces and exposed once or three times to a 660-nm light-emitting diode (LED). An LED with a 660-nm wavelength was applied once or three times to cultured cells on standard and modified sandblasted acid-etched surfaces (SLA and SLActive; Straumann, Basel, Switzerland). To analyze the effect of the LED on cell proliferation, numbers, and viability, cells were cultured on titanium discs, and measurements were taken after 72 h. Cell proliferation rates were assessed using a bromodeoxyuridine immunohistochemical technique. Cell morphologies were evaluated by scanning electron microscopy (SEM). Osteoblast-like cells proliferated on all tested surfaces, with differences among groups in cell counts and DNA synthesis values. The application of one LED treatment caused a significant increase in cell count in the SLActive group in comparison with the SLA group (p = 0.001), whereas the application of three LED treatments caused a significant decrease in cell count in the SLA group compared with the SLActive group (p LED. One LED application in the SLActive group resulted in significantly increased cell numbers. However, these findings were not exactly compatible with the SEM findings, which demonstrated fewer cells and weak attachments between cells and to the surface. Thus, further studies using different LED application times are needed to clarify the reason for the increased number of cells that are apparently incapable of attaching to the titanium surfaces after 72 h.

  9. Development and characterization of light-emitting diodes (LEDs) based on ruthenium complex single layer for transparent displays

    Energy Technology Data Exchange (ETDEWEB)

    Santos, G.; Fonseca, F.; Andrade, A.M. [Laboratorio de Microelectronica, Departamento de Engenharia de Sistemas Electronicos, Escola Politecnica da Universidade de Sao Paulo (Brazil); Patrocinio, A.O.T.; Mizoguchi, S.K.; Murakami Iha, N.Y. [Laboratorio de Fotoquimica Inorganica e Conversao de Energia, Instituto de Quimica da Universidade de Sao Paulo (Brazil); Peres, M.; Monteiro, T.; Pereira, L. [Departamento de Fisica e I3N, Universidade de Aveiro (Portugal)


    In this work, two ruthenium complexes,[Ru(bpy){sub 3}](PF{sub 6}){sub 2} and[Ru(ph2phen){sub 3}](PF{sub 6}){sub 2} in poly(methylmethacrylate) matrix were employed to build single-layer light-emitting electrochemical cells by spin coating on indium tin oxide substrate. In both cases the electroluminescence spectra exhibit a relatively broad band with maxima near to 625 nm and CIE (x,y) color coordinates of (0.64,0.36), which are comparable with the photoluminescence data in the same medium. The best result was obtained with the[Ru(bpy){sub 3}](PF{sub 6}){sub 2} device where the optical output power approaches 10{mu}W at the band maximum with a wall-plug efficiency higher than 0.03%. The lowest driving voltage is about 4 V for an electrical current of 20 mA. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. LEDs for general and horticultural lighting


    Girón González, Emilio


    The work begins with an introductory part about Light Emitting Diode (or LEDs) and how these devices work. This report also shows an overview of different artificial light sources such as incandescent lamps, fluorescents tube and high-intensity discharge (HID) lamps. The LED lighting is more energy-efficient than other artificial lighting, since they require less energy to operate. The following part of the work reports LEDs for General Lighting that describes some basic concepts such as spec...

  11. Light-Emitting Pickles (United States)

    Vollmer, M.; Mollmann, K-P.


    We present experiments giving new insights into the classical light-emitting pickle experiment. In particular, measurements of the spectra and temperatures, as well as high-speed recordings, reveal that light emission is connected to the polarity of the electrodes and the presence of hydrogen.

  12. Effect of the laser and light-emitting diode (LED) phototherapy on midpalatal suture bone formation after rapid maxilla expansion: a Raman spectroscopy analysis. (United States)

    Rosa, Cristiane Becher; Habib, Fernando Antonio Lima; de Araújo, Telma Martins; Aragão, Juliana Silveira; Gomes, Rafael Soares; Barbosa, Artur Felipe Santos; Silveira, Landulfo; Pinheiro, Antonio L B


    The aim of this study was to analyze the effect of laser or light-emitting diode (LED) phototherapy on the bone formation at the midpalatal suture after rapid maxilla expansion. Twenty young adult male rats were divided into four groups with 8 days of experimental time: group 1, no treatment; group 2, expansion; group 3, expansion and laser irradiation; and group 4, expansion and LED irradiation. In groups 3 and 4, light irradiation was in the first, third, and fifth experimental days. In all groups, the expansion was accomplished with a helicoid 0.020" stainless steel orthodontic spring. A diode laser (λ780 nm, 70 mW, spot of 0.04 cm(2), t = 257 s, spatial average energy fluence (SAEF) of 18 J/cm(2)) or a LED (λ850 nm, 150 mW ± 10 mW, spot of 0.5 cm(2), t = 120 s, SAEF of 18 J/cm(2)) were used. The samples were analyzed by Raman spectroscopy carried out at midpalatal suture and at the cortical area close to the suture. Two Raman shifts were analyzed: ∼ 960 (phosphate hydroxyapatite) and ∼ 1,450 cm(-1) (lipids and protein). Data was submitted to statistical analysis. Significant statistical difference (p ≤ 0.05) was found in the hydroxyapatite (CHA) peaks among the expansion group and the expansion and laser or LED groups. The LED group presented higher mean peak values of CHA. No statistical differences were found between the treated groups as for collagen deposition, although LED also presented higher mean peak values. The results of this study using Raman spectral analysis indicate that laser and LED light irradiation improves deposition of CHA in the midpalatal suture after orthopedic expansion.

  13. Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting at T.J.Maxx in Manchester, NH Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Myer, Michael; Goettel, Russell T.


    A report describing the process and results of replacing existing parking lot lighting, looking at a LED option with occupancy sensors, and conventional alternates. Criteria include payback, light levels, occupant satisfaction. This report is Phase I of II. Phase I deals with initial installation.

  14. Effects of light emitting diode (LED) therapy and cold water immersion therapy on exercise-induced muscle damage in rats. (United States)

    Camargo, Mariana Zingari; Siqueira, Cláudia Patrícia Cardoso Martins; Preti, Maria Carla Perozim; Nakamura, Fábio Yuzo; de Lima, Franciele Mendes; Dias, Ivan Frederico Lupiano; Toginho Filho, Dari de Oliveira; Ramos, Solange de Paula


    The aim of this work is to analyze the effects of LED therapy at 940 nm or cold water immersion therapy (CWI) after an acute bout of exercise on markers of muscle damage and inflammation. Thirty-two male Wistar rats were allocated into four groups: animals kept at rest (control), exercised animals (E), exercised + CWI (CWI), and exercised + LED therapy (LED). The animals swam for 100 min, after which blood samples were collected for lactate analysis. Animals in the E group were returned to their cages without treatment, the CWI group was placed in cold water (10°C) for 10 min and the LED group received LED irradiation on both gastrocnemius muscles (4 J/cm(2) each). After 24 h, the animals were killed and the soleus muscles were submitted to histological analysis. Blood samples were used for hematological and CK analyses. The results demonstrated that the LED group presented fewer areas of muscle damage and inflammatory cell infiltration and lower levels of CK activity than the E group. Fewer areas of damaged muscle fiber were observed in the LED group than in CWI. CWI and LED did not reduce edema areas. Hematological analysis showed no significant effect of either treatment on leukocyte counts. The results suggest that LED therapy is more efficient than CWI in preventing muscle damage and local inflammation after exercise.

  15. Efecto sobre los circuitos de distribución secundarios debido al uso intensivo de bombillas fluorescentes compactas y LEDs (Light Emitting Diodes) / Effects of high penetration of compact fluorescent lamps and LEDs (Light Emitting Diodes) on the distribution networks


    Blanco Castañeda, Ana María


    Las BFCs y los LEDs son tecnologías de alta eficacia que se caracterizan por contener un dispositivo electrónico para su funcionamiento. Estos dispositivos son cargas no lineales que inyectan armónicos a la red. La sustitución masiva de bombillas incandescentes por BFCs y LEDs puede provocar graves alteraciones en los índices de calidad de la potencia y provocar efectos indeseados en las redes de distribución. En esta tesis de maestría se estudia el efecto sobre los circuitos de distribución ...

  16. Material and device studies for the development of ultra-violet light emitting diodes (UV-LEDS) along polar, non-polar and semi-polar directions (United States)

    Chandrasekaran, Ramya

    Over the past few years, significant effort was dedicated to the development of ultraviolet light emitting diodes (UV-LEDs) for a variety of applications. Such applications include chemical and biological detection, water purification and solid-state lighting. III-Nitride LEDs based on multiple quantum wells (MQWs) grown along the conventional [0001] (polar) direction suffer from the quantum confined Stark effect (QCSE), due to the existence of strong electric fields that arise from spontaneous and piezoelectric polarization. Thus, there is strong motivation to develop MQW-based III-nitride LED structures grown along non-polar and semi-polar directions. The goal of this dissertation is to develop UV-LEDs along the [0001] polar and [11 2¯ 0] non-polar directions by the method of Molecular Beam Epitaxy (MBE). The polar and non-polar LEDs were grown on the C-plane and R-plane sapphire substrates respectively. This work is a combination of materials science studies related to the nucleation, growth and n- and p-type doping of III-nitride films on these two substrates, as well as device studies related to fabrication and characterization of UV-LEDs. It was observed that the crystallographic orientation of the III-nitride films grown on R-plane sapphire depends strongly on the kinetic conditions of growth of the Aluminum Nitride (AIN) buffer. Specifically, growth of the AIN buffer under group III-rich conditions leads to nitride films having the (11 2¯ 0) non polar planes parallel to the sapphire surface, while growth of the buffer under nitrogen rich conditions leads to nitride films with the (11 2¯ 6) semi-polar planes parallel to the sapphire surface. The electron concentration and mobility for the films grown along the polar, non-polar and semi-polar directions were investigated. P-type doping of Gallium Nitride (GaN) films grown on the nonpolar (11 2¯ 0) plane do not suffer from polarity inversion and thus the material was doped p-type with a hole concentration

  17. In vitro effect of 470 nm LED (Light Emitting Diode in keloid fibroblasts Efeito in vitro do LED (Light Emitting Diode de 470 nm em fibroblastos de quelóide

    Directory of Open Access Journals (Sweden)

    Silvilena Bonatti


    Full Text Available Purpose: To quantify keloid fibroblasts after irradiation with 470nm blue LED, in vitro. Methods: Fibroblasts from keloid and adjacent skin have been obtained from 6 patients. Cells have been cultivated and maintained in DMEM culture medium. In Petri dishes, they were irradiated with energy doses of 6J, 12J and 18J. After 24 h, counting was done by the average of the triplicates for each sample. Results: There were no significant differences in the number of irradiated keloid fibroblasts at the studied doses (p=0.261. In adjacent skin fibroblasts, differences were observed (p=0.025 concerning the doses of 18 J and 6 J (p=0.03. Conclusions: There was a reduction in the number of adjacent skin fibroblasts irradiated with 470nm blue LED at the energy dose of 18 J compared to the ones irradiated at the energy dose of 6 J. There were no changes in keloid fibroblasts counting at any of the doses applied, 24 h after irradiation.Objetivo: Quantificar fibroblastos de quelóide após irradiação com LED azul de 470nm, in vitro. Métodos: Foram obtidos fibroblastos de quelóide e pele adjacente, de seis pacientes. As células foram cultivadas e mantidas em meio de cultura DMEM. Em placas de Petri, receberam irradiação com doses de energia de 6J, 12J e 18J. Após 24 horas a contagem foi feita pela média da triplicata para cada amostra. Resultados: Não houve diferença na quantidade de fibroblastos de quelóide irradiados nas doses estudadas (p=0,261. Observou-se diferença nos fibroblastos de pele adjacente (p=0,025, com relação às doses de 18 J e 6 J (p=0,03. Conclusões: Houve redução dos fibroblastos de pele adjacente irradiados com LED azul de 470 nm na dose de energia de 18 J em relação à dose de 6 J. Não houve alteração na quantidade de fibroblastos de quelóide nas doses aplicadas após 24 horas da irradiação.

  18. Light-Emitting Diode (LED) therapy improves occipital cortex damage by decreasing apoptosis and increasing BDNF-expressing cells in methanol-induced toxicity in rats. (United States)

    Ghanbari, Amir; Ghareghani, Majid; Zibara, Kazem; Delaviz, Hamdallah; Ebadi, Elham; Jahantab, Mohammad Hossein


    Methanol-induced retinal toxicity, frequently associated with elevated free radicals and cell edema, is characterized by progressive retinal ganglion cell (RGC) death and vision loss. Previous studies investigated the effect of photomodulation on RGCs, but not the visual cortex. In this study, the effect of 670nm Light-Emitting Diode (LED) therapy on RGCs and visual cortex recovery was investigated in a seven-day methanol-induced retinal toxicity protocol in rats. Methanol administration showed a reduction in the number of RGCs, loss of neurons (neuronal nuclear antigen, NeuN+), activation of glial fibrillary acidic protein (GFAP+) expressing cells, suppression of brain-derived neurotrophic factor (BDNF+) positive cells, increase in apoptosis (caspase 3+) and enhancement of nitric oxide (NO) release in serum and brain. On the other hand, LED therapy significantly reduced RGC death, in comparison to the methanol group. In addition, the number of BDNF positive cells was significantly higher in the visual cortex of LED-treated group, in comparison to methanol-intoxicated and control groups. Moreover, LED therapy caused a significant decrease in cell death (caspase 3+ cells) and a significant reduction in the NO levels, both in serum and brain tissue, in comparison to methanol-intoxicated rats. Overall, LED therapy demonstrated a number of beneficial effects in decreasing oxidative stress and in functional recovery of RGCs and visual cortex. Our data suggest that LED therapy could be a potential condidate as a non-invasive approach for treatment of retinal damage, which needs further clinicl studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Demonstration Assessment of Light-Emitting Diode (LED) Retrofit Lamps at Intercontinental Hotel in San Francisco, CA

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Naomi J.; Curry, Ku' Uipo J.


    This document is a report of observations and results obtained from a lighting demonstration project conducted under the U.S. Department of Energy (DOE) GATEWAY Demonstration Program. The program supports demonstrations of high-performance solid-state lighting (SSL) products in order to develop empirical data and experience with in-the-field applications of this advanced lighting technology. The DOE GATEWAY Demonstration Program focuses on providing a source of independent, third-party data for use in decision-making by lighting users and professionals; this data should be considered in combination with other information relevant to the particular site and application under examination. Each GATEWAY Demonstration compares SSL products against the incumbent technologies used in that location. Depending on available information and circumstances, the SSL product may also be compared to alternate lighting technologies. Though products demonstrated in the GATEWAY program have been prescreened and tested to verify their actual performance, DOE does not endorse any commercial product or in any way guarantee that users will achieve the same results through use of these products.

  20. Study of the Distribution of Radiative Defects and Reabsorption of the UV in ZnO Nanorods-Organic Hybrid White Light Emitting Diodes (LEDs

    Directory of Open Access Journals (Sweden)

    Yousuf Soomro


    Full Text Available In this study, the low temperature aqueous chemical growth (ACG method was employed to synthesized ZnO nanorods to process-organic hybrid white light emitting diodes (LEDs on glass substrate. Electroluminescence spectra of the hybrid white LEDs demonstrate the combination of emission bands arising from radiative recombination of the organic and ZnO nanorods (NRs. Depth resolved luminescence was used for probing the nature and spatial distribution of radiative defects, especially to study the re-absorption of ultraviolet (UV in this hybrid white LEDs structure. At room temperature the cathodoluminescence (CL spectra intensity of the deep band emission (DBE is increased with the increase of the electron beam penetration depth due to the increase of defect concentration at the ZnO NRs/Polyfluorene (PFO interface and probably due to internal absorption of the UV. A strong dependency between the intensity ratio of the UV to the DBE bands and the spatial distribution of the radiative defects in ZnO NRs has been found. The comparison of the CL spectra from the PFO and the ZnO NRs demonstrate that PFO has a very weak violet-blue emission band, which confirms that most of the white emission components originate from the ZnO NRs.

  1. Phototherapy with Light Emitting Diodes (United States)


    Within the field of dermatology, advances in the use of light emitting diodes (LEDs) have led to their clinical application for a variety of medical and cosmetic uses. Of note, one phototherapy device has demonstrated beneficial effects over a range of clinical applications (Omnilux™; GlobalMed Technologies, Glen Ellen, California). The study included a literature review of published studies. Using LEDs with frequencies of 415nm (blue), 633nm (red), and 830nm (infrared), this device has demonstrated significant results for the treatment of medical conditions, including mild-to-moderate acne vulgaris, wound healing, psoriasis, squamous cell carcinoma in situ (Bowen’s disease), basal cell carcinoma, actinic keratosis, and cosmetic applications. Although photodynamic therapy with the photosensitizer 5-aminolevulinic acid might cause stinging and burning, phototherapy is free of adverse events. We determined that phototherapy using LEDs is beneficial for a range of medical and aesthetic conditions encountered in the dermatology practice. This treatment displays an excellent safety profile.

  2. Light-Emitting Diodes: A Hidden Treasure (United States)

    Planinšic, Gorazd; Etkina, Eugenia


    LEDs, or light-emitting diodes, are cheap, easy to purchase, and thus commonly used in physics instruction as indicators of electric current or as sources of light (Fig. 1). In our opinion LEDs represent a unique piece of equipment that can be used to collect experimental evidence, and construct and test new ideas in almost every unit of a general…

  3. Goniometric characterization of LED based greenhouse lighting

    DEFF Research Database (Denmark)

    Thorseth, Anders; Lindén, Johannes; Corell, Dennis Dan


    This paper describes a demonstration of goniospectroradiometry for characterizations of new light emitting diode (LED) based luminaries for enhanced photosynthesis in greenhouses. It highlights the differences between measurement of the traditional high pressure sodium (HPS) luminaries and the LED...... based luminaries. The LED based luminaries are compared to traditional HPS luminaries; in terms of energy efficiency with regard to the photosynthetic photon flux, and the LED luminaries were found to be more effective than the HPS luminaries...

  4. Seed-to-seed growth of superdwarf wheat and arabidopsis using red light-emitting diodes (LED's): A report on baseline tests conducted for NASA's proposed Plant Research Unit (PRU) (United States)

    Goins, G. D.; Yorio, N. C.; Sanwo, M. M.; Brown, C. S.


    To determine the influence of narrow-spectrum red light-emitting diodes (LED's) on plant growth and seed production, wheat (Triticum aestivum Superdwarf) and Arabidopsis (Arabidopsis thaliana (L.) Heynh, race Columbia) plants were grown under red LED's (peak emission 660 nm) and compared to plants grown under daylight fluorescent (white) light and red LED's supplemented with either 1 percent or 10 percent blue fluorescent (BF) light. Wheat growth under red LED's alone appeared normal, whereas Arabidopsis under red LED's alone developed curled leaf margins and a spiraling growth pattern. Both wheat and Arabidopsis under red LED's alone or red LED's + 1 percent BF light had significantly lower seed yield than plants grown under white light. However, the addition of 10 percent BF light to red LED's partially alleviated the adverse effect of red LED's on yield. Irrespective of the light treatment, viable seeds were produced by wheat(75-92 percent germination rate) and Arabidopsis (85-100 percent germination rate). These results indicate that wheat, and to a lesser extent Arabidopsis, can be successfully grown under red LED's alone, but supplemental blue light is required with red LED's to sufficiently match the growth characteristics and seed yield associated with plants grown under white light.

  5. LEDs light up the world

    Energy Technology Data Exchange (ETDEWEB)

    Mather, N.


    A lighting system using light-emitting diodes, and privately financed by a Canadian engineering professor at the University of Calgary, has been set up in a village in Nepal in 2000. Since then, through the efforts of the 'Light Up The World' Foundation, established by Dr. Irvine-Halliday, projects have lit up thousands of homes in the Philippines, India, Afghanistan, the Galapagos Islands, Mexico, Sri Lanka, and Angola. Although the goal of the project is primarily to provide lighting for reading and writing for school-children, the project has been the source of many other advantages; creation of enterprise, increased employment, enhanced income, gender equality, and improvements in health and safety among them. Since LED lamps in most cases replace kerosene lamps, the system also has significant environmental benefits. The system as originally envisioned creates electricity by pedal-powered generator, or by solar panels connected to a battery, depending on what is available at each home. Each home is connected to the power supply and supplied with low-energy diode lamps. The lights are extremely efficient and many homes can be equipped with them using less energy than it takes to power a single 100-watt light bulb. 5 photos.

  6. LED Street Lights in Alaska (United States)


    During winter nights in Alaska, streetlights often remain lit more than half the day, using energy all the while. Around the nation, communities are exploring the use of : light-emitting diode technology for lighting streets and reducing energy use. ...

  7. Studying Light Color using White LED Lighting (United States)

    Yamagishi, Misako; Yamaba, Kazuo; Nagata, Manori; Kubo, Chiho; Nokura, Kunihiro

    Recently, white Light Emitting Diodes (LEDs) are receiving attention worldwide as new lighting devices. This study examined effects of a lighting application on performance using white LEDs. The light color—the correlated color temperature (CCT) —was assessed. It affected to psychological states and physiological conditions. Three CCT conditions were respectively set for the experiment: 2500 K, 5000 K, and 8200 K. In all, 20 younger subjects (20-30 years old), 15 middle-aged to elderly subjects (45-60 years old) and 12 elderly subjects (over 65 years-old) participated. They were presented a Numerical Verification (NV) task for performance measurement. The psychological states on performance were evaluated using the lighting assessment questionnaire. The physiological conditions were recorded using an electrocardiograph. Results show that the effects of CCT differ among age groups. Especially, the performance of younger subjects might differ from CCT conditions; elderly subjects are affected by CCT condition because of their visual acuity or response to contrast of objects.

  8. 830 nm light-emitting diode (led) phototherapy significantly reduced return-to-play in injured university athletes: a pilot study. (United States)

    Foley, John; Vasily, David B; Bradle, Jeanna; Rudio, Catharine; Calderhead, R Glen


    For any committed athlete, getting back to conditioning and participation post-injury (return to play [RTP]) needs to be as swift as possible. The effects of near-infrared light-emitting diode (LED) therapy on pain control, blood flow enhancement and relaxation of muscle spasm (all aspects in the treatment of musculoskeletal injury) have attracted attention. The present pilot study was undertaken to assess the role of 830 nm LED phototherapy in safely accelerating RTP in injured university athletes. Over a 15-month period, a total of 395 injuries including sprains, strains, ligament damage, tendonitis and contusions were treated with 1,669 sessions of 830 nm LED phototherapy (mean of 4.3 treatments per injury, range 2 - 6). Efficacy was measured with pain attenuation on a visual analog scale (VAS) and the RTP period compared with historically-based anticipated RTP with conventional therapeutic intervention. A full set of treatment sessions and follow-up data was able to be recorded in 65 informed and consenting subjects who achieved pain relief on the VAS of up to 6 points in from 2-6 sessions. The average LED-mediated RTP in the 65 subjects was significantly shorter at 9.6 days, compared with the mean anticipated RTP of 19.23 days (p = 0.0066, paired two-tailed Student's t-test). A subjective satisfaction survey was carried out among the 112 students with injuries incurred from January to May, 2015. Eighty-eight (78.5%) were either very satisfied or satisfied, and only 8 (7.2%) were dissatisfied. For any motivated athlete, RTP may be the most important factor postinjury based on the resolution of pain and inflammation and repair to tissue trauma. 830 nm LED phototherapy significantly and safely reduced the RTP in dedicated university athletes over a wide range of injuries with no adverse events. One limitation of the present study was the subjective nature of the assessments, and the lack of any control groups. However, further controlled studies are warranted to

  9. Visible photon excited photoluminescence photometric characteristics of a green light emitting Zn2TiO4:Tb3+ nanophosphor for wLEDs (United States)

    Girish, K. M.; Prashantha, S. C.; Naik, Ramachandra; Nagabhushana, H.; Nagaswarupa, H. P.; Premakumar, H. B.; Sharma, S. C.; Raju, K. S. Anantha


    A novel green light emitting Zn2TiO4:Tb3+ nanophosphor was synthesized via solution combustion synthesis and the final product was well characterized. From diffused reflectance spectra the energy band gap of the sample was estimated to be in the range 3.16-3.19 eV and the effect of Tb3+ on the electronic structure was calculated based on absolute electronegativity. The characteristic photoluminescence emission peak observed at 493 nm in the blue region was due to 5D3 → 7F3 and peaks at 515, 541, 579 and 620 nm corresponding to 5D4 → 7Fj (j = 6, 5, 4, 3), respectively, were due to f-f transitions of Tb3+ cations in the given host lattice upon 415 nm high energy visible photon excitation. Photometric characteristics suggest that the phosphors have a long lifetime, excellent color purity, color chromaticity coordinates and correlated color temperature values, so it is clearly evident that the optimized phosphor is quite useful for the green region of wLEDs, a ceramic pigment and for solid state display applications.

  10. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Chiao-Wen Yeh


    Full Text Available White light-emitting diodes (WLEDs have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV LEDs and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED or polymer light-emitting diode (PLED, have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450-480 nm and nUV (380-400 nm LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+ is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  11. The Light-Emitting Diode as a Light Detector (United States)

    Baird, William H.; Hack, W. Nathan; Tran, Kiet; Vira, Zeeshan; Pickett, Matthew


    A light-emitting diode (LED) and operational amplifier can be used as an affordable method to provide a digital output indicating detection of an intense light source such as a laser beam or high-output LED. When coupled with a microcontroller, the combination can be used as a multiple photogate and timer for under $50. A similar circuit is used…

  12. Polymer light emitting diodes

    International Nuclear Information System (INIS)

    Gautier-Thianche, Emmmanuelle


    We study sandwich type semiconducting polymer light emitting diodes; anode/polymer/cathode. ITO is selected as anode, this polymer is a blend of a commercially available polymer with a high hole transport ability: polyvinyl-carbazole and a laser dye: coumarin-515. Magnesium covered with silver is chosen for the anode. We study the influence of polymer thickness and coumarin doping ratio on electroluminescence spectrum, electric characteristics and quantum efficiency. An important drawback is that diodes lifetime remains low. In the second part of our study we determine degradations causes with X-Ray reflectivity experiments. It may be due to ITO very high roughness. We realize a new type of planar electroluminescent device: a channel type electroluminescent device in which polymer layer is inserted into an aluminium channel. Such a device is by far more stable than using classical sandwich structures with the same polymer composition: indeed, charges are generated by internal-field ionization and there is no injection from the electrode to the polymer. This avoids electrochemical reactions at electrodes, thus reducing degradations routes. (author) [fr

  13. On the photosynthetic responses of crops to intracanopy lighting with light emitting diodes

    NARCIS (Netherlands)

    Trouwborst, G.


    Key words: Cucumis sativus, intracanopy lighting, light-emitting diodes (LEDs), light distribution, light interception, light quality, photosynthesis, photosynthetic acclimation

    Assimilation lighting is a production factor of increasing importance in Dutch greenhouse horticulture.

  14. Null bactericidal effect of ultraviolet radiation emitted by LEDs.

    Directory of Open Access Journals (Sweden)

    Francisco Alcántara Muñoz


    Full Text Available This research has aimed to assess the bactericidal effect of ultraviolet light emitted by LEDS on the growth on Petri dishes of microorganisms whose legal limits in foods have been established. An electrically fed apparatus has been designed with precise timing and a camera to prevent light spillage, in which two ultraviolet radiation emission devices were connected by LED technology at different wavelengths: through an array of LEDS emitting at around 350nm, and a single specific emission LED at 280nm. 1000 cfu of E. Coli and S. aureus sown on PCA were used as prototypes of gram negative and positive bacteria, respectively, onto which ultraviolet light was radiated at different time intervals, by means of both devices, with the whole experiment being carried out in triplicate . In none of the three series of treatments at the two wavelengths were reductions in microbial growth observed. The series of sowings on PCA were done on unseeded plates in order to be able to discard the likelihood of subsequent recontamination.

  15. Gallium-Nitride-Based Light-Emitting Diodes

    Indian Academy of Sciences (India)

    IAS Admin

    The advent of the semiconductor light-emitting diode (LED) emerged as a key component in our modern lighting technologies. While LEDs of various colors have been invented since 1950s, the blue LED was elusive till the 1990s. Blue light, with blue being one of the primary colors, is essential for white light emission.

  16. A single-blind, dose escalation, phase I study of high-fluence light-emitting diode-red light (LED-RL) on human skin: study protocol for a randomized controlled trial. (United States)

    Ho, Derek; Kraeva, Ekaterina; Wun, Ted; Isseroff, R Rivkah; Jagdeo, Jared


    Skin fibrosis is involved in a variety of pathologic conditions ranging from scar formation secondary to surgery or trauma to immune-mediated processes. Skin fibrosis is a significant international health problem with an estimated incidence of greater than 100 million people affected per year worldwide with few effective treatment options available. Preliminary in vitro data generated by our research group suggests that red light can function as a stand-alone treatment for skin fibrosis. To our knowledge, no prior clinical trials have been performed to determine the safety of high-fluence (dose) light-emitting diode-red light (LED-RL) phototherapy. The goal of this study is to evaluate the safety of LED-RL fluences from 160 J/cm(2) up to 640 J/cm(2) in healthy subjects. This is a single-blind, dose escalation, randomized controlled, phase I study to evaluate the safety of high-fluence LED-RL on human skin. The protocol for dose escalation requires subjects be enrolled sequentially in groups of five. Within each group, three subjects will be randomized to LED-RL phototherapy and two subjects randomized to mock therapy. Subjects in group 1 randomized to LED-RL phototherapy will receive the maximum recommended starting dose (160 J/cm(2)). LED-RL dose will be escalated in subsequent groups (320 J/cm(2), 480 J/cm(2) and 640 J/cm(2)). The maximally tolerated dose (MTD) is defined as the dose level below the dose producing unacceptable but reversible toxicity and is considered to be the upper limit of subject tolerance. After either a MTD has been established, or the study endpoint of 640 J/cm(2) has been achieved, an additional 27 LED-RL phototherapy subjects (for a total of 30) and 18 mock therapy subjects (for a total of 20) (determined randomly) will be enrolled. Each subject will receive a total of nine procedures, three times per week for three consecutive weeks. This study may provide important safety information on the effects of high-fluence LED

  17. Light-Emitting Diodes: Learning New Physics (United States)

    Planinšic, Gorazd; Etkina, Eugenia


    This is the third paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide the readers with the description of experiments and pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper, published…

  18. Injecting Light of High-Power LEDs into Thin Light Guides

    NARCIS (Netherlands)

    Cornelissen, H.J.; Krijn, M.P.C.; Ma, H.; Van Sprang, H.A.


    A new method using a thin-film multilayer filter is described to couple light from high-power LEDs into a thin light guide such as an LCD backlight. Light emitted below the critical angle is reflected back to the LED and recycled. Large-angle emitted light passes the filter and is transported by

  19. Light emitting diodes as a plant lighting source

    Energy Technology Data Exchange (ETDEWEB)

    Bula, R.J.; Tennessen, D.J.; Morrow, R.C. [Wisconsin Center for Space Automation and Robotics, Madison, WI (United States); Tibbitts, T.W. [Univ. of Wisconsin, Madison, WI (United States)


    Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted by Lossew in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). Development efforts to translate these observations into visible light emitting devices, however, was not undertaken until the 1950s. The term, light emitting diode (LEDs), was first used in a report by Wolfe, et al., in 1955. The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. The most popular applications of the LED are as indicators or as optoelectronic switches. However, several recent advances in LED technology have made possible the utilization of LEDs for applications that require a high photon flux, such as for plant lighting in controlled environments. The new generation of LEDs based on a gallium aluminum arsenide (GaAlAS) semiconductor material fabricated as a double heterostructure on a transparent substrate has opened up many new applications for these LEDs.

  20. Using high-power light emitting diodes for photoacoustic imaging

    DEFF Research Database (Denmark)

    Hansen, R. S.


    The preliminary result of using a high-power light emitting diode, LED, for photoacoustic imaging is presented. The pulsed light source is created by a 1Watt red Luxeon LED. The LED delivers light pulses with 25W peak power when supplied by 40A peak, 60ns wide current pulses. The phantom used for...

  1. Light pipes for LED measurements (United States)

    Floyd, S. R.; Thomas, E. F., Jr.


    Light pipe directly couples LED optical output to single detector. Small area detector measures total optical output of diode. Technique eliminates thermal measurement problems and channels optical output to remote detector.

  2. Light-emitting device test systems (United States)

    McCord, Mark; Brodie, Alan; George, James; Guan, Yu; Nyffenegger, Ralph


    Light-emitting devices, such as LEDs, are tested using a photometric unit. The photometric unit, which may be an integrating sphere, can measure flux, color, or other properties of the devices. The photometric unit may have a single port or both an inlet and outlet. Light loss through the port, inlet, or outlet can be reduced or calibrated for. These testing systems can provide increased reliability, improved throughput, and/or improved measurement accuracy.

  3. Distributed dimming control for LED lighting. (United States)

    Lee, Sang Hyun; Kwon, Jae Kyun


    This paper presents a distributed energy-saving lighting strategy for the arrangements of a lighting network consisting of a group of light-emitting diode (LED) lamps and users. LED lamps have a dimming support feature to meet the illuminance requirements imposed by individual users. Both groups interact with each other via visible light communication (VLC) or other wireless communication features. This work aims to identify a configuration of lamps leading to the maximal energy saving in adaptive and distributed ways. To this end, a distributed assignment strategy is developed based on a message-passing framework where only local interactions among lamps and users are allowed for calculations and exchanges of the information on their status. The simulation results show that the proposed algorithm outperforms other distributed algorithms in a range of indoor lighting configurations.

  4. A novel amblyopia treatment system based on LED light source (United States)

    Zhang, Xiaoqing; Chen, Qingshan; Wang, Xiaoling


    A novel LED (light emitting diode) light source of five different colors (white, red, green, blue and yellow) is adopted instead of conventional incandescent lamps for an amblyopia treatment system and seven training methods for rectifying amblyopia are incorporated so as for achieving an integrated therapy. The LED light source is designed to provide uniform illumination, adjustable light intensity and alterable colors. Experimental tests indicate that the LED light source operates steadily and fulfills the technical demand of amblyopia treatment.

  5. Transport of Light Through White-LED Phosphor Plates

    NARCIS (Netherlands)

    Meretska, Maryna; Thyrrestrup Nielsen, Henri; Lagendijk, Aart; Tukker, Teus; Mosk, Allard; IJzerman, Wilbert; Vos, Willem L.; Di Bartolo, Baldassare; Collins, John; Silvestri, Luciano


    Energy efficient generation of white light has become an important societal issue in recent years. The technology of white-light emitting diodes (LEDs) is one of the main directions (Akasaki I, Amano H, Nakamura S, Blue LEDs – filling the world with new light,, 2014;

  6. Transport of light through white-LED phosphor plates

    NARCIS (Netherlands)

    Meretska, Maryna; Thyrrestrup, H.; Lagendijk, Ad; Tukker, T. W.; Mosk, A. P.; IJzerman, W. L.; Vos, Willem L.


    Energy efficient generation of white light has become an important societal issue in recent years. The technology of white-light emitting diodes (LEDs) is one of the main directions (Akasaki I, Amano H, Nakamura S, Blue LEDs – filling the world with new light,, 2014;

  7. LED roadway lighting, volume 2 : field evaluations and software comparisons. (United States)


    The use of light-emitting diodes (LEDs) for roadway lighting can potentially save energy costs and reduce the frequency of maintenance. The objective of this study is to explore the current state of the art in LED roadway lighting technology. Three s...

  8. Automotive LED lamp lighted appearance (United States)

    Conn, Lawrence G.; Bennett, Larry R.


    The automotive optical engineer has an entirely new set of rules to follow for a 'smooth lighted appearance' with the introduction of LEDs into the automotive signal lighting market. To move away from the 'polka-dot' appearance long associated with the usage of LEDs as the light source for automotive lighting, and give the consumer a smooth lighted appearance to his lamp, there are several optical parameters that must be observed. The number and type of LEDs used, the size of the optical elements used, the spacing of the optical elements, plus many other factors all play a critical role and must be considered in the solution to the 'smooth lighted appearance' in an automotive signal lamp. The 'smooth lighted appearance' in an automotive signal lamp has long been a difficult problem to which there is more than one solution. The most visually pleasing and effective solution is not always the most easily obtainable solution since photometry requirements and smooth lighted appearance can be diametric goals. Subsequently the most cost effective and the easily 'doable' solution may not give the ultimate in aesthetically pleasing results for the consumer. Therefore, it is the purpose and intent of this paper to outline the parameters that need to be considered to obtain a 'smooth lighted appearance' for an automotive signal lamp, and to clarify the methods and 'tools' that are required to meet this goal.

  9. Combination of a 2940 nm Er:YAG laser with recombinant bovine basic fibroblast growth factor (rb-bFGF) and light-emitting diode-red light (LED-RL) for the treatment of striae alba: A pilot study. (United States)

    Shen, Jie; Lu, Xin-Gang; Jin, Jing-Jing; Wang, Hong-Wei


    Striae distensae (SD) are a common dermatologic problem that plagues many people. Although there are many therapeutic modalities have been used to treat SD, effective method has been disappointing for striae Alba. To evaluate the clinical and histopathologic efficacy and safety of the 2940-nm erbium yttrium aluminum garnet (Er:YAG) ablative fractional laser (AFL) with recombinant bovine basic fibroblast growth factor (rb-bFGF) and light-emitting diode-red light (LED-RL) for the treatment of striae alba. Thirty volunteers with striae distensae alba were enrolled. The subjects completed treatments with the 2940-nm Er:YAG AFL 6 times at 4-week intervals. Following this treatment, the subjects were required to spray rb-BFGF for 1 week at home. They then received LED-RL once every 7 days for three sessions between the two laser treatments. Two independent investigators evaluated clinical improvement at pretreatment and 1, 3, 6, and 12 months post-treatment, patients also provided self-assessments of clinical improvement. Two biopsies were obtained from two subjects, both of the same sites of striae alba, one before the first treatment and one 6 months after the last session. All 30 subjects demonstrated clinical improvement after treatment. Skin biopsies after treatment showed an increase in epidermal thickness, dermal thickness, and collagen and elastin density when compared to that at the baseline. The combination of the 2940-nm Er:YAG laser with rb-bFGF and LED-RL for the treatment of striae alba was a safe and effective approach for improving the appearance of striae alba. © 2017 Wiley Periodicals, Inc.

  10. UV LED lighting for automated crystal centring

    International Nuclear Information System (INIS)

    Chavas, Leonard M. G.; Yamada, Yusuke; Hiraki, Masahiko; Igarashi, Noriyuki; Matsugaki, Naohiro; Wakatsuki, Soichi


    A low-cost light-emitting diode (LED) UV source has been developed for facilitating macromolecular sample centring in the X-ray beam. A direct outcome of the exponential growth of macromolecular crystallography is the continuously increasing demand for synchrotron beam time, both from academic and industrial users. As more and more projects entail screening a profusion of sample crystals, fully automated procedures at every level of the experiments are being implemented at all synchrotron facilities. One of the major obstacles to achieving such automation lies in the sample recognition and centring in the X-ray beam. The capacity of UV light to specifically react with aromatic residues present in proteins or with DNA base pairs is at the basis of UV-assisted crystal centring. Although very efficient, a well known side effect of illuminating biological samples with strong UV sources is the damage induced on the irradiated samples. In the present study the effectiveness of a softer UV light for crystal centring by taking advantage of low-power light-emitting diode (LED) sources has been investigated. The use of UV LEDs represents a low-cost solution for crystal centring with high specificity

  11. Types of organic light-emitting diode (OLED)


    Askari Mohammad Bagher


    An organic light-emitting diode (OLED) consists of several semiconducting organic layers sandwiched between two electrodes, at least one of them being transparent. OLEDs can provide brighter, crisper displays on electronic devices and use less power than conventional light-emitting diodes (LEDs) or liquid crystal displays (LCDs) used today. OLEDs are made by placing thin films of organic materials between two conductors. When electrical current is applied, a bright light is emitted. The OLED ...

  12. Evaluation of light-emitting diode beacon light fixtures : final report. (United States)


    Rotating beacons containing filament light sources have long been used on highway maintenance trucks : to indicate the presence of the truck to other drivers. Because of advances in light-emitting diode (LED) : technologies, flashing lights containin...

  13. Determination of illuminants representing typical white light emitting diodes sources

    DEFF Research Database (Denmark)

    Jost, S.; Ngo, M.; Ferrero, A.


    Solid-state lighting (SSL) products are already in use by consumers and are rapidly gaining the lighting market. Especially, white Light Emitting Diode (LED) sources are replacing banned incandescent lamps and other lighting technologies in most general lighting applications. The aim of this work...

  14. Light-emitting diodes for analytical chemistry. (United States)

    Macka, Mirek; Piasecki, Tomasz; Dasgupta, Purnendu K


    Light-emitting diodes (LEDs) are playing increasingly important roles in analytical chemistry, from the final analysis stage to photoreactors for analyte conversion to actual fabrication of and incorporation in microdevices for analytical use. The extremely fast turn-on/off rates of LEDs have made possible simple approaches to fluorescence lifetime measurement. Although they are increasingly being used as detectors, their wavelength selectivity as detectors has rarely been exploited. From their first proposed use for absorbance measurement in 1970, LEDs have been used in analytical chemistry in too many ways to make a comprehensive review possible. Hence, we critically review here the more recent literature on their use in optical detection and measurement systems. Cloudy as our crystal ball may be, we express our views on the future applications of LEDs in analytical chemistry: The horizon will certainly become wider as LEDs in the deep UV with sufficient intensity become available.

  15. Extracting light out of LEDs (United States)

    Muschaweck, Julius; Wiesmann, Christopher


    `External quantum efficiency', that is, the number of photons generated per electron passing through the p-n junction of an LED is probably the most important number to quantify the performance of an LED chip. Although advances in epitaxy have increased the fraction of radiative recombination to extremely high values, the extraction of the precious photons that are trapped in a high refractive index crystal is still tricky. In this brief tutorial, we look at the physics of light extraction both from a geometrical optics/thermodynamic and a wave optics point of view, discussing both random and deterministic surface structures.

  16. LED light recycling using double prisms (United States)

    Ouyang, George; Li, Kenneth


    A novel LED recycling scheme using double prisms is presented. Two identical triangular prisms with square bases, one cross-stacked on top of the other, are tight-fit into a mirrored light tunnel. The whole prism/light tunnel assembly is then mounted on top of a square LED source, whose emitting area is the same as that of the base plane of the said prism/light tunnel assembly. Each prism acts as a tapered-down light guide in one dimension, which selectively retro-reflects high angle light along that direction. The outer light tunnel serves as a mirrored wall that folds back any light that escapes outside the two prisms. For a given collection cone angle, the height of the two prisms is optimized using ASAP, a commercial ray-tracing software. Simulation and experimental results show promise in significantly increasing the brightness of the LED sources within the collection cone. Specifically for a 4x recycling ratio a 70% recycling gain in center illuminance has been achieved (i.e., illuminance measured in the forward direction). This scheme has advantages over previous recycling configurations due to its compactness and ease of mounting. For example, compared to Wavien's spherical reflector approach that has been previously published, the current recycling configuration is much smaller in size because instead of fitting a much larger mirrored reflector on top of the LED source, this time we're using a structure that has the same lateral dimensions as those of the LED source itself. Further improvement is also possible if optimization of various system parameters is carried out.

  17. Recent Advances in Conjugated Polymers for Light Emitting Devices (United States)

    AlSalhi, Mohamad Saleh; Alam, Javed; Dass, Lawrence Arockiasamy; Raja, Mohan


    A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED) and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs) in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs) and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review. PMID:21673938

  18. Colloidal quantum dot light-emitting devices

    Directory of Open Access Journals (Sweden)

    Vanessa Wood


    Full Text Available Colloidal quantum dot light-emitting devices (QD-LEDs have generated considerable interest for applications such as thin film displays with improved color saturation and white lighting with a high color rendering index (CRI. We review the key advantages of using quantum dots (QDs in display and lighting applications, including their color purity, solution processability, and stability. After highlighting the main developments in QD-LED technology in the past 15 years, we describe the three mechanisms for exciting QDs – optical excitation, Förster energy transfer, and direct charge injection – that have been leveraged to create QD-LEDs. We outline the challenges facing QD-LED development, such as QD charging and QD luminescence quenching in QD thin films. We describe how optical downconversion schemes have enabled researchers to overcome these challenges and develop commercial lighting products that incorporate QDs to achieve desirable color temperature and a high CRI while maintaining efficiencies comparable to inorganic white LEDs (>65 lumens per Watt. We conclude by discussing some current directions in QD research that focus on achieving higher efficiency and air-stable QD-LEDs using electrical excitation of the luminescent QDs.

  19. A Simplified, Light Emitting Diode (LED Based, Modular System to be Used for the Rapid Evaluation of Fruit and Vegetable Quality: Development and Validation on Dye Solutions

    Directory of Open Access Journals (Sweden)

    Raffaele Civelli


    Full Text Available NIR spectroscopy has proven to be one of the most efficient and ready to transfer tools to monitor product’s quality. Portable VIS/NIR instruments are particularly versatile and suitable for field use to monitor the ripening process or quality parameters. The aim of this work is to develop and evaluate a new simplified optoelectronic system for potential measurements on fruit and vegetables directly in the field. The development, characterization and validation of an operative prototype is discussed. LED technology was chosen for the design, and spectral acquisition at four specific wavelengths (630, 690, 750 and 850 nm was proposed. Nevertheless, attention was given to the modularity and versatility of the system. Indeed, the possibility to change the light sources module with other wavelengths allows one to adapt the use of the same device for different foreseeable applications and objectives, e.g., ripeness evaluation, detection of particular diseases and disorders, chemical and physical property prediction, shelf life analysis, as well as for different natures of products (berry, leaf or liquid. Validation tests on blue dye water solutions have shown the capability of the system of discriminating low levels of reflectance, with a repeatability characterized by a standard deviation proportional to the measured intensity and in general limited to 2%–4%.

  20. Cost and energy-efficient (LED, induction and plasma) roadway lighting. (United States)


    There is an increasing interest in using new lighting technologies such as light emitting diode (LED), Induction, and Plasma light sources : in roadway lighting. The most commonly claimed benefits of the new lighting systems include increased reliabi...

  1. Tuning the colour of white polymer light emitting diodes

    NARCIS (Netherlands)

    Kok, M.M. de; Sarfert, W.; Paetzold, R.


    Colour tuning of white polymer light emitting diode (LED) light sources can be attained by various methods at various stages in the production process of the lamps and/or by the design of the active material incorporated in the LEDs. In this contribution we will describe the methods and discuss the

  2. Effectiveness of composite resin polymerization using light-emitting diodes (LEDs or halogen-based light-curing units Efetividade de polimerização de uma resina composta fotopolimerizada por diodos emissores de luz (LEDs ou luz halógena

    Directory of Open Access Journals (Sweden)

    Bianca Micali


    Full Text Available The clinical performance of composite resins is greatly influenced by the quality of the light-curing unit used. The aim of this study was to compare the efficiency of a commercial light-emitting diode (LED with that of a halogen-based light-curing unit by means of dye penetration of a micro hybrid composite resin. The composite resin evaluated was Filtek Z250 (3M Dental. The composite was filled into acrylic moulds that were randomly polymerized for 40 seconds by each of the light-emitting systems: light-emitting diode Ultraled (Dabi Atlante or halogen light Degulux (Degussa Hüls curing units. Immediately after polymerization, each specimen was individually immersed in 1 ml of 2% methylene blue solution at 37°C ± 2°C. After 24 hours, the specimens were rinsed under running distilled water for 1 minute and stored at 37°C ± 2°C at relative humidity for 24 hours. The composite resins were removed from the moulds and individually triturated before being immersed in new test tubes containing 1 ml of absolute alcohol for 24 hours. The solutions were filtered and centrifuged for 3 minutes at 4,000 rpm and the supernatant was used to determine absorbance in a spectrophotometer at 590 nm. To verify the differences between groups polymerized by LED or halogen light t-test was applied. No significant differences were found between composite resins light-cured by LED or halogen light-curing unit (p > 0.05. The commercially LED-based light-curing unit is as effective to polymerize hybrid composite resins as the halogen-based unit.A longevidade clínica das resinas compostas é grandemente influenciada pela qualidade do aparelho fotopolimerizador utilizado. O objetivo deste trabalho foi comparar a eficácia de um aparelho fotopolimerizador de diodos emissores de luz e a de um de luz halógena através do grau de penetração de um corante em uma resina composta micro-híbrida. A resina composta utilizada (Filtek Z250/3M Dental foi inserida em matrizes

  3. Light-emitting diodes - Their potential in biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Naichia Gary; Wu, Chia-Hao [College of Applied Sciences, MingDao University, 369 Wen-Hua Road, Peetou, Changhua 52345 (China); Cheng, Ta Chih [Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, 1 Hseuh-Fu Rd., Nei-Pu Hsiang, Pingtung 91201 (China)


    The rapid development of high brightness light-emitting diodes (LEDs) makes feasible the use of LEDs, among other light sources (such as laser, intense pulse light and other incoherent light systems), for medical treatment and light therapy. This paper provides a general review on red, green, blue, ultraviolet LED applications in photo rejuvenation and medical treatments of a variety of physical abnormalities, as well as the relief of stress, circadian rhythm disorders, and seasonal affective disorder. The review, concentrated in the papers published after 1990, intends to show that LEDs are well qualified to succeed its more energy demanding counterparts in the named areas and beyond. (author)

  4. Shortest exposure time possible with LED curing lights

    NARCIS (Netherlands)

    Busemann, I.; Lipke, C.; Schattenberg, A.V.M.B.; Willershausen, B.; Ernst, C.P.


    PURPOSE: To investigate the shortest exposure time of different light emitting diode (LED)-curing devices for different resin composites in a clinically relevant laboratory model. METHODS: Nine LED curing devices (Bluephase, Bluephase 16i, Bluephase G2, Bluephase 20i/Ivoclar Vivadent, DEMI/sds Kerr,

  5. Trapping of Rift Valley Fever (RVF) vectors using Light Emitting Diode (LED) CDC traps in two arboviral disease hot spots in Kenya (United States)

    Background: Mosquitoes’ response to artificial lights including color has been exploited in trap designs for improved sampling of mosquito vectors. Earlier studies suggest that mosquitoes are attracted to specific wavelengths of light and thus the need to refine techniques to increase mosquito captu...

  6. Savings in Cooling Energy with a Thermal Management System for LED Lighting in Office Buildings

    Directory of Open Access Journals (Sweden)

    Byung-Lip Ahn


    Full Text Available Light-emitting diode (LED lighting should be considered for lighting efficiency enhancement, however, waste heat from light-emitting diode (LED lighting increases the internal cooling load during the summer season. In order to solve this problem we propose a thermal management system for light-emitting diode (LED lighting with a heat exchanger module integrated with the building’s heating, ventilation, and air conditioning (HVAC system to move the lighting’s waste heat outdoors. An experiment was carried out to investigate the thermal effects in a test chamber and the heat exchange rate between the heat sink and the duct air. The heat generated by the light-emitting diode (LED lighting was calculated as 78.1% of light-emitting diode (LED input power and the heat exchange rate of the lighting heat exchange module was estimated to be between 86.5% and 98.1% according to the light-emitting diode (LED input power and the flow rate of air passing the heat sink. As a result, the average light-emitting diode (LED lighting heat contribution rate for internal heat gain was determined as 0.05; this value was used to calculate the heating and cooling energy demand of the office building through an energy simulation program. In the simulation results, the cooling energy demand was reduced by 19.2% compared with the case of conventionally installed light-emitting diode (LED lighting.

  7. Power saving regulated light emitting diode circuit

    International Nuclear Information System (INIS)

    Haville, G. D.


    A power saving regulated light source circuit, comprising a light emitting diode (LED), a direct current source and a switching transistor connected in series with the LED, a control voltage producing resistor connected in series with the LED to produce a control voltage corresponding to the current through the LED, a storage capacitor connected in parallel with the series combination of the LED and the resistor, a comparator having its output connected to the input of the transistor, the comparator having a reference input and a control input, a stabilized biasing source for supplying a stabilized reference voltage to the reference input, the control input of the comparator being connected to the control voltage producing resistor, the comparator having a high output state when the reference voltage exceeds the control voltage while having a low output state when the control voltage exceeds the reference voltage, the transistor being conductive in response to the high state while being nonconductive in response to the low state, the transistor when conductive being effective to charge the capacitor and to increase the control voltage, whereby the comparator is cycled between the high and low output states while the transistor is cycled between conductive and nonconductive states

  8. Light-Emitting Diodes: Solving Complex Problems (United States)

    Planinšič, Gorazd; Etkina, Eugenia


    This is the fourth paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide readers with the description of experiments and the pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper1 provided an overview of possible uses of LEDs in physics courses. The second paper2 discussed how one could help students learn the foundational aspects of LED physics through a scaf-folded inquiry approach, specifically the ISLE cycle. The third paper3 showed how the physics inherent in the functioning of LEDs could help students deepen their understanding of sources of electric power and the temperature dependence of resistivity, and explore the phenomenon of fluorescence also using the ISLE cycle.4 The goal of this fourth paper is to use LEDs as black boxes that allow students to study certain properties of a system of interest, specifically mechanical, electric, electromagnetic, and light properties. The term "black box" means that we use a device without knowing the mechanism behind its operation.

  9. Current-voltage model of LED light sources

    DEFF Research Database (Denmark)

    Beczkowski, Szymon; Munk-Nielsen, Stig


    Amplitude modulation is rarely used for dimming light-emitting diodes in polychromatic luminaires due to big color shifts caused by varying magnitude of LED driving current and nonlinear relationship between intensity of a diode and driving current. Current-voltage empirical model of light...

  10. High Output LED-Based Profile Lighting Fixture

    DEFF Research Database (Denmark)

    Török, Lajos; Beczkowski, Szymon; Munk-Nielsen, Stig


    Recent developments in power light emitting diode (LED) industry have made LEDs suitable for being efficiently used in high intensity lighting fixtures instead of the commonly used high intensity discharge (HID) lamps. A high output LEDbased profile-light fixture is presented in this paper...... the grid and delivers the required voltage to the LEDdriver which is a dual interleaved buck converter. Twelve highpower CBT-90 LEDs have been connected in a 4xRGBconfiguration to deliver high output of saturated colors without the need for subtractive color filters. More than 6000 lm of fixture light...

  11. UV LED lighting for automated crystal centring. (United States)

    Chavas, Leonard M G; Yamada, Yusuke; Hiraki, Masahiko; Igarashi, Noriyuki; Matsugaki, Naohiro; Wakatsuki, Soichi


    A direct outcome of the exponential growth of macromolecular crystallography is the continuously increasing demand for synchrotron beam time, both from academic and industrial users. As more and more projects entail screening a profusion of sample crystals, fully automated procedures at every level of the experiments are being implemented at all synchrotron facilities. One of the major obstacles to achieving such automation lies in the sample recognition and centring in the X-ray beam. The capacity of UV light to specifically react with aromatic residues present in proteins or with DNA base pairs is at the basis of UV-assisted crystal centring. Although very efficient, a well known side effect of illuminating biological samples with strong UV sources is the damage induced on the irradiated samples. In the present study the effectiveness of a softer UV light for crystal centring by taking advantage of low-power light-emitting diode (LED) sources has been investigated. The use of UV LEDs represents a low-cost solution for crystal centring with high specificity.

  12. Photodynamic effect of light-emitting diode light on cell growth ...

    Indian Academy of Sciences (India)

    Madhu urs

    Photodynamic effect of LED light on cell growth inhibition induced by methylene blue. 231. J. Biosci. 33(2) ... The aim of this study was to propose the use of red light-emitting diode (LED) as an alternative light source for methylene blue (MB) .... identical groups, with one group being illuminated (1 h) and the other group ...

  13. Hybrid Light-Emitting Diode Enhanced With Emissive Nanocrystals

    DEFF Research Database (Denmark)

    Kopylov, Oleksii

    of the hybrid diode fabrication including process techniques for GaN LED and incorporation of the nanocrystals are presented with the emphasis on the differences with standard LED processing. Results and analysis of optical and electrical characterization including photoluminescence (PL), micro-PL, time......This thesis investigates a new type of white light emitting hybrid diode, composed of a light emitting GaN/InGaN LED and a layer of semiconductor nanocrystals for color conversion. Unlike standard white LEDs, the device is configured to achieve high color conversion efficiency via non......-radiative energy transfer from the primary LED to the nanocrystals. LED structures with sub-10 nm separation the between quantum well and the surface and patterned standard bright LEDs are considered for the hybrid devices, which require close proximity of the nanocrystals to the quantum well. The development...

  14. Electrically and Optically Readable Light Emitting Memories (United States)

    Chang, Che-Wei; Tan, Wei-Chun; Lu, Meng-Lin; Pan, Tai-Chun; Yang, Ying-Jay; Chen, Yang-Fang


    Electrochemical metallization memories based on redox-induced resistance switching have been considered as the next-generation electronic storage devices. However, the electronic signals suffer from the interconnect delay and the limited reading speed, which are the major obstacles for memory performance. To solve this problem, here we demonstrate the first attempt of light-emitting memory (LEM) that uses SiO2 as the resistive switching material in tandem with graphene-insulator-semiconductor (GIS) light-emitting diode (LED). By utilizing the excellent properties of graphene, such as high conductivity, high robustness and high transparency, our proposed LEM enables data communication via electronic and optical signals simultaneously. Both the bistable light-emission state and the resistance switching properties can be attributed to the conducting filament mechanism. Moreover, on the analysis of current-voltage characteristics, we further confirm that the electroluminescence signal originates from the carrier tunneling, which is quite different from the standard p-n junction model. We stress here that the newly developed LEM device possesses a simple structure with mature fabrication processes, which integrates advantages of all composed materials and can be extended to many other material systems. It should be able to attract academic interest as well as stimulate industrial application.

  15. Efficient yellow and green emitting InGaN/GaN nanostructured QW materials and LEDs

    International Nuclear Information System (INIS)

    Nakajima, Yoshitake; Lin, Yenting; Dapkus, Paul Daniel


    Efficient green emitting LEDs and monolithic white light emitting LEDs require the extension of the range of efficient light emission in the GaN/InGaN materials system. We demonstrate high efficiency green and yellow light emitting multiple quantum well (MQW) structures grown on GaN nanostripe templates. The structures show promise for realizing high efficiency phosphor - free white LEDs. The nanostripe dimensions range from 100 to 300 nm and have separations that range from 300 nm to 1 μm. The MOCVD growth conditions strongly affect surfaces expressed in the GaN nanostripes whose sidewalls can be controlled to be nearly vertical or inclined and intersecting. Single quantum well (QW) structures are grown on these different stripes. Photoluminescence (PL) measurement shows that QW grown on stripes with the {10-11} surfaces and triangular shape emit the longest peak wavelength and highly efficient PL emission peak wavelengths as long as 570 nm are realized. PL and electroluminescence (EL) spectra show narrow linewidth that is comparable to the planar case and CL studies further demonstrate the uniform emission wavelength along the sidewalls of the structures. Finally, we have grown and fabricated green emitting LEDs on {10-11} faceted nanostripes with promising device characteristics. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Degradation in organic light emitting devices (United States)

    Dinh, Vincent Vinh

    This thesis is about the fundamental causes of degradation in tris(8-Hydroxyquinoline) Aluminum (Alq3)-based organic light emitting diodes (OLEDs). Degradation typically occurs when a current is forced through an insulating material. Since the insulator does not support conduction waves (in its ground state), chemical restructuring must occur to accommodate the current. OLEDs have many technical advantages over the well known semiconductor-based light emitting diodes (LEDs). OLEDs have quantum efficiencies ˜1% (˜10 times higher than the LEDs), and operational power thresholds ˜.05mW (˜100 lower than the LEDs). OLEDs are preferred in power limited and portable devices; devices such as laptops and displays consume ˜1/4 of the supplied power---any power saving is significant. Other advantages, like better compliance to curved surfaces and ease of fabrication, give the OLEDs an even greater edge over the LEDs. OLEDs must have at least comparable or better lifetimes to remain attractive. Typical OLEDs last several 100hrs compared to the several 1000hrs for the LEDs. For reliable OLED application, it is necessary to understand the above breakdown mechanism. In this thesis, we attempt to understand the breakdown by looking at how OLEDs are made, how they work, and when they don't. In the opening sections, we give an overview of OLEDs and LEDs, especially how sustained luminescence is achieved through current circulation. Then in Chapter 2, we look at the basic components in the OLEDs. In Chapter 3 we look at how a hole material (like poly-vinyl carbazole or PVK) establishes an excitonic environment for the sustained luminescence in Alq3. We then approximate how potential is distributed when a simple luminescence system is in operation. In Chapter 4, we look at ways of measuring this distribution via the OLED impedance. Finally in Chapter 5, we look at the OLED stability under light emission conditions via PVK and Alq3 photoemission and photoabsorption spectra

  17. Recipient luminophoric mediums having narrow spectrum luminescent materials and related semiconductor light emitting devices and methods (United States)

    LeToquin, Ronan P; Tong, Tao; Glass, Robert C


    Light emitting devices include a light emitting diode ("LED") and a recipient luminophoric medium that is configured to down-convert at least some of the light emitted by the LED. In some embodiments, the recipient luminophoric medium includes a first broad-spectrum luminescent material and a narrow-spectrum luminescent material. The broad-spectrum luminescent material may down-convert radiation emitted by the LED to radiation having a peak wavelength in the red color range. The narrow-spectrum luminescent material may also down-convert radiation emitted by the LED into the cyan, green or red color range.

  18. Light emitting device having peripheral emissive region (United States)

    Forrest, Stephen R


    Light emitting devices are provided that include one or more OLEDs disposed only on a peripheral region of the substrate. An OLED may be disposed only on a peripheral region of a substantially transparent substrate and configured to emit light into the substrate. Another surface of the substrate may be roughened or include other features to outcouple light from the substrate. The edges of the substrate may be beveled and/or reflective. The area of the OLED(s) may be relatively small compared to the substrate surface area through which light is emitted from the device. One or more OLEDs also or alternatively may be disposed on an edge of the substrate about perpendicular to the surface of the substrate through which light is emitted, such that they emit light into the substrate. A mode expanding region may be included between each such OLED and the substrate.

  19. Integrated Automotive High-Power LED-Lighting Systems in 3D-MID Technology

    NARCIS (Netherlands)

    Thomas, W.


    The growing energy consumption of lighting as well as rising luminous efficacies and -fluxes of high-power Light Emitting Diodes (LEDs) have contributed to the widespread use of LEDs in modern lighting systems. One of the most prominent users of the LED-technology is automotive (exterior) lighting.

  20. Evaluation of acute effect of light-emitting diode (LED) phototherapy on muscle deoxygenation and pulmonary oxygen uptake kinetics in patients with diabetes mellitus: study protocol for a randomized controlled trial. (United States)

    Francisco, Cristina de Oliveira; Beltrame, Thomas; Ferraresi, Cleber; Parizotto, Nivaldo Antonio; Bagnato, Vanderlei Salvador; Borghi Silva, Audrey; Benze, Benedito Galvão; Porta, Alberto; Catai, Aparecida Maria


    Type 2 diabetes mellitus (DM) is responsible for a significant reduction in the quality of life due to its negative impact on functional capacity. Cardiopulmonary fitness impairment in DM patients has been associated with limited tissue oxygenation. Phototherapy is widely utilized to treat several disorders due to expected light-tissue interaction. This type of therapy may help to improve muscular oxygenation, thereby increasing aerobic fitness and functional capacity. This study is a randomized, double-blind, placebo-controlled crossover trial approved by the Ethics Committee of the Federal University of São Carlos and registered at Four separate tests will be performed to evaluate the acute effect of phototherapy. All participants will receive both interventions in random order: light-emitting diode therapy (LEDT) and placebo, with a minimum 14-day interval between sessions (washout period). Immediately after the intervention, participants will perform moderate constant workload cycling exercise corresponding to 80 % of the pulmonary oxygen uptake [Formula: see text] during the gas exchange threshold (GET). LEDT will be administered with a multidiode cluster probe (50 GaAIA LEDs, 850 ηm, 75 mW each diode, and 3 J per point) before each exercise session. Pulmonary oxygen uptake, muscle oxygenation, heart rate, and arterial pressure will be measured using a computerized metabolic cart, a near-infrared spectrometer, an electrocardiogram, and a photoplethysmography system, respectively. The main objective of this study is to evaluate the acute effects of muscular pre-conditioning using LED phototherapy on pulmonary oxygen uptake, muscle oxygenation, heart rate, and arterial pressure dynamics during dynamic moderate exercise. We hypothesize that phototherapy may be beneficial to optimize aerobic fitness in the DM population. Data will be published after the study is completed. Registered at under trial number NCT01889784 (date

  1. High-quality uniaxial In(x)Ga(1-x)N/GaN multiple quantum well (MQW) nanowires (NWs) on Si(111) grown by metal-organic chemical vapor deposition (MOCVD) and light-emitting diode (LED) fabrication. (United States)

    Ra, Yong-Ho; Navamathavan, R; Park, Ji-Hyeon; Lee, Cheul-Ro


    This article describes the growth and device characteristics of vertically aligned high-quality uniaxial p-GaN/InxGa1-xN/GaN multiple quantum wells (MQW)/n-GaN nanowires (NWs) on Si(111) substrates grown by metal-organic chemical vapor deposition (MOCVD) technique. The resultant nanowires (NWs), with a diameter of 200-250 nm, have an average length of 2 μm. The feasibility of growing high-quality NWs with well-controlled indium composition MQW structure is demonstrated. These resultant NWs grown on Si(111) substrates were utilized for fabricating vertical-type light-emitting diodes (LEDs). The steep and intense photoluminescence (PL) and cathodoluminescence (CL) spectra are observed, based on the strain-free NWs on Si(111) substrates. High-resolution transmission electron microscopy (HR-TEM) analysis revealed that the MQW NWs are grown along the c-plane with uniform thickness. The current-voltage (I-V) characteristics of these NWs exhibited typical p-n junction LEDs and showed a sharp onset voltage at 2.75 V in the forward bias. The output power is linearly increased with increasing current. The result indicates that the pulsed MOCVD technique is an effective method to grow uniaxial p-GaN/InxGa1-xN/GaN MQW/n-GaN NWs on Si(111), which is more advantageous than other growth techniques, such as molecular beam epitaxy. These results suggest the uniaxial NWs are promising to allow flat-band quantum structures, which can enhance the efficiency of LEDs.

  2. Avaliação da eficácia clínica de uma nova modalidade de fototerapia utilizando diodos emissores de luz Efficacy of new microprocessed phototherapy system with five high intensity light emitting diodes (Super LED

    Directory of Open Access Journals (Sweden)

    Bianca M. R. Martins


    Full Text Available OBJETIVO: Avaliar a eficácia terapêutica de um sistema de fototerapia microprocessada que utiliza diodos emissores de luz (Super LED de alta intensidade no tratamento da hiperbilirrubinemia em recém-nascidos prematuros. MÉTODOS: Ensaio clínico, randomizado e controlado, utilizando a fototerapia Super LED no grupo experimental e duas fototerapias halógenas no grupo controle. A randomização foi realizada em blocos e estratificada por peso de nascimento. A duração da fototerapia e a queda nos níveis séricos de bilirrubina total nas primeiras 24 horas de tratamento foram os principais desfechos analisados. RESULTADOS: Foram estudados 88 recém-nascidos, 44 no grupo da fototerapia Super LED e 44 no grupo da fototerapia halógena. As características demográficas da população foram semelhantes nos dois grupos. O nível sérico médio inicial de bilirrubina no grupo do Super LED (10,1±2,4 mg% foi semelhante ao do grupo que recebeu fototerapia halógena (10,9±2,0 mg%. A queda percentual na concentração sérica de bilirrubina total nas primeiras 24 horas de tratamento foi significativamente maior (27,9 versus 10,7%, p OBJECTIVES: To evaluate the efficacy of a microprocessed phototherapy (PT system with five high intensity light emitting diodes (Super LED for the treatment of neonatal hyperbilirubinemia of premature infants. METHODS: Randomized clinical trial using Super LED phototherapy in the study group and twin halogen spotlight phototherapy in the control group. A stratified blocked randomization, based on birth weight, was performed. The duration of phototherapy and the rate of decrease of total serum bilirubin (TSB concentration in the first 24 hours of treatment were the main outcome measures. RESULTS: We studied 88 infants, 44 in the Super LED group and 44 in the halogen spotlight PT group. The demographic characteristics of the patients in both groups were similar. Infants in the Super LED group had a similar mean initial

  3. Light-emitting diodes in dermatology: stimulation of wound healing

    Directory of Open Access Journals (Sweden)

    Justyna Fryc


    Full Text Available Low-level light therapy (LLLT, which is sometimes included in phototherapy, is an effective therapeutic strategy to improve wound healing and reduce pain, inflammation and swelling. Nowadays, new sources of light, such as light-emitting diodes (LEDs with a broad range of wavelengths, are widely available. The biological effects promoted by LEDs are dependent on irradiation parameters, mainly wavelength and dose. This review article focuses on recent clinical trials using light-emitting diode low-level light therapy (LED-LLLT for enhancing wound healing. In this article, we also cover the mechanisms of action of LLLT on cells and tissues and highlight the importance of defining optimum LLLT parameters for stimulation of wound healing.

  4. Electrically driven surface plasmon light-emitting diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  5. Plant growth with Led lighting systems

    International Nuclear Information System (INIS)

    Campiotti, C.A.; Bernardini, A.; Di Carlo, F.; Scoccianti, M.; Alonzo, G.; Carlino, M.; Dondi, F.; Bibbiani, C.


    Leds lighting is highly relevant for the horticultural industry. Compared to other light sources used for plant production, leds have several properties which are potentially useful in relation to horticulture. However, although LEDs technology has raised strong interest in research for extraterrestrial agriculture, current LEDs panel costs are still too high for commercial adoption in greenhouse sector, and their electrical efficacies do not compete with those of high-pressure sodium lamps, but several manufactures are working to address these issues. When LEDs become practical, their ability to based light sources specifically suitable for photosynthesis and other horticulturally relevant plant properties (i.e. low radiated heat; lighting from within the canopy) will render the narrow band spectrum of LEDs of particular interest for providing light to greenhouse horticulture. A general description of LEDs application and their technical characteristics is briefly reported. [it

  6. An Inexpensive LED Light Sensor (United States)

    Kutzner, Mickey; Wright, Richard; Kutzner, Emily


    Light irradiance measurements are important for students grappling with abstract optical phenomena such as the inverse square law, polarization, diffraction, interference, and spectroscopy. A variety of commercial light sensors are available from scientific vendors such as the CI-6504A from PASCO scientific and the LS-BTA from Vernier Software and…

  7. III-nitride based light emitting diodes and applications

    CERN Document Server

    Han, Jung; Amano, Hiroshi; Morkoç, Hadis


    Light emitting diodes (LEDs) are already used in traffic signals, signage lighting, and automotive applications. However, its ultimate goal is to replace traditional illumination through LED lamps since LED lighting significantly reduces energy consumption and cuts down on carbon-dioxide emission. Despite dramatic advances in LED technologies (e.g., growth, doping and processing technologies), however, there remain critical issues for further improvements yet to be achieved for the realization of solid-state lighting. This book aims to provide the readers with some contemporary LED issues, which have not been comprehensively discussed in the published books and, on which the performance of LEDs is seriously dependent. For example, most importantly, there must be a breakthrough in the growth of high-quality nitride semiconductor epitaxial layers with a low density of dislocations, in particular, in the growth of Al-rich and and In-rich GaN-based semiconductors. The materials quality is directly dependent on th...

  8. Organic light emitting diode with light extracting electrode (United States)

    Bhandari, Abhinav; Buhay, Harry


    An organic light emitting diode (10) includes a substrate (20), a first electrode (12), an emissive active stack (14), and a second electrode (18). At least one of the first and second electrodes (12, 18) is a light extracting electrode (26) having a metallic layer (28). The metallic layer (28) includes light scattering features (29) on and/or in the metallic layer (28). The light extracting features (29) increase light extraction from the organic light emitting diode (10).

  9. All-Quantum-Dot Infrared Light-Emitting Diodes

    KAUST Repository

    Yang, Zhenyu


    © 2015 American Chemical Society. Colloidal quantum dots (CQDs) are promising candidates for infrared electroluminescent devices. To date, CQD-based light-emitting diodes (LEDs) have employed a CQD emission layer sandwiched between carrier transport layers built using organic materials and inorganic oxides. Herein, we report the infrared LEDs that use quantum-tuned materials for each of the hole-transporting, the electron-transporting, and the light-emitting layers. We successfully tailor the bandgap and band position of each CQD-based component to produce electroluminescent devices that exhibit emission that we tune from 1220 to 1622 nm. Devices emitting at 1350 nm achieve peak external quantum efficiency up to 1.6% with a low turn-on voltage of 1.2 V, surpassing previously reported all-inorganic CQD LEDs.

  10. Organic light emitting devices for illumination (United States)

    Hack, Michael; Lu, Min-Hao Michael; Weaver, Michael S.


    An organic light emitting device is provided. The device has a plurality of regions, each region having an organic emissive layer adapted to emit a different spectrum of light. The regions in combination emit light suitable for illumination purposes. The area of each region may be selected such that the device is more efficient that an otherwise equivalent device having regions of equal size. The regions may have an aspect ratio of at least about four. All parts of any given region may be driven at the same current.

  11. LED light engine concept with ultra-high scalable luminance (United States)

    Hoelen, Christoph; de Boer, Dick; Bruls, Dominique; van der Eyden, Joost; Koole, Rolf; Li, Yun; Mirsadeghi, Mo; Vanbroekhoven, Vincent; Van den Bergh, John-John; Van de Voorde, Patrick


    Although LEDs have been introduced successfully in many general lighting applications during the past decade, high brightness light source applications are still suffering from the limited luminance of LEDs. High power LEDs are generally limited in luminance to ca 100 Mnit (108 lm/m2sr) or less, while dedicated devices for projection may achieve luminance values up to ca 300 Mnit with phosphor converted green. In particular for high luminous flux applications with limited étendue, like in front projection systems, only very modest luminous flux values in the beam can be achieved with LEDs compared to systems based on discharge lamps. In this paper we introduce a light engine concept based on a light converter rod pumped with blue LEDs that breaks through the étendue and brightness limits of LEDs, enabling LED light source luminance values that are more than 4 times higher than what can be achieved with LEDs so far. In LED front projection systems, green LEDs are the main limiting factor. With our green light emitting modules, peak luminance values well above 1.2 Gnit have been achieved, enabling doubling of the screen brightness of LED based DLP projection systems, and even more when this technology is applied to other colors as well. This light source concept, introduced as the ColorSpark High Lumen Density (HLD) LED technology, enables a breakthrough in the performance of LED-based light engines not only for projection, where >2700 ANSI lm was demonstrated, but for a wide variety of high brightness applications.

  12. Blue light emitting thiogallate phosphor (United States)

    Dye, Robert C.; Smith, David C.; King, Christopher N.; Tuenge, Richard T.


    A crystalline blue emitting thiogallate phosphor of the formula RGa.sub.2 S.sub.4 :Ce.sub.x where R is selected from the group consisting of calcium, strontium, barium and zinc, and x is from about 1 to 10 atomic percent, the phosphor characterized as having a crystalline microstructure on the size order of from about 100 .ANG. to about 10,000 .ANG. is provided together with a process of preparing a crystalline blue emitting thiogallate phosphor by depositing on a substrate by CVD and resultant thin film electroluminescent devices including a layer of such deposited phosphor on an ordinary glass substrate.

  13. Optimization of light quality from color mixing light-emitting diode systems for general lighting

    DEFF Research Database (Denmark)

    Thorseth, Anders


    are simulated using radiometrically measured single LED spectra. The method uses electrical input powers as input parameters and optimizes the resulting spectral power distribution with regard to color rendering index, correlated color temperature and chromaticity distance. The results indicate Pareto optimal......To address the problem of spectral light quality from color mixing light-emitting diode systems, a method for optimizing the spectral output of multicolor LED system with regards to standardized quality parameters has been developed. The composite spectral power distribution from the LEDs...

  14. Organic emitters: Light-emitting fabrics (United States)

    Ortí, Enrique; Bolink, Henk J.


    Light-emitting fibres that suit integration with textiles are prepared by dip-coating a steel wire with an electroluminescent material and then cleverly wrapping the structure with a carbon nanotube sheet that functions as a transparent electrode.

  15. LED package with Dome/side-emitting-enhancement silicone lens achieved by dispensing and geometry transferring (United States)

    Chang Chien, Chien-Lin; Huang, Yu-Che; Hu, Syue-Fong; Sun, Chang-Wen; Chang, Chung-Min; Hsu, Chih-Peng; Yip, Ming-Chuen; Fang, Weileun


    This study presents a structure design and process method for lens type LED package. Dome type or side-emitting-enhancement silicone lens without molding process are achieved. The ceramic ring is adopted as the confine for the encapsulant. The surface intension along the sidewall of ceramic ring and silicone surface, the cohesion force and the gravity of silicone determine the shape of dome type silicone lens. The cone shape tooling coated with a releasing material is immersed into the dome type silicone lens before the silicone fully hardening. After curing simultaneously, to remove the tooling from package, the package with side-emitting-enhancement silicone lens is finished. With the mentioned architecture and process, this LED package herein has three merits, (1) to improve light extraction efficiency: reduce the chance of total internal reflection by the geometry of dome type silicone lens. (2)To enhance the flexibility of LED package design, the die placement location would be constrained by the mold in the traditional package process. (3) Mold-less side-emitting-enhancement silicone lens. Furthermore, two types of cone shape tooling are implemented and compared for side-emitting-enhancement silicone lens. Measurement results show the ratio between the lens high and lens radius could achieve 0.9:1. The view angles of dome type and side-emitting-enhancement LED packaged devices can reach 153° and 180 °, respectively. As using the same brightness grade of LED chip, the luminous flux is increasing 15% as compared the dome type package with the commercial PLCC (Plastic Leaded Chip Carrier) type package. The luminous flux of side-emitting-enhancement LED package decreases 8% as compared with the dome type one.

  16. Practical lighting design with LEDs

    CERN Document Server

    Lenk, Ron


    "This book covers all of the information needed to design LEDs into end-products. It is a practical guide, primarily explaning how things are done by practicing engineers. Equations are used only for practical calculations, and are kept to the level of high-school algebra. There are numerous drawings and schematics showing how things such as measurements are actually made, and showing curcuits that actually work. There are practical notes and examples embedded in the text that give pointers and how-to guides on many of the book's topics. After reading each chapter of the book, readers will have the knowledge to implement practical designs. This book will be kept as a reference tool for years to come"--

  17. Stable blue phosphorescent organic light emitting devices (United States)

    Forrest, Stephen R.; Thompson, Mark; Giebink, Noel


    Novel combination of materials and device architectures for organic light emitting devices is provided. An organic light emitting device, is provided, having an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer includes a host and a phosphorescent emissive dopant having a peak emissive wavelength less than 500 nm, and a radiative phosphorescent lifetime less than 1 microsecond. Preferably, the phosphorescent emissive dopant includes a ligand having a carbazole group.

  18. Two-phase cooling of light emitting diode for higher light output and increased efficiency

    NARCIS (Netherlands)

    Ye, H.; Mihailovic, M.; Wong, C.K.Y.; Zeijl, H.W. van; Gielen, A.W.J.; Zhang, G.Q.; Sarro, P.M.


    High Power Light Emitting Diode (HP LED) is one of the promising candidates for future lighting systems with efficient energy consumption. However, around 70% of the input power will be still transferred to heat. Recently, to obtain more light output, the increased electrical currents consequently

  19. Operation of AC Adapters Visualized Using Light-Emitting Diodes (United States)

    Regester, Jeffrey


    A bridge rectifier is a diamond-shaped configuration of diodes that serves to convert alternating current(AC) into direct current (DC). In our world of AC outlets and DC electronics, they are ubiquitous. Of course, most bridge rectifiers are built with regular diodes, not the light-emitting variety, because LEDs have a number of disadvantages. For…

  20. LED Shipboard Lighting: A Comparative Analysis (United States)


    viability of retrofitting the Navy fleet with newer lighting technology . C. RESEARCH QUESTION The research project provided to NPS by Dr. Larry Schuette...LED is a key component in today’s lighting technology . Modern households use LEDs in such components as digital video disc, (DVD) readers...manufactures that the Navy is serious in implementing lighting technology with a multi- year demonstration seeing the benefits provided by the manufactures

  1. Enhanced Light Extraction From Triangular GaN-Based Light-Emitting Diodes


    J. Y. Kim; M. K. Kwon; J. P. Kim; S. J. Park


    This study investigated the characteristics of a triangular light-emitting diode (LED) and compared it to a standard quadrangular LED. The total radiant flux from the packaged triangular LED increased by 48% and 24% at input currents of 20 and 100 mA, respectively, compared to that of a quadrangular LED which was grown on patterned sapphire substrate. In light far-field beam distribution, the light extraction in the horizontal direction of the LED was much higher than that of the quadrangular...

  2. Effect of Led Lighting Colors for Laying Japanese Quails

    Directory of Open Access Journals (Sweden)

    KC Nunes

    Full Text Available ABSTRACT Time of exposure and light intensity rearing house may affect the performance and egg quality of laying quails. This research aimed at evaluating the live performance, egg quality, biometry of the reproductive system, and the gastrointestinal tract of Japanese quails (Coturnix coturnix japonica exposed to artificial light-emitting diodes (LED of different colors in comparison with fluorescent lamps. A total of 240 Japanese quails were distributed in completely randomized experimental design with four treatments (fluorescent lamp, and green, red, or blue LED lamps with six replicates of 10 birds each. Average egg weight and eggshell thickness were different (p0.05. The oviduct of 64-d-old hens exposed to green LED lighting was shorter (p<0.05 than those exposed to the fluorescent lamp. Red LED can be used to replace the fluorescent lamps, as they promote the same live performance, egg quality, and morphological development of the reproductive tract of laying Japanese quails.

  3. Light-emitting carbazole derivatives for electroluminescent materials (United States)

    Lin, Jiann T.; Thomas, K. R. J.; Tao, Yu-Tai; Ko, Chung-Wen


    Amorphous carbazole derivatives containing peripheral diarylamines at the 3- and 6-positions and an ethyl or aryl substituent at the 9-position of the carbazole moiety have been synthesized. These new carbazole compounds (carbs) possess high glass transition temperatures (Tg: 120- 194 degree(s)C) and high thermal decomposition temperatures (Td>450 degree(s)C). The compounds are weakly to moderately luminescent with the emission wavelength ranging from green to blue. Two types of light-emitting diodes (LED) were constructed from carb:(I)ITO/carb/TPBI/Mg:Ag and (II)ITO/carb/Alq3/Mg:Ag, where TPBI and Alq3 are 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene and tris(8- hydroxyquinoline) aluminum, respectively. In type I devices the carb functions as the hole-transporting as well as emitting material. In type II devices either carb and/or Alq3 is the light emitting material. Several green light-emitting devices exhibit exceptional maximum brightness and the physical performance is superior to those of typical green-light-emitting devices of the structure ITO/diamine/Alq3/Mg:Ag. Relation between the LUMO of the carb and the performance of the light-emitting diode is discussed.

  4. Effect of LED light quality on in vitro shoot proliferation and growth of ...

    African Journals Online (AJOL)

    As an alternative to conventional lighting systems, light emitting diode (LED) has been demonstrated to be an artificial flexible lighting source for commercial micropropagation. The objective of this study was to determine the effects of different LED light quality on in vitro shoot proliferation and growth of Vanilla planifolia.

  5. LED Lighting in a Performing Arts Building

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N. J.; Kaye, S. M. [Univ. of Florida, Gainesville, FL (United States); Coleman, P. M. [Univ. of Florida, Gainesville, FL (United States); Wilkerson, A. M.; Perrin, T. E.; Sullivan, G. P. [Efficiency Solutions, Inc., Richland, WA (United States)


    At the University of Florida in Gainesville, the DOE Solid-State Lighting GATEWAY program evaluated LED architectural and theatrical lighting in four academic/performance-related spaces within the Nadine McGuire Theatre + Dance Pavilion. Due to a wise choice of products and luminaire light distributions, the change brought significant quality improvements including improved controllability and color.

  6. Development and evaluation of a light-emitting diode endoscopic light source (United States)

    Clancy, Neil T.; Li, Rui; Rogers, Kevin; Driscoll, Paul; Excel, Peter; Yandle, Ron; Hanna, George; Copner, Nigel; Elson, Daniel S.


    Light-emitting diode (LED) based endoscopic illumination devices have been shown to have several benefits over arclamp systems. LEDs are energy-efficient, small, durable, and inexpensive, however their use in endoscopy has been limited by the difficulty in efficiently coupling enough light into the endoscopic light cable. We have demonstrated a highly homogenised lightpipe LED light source that combines the light from four Luminus LEDs emitting in the red, green, blue and violet using innovative dichroics that maximise light throughput. The light source spectrally combines light from highly divergent incoherent sources that have a Lambertian intensity profile to provide illumination matched to the acceptance numerical aperture of a liquid light guide or fibre bundle. The LED light source was coupled to a standard laparoscope and performance parameters (power, luminance, colour temperature) compared to a xenon lamp. Although the total illuminance from the endoscope was lower, adjustment of the LEDs' relative intensities enabled contrast enhancement in biological tissue imaging. The LED light engine was also evaluated in a minimally invasive surgery (MIS) box trainer and in vivo during a porcine MIS procedure where it was used to generate 'narrowband' images. Future work using the violet LED could enable photodynamic diagnosis of bladder cancer.

  7. Control and Driving Methods for LED Based Intelligent Light Sources

    DEFF Research Database (Denmark)

    Beczkowski, Szymon

    High power light-emitting diodes allow the creation of luminaires capable of generating saturated colour light at very high efficacies. Contrary to traditional light sources like incandescent and high-intensity discharge lamps, where colour is generated using filters, LEDs use additive light mixing......, where the intensity of each primary colour diode has to be adjusted to the needed intensity to generate specified colour. The function of LED driver is to supply the diode with power needed to achieve the desired intensity. Typically, the drivers operate as a current source and the intensity...... of the diode is controlled either by varying the magnitude of the current or by driving the LED with a pulsed current and regulate the width of the pulse. It has been shown previously, that these two methods yield different effects on diode's efficacy and colour point. A hybrid dimming strategy has been...

  8. III-nitride based light emitting diodes and applications

    CERN Document Server

    Han, Jung; Amano, Hiroshi; Morkoç, Hadis


    The revised edition of this important book presents updated and expanded coverage of light emitting diodes (LEDs) based on heteroepitaxial GaN on Si substrates, and includes new chapters on tunnel junction LEDs, green/yellow LEDs, and ultraviolet LEDs. Over the last two decades, significant progress has been made in the growth, doping and processing technologies of III-nitride based semiconductors, leading to considerable expectations for nitride semiconductors across a wide range of applications. LEDs are already used in traffic signals, signage lighting, and automotive applications, with the ultimate goal of the global replacement of traditional incandescent and fluorescent lamps, thus reducing energy consumption and cutting down on carbon-dioxide emission. However, some critical issues must be addressed to allow the further improvements required for the large-scale realization of solid-state lighting, and this book aims to provide the readers with details of some contemporary issues on which the performanc...

  9. The effects of light-emitting diode lighting on greenhouse plant growth and quality

    Directory of Open Access Journals (Sweden)

    Margit Olle


    Full Text Available The aim of this study is to present the light emitting diode (LED technology for greenhouse plant lighting and to give an overview about LED light effects on photosynthetic indices, growth, yield and nutritional value in green vegetables and tomato, cucumber, sweet pepper transplants. The sole LED lighting, applied in closed growth chambers, as well as combinations of LED wavelengths with conventional light sources, fluorescent and high pressure sodium lamp light, and natural illumination in greenhouses are overviewed. Red and blue light are basal in the lighting spectra for green vegetables and tomato, cucumber, and pepper transplants; far red light, important for photomorphogenetic processes in plants also results in growth promotion. However, theoretically unprofitable spectral parts as green or yellow also have significant physiological effects on investigated plants. Presented results disclose the variability of light spectral effects on different plant species and different physiological indices.

  10. Atuação da luz halógena e do led (light emmiting diode na resistência de união de "brackets" colados no esmalte dentário humano = The influence of the halogenous light and the led (light emitting diode in the resistance of the union of brackets in the human tooth enamel

    Directory of Open Access Journals (Sweden)

    Onofre, Niége Michelle Lazzari de


    Full Text Available A resina composta é um dos materiais mais utilizados para a colagem ortodôntica, sendo que, a sua polimerização ocorre através da energia luminosa. A luz halógena é a fonte luminosa mais utilizada, pois apresenta baixo custo e fácil manutenção. Entretanto, o tempo necessário para a polimerização dos materiais é longo e a vida útil dos aparelhos fotopolimerizadores é relativamente curta. A fotoativação através do LED (ligth emitting diode vem ganhando espaço, pois apresenta um tempo curto para a polimerização dos materiais e uma vida útil longa. Esse estudo teve por objetivo, determinar, in vitro, a influência da luz halógena e do LED na resistência de união de “brackets” colados ao esmalte de dentes humanos. Como material de colagem foi utilizado a resina ortodôntica Transbond XT (3M-Unitek – Br. Foram selecionados 20 prémolares, os quais foram preparados para colagem através de profilaxia e condicionamento do esmalte com ácido ortofosfórico à 37%. Então, os corpos-de-prova foram divididos em 2 grupos de acordo com a fonte luminosa utilizada para polimerização: Grupo I – fotoativação pela luz halógena por 40 segundos; Grupo II – fotoativação pelo LED por 15 segundos. Após 24 horas, os 2 grupos foram submetidos ao teste de cisalhamento com velocidade de 1 mm por minuto até a descolagem do “bracket”. Os resultados obtidos através do t Student demostraram que não houve diferença estatística na resistência de união entre o Grupo I (14,96MPa ± 5,70 e o Grupo II (13,08MPa ± 4,33. Concluiu-se que, tanto a luz halógena quanto o LED propiciam força adequada para a colagem ortodôntica

  11. Phosphorescent Nanocluster Light-Emitting Diodes. (United States)

    Kuttipillai, Padmanaban S; Zhao, Yimu; Traverse, Christopher J; Staples, Richard J; Levine, Benjamin G; Lunt, Richard R


    Devices utilizing an entirely new class of earth abundant, inexpensive phosphorescent emitters based on metal-halide nanoclusters are reported. Light-emitting diodes with tunable performance are demonstrated by varying cation substitution to these nanoclusters. Theoretical calculations provide insight about the nature of the phosphorescent emitting states, which involves a strong pseudo-Jahn-Teller distortion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Experimental investigations into the physics of light emitting conjugated polymers

    CERN Document Server

    Whitelegg, S A


    chloroprecursor MEH-PPV in-situ of ITO results in a reaction of the polymer with ITO, which significantly shift the emission to high energies. Electroabsorption spectroscopy is used to probe the internal electric fields within operating polymer light emitting devices. When a PPV based LED in an oxygen/water atmosphere, degradation of the device occurs whereby an electric field develops, which opposes the applied electric field. This opposing electric field subsequently decays when the device is turned to its off state. Operating lifetimes and emission efficiencies of polymer light emitting devices are now approaching values suitable for the manufacture and sale of polymer light emitting based products. However, degradation and device performance still continues to be of chief concern and in order for these to be improved the underlying physical processes have to be identified. This thesis aims to identify some of these processes. An investigation in to the optical absorption and emission properties of insolub...

  13. Novel thin-GaN LED structure adopted micro abraded surface to compare with conventional vertical LEDs in ultraviolet light (United States)

    Chiang, Yen Chih; Lin, Chien Chung; Kuo, Hao Chung


    In this study, novel thin-GaN-based ultraviolet light-emitting diodes (NTG-LEDs) were fabricated using wafer bonding, laser lift-off, dry etching, textured surface, and interconnection techniques. Placing PN electrodes on the same side minimized the absorption caused by electrodes in conventional vertical injection light-emitting diodes (V-LEDs) and the current spreading was improved. The light output power (700 mA) of the NTG-LEDs was enhanced by 18.3% compared with that of the V-LEDs, and the external quantum efficiency (EQE) of the NTG-LEDs was also relatively enhanced by 20.0% compared with that of a reference device. When the current operations were 1,500 mA, the enhancements of the light output power and EQE were 27.4% and 27.2%, respectively. Additionally, the efficiency droop was improved by more than 15% at the same current level.

  14. Reliable LED Lighting Technologies: Key Factors and Procurement Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Lynn; Arquit Niederberger, Anne


    Abstract— Lighting systems have the ability to transform the economic and educational infrastructure of disadvantaged communities, and eradicating “light poverty” has become one of the primary goals of the International Year of Light 2015. Solid-state lighting (SSL) technology, based on light-emitting diode (LED) light sources, has emerged as the next generation of lighting technology, with a current global market penetration of roughly 5%. This paper will report on recent research on understanding SSL lighting system reliability (failure modes, environmental stressors, electrical power quality); discuss the implications of SSL technology reliability for providing lighting services; and suggest practical approaches to ensure SSL reliability to benefit humanity. Among the key findings from this work is that LED sources can be extremely reliable, withstanding a broad range of environmental stresses without failure. Nonetheless, SSL lighting systems can have a negative impact on electrical power reliability, as well as on the affordability of lighting services, without attention to the quality of the accompanying power infrastructure. It is therefore critical to ensure that the performance of the power supply electronics used in lighting systems is matched to the quality of the power source, when evaluating energy efficient lighting choices.

  15. Photodynamic effect of light-emitting diode light on cell growth ...

    Indian Academy of Sciences (India)

    The aim of this study was to propose the use of red light-emitting diode (LED) as an alternative light source for methylene blue (MB) photosensitizing effect in photodynamic therapy (PDT). Its effectiveness was tested against Staphylococcus aureus (ATCC 26923), Escherichia coli (ATCC 26922), Candida albicans (ATCC ...

  16. Photobiocatalytic alcohol oxidation using LED light sources

    NARCIS (Netherlands)

    Rauch, M.C.R.; Schmidt, S.; Arends, I.W.C.E.; oppelt, K.; Kara, S; Hollmann, F.


    The photocatalytic oxidation of NADH using a flavin photocatalyst and a simple blue LED light source is reported. This in situ NAD+ regeneration system can be used to promote biocatalytic, enantioselective oxidation reactions. Compared to the traditional use of white light bulbs this method enables

  17. Characterization, Modeling, and Optimization of Light-Emitting Diode Systems

    DEFF Research Database (Denmark)

    Thorseth, Anders

    This thesis explores, characterization, modeling, and optimization of light-emitting diodes (LED) for general illumination. An automated setup has been developed for spectral radiometric characterization of LED components with precise control of the settings of forward current and operating...... temperature. The automated setup has been used to characterize commercial LED components with respect to multiple settings. It is shown that the droop in quantum efficiency can be approximated by a simple parabolic function. The investigated models of the spectral power distributions (SPD) from LEDs...... comparing the chromaticity of the measured SPD with tted models, the deviation is found to be larger than the lower limit of human color perception. A method has been developed to optimize multicolored cluster LED systems with respect to light quality, using multi objective optimization. The results...

  18. Principles of phosphorescent organic light emitting devices. (United States)

    Minaev, Boris; Baryshnikov, Gleb; Agren, Hans


    Organic light-emitting device (OLED) technology has found numerous applications in the development of solid state lighting, flat panel displays and flexible screens. These applications are already commercialized in mobile phones and TV sets. White OLEDs are of especial importance for lighting; they now use multilayer combinations of organic and elementoorganic dyes which emit various colors in the red, green and blue parts of the visible spectrum. At the same time the stability of phosphorescent blue emitters is still a major challenge for OLED applications. In this review we highlight the basic principles and the main mechanisms behind phosphorescent light emission of various classes of photofunctional OLED materials, like organic polymers and oligomers, electron and hole transport molecules, elementoorganic complexes with heavy metal central ions, and clarify connections between the main features of electronic structure and the photo-physical properties of the phosphorescent OLED materials.

  19. Fluorescence lifetime imaging using light emitting diodes

    International Nuclear Information System (INIS)

    Kennedy, Gordon T; Munro, Ian; Poher, Vincent; French, Paul M W; Neil, Mark A A; Elson, Daniel S; Hares, Jonathan D


    We demonstrate flexible use of low cost, high-power light emitting diodes as illumination sources for fluorescence lifetime imaging (FLIM). Both time-domain and frequency-domain techniques have been implemented at wavelengths spanning the range 450-640 nm. Additionally, we demonstrate optically sectioned fluorescence lifetime imaging by combining structured illumination with frequency-domain FLIM

  20. Electrical-thermal-luminous-chromatic model of phosphor-converted white light-emitting diodes

    NARCIS (Netherlands)

    Ye, H.; Koh, S.W.; Yuan, C.; Zeijl, H. van; Gielen, A.W.J.; Lee, S.W.R.; Zhang, G.


    The drive of increased electrical currents to achieve high luminous output for phosphor-converted white light-emitting diodes (PW-LED) has led to a series of thermal problems. The light performance of PW-LED is affected by the heat generated by the two major sources in a package/module: chip(s) and

  1. Light out-coupling from LEDs by means of metal nanoparticles; Lichtauskopplung aus LEDs mittels Metallnanoteilchen

    Energy Technology Data Exchange (ETDEWEB)

    Goehler, Tino


    The external quantum efficiency of light-emitting diodes (LEDs) based on Al- GaAs/InGaAlP is limited by total internal reflection because of the high refractive index (typically between 3 and 4) of the semiconductor. Metal nanoparticles (MNP) deposited on the surface of the LED can be used as dipole scatterers in order to enhance the emission of the LED. In this thesis, first, single gold nanoparticles of various sizes deposited on such an LED were investigated. A clear enhancement is detected as long as the dipole plasmon resonance of the particle is at a shorter wavelength than the LED emission. If the plasmon resonance coincides with the LED emission or is at a larger wavelength, the enhancement turns into suppression. Numerical simulations indicate that this latter effect is mainly caused by the particle quadrupole resonance producing extra absorption. Arrays of MNPs can be produced by a special mask technique called ''Fischer pattern nanolithography'' and manipulated in shape and size by additional steps. Originally, the MNPs produced by this technique are triangular in shape and turn out to suppress the LED emission. After transformation of the particles to spheres, a clear enhancement was detected. Light that would otherwise remain trapped inside the substrate is coupled out by resonant plasmonic scattering. Investigations on analogous structures on a transparent high-index material (GaP) indicate a stronger coupling between the particles than expected on the basis of literature data. (orig.)

  2. Newly patented process enables low-cost solution for increasing white light spectrum of LEDs (United States)

    Spanard, Jan-Marie


    A newly patented process for completing the spectral light array emitted by LED bulbs provides a low-cost method for producing better human centered lighting (HCL). This process uses non-luminescent colorant filters, filling out the jagged LED spectral emission into a full, white light array. While LED bulbs have the distinct economic advantages of using less energy, producing less heat and lasting years longer than traditional incandescent bulbs, the persistent metameric failure of LED bulbs has resulted in slower, and sometimes reluctant, adoption of LED lighting by the residential, retail and architectural markets. Adding missing wavelengths to LED generated bulbs via colorant filters increases the aesthetic appeal of the light by decreasing current levels of metameric failure, reducing the `flatness', `harshness', and `dullness' of LED generated light reported by consumers. LED phosphor-converted light can be successfully tuned to "whiter" white light with selective color filtering using permanent, durable transparent pigments. These transparent pigments are selectively applied in combination with existing manufacturing technologies and utilized as a final color-tuning step in bulb design. The quantity of emitted light chosen for color filtering can be adjusted from 1% to 100% of emitted light, creating a custom balance of light quantity with light quality. This invention recognizes that "better light" is frequently chosen over "more light" in the consumer marketplace.

  3. Light source comprising a common substrate, a first led device and a second led device (United States)

    Choong, Vi-En


    At least one stacked organic or polymeric light emitting diode (PLEDs) devices to comprise a light source is disclosed. At least one of the PLEDs includes a patterned cathode which has regions which transmit light. The patterned cathodes enable light emission from the PLEDs to combine together. The light source may be top or bottom emitting or both.

  4. Adoption of Light-Emitting Diodes in Common Lighting Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Mary [Navigant Consulting, Suwanee, GA (United States); Chwastyk, Dan [Navigant Consulting, Suwanee, GA (United States)


    Report estimating LED energy savings in nine applications where LEDs compete with traditional lighting sources such as incandescent, halogen, high-pressure sodium, and certain types of fluorescent. The analysis includes indoor lamp, indoor luminaire, and outdoor luminaire applications.

  5. Adoption of Light-Emitting Diodes in Common Lighting Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Mary [Navigant, Chicago, IL (United States); Stober, Kelsey [Navigant, Chicago, IL (United States)


    Report estimating LED energy savings between 2012 and 2014 in 10 applications where LEDs competed with traditional lighting sources such as incandescent, halogen, high-pressure sodium, and fluorescent. The analysis includes indoor lamp, indoor luminaire, and outdoor luminaire applications.

  6. Machine vision based evaluation of impact of light emitting diodes (LEDs) on shoot regeneration and the effect of spectral quality on phenolic content and antioxidant capacity in Swertia chirata. (United States)

    Dutta Gupta, S; Karmakar, A


    The present study demonstrates the influence of LED irradiance of various wavelengths on shoot regeneration, biomass accumulation, photosynthetic pigment contents, and antioxidant potentials of Swertia chirata - a critically endangered medicinal plant. Mixed treatment of blue (BL) and red LEDs (RL) in equal proportion (1:1) significantly improved the shoot regeneration response. A machine vision system was developed to assess the shoot regeneration potential under different lighting treatments. Regenerated shoots exposed under BL:RL (1:1) exhibited higher biomass accumulation and canopy development compared to other lighting treatments. Improved canopy growth was evident from the increase in the area, major axis, minor axis, convex area, equivalent diameter and perimeter of regenerated shoot clusters. A higher correlation of dry weight (DW) was noted with the image feature, weighted density (WD) than the fresh weight (FW) in all the LED treated cultures. The significant correlation between DW and WD implies that the image feature WD can be adopted as a non-invasive approach for measuring biomass accumulation as well as detecting hyperhydricity. The developed machine vision approach provides a new direction in the evaluation of shoot organogenesis that displayed features including both shoot multiplication and canopy development. Chlorophyll and carotenoid contents of the regenerated shoots were found to be higher under BL:RL (1:1) than the other treatments. Supplementation of RL led to a reduction in the pigment contents. Spectral quality of lights also significantly influenced the accumulation of total phenolics, flavonoids and flavonols. Cultures exposed under BL exhibited the maximum accumulation of polyphenols. A similar effect of spectral quality was observed with the antioxidant capacity and reducing power potential of leaf extract. The findings demonstrate the ability of LEDs in inducing shoot regeneration as well as accumulation of phenolic antioxidants and

  7. Study on thermal and structural stability of high power light-emitting diode lighting system. (United States)

    Kwag, Dong-Soon; So, Soo-Hyun; Baek, Seung-Myeong


    In this paper, we have been analyzed the thermal-fluid flow and structural stress of high power Light-emitting diode (LED) lighting system for outdoor lighting. Thermal and Structural performances of LED lighting systems were designed using computer aided engineering (CAE) and after securing their structural and thermal safety, simulated in order to develop 400 W high-efficiency LED floodlight. The temperature of LED was shown to rise up to 136 degrees C. This means that the cooling system should be improved. Maximum strain was detected in the glass, yet they appeared largely safe. It is important for the design to focus on the cooling fin. Regarding the lifespan of LED, it is necessary to have a plan for minimizing errors when testing designs for optimizing air-cooling structures. Which measured the lifetime of the lighting equipment has passed.

  8. Experiencing LED: Lighting: New Form and Experiential Qualities Emerging in Lighting Systems using LED

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Kristensen, Ole; Søndergaard, Karin


    The project investigates what new forms and qualities of light emerge from technologies such as LED, with a particular focus on basic form qualities and parameters. Existing linear functional understandings of the relation between light source, light flow, reflection and visibility is challenged ...... by relational understandings, where the materiality and visibility of the light emerge through mutual influences between several adaptive and transformative elements....

  9. Sustainable LED Fluorescent Light Replacement Technology

    Energy Technology Data Exchange (ETDEWEB)

    None, None


    Ilumisys and the National Center for Manufacturing Sciences (NCMS) partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle – i.e. to develop a sustainable design and manufacturing strategy that addresses product manufacturing, use, recycling and disposal scenarios for LED-based lighting. Based on the knowledge gained from extensive product tear-down studies of fluorescent and screw-in lighting products, lifecycle assessment tools, and accelerated lifecycle testing protocols, an interactive Sustainable LED Design Guide has been developed to aid architectural and lighting designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product. Critical information developed for the lifecycle analysis and product feature comparisons is the useful life of the lighting product as well as its performance. The Design Guide is available at, and was developed based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs. This report describes the main project tasks, results and innovative features of the lifecycle assessment (LCA)-based design tools, and the key considerations driving the sustainable design of LED lighting systems. The Design Guide incorporates the following three novel features for efficiently evaluating LED lighting features in value-chains: Bill-of-Materials (BOM) Builder – Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life: Environmental Impact Review – Designs are comparable

  10. Enhanced Phycocyanin Production from Spirulina platensis using Light Emitting Diode (United States)

    Bachchhav, Manisha Bhanudas; Kulkarni, Mohan Vinayak; Ingale, Arun G.


    This work investigates the performance of different cultivation conditions using Light Emitting Diode (LED) as a light source for the production of phycocyanin from Spirulina platensis. With LEDs under autotrophic conditions, red LED produced maximum amount of biomass (8.95 g/l). As compared to autotrophic cultivation with fluorescent lamp (control), cultivations using LEDs under autotrophic and mixotrophic mode significantly enhanced the phycocyanin content. For autotrophic conditions (with LED) phycocyanin content was in the range of 103-242 mg/g of dry biomass, whereas for mixotrophic conditions (0.1% glucose and LED) it was in the range of 254-380 mg/g of dry biomass. Spirulina cultivated with yellow LED under mixotrophic conditions had 5.4-fold more phycocyanin (380 mg/g of dry biomass) than control (70 mg/g of dry biomass). The present study demonstrates that the LEDs under mixotrophic conditions gave sixfold (2497 mg/l) higher yields of phycocyanin as compared to autotrophic condition under white light (415 mg/l).

  11. LED lighting increases the ecological impact of light pollution irrespective of color temperature. (United States)

    Pawson, S M; Bader, M K-F

    Recognition of the extent and magnitude of night-time light pollution impacts on natural ecosystems is increasing, with pervasive effects observed in both nocturnal and diurnal species. Municipal and industrial lighting is on the cusp of a step change where energy-efficient lighting technology is driving a shift from “yellow” high-pressure sodium vapor lamps (HPS) to new “white” light-emitting diodes (LEDs). We hypothesized that white LEDs would be more attractive and thus have greater ecological impacts than HPS due to the peak UV-green-blue visual sensitivity of nocturnal invertebrates. Our results support this hypothesis; on average LED light traps captured 48% more insects than were captured with light traps fitted with HPS lamps, and this effect was dependent on air temperature (significant light × air temperature interaction). We found no evidence that manipulating the color temperature of white LEDs would minimize the ecological impacts of the adoption of white LED lights. As such, large-scale adoption of energy-efficient white LED lighting for municipal and industrial use may exacerbate ecological impacts and potentially amplify phytosanitary pest infestations. Our findings highlight the urgent need for collaborative research between ecologists and electrical engineers to ensure that future developments in LED technology minimize their potential ecological effects.

  12. Fundamentals of solid-state lighting LEDs, OLEDs, and their applications in illumination and displays

    CERN Document Server

    Khanna, Vinod Kumar


    History and Basics of LightingChronological History of LightingLearning Objectives How Early Man Looked at the ""Sun"" The Need for Artificial Light Sources First Steps in the Evolution of Artificial Lighting The First Solid-State Lighting Device The First Practical Electrical Lighting Device The Incandescent Filament Lamp Mercury and Sodium Vapor Lamps The Fluorescent Lamp The Compact Fluorescent Lamp Revolution in the World of Lighting: Advent of Light-Emitting Diodes Birth of the First LED and the Initial Stages of LED Development The Father of the LED: Holonyak Jr. The Post-1962 Developmen

  13. Improvement in light-extraction efficiency of light emitting diode ...

    Indian Academy of Sciences (India)

    The effect of various microlens parameters such as diameter and area fraction on light-extraction efficiency was systematically studied. Improvement of 4% in extraction efficiency was obtained by employing it on white light emitting diode. The area fraction of microlenses was increased up to 0.34 by reducing the spin speed.

  14. Improvement in light-extraction efficiency of light emitting diode ...

    Indian Academy of Sciences (India)


    Feb 2, 2018 ... parameters such as diameter and area fraction on light-extraction efficiency was systematically studied. Improvement of. 4% in extraction efficiency was obtained by employing it on white light emitting diode. The area fraction .... on feature size due to (i) weak van der Waals destabilizing forces and (ii) high ...

  15. Light Emitting Transistors of Organic Single Crystals (United States)

    Iwasa, Yoshihiro


    Organic light emitting transistors (OLETs) are attracting considerable interest as a novel function of organic field effect transistors (OFETs). Besides a smallest integration of light source and current switching devices, OLETs offer a new opportunity in the fundamental research on organic light emitting devices. The OLET device structure allows us to use organic single crystals, in contrast to the organic light emitting diodes (OLEDs), the research of which have been conducted predominantly on polycrystalline or amorphous thin films. In the case of OFETs, use of single crystals have produced a significant amount of benefits in the studies of pursuit for the highest performance limit of FETs, intrinsic transport mechanism in organic semiconductors, and application of the single crystal transistors. The study on OLETs have been made predominantly on polycrystalline films or multicomponent heterojunctions, and single crystal study is still limited to tetracene [1] and rubrene [2], which are materials with relatively high mobility, but with low photoluminescence efficiency. In this paper, we report fabrication of single crystal OLETs of several kinds of highly luminescent molecules, emitting colorful light, ranging from blue to red. Our strategy is single crystallization of monomeric or oligomeric molecules, which are known to have a very high photoluminescence efficiency. Here we report the result on single crystal LETs of rubrene (red), 4,4'-bis(diphenylvinylenyl)-anthracene (green), 1,4-bis(5-phenylthiophene-2-yl)benzene (AC5) (green), and 1,3,6,8-tetraphenylpyrene (TPPy) (blue), all of which displayed ambipolar transport as well as peculiar movement of voltage controlled movement of recombination zone, not only from the surface of the crystal but also from the edges of the crystals, indicting light confinement inside the crystal. Realization of ambipolar OLET with variety of single crystals indicates that the fabrication method is quite versatile to various light

  16. Approaches to blue light emitting polymers

    International Nuclear Information System (INIS)

    Taylor, R.M.


    Blue-light emitting polymers are important for full colour displays. Blue- light emitting polymers, such as poly(fluorene)s have been reported, but tend to be soluble in the conjugated form. The aim of the project was to produce insoluble polymers, prepared via processible soluble precursor polymers, so that multilayer devices could be easily fabricated. Multilayer devices are often required for more efficient light emission. The target materials were derivatives of poly(p-phenylenevinylene) (PPV), a green-yellow emitting polymer. To blue shift the emission of PPV, bulky substituents, namely chloro, phenyl and alkyl, were attached to the vinylic linkage. These bulky substituents were incorporated to introduce steric interactions between the side group and the backbone phenyl protons, to shorten the effective conjugation length and increase the HOMO-LUMO energy gap. Chloro substituents quenched the fluorescence. Phenyl substituents resulted in highly conjugated precursor polymers with low molecular weights, showing blue- green to green emission in the conjugated form. Alkyl substituted PPV derivatives, prepared via chloro or xanthate precursors, were blue-light emitting conjugated polymers, which were electroluminescent in ITO/polymer/AI devices. The PL quantum yields were found to be up to 38%. The incorporation of electron withdrawing groups into the polymers was attempted, to lower the barrier to electron injection. Chloro groups quenched fluorescence and methylsulfone substituents resulted in insoluble polymers, probably due to cross-linking. However a copolymer containing methylsulfone electron withdrawing groups could be prepared. Phenylsulfone substituents were found to give fluorescent polymers which were soluble in the precursor form. (author)

  17. Light extraction efficiency enhancement for fluorescent SiC based white light-emitting diodes

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    Fluorescent SiC based white light-emitting diodes(LEDs) light source, as an innovative energy-efficient light source, would even have longer lifetime, better light quality and eliminated blue-tone effect, compared to the current phosphor based white LED light source. In this paper, the yellow....... At a device level, the focus is on improving the light extraction efficiency due to the rather high refractive index of SiC by nanostructuring the surface of SiC. Both periodic nanostructures made by e-beam lithography and nanosphere lithography and random nanostructures made by self-assembled Au nanosphere...... mask and a thin layer of Al film have been investigated and all of them showed much enhanced extraction efficiency. All these good results pave the way to a very promising fluorescent SiC based white LED light source...

  18. Light-emitting diode street lights reduce last-ditch evasive manoeuvres by moths to bat echolocation calls (United States)

    Wakefield, Andrew; Stone, Emma L.; Jones, Gareth; Harris, Stephen


    The light-emitting diode (LED) street light market is expanding globally, and it is important to understand how LED lights affect wildlife populations. We compared evasive flight responses of moths to bat echolocation calls experimentally under LED-lit and -unlit conditions. Significantly, fewer moths performed ‘powerdive’ flight manoeuvres in response to bat calls (feeding buzz sequences from Nyctalus spp.) under an LED street light than in the dark. LED street lights reduce the anti-predator behaviour of moths, shifting the balance in favour of their predators, aerial hawking bats. PMID:26361558

  19. Efficient organic light emitting-diodes (OLEDs)

    CERN Document Server

    Chang, Yi-Lu


    Following two decades of intense research globally, the organic light-emitting diode (OLED) has steadily emerged as the ultimate display technology of choice for the coming decades. Portable active matrix OLED displays have already become prevalent, and even large-sized ultra-high definition 4K TVs are being mass-produced. More exotic applications such as wearable displays have been commercialized recently. With the burgeoning success in displays, researchers are actively bringing the technology forward into the exciting solid-state lighting market. This book presents the knowledge needed for

  20. Hybrid fluorescent layer emitting polarized light

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadimasoudi


    Full Text Available Semiconductor nanorods have anisotropic absorption and emission properties. In this work a hybrid luminescent layer is produced based on a mixture of CdSe/CdS nanorods dispersed in a liquid crystal that is aligned by an electric field and polymerized by UV illumination. The film emits light with polarization ratio 0.6 (polarization contrast 4:1. Clusters of nanorods in liquid crystal can be avoided by applying an AC electric field with sufficient amplitude. This method can be made compatible with large-scale processing on flexible transparent substrates. Thin polarized light emitters can be used in LCD backlights or solar concentrators to increase the efficiency.

  1. Vacuum-Deposited Organometallic Halide Perovskite Light-Emitting Devices. (United States)

    Chiang, Kai-Ming; Hsu, Bo-Wei; Chang, Yi-An; Yang, Lin; Tsai, Wei-Lun; Lin, Hao-Wu


    In this work, a sequential vacuum deposition process of bright, highly crystalline, and smooth methylammonium lead bromide and phenethylammonium lead bromide perovskite thin films are investigated and the first vacuum-deposited organometallic halide perovskite light-emitting devices (PeLEDs) are demonstrated. Exceptionally low refractive indices and extinction coefficients in the emission wavelength range are obtained for these films, which contributed to a high light out-coupling efficiency of the PeLEDs. By utilizing these perovskite thin films as emission layers, the vacuum-deposited PeLEDs exhibit a very narrow saturated green electroluminescence at 531 nm, with a spectral full width at half-maximum bandwidth of 18.6 nm, a promising brightness of up to 6200 cd/m 2 , a current efficiency of 1.3 cd/A, and an external quantum efficiency of 0.36%.

  2. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light


    Kuse, Yoshiki; Ogawa, Kenjiro; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki


    Our eyes are increasingly exposed to light from the emitting diode (LED) light of video display terminals (VDT) which contain much blue light. VDTs are equipped with televisions, personal computers, and smart phones. The present study aims to clarify the mechanism underlying blue LED light-induced photoreceptor cell damage. Murine cone photoreceptor-derived cells (661 W) were exposed to blue, white, or green LED light (0.38 mW/cm2). In the present study, blue LED light increased reactive oxyg...

  3. Current path in light emitting diodes based on nanowire ensembles

    International Nuclear Information System (INIS)

    Limbach, F; Hauswald, C; Lähnemann, J; Wölz, M; Brandt, O; Trampert, A; Hanke, M; Jahn, U; Calarco, R; Geelhaar, L; Riechert, H


    Light emitting diodes (LEDs) have been fabricated using ensembles of free-standing (In, Ga)N/GaN nanowires (NWs) grown on Si substrates in the self-induced growth mode by molecular beam epitaxy. Electron-beam-induced current analysis, cathodoluminescence as well as biased μ-photoluminescence spectroscopy, transmission electron microscopy, and electrical measurements indicate that the electroluminescence of such LEDs is governed by the differences in the individual current densities of the single-NW LEDs operated in parallel, i.e. by the inhomogeneity of the current path in the ensemble LED. In addition, the optoelectronic characterization leads to the conclusion that these NWs exhibit N-polarity and that the (In, Ga)N quantum well states in the NWs are subject to a non-vanishing quantum confined Stark effect. (paper)

  4. Flexible Light-Emitting Diodes Based on Vertical Nitride Nanowires. (United States)

    Dai, Xing; Messanvi, Agnes; Zhang, Hezhi; Durand, Christophe; Eymery, Joël; Bougerol, Catherine; Julien, François H; Tchernycheva, Maria


    We demonstrate large area fully flexible blue LEDs based on core/shell InGaN/GaN nanowires grown by MOCVD. The fabrication relies on polymer encapsulation, nanowire lift-off and contacting using silver nanowire transparent electrodes. The LEDs exhibit rectifying behavior with a light-up voltage around 3 V. The devices show no electroluminescence degradation neither under multiple bending down to 3 mm curvature radius nor in time for more than one month storage in ambient conditions without any protecting encapsulation. Fully transparent flexible LEDs with high optical transmittance are also fabricated. Finally, a two-color flexible LED emitting in the green and blue spectral ranges is demonstrated combining two layers of InGaN/GaN nanowires with different In contents.

  5. Randomized controlled trial of light-emitting diode phototherapy. (United States)

    Maisels, M J; Kring, E A; DeRidder, J


    We wished to compare the efficacy of light-emitting diode (LED) phototherapy with special blue fluorescent (BB) tube phototherapy in the treatment of neonatal hyperbilirubinemia. We randomly assigned 66 infants >or=35 weeks of gestation to receive phototherapy using an LED device or BB. In addition to phototherapy from above, all infants also received phototherapy from below using four BB tubes or a fiberoptic pad. After 15+/-5 h of phototherapy, the rate of decline in the total serum bilirubin (TSB) was 0.35+/-0.25 mg/dl/h in the LED group vs 0.27+/-0.25 mg/dl/h in the BB group (P=0.20). LED phototherapy is as effective as BB phototherapy in lowering serum bilirubin levels in term and near-term newborns.

  6. Spectra Analysis in Sunset Color Demonstrations with a White-Color LED as a Light Source


    Makoto Hasegawa; Seika Tokumitsu


    Spectra of light beams emitted from white-color LED torches are different from those of conventional electric torches. In order to confirm if white-color LED torches can be used as light sources for popular sunset color demonstrations in spite of such differences, spectra of travelled light beams and scattered light beams with each of a white-color LED torch (composed of a blue LED and yellow-color fluorescent material) and a conventional electric torch as a light source were measured and com...

  7. Empirical Measurements of Filtered Light Emitting Diode (FLED) Replacements (United States)

    Craine, Eric R.


    Low pressure sodium (LPS) public lighting, long favored by astronomers and dark sky advocates, is in decline due to a variety of economic issues. Light emitting diode (LED) technology is a rapidly ascendant mode of lighting in everything from residential to commercial applications. The resulting transition from LPS to LED has been accompanied by great angst in the environmental community, but very little has been done in the way of empirical measurement of LEDs in the field and their actual impacts on communities. The community of Waikoloa Village, Hawaii is located on the western slopes of Mauna Kea, within direct line of sight view of the major astronomical observatories on the mountain summit. Waikoloa has been rigorously illuminated almost exclusively by LPS for many years in acknowledgement of the importance of the Mauna Kea Observatories to the Big Island of Hawaii. As LPS ceases to be a viable alternative for local government support, a decision has been made to experimentally retrofit all of the Waikoloa street lighting with filtered light emitting diode (FLED) fixtures. This action has rendered Waikoloa Village a unique laboratory for evaluating the effects of such a change. STEM Laboratory has been awarded a research grant to make a variety of measurements of the light at night environment of Waikoloa Village both before and after the street light retrofit program. Measurements were conducted using a combination of techniques: Satellite Data Surveys (SDS), Ground Static Surveys (GSS photometry), Ground Mobile Surveys (GMS photometry), Airborne Surveys (ABS photography), and Spectroscopic Surveys (SpecS). The impact of the changes in lighting sources was profound, and the preliminary results of this extensive program are discussed in this presentation.

  8. Smartphone-Driven Low-Power Light-Emitting Device

    Directory of Open Access Journals (Sweden)

    Hea-Ja An


    Full Text Available Low-level light (laser therapy (LLLT has been widely researched in the recent past. Existing LLLT studies were performed based on laser. Recently, studies using LED have increased. This study presents a smartphone-driven low-power light-emitting device for use in colour therapy as an alternative medicine. The device consists of a control unit and a colour probe. The device is powered by and communicates with a smartphone using USB On-The-Go (OTG technology. The control unit controls emitting time and intensity of illumination with the configuration value of a smartphone application. Intensity is controlled by pulse width modulation (PWM without feedback. A calibration is performed to resolve a drawback of no feedback. To calibrate, intensity is measured in every 10 percent PWM output. PWM value is linearly calibrated to obtain accurate intensity. The device can control the intensity of illumination, and so, it can find application in varied scenarios.

  9. Efficient and versatile light. LEDs save energy and open up manifold possibilities of design; Effizientes und vielseitiges Licht. LEDs sparen Energie und eroeffnen zahlreiche Designmoeglichkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Fiebig, Michael [OSRAM Opto Semicondutors GmbH, Muenchen (Germany). Bereich Marketing und Business Development


    Light bulbs leave the European market step by step. These conventional light sources are too inefficient in the private and conventional sector. There are a lot of alternatives to light bulbs. But no technology will be able to save as much energy as light emitting diodes (LED) in the future. Today, these LEDs meet us in most different applications. Continuously new areas of application are opened up in order to reduce the power requirement clearly for the production of artificial light. Apart from energy conservation diodes also enable untold possibilities. In the future, light can be still more flexibly used owing to LED. LEDs are ideal light sources for planners and designers.

  10. Light emitting diodes as an alternative ambient illumination source in photolithography environment

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Ou, Haiyan; Dam-Hansen, Carsten


    We explored an alternative light emitting diode (LED) - based solution to replace the existing yellow fluorescent light tubes (YFT) used in photolithography rooms. A no-blue LED lamp was designed and a prototype was fabricated. For both solutions, the spectral power distribution (SPD) was measure...

  11. Medical Applications of Space Light-Emitting Diode Technology--Space Station and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, H.T.; Houle, J.M.; Donohoe, D.L.; Bajic, D.M.; Schmidt, M.H.; Reichert, K.W.; Weyenberg, G.T.; Larson, D.L.; Meyer, G.A.; Caviness, J.A.


    Space light-emitting diode (LED) technology has provided medicine with a new tool capable of delivering light deep into tissues of the body, at wavelengths which are biologically optimal for cancer treatment and wound healing. This LED technology has already flown on Space Shuttle missions, and shows promise for wound healing applications of benefit to Space Station astronauts.

  12. Monolithically Integrated Light Feedback Control Circuit for Blue/UV LED Smart Package

    NARCIS (Netherlands)

    Koladouz Esfahani, Z.; Tohidian, M.; van Zeijl, H.W.; Kolahdouz, Mohammadreza; Zhang, G.Q.


    Given the performance decay of high-power light-emitting diode (LED) chips over time and package condition changes, having a reliable output light for sensitive applications is a point of concern. In this study, a light feedback control circuit, including blue-selective photodiodes, for

  13. Developing Quantum Dot Phosphor-Based Light-Emitting Diodes for Aviation Lighting Applications

    International Nuclear Information System (INIS)

    Wu, F.; Dawei, Z.; Shuzhen, S.; Yiming, Z.; Songlin, Z.; Jian, X.


    We have investigated the feasibility of employing quantum dot (QD) phosphor-based light-emitting diodes (LEDs) in aviation applications that request Night Vision Imaging Systems (NVIS) compliance. Our studies suggest that the emerging QD phosphor-based LED technology could potentially be superior to conventional aviation lighting technology by virtue of the marriage of tight spectral control and broad wavelength tunability. This largely arises from the fact that the optical properties of semiconductor nano crystal QDs can be tailored by varying the nano crystal size without any compositional changes. It is envisioned that the QD phosphor-based LEDs hold great potentials in cockpit illumination, back light sources of monitor screens, as well as the LED indicator lights of aviation panels.

  14. Developing Quantum Dot Phosphor-Based Light-Emitting Diodes for Aviation Lighting Applications

    Directory of Open Access Journals (Sweden)

    Fengbing Wu


    Full Text Available We have investigated the feasibility of employing quantum dot (QD phosphor-based light-emitting diodes (LEDs in aviation applications that request Night Vision Imaging Systems (NVIS compliance. Our studies suggest that the emerging QD phosphor-based LED technology could potentially be superior to conventional aviation lighting technology by virtue of the marriage of tight spectral control and broad wavelength tunability. This largely arises from the fact that the optical properties of semiconductor nanocrystal QDs can be tailored by varying the nanocrystal size without any compositional changes. It is envisioned that the QD phosphor-based LEDs hold great potentials in cockpit illumination, back light sources of monitor screens, as well as the LED indicator lights of aviation panels.

  15. A new type of white light-emitting diode light source basing on fluorescent SiC

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Lu, Weifang

    Most of the commercial white light-emitting diode (LED) light sources are made from phosphor coated blue-emitting gallium nitride (GaN) chips. This type white LED light source always has tradeoff between luminous efficacy and color rendering index (CRI). Furthermore, yellow-emitting phosphor decays...... much faster than the semiconductor chip, so the white color will turn into bluish over the time. This paper will propose a new type white LED light source: using fluorescent silicon carbide (SiC) to take the place of phosphor. This new type LED has the following advantages: a) SiC is a wide bandgap...... semiconductor material , so it is stable; b) Fluorescent SiC has very wide emission spectrum, and it could generate white light with very high CRI; c) It is a better substrate than sapphire for the GaN growth in terms of lattice match and thermal conductivity. This paper will cover: the growth of fluorescent Si...

  16. Light-Emitting Diodes - 2nd Edition (United States)

    Schubert, E. Fred


    Revised and fully up-dated, the second edition of this graduate textbook offers a comprehensive explanation of the technology and physics of LEDs such as infrared, visible-spectrum, ultraviolet, and white LEDs made from III-V semiconductors. Elementary properties such as electrical and optical characteristics are reviewed, followed by the analysis of advanced device structures. With nine additional chapters, the treatment of LEDs has been vastly expanded, including new material on device packaging, reflectors, UV LEDs, III-V nitride materials, solid-state sources for illumination applications, and junction temperature. Radiative and non-radiative recombination dynamics, methods for improving light extraction, high-efficiency and high-power device designs, white-light emitters with wavelength-converting phosphor materials, optical reflectors, and spontaneous recombination in resonant-cavity structures are discussed in detail. With exercises, solutions, and illustrative examples, this textbook will be of interest to scientists and engineers working on LEDs and graduate students in electrical engineering, applied physics, and materials science. Contains 30 exercises, over 20 of which have solutions provided in the book Many illustrative examples Contains the same broad perspective as the first edition but is significantly expanded with new material on device packaging, reflectors, UV LEDs, solid-state sources for illumination applications, junction temperature, and III-V nitride materials

  17. Multiple night-time light-emitting diode lighting strategies impact grassland invertebrate assemblages. (United States)

    Davies, Thomas W; Bennie, Jonathan; Cruse, Dave; Blumgart, Dan; Inger, Richard; Gaston, Kevin J


    White light-emitting diodes (LEDs) are rapidly replacing conventional outdoor lighting technologies around the world. Despite rising concerns over their impact on the environment and human health, the flexibility of LEDs has been advocated as a means of mitigating the ecological impacts of globally widespread outdoor night-time lighting through spectral manipulation, dimming and switching lights off during periods of low demand. We conducted a three-year field experiment in which each of these lighting strategies was simulated in a previously artificial light naïve grassland ecosystem. White LEDs both increased the total abundance and changed the assemblage composition of adult spiders and beetles. Dimming LEDs by 50% or manipulating their spectra to reduce ecologically damaging wavelengths partially reduced the number of commoner species affected from seven to four. A combination of dimming by 50% and switching lights off between midnight and 04:00 am showed the most promise for reducing the ecological costs of LEDs, but the abundances of two otherwise common species were still affected. The environmental consequences of using alternative lighting technologies are increasingly well established. These results suggest that while management strategies using LEDs can be an effective means of reducing the number of taxa affected, averting the ecological impacts of night-time lighting may ultimately require avoiding its use altogether. © 2017 John Wiley & Sons Ltd.

  18. Printing method for organic light emitting device lighting (United States)

    Ki, Hyun Chul; Kim, Seon Hoon; Kim, Doo-Gun; Kim, Tae-Un; Kim, Snag-Gi; Hong, Kyung-Jin; So, Soon-Yeol


    Organic Light Emitting Device (OLED) has a characteristic to change the electric energy into the light when the electric field is applied to the organic material. OLED is currently employed as a light source for the lighting tools because research has extensively progressed in the improvement of luminance, efficiency, and life time. OLED is widely used in the plate display device because of a simple manufacture process and high emitting efficiency. But most of OLED lighting projects were used the vacuum evaporator (thermal evaporator) with low molecular. Although printing method has lower efficiency and life time of OLED than vacuum evaporator method, projects of printing OLED actively are progressed because was possible to combine with flexible substrate and printing technology. Printing technology is ink-jet, screen printing and slot coating. This printing method allows for low cost and mass production techniques and large substrates. In this research, we have proposed inkjet printing for organic light-emitting devices has the dominant method of thick film deposition because of its low cost and simple processing. In this research, the fabrication of the passive matrix OLED is achieved by inkjet printing, using a polymer phosphorescent ink. We are measured optical and electrical characteristics of OLED.

  19. Side-emitting high-power LEDs and their application in illumination (United States)

    West, Robert S.


    Due to the rapid increase in flux performance from High Power LED's, illumination is an exciting growth market for solid state lighting. Today a white LED is 100+ Lm per device. This is approximately an order of magnitude below the kLm metric used for illumination applications. The radiation pattern from the LED is key in increasing the usable flux resulting in improved systems optical performance. This advancement in radiation pattern will allow new market opportunities, which were not yet feasible. In the future this effect of usable lumens will become more important as the flux per package increases. The radiation pattern of the LEDs can be controlled to optimize performance, appearance, and shape of the secondary optics. This advantage is unique to LEDs and can greatly improve system performance, control, and cosmetic appeal for the application. This paper will review the side emitting lens design, the integrated performance of this technology to secondary optics and how the Luxeon side emitter enables improved performance by creating more useable lumens.

  20. Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes (United States)

    Kim, Hyeon-Hye; Goins, Gregory D.; Wheeler, Raymond M.; Sager, John C.


    Plants will be an important component of future long-term space missions. Lighting systems for growing plants will need to be lightweight, reliable, and durable, and light-emitting diodes (LEDs) have these characteristics. Previous studies demonstrated that the combination of red and blue light was an effective light source for several crops. Yet the appearance of plants under red and blue lighting is purplish gray making visual assessment of any problems difficult. The addition of green light would make the plant leave appear green and normal similar to a natural setting under white light and may also offer a psychological benefit to the crew. Green supplemental lighting could also offer benefits, since green light can better penetrate the plant canopy and potentially increase plant growth by increasing photosynthesis from the leaves in the lower canopy. In this study, four light sources were tested: 1) red and blue LEDs (RB), 2) red and blue LEDs with green fluorescent lamps (RGB), 3) green fluorescent lamps (GF), and 4) cool-white fluorescent lamps (CWF), that provided 0%, 24%, 86%, and 51% of the total PPF in the green region of the spectrum, respectively. The addition of 24% green light (500 to 600 nm) to red and blue LEDs (RGB treatment) enhanced plant growth. The RGB treatment plants produced more biomass than the plants grown under the cool-white fluorescent lamps (CWF treatment), a commonly tested light source used as a broad-spectrum control.

  1. White Light Emitting Diode Development for General Illumination Applications

    Energy Technology Data Exchange (ETDEWEB)

    James Ibbetson


    This report contains a summary of technical achievements during a 3-year project aimed at developing the chip and packaging technology necessary to demonstrate efficient, high flux light-emitting diode (LED) arrays using Cree's gallium nitride/silicon carbide (GaN/SiC) LED technology as the starting point. Novel chip designs and fabrication processes are described that led to high power blue LEDs that achieved 310 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 32.5% and 26.5%, respectively. When combined with phosphor, high power white LEDs with luminous output of 67 lumens and efficacy of 57 lumens per watt were also demonstrated. Advances in packaging technology are described that enabled compact, multi-chip white LED lamp modules with 800-1000 lumens output at efficacies of up to 55 lumens per watt. Lamp modules with junction-to-ambient thermal resistance as low as 1.7 C/watt have also been demonstrated.

  2. The antifungal effect of light emitting diode on Malassezia yeasts. (United States)

    Wi, Hyun Seung; Na, Eui Young; Yun, Sook Jung; Lee, Jee-Bum


    Malassezia (M.) species are members of the normal part of the skin flora, but they might induce or be involved with various cutaneous diseases. Although the role of Malassezia in the pathogenesis of cutaneous diseases is not fully understood, recent studies have shown that decreased density of Malassezia led to improvement of these diseases. To identify the antifungal effect of light emitting diode (LED) against Malassezia, its antifungal mechanisms and the impact on the keratinocytes. LED with various wavelengths (370-630nm) on Malassezia furfur, Malassezia sympodialis and Malassezia globosa was irradiated according to dose and then the antifungal effects were thereafter assessed. After irradiating LED with 392.5±1nm of wavelength according to dose on Malassezia species, reactive oxygen species (ROS) and lipid hydroperoxide production assay were measured. In addition, cell viability and inflammatory cytokines (IL-1α, IL-1β, TNF-α, TGF-β, TLR-2 and COX-2) expressions in normal human epidermal keratinocytes (NHEKs) by LED irradiation were evaluated. The growth of Malassezia species was dose-dependently suppressed by both LED with 380±2 and 392.5±1nm wavelengths. The increases of intracellular and extracellular ROS by LED irradiation with 392.5±1nm wavelengths were significantly observed compared to control group. The cell viability and cytokines in NHEKs were not significantly affected by LED irradiation under 5J/cm(2)in vitro. LED irradiation with 380±2 and 392.5±1nm wavelengths proved to have antifungal effect against Malassezia species and no impact on NHEKs under 5J/cm(2). The findings suggest that LED might be an adjunctive therapeutic light tool against Malassezia yeasts related cutaneous diseases. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. A lighting assembly based on red and blue light-emitting diodes as a lighting source for space agriculture (United States)

    Avercheva, Olga; Berkovich, Yuliy A.; Smolyanina, Svetlana; Bassarskaya, Elizaveta; Zhigalova, Tatiana; Ptushenko, Vasiliy; Erokhin, Alexei

    Light-emitting diodes (LEDs) are a promising lighting source for space agriculture due to their high efficiency, longevity, safety, and other factors. Assemblies based on red and blue LEDs have been recommended in literature, although not all plants show sufficient productivity in such lighting conditions. Adding of green LEDs proposed in some works was aimed at psychological support for the crew, and not at the improvement of plant growth. We studied the growth and the state of the photosynthetic apparatus in Chinese cabbage (Brassica chinensis L.) plants grown under red (650 nm) and blue (470 nm) light-emitting diodes (LEDs). Plants grown under a high-pressure sodium lamp (HPS lamp) were used as a control. The plants were illuminated with two photosynthetic photon flux levels: nearly 400 µE and about 100 µE. Plants grown under LEDs with 400 µE level, as compared to control plants, showed lower fresh weight, edible biomass, growth rate, and sugar content. The difference in fresh weight and edible biomass was even more pronounced in plants grown with 100 µE level; the data indicate that the adaptability of the test plants to insufficient lighting decreased. Under LEDs, we observed the decreasing of root growth and the absence of transition to the flowering stage, which points to a change in the hormonal balance in plants grown in such lighting conditions. We also found differences in the functioning of the photosynthetic apparatus and its reaction to a low lighting level. We have concluded that a lighting assembly with red and blue LEDs only is insufficient for the plant growth and productivity, and can bring about alterations in their adaptive and regulatory mechanisms. Further studies are needed to optimize the lighting spectrum for space agriculture, taking into account the photosynthetic, phototropic and regulatory roles of light. Using white LEDs or adding far-red and green LEDs might be a promising approach.

  4. Light-emitting diode phototherapy for unconjugated hyperbilirubinaemia in neonates. (United States)

    Kumar, Praveen; Chawla, Deepak; Deorari, Ashok


    Phototherapy is the mainstay of treatment of neonatal hyperbilirubinaemia. The commonly used light sources for providing phototherapy are special blue fluorescent tubes, compact fluorescent tubes and halogen spotlights. However, light emitting diodes (LEDs) as light sources with high luminous intensity, narrow wavelength band and higher delivered irradiance could make phototherapy more efficacious than the conventional phototherapy units. To evaluate the effect of LED phototherapy as compared to conventional phototherapy in decreasing serum total bilirubin levels and duration of treatment in neonates with unconjugated hyperbilirubinaemia. We searched the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library 2010, Issue 1), MEDLINE (1966 to April 30, 2010) and EMBASE (1988 to July 8, 2009). Handsearches of the proceedings of annual meetings of The European Society for Paediatric Research and The Society for Pediatric Research were conducted through 2010. Randomised or quasi-randomised controlled trials were eligible for inclusion if they enrolled neonates (term and preterm) with unconjugated hyperbilirubinaemia and compared LED phototherapy with other light sources (fluorescent  tubes, compact fluorescent tubes, halogen spotlight; method of administration: conventional or fibreoptic). We used the standard methods of The Cochrane Collaboration and its Neonatal Review Group for data collection and analysis. Six randomised controlled trials met the inclusion criteria for this review. Four studies compared LED and halogen light sources. Two studies compared LED and compact fluorescent light sources. The duration of phototherapy (six studies, 630 neonates) was comparable in LED and non-LED phototherapy groups (mean difference (hours) -0.43, 95% CI -1.91 to 1.05). The rate of decline of serum total bilirubin (STB) (four studies, 511 neonates) was also similar in the two groups (mean difference (mg/dL/hour) 0.01, 95% CI -0.02 to 0.04). Treatment

  5. High-flux focusable color-tunable and efficient white-light-emitting diode light engine for stage lighting

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Pedersen, Henrik Chresten; Petersen, Paul Michael


    %. The design, simulation, and optimization of the lightengine is described and compared to the experimental characterization of a prototype. The light engine is optimizedthrough the simulated design of reflector, total internal reflection lens, and MA, as well as the number ofLEDs. An optical efficiency of 59......A color mixing light-emitting diode (LED) light engine that can replace 2-kW halogen–Fresnel spotlightwith high-luminous flux in excess of 20,000 lm is reported for applications in professional stage and studio lighting.The light engine focuses and mixes the light from 210 LEDs of five different...... colors through a microlens array(MA) at the gate of ∅50 mm. Hence, it produces homogeneous color-mixed tunable white light from 3000 to6000 K that can be adjustable from flood to spot position providing 10% translational loss, whereas the correspondingloss from the halogen–Fresnel spotlight is 37...

  6. Optical Experiments Using Mini-Torches with Red, Green and Blue Light Emitting Diodes (United States)

    Kamata, Masahiro; Matsunaga, Ai


    We have developed two kinds of optical experiments: color mixture and fluorescence, using mini-torches with light emitting diodes (LEDs) that emit three primary colors. Since the tools used in the experiments are simple and inexpensive, students can easily retry and develop the experiments by themselves. As well as giving an introduction to basic…

  7. Graphene as anode electrode for colloidal quantum dots based light emitting diodes (United States)

    Klekachev, Alexander V.; Kuznetsov, Sergey N.; Asselberghs, Inge; Cantoro, Mirco; Hun Mun, Jeong; Jin Cho, Byung; Stesmans, André L.; Heyns, Marc M.; De Gendt, Stefan


    Graphene films demonstrating low sheet resistance and high transparency in the visible light range are promising to be used as electrodes for light-emitting applications. In this work, we report the implementation of single layer graphene as hole injecting electrode for CdSe/ZnS quantum dot-light emitting diodes (QD-LED). We compare graphene vs. indium-tin-oxide (ITO)-based anode junctions by electroluminescence intensity performance of QD-LEDs. Our results demonstrate better hole injection efficiency for the graphene-based electrode at technologically relevant current densities J graphene as a valuable alternative to replace ITO in QD-LED technology.

  8. Organic bistable light-emitting devices (United States)

    Ma, Liping; Liu, Jie; Pyo, Seungmoon; Yang, Yang


    An organic bistable device, with a unique trilayer structure consisting of organic/metal/organic sandwiched between two outmost metal electrodes, has been invented. [Y. Yang, L. P. Ma, and J. Liu, U.S. Patent Pending, U.S. 01/17206 (2001)]. When the device is biased with voltages beyond a critical value (for example 3 V), the device suddenly switches from a high-impedance state to a low-impedance state, with a difference in injection current of more than 6 orders of magnitude. When the device is switched to the low-impedance state, it remains in that state even when the power is off. (This is called "nonvolatile" phenomenon in memory devices.) The high-impedance state can be recovered by applying a reverse bias; therefore, this bistable device is ideal for memory applications. In order to increase the data read-out rate of this type of memory device, a regular polymer light-emitting diode has been integrated with the organic bistable device, such that it can be read out optically. These features make the organic bistable light-emitting device a promising candidate for several applications, such as digital memories, opto-electronic books, and recordable papers.

  9. Demonstration of LED Street Lighting in Kansas City, MO

    Energy Technology Data Exchange (ETDEWEB)

    Kinzey, Bruce R.; Royer, Michael P.; Hadjian, M.; Kauffman, Rick


    Nine different streetlighting products were installed on various streets in Kansas City, Missouri during February, 2011, to evaluate their performance relative to the incumbent high-pressure sodium (HPS) lighting. The applications investigated included 100 W, 150 W, 250 W, and 400 W HPS installations. Initial measurements and comparisons included power, illuminance, and luminance; sample illuminance readings have continued at each of the nine locations at roughly 1,000-hour operating intervals since then. All of the LED products consumed less power than their HPS counterparts—with a mean difference of 39% and a range of 31% to 51%—but they also emitted 31% fewer lumens, on average. The net result is just a 15% increase in mean efficacy. Applying the city’s stringent light loss factors to the initial measured data meant that five of the LED products (and two of the HPS luminaires) were predicted to eventually fail to meet the specified mean illuminance over their lifetimes; however, the specified light loss levels are not expected to be reached by the LED products until some distant future date (between 12 and 30 years after installation according to manufacturer specification sheet estimates). The practical value of designing streetlighting systems to meet illumination requirements more than 15 years in the future is questioned. Numerous sources of variation in field measurements are noted throughout the report, particularly seasonal influences such as ambient temperature and foliage that are evident in the time-series illuminance data.

  10. Solution-Grown ZnO Films toward Transparent and Smart Dual-Color Light-Emitting Diode. (United States)

    Huang, Xiaohu; Zhang, Li; Wang, Shijie; Chi, Dongzhi; Chua, Soo Jin


    An individual light-emitting diode (LED) capable of emitting different colors of light under different bias conditions not only allows for compact device integration but also extends the functionality of the LED beyond traditional illumination and display. Herein, we report a color-switchable LED based on solution-grown n-type ZnO on p-GaN/n-GaN heterojunction. The LED emits red light with a peak centered at ∼692 nm and a full width at half-maximum of ∼90 nm under forward bias, while it emits green light under reverse bias. These two lighting colors can be switched repeatedly by reversing the bias polarity. The bias-polarity-switched dual-color LED enables independent control over the lighting color and brightness of each emission with two-terminal operation. The results offer a promising strategy toward transparent, miniaturized, and smart LEDs, which hold great potential in optoelectronics and optical communication.

  11. Design of asymmetric freeform lens for low glared LED street light with total internal reflection. (United States)

    Lai, Min-Feng; Chen, Yi-Chian; Anh, Nguyen Doan Quoc; Chen, Tsai-Yu; Ma, Hsin-Yi; Lee, Hsiao-Yi


    The study is focused on the asymmetric secondary freeform lens (ASFL) design for creating a low glared light-emitting diode (LED) street light. The lens is mounted on a chip on board (COB) LED as the new LED street light module to perform a non-axial symmetric light intensity distribution. The experimental results show that the street light can work without inclining lamps and reach Chinese National Standards (CNS) and Illuminating Engineering Society of North America (IESNA) standards at the same time.

  12. Light-Emitting Diodes: Phosphorescent Nanocluster Light-Emitting Diodes (Adv. Mater. 2/2016). (United States)

    Kuttipillai, Padmanaban S; Zhao, Yimu; Traverse, Christopher J; Staples, Richard J; Levine, Benjamin G; Lunt, Richard R


    On page 320, R. R. Lunt and co-workers demonstrate electroluminescence from earth-abundant phosphorescent metal halide nanoclusters. These inorganic emitters, which exhibit rich photophysics combined with a high phosphorescence quantum yield, are employed in red and near-infrared light-emitting diodes, providing a new platform of phosphorescent emitters for low-cost and high-performance light-emission applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. [Effect of different light of LED light quality on growth and antioxidant enzyme activities of Ganoderma lucidum]. (United States)

    Wang, Lihua; Chen, Xiangdong; Wang, Qiuyin; Hao, Junjiang; Lan, Jin


    To study the effect of light quality on growth, antioxidant enzyme activities of Ganoderma lucidum mycelium. G. lucidum mycelium was cultured under different light qualities by light emitting diodes (LED). The growth G. lucidum mycelium was observed and antioxidant enzyme activities was determined in different growth periods. Under the red LED, the blue LED and dark condition (CK), the mycelium grew faster than that under other light qualities. The white LED resulted in a largest increase in the amount of the mycelium and always kept the activities of CAT high level. Major fluctuations of POD activities emerged under the green LED, while enhanced severely in the late phase. Under the yellow LED, the activities of SOD appeared high level. However, SOD activities on dark (CK) raised obviously in late period. At the late stage, the content of mycelium polysaccharides was significant higher than that under the blue LED. The light quality could influence the growth and metabolism of G. lucidum mycelium.

  14. Near-infrared light emitting device using semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Supran, Geoffrey J.S.; Song, Katherine W.; Hwang, Gyuweon; Correa, Raoul Emile; Shirasaki, Yasuhiro; Bawendi, Moungi G.; Bulovic, Vladimir; Scherer, Jennifer


    A near-infrared light emitting device can include semiconductor nanocrystals that emit at wavelengths beyond 1 .mu.m. The semiconductor nanocrystals can include a core and an overcoating on a surface of the core.

  15. Flexible Photonics: Polymer LEDs Made from Monochromatic Red Emitting Lanthanide/Polymer Blends. Phase 1

    National Research Council Canada - National Science Library

    O'Regan, Marie


    .... Spectrally pure, red emitting flexible LEDs have been fabricated. Close to a four-fold increase in device efficiency is obtained when a suitable lanthanide complex is blended with the semi-conducting host polymer...

  16. LED intense headband light source for fingerprint analysis (United States)

    Villa-Aleman, Eliel


    A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.

  17. The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights.

    Directory of Open Access Journals (Sweden)

    Elizabeth G Rowse

    Full Text Available We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS to light emitting diode (LED street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum 'white' light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes, or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these 'light-intolerant' bat species.

  18. The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights (United States)

    Rowse, Elizabeth G.; Harris, Stephen; Jones, Gareth


    We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS) to light emitting diode (LED) street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum ‘white’ light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes), or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these ‘light-intolerant’ bat species. PMID:27008274

  19. Microtube Light-Emitting Diode Arrays with Metal Cores. (United States)

    Tchoe, Youngbin; Lee, Chul-Ho; Park, Jun Beom; Baek, Hyeonjun; Chung, Kunook; Jo, Janghyun; Kim, Miyoung; Yi, Gyu-Chul


    We report the fabrication and characteristics of vertical microtube light-emitting diode (LED) arrays with a metal core inside the devices. To make the LEDs, gallium nitride (GaN)/indium gallium nitride (In(x)Ga(1-x)N)/zinc oxide (ZnO) coaxial microtube LED arrays were grown on an n-GaN/c-aluminum oxide (Al2O3) substrate. The microtube LED arrays were then lifted-off the substrate by wet chemical etching of the sacrificial ZnO microtubes and the silicon dioxide (SiO2) layer. The chemically lifted-off LED layer was then transferred upside-down on other supporting substrates. To create the metal cores, titanium/gold and indium tin oxide were deposited on the inner shells of the microtubes, forming n-type electrodes inside the metal-cored LEDs. The characteristics of the resulting devices were determined by measuring electroluminescence and current-voltage characteristic curves. To gain insights into the current-spreading characteristics of the devices and understand how to make them more efficient, we modeled them computationally.

  20. Protective effect of monochromatic red light of LED against the oxidative effects of microwave radiation

    International Nuclear Information System (INIS)

    Tsibulyin, O.S.; Yakimenko, Yi.L.; Sidorik, Je.P.


    Oxidative mechanisms of hazard effects of radiofrequency radiation (RFR) were elucidated recently, and this opens new approaches for the protection of living organisms against harmful effects of RFR. We demonstrate the significant protective effect and the antioxidant potential of monochromatic red light of light-emitting diodes (LED, λ = 630- 650 nm) in microwave GSM 900 MHz exposed embryos of Japanese quails

  1. The efficiency challenge of nitride light-emitting diodes for lighting

    KAUST Repository

    Weisbuch, Claude


    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. We discuss the challenges of light-emitting diodes in view of their application to solid-state lighting. The requirement is to at least displace the quite efficient fluorescent, sodium, and high intensity discharge lamps used today in the main energy consuming lighting sectors, industrial, commercial and outdoors, with more efficient and better light quality lamps. We show that both from the point of view of cost of ownership and carbon emissions reduction, the relevant metric is efficiency, more than the cost of lumens. Then, progress from present performance requires identification of the loss mechanisms in light emission from LEDs, and solutions competing with mainstream c-plane LEDS grown on sapphire need to be on par with these. Special attention is devoted to a discussion of the efficiency droop mechanisms, and of a recent direct measurement of Auger generated electrons which appear to be responsible for droop.

  2. Luminescent properties of green- or red-emitting Eu2+-doped Sr3Al2O6 for LED

    International Nuclear Information System (INIS)

    Zhang Jilin; Zhang Xinguo; Shi Jianxin; Gong Menglian


    Eu 2+ -doped Sr 3 Al 2 O 6 (Sr 3-x Eu x Al 2 O 6 ) was synthesized by a solid-state reaction under either H 2 and N 2 atmosphere or CO atmosphere. When H 2 was used as the reducing agent, the phosphor exhibited green emission under near UV excitation, while CO was used as the reducing agent, the phosphor mainly showed red emission under blue light excitation. Both emissions belong to the d-f transition of Eu 2+ ion. The relationship between the emission wavelengths and the occupation of Eu 2+ at different crystallographic sites was studied. The preferential substitution of Eu 2+ into different Sr 2+ cites at different reaction periods and the substitution rates under different atmospheres were discussed. Finally, green-emitting and red-emitting LEDs were fabricated by coating the phosphor onto near UV- or blue-emitting InGaN chips. - Highlights: →Sr 3 Al 2 O 6 :Eu 2+ is synthesized by a solid-state reaction under different atmospheres. →Phosphor obtained under H 2 +N 2 atmosphere emits green light under NUV excitation. →Phosphor obtained under CO atmosphere emits red light under blue light excitation. →Different emission wavelengths are due to Eu 2+ in different Sr 2+ sites. →The preferential substitution and the substitution rates of Eu 2+ are discussed.

  3. Hand-Drawn Resistors and a Simple Tester Using a Light-Emitting Diode (United States)

    Kamata, Masahiro; Abe, Mayumi


    A thick line drawn on a sheet of paper with a 6B pencil is electrically conductive and its resistance can be roughly estimated using a simple tester made of a light-emitting diode (LED) and a lithium coin-type cell. Using this hand-drawn resistor and the LED tester, we developed teaching materials that help students to understand how electrical…

  4. Investigating Bandgap Energies, Materials, and Design of Light-Emitting Diodes (United States)

    Wagner, Eugene P., II


    A student laboratory experiment to investigate the intrinsic and extrinsic bandgaps, dopant materials, and diode design in light-emitting diodes (LEDs) is presented. The LED intrinsic bandgap is determined by passing a small constant current through the diode and recording the junction voltage variation with temperature. A second visible…


    Directory of Open Access Journals (Sweden)

    Abhik Sikdar


    Full Text Available PRESENTATION OF CASE On extensive internet search of published English literature, we found only 3 cases of Light-Emitting Diode (LED bulb in airway. 1,2,3 We present 2 cases of LED bulb aspiration presenting to us in the last 6 months.

  6. The Involvement of the Oxidative Stress in Murine Blue LED Light-Induced Retinal Damage Model. (United States)

    Nakamura, Maho; Kuse, Yoshiki; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki


    The aim of study was to establish a mouse model of blue light emitting diode (LED) light-induced retinal damage and to evaluate the effects of the antioxidant N-acetylcysteine (NAC). Mice were exposed to 400 or 800 lx blue LED light for 2 h, and were evaluated for retinal damage 5 d later by electroretinogram amplitude and outer nuclear layer (ONL) thickness. Additionally, we investigated the effect of blue LED light exposure on shorts-wave-sensitive opsin (S-opsin), and rhodopsin expression by immunohistochemistry. Blue LED light induced light intensity dependent retinal damage and led to collapse of S-opsin and altered rhodopsin localization from inner and outer segments to ONL. Conversely, NAC administered at 100 or 250 mg/kg intraperitoneally twice a day, before dark adaptation and before light exposure. NAC protected the blue LED light-induced retinal damage in a dose-dependent manner. Further, blue LED light-induced decreasing of S-opsin levels and altered rhodopsin localization, which were suppressed by NAC. We established a mouse model of blue LED light-induced retinal damage and these findings indicated that oxidative stress was partially involved in blue LED light-induced retinal damage.

  7. Effect of LED light on seeds of Capsicum annuum L. var. serrano

    Directory of Open Access Journals (Sweden)

    Alejandra María Moreno-Jiménez


    Full Text Available Serrano pepper (Capsicum annuum L. is a crop of economic, nutritional and medicinal importance; so it is necessary to increase its production and improve its characteristics. The objective of this research was to evaluate the stimulatory effect of light emitting diodes (LEDs on serrano pepper seedlings. Germination percentage, stem length, leaf width, leaf length, number of leaves, total chlorophyll content and carotenoid content were analyzed. The seeds were exposed to white, blue and red LED light, using fluorescent light as a control and a photoperiod of 11/13 hours. Once germinated, the seedlings continued with exposure to light for 30 days. After the laboratory conditions, the seedlings were transferred to a greenhouse for 60 days. The results show that there were no significant differences between LED light treatments on seed germination. The variables stem length, leaf width and leaf length, were favored with red light. Blue and red LEDs highlighted by increasing the number of leaves. Seedlings treated with blue light showed the highest content of photosynthetic pigments (chlorophyll= 0.84 mg g-1, carotenoid= 0.12 mg g-1. In conclusion, the red LED light is effective for the growth of serrano pepper seedlings, while the production of photosynthetic pigments was favored by blue LED light.   Keywords: peppers, light-emitting diodes, germination, growth, photosynthetic pigments

  8. Spectral matching research for light-emitting diode-based neonatal jaundice therapeutic device light source (United States)

    Gan, Ruting; Guo, Zhenning; Lin, Jieben


    To decrease the risk of bilirubin encephalopathy and minimize the need for exchange transfusions, we report a novel design for light source of light-emitting diode (LED)-based neonatal jaundice therapeutic device (NJTD). The bilirubin absorption spectrum in vivo was regarded as target. Based on spectral constructing theory, we used commercially available LEDs with different peak wavelengths and full width at half maximum as matching light sources. Simple genetic algorithm was first proposed as the spectral matching method. The required LEDs number at each peak wavelength was calculated, and then, the commercial light source sample model of the device was fabricated to confirm the spectral matching technology. In addition, the corresponding spectrum was measured and the effect was analyzed finally. The results showed that fitted spectrum was very similar to the target spectrum with 98.86 % matching degree, and the actual device model has a spectrum close to the target with 96.02 % matching degree. With higher fitting degree and efficiency, this matching algorithm is very suitable for light source matching technology of LED-based spectral distribution, and bilirubin absorption spectrum in vivo will be auspicious candidate for the target spectrum of new LED-based NJTD light source.

  9. Tuning the white light spectrum of light emitting diode lamps to reduce attraction of nocturnal arthropods. (United States)

    Longcore, Travis; Aldern, Hannah L; Eggers, John F; Flores, Steve; Franco, Lesly; Hirshfield-Yamanishi, Eric; Petrinec, Laina N; Yan, Wilson A; Barroso, André M


    Artificial lighting allows humans to be active at night, but has many unintended consequences, including interference with ecological processes, disruption of circadian rhythms and increased exposure to insect vectors of diseases. Although ultraviolet and blue light are usually most attractive to arthropods, degree of attraction varies among orders. With a focus on future indoor lighting applications, we manipulated the spectrum of white lamps to investigate the influence of spectral composition on number of arthropods attracted. We compared numbers of arthropods captured at three customizable light-emitting diode (LED) lamps (3510, 2704 and 2728 K), two commercial LED lamps (2700 K), two commercial compact fluorescent lamps (CFLs; 2700 K) and a control. We configured the three custom LEDs to minimize invertebrate attraction based on published attraction curves for honeybees and moths. Lamps were placed with pan traps at an urban and two rural study sites in Los Angeles, California. For all invertebrate orders combined, our custom LED configurations were less attractive than the commercial LED lamps or CFLs of similar colour temperatures. Thus, adjusting spectral composition of white light to minimize attracting nocturnal arthropods is feasible; not all lights with the same colour temperature are equally attractive to arthropods. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. [White organic light-emitting diodes applied for lighting technology]. (United States)

    Huang, Qing-Yu; Zhao, Su-Ling; Xu, Zheng; Fan, Xing; Wang, Jian; Yang, Qian-Qian


    Lighting accounts for approximately 22 percent of the electricity consumed in buildings in the United States, with 40 percent of that amount consumed by inefficient incandescent lamps. This has generated increased interest in the use of white electroluminescent organic light-emitting devices (WOLEDS) as the next generation solid-state lighting source, owing to their potential for significantly improved efficiency over incandescent sources, combined with low-cost, high-throughput manufacturability. The research and application of the devices have witnessed great progress. WOLEDS have incomparable advantages for its special characteristics. This progress report sketched the principle of WOLEDS and provided some common structures, and further investigation of the mechanism of different structures was made. Meanwhile, the key technologies of WOLEDS were summarized. Finally, the latest research progress of WOLEDS was reviewed.

  11. Enhanced light emission in blue light-emitting diodes by multiple Mie scattering from embedded silica nanosphere stacking layers. (United States)

    Park, Young Jae; Kang, Ji Hye; Kim, Hee Yun; Lysak, Volodymyr V; Chandramohan, S; Ryu, Jae Hyoung; Kim, Hyun Kyu; Han, Nam; Jeong, Hyun; Jeong, Mun Seok; Hong, Chang-Hee


    We demonstrate enhanced light emission in blue light-emitting diodes (LEDs) by multiple Mie scattering from embedded silica nanosphere stacking layers (SNSL). A honeycomb cone structure is introduced in the GaN epilayer to confine a maximum number of silica nanospheres (SNs). We found that the light is predominantly directed vertically by scattering and geometrical effect in SNSL embedded LEDs. Consequently, the light output power is enhanced by 2.7 times, which we attribute to the improvement in light extraction efficiency due to the multiple Mie scattering of light from the embedded SNSL. The experimental results are verified by simulation using finite difference time domain method (FDTD).

  12. Organic light-emitting devices using spin-dependent processes (United States)

    Vardeny, Z. Valy; Wohlgenannt, Markus


    The maximum luminous efficiency of organic light-emitting materials is increased through spin-dependent processing. The technique is applicable to all electro-luminescent processes in which light is produced by singlet exciton decay, and all devices which use such effects, including LEDs, super-radiant devices, amplified stimulated emission devices, lasers, other optical microcavity devices, electrically pumped optical amplifiers, and phosphorescence (Ph) based light emitting devices. In preferred embodiments, the emissive material is doped with an impurity, or otherwise modified, to increase the spin-lattice relaxation rate (i.e., decrease the spin-lattice time), and hence raise the efficiency of the device. The material may be a polymer, oligomer, small molecule, single crystal, molecular crystal, or fullerene. The impurity is preferably a magnetic or paramagnetic substance. The invention is applicable to IR, UV, and other electromagnetic radiation generation and is thus not limited to the visible region of the spectrum. The methods of the invention may also be combined with other techniques used to improve device performance.

  13. Scalable Light Module for Low-Cost, High-Efficiency Light- Emitting Diode Luminaires

    Energy Technology Data Exchange (ETDEWEB)

    Tarsa, Eric [Cree, Inc., Goleta, CA (United States)


    During this two-year program Cree developed a scalable, modular optical architecture for low-cost, high-efficacy light emitting diode (LED) luminaires. Stated simply, the goal of this architecture was to efficiently and cost-effectively convey light from LEDs (point sources) to broad luminaire surfaces (area sources). By simultaneously developing warm-white LED components and low-cost, scalable optical elements, a high system optical efficiency resulted. To meet program goals, Cree evaluated novel approaches to improve LED component efficacy at high color quality while not sacrificing LED optical efficiency relative to conventional packages. Meanwhile, efficiently coupling light from LEDs into modular optical elements, followed by optimally distributing and extracting this light, were challenges that were addressed via novel optical design coupled with frequent experimental evaluations. Minimizing luminaire bill of materials and assembly costs were two guiding principles for all design work, in the effort to achieve luminaires with significantly lower normalized cost ($/klm) than existing LED fixtures. Chief project accomplishments included the achievement of >150 lm/W warm-white LEDs having primary optics compatible with low-cost modular optical elements. In addition, a prototype Light Module optical efficiency of over 90% was measured, demonstrating the potential of this scalable architecture for ultra-high-efficacy LED luminaires. Since the project ended, Cree has continued to evaluate optical element fabrication and assembly methods in an effort to rapidly transfer this scalable, cost-effective technology to Cree production development groups. The Light Module concept is likely to make a strong contribution to the development of new cost-effective, high-efficacy luminaries, thereby accelerating widespread adoption of energy-saving SSL in the U.S.

  14. Synergetic Effect between Lighting Efficiency Enhancement and Building Energy Reduction Using Alternative Thermal Operating System of Indoor LED Lighting

    Directory of Open Access Journals (Sweden)

    Byung-Lip Ahn


    Full Text Available We investigated the synergetic effect between light-emitting diode (LED lighting efficiency and building energy savings in heating and cooling using an alternative thermal operating system (ATOS of indoor LED lighting integrated with the ventilation system of a building as an active cooling device. The heat generated from LED lighting and the indoor lighting illuminance were experimentally determined. The indoor heat gains in cooling and heating periods were determined using measurement data; the annual energy savings of an office building in heating and cooling were calculated through simulation. The LED lighting illuminance increased by approximately 40% and the lighting contribution for indoor heat gain was 7.8% in summer, while 69.8% in winter with the ATOS. Consequently, the annual total energy use of the office building could be reduced by 5.9%; the energy use in cooling and heating was reduced by 18.4% and 3.3%, respectively.

  15. LED lamp (United States)

    Galvez, Miguel; Grossman, Kenneth; Betts, David


    There is herein described a lamp for providing white light comprising a plurality of light sources positioned on a substrate. Each of said light sources comprises a blue light emitting diode (LED) and a dome that substantially covers said LED. A first portion of said blue light from said LEDs is transmitted through said domes and a second portion of said blue light is converted into a red light by a first phosphor contained in said domes. A cover is disposed over all of said light sources that transmits at least a portion of said red and blue light emitted by said light sources. The cover contains a second phosphor that emits a yellow light in response to said blue light. The red, blue and yellow light combining to form the white light and the white light having a color rendering index (CRI) of at least about 80.

  16. A theoretical and experimental investigation of light extraction from polymer light-emitting diodes (United States)

    Ziebarth, Jonathan M.

    Low operating voltages, a wide range of emission wavelengths, and solution processing make polymer light-emitting diodes attractive for high-growth markets including flexible displays, large-area displays, and solid-state lighting. However, the external efficiencies of these devices must be improved in order to compete with existing technologies. Currently, the majority of the light generated inside polymer LEDs remains trapped within the device by total internal reflection. Extracting this trapped light can significantly increase the external efficiency. In this thesis, I use both theoretical tools and experimental results to study light extraction from polymer LEDs. First, I examine the optical properties of the light-emitting polymer. The properties of this layer have important implications for light extraction and need to be measured carefully. I have developed a method to accurately measure the optical properties of a light-emitting polymer by using grating outcoupling. The results show that the polymer layers are anisotropic and dispersive. Using numerical modeling techniques, I predict the emission into air, substrate, polymer/indium tin oxide (ITO) and surface plasmon modes of a polymer light-emitting diode. The results give good insight into the possible efficiency increases that can be expected for various light extraction techniques. In addition, the effects of various optical properties and layer thicknesses on the optical performance of the device are reported. I show how modification of the substrate can be used to focus light into mode types that can be easily extracted. I then report my experimental results for two very different light extraction techniques. First, I demonstrate how Bragg gratings can be used to extract light from waveguide modes in the polymer/indium tin oxide (ITO) layers. With an optimized Bragg grating, I have increased the external power efficiency by 25% at high brightness levels. In addition, I have used substrate

  17. Light collection optics for measuring flux and spectrum from light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    McCord, Mark A.; DiRegolo, Joseph A.; Gluszczak, Michael R.


    Systems and methods for accurately measuring the luminous flux and color (spectra) from light-emitting devices are disclosed. An integrating sphere may be utilized to directly receive a first portion of light emitted by a light-emitting device through an opening defined on the integrating sphere. A light collector may be utilized to collect a second portion of light emitted by the light-emitting device and direct the second portion of light into the integrating sphere through the opening defined on the integrating sphere. A spectrometer may be utilized to measure at least one property of the first portion and the second portion of light received by the integrating sphere.

  18. Light-emitting diode versus laser irradiation phototherapy with lutetium texaphyrin (PCI-0123) (United States)

    Woodburn, Kathryn W.; Young, Stuart W.; Qing, Fan; Miles, Dale R.; Thiemann, Patricia A.


    Lutetium texaphyrin (PCI-0123) is presently in clinical trials for the treatment of neoplasms. An argon-pumped dye laser has mostly been used to generate light for PCI-0123 photoactivation. However, lasers are expensive and produce a limited area of illumination, so the efficacy of light emitting diodes (LEDs) was investigated. An LED array was developed so that the spectral emission matched the far red absorption spectrum of PCI-0123. A preclinical PDT efficacy study comparing the laser and the LED was undertaken using EMT6-bearing animals. The LED and laser light sources were statistically comparable in eradicating the murine mammary sarcomas using PCI-0123 as the photosensitizer.

  19. Printable candlelight-style organic light-emitting diode (United States)

    Jou, J. H.; Singh, M.; Song, W. C.; Liu, S. H.


    Candles or oil lamps are currently the most friendly lighting source to human eyes, physiology, ecosystems, artifacts, environment, and night skies due to their blue light-less emission. Candle light also exhibits high light-quality that provides visual comfort. However, they are relatively low in power efficacy (0.3 lm/W), making them energy-wasting, besides having problems like scorching hot, burning, catching fire, flickering, carbon blacking, oxygen consuming, and release of green house gas etc. In contrast, candlelight organic light-emitting diode (OLED) can be made blue-hazard free and energy-efficient. The remaining challenges are to maximize its light-quality and enable printing feasibility, the latter of which would pave a way to cost-effective manufacturing. We hence demonstrate herein the design and fabrication of a candlelight OLED via wet-process. From retina protection perspective, its emission is 13, 12 and 8 times better than those of the blue-enriched white CFL, LED and OLED. If used at night, it is 9, 6 and 4 times better from melatonin generation perspective.

  20. Luminescent properties of red-light-emitting phosphors CaWO4 : Eu ...

    Indian Academy of Sciences (India)

    Luminescent properties; red phosphors; energy transfer; concentration quenching; white LEDs. 1. Introduction. InGaN-based white-light-emitting diodes (WLEDs), which are regarded as the fourth generation of illumination technol- ogy, have attracted increasing attention for their application in display lighting sources and ...

  1. Design considerations for AlGaN-based UV LEDs emitting near 235 nm with uniform emission pattern (United States)

    Lapeyrade, Mickael; Glaab, Johannes; Knauer, Arne; Kuhn, Christian; Enslin, Johannes; Reich, Christoph; Guttmann, Martin; Mehnke, Frank; Wernicke, Tim; Einfeldt, Sven; Weyers, Markus; Kneissl, Michael


    The uniformity of emission from deep ultraviolet light emitting diodes (UV LEDs) is investigated. The AlGaN-based heterostructures of the UV LEDs emitting around 235 nm were grown by metalorganic vapor phase epitaxy on epitaxially laterally overgrown AlN/sapphire substrates. The impact of different device designs on the spatial distribution of the electroluminescence for a series of UV LEDs is studied. Due to the relatively high resistivities of n-AlGaN and p-AlGaN layers, ranging from 10 to 0.1 Ω cm as well as specific contact resistances approaching 1 Ω cm2, the emission patterns revealed heavy current crowding at the mesa edges causing a drop of power in the center of the emitting area and an asymmetry towards the side of the bonding pad of the n-contact. Simple analytical models considering the transfer and the current spreading length could only qualitatively explain the observed emission pattern. Using a 3D electro-thermal simulation of the current spreading in the LEDs the experimentally observed emission pattern could also be quantitatively reproduced. Based on these findings the 3D electro-thermal simulation was employed to optimize the contact geometry of the deep UV LEDs in order to achieve a more uniform power distribution.

  2. Recycled Thermal Energy from High Power Light Emitting Diode Light Source. (United States)

    Ji, Jae-Hoon; Jo, GaeHun; Ha, Jae-Geun; Koo, Sang-Mo; Kamiko, Masao; Hong, JunHee; Koh, Jung-Hyuk


    In this research, the recycled electrical energy from wasted thermal energy in high power Light Emitting Diode (LED) system will be investigated. The luminous efficiency of lights has been improved in recent years by employing the high power LED system, therefore energy efficiency was improved compared with that of typical lighting sources. To increase energy efficiency of high power LED system further, wasted thermal energy should be re-considered. Therefore, wasted thermal energy was collected and re-used them as electrical energy. The increased electrical efficiency of high power LED devices was accomplished by considering the recycled heat energy, which is wasted thermal energy from the LED. In this work, increased electrical efficiency will be considered and investigated by employing the high power LED system, which has high thermal loss during the operating time. For this research, well designed thermoelement with heat radiation system was employed to enhance the collecting thermal energy from the LED system, and then convert it as recycled electrical energy.

  3. Diffusion-Driven Charge Transport in Light Emitting Devices. (United States)

    Kim, Iurii; Kivisaari, Pyry; Oksanen, Jani; Suihkonen, Sami


    Almost all modern inorganic light-emitting diode (LED) designs are based on double heterojunctions (DHJs) whose structure and current injection principle have remained essentially unchanged for decades. Although highly efficient devices based on the DHJ design have been developed and commercialized for energy-efficient general lighting, the conventional DHJ design requires burying the active region (AR) inside a pn-junction. This has hindered the development of emitters utilizing nanostructured ARs located close to device surfaces such as nanowires or surface quantum wells. Modern DHJ III-N LEDs also exhibit resistive losses that arise from the DHJ device geometry. The recently introduced diffusion-driven charge transport (DDCT) emitter design offers a novel way to transport charge carriers to unconventionally placed ARs. In a DDCT device, the AR is located apart from the pn-junction and the charge carriers are injected into the AR by bipolar diffusion. This device design allows the integration of surface ARs to semiconductor LEDs and offers a promising method to reduce resistive losses in high power devices. In this work, we present a review of the recent progress in gallium nitride (GaN) based DDCT devices, and an outlook of potential DDCT has for opto- and microelectronics.

  4. Improved performance of organic light-emitting diode with vanadium ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 88; Issue 6. Improved performance of organic light-emitting ... Vanadium pentoxide layer deposited on the fluorine-doped tin oxide (FTO) anode by vacuum deposition has been investigated in organic light-emitting diode (OLED).With 12nm optimal thickness of V 2 O 5 ...

  5. Solid State Lighting LED Manufacturing Roundtable Summary

    Energy Technology Data Exchange (ETDEWEB)



    Summary of a meeting of LED experts to develop proposed priority tasks for the Manufacturing R&D initiative, including task descriptions, discussion points, recommendations, and presentation highlights.

  6. Blue light emitting diodes for optical stimulation of quartz in retrospective dosimetry and dating

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Duller, G.A.T.; Murray, A.S.


    Recently developed blue light emitting diodes (LEDs) for the optical stimulation of quartz for use in routine optically stimulated luminescence (OSL) dating and retrospective dosimetry have been tested. For similar power densities, it was found that the higher energy light provided by the blue LEDs...... (470 nm) gives order of magnitude greater rate of stimulation in quartz than that from conventional blue-green light filtered from a halogen lamp. A practical blue LED OSL configuration is described. From comparisons of OSL decay curves produced by green and blue light sources, and by examination...... of the dependence of the blue LED OSL on preheat temperature, it is deduced that there is no evidence that the blue LEDs stimulate deep traps in a different manner from broadband filtered light. It is concluded that blue LEDs offer a practical alternative to existing stimulation sources. They have the significant...

  7. Evaluation of light-emitting diodes as attractant for sandflies (Diptera: Psychodidae: Phlebotominae) in northeastern Brazil


    Silva, Francinaldo Soares; Brito, Jefferson Mesquita; Costa, Benedita Maria; Lobo, Shelre Emile Pereira Duarte


    Hoover Pugedo light traps were modified for use with green and blue-light-emitting diodes to trap phlebotomine sandflies in northeastern Brazil. A total of 2,267 specimens belonging to eight genera and 15 species were sampled. The predominant species were Nyssomyia whitmani(34.41%) and Micropygomyia echinatopharynx(17.25%).The green LED trap prevailed over the blue and control lights; however, no statistically significant difference could be detected among the three light sources. Even withou...

  8. Integrated LED-based luminaire for general lighting (United States)

    Dowling, Kevin J.; Lys, Ihor A.; Williamson, Ryan C.; Roberge, Brian; Roberts, Ron; Morgan, Frederick; Datta, Michael Jay; Mollnow, Tomas Jonathan


    Lighting apparatus and methods employing LED light sources are described. The LED light sources are integrated with other components in the form of a luminaire or other general purpose lighting structure. Some of the lighting structures are formed as Parabolic Aluminum Reflector (PAR) luminaires, allowing them to be inserted into conventional sockets. The lighting structures display beneficial operating characteristics, such as efficient operation, high thermal dissipation, high output, and good color mixing.

  9. Integrated LED-based luminare for general lighting (United States)

    Dowling, Kevin J.; Lys, Ihor A.; Roberge, Brian; Williamson, Ryan C.; Roberts, Ron; Datta, Michael; Mollnow, Tomas; Morgan, Frederick M.


    Lighting apparatus and methods employing LED light sources are described. The LED light sources are integrated with other components in the form of a luminaire or other general purpose lighting structure. Some of the lighting structures are formed as Parabolic Aluminum Reflector (PAR) luminaires, allowing them to be inserted into conventional sockets. The lighting structures display beneficial operating characteristics, such as efficient operation, high thermal dissipation, high output, and good color mixing.

  10. Kansas highway LED illumination manual : a guide for the use of LED lighting systems. (United States)


    The research project was aimed to assist the Kansas Department of Transportation (KDOT) in the development of a Highway LED Illumination Manual for guiding the upcoming implementation of successful LED roadway lighting systems in Kansas to replace th...

  11. Kansas highway LED illumination manual : a guide for the use of LED lighting systems : [technical summary]. (United States)


    The research project was aimed to assist the Kansas Department of Transportation (KDOT) in the development of a Highway LED Illumination Manual for guiding the upcoming implementation of successful LED roadway lighting systems in Kansas to replace th...

  12. New Optoelectronic Technology Simplified for Organic Light Emitting Diode (OLED

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes


    Full Text Available The development of Organic Light Emitting Diode (OLED, using an optically transparent substrate material and organic semiconductor materials, has been widely utilized by the electronic industry when producing new technological products. The OLED are the base Poly (3,4-ethylenedioxythiophene, PEDOT, and Polyaniline, PANI, were deposited in Indium Tin Oxide, ITO, and characterized by UV-Visible Spectroscopy (UV-Vis, Optical Parameters (OP and Scanning Electron Microscopy (SEM. In addition, the thin film obtained by the deposition of PANI, prepared in perchloric acid solution, was identified through PANI-X1. The result obtained by UV-Vis has demonstrated that the Quartz/ITO/PEDOT/PANI-X1 layer does not have displacement of absorption for wavelengths greaters after spin-coating and electrodeposition. Thus, the spectral irradiance of the OLED informed the irradiance of 100 W/m2, and this result, compared with the standard Light Emitting Diode (LED, has indicated that the OLED has higher irradiance. After 1000 hours of electrical OLED tests, the appearance of nanoparticles visible for images by SEM, to the migration process of organic semiconductor materials, was present, then. Still, similar to the phenomenon of electromigration observed in connections and interconnections of microelectronic devices, the results have revealed a new mechanism of migration, which raises the passage of electric current in OLED.

  13. Electrical pulse burnout testing of light-emitting diodes

    International Nuclear Information System (INIS)

    Kalma, A.H.; Fischer, C.J.


    Electrical pulse burnout thresholds were measured in GaAs, GaAsP, and GaP light-emitting diodes (LEDs) by studying the degradation in light output and the change in I-V characteristics both during the pulse and in the steady state. Pulse widths ranging from a few hundred nsec to 100 μsec were used. Light output degradation was the most sensitive parameter and was used to determine the thresholds. Just above threshold, damage is caused by an increase in generation-recombination current in the space-charge retion. This current is non-radiative and the light output drops, but the damage is not catastrophic. At higher power, the junction burns through and shunt resistance paths are formed which more drastically degrade the light output. The experimental data match reasonably with the theoretical Wunsch--Bell/Tasca model if a burnout area of 1 / 10 the junction area is assumed. Both the adiabatic term (At -1 ) and the heat flow term (Bt - /sup 1 / 2 /) contribute in all devices, and the equilibrium term (C) contributes in some GaAsP devices. The scatter in the data for GaAs devices is greater than that for GaAsP devices, apparently because the former types have a significant fraction of mavericks with lower-than-normal thresholds. The use of LEDs to examine electrical pulse burnout is advantageous because the light output is quite sensitive to damage and the combined measurement of optical and electrical properties provides additional information about the mechanisms involved

  14. Development of Wireless Dimming Control System for LED Stage Light


    Wang Hui Qin; Bai Shi Lei


    Compared with the existing wire dimming system of LED stage light which uses the heavy light operating console to adjust the brightness of stage light, a portable wireless dimming control system for LED stage lighting is proposed, fabricated and tested in this paper. The scheme with the core of ATmega16L microcontroller is composed of wireless transmission and reception units, constant current driving circuit of LED, and the control circuit between this two modules. Through the system present...

  15. Bactericidal effects of 310?nm ultraviolet light-emitting diode irradiation on oral bacteria


    Takada, Ayuko; Matsushita, Kenji; Horioka, Satoru; Furuichi, Yasushi; Sumi, Yasunori


    Background Ultraviolet (UV) light is used for phototherapy in dermatology, and UVB light (around 310?nm) is effective for treatment of psoriasis and atopic dermatitis. In addition, it is known that UVC light (around 265?nm) has a bactericidal effect, but little is known about the bactericidal effect of UVB light. In this study, we examined the bactericidal effects of UVB-light emitting diode (LED) irradiation on oral bacteria to explore the possibility of using a 310?nm UVB-LED irradiation de...

  16. Lighting emitting microstructures in porous silicon

    International Nuclear Information System (INIS)

    Squire, E.


    Experimental and theoretical techniques are used to examine microstructuring effects on the optical properties of single layer, multilayer, single and multiple microcavity structures fabricated from porous silicon. Two important issues regarding the effects of the periodic structuring of this material are discussed. Firstly, the precise role played by this microstructuring, given that the luminescence is distributed throughout the entire structure and the low porosity layers are highly absorbing at short wavelengths. The second issue examined concerns the observed effects on the optical spectra of the samples owing to the emission bandwidth of the material being greater than the optical stopband of the structure. Measurements of the reflectivity and photoluminescence spectra of different porous silicon microstructures are presented and discussed. The results are modelled using a transfer matrix technique. The matrix method has been modified to calculate the optical spectra of porous silicon specifically by accounting for the effects of dispersion, absorption and emission within the material. Layer thickness and porosity gradients have also been included in the model. The dielectric function of the two component layers (i.e. silicon and air) is calculated using the Looyenga formula. This approach can be adapted to suit other porous semiconductors if required. Examination of the experimental results have shown that the emitted light is strongly controlled by the optical modes of the structures. Furthermore, the data display an interplay of a wide variety of effects dependent upon the structural composition. Comparisons made between the experimental and calculated reflectivity and photoluminescence spectra of many different porous silicon microstructures show very good agreement. (author)

  17. Battery Charge Affects the Stability of Light Intensity from Light-emitting Diode Light-curing Units. (United States)

    Tongtaksin, A; Leevailoj, C

    This study investigated the influence of battery charge levels on the stability of light-emitting diode (LED) curing-light intensity by measuring the intensity from fully charged through fully discharged batteries. The microhardness of resin composites polymerized by the light-curing units at various battery charge levels was measured. The light intensities of seven fully charged battery LED light-curing units-1) LY-A180, 2) Bluephase, 3) Woodpecker, 4) Demi Plus, 5) Saab II, 6) Elipar S10, and 7) MiniLED-were measured with a radiometer (Kerr) after every 10 uses (20 seconds per use) until the battery was discharged. Ten 2-mm-thick cylindrical specimens of A3 shade nanofilled resin composite (PREMISE, Kerr) were prepared per LED light-curing unit group. Each specimen was irradiated by the fully charged light-curing unit for 20 seconds. The LED light-curing units were then used until the battery charge fell to 50%. Specimens were prepared again as described above. This was repeated again when the light-curing units' battery charge fell to 25% and when the light intensity had decreased to 400 mW/cm 2 . The top/bottom surface Knoop hardness ratios of the specimens were determined. The microhardness data were analyzed by one-way analysis of variance with Tukey test at a significance level of 0.05. The Pearson correlation coefficient was used to determine significant correlations between surface hardness and light intensity. We found that the light intensities of the Bluephase, Demi Plus, and Elipar S10 units were stable. The intensity of the MiniLED unit decreased slightly; however, it remained above 400 mW/cm 2 . In contrast, the intensities of the LY-A180, Woodpecker, and Saab II units decreased below 400 mW/cm 2 . There was also a significant decrease in the surface microhardnesses of the resin composite specimens treated with MiniLED, LY-A180, Woodpecker, and Saab II. In conclusion, the light intensity of several LED light-curing units decreased as the battery was

  18. Pixel arrangement optimization of two-dimensional light-emitting diode panel for low-crosstalk autostereoscopic light-emitting diode displays (United States)

    Zeng, Xiang-Yao; Yang, Lan; Zhou, Xiong-Tu; Zhang, Yong-Ai; Chen, En-Guo; Guo, Tai-Liang


    We propose an effective and efficient method that reduces the crosstalk level in autostereoscopic light-emitting diode (LED) displays by optimizing the pixel arrangement of the associated two-dimensional (2-D) LED panel. In the proposed method, first a series of parallax barrier patterns, based on predesignated LED packaging units, are designed and simulated by sequentially regulating the width of black stripes on the 2-D LED panel. This design principle removes the black stripes from conventional autostereoscopic LED display pixels for optimal parallax barrier calculation. Furthermore, the mathematical relationship between average crosstalk level and visual flux density is obtained from the simulation. A mathematical fitting method that includes a cubic fitting function is finally applied to achieve proper pixel arrangement in the 2-D LED panel. The simulation results obtained for a dual viewpoint autostereoscopic LED display system indicate that the most suitable value for the width of the black stripes is within the range of 3.17604 to 3.34277 mm, with a light-emitting pixel width of 2 mm. This method can effectively guide the 2-D LED panel's design and result in high performance autostereoscopic three-dimensional LED displays, which will have broad application prospects in the near future.

  19. Importance of 'blue' photon levels for lettuce seedlings grown under red-light-emitting diodes (United States)

    Hoenecke, M. E.; Bula, R. J.; Tibbitts, T. W.


    Light-emitting diodes (LEDs) with high-intensity output are being studied as a photosynthetic light source for plants. High-output LEDs have peak emission at approximately 660 nm concentrated in a waveband of +/- 30 nm. Lettuce (Lactuca sativa Grand Rapids') seedlings developed extended hypocotyls and elongated cotyledons when grown under these LEDs as a sole source of irradiance. This extension and elongation was prevented when the red LED radiation was supplemented with more than 15 micromoles m-2 s-1 of 400- to 500-nm photons from blue fluorescent lamps. Blue radiation effects were independent of the photon level of the red radiation.

  20. Irreversible Thermodynamic Bound for the Efficiency of Light-Emitting Diodes (United States)

    Xue, Jin; Li, Zheng; Ram, Rajeev J.


    A thermodynamic model for light-emitting diodes (LEDs) is developed by considering energy and entropy flows in the system. Thermodynamic constraints have previously been considered separately for the reversible process of electroluminescence in LEDs and for light extraction and collimation in other optical systems. By considering both processes in the LED model, an irreversible upper bound for the conversion of electrical energy to optical energy is derived and shown to be higher than unity, but tighter and more realistic than the reversible case. We also model a LED as an endoreversible heat engine where the carrier-transport processes can be directly connected to the elements of a thermodynamic cycle.

  1. Setup of a LED light-pulser system for the OLYMPUS experiment; Aufbau eines LED-Lichtpulsersystems fuer das OLYMPUS-Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Waqaas


    The aim of this thesis consists in the construction and test of an external light-calibration system based on light-emitting diodes (LED) for the application at the symmetric Moller/Bhabha (SYMB) luminosity monitor. In chapter 2 the theoretical foundations of the OLYMPUS experiment, especially of the SYMB luminosity monitor are explained. Thereafter in chapter 3 the details of the setup of the OLYMPUS experiment and the fundamental properties of the SYMB detectors are discussed. In chapter 4 the whole concept of the LED light-pulser system is treated. In chapter 5 then test measurements with the ready LED light-pulser system are described. Thereby the light source shall be optimized in the shape that thereafter light pulses with short signal width are producable. Also different measurements for the unique characterization of the systems are performed. In chapter 6 light-intensity measurements during the operation of the LED light-pulser system are described.

  2. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light (United States)

    Kuse, Yoshiki; Ogawa, Kenjiro; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki


    Our eyes are increasingly exposed to light from the emitting diode (LED) light of video display terminals (VDT) which contain much blue light. VDTs are equipped with televisions, personal computers, and smart phones. The present study aims to clarify the mechanism underlying blue LED light-induced photoreceptor cell damage. Murine cone photoreceptor-derived cells (661 W) were exposed to blue, white, or green LED light (0.38 mW/cm2). In the present study, blue LED light increased reactive oxygen species (ROS) production, altered the protein expression level, induced the aggregation of short-wavelength opsins (S-opsin), resulting in severe cell damage. While, blue LED light damaged the primary retinal cells and the damage was photoreceptor specific. N-Acetylcysteine (NAC), an antioxidant, protected against the cellular damage induced by blue LED light. Overall, the LED light induced cell damage was wavelength-, but not energy-dependent and may cause more severe retinal photoreceptor cell damage than the other LED light. PMID:24909301

  3. Novel green-emitting Na2CaPO4F:Eu2+ phosphors for near-ultraviolet white light-emitting diodes

    International Nuclear Information System (INIS)

    Huang, Chien-Hao; Chen, Yen-Chi; Kuo, Te-Wen; Chen, Teng-Ming


    In this study, green-emitting Na 2 CaPO 4 F:Eu 2+ phosphors were synthesized by solid-state reactions. The excitation spectra of the phosphors showed a broad hump between 250 and 450 nm; the spectra match well with the near-ultraviolet (NUV) emission spectra of light-emitting diodes (LEDs). The emission spectrum showed an intense broad emission band centered at 506 nm. White LEDs were fabricated by integrating a 390 nm NUV chip comprising blue-emitting BaMgAl 10 O 17 :Eu 2+ , green-emitting Na 2 CaPO 4 F:0.02 Eu 2+ , and red-emitting CaAlSiN 3 :Eu 2+ phosphors into a single package; the white LEDs exhibited white light with a correlated color temperature of 5540 K, a color-rendering index of 90.75, and color coordinates (0.332, 0.365) close to those of ideal white light. - Highlights: → Novel green-emitting Na 2 CaPO 4 F:Eu 2+ phosphors were synthesized by solid-state reactions in this research. → White LEDs were fabricated by integrating a 390 nm NUV chip comprising blue-emitting BaMgAl 10 O 17 :Eu 2+ , green-emitting Na 2 CaPO 4 F:0.02Eu 2+ , and red-emitting CaAlSiN 3 :Eu 2+ phosphors into a single package. → The white LEDs exhibited white light with a correlated color temperature of 5540 K, a color-rendering index of 90.75, and color coordinates (0.332, 0.365) close to those of ideal white light.

  4. Light Emitting, Photovoltaic or Other Electronic Apparatus and System (United States)

    Ray, William Johnstone (Inventor); Lowenthal, Mark D. (Inventor); Shotton, Neil O. (Inventor); Blanchard, Richard A. (Inventor); Lewandowski, Mark Allan (Inventor); Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor)


    The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of lenses suspended in a polymer deposited or attached over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes are substantially spherical, and have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.


    Directory of Open Access Journals (Sweden)

    Tirshu M.


    Full Text Available The paper deals with practical realization of efficient lighting system based on LED’s of 80W total power mounted on corridor ceiling total length of which is 120m and substitutes existing traditional lighting system consisting of 29 lighting blocks with 4 fluorescent lamps each of them and summary power 2088W. Realized lighting system is supplied from two photovoltaic panels of power 170W. Generated energy by PV cells is accumulated in two accumulators of 75Ah capacity and from battery by means of specialized convertor is applied to lighting system. Additionally, paper present data measured by digital weather station (solar radiation and UV index, which is mounted near of PV cells and comparative analyze of solar energy with real energy generated by PV cells is done. Measured parameters by digital weather station are stored by computer in on-line mode.

  6. Device model investigation of bilayer organic light emitting diodes

    International Nuclear Information System (INIS)

    Crone, B. K.; Davids, P. S.; Campbell, I. H.; Smith, D. L.


    Organic materials that have desirable luminescence properties, such as a favorable emission spectrum and high luminescence efficiency, are not necessarily suitable for single layer organic light-emitting diodes (LEDs) because the material may have unequal carrier mobilities or contact limited injection properties. As a result, single layer LEDs made from such organic materials are inefficient. In this article, we present device model calculations of single layer and bilayer organic LED characteristics that demonstrate the improvements in device performance that can occur in bilayer devices. We first consider an organic material where the mobilities of the electrons and holes are significantly different. The role of the bilayer structure in this case is to move the recombination away from the electrode that injects the low mobility carrier. We then consider an organic material with equal electron and hole mobilities but where it is not possible to make a good contact for one carrier type, say electrons. The role of a bilayer structure in this case is to prevent the holes from traversing the device without recombining. In both cases, single layer device limitations can be overcome by employing a two organic layer structure. The results are discussed using the calculated spatial variation of the carrier densities, electric field, and recombination rate density in the structures. (c) 2000 American Institute of Physics

  7. Output Properties of Transparent Submount Packaged FlipChip Light-Emitting Diode Modules

    Directory of Open Access Journals (Sweden)

    Preetpal Singh


    Full Text Available Flip chip technology has been widely adopted in modern power light-emitting diode (LED fabrications and its output efficiency is closely related to the submount material properties. Here, we present the electrical, optical and thermal properties of flip chip light-emitting diodes mounted on transparent sapphire and borosilicate glass which have shown a higher output luminous flux when compared to the traditional non-transparent mounted LEDs. Exhibiting both better thermal conductivity and good optical transparency, flip chip LEDs with a sapphire submount showed superior performance when compared to the non-transparent silicon submount ones, and also showed better optical performance than the flip chip LEDs mounted on transparent but poor-thermal-conducting glass substrates. The correspondent analysis was carried out using ANSYS 14 to compare the experimental thermal imaging with the simulation results. TracePro software was also used to check the output luminous flux dependency on different LED mounting designs.

  8. Protective effect of light emitting diode phototherapy on fluorescent light induced retinal damage in Wistar strain albino rats. (United States)

    Ahamed Basha, A; Mathangi, D C; Shyamala, R; Ramesh Rao, K


    Artificial light at night alters retinal physiology. Several studies have shown that light emitting diode phototherapy protects the retina from the damaging effects of acute light exposure. The aim of this study has been to elucidate the protective effects of 670 nm LED light on retinal damage induced by chronic fluorescent light in Wistar rats. Male Wistar albino rats were divided into four groups: group 1 were control (CL), group 2, 3 and 4 were exposed to fluorescent light (FL), LED preexposure+fluorescent light exposure (LL) and only LED light exposure (OL) respectively. All animals were maintained in their specific exposure regime for 30 days. Fluorescent light of 1800 lx was exposed between 8 pm to 8 am. Rats were exposed to therapeutic LED light of 670 nm of 9 J/cm2 at 25 mW/cm2 for 6 min duration. Histopathological changes in the retina were studied. Animals of the FL group showed a significant reduction in the outer nuclear layer thickness and cell count in addition to the total thickness of the retina. LL group which were exposed to 670 nm LED prior to exposure to fluorescent light showed a significant decrease in the degree of damage. 670 nm LED light preexposure is protective to retinal cells against fluorescent light-induced damage. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Future Solid State Lighting using LEDs and Diode Lasers

    DEFF Research Database (Denmark)

    Petersen, Paul Michael


    significant savings. Solid state lighting (SSL) based on LEDs is today the most efficient light source for generation of high quality white light. Diode lasers, however, have the potential of being more efficient than LEDs for the generation of white light. A major advantage using diode lasers for solid state......Lighting accounts for 20% of all electrical energy usage. Household lighting and commercial lighting such as public and street lighting are responsible for significant greenhouse gas emissions. Therefore, currently many research initiatives focus on the development of new light sources which shows...... lighting is that the high efficiency can be obtained at high light lumen levels in a single element emitter and thus less light sources are required to achieve a desired light level. Furthermore, the high directionality of the generated light from laser diodes increases the energy savings in many...

  10. Plasmon enhanced green GaN light-emitting diodes - Invited paper

    DEFF Research Database (Denmark)

    Ou, Haiyan; Fadil, Ahmed; Iida, Daisuke

    High-efficiency garnium nitride (GaN) based blue light-emitting diode (LED) paves the way for solid statelighting to take the place of the conventional incandescent bulbs and fluorescent light tubes.Compared to the traditional light sources, solid state lighting is more efficient, more flexible...... in spectral design, more compact etc. TheIII-nitride (GaN, InNetc.) semiconductors are attracting a lot of research effort because the combination of both could emit light with wavelength range from UV to infrared. Basically one material platform could provide all the solutions to light sources.However huge...... point of view, the efficiency of green LED is being improved by growing the GaInN material on non-polar or semi-polar surface of sapphire substrate. In parallel with the material growth effort, surface plasmons are implemented by taking use of the interactionbetween metals and active areas to increase...

  11. Light-induced retinal damage using different light sources, protocols and rat strains reveals LED phototoxicity. (United States)

    Krigel, A; Berdugo, M; Picard, E; Levy-Boukris, R; Jaadane, I; Jonet, L; Dernigoghossian, M; Andrieu-Soler, C; Torriglia, A; Behar-Cohen, F


    To save energy, the European directives from the Eco-design of Energy Using Products (2005/32/CE) have recommended the replacement of incandescent lamps by more economic devices such as Light Emitting Diodes (LEDs). However, the emission spectrum of these devices is enriched in blue radiations, known to be potentially dangerous to the retina. Recent studies showed that light exposure contributes to the onset of early stages of age-related macular degeneration (AMD). Here, we investigate, in albinos and pigmented rats, the effects of different exposure protocols. Twenty-four hours exposure at high luminance was compared to a cyclic (dark/light) exposure at domestic levels for 1week and 1month, using different LEDs (Cold-white, blue and green), as well as fluorocompact bulbs and fluorescent tubes. The data suggest that the blue component of the white-LED may cause retinal toxicity at occupational domestic illuminance and not only in extreme experimental conditions, as previously reported. It is important to note that the current regulations and standards have been established on the basis of acute light exposure and do not take into account the effects of repeated exposure. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Design and Analysis of an Underwater White LED Fish-Attracting Lamp and its Light Propagation

    Directory of Open Access Journals (Sweden)

    Sheng Chih Shen


    Full Text Available Light emitting diodes (LED are a new source for replacing traditional light sources including under water illumination. As traditional underwater light sources operate under a radiative transfer model, the luminous intensity is dispersed evenly at each emission angle, with the scattering factors included in the attenuation coefficient. By contrast, LED light sources are characterized by being highly directional, causing underwater luminous energy to vary with different emission angles. Thus, the traditional theory of underwater optical transfer becomes inapplicable when an underwater LED lighting module is designed. Therefore, to construct an underwater transfer model for LED light sources, this study employed the average cosine of the underwater light field, the method for light scattering probability, the LED luminous intensity distribution curve (LIDC and axial luminous intensity. Afterwards, an underwater LED fish-attracting lamp was designed. Experimental results showed that, compared with the simulation values, the luminous intensity of the underwater LED lighting module at all emission angles had a percentage error of less than 10%.

  13. Optimization of colour quality of LED lighting with reference to memory colours


    Smet, Kevin; Ryckaert, Wouter; Pointer, Michael R.; Deconinck, Geert; Hanselaer, Peter


    Simulated and real tri- and tetrachromatic light-emitting-diode (LED) clusters were optimized for luminous efficacy of radiation (LER) and the memory colour quality metric developed by the authors. The simulated clusters showed no significant differences in achievable colour quality and LER between the different cluster types investigated. The real clusters (composed of commercially available LEDs) showed substantial differences in achievable colour quality and LER between the different clus...

  14. Analysis of light extraction efficiency of GaN-based light-emitting diodes

    International Nuclear Information System (INIS)

    Wang Pei; Cao Bin; Gan Zhiyin; Liu Sheng


    GaN-based light emitting diodes (LEDs) as one of the most important light source in next-generation solid-state lighting have been extensively studied and remarkable progress has been obtained. However, the light extraction efficiency (LEE) is not sufficient to satisfy application requirements. Most of the photons generated in multiple quantum well (MQW) always are trapped inside the semiconductor because both the reflection index of GaN and InGaN are higher than that of air, which results in total internal reflection (TIR). Great efforts were made in enhancing light extraction of LEDs experimentally in previous investigation. However, detailed theoretical studies in predicting the LEE of different types of LEDs are not available. In this paper the light extraction efficiency(LEE) of conventional chip (CC), flip chip (FC) and vertical chip (VC) is investigated using Monte Carlo ray tracing method is presented in conventional chip (CC). Monte Carlo ray tracing simulation based on statistics is known to be one of the most suitable methods to analyze the dependence of the light extraction efficiency of LEDs on the variety of the device parameters. Diffused bottom surface was found to be better for improvement of LEE than the perfect mirror surface. When there is a material with higher refraction index on the top surface the VC structure has the highest LEE no matter the bottom surface is perfect mirror or diffuse surface, which is above 80%. It is indicated that VC is potential in high-power GaN-based LEDs from the results.

  15. Exterior LED Lighting Projects at Princeton University

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Robert G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Evans, William [Princeton Univ., NJ (United States); Murphy, Arthur T. [Princeton Univ., NJ (United States); Perrin, Tess E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    For this report, PNNL / the U.S. Department of Energy (DOE) studied a series of past exterior lighting projects at Princeton, in order to document Princeton’s experiences with solid-state lighting (SSL) and the lessons learned along the way, and to show how their approach to SSL projects evolved as their own learning expanded and as the products available improved in performance and sophistication.

  16. Benzoporphyrin derivative and light-emitting diode for use in photodynamic therapy: Applications of space light-emitting diode technology (United States)

    Whelan, Harry T.; Houle, John M.; Bajic, Dawn M.; Schmidt, Meic H.; Reichert, Kenneth W.; Meyer, Glenn A.


    Photodynamic therapy (PDT) is a cancer treatment modality that recently has been applied as adjuvant therapy for brain tumors. PDT consists of intravenously injecting a photosensitizer, which preferentially accumulates in tumor cells, into a patient and then activating the photosensitizer with a light source. This results in free radical generation followed by cell death. The development of more effective light sources for PDT of brain tumors has been facilitated by applications of space light-emitting diode array technology; thus permitting deeper tumor penetration of light and use of better photosensitizers. Currently, the most commonly used photosensitizer for brain tumor PDT is Photofrin®. Photofrin® is a heterogeneous mixture of compounds derived from hematoporphyrin. Photofrin® is activated with a 630 nm laser light and does destroy tumor cells in animal models and humans. However, treatment failure does occur using this method. Most investigators attribute this failure to the limited penetration of brain tissue by a 630 nm laser light and to the fact that Photofrin® has only a minor absorption peak at 630 nm, meaning that only a small fraction of the chemical is activated. Benzoporphyrin Derivative Monoacid Ring A (BPD) is a new, second generation photosensitizer that can potentially improve PDT for brain tumors. BPD has a major absorption peak at 690 nm, which gives it two distinct advantages over Photofrin®. First, longer wavelengths of light penetrate brain tissue more easily so that larger tumors could be treated, and second, the major absorption peak means that a larger fraction of the drug is activated upon exposure to light. In the first part of this project we have studied the tumoricidal effects of BPD in vitro using 2A9 canine glioma and U373 human glioblastoma cell cultures. Using light emitting diodes (LED) with a peak emission of 688 nm as a light source, cell kill of up to 86 percent was measured in these cell lines by tumor DNA synthesis

  17. Benzoporphyrin derivative and light-emitting diode for use in photodynamic therapy: Applications of space light-emitting diode technology

    International Nuclear Information System (INIS)

    Whelan, Harry T.; Houle, John M.; Bajic, Dawn M.; Schmidt, Meic H.; Reichert, Kenneth W. II; Meyer, Glenn A.


    Photodynamic therapy (PDT) is a cancer treatment modality that recently has been applied as adjuvant therapy for brain tumors. PDT consists of intravenously injecting a photosensitizer, which preferentially accumulates in tumor cells, into a patient and then activating the photosensitizer with a light source. This results in free radical generation followed by cell death. The development of more effective light sources for PDT of brain tumors has been facilitated by applications of space light-emitting diode array technology; thus permitting deeper tumor penetration of light and use of better photosensitizers. Currently, the most commonly used photosensitizer for brain tumor PDT is Photofrin registered . Photofrin registered is a heterogeneous mixture of compounds derived from hematoporphyrin. Photofrin registered is activated with a 630 nm laser light and does destroy tumor cells in animal models and humans. However, treatment failure does occur using this method. Most investigators attribute this failure to the limited penetration of brain tissue by a 630 nm laser light and to the fact that Photofrin registered has only a minor absorption peak at 630 nm, meaning that only a small fraction of the chemical is activated. Benzoporphyrin Derivative Monoacid Ring A (BPD) is a new, second generation photosensitizer that can potentially improve PDT for brain tumors. BPD has a major absorption peak at 690 nm, which gives it two distinct advantages over Photofrin registered . First, longer wavelengths of light penetrate brain tissue more easily so that larger tumors could be treated, and second, the major absorption peak means that a larger fraction of the drug is activated upon exposure to light. In the first part of this project we have studied the tumoricidal effects of BPD in vitro using 2A9 canine glioma and U373 human glioblastoma cell cultures. Using light emitting diodes (LED) with a peak emission of 688 nm as a light source, cell kill of up to 86 percent was

  18. Device Physics of White Polymer Light-Emitting Diodes

    NARCIS (Netherlands)

    Nicolai, Herman T.; Hof, Andre; Blom, Paul W. M.


    The charge transport and recombination in white-emitting polymer light- emitting diodes (PLEDs) are studied. The PLED investigated has a single emissive layer consisting of a copolymer in which a green and red dye are incorporated in a blue backbone. From single-carrier devices the effect of the

  19. Evaluation of light-emitting diodes as attractant for sandflies (Diptera: Psychodidae: Phlebotominae) in northeastern Brazil. (United States)

    Silva, Francinaldo Soares; Brito, Jefferson Mesquita; Costa Neta, Benedita Maria; Lobo, Shelre Emile Pereira Duarte


    Hoover Pugedo light traps were modified for use with green and blue-light-emitting diodes to trap phlebotomine sandflies in northeastern Brazil. A total of 2,267 specimens belonging to eight genera and 15 species were sampled. The predominant species were Nyssomyia whitmani(34.41%) and Micropygomyia echinatopharynx(17.25%).The green LED trap prevailed over the blue and control lights; however, no statistically significant difference could be detected among the three light sources. Even without statistical significance, we suggest using LEDs as an attractant for the capture of sandflies because of several advantages over the conventional method with incandescent lamps.

  20. Evaluation of light-emitting diodes as attractant for sandflies (Diptera: Psychodidae: Phlebotominae in northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Francinaldo Soares Silva


    Full Text Available Hoover Pugedo light traps were modified for use with green and blue-light-emitting diodes to trap phlebotomine sandflies in northeastern Brazil. A total of 2,267 specimens belonging to eight genera and 15 species were sampled. The predominant species were Nyssomyia whitmani(34.41% and Micropygomyia echinatopharynx(17.25%.The green LED trap prevailed over the blue and control lights; however, no statistically significant difference could be detected among the three light sources. Even without statistical significance, we suggest using LEDs as an attractant for the capture of sandflies because of several advantages over the conventional method with incandescent lamps.

  1. Colored lenses suppress blue light-emitting diode light-induced damage in photoreceptor-derived cells. (United States)

    Hiromoto, Kaho; Kuse, Yoshiki; Tsuruma, Kazuhiro; Tadokoro, Nobuyuki; Kaneko, Nobuyuki; Shimazawa, Masamitsu; Hara, Hideaki


    Blue light-emitting diodes (LEDs) in liquid crystal displays emit high levels of blue light, exposure to which is harmful to the retina. Here, we investigated the protective effects of colored lenses in blue LED light-induced damage to 661W photoreceptor-derived cells. We used eight kinds of colored lenses and one lens that reflects blue light. Moreover, we evaluated the relationship between the protective effects of the lens and the transmittance of lens at 464 nm. Lenses of six colors, except for the SY, PN, and reflective coating lenses, strongly decreased the reduction in cell damage induced by blue LED light exposure. The deep yellow lens showed the most protective effect from all the lenses, but the reflective coating lens and pink lens did not show any effects on photoreceptor-derived cell damage. Moreover, these results were correlated with the lens transmittance of blue LED light (464 nm). These results suggest that lenses of various colors, especially deep yellow lenses, may protect retinal photoreceptor cells from blue LED light in proportion to the transmittance for the wavelength of blue LED and the suppression of reactive oxygen species production and cell damage.

  2. Engineering of Semiconductor Nanocrystals for Light Emitting Applications

    Directory of Open Access Journals (Sweden)

    Francesco Todescato


    Full Text Available Semiconductor nanocrystals are rapidly spreading into the display and lighting markets. Compared with liquid crystal and organic LED displays, nanocrystalline quantum dots (QDs provide highly saturated colors, wide color gamut, resolution, rapid response time, optical efficiency, durability and low cost. This remarkable progress has been made possible by the rapid advances in the synthesis of colloidal QDs and by the progress in understanding the intriguing new physics exhibited by these nanoparticles. In this review, we provide support to the idea that suitably engineered core/graded-shell QDs exhibit exceptionally favorable optical properties, photoluminescence and optical gain, while keeping the synthesis facile and producing QDs well suited for light emitting applications. Solid-state laser emitters can greatly profit from QDs as efficient gain materials. Progress towards fabricating low threshold, solution processed DFB lasers that are optically pumped using one- and two-photon absorption is reviewed. In the field of display technologies, the exploitation of the exceptional photoluminescence properties of QDs for LCD backlighting has already advanced to commercial levels. The next big challenge is to develop the electroluminescence properties of QD to a similar state. We present an overview of QLED devices and of the great perspectives for next generation display and lighting technologies.

  3. Improving the light-emitting properties of single-layered polyfluorene light-emitting devices by simple ionic liquid blending (United States)

    Horike, Shohei; Nagaki, Hiroto; Misaki, Masahiro; Koshiba, Yasuko; Morimoto, Masahiro; Fukushima, Tatsuya; Ishida, Kenji


    This paper describes an evaluation of ionic liquids (ILs) as potential electrolytes for single-layered light-emitting devices with good emission performance. As optoelectronic devices continue to grow in abundance, high-performance light-emitting devices with a single emission layer are becoming increasingly important for low-cost production. We show that a simple technique of osmosing IL into the polymer layer can result in high luminous efficiency and good response times of single-layered light-emitting polymers, even without the additional stacking of charge carrier injection and transport layers. The IL contributions to the light-emission of the polymer are discussed from the perspectives of energy diagrams and of the electric double layers on the electrodes. Our findings enable a faster, cheaper, and lower-in-waste production of light-emitting devices.

  4. Vacuum Deposited Organic Light Emitting Devices on Flexible Substrates

    National Research Council Canada - National Science Library

    Forrest, Stephen


    The objective of this eight year program was to demonstrate both passive and active matrix, flexible, small scale displays based on small molecular weight organic light emitting device (OLED) technology...

  5. Conduction-driven cooling of LED-based automotive LED lighting systems for abating local hot spots (United States)

    Saati, Ferina; Arik, Mehmet


    Light-emitting diode (LED)-based automotive lighting systems pose unique challenges, such as dual-side packaging (front side for LEDs and back side for driver electronics circuit), size, harsh ambient, and cooling. Packaging for automotive lighting applications combining the advanced printed circuit board (PCB) technology with a multifunctional LED-based board is investigated with a focus on the effect of thermal conduction-based cooling for hot spot abatement. A baseline study with a flame retardant 4 technology, commonly known as FR4 PCB, is first compared with a metal-core PCB technology, both experimentally and computationally. The double-sided advanced PCB that houses both electronics and LEDs is then investigated computationally and experimentally compared with the baseline FR4 PCB. Computational models are first developed with a commercial computational fluid dynamics software and are followed by an advanced PCB technology based on embedded heat pipes, which is computationally and experimentally studied. Then, attention is turned to studying different heat pipe orientations and heat pipe placements on the board. Results show that conventional FR4-based light engines experience local hot spots (ΔT>50°C) while advanced PCB technology based on heat pipes and thermal spreaders eliminates these local hot spots (ΔT<10°C), leading to a higher lumen extraction with improved reliability. Finally, possible design options are presented with embedded heat pipe structures that further improve the PCB performance.

  6. Design and radiation tests on a LED based emergency evacuation directional lighting

    CERN Document Server

    Trikoupis, Nikolaos


    A LED (Light Emitting Diode) based directional lighting system has been designed to indicate the best evacuation direction for applications like the Large Hadron Collider (LHC) tunnel. The design includes constraints for redundancy required by safety systems and for components selection by radiation effects. Most of the literature for radiation effects on LEDs concern digital communications systems, although some recent reports do exist for visible spectrum power LEDs and the reduction in light output versus dose is coherent with the results presented in this paper. Prototype lighting units were irradiated in CERN’s CHARM facility up to a Total Integrated Dose (TID) of 870 Gy and no failures were observed. This paper describes the basic design, presents field tests and the effects of radiation on the LEDs luminance.

  7. LED light requirements ... for greenhouses and growth rooms

    NARCIS (Netherlands)

    Nederhoff, E.M.


    LEDs have potential for use as grow lights in greenhouses to supplement low natural light levels, and also for use in growth rooms and 'plant factories' as the main light source. The light spectrum is critical. Unfortunately, it seems that there is not a simple recipe freely available for growing

  8. Organic light emitting diode with surface modification layer (United States)

    Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.


    An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).

  9. Direct Printing of Light-Emitting Devices on Textile Substrates


    Deferme, Wim; Verboven, Inge


    Smart textiles are a rapidly expanding field in the world of textiles, announcing a new and intriguing era. Different functionalities can be added to the textile to make the textile smart and intelligent. One of these functionalities is the addition of light-emitting layers or devices that can be incorporated into the textiles. These light-emitting textiles find a broad application in the field of interior and exterior design and wearable applications. Depending on the application, two ...

  10. Emitting color tunable carbon dots by adjusting solvent towards light-emitting devices (United States)

    Zhu, Jinyang; Bai, Xue; Bai, Jialin; Pan, Gencai; Zhu, Yongsheng; Zhai, Yue; Shao, He; Chen, Xu; Dong, Biao; Zhang, Hanzhuang; Song, Hongwei


    Carbon dots (CDs), one of the most significant classes of carbon-based nanophosphors, have attracted extensive attention in recent years. However, few attempts have been reported for realizing CDs with tunable emissions, especially for obtaining the red-light emissions with high photoluminescence quantum yields. Herein, we synthesized CDs with different chromatic blue, green and red emissions by facilely changing the reaction solvent during hydrothermal conditions. The photoluminescence quantum yields of 34%, 19% and 47% for the blue, green and red emissions, respectively, were achieved. Furthermore, the solid-state CD/PVA composite films were constructed through mixing the CDs with PVA polymer, in which the self-quenching of photoluminescence of CDs had been successfully avoided benefiting from the formation of hydrogen bonds between the CDs and PVA molecules. Finally, the warm white light emitting diode (WLED) was fabricated by integrating CD/PVA film on a UV-LED chip. The WLED exhibited the Commission International de l’Eclairage coordinates (CIE) of (0.38, 0.34), correlated color temperature of 3913 K and color rendering index of 91, respectively, which were comparable with the commercial WLEDs.

  11. Final report LED solutions for public lighting; Eindrapportage LED oplossingen voor openbare verlichting

    Energy Technology Data Exchange (ETDEWEB)



    This report examines if and how LED can be used for public lighting on a large scale. Pilot projects in 29 municipalities were assessed to test the usefulness of LED lighting. This final report provides answers to the questions that relate to the feasibility of the deployment of LED in public lighting and provides some practical pointers. [Dutch] Er is onderzocht of, en zo ja op welke wijze, LED grootschalig toegepast kan worden in de openbare verlichting (OVL). In 29 gemeenten in Nederland zijn proefprojecten geevalueerd om LED verlichting te toetsen op bruikbaarheid. Deze eindrapportage geeft antwoord op vragen die betrekking hebben op de haalbaarheid van de toepassing van LED binnen de OVL en geeft wat praktische aandachtspunten.

  12. Preliminary evaluation of discomfort glare from organic light-emitting diode and edge-lit light-emitting diode lighting panels (United States)

    Mou, Xi; Freyssinier, Jean Paul; Narendran, Nadarajah; Bullough, John D.


    The organic light-emitting diode (OLED) is an area light source, and its primary competing technology is the edge-lit light-emitting diode (LED) panel. Both technologies are similar in shape and appearance, but there is little understanding of how people perceive discomfort glare (DG) from area sources. The objective of this study was to evaluate the DG of these two technologies under similar operating conditions. Additionally, two existing DG models were compared to evaluate the correlation between predicted values and observed values. In an earlier study, we found no statistically significant difference in human response in terms of DG between OLED and edge-lit LED panels when the two sources produced the same luminous stimulus. The range of testing stimulus was expanded to test different panel luminances at three background illuminations. The results showed no difference in perceived glare between the panels, and, as the background illumination increased, the perceived glare decreased. In other words, both appeared equally glary beyond a certain luminance and background illumination. We then compared two existing glare models with the observed values and found that one model showed a good estimation of how humans perceive DG. That model was further modified to increase its power.

  13. Warm white LEDs lighting over Ra=95 and its applications (United States)

    Kobashi, Katsuya; Taguchi, Tsunemasa


    We have for the first time developed warm white LEDs lighting using a combination of near ultraviolet LED and three-band (red, green and blue) white phosphors. This LED has the average color-rendering index Ra=96. Moreover, special color-rendering index R9 (red) and R15 (face color of Japanese) are estimated to be 95 and 97, respectively. We will describe the results of evaluation on the medical lighting applications such as operation, treatment and endoscope experiments, application to the LED fashions and application to the Japanese antique art (ink painting) lighting.

  14. Semiconductor Nanomembrane-Based Light-Emitting and Photodetecting Devices

    Directory of Open Access Journals (Sweden)

    Dong Liu


    Full Text Available Heterogeneous integration between silicon (Si, III-V group material and Germanium (Ge is highly desirable to achieve monolithic photonic circuits. Transfer-printing and stacking between different semiconductor nanomembranes (NMs enables more versatile combinations to realize high-performance light-emitting and photodetecting devices. In this paper, lasers, including vertical and edge-emitting structures, flexible light-emitting diode, photodetectors at visible and infrared wavelengths, as well as flexible photodetectors, are reviewed to demonstrate that the transfer-printed semiconductor nanomembrane stacked layers have a large variety of applications in integrated optoelectronic systems.

  15. Monolithic integration of nitride light emitting diodes and photodetectors for bi-directional optical communication. (United States)

    Jiang, Zhenyu; Atalla, Mahmoud R M; You, Guanjun; Wang, Li; Li, Xiaoyun; Liu, Jie; Elahi, Asim M; Wei, Lai; Xu, Jian


    Design and fabrication of monolithically integrated III-nitride visible light-emitting-diodes (LEDs) and ultraviolet Schottky barrier-photodetectors (SB-PDs) have been proposed and demonstrated. Responsivity up to 0.2  AW(-1) at 365 nm for GaN SB-PDs has been achieved. It is shown that those UV SB-PDs were capable of sensitive UV light detection down to 7.16×10(-4)  W/cm2 at 365 nm, whereas simultaneous operation of on-chip blue LEDs has produced negligible crosstalk at practical illumination brightness. Monolithically integrated LEDs and SB-PDs can function as transmitters to emit visible light signals, and as receivers to analyze incoming UV signals, respectively; this offers the potential of using such devices for bi-directional optical wireless communication applications.

  16. Effect of phototherapy with turquoise vs. blue LED light of equal irradiance in jaundiced neonates. (United States)

    Ebbesen, Finn; Vandborg, Pernille K; Madsen, Poul H; Trydal, Torleif; Jakobsen, Lasse H; Vreman, Hendrik J


    Blue light with peak emission around 460 nm is the preferred treatment of neonatal hyperbilirubinemia. However, studies using fluorescent light tubes have suggested that turquoise light with peak emission at 490 nm may be more efficient. At present, the predominant light source for phototherapy is light emitting diodes (LEDs). Hence, the aim of this study was to compare the bilirubin-reducing effect in jaundiced neonates treated either with turquoise or with blue LED light with peak emission at 497 or 459 nm, respectively, with equal irradiance on the infants. Infants with gestational age ≥33 wk and uncomplicated hyperbilirubinemia were randomized to either turquoise or blue LED light and were treated for 24 h. The mean irradiance footprint at skin level was 5.2 × 10(15) and 5.1 × 10(15) photons/cm(2)/s, respectively. Forty-six infants received turquoise light and 45 received blue light. The median (95% confidence interval) decrease of total serum bilirubin was 35.3% (32.5; 37.3) and 33.1% (27.1; 36.8) for infants treated with turquoise and blue lights, respectively. The difference was nonsignificant (P = 0.53). The decrease was positively correlated to postnatal age and negatively to birth weight. Using LED light of equal irradiance, turquoise and blue lights had equal bilirubin-reducing effect on hyperbilirubinemia of neonates.

  17. Comparative life cycle assessment of LED lighting products


    Casamayor, JL; Su, D; Ren, Z


    LED lighting products used in lighting applications and their subsequent environmental impact are growing rapidly. However, there are no in-depth updated studies that show how to assess and compare them for eco-design purposes. This research aims to add insights in this area to inform eco-design by assessing and comparing the environmental impact of a new LED eco-lighting product with an existing LED lighting product. A cradle to grave Life Cycle assessment (LCA) was conducted using ReCiPe Mi...

  18. Electron transporting polymers for light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-Chang; Giles, M.; Holmes, A.B. [Univ. of Cambridge (United Kingdom)] [and others


    New oxadiazole-derived side chain polymers have been prepared by radical induced polymerization of the methacrylate precursors. The synthesis and characterization of the polymers as well as their application in enhancing emission in polymer LEDs will be reported.

  19. Bactericidal effects of deep ultraviolet light-emitting diode for solutions during intravenous infusion


    Omotani, Sachiko; Tani, Katsuji; Aoe, Mai; Esaki, Seiji; Nagai, Katsuhito; Hatsuda, Yasutoshi; Mukai, Junji; Teramachi, Hitomi; Myotoku, Michiaki


    Background: Ultraviolet irradiation is effectively used as a disinfection method for inactivating microorganisms. Methods: We investigated the bactericidal effects by irradiation with a deep-ultraviolet light-emitting diode (DUV-LED) on the causative microorganisms of catheter related blood stream infection contaminating the solution for intravenous infusion. For irradiation, prototype modules for water disinfection with a DUV-LED were used. Experiments were conducted on five kinds of microor...

  20. Topology optimisation of passive coolers for light-emitting diode lamps

    DEFF Research Database (Denmark)

    Alexandersen, Joe


    This work applies topology optimisation to the design of passive coolers for light-emitting diode (LED) lamps. The heat sinks are cooled by the natural convection currents arising from the temperature difference between the LED lamp and the surrounding air. A large scale parallel computational....... The optimisation results show interesting features that are currently being incorporated into industrial designs for enhanced passive cooling abilities....

  1. Amber light-emitting diode comprising a group III-nitride nanowire active region (United States)

    Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel


    A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.

  2. Design of passive coolers for light-emitting diode lamps using topology optimisation

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Sigmund, Ole; Meyer, Knud Erik


    Topology optimised designs for passive cooling of light-emitting diode (LED) lamps are investigated through extensive numerical parameter studies. The designs are optimised for either horizontal or vertical orientations and are compared to a lattice-fin design as well as a simple parameter......, while maintaining low sensitivity to orientation. Furthermore, they exhibit several defining features and provide insight and general guidelines for the design of passive coolers for LED lamps....

  3. Development of Advanced LED Phosphors by Spray-based Processes for Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Cabot Corporation


    The overarching goal of the project was to develop luminescent materials using aerosol processes for making improved LED devices for solid state lighting. In essence this means improving white light emitting phosphor based LEDs by improvement of the phosphor and phosphor layer. The structure of these types of light sources, displayed in Figure 1, comprises of a blue or UV LED under a phosphor layer that converts the blue or UV light to a broad visible (white) light. Traditionally, this is done with a blue emitting diode combined with a blue absorbing, broadly yellow emitting phosphor such as Y{sub 3}Al{sub 5}O{sub 12}:Ce (YAG). A similar result may be achieved by combining a UV emitting diode and at least three different UV absorbing phosphors: red, green, and blue emitting. These emitted colors mix to make white light. The efficiency of these LEDs is based on the combined efficiency of the LED, phosphor, and the interaction between the two. The Cabot SSL project attempted to improve the over all efficiency of the LED light source be improving the efficiency of the phosphor and the interaction between the LED light and the phosphor. Cabot's spray based process for producing phosphor powders is able to improve the brightness of the powder itself by increasing the activator (the species that emits the light) concentration without adverse quenching effects compared to conventional synthesis. This will allow less phosphor powder to be used, and will decrease the cost of the light source; thus lowering the barrier of entry to the lighting market. Cabot's process also allows for chemical flexibility of the phosphor particles, which may result in tunable emission spectra and so light sources with improved color rendering. Another benefit of Cabot's process is the resulting spherical morphology of the particles. Less light scattering results when spherical particles are used in the phosphor layer (Figure 1) compared to when conventional, irregular shaped

  4. Light-emitting carbazole derivatives: potential electroluminescent materials. (United States)

    Thomas, K R; Lin, J T; Tao, Y T; Ko, C W


    Stable carbazole derivatives that contain peripheral diarylamines at the 3- and 6-positions and an ethyl or aryl substituent at the 9-position of the carbazole moiety have been synthesized via palladium-catalyzed C-N bond formation. These new carbazole compounds (carbs) are amorphous with high glass transition temperatures (T(g), 120-194 degrees C) and high thermal decomposition temperatures (T(d) > 450 degrees C). The compounds are weakly to moderately luminescent in nature. The emission wavelength ranges from green to blue and is dependent on the substituent at the peripheral nitrogen atoms. Two types of light-emitting diodes were constructed from carb: (I) ITO/carb/TPBI/Mg:Ag and (II) ITO/carb/Alq(3)/Mg:Ag, where TPBI and Alq(3) are 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene and tris(8-hydroxyquinoline) aluminum, respectively. In type I devices, the carb functions as the hole-transporting as well as emitting material. In type II devices, either carb, or Alq(3) is the light-emitting material. Several green light-emitting devices exhibit exceptional maximum brightness, and the physical performance appears to be better than those of typical green light-emitting devices of the structure ITO/diamine/Alq(3)/Mg:Ag. The relation between the LUMO of the carb and the performance of the light-emitting diode is discussed.

  5. Theoretical analysis of enhanced light output from a GaN light emitting diode with an embedded photonic crystal

    International Nuclear Information System (INIS)

    Wen Feng; Liu Deming; Huang Lirong


    The enhancement of the light output of an embedded photonic crystal light emitting diode is investigated based on the finite-difference time-domain modeling. The embedded photonic crystal (PC) lattice type, multi-layer embedded PC, distance between the multiple quantum well and the embedded PC are studied. It is found that the embedded one dimensional PC can act as well as embedded two dimensional PCs. The emitted light flux in the up direction can be increased by a new kind of multi-layer embedded PC. Also, we show that the light output in the up direction for the LED with both surfaces and embedded PC could be as high as five times that of a conventional LED. (semiconductor devices)

  6. High extraction efficiency ultraviolet light-emitting diode (United States)

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.


    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  7. LED lighting combined with solar panels in developing countries


    Amogpai, Ater


    The aim of the work was to find out the functionality of LED lighting combined with solar panels in developing countries and to find out the availability of solar energy in different geographical locations. Another aim of the work was to understand the advantages and disadvantages of photovoltaic systems and the optimum combination of PV systems for lighting. Measurements of photovoltaic systems combined with LEDs and fluorescent lighting were conducted in an office building in Finland. ...

  8. Light extraction efficiency improvement by multiple laser stealth dicing in InGaN-based blue light-emitting diodes. (United States)

    Zhang, Yiyun; Xie, Haizhong; Zheng, Haiyang; Wei, Tongbo; Yang, Hua; Li, Jing; Yi, Xiaoyan; Song, Xiangyang; Wang, Guohong; Li, Jinmin


    We report a multiple laser stealth dicing (multi-LSD) method to improve the light extraction efficiency (LEE) of InGaN-based light-emitting diodes (LEDs) using a picosecond (Ps) laser. Compared with conventional LEDs scribed by a nanosecond (Ns) laser and single stealth-diced LEDs, the light output power (LOP) of the LEDs using multi-LSD method can be improved by 26.5% and 11.2%, respectively. The enhanced LOP is due to the increased side emission from the large-area roughened sidewalls of the sapphire substrates fabricated in the multi-LSD process. Numerical simulation results show that the multi-LSD process has little thermal damages to the multiple quantum wells (MQWs) of the LEDs.

  9. ESR study of camphorquinone/amine photoinitiator systems using blue light-emitting diodes. (United States)

    Teshima, Wataru; Nomura, Yuji; Tanaka, Nobuyuki; Urabe, Hidenori; Okazaki, Masayuki; Nahara, Yukinori


    New light-activation units equipped with high-illuminant blue light-emitting diodes (LEDs) have recently been proposed as a replacement for the halogen units that are widely used in dentistry to polymerize light-cured resins. The photoinitiators in light-cured dental resins, typified by the camphorquinone (CQ)/amine photoinitiator system, generate primary radicals with light irradiation that attack the double bonds of resin monomers. The physical properties of the cured resins are affected by the generation of primary radicals during the initial stage of polymerization. This study examined two types of photoinitiator systems, CQ/DMPT and CQ/DMAEMA, and three types of curing units, a new LED unit and two conventional halogen units. The primary radicals generated by irradiation were quantified using electron spin resonance (ESR) spectroscopy with a trapping method, using phenyl-tert-butyl nitrone as the trapping agent. The energy efficiencies of the LED and halogen units were compared by quantifying the generated radicals and emitted light energy (J/cm(2)). The energy required to generate a given amount of radicals using the LED unit was smaller than that using the halogen units (p<0.05). These results suggest that the new LED unit performs better than conventional halogen units with respect to light energy.

  10. Intelligent control of dynamic LED lighting; Intelligent styring af dynamisk LED belysning. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Thorseth, A.; Corell, D.; Hansen, Soeren S.; Dam-Hansen, C.; Petersen, Paul Michael


    The project has resulted in a prototype of a new intelligent lighting control system. The control system enables the end user to control his or her own local lighting environment (lighting zone) according to individual preferences and needs. The report provides a description of how the developed intelligent lighting system is composed and functions. The system is designed as a work lamp that enables dynamic change of the light color scheme according to a number of light control algorithms. It is specifically designed in relation to user tests of the intelligent lighting system, which is carried out in the final part of the project. An intelligent and advanced control of LED lighting was developed, which enables optimization of the user's light conditions in a given situation. Based on a number of known parameters, the system can control lighting so that at any time optimal light conditions are created, using a minimum of electric power. (LN)

  11. [Development of a portable high-power light-emitting diode phototherapy system for neonatal jaundice]. (United States)

    Hu, Jiang; Li, Xiaoyuan


    Our group have introduced a portable light emitting diode (LED) phototherapy system for treating neonatal jaundice. The device selects blue narrow-band LED as the light source, driven by MAX5035. The light intensity is linearly adjusted as the alteration of the pulse-width modulation signal, controlled by ATmega16L, and the value can be displayed in LCD12864. The device breaks the bonds of traditional phototherapy, it features small size and can provide an intense irradiance-controlled treatment as it's needed.

  12. Field effect transistor based on light-emitting polymers and its integration with light-emitting diode (United States)

    Meng, Hsin-Fei; Horng, Sheng-Fu


    Field-effect transistors based on poly(2-methoxy-5(2'-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) and other light-emitting conjugated polymers are fabricated on glass for easy integration with polymer LED. In the integrated device the polymer LED (pixel) and its driving transistor share the same polymer layer as their active semiconductor, with much simplified structures. Despite of the amorphous nature of the polymer film, the transistors can supply up to one micro Ampere of electric current and can be operated under gate modulation of 1 kHz. The hole mobility along the source/drain channel parallel to the glass substrate is found to be 100-1000 times larger than the perpendicular mobility for transport in the sandwich structures, presumably due to the extended chain conformation in spin-coated films. The molecular weight of the polymers is identified as an important factor for the carrier mobility and characteristics of the transistors.

  13. Feasibility of Ultraviolet Light Emitting Diodes as an Alternative Light Source for Photocatalysis (United States)

    Levine, Langanf H.; Richards, Jeffrey T.; Soler, Robert; Maxik, Fred; Coutts, Janelle; Wheeler, Raymond M.


    The objective of this study was to determine whether ultraviolet light emitting diodes (UV-LEDs) could serve as an alternative photon source efficiently for heterogeneous photocatalytic oxidation (PCO). An LED module consisting of 12 high-power UV-A LEDs was designed to be interchangeable with a UV-A fluorescent black light blue (BLB) lamp in a Silica-Titania Composite (STC) packed bed annular reactor. Lighting and thermal properties were characterized to assess the uniformity and total irradiant output. A forward current of (I(sub F)) 100 mA delivered an average irradiance of 4.0 m W cm(exp -2), which is equivalent to the maximum output of the BLB, but the irradiance of the LED module was less uniform than that of the BLB. The LED- and BLB-reactors were tested for the oxidization of 50 ppmv ethanol in a continuous flow-through mode with 0.94 sec space time. At the same irradiance, the UV-A LED reactor resulted in a lower PCO rate constant than the UV-A BLB reactor (19.8 vs. 28.6 nM CO2 sec-I), and consequently lower ethanol removal (80% vs. 91%) and mineralization efficiency (28% vs. 44%). Ethanol mineralization increased in direct proportion to the irradiance at the catalyst surface. This result suggests that reduced ethanol mineralization in the LED- reactor could be traced to uneven irradiance over the photocatalyst, leaving a portion of the catalyst was under-irradiated. The potential of UV-A LEDs may be fully realized by optimizing the light distribution over the catalyst and utilizing their instantaneous "on" and "off' feature for periodic irradiation. Nevertheless, the current UV-A LED module had the same wall plug efficiency (WPE) of 13% as that of the UV-A BLB. These results demonstrated that UV-A LEDs are a viable photon source both in terms of WPE and PCO efficiency.

  14. Development of high-performance solar LED lighting system

    KAUST Repository

    Huang, B.J.


    The present study developed a high-performance charge/discharge controller for stand-alone solar LED lighting system by incorporating an nMPPO system design, a PWM battery charge control, and a PWM battery discharge control to directly drive the LED. The MPPT controller can then be removed from the stand-alone solar system and the charged capacity of the battery increases 9.7%. For LED driven by PWM current directly from battery, a reliability test for the light decay of LED lamps was performed continuously for 13,200 h. It has shown that the light decay of PWM-driven LED is the same as that of constant-current driven LED. The switching energy loss of the MOSFET in the PWM battery discharge control is less than 1%. Three solar-powered LED lighting systems (18 W, 100 W and 150 W LED) were designed and built. The long-term outdoor field test results have shown that the system performance is satisfactory with the control system developed in the present study. The loss of load probability for the 18 W solar LED system is 14.1% in winter and zero in summer. For the 100 W solar LED system, the loss of load probability is 3.6% in spring. © 2009 Elsevier Ltd. All rights reserved.

  15. Comparative experimental and simulation studies of high-power AlGaN-based 353 nm ultraviolet flip-chip and top-emitting LEDs (United States)

    Liu, Mengling; Zhou, Shengjun; Liu, Xingtong; Gao, Yilin; Ding, Xinghuo


    Experimental and simulation studies of high-power AlGaN-based 353 nm ultraviolet (UV) flip-chip (FC) and top-emitting (TE) light-emitting diodes (LEDs) are performed here. To improve the optical and electrical properties of ultraviolet LEDs, we fabricate high-power FC-UV LEDs with Ta2O5/SiO2 distributed Bragg reflectors (DBRs) and a strip-shaped SiO2 current blocking layer (CBL). The reflectance of fourteen pairs of Ta2O5/SiO2 DBRs is 96.4% at 353 nm. The strip-shaped SiO2 CBL underneath the strip-shaped p-electrode can prevent the current concentrating in regions immediately adjacent to the p-electrode where the overlying opaque p-electrode metal layer absorbs the emitted UV light. Moreover, two-level metallization electrodes are used to improve current spreading. Our numerical results show that FC-UV LED has a more favorable current spreading uniformity than TE-UV LED. The light output power of 353 nm FC-UV LED was 23.22 mW at 350 mA, which is 24.7% higher than that of TE-UV LED.

  16. A comparative evaluation of curing depth and compressive strength of dental composite cured with halogen light curing unit and blue light emitting diode: an in vitro study. (United States)

    Kumar, C N Vijaya; Gururaj, M; Paul, Joseph


    To evaluate the curing depth and compressive strength of dental composite using halogen light curing unit and light emitting diode light curing unit. Eighty cylindrical composite specimens were prepared using posterior composite P60(3M). Forty specimens, out of which 20 samples (group A) cured with halogen light and 20 samples (group B) cured using light emitting diode (LED) light were checked for curing depth according to ISO 4049. Remaining 40 samples out of which 20 samples (group I) cured using halogen light and 20 samples (group II) cured using LED light were checked for compressive strength using Instron universal testing machine. Twenty samples (group A) cured with halogen light showed better curing depth than 20 samples (group B) cured with LED light. Twenty samples (group I) cured with halogen light showed almost similar results as 20 samples (group II) cured with LED light for compressive strength. Halogen light commonly used to cure composite resin have greater depth of cure, when compared to LED light, while both the lights produced compressive strength which is almost similar. Lower depth of cure with the LED unit, compared to the QTH unit, is associated with different light scattering due to differences in spectral emission. LED technology differs from QTH by the spectral emission that favorably matches the absorption spectrum of camphorquinone.

  17. The involvement of ATF4 and S-opsin in retinal photoreceptor cell damage induced by blue LED light. (United States)

    Ooe, Emi; Tsuruma, Kazuhiro; Kuse, Yoshiki; Kobayashi, Saori; Shimazawa, Masamitsu; Hara, Hideaki


    Blue light is a high-energy emitting light with a short wavelength in the visible light spectrum. Blue light induces photoreceptor apoptosis and causes age-related macular degeneration or retinitis pigmentosa. In the present study, we investigated the roles of endoplasmic reticulum (ER) stress induced by blue light-emitting diode (LED) light exposure in murine photoreceptor cells. The murine photoreceptor cell line was incubated and exposed to blue LED light (464 nm blue LED light, 450 lx, 3 to 24 h). The expression of the factors involved in the unfolded protein response pathway was examined using quantitative real-time reverse transcription (RT)-PCR and immunoblot analysis. The aggregation of short-wavelength opsin (S-opsin) in the murine photoreceptor cells was observed with immunostaining. The effect of S-opsin knockdown on ATF4 expression in the murine photoreceptor cell line was also investigated. Exposure to blue LED light increased the bip , atf4 , and grp94 mRNA levels, induced the expression of ATF4 protein, and increased the levels of ubiquitinated proteins. Exposure to blue LED light in combination with ER stress inducers (tunicamycin and dithiothreitol) induced the aggregation of S-opsin. S-opsin mRNA knockdown prevented the induction of ATF4 expression in response to exposure to blue LED light. These findings indicate that the aggregation of S-opsin induced by exposure to blue LED light causes ER stress, and ATF4 activation in particular.

  18. Optical and electrical characteristics of GaN vertical light emitting diode with current block layer

    International Nuclear Information System (INIS)

    Guo Enqing; Liu Zhiqiang; Wang Liancheng; Yi Xiaoyan; Wang Guohong


    A GaN vertical light emitting diode (LED) with a current block layer (CBL) was investigated. Vertical LEDs without a CBL, with a non-ohmic contact CBL and with a silicon dioxide CBL were fabricated. Optical and electrical tests were carried out. The results show that the light output power of vertical LEDs with a non-ohmic contact CBL and with a silicon dioxide CBL are 40.6% and 60.7% higher than that of vertical LEDs without a CBL at 350 mA, respectively. The efficiencies of vertical LEDs without a CBL, with a non-ohmic contact CBL and with a silicon dioxide CBL drop to 72%, 78% and 85.5% of their maximum efficiency at 350 mA, respectively. Moreover, vertical LEDs with a non-ohmic contact CBL have relatively superior anti-electrostatic ability. (semiconductor devices)

  19. Vertical thinking in blue light emitting diodes: GaN-on-graphene technology (United States)

    Bayram, C.; Kim, J.; Cheng, C.-W.; Ott, J.; Reuter, K. B.; Bedell, S. W.; Sadana, D. K.; Park, H.; Dimitrakopoulos, C.


    In this work, we show that a 2D cleave layer (such as epitaxial graphene on SiC) can be used for precise release of GaNbased light emitting diodes (LEDs) from the LED-substrate interface. We demonstrate the thinnest GaN-based blue LED and report on the initial electrical and optical characteristics. Our LED device employs vertical architecture: promising excellent current spreading, improved heat dissipation, and high light extraction with respect to the lateral one. Compared to conventional LED layer release techniques used for forming vertical LEDs (such as laser-liftoff and chemical lift-off techniques), our process distinguishes itself with being wafer-scalable (large area devices are possible) and substrate reuse opportunity.

  20. Neuroglobin - a potential biological marker of retinal damage induced by LED light. (United States)

    Yu, Z-L; Qiu, S; Chen, X-C; Dai, Z-H; Huang, Y-C; Li, Y-N; Cai, R-H; Lei, H-T; Gu, H-Y


    Neuroglobin (NGB), a protein highly expressed in the retina, has been shown to be up-regulated to protect neurons from hypoxic and ischemic injuries. It exhibits neuroprotective functions and plays an important role in the survival of neurons. Recent studies show that light-emitting diode (LED) white light emitted significant amounts of blue light (short-wavelength), which may be harmful to retinal cells, but the studies about biomarkers for evaluating the damage from LED white light are still insufficient. In our study, we found that NGB levels in the retina showed a twofold increase and peaked at 1h after a 1-h exposure to blue light (453 nm) which did not cause damage to the retina. However, retinal damage was observed after 2h of blue-light irradiation, which induced an approximate sevenfold increase of NGB levels as confirmed by Western blot and RT-PCR analysis. Immunofluorescence study demonstrated that NGB was predominantly up-regulated in the ganglion cell layer (GCL), plexiform layer (PL) and photoreceptor layer (PRL). We also examined Ngb mRNA and protein expression in the damaged retina induced by light of other wavelengths given equal photon fluxes. The LED red light (625 nm), green light (527 nm) and blue light (453 nm) increased the expression of NGB and caused TdT-mediated dUTP nick-end labeling-positive cells, especially in the blue-light group. In addition, a negative correlation between NGB and rhodopsin was observed. These findings suggested that there was a correlation between NGB expression and the severity of the retinal damage, indicating NGB's potential function as a biological marker of retinal damage induced by LED light. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Visual color matching system based on RGB LED light source (United States)

    Sun, Lei; Huang, Qingmei; Feng, Chen; Li, Wei; Wang, Chaofeng


    In order to study the property and performance of LED as RGB primary color light sources on color mixture in visual psychophysical experiments, and to find out the difference between LED light source and traditional light source, a visual color matching experiment system based on LED light sources as RGB primary colors has been built. By simulating traditional experiment of metameric color matching in CIE 1931 RGB color system, it can be used for visual color matching experiments to obtain a set of the spectral tristimulus values which we often call color-matching functions (CMFs). This system consists of three parts: a monochromatic light part using blazed grating, a light mixing part where the summation of 3 LED illuminations are to be visually matched with a monochromatic illumination, and a visual observation part. The three narrow band LEDs used have dominant wavelengths of 640 nm (red), 522 nm (green) and 458 nm (blue) respectively and their intensities can be controlled independently. After the calibration of wavelength and luminance of LED sources with a spectrophotometer, a series of visual color matching experiments have been carried out by 5 observers. The results are compared with those from CIE 1931 RGB color system, and have been used to compute an average locus for the spectral colors in the color triangle, with white at the center. It has been shown that the use of LED is feasible and has the advantages of easy control, good stability and low cost.

  2. Ultraviolet Light Emitting Diode Optical Power Characterization (United States)


    The heart of the driver board was an opamp , which operated off of the DAQ output voltage. The opamp created an isolated circuit with the power...then flowed from the power supply to the opamp to the UV LED. Each branch had a resistor and pin holes for electrical measurement in series with...with the available equipment. The oscilloscope could be used to show the trace and measure a voltage drop across a known resistance in line with the

  3. Conjugated polymer-based light emitting diodes

    International Nuclear Information System (INIS)

    Towns, C.R.; Grizzi, I.; Roberts, M.; Wehrum, A.


    In this paper we will indicate how we have developed post-lifetime reverse engineering methods and techniques to probe driven devices. Furthermore, we will also demonstrate how these methods are giving us a unique insight into material changes that occur within a device during the course of the lifetime test and, particularly in the case of the fluorescent devices how this has led to dramatic device performance improvement

  4. Organic light emitting device structures for obtaining chromaticity stability (United States)

    Tung, Yeh-Jiun; Lu, Michael; Kwong, Raymond C.


    The present invention relates to organic light emitting devices (OLEDs). The devices of the present invention are efficient white or multicolored phosphorescent OLEDs which have a high color stability over a wide range of luminances. The devices of the present invention comprise an emissive region having at least two emissive layers, with each emissive layer comprising a different host and emissive dopant, wherein at least one of the emissive dopants emits by phosphorescence.

  5. Organic light emitting device structure for obtaining chromaticity stability (United States)

    Tung, Yeh-Jiun [Princeton, NJ; Ngo, Tan [Levittown, PA


    The present invention relates to organic light emitting devices (OLEDs). The devices of the present invention are efficient white or multicolored phosphorescent OLEDs which have a high color stability over a wide range of luminances. The devices of the present invention comprise an emissive region having at least two emissive layers, with each emissive layer comprising a different host and emissive dopant, wherein at least one of the emissive dopants emits by phosphorescence.

  6. Lifetime prediction of LED lighting systems considering thermal coupling between LED sources and drivers

    DEFF Research Database (Denmark)

    Alfarog, Azzarn Orner; Qu, Xiaohui; Wang, Huai


    The lifetime prediction of LED lighting system is important to guide the designers to fulfill the design specifications and to benchmark the cost-competitiveness of different lighting technologies. Currently, the lifetime of LED system is usually predicted from the source part and the driver part...... separately, and then the thermal design is also optimized independently. In practice, the LED source and driver are usually compacted in a single fixture. The heat dissipated from LED source and driver will be coupled together and affect the heat transfer performance, which may degrade the whole system...... and accelerate the failure. In this paper, a new thermal model concerning the thermal coupling is proposed with Finite Element Method (FEM) simulation for parameter acquirement. The proposed model has a better estimation of the thermal stresses of key components in the LED lamps and therefore an improved...

  7. Infrared light-emitting diode radiation causes gravitropic and morphological effects in dark-grown oat seedlings (United States)

    Johnson, C. F.; Brown, C. S.; Wheeler, R. M.; Sager, J. C.; Chapman, D. K.; Deitzer, G. F.


    Oat (Avena sativa cv Seger) seedlings were irradiated with IR light-emitting diode (LED) radiation passed through a visible-light-blocking filter. Infrared LED irradiated seedlings exhibited differences in growth and gravitropic response when compared to seedlings grown in darkness at the same temperature. Thus, the oat seedlings in this study were able to detect IR LED radiation. These findings call into question the use of IR LED as a safe-light for some photosensitive plant response experiments. These findings also expand the defined range of wavelengths involved in radiation-gravity (light-gravity) interactions to include wavelengths in the IR region of the spectrum.

  8. Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting. (United States)

    Tsuei, Chih-Hsuan; Sun, Wen-Shing; Kuo, Chien-Cheng


    A hybrid method for using sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting is simulated and presented in this study. We can illuminate an indoor space and collect the solar energy using an optical switching system. When the system is turned off, the full spectrum of the sunlight is concentrated by a concentrator, to be absorbed by solar photovoltaic devices that provide the electricity to power the LEDs. When the system is turned on, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The visible rays pass through the light guide into a light box where it is mixed with LED light to ultimately provide uniform illumination by a diffuser. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. Simulation results show that the efficiency of the hybrid sunlight/LED illumination with the renewable solar energy saving design is better than that of LED and traditional lighting systems.

  9. Laterally injected light-emitting diode and laser diode (United States)

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.


    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  10. LED lamps in shipboard lighting systems: Aspects of electromagnetic compatibility

    Directory of Open Access Journals (Sweden)

    Beley V. F.


    Full Text Available Trends in the development of different types of light sources and their energy characteristics have been described in the paper. Analysis of regulatory documents has been given. The results of experimental studies of a number of modern LED lamps have been described. Investigation has been made for a number of LED lamps produced by Philips, Xavax and Melitec. The experimental data have been obtained with the complex of devices: the dual-channel oscilloscope (GDS-71042, the power quality analyzer (Fluke-434 and the multi-function device EcoLight-01 (light-, pulse- and luminance meter. It has been shown that operation of LED lamps is characterized by emission of higher current harmonics and reactive power consumption, which depends on the type and design of the lamp driver. It has been found that the value of luminance created by LED lamps in case of acceptable (for ships prolonged deviation of voltage (–10 % is reduced by 3 %; in case of permissible short-term voltage deviation (–20 % luminance is reduced by 7 %. For incandescent lamps this indicator is characterized by a decrease in luminance by 40 % and 60 %, respectively. Despite the low sensitivity to voltage changes (in comparison with other types of lamps, the operation of LED lamps is also associated with the appearance of flicker. Absence of limitations for fluctuations of the light flux in shipboard lighting systems and imperfection of methods for determining the flicker make it difficult to ensure electromagnetic compatibility of LED lamps. Therefore due to reliability, environmental friendliness, energy efficiency and lumen maintenance LED lamps have prospects for introduction into shipboard lighting systems. However, to ensure electromagnetic compatibility of LED lighting systems it is necessary to conduct a detailed study of energy characteristics of LED lamps and to develop appropriate regulatory requirements and technical solutions.

  11. A new LED light source for display cases

    DEFF Research Database (Denmark)

    Dam-Hansen, Carsten; Petersen, Paul Michael

    Abstract: We report a new LED light source suitable for illumination of gold objects. It has a variable correlated color temperature from 2760 K to 2200 K with a high color rendering index up to 97.......Abstract: We report a new LED light source suitable for illumination of gold objects. It has a variable correlated color temperature from 2760 K to 2200 K with a high color rendering index up to 97....

  12. Demonstration Assessment of Light-Emitting Diode Parking Structure Lighting at U.S. Department of Labor Headquarters

    Energy Technology Data Exchange (ETDEWEB)

    Kinzey, Bruce R.; Myer, Michael


    This report documents a solid-state lighting (SSL) technology demonstration at the parking structure of the U.S. Department of Labor (DOL) Headquarters in Washington, DC, in which light-emitting diode (LED) luminaires were substituted for the incumbent high-pressure sodium (HPS) luminaires and evaluated for relative light quantity and performance. The demonstration results show energy savings of 52% from the initial conversion of HPS to the LED product. These savings were increased to 88% by using occupancy sensor controls that were ultimately set to reduce power to 10% of high state operation after a time delay of 2.5 minutes. Because of the relatively high cost of the LED luminaires at their time of purchase for this project (2010), the simple payback periods were 6.5 years and 4.9 years for retrofit and new construction scenarios, respectively. Staff at DOL Headquarters reported high satisfaction with the operation of the LED product.

  13. Interior LED Lighting Technology. Navy Energy Technology Validation (Techval) Program (United States)


    evaluated using the Illumination Engineering Societies’ (IES) TM-21 manual. The TM- 21 manual provides a standardized method for evaluating when an LED...the equipment. The Cree luminaires installed in this study are rated for 75,000 hours of service, based on calculation methods that extrapolated...should be replaced with LED lamps. • Replace MR-16 lamps with LED lamps since this type of fixture is used to provide accent lighting and is

  14. Vacuum Nanohole Array Embedded Phosphorescent Organic Light Emitting Diodes (United States)

    Jeon, Sohee; Lee, Jeong-Hwan; Jeong, Jun-Ho; Song, Young Seok; Moon, Chang-Ki; Kim, Jang-Joo; Youn, Jae Ryoun


    Light extraction from organic light-emitting diodes that utilize phosphorescent materials has an internal efficiency of 100% but is limited by an external quantum efficiency (EQE) of 30%. In this study, extremely high-efficiency organic light emitting diodes (OLEDs) with an EQE of greater than 50% and low roll-off were produced by inserting a vacuum nanohole array (VNHA) into phosphorescent OLEDs (PhOLEDs). The resultant extraction enhancement was quantified in terms of EQE by comparing experimentally measured results with those produced from optical modeling analysis, which assumes the near-perfect electric characteristics of the device. A comparison of the experimental data and optical modeling results indicated that the VNHA extracts the entire waveguide loss into the air. The EQE obtained in this study is the highest value obtained to date for bottom-emitting OLEDs. PMID:25732061

  15. [Study on the safety of blue light leak of LED]. (United States)

    Shen, Chong-Yu; Xu, Zheng; Zhao, Su-Ling; Huang, Qing-Yu


    In this paper, the blue light properties of LED illumination devices have been investigated. Against the status quo of China's LED lighting, we measured the spectrum component of LED lamps and analyzed the photobiological safety under the current domestic and international standards GB/T 20145-2006/CIE S009/E: 2002 and IEC62471: 2006 standards as well as CTL-0744_2009-laser resolution, which provides the reference to the manufacture of LED lighting lamps as well as related safety standards and laws. If the radiance intensity of blue light in LED is lower than 100 W x m(-2) x Sr(-1), there is no harm to human eyes. LEDs will not cause harm to human eyes under normal use, but we should pay attention to the protection of special populations (children), and make sure that they avoid looking at a light source for a long time. The research has found that the blue-rich lamps can affect the human rule of work and rest, and therefore, the LED lamps with color temperature below 4 000 K and color rendering index of 80 are suitable for indoor use. At the same time, the lamps with different parameters should be selected according to the different distances.

  16. 2D photonic crystal layer assisted thiosilicate ceramic plate with red-emitting film for high quality w -LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Wubin; Lei, Yifeng; Zhou, Jia; Zhao, Yan; Zheng, Yunhao; Xu, Man; Wang, Shulin; Shen, Fan (Wuhan)


    In this work, we have succeeded in obtaining high quality warm w-light-emitting-diodes (LEDs) by adopting hybrid two-dimensional (2D) structure of SiNx photonic crystal layer (PCL) assisted cyan-emitting ceramic-plate thiosilicate SrLa2Si2S8:Ce3+ with red-emitting film SrLiAl3N4:Eu2+ phosphor on a 430 nm blue LED chip at 350 mA. 2D SiNx PCL was capped with thiosilicate is because it can enhance the luminous efficacy and maintain the low correlated color temperature (CCT) and high color-rendering index (CRI). High luminous efficacy (82.3 lm/W), high special CRI (R9=75) as well as the low CCT (5431 K) of the optimal w-LED was obtained due to the assistances of 2D SiNx PCL and narrow-band red-emitting phosphor with the doping percentage at 10 wt%. The synthesis processes, structural analysis, optical properties and LED device performances were detailed investigated to find out the relationship between the optimum composition and good optical properties. Based on intriguing luminescence properties by the 2D SiNx PCL and red-emitting film phosphor introducing, we proclaim this method could also have high potential application in other phosphor-converted w-LEDs.

  17. Sensitivity to Ethephon Degreening Treatment Is Altered by Blue LED Light Irradiation in Mandarin Fruit. (United States)

    Deng, Lili; Yuan, Ziyi; Xie, Jiao; Yao, Shixiang; Zeng, Kaifang


    Although citrus fruits are not climacteric, exogenous ethylene is widely used in the degreening treatment of citrus fruits. Irradiation with blue light-emitting diode (LED) light (450 nm) for 10 h can promote the formation of good coloration of ethephon-degreened fruit. This study evaluated the effect of blue LED light irradiation on the pigments contents of ethephon-degreened fruit and evaluated whether the blue LED light irradiation could influence the sensitivity of mandarin fruit to ethylene. The results indicated that blue light can accelerate the color change of ethephon-degreened fruit, accompanied by changes in plastid ultrastructure and chlorophyll and carotenoid contents. Ethephon-induced expressions of CitACS1, CitACO, CitETR1, CitEIN2, CitEIL1, and CitERF2 were enhanced by blue LED light irradiation, which increased the sensitivity to ethylene in ethephon-degreened fruits. These results indicate that blue LED light-induced changes in sensitivity to ethylene in mandarin fruit may be responsible for the improved coloration of ethephon-degreened mandarin fruits.

  18. In vitro and in vivo Efficacy of New Blue Light Emitting Diode Phototherapy Compared to Conventional Halogen Quartz Phototherapy for Neonatal Jaundice


    Chang, Yun Sil; Hwang, Jong Hee; Kwon, Hyuk Nam; Choi, Chang Won; Ko, Sun Young; Park, Won Soon; Shin, Son Moon; Lee, Munhyang


    High intensity light emitting diodes (LEDs) are being studied as possible light sources for the phototherapy of neonatal jaundice, as they can emit high intensity light of narrow wavelength band in the blue region of the visible light spectrum corresponding to the spectrum of maximal bilirubin absorption. We developed a prototype blue gallium nitride LED phototherapy unit with high intensity, and compared its efficacy to commercially used halogen quartz phototherapy device by measuring both i...

  19. Enhanced quantum efficiency in blue-emitting polymer/dielectric nanolayer nanocomposite light-emitting devices

    International Nuclear Information System (INIS)

    Park, Jong Hyeok; Lim, Yong Taik; Park, O Ok; Yu, Jae-Woong; Kim, Jai Kyeong; Kim, Young Chul


    Light-emitting devices based on environmentally stable, blue-emitting polymer/dielectric nanolayer nanocomposites were fabricated by blending poly(di-octylfluorene) (PDOF) with organo-clay. By reducing the excimer formation that leads to long wavelength tails, the photoluminescence (PL) and electroluminescence (EL) color purity of the device was enhanced. When a conjugated polymer/dielectric nanolayer nanocomposite is applied to an EL device, we expect an electronic structure similar to the well-known quantum well in small nanodomains. The ratio of PDOF/organo-clay was regulated from 2:1 to 0.5:1 (w/w). The light-emitting device of 0.5:1 (w/w) blend demonstrated the highest quantum efficiency (QE), 0.72% (ph/el), which is ∼500 times higher value compared with that of the pure PDOF layer device. However, the driving voltage of the nanocomposite devices tended to increase with increasing organo-clay content

  20. Blue and red LED lighting effects on plant biomass, stomatal conductance, and metabolite content in nine tomato genotypes

    NARCIS (Netherlands)

    Ouzounis, T.; Heuvelink, E.; Ji, Y.; Schouten, H.J.; Visser, R.G.F.; Marcelis, L.F.M.


    A collection of nine tomato genotypes was chosen based on their diversity, phylogeny, availability of genome information, and agronomic traits. The objective of the study was to characterize the effect of red and blue LED (light-emitting diode) lighting on physiological, morphological,

  1. 3D printed quantum dot light-emitting diodes. (United States)

    Kong, Yong Lin; Tamargo, Ian A; Kim, Hyoungsoo; Johnson, Blake N; Gupta, Maneesh K; Koh, Tae-Wook; Chin, Huai-An; Steingart, Daniel A; Rand, Barry P; McAlpine, Michael C


    Developing the ability to 3D print various classes of materials possessing distinct properties could enable the freeform generation of active electronics in unique functional, interwoven architectures. Achieving seamless integration of diverse materials with 3D printing is a significant challenge that requires overcoming discrepancies in material properties in addition to ensuring that all the materials are compatible with the 3D printing process. To date, 3D printing has been limited to specific plastics, passive conductors, and a few biological materials. Here, we show that diverse classes of materials can be 3D printed and fully integrated into device components with active properties. Specifically, we demonstrate the seamless interweaving of five different materials, including (1) emissive semiconducting inorganic nanoparticles, (2) an elastomeric matrix, (3) organic polymers as charge transport layers, (4) solid and liquid metal leads, and (5) a UV-adhesive transparent substrate layer. As a proof of concept for demonstrating the integrated functionality of these materials, we 3D printed quantum dot-based light-emitting diodes (QD-LEDs) that exhibit pure and tunable color emission properties. By further incorporating the 3D scanning of surface topologies, we demonstrate the ability to conformally print devices onto curvilinear surfaces, such as contact lenses. Finally, we show that novel architectures that are not easily accessed using standard microfabrication techniques can be constructed, by 3D printing a 2 × 2 × 2 cube of encapsulated LEDs, in which every component of the cube and electronics are 3D printed. Overall, these results suggest that 3D printing is more versatile than has been demonstrated to date and is capable of integrating many distinct classes of materials.

  2. GaN-Based Multiple-Quantum-Well Light-Emitting Diodes Employing Nanotechnology for Photon Management

    KAUST Repository

    Hsiao, Yu Hsuan


    Nanostructures have been proved to be an efficient way of modifying/improving the performance of GaN-based light-emitting diodes (LEDs). The achievements in photon management include strain relaxation, light extraction enhancement, radiation pattern control, and white-light devices. In this paper, we discuss the impact and the underlying physics of applying nanotechnology on LEDs. A variety of nanostructures are introduced, as well as the fabrication techniques. © 1972-2012 IEEE.

  3. Light emitting diode package element with internal meniscus for bubble free lens placement (United States)

    Tarsa, Eric; Yuan, Thomas C.; Becerra, Maryanne; Yadev, Praveen


    A method for fabricating a light emitting diode (LED) package comprising providing an LED chip and covering at least part of the LED chip with a liquid encapsulant having a radius of curvature. An optical element is provided having a bottom surface with at least a portion having a radius of curvature larger than the liquid encapsulant. The larger radius of curvature portion of the optical element is brought into contact with the liquid encapsulant. The optical element is then moved closer to the LED chip, growing the contact area between said optical element and said liquid encapsulant. The liquid encapsulant is then cured. A light emitting diode comprising a substrate with an LED chip mounted to it. A meniscus ring is on the substrate around the LED chip with the meniscus ring having a meniscus holding feature. An inner encapsulant is provided over the LED chip with the inner encapsulant having a contacting surface on the substrate, with the meniscus holding feature which defines the edge of the contacting surface. An optical element is included having a bottom surface with at least a portion that is concave. The optical element is arranged on the substrate with the concave portion over the LED chip. A contacting encapsulant is included between the inner encapsulant and optical element.

  4. Effect of light-emitting diode vs. fluorescent lighting on laying hens in aviary hen houses: Part 1 - Operational characteristics of lights and production traits of hens. (United States)

    Long, H; Zhao, Y; Wang, T; Ning, Z; Xin, H


    Light-emitting diode (LED) lights are becoming more affordable for agricultural applications. Despite many lab-scale studies concerning impact of LED on poultry, little research has been documented under field production conditions, especially for laying hens. This 15-month field study was carried out to evaluate the effects of LED vs. fluorescent (FL) lights on laying hens (Dekalb white breed) using 4 (2 pairs) aviary hen houses each at a nominal capacity of 50,000 hens. The evaluation was done regarding operational characteristics of the lights and hen production traits. The results show that spatial distribution of the LED light was less uniform than that of the FL light. Light intensity of the LED light decreased by 27% after 3,360 h use but remained quite steady from 3,360 to 5,760 h use. Eleven out of 762 (1.44%) LED lamps (new at onset of the study) in the 2 houses failed during the 15-month experiment period. The neck area of the LED lamp was hottest, presumably the primary reason for the lamp failure as cracks were noticed in the neck region of all failed LED lamps. No differences were observed in egg weight, hen-day egg production, feed use, and mortality rate between LED and FL regimens. However, hens under the FL had higher eggs per hen housed and better feed conversion than those under the LED during 20 to 70 wk production (P Hens under the LED tended to have less feather uniformity and insulation than those under the FL (P hens under the LED showed a larger median avoidance distance than those under the FL at 36 wk age (P hens under the LED were more alert; but no difference at 60 wk age. More comparative research to quantify behavioral and production responses of different breeds of hens to LED vs. FL lighting seems warranted. © 2015 Poultry Science Association Inc.

  5. Optimized Phosphors for Warm White LED Light Engines

    Energy Technology Data Exchange (ETDEWEB)

    Setlur, Anant; Brewster, Megan; Garcia, Florencio; Hill, M. Christine; Lyons, Robert; Murphy, James; Stecher, Tom; Stoklosa, Stan; Weaver, Stan; Happek, Uwe; Aesram, Danny; Deshpande, Anirudha


    The objective of this program is to develop phosphor systems and LED light engines that have steady-state LED efficacies (using LEDs with a 60% wall-plug efficiency) of 105–120 lm/W with correlated color temperatures (CCT) ~3000 K, color rendering indices (CRI) >85, <0.003 distance from the blackbody curve (dbb), and <2% loss in phosphor efficiency under high temperature, high humidity conditions. In order to reach these goals, this involves the composition and processing optimization of phosphors previously developed by GE in combination with light engine package modification.

  6. Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources. (United States)

    Zhao, S; Connie, A T; Dastjerdi, M H T; Kong, X H; Wang, Q; Djavid, M; Sadaf, S; Liu, X D; Shih, I; Guo, H; Mi, Z


    Despite broad interest in aluminum gallium nitride (AlGaN) optoelectronic devices for deep ultraviolet (DUV) applications, the performance of conventional Al(Ga)N planar devices drastically decays when approaching the AlN end, including low internal quantum efficiencies (IQEs) and high device operation voltages. Here we show that these challenges can be addressed by utilizing nitrogen (N) polar Al(Ga)N nanowires grown directly on Si substrate. By carefully tuning the synthesis conditions, a record IQE of 80% can be realized with N-polar AlN nanowires, which is nearly ten times higher compared to high quality planar AlN. The first 210 nm emitting AlN nanowire light emitting diodes (LEDs) were achieved, with a turn on voltage of about 6 V, which is significantly lower than the commonly observed 20 - 40 V. This can be ascribed to both efficient Mg doping by controlling the nanowire growth rate and N-polarity induced internal electrical field that favors hole injection. In the end, high performance N-polar AlGaN nanowire LEDs with emission wavelengths covering the UV-B/C bands were also demonstrated.

  7. Single layer graphene electrodes for quantum dot-light emitting diodes (United States)

    Yan, Long; Zhang, Yu; Zhang, Xiaoyu; Zhao, Jia; Wang, Yu; Zhang, Tieqiang; Jiang, Yongheng; Gao, Wenzhu; Yin, Jingzhi; Zhao, Jun; Yu, William W.


    Single layer graphene was employed as the electrode in quantum dot-light emitting diodes (QD-LEDs) to replace indium tin oxide (ITO). The graphene layer demonstrated low surface roughness, good hole injection ability, and proper work function matching with the poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) layer. Together with the hole transport layer and electron transport layer, the fabricated QD-LED showed good current efficiency and power efficiency, which were even higher than an ITO-based similar device under low current density. The result indicates that graphene can be used as anodes to replace ITO in QD-LEDs.

  8. Irradiance Decay in Fluorescent and Light-emitting Diode-based Phototherapy Devices: A Pilot Study.


    Olusanya, Bolajoko


    We set out to determine the rate of decline of irradiance for fluorescent tube (FT) and light-emitting diode (LED) phototherapy devices in resource-limited settings where routine irradiance monitoring is uncommon. Irradiance levels (μW/cm 2 /nm) were measured weekly using BiliBlanket ® II Meter on three FT-based and two LED-based phototherapy devices over a 19 week period. The two LED devices showed stable irradiance levels and did not require any lamp changes. The three FT-based devices show...

  9. Status of Growth of Group III-Nitride Heterostructures for Deep Ultraviolet Light-Emitting Diodes


    Kai Ding; Vitaliy Avrutin; Ümit Özgür; Hadis Morkoç


    We overview recent progress in growth aspects of group III-nitride heterostructures for deep ultraviolet (DUV) light-emitting diodes (LEDs), with particular emphasis on the growth approaches for attaining high-quality AlN and high Al-molar fraction AlGaN. The discussion commences with the introduction of the current status of group III-nitride DUV LEDs and the remaining challenges. This segues into discussion of LED designs enabling high device performance followed by the review of advances i...

  10. Comparison of milk oxidation by exposure to LED and fluorescent light. (United States)

    Brothersen, C; McMahon, D J; Legako, J; Martini, S


    Light-induced oxidation of milk has been well studied. Exposure of milk to UV light facilitates the oxidation of fats to aldehydes, and the degradation of sulfur-containing amino acids, both of which contribute to off-flavors. In addition, vitamin A and riboflavin are easily degraded by UV light. These reactions occur rapidly and are exacerbated by bright fluorescent lights in retail dairy cases. The invention of white light-emitting diodes (LED) may provide a solution to this oxidation problem. In this study, fresh milk containing 1% fat and fortified with vitamin A and riboflavin was exposed to LED at 4,000 lx, or fluorescent light at 2,200 lx for 24 h. Milk samples exposed to LED or fluorescent light, as well as milk protected from light, were analyzed by a consumer acceptance panel, and a trained flavor panel. In addition, vitamin A, riboflavin, and the production of volatile compounds were quantified. Exposure to light resulted in a reduction of cooked/sweet, milkfat, and sweet flavors and increased the intensity of butterscotch, cardboard, and astringency. In general, exposure to fluorescent light resulted in greater changes in the milk than exposure to LED even though the LED was at higher intensity. Consumers were able detect off-flavors in milk exposed to fluorescent light after 12 h and LED after 24 h of exposure. The riboflavin and vitamin A content was reduced by exposure to fluorescent light, whereas there was no significant reduction caused by LED compared with the non-light-exposed control. Production of hexanal, heptanal, 2-heptanal, octanal, 2-octanal nonanal, dimethyl sulfide, and caproic acid vinyl ester from the light-induced degradation of fats was significantly higher with fluorescent than LED. Production of these compounds was significantly higher with both light treatments than in the control milk. This study indicates that LED is less destructive to milk than fluorescent light. Copyright © 2016 American Dairy Science Association. Published

  11. LED Light to improve Strawberry Flavour, Quality and Production

    NARCIS (Netherlands)

    Hanenberg, M.A.A.; Janse, J.; Verkerke, W.


    A current demonstration in the greenhouses of Wageningen UR in Bleiswijk (the Netherlands) shows positive results of LED light on the quality and production of strawberries (Fragaria x ananassa). In this demonstration two strawberry cultivars, Elsanta and Sonata, are exposed to three different light

  12. Growing lettuce under multispectral light-emitting diodes lamps with adjustable light intensity

    Directory of Open Access Journals (Sweden)

    Giacomo Tosti


    Full Text Available Light-emitting diodes (LEDs technology offers vast possibilities in plant lighting due to its ability to mix different light frequencies, high energy use efficiency and low heat production combined to long lifespan. In particular, the combined effect of the Blue:Red (B:R ratio and other frequencies in the central part of the PAR spectrum (CGA, i.e. cyan, green and amber may be very important, though literature information is scarce. In this paper, the effects of six light spectra from LED technology were tested, i.e.: i B:R=0.82 (i.e. similar to sunlight with CGA (treatment T0; ii B:R=0.82 without CGA (T1; iii red prevalence (B:R=0.25 without CGA (T2; iv blue prevalence (B:R=4 without CGA (T3; v red prevalence with CGA (T4; and vi blue prevalence with CGA (T5. The experiment was carried out in a walk-in climatic chamber with controlled temperature and relative humidity and an incident PAR photon flux density (PFD of 300 μmol m–2 s–1 (14/10 light/dark photoperiod, generated by multispectral LED lamps with adjustable light intensity. Smooth leaved lettuce (Lactuca sativa L. cv Gentilina was used as the test plant and biomass yield (DW, g m–2, LAI, soil coverage proportion (SC%, energy-biomass conversion efficiency (E-BCE, kWh g–1 and radiation use efficiency (RUE, g mol–1 photons were determined. Treatments with red predominance (T2 and T4 showed the highest SC% rates, while those with blue predominance (T3 and T5 showed the lowest. Light spectrum also affected leaf size (i.e. mean leaf area. The highest DW and RUE were observed in T2 and T4, followed by T0, while biomass in T3 and T5 was significantly lower (similar to T1. LAI values were generally high, but treatments with blue predominance showed the lowest LAI values (both with or without CGA. The introduction of intermediate wavelengths (green, cyan and amber did not bring about significant improvement in DW or RUE, but resulted in reduced energy-biomass conversion efficiency

  13. Fiscal 1997 report on the results of the international standardization R and D. Study of safety of laser and light emitting diodes (LED) for human body; 1997 nendo seika hokokusho kokusai hyojun soseigata kenkyu kaihatsu. Laser, oyobi hakko diode (LED) ni taisuru jintai eno anzensei no kenkyu

    Energy Technology Data Exchange (ETDEWEB)



    LD and LED are used in a wide range from telecommunication systems to residential/commercial equipment. Optical semiconductor devices existing in the domain between LD and LED are also being commercialized. In the field of this project, there are a lot of contradictions about the international standards. For the purpose of promoting the common understanding of standards and improving the consistency, the paper examined mainly safety, principles of motion and various applications of laser and LED, and developed international standards for the output measuring method. At the same time, the paper systematically studied the biological safety, determined regulatory values which were backed up as safety standards, and proposed/worked out a draft for new international standardization for safety of LED. Further, by the definition of laser in general, standards related to a lot of TCs among ISO and IEC standards were harmonized for the common understanding on the basis of a common idea. 40 refs., 163 figs., 6 tabs.

  14. Materials and Designs for High-Efficacy LED Light Engines

    Energy Technology Data Exchange (ETDEWEB)

    Ibbetson, James [Cree, Inc., Durham, NC (United States); Gresback, Ryan [Cree, Inc., Durham, NC (United States)


    Cree, Inc. conducted a narrow-band downconverter (NBD) materials development and implementation program which will lead to warm-white LED light engines with enhanced efficacy via improved spectral efficiency with respect to the human eye response. New red (600-630nm) NBD materials could result in as much as a 20% improvement in warm-white efficacy at high color quality relative to conventional phosphor-based light sources. Key program innovations included: high quantum yield; narrow peak width; minimized component-level losses due to “cross-talk” and light scattering among red and yellow-green downconverters; and improved reliability to reach parity with conventional phosphors. NBD-enabled downconversion efficiency gains relative to conventional phosphors yielded an end-of-project LED light engine efficacy of >160 lm/W at room temperature and 35 A/cm2, with a correlated color temperature (CCT) of ~3500K and >90 CRI (Color Rending Index). NBD-LED light engines exhibited equivalent luminous flux and color point maintenance at >1,000 hrs. of highly accelerated reliability testing as conventional phosphor LEDs. A demonstration luminaire utilizing an NBD-based LED light engine had a steady-state system efficacy of >150 lm/W at ~3500K and >90 CRI, which exceeded the 2014 DOE R&D Plan luminaire milestone for FY17 of >150 lm/W at just 80 CRI.

  15. All-inorganic white light emitting devices based on ZnO nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Nannen, Ekaterina


    Semiconductor nanaocrystals (NCs) are very promising candidates for lightweight large-area rollable displays and light emitting devices (LEDs). They are expected to combine the efficiency, robustness and color tunability of conventional semiconductor LEDs with the flexible fabrication techniques known from OLED technology, since the NCs are compatible with solution processing and therefore can be deposited on virtually any substrates including glass and plastic. Today, NC-LEDs consist of chemically synthesized QDs embedded in organic charge injection and transport layers. The organic layers limit the robustness of the NC-LEDs and result in significant constrictions within the device fabrication procedure, such as organic evaporation steps, inert (i.e. humidity and oxygen free) atmosphere and obligatory encapsulation. These limitations during the production process as well as complex chemical synthesis route of the implemented NCs and organic components lead to high fabrication costs and low turnover. So far, only prototype devices have been introduced by several research groups and industrial companies. Still, the main concern retarding NC-LEDs from market launch is the high content of toxic heavy metals like Cd in the active nanocrystalline light emitting material. Within this work, possible environmentally safe and ambient-air-compatible alternatives to conventional QDs and organics were explored, with the main focus on design and fabrication of completely inorganic white NC-LEDs with commercial ZnO nanoparticles as an active light emitting material. While the electrical transport properties through the NC-network of the commercially available VP AdNano {sup registered} ZnO2O particles were already to some extent explored, their optical properties and therefore suitability as an active light emitter in NC-LEDs were not studied so far. (orig.)

  16. Characterization, Modeling, and Optimization of Light-Emitting Diode System

    DEFF Research Database (Denmark)

    Thorseth, Anders

    limit of human color perception. A method has been developed to optimize multicolored cluster LED systems with respect to light quality, using multi objective optimization. The results are simulated SPDs similar to traditional light sources, and with high light quality. As part of this work...

  17. Trap-state-assisted white light emission from a CdSe nanocrystal integrated hybrid light-emitting diode. (United States)

    Chandramohan, S; Ryu, Beo Deul; Kim, Hyun Kyu; Hong, Chang-Hee; Suh, Eun-Kyung


    This Letter reports on the fabrication of hybrid white-light-emitting diodes made of semiconductor nanocrystals (NCs) integrated on InGaN/GaN LEDs. Using core type and core/shell type CdSe NCs, the white light properties are systematically engineered for white light generation with high color rendering index (CRI). Unlike CdSe/ZnS core/shell NCs, which exhibited a unique narrowband edge emission, core type CdSe NCs offered extended broad emission toward orange/red wavelengths associated with deep trap states. Consequently, the light-emitting properties of the devices showed strong dependence on the type of NCs used, and devices with CdSe NCs offered admirable characteristics, such as Commission Internationale d'Eclairage coordinates of (0.356, 0.330) and a CRI as high as 87.4.

  18. [Effects of different LED light qualities on photosynthetic characteristics, fruit production and quality of strawberry]. (United States)

    Liu, Qing; Lian, Hai-feng; Liu, Shi-qi; Sun, Ya-li; Yu, Xin-hui; Guo, Hui-ping


    Taking 'Miaoxiang No.7' strawberry as material, full red light, full blue light, full yellow light, full white light, red/blue/yellow (7/2/1), red/blue (7/2) light generated by light emitting diode (LED) was applied to accurately modulate with white light generated as control. The indicators of photosynthetic and fluorescence parameters, pigment content, fruit production and quality, root activity were investigated. The effects of light quality under the light intensity (500 µmol · m(-2) · s(-1)) on the photosynthetic characteristic, fruit production and quality of strawberry were studied. The results showed that the red light could increase photosynthetic parameters (Pn, Tr), while blue light had inhibitory effect. Intercellular CO2 concentration (Ci) and conductance (g(s)) were the highest under blue light. The fluorescence parameters were significantly affected by light quality, Fo, Fm and Φ PS II the highest under red light, but values of the maximal photochemical of PS II (Fv/Fm), Fv/Fo and Fm/Fo highest under red/blue/yellow (7/2/1). In addition, the soluble solids content and vitamin C were highest under red light, the blue light could increase protein and titratable acid, sugar-acid ratio was the highest under red/blue/yellow (7/2/1). Comprehensive analysis indicated that red/blue/yellow (7/2/1) was more beneficial to the increase of pigment contents of leaves, fruit production and some qualities of strawberry.

  19. Application of high-brightness LEDs in aircraft position lights (United States)

    Machi, Nicolo; Mangum, Scott; Singer, Jeffrey M.


    Solid state lighting devices have made their way into a number of niche markets and continue to make inroads into other markets as their price / performance ratios improve. One of these markets is aviation lighting. Although this paper will focus on the use of LEDs for aircraft position lights, much of the discussion is applicable to other installations on the interior and exterior of the aircraft. The color, light distribution and intensity levels for a position light are all closely regulated through Code of Federal Regulation (CFR; formerly Federal Aviation Regulation (FAR)) documents. These lighting requirements, along with harsh thermal and environmental requirements, drive the design. In this paper, we will look at these requirements and discuss what is required in order to use LEDs for this type of application. We will explore the optical, thermal and electrical issues associated with the use of LEDs for position lights and examine the specific case study of the Astreon forward position lights. Finally, we will discuss some of the challenges that we see with solid state lighting in current and future aircraft applications.

  20. Artificial Lighting Protection of Mauna Kea Observatories: An Experiment to Replace LPS Street Lighting With LEDs in Waikoloa Village, HI (United States)

    Craine, Eric R.; Craine, Brian L.


    Segments of the astronomical community have long lobbied in support of the use of Low Pressure Sodium (LPS) street lights as a method of minimizing impacts of sky glow on neighboring observatories. There has been vociferous objection to the replacement of LPS by Light Emitting Diode (LED) street lights. Such replacement is being precipitated by advances in lighting technologies, high economic efficiencies of LEDs, and plummeting interest in manufacturing LPS fixtures. Waikoloa Village, HI, located on the western slopes of Mauna Kea, home to major northern hemisphere observatories, has for many years been almost exclusively illuminated by LPS lighting. During the winter of 2015-2016 the County of Hawai’i Department of Public Works, Traffic Division replaced the approximately 550 LPS street lights in the community with Filtered LED (FLED) fixtures on a one-for-one basis. About 100 other LPS lights on private properties in the community were similarly replaced by the lighting manufacturer. This retrofit offered an excellent opportunity to make measurements of lighting parameters in the community before and after the retrofit process. Measurements were made using satellite, airborne, and ground based observations, and included photometric, photographic, and spectroscopic measurements. Data analyzed included integrated brightness of the community, zenith angle function brightness distributions, and spectral energy distributions. We present the results of these observations and discuss their implications for future protection of astronomical observatory sites.

  1. Magnetoelectroluminescence in organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Joseph E.; Lewis, Alan M.; Manolopoulos, David E.; Hore, P. J. [Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom)


    The magnetoelectroluminescence of conjugated organic polymer films is widely accepted to arise from a polaron pair mechanism, but their magnetoconductance is less well understood. Here we derive a new relationship between the experimentally measurable magnetoelectroluminescence and magnetoconductance and the theoretically calculable singlet yield of the polaron pair recombination reaction. This relationship is expected to be valid regardless of the mechanism of the magnetoconductance, provided the mobilities of the free polarons are independent of the applied magnetic field (i.e., provided one discounts the possibility of spin-dependent transport). We also discuss the semiclassical calculation of the singlet yield of the polaron pair recombination reaction for materials such as poly(2,5-dioctyloxy-paraphenylene vinylene) (DOO-PPV), the hyperfine fields in the polarons of which can be extracted from light-induced electron spin resonance measurements. The resulting theory is shown to give good agreement with experimental data for both normal (H-) and deuterated (D-) DOO-PPV over a wide range of magnetic field strengths once singlet-triplet dephasing is taken into account. Without this effect, which has not been included in any previous simulation of magnetoelectroluminescence, it is not possible to reproduce the experimental data for both isotopologues in a consistent fashion. Our results also indicate that the magnetoconductance of DOO-PPV cannot be solely due to the effect of the magnetic field on the dissociation of polaron pairs.

  2. High-power light-emitting diode based facility for plant cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Tamulaitis, G [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania); Duchovskis, P [Lithuanian Institute of Horticulture, Babtai, LT-54333 Kaunas District (Lithuania); Bliznikas, Z [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania); Breive, K [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania); Ulinskaite, R [Lithuanian Institute of Horticulture, Babtai, LT-54333 Kaunas District (Lithuania); Brazaityte, A [Lithuanian Institute of Horticulture, Babtai, LT-54333 Kaunas District (Lithuania); Novickovas, A [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania); Zukauskas, A [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania)


    Based on perspectives of the development of semiconductor materials systems for high-power light-emitting diodes (LEDs), an illumination facility for greenhouse plant cultivation was designed with the dominating 640 nm photosynthetically active component delivered by AlGaInP LEDs and supplementary components from AlGaN (photothropic action, 455 nm) and AlGaAs (photosynthetic 660 nm and photomorphogenetic 735 nm) LEDs. Photosynthesis intensity, photosynthetic productivity and growth morphology as well as chlorophyll and phytohormone concentrations were investigated in radish and lettuce grown in phytotron chambers under the LED-based illuminators and under high-pressure sodium (HPS) lamps with an equivalent photon flux density. Advantages of the high-power LED-based illuminators over conventional HPS lamps, applicability of AlGaInP LEDs for photosynthesis and control of plant growth by circadian manipulation of a relatively weak far-red component were demonstrated.

  3. High-Power Genuine Ultraviolet Light-Emitting Diodes Based On Colloidal Nanocrystal Quantum Dots. (United States)

    Kwak, Jeonghun; Lim, Jaehoon; Park, Myeongjin; Lee, Seonghoon; Char, Kookheon; Lee, Changhee


    Thin-film ultraviolet (UV) light-emitting diodes (LEDs) with emission wavelengths below 400 nm are emerging as promising light sources for various purposes, from our daily lives to industrial applications. However, current thin-film UV-emitting devices radiate not only UV light but also visible light. Here, we introduce genuine UV-emitting colloidal nanocrystal quantum dot (NQD) LEDs (QLEDs) using precisely controlled NQDs consisting of a 2.5-nm-sized CdZnS ternary core and a ZnS shell. The effective core size is further reduced during the shell growth via the atomic diffusion of interior Cd atoms to the exterior ZnS shell, compensating for the photoluminescence red shift. This design enables us to develop CdZnS@ZnS UV QLEDs with pure UV emission and minimal parasitic peaks. The irradiance is as high as 2.0-13.9 mW cm(-2) at the peak wavelengths of 377-390 nm, several orders of magnitude higher than that of other thin-film UV LEDs.

  4. Characterization, Modeling, and Optimization of Light-Emitting Diode System

    DEFF Research Database (Denmark)

    Thorseth, Anders

    An automated setup has been developed for spectral radiometric characterization of LED components with precise control of the settings of forward current and operating temperature. The automated setup has been used to characterize commercial LED components with respect to multiple settings...... limit of human color perception. A method has been developed to optimize multicolored cluster LED systems with respect to light quality, using multi objective optimization. The results are simulated SPDs similar to traditional light sources, and with high light quality. As part of this work...

  5. Influence of Light Emitting Diode-Derived Blue Light Overexposure on Mouse Ocular Surface. (United States)

    Lee, Hyo Seok; Cui, Lian; Li, Ying; Choi, Ji Suk; Choi, Joo-Hee; Li, Zhengri; Kim, Ga Eon; Choi, Won; Yoon, Kyung Chul


    To investigate the influence of overexposure to light emitting diode (LED)-derived light with various wavelengths on mouse ocular surface. LEDs with various wavelengths were used to irradiate C57BL/6 mice at an energy dose of 50 J/cm2, twice a day, for 10 consecutive days. The red, green, and blue groups represented wavelengths of 630 nm, 525 nm, and 410 nm, respectively. The untouched group (UT) was not exposed to LED light and served as the untreated control. Tear volume, tear film break-up time (TBUT), and corneal fluorescein staining scores were measured on days 1, 3, 5, 7, and 10. Levels of interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were measured in the cornea and conjunctiva using a multiplex immunobead assay at day 10. Levels of malondialdehyde (MDA) were measured with an enzyme-linked immunosorbent assay. Flow cytometry, 2'7'-dichlorofluorescein diacetate (DCF-DA) assay, histologic analysis, immunohistochemistry with 4-hydroxynonenal, and terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL) staining were also performed. TBUT of the blue group showed significant decreases at days 7 and 10, compared with the UT and red groups. Corneal fluorescein staining scores significantly increased in the blue group when compared with UT, red, and green groups at days 5, 7, and 10. A significant increase in the corneal levels of IL-1β and IL-6 was observed in the blue group, compared with the other groups. The blue group showed significantly increased reactive oxygen species production in the DCF-DA assay and increased inflammatory T cells in the flow cytometry. A significantly increased TUNEL positive cells was identified in the blue group. Overexposure to blue light with short wavelengths can induce oxidative damage and apoptosis to the cornea, which may manifest as increased ocular surface inflammation and resultant dry eye.

  6. Transient Behavior of Light-Emitting Electrochemical Cells (United States)


    Triflate Lithium Trifluoromethanesulfonate NVG Night Vision Goggles OIF Operation Iraqi Freedom OLED Organic Light Emitting Diode Opamp Operational...xii R Resistance TTI OSD Technology Transition Initiative Z Impedance ZI Imaginary Impedance ZR Real Impedance xiii...response to questions arising from these studies the IFF LEC patch will be used to make measurements of the device’s capacitance, resistance , current and

  7. Light-emitting ambipolar organic heterostructure field-effect transistor

    NARCIS (Netherlands)

    Rost, Constance; Karg, Siegfried; Riess, Walter; Loi, Maria Antonietta; Murgia, Mauro; Muccini, Michele


    We have investigated ambipolar charge injection and transport in organic field-effect transistors (OFETs) as prerequisites for a light-emitting organic field-effect transistor (LEOFET). OFETs containing a single material as active layer generally function either as a p- or an n-channel device.

  8. Ambipolar light-emitting organic field-effect transistor

    NARCIS (Netherlands)

    Rost, Constance; Karg, Siegfried; Riess, Walter; Loi, Maria Antonietta; Murgia, Mauro; Muccini, Michele


    We demonstrate a light-emitting organic field-effect transistor (OFET) with pronounced ambipolar current characteristics. The ambipolar transport layer is a coevaporated thin film of α-quinquethiophene (α-5T) as hole-transport material and N,N'-ditridecylperylene-3,4,9,10-tetracarboxylic diimide

  9. Improved performance of organic light-emitting diode with vanadium ...

    Indian Academy of Sciences (India)

    Vanadium pentoxide layer deposited on the fluorine-doped tin oxide (FTO) anode by vacuum deposition has been investigated in organic light-emitting diode (OLED).With 12nm optimal thickness of V 2 O 5 , the luminance efficiency is increased by 1.66 times compared to the single FTO-based OLED. The improvement of ...

  10. Pulsed Ultraviolet Light Emitting Diodes for Advanced Oxidation of Tartrazine (United States)


    using ozone alone in the degradation of pesticide in the water (Paillard et al, 1988). The third method is the combination of ozone and a catalyst to...2-1.pdf 13) Sari H. Vilhunen, Mika E.T. Sillanpaa. (2008). Ultraviolet light emitting diodes and hydrogen peroxide in the photodegradation of

  11. Gallium-Nitride-Based Light-Emitting Diodes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 7. Gallium-Nitride-Based Light-Emitting Diodes: 2014 Nobel Prize in Physics. Kota V R M Murali Vinayak Bharat Naik Deepanjan Datta. General Article Volume 20 Issue 7 July 2015 pp 605-616 ...

  12. Photon extraction from nitride ultraviolet light-emitting devices (United States)

    Schowalter, Leo J; Chen, Jianfeng; Grandusky, James R


    In various embodiments, a rigid lens is attached to a light-emitting semiconductor die via a layer of encapsulant having a thickness insufficient to prevent propagation of thermal expansion mismatch-induced strain between the rigid lens and the semiconductor die.

  13. Fabrication of organic light emitting diode using Molybdenum ...

    Indian Academy of Sciences (India)


    Abstract: In this study high-performance of organic light-emitting diodes (OLEDs) with a buffer layer of MoO3 are demonstrated. With an optimal thickness of MoO3 (12 nm), the luminance efficiency is found to be increased compared to the single layer anode OLED. To study the performance of OLED by the buffer layer we ...

  14. A summary of LED lighting impacts on health

    Directory of Open Access Journals (Sweden)

    Cosmin Ticleanu


    Full Text Available Lighting can affect the health of people in buildings. This goes beyond the safety aspects of providing enough illumination to see by; lighting affects mood and human circadian rhythms, while poor lighting can cause glare, headaches, eyestrain, aches and pains associated with poor body posture or, in extreme cases, skin conditions and various types of sight loss. These aspects ought to be considered by designers and building owners and occupiers in order to improve the lit environment and use adequate lighting and lighting controls that meet the recommendations of codes and standards. Various types of lighting can have different impacts depending on their spectral, optical and electrical characteristics. This paper discusses potential impacts of LED lighting on human health, and is based on a recent BRE review of research investigating the most typical effects of lighting on human health.

  15. LED Street Lighting Solutions: Flagstaff, Arizona as a Case Study (United States)

    Hall, Jeffrey C.


    Dark-sky protection in Flagstaff, Arizona extends back to 1958, with the first ordinance in the City banning advertising floodlights. The current ordinance, adopted in 1989, is comprehensive and has played a critical role in maintaining the quality of the night sky for astronomy, tourism, public enjoyment, and other purposes. Flagstaff, like many communities around the world, is now working on a transition from legacy bulb-based technology to LED for its outdoor lighting. The City, Lowell Observatory, the U. S. Naval Observatory, and the Flagstaff Dark Skies Coalition have been working intensively for two years to identify an LED-based street lighting solution that will preserve the City's dark skies while meeting municipal needs. We will soon be installing test fixtures for an innovative solution incorporating narrow-band amber LED and modest amounts of low-CCT white LED. In this talk, I will review the types of LEDs available for outdoor lighting and discuss the plans for Flagstaff's street lighting in the LED era, which we hope will be a model for communities worldwide.

  16. LEDWIRE: A Versatile Networking Platform for Smart LED Lighting Applications Using LIN-Bus and WSNs

    Directory of Open Access Journals (Sweden)

    Dimitrios D. Piromalis


    Full Text Available In this paper, the architecture of a versatile networking and control platform for Light-Emitting Diode (LED lighting applications is presented, based on embedded wireless and wired networking technologies. All the possible power and control signals distribution topologies of the lighting fixtures are examined with particular focus on dynamic lighting applications with design metrics as the cost, the required wiring installation expenses and maintenance complexity. The proposed platform is optimized for applications where the grouping of LED-based lighting fictures clusters is essential, as well as their synchronization. With such an approach, the distributed control and synchronization of LED lighting fixtures' clusters is performed through a versatile network that uses the single wire Local Interconnect Network (LIN bus. The proposed networking platform is presented in terms of its physical layer architecture, its data protocol configuration, and its functionality for smart control. As a proof of concept, the design of a LED lighting fixture together with a LIN-to-IEEE802.15.4/ZigBee data gateway is presented.

  17. Evaluation of light intensity output of QTH and LED curing devices in various governmental health institutions. (United States)

    Al Shaafi, Mm; Maawadh, Am; Al Qahtani, Mq


    The purpose of this study was to evaluate the light intensity output of quartz-tungsten-halogen (QTH) and light emitting diode (LED) curing devices located at governmental health institutions in Riyadh, Saudi Arabia.Eight governmental institutions were involved in the study. The total number of evaluated curing devices was 210 (120 were QTH and 90 were LED). The reading of the light intensity output for each curing unit was achieved using a digital spectrometer; (Model USB4000 Spectrometer, Ocean Optics Inc, Dunedin, FL, USA). The reading procedure was performed by a single investigator; any recording of light intensity below 300 mW/cm2 was considered unsatisfactory.The result found that the recorded mean values of light intensity output for QTH and LED devices were 260 mW/cm2 and 598 mW/cm2, respectively. The percentage of QTH devices and LED devices considered unsatisfactory was 67.5% and 15.6%, respectively. Overall, the regular assessment of light curing devices using light meters is recommended to assure adequate output for clinical use.

  18. An Integrated Solid-State LED Luminaire for General Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Dowling; Fritz Morgan Ihor Lys; Mike Datta; Bernd Keller; Thomas Yuan


    A strong systems approach to designing and building practical LED-based replacement lamps is lacking. The general method of taking high-performance LEDs and marrying them to standard printed circuit boards, drivers and a heat sink has fallen short of the promise of LED lighting. In this program, a top-down assessment of requirements and a bottom-up reinvention of LED sources, electronics, optics and mechanics have resulted in the highest performance lamp possible. The team, comprised of Color Kinetics, the leaders in LED lighting and Cree, the leaders in LED devices took an approach to reinvent the package, the driver and the overall form and aesthetic of a replacement source. The challenge was to create a new benchmark in LED lighting - the resultant lamp, a PAR38 equivalent, met the light output, color, color quality and efficacy marks set out in the program as well as being dimmable, which is important for market acceptance. The approach combined the use of multiple source die, a chip-on-board approach, a very efficient driver topology, the use of both direct emission and phosphor conversion, and a unique faceted optic to avoid the losses, artifacts and hotspots of lensed approaches. The integral heat sink provided a mechanical base and airflow using a chimney-effect for use in a wide variety of locations and orientations. These research results led to a much better understanding of the system effects of component level technologies. It was clear that best-of-breed sub-system results do not necessarily result in the best end result for the complete system. In doing this work, we did not neglect the practical aspects of these systems. These were not rarified results and commercially impractical but lent themselves to eventual commercial products in the marketplace. The end result - a high performance replacement lamp - will save significant energy while providing a high-quality light source.

  19. Spectral effects of light-emitting diodes on plant growth and development: The importance of green and blue light (United States)

    Cope, K. R.; Bugbee, B.


    Light-emitting diodes (LEDs) are an emerging technology for plant growth lighting. Due to their narrow spectral output, colored LEDs provide many options for studying the spectral effects of light on plants. Early on, efficient red LEDs were the primary focus of photobiological research; however, subsequent studies have shown that normal plant growth and development cannot be achieved under red light without blue light supplementation. More recent studies have shown that red and blue (RB) LEDs supplemented with green light increase plant dry mass. This is because green light transmits more effectively through the leaf canopy than red and blue light, thus illuminating lower plant leaves and increasing whole-plant photosynthesis. Red, green and blue (RGB) light can be provided by either a conventional white light source (such as fluorescent lights), a combination of RGB LEDs, or from recently developed white LEDs. White LEDs exceed the efficiency of fluorescent lights and have a comparable broad spectrum. As such, they have the potential to replace fluorescent lighting for growth-chamber-based crop production both on Earth and in space. Here we report the results of studies on the effects of three white LED types (warm, neutral and cool) on plant growth and development compared to combinations of RB and RGB LEDs. Plants were grown under two constant light intensities (200 and 500 μmol m-2 s-1). Temperature, environmental conditions and root-zone environment were uniformly maintained across treatments. Phytochrome photoequilbria and red/far-red ratios were similar among treatments and were comparable to conventional fluorescent lights. Blue light had a significant effect on both plant growth (dry mass gain) and development (dry mass partitioning). An increase in the absolute amount (μmol m-2 s-1) of blue light from 0-80 μmol m-2 s-1 resulted in a decrease in stem elongation, independent of the light intensity. However, an increase in the relative amount (%) of blue

  20. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing

    Energy Technology Data Exchange (ETDEWEB)

    Tuenge, Jason R.; Hollomon, Brad; Dillon, Heather E.; Snowden-Swan, Lesley J.


    This report covers the third part of a larger U.S. Department of Energy (DOE) project to assess the life-cycle environmental and resource impacts in the manufacturing, transport, use, and disposal of light-emitting diode (LED) lighting products in relation to incumbent lighting technologies. All three reports are available on the DOE website ( • Part 1: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent and LED Lamps; • Part 2: LED Manufacturing and Performance; • Part 3: LED Environmental Testing. Parts 1 and 2 were published in February and June 2012, respectively. The Part 1 report included a summary of the life-cycle assessment (LCA) process and methodology, provided a literature review of more than 25 existing LCA studies of various lamp types, and performed a meta-analysis comparing LED lamps with incandescent and compact fluorescent lamps (CFLs). Drawing from the Part 1 findings, Part 2 performed a more detailed assessment of the LED manufacturing process and used these findings to provide a comparative LCA taking into consideration a wider range of environmental impacts. Both reports concluded that the life-cycle environmental impact of a given lamp is dominated by the energy used during lamp operation—the upstream generation of electricity drives the total environmental footprint of the product. However, a more detailed understanding of end-of-life disposal considerations for LED products has become increasingly important as their installation base has grown. The Part 3 study (reported herein) was undertaken to augment the LCA findings with chemical analysis of a variety of LED, CFL, and incandescent lamps using standard testing procedures. A total of 22 samples, representing 11 different models, were tested to determine whether any of 17 elements were present at levels exceeding California or Federal regulatory thresholds for hazardous waste. Key findings include: • The selected

  1. Organic light emitting diode with light extracting layer (United States)

    Lu, Songwei


    A light extraction substrate includes a glass substrate having a first surface and a second surface. A light extraction layer is formed on at least one of the surfaces. The light extraction layer is a coating, such as a silicon-containing coating, incorporating nanoparticles.

  2. Progress in extremely high brightness LED-based light sources (United States)

    Hoelen, Christoph; Antonis, Piet; de Boer, Dick; Koole, Rolf; Kadijk, Simon; Li, Yun; Vanbroekhoven, Vincent; Van De Voorde, Patrick


    Although the maximum brightness of LEDs has been increasing continuously during the past decade, their luminance is still far from what is required for multiple applications that still rely on the high brightness of discharge lamps. In particular for high brightness applications with limited étendue, e.g. front projection, only very modest luminance values in the beam can be achieved with LEDs compared to systems based on discharge lamps or lasers. With dedicated architectures, phosphor-converted green LEDs for projection may achieve luminance values up to 200-300 Mnit. In this paper we report on the progress made in the development of light engines based on an elongated luminescent concentrator pumped by blue LEDs. This concept has recently been introduced to the market as ColorSpark High Lumen Density LED technology. These sources outperform the maximum brightness of LEDs by multiple factors. In LED front projection, green LEDs are the main limiting factor. With our green modules, we now have achieved peak luminance values of 2 Gnit, enabling LED-based projection systems with over 4000 ANSI lm. Extension of this concept to yellow and red light sources is presented. The light source efficiency has been increased considerably, reaching 45-60 lm/W for green under practical application conditions. The module architecture, beam shaping, and performance characteristics are reviewed, as well as system aspects. The performance increase, spectral range extensions, beam-shaping flexibility, and cost reductions realized with the new module architecture enable a breakthrough in LED-based projection systems and in a wide variety of other high brightness applications.

  3. County of Hawaii - A Unique LED Street Light Conversion (United States)

    Thiel, Ronald LeRoy


    In 2010 the County of Hawaii was paying $0.40/kW-Hr for electricity, $1.5 mil annual bill for 8,500 street lights. Over the past 20 years costs have increased on an average of 7% per year. Inventory maintenance frequency for the 8,500 lights was 35%, which meant 3,000 visits per year. The current LPS street lights were nearing 20 years of service and a complete replacement was imminent, a significant cost for the County of Hawaii and its 185,000 citizens.The astronomy community impact was identified early on and discussions conducted for an acceptable conversion path. Key concerns centered on the blue light content of the LED and reflected light.A demo project with Federal ARRA funds installed 1,000 LED full cut off fixtures achieving an energy savings of $200K annually. The results were extremely successful and were loudly applauded by both the general public and the Astronomy Institute. Hence, the Traffic Division recommended to the County administration changing the remaining lights, now numbering 9,000, to new LED lights. The County administration approved the change to the LED lights and an upgrade to the outdoor lighting ordinance.The remainder of the conversion, amounting to $6 million for materials and labor, is expected to yield an energy savings of approximately $800K annually with a 5 year recovery of costs that includes both energy savings and maintenance reduction.Additional benefits achieved from using full cutoff fixtures include reduction in glare for drivers, pedestrians, and elimination of trespass light onto neighboring residences.Benefits achieved by using a filtered LED includes reducing blue light to <1 %, diffusing the harshness of the direct LED light and the ability to use the most energy efficient lumen producing fixture to achieve in excess of 63% reduction in energy costs.Additional aspects of this conversion presentation will include steps to gather quantitative data showing reduction in light pollution, aerial and satellite surveys for

  4. White LED compared with other light sources: age-dependent photobiological effects and parameters for evaluation. (United States)

    Rebec, Katja Malovrh; Klanjšek-Gunde, Marta; Bizjak, Grega; Kobav, Matej B


    Ergonomic science at work and living places should appraise human factors concerning the photobiological effects of lighting. Thorough knowledge on this subject has been gained in the past; however, few attempts have been made to propose suitable evaluation parameters. The blue light hazard and its influence on melatonin secretion in age-dependent observers is considered in this paper and parameters for its evaluation are proposed. New parameters were applied to analyse the effects of white light-emitting diode (LED) light sources and to compare them with the currently applied light sources. The photobiological effects of light sources with the same illuminance but different spectral power distribution were determined for healthy 4-76-year-old observers. The suitability of new parameters is discussed. Correlated colour temperature, the only parameter currently used to assess photobiological effects, is evaluated and compared to new parameters.

  5. Light-emitting-diode Lambertian light sources as low-radiant-flux standards applicable to quantitative luminescence-intensity imaging (United States)

    Yoshita, Masahiro; Kubota, Hidehiro; Shimogawara, Masahiro; Mori, Kaneo; Ohmiya, Yoshihiro; Akiyama, Hidefumi


    Planar-type Lambertian light-emitting diodes (LEDs) with a circular aperture of several tens of μ m to a few mm in diameter were developed for use as radiant-flux standard light sources, which have been in strong demand for applications such as quantitative or absolute intensity measurements of weak luminescence from solid-state materials and devices. Via pulse-width modulation, time-averaged emission intensity of the LED devices was controlled linearly to cover a wide dynamic range of about nine orders of magnitude, from 10 μ W down to 10 fW. The developed planar LED devices were applied as the radiant-flux standards to quantitative measurements and analyses of photoluminescence (PL) intensity and PL quantum efficiency of a GaAs quantum-well sample. The results demonstrated the utility and applicability of the LED standards in quantitative luminescence-intensity measurements in Lambertian-type low radiant-flux level sources.

  6. Halogen light versus LED for bracket bonding: shear bond strength

    Directory of Open Access Journals (Sweden)

    Paulo Eduardo Guedes Carvalho


    Full Text Available INTRODUCTION: LED light-curing devices seek to provide a cold light activator which allows protocols of material polymerization with shorter duration. OBJECTIVE: The present study aimed to evaluate the shear bond strength of bracket bonding using three types of light-curing devices: One with halogen light (Optilight Plus - Gnatus and two with LEDs (Optilight CL - Gnatus and Elipar Freelight - 3M/ESPE. RESULTS: Comparing the results by analysis of variance, the Gnatus LED device showed an inferior statistical behavior in relation to other light sources, when activated by a short time. But, when it was used for 40 seconds, the polymerization results were consistent with the other evaluated sources. The device with the best average performance was the halogen light, followed by the 3M/ESPE LED. CONCLUSION: It was concluded that the LEDs may be indicated in orthodontic practice, as long as a protocol is used for the application of light with the activation time of 40 seconds.INTRODUÇÃO: os aparelhos de fotopolimerização por LED buscam proporcionar uma luz ativadora fria, que possibilite protocolos de polimerização do material com menor tempo de duração. OBJETIVO: avaliar a resistência à tração da colagem de braquetes, utilizando três tipos de aparelhos fotoativadores: um de luz halógena (Optilight Plus - Gnatus e outros dois de LED (Optilight CL - Gnatus; e Elipar Freelight - 3M/Espe. RESULTADOS: comparando os resultados por meio da análise de variância, o aparelho de LED Gnatus apresentou comportamento estatístico inferior em relação às outras fontes de luz, quando ativado por tempo reduzido. Já quando foi utilizado o tempo de 40 segundos, os resultados de polimerização foram compatíveis com as demais fontes avaliadas. O aparelho que apresentou melhor desempenho médio foi o de luz halógena, seguido pelo LED 3M/Espe. CONCLUSÃO: concluiu-se que os LEDs podem ser indicados na prática ortodôntica, uma vez que seja utilizado

  7. Broadband mid-infrared superlattice light-emitting diodes (United States)

    Ricker, R. J.; Provence, S. R.; Norton, D. T.; Boggess, T. F.; Prineas, J. P.


    InAs/GaSb type-II superlattice light-emitting diodes were fabricated to form a device that provides emission over the entire 3-5 μm mid-infrared transmission window. Variable bandgap emission regions were coupled together using tunnel junctions to emit at peak wavelengths of 3.3 μm, 3.5 μm, 3.7 μm, 3.9 μm, 4.1 μm, 4.4 μm, 4.7 μm, and 5.0 μm. Cascading the structure recycles the electrons in each emission region to emit several wavelengths simultaneously. At high current densities, the light-emitting diode spectra broadened into a continuous, broadband spectrum that covered the entire mid-infrared band. When cooled to 77 K, radiances of over 1 W/cm2 sr were achieved, demonstrating apparent temperatures above 1000 K over the 3-5 μm band. InAs/GaSb type-II superlattices are capable of emitting from 3 μm to 30 μm, and the device design can be expanded to include longer emission wavelengths.

  8. The influence of melt purification and structure defects on mid-infrared light emitting diodes

    CERN Document Server

    Krier, A


    Mid-infrared light emitting diodes which exhibit more than 7 mW (pulsed) and 0.35 mW dc output power at 3.3 mu m and at room temperature have been fabricated by liquid phase epitaxy using Pb as a neutral solvent. Using Pb solution an increase in pulsed output power of between two and three times was obtained compared with InAs light emitting diodes (LEDs) made using rare-earth gettering. The performance improvements were attributed to a reduction in residual carrier concentration arising from the removal of un-intentional donors and structure defects in the InAs active region material. These LEDs are well matched to the CH sub 4 absorption spectrum and potentially could form the basis of a practical infrared CH sub 4 gas sensor.

  9. "Light-box" accelerated growth of poinsettias: LED-only illumination (United States)

    Weerasuriya, Charitha; Detez, Stewart; Hock Ng, Soon; Hughes, Andrew; Callaway, Michael; Harrison, Iain; Katkus, Tomas; Juodkazis, Saulius


    For the current commercialized agricultural industry which requires a reduced product lead time to customer and supply all year round, an artificial light emitting diodes (LEDs)-based illumination has high potential due to high efficiency of electrical-to-light conversion. The main advantage of the deployed Red Green Blue Amber LED lighting system is colour mixing capability, which means ability to generate all the colours in the spectrum by using three or four primary colours LEDs. The accelerated plant growth was carried out in a "light-box" which was made to generate an artificial day/night cycle by moving the colour mixing ratio along the colour temperature curve of the chromaticity diagram. The control group of plants form the same initial batch was grown on the same shelf in a greenhouse at the same conditions with addition of artificial illumination by incandescent lamps for few hours. Costs and efficiency projections of LED lamps for horticultural applications is discussed together with required capital investment. The total cost of the "light-box" including LED lamps and electronics was 850 AUD.

  10. LED street lighting evaluation -- phase II : LED specification and life-cycle cost analysis. (United States)


    Phase II of this study focused on developing a draft specification for LED luminaires to be used by IDOT : and a life-cycle cost analysis (LCCA) tool for solid state lighting technologies. The team also researched the : latest developments related to...


    Energy Technology Data Exchange (ETDEWEB)

    Arto V. Nurmikko; Jung Han


    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the first 12 month contract period include (1) new means of synthesizing zero- and one-dimensional GaN nanostructures, (2) establishment of the building blocks for making GaN-based microcavity devices, and (3) demonstration of top-down approach to nano-scale photonic devices for enhanced spontaneous emission and light extraction. These include a demonstration of eight-fold enhancement of the external emission efficiency in new InGaN QW photonic crystal structures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  12. High-Bandwidth White-Light System Combining a Micro-LED with Perovskite Quantum Dots for Visible Light Communication. (United States)

    Mei, Shiliang; Liu, Xiaoyan; Zhang, Wanlu; Liu, Ran; Zheng, Lirong; Guo, Ruiqian; Tian, Pengfei


    This work proposes a high-bandwidth white-light system consisting of a blue gallium nitride (GaN) micro-LEDLED) exciting yellow-emitting CsPbBr 1.8 I 1.2 perovskite quantum dots (YQDs) for high-speed real-time visible light communication (VLC). The packaged 80 μm × 80 μm blue-emitting μLED has a modulation bandwidth of ∼160 MHz and a peak emission wavelength of ∼445 nm. The achievable bandwidth of the white-light system is up to 85 MHz in the absence of filters and equalization technology. Meanwhile, the bandwidth of the YQDs as a color converter is as high as 73 MHz with the blue GaN μLED as the pump source. A maximum data rate of 300 Mbps can be achieved by taking advantage of the high bandwidth of the white-light system using the non-return-to-zero on-off keying (NRZ-OOK) modulation scheme. The resultant bit-error rate is 2.0 × 10 -3 , well beneath the forward error correction criterion of 3.8 × 10 -3 required for error-free data transmission. In addition, the YQDs which we proposed as a color converter possess high stability for VLC. After half a year, the achievable bandwidths of the white-light system and the YQDs are still up to 83 and 70 MHz, respectively. This study provides the direction of developing high-bandwidth white-light system for both high-efficiency solid-state lighting and high-speed VLC.

  13. Spectral matching technology for light-emitting diode-based jaundice photodynamic therapy device (United States)

    Gan, Ru-ting; Guo, Zhen-ning; Lin, Jie-ben


    The objective of this paper is to obtain the spectrum of light-emitting diode (LED)-based jaundice photodynamic therapy device (JPTD), the bilirubin absorption spectrum in vivo was regarded as target spectrum. According to the spectral constructing theory, a simple genetic algorithm as the spectral matching algorithm was first proposed in this study. The optimal combination ratios of LEDs were obtained, and the required LEDs number was then calculated. Meanwhile, the algorithm was compared with the existing spectral matching algorithms. The results show that this algorithm runs faster with higher efficiency, the switching time consumed is 2.06 s, and the fitting spectrum is very similar to the target spectrum with 98.15% matching degree. Thus, blue LED-based JPTD can replace traditional blue fluorescent tube, the spectral matching technology that has been put forward can be applied to the light source spectral matching for jaundice photodynamic therapy and other medical phototherapy.

  14. Water cooling of high power light emitting diode

    DEFF Research Database (Denmark)

    Sørensen, Henrik


    The development in light technologies for entertainment is moving towards LED based solutions. This progress is not without problems, when more than a single LED is used. The amount of generated heat is often in the same order as in a conventional discharge lamp, but the allowable operating...

  15. Luminescence and squeezing of a superconducting light-emitting diode (United States)

    Hlobil, Patrik; Orth, Peter P.


    We investigate a semiconductor p -n junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a sharp frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence that results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. We show that the squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This reveals how the macroscopic coherence of a superconductor can be used to control the properties of light.

  16. Color Degradation of Textiles with Natural Dyes and of Blue Scale Standards Exposed to White LED Lamps:Evaluation of White LED Lamps for Effectiveness as Museum Lighting (United States)

    Ishii, Mie; Moriyama, Takayoshi; Toda, Masahiro; Kohmoto, Kohtaro; Saito, Masako

    White light-emitting diodes (LED) are well suited for museum lighting because they emit neither UV nor IR radiation, which damage artifacts. The color degradation of natural dyes and blue scale standards (JIS L 0841) by white LED lamps are examined, and the performance of white LED lamps for museum lighting is evaluated. Blue scale standard grades 1-6 and silk fabrics dyed with 22 types of natural dyes classified as mid to highly responsive in a CIE technical report (CIE157:2004) were exposed to five types of white LED lamps using different luminescence methods and color temperatures. Color changes were measured at each 15000 lx·hr (500 lx at fabric surface × 300 hr) interval ten times. The accumulated exposure totaled 150000 lx·hr. The data on conventional white LED lamps and previously reported white fluorescent (W) and museum fluorescent (NU) lamps was evaluated. All the white LED lamps showed lower fading rates compared with a W lamp on a blue scale grade 1. The fading rate of natural dyes in total was the same between an NU lamp (3000 K) and a white LED lamp (2869 K). However, yellow natural dyes showed higher fading rates with the white LED lamp. This tendency is due to the high power characteristic of the LED lamp around 400-500 nm, which possibly contributes to the photo-fading action on the dyes. The most faded yellow dyes were Ukon (Curcuma longa L.) and Kihada (Phellodendron amurense Rupr.), and these are frequently used in historic artifacts such as kimono, wood-block prints, and scrolls. From a conservation point of view, we need to continue research on white LED lamps for use in museum lighting.

  17. LED arrays as cost effective and efficient light sources for widefield microscopy.

    Directory of Open Access Journals (Sweden)

    Dinu F Albeanu

    Full Text Available New developments in fluorophores as well as in detection methods have fueled the rapid growth of optical imaging in the life sciences. Commercial widefield microscopes generally use arc lamps, excitation/emission filters and shutters for fluorescence imaging. These components can be expensive, difficult to maintain and preclude stable illumination. Here, we describe methods to construct inexpensive and easy-to-use light sources for optical microscopy using light-emitting diodes (LEDs. We also provide examples of its applicability to biological fluorescence imaging.

  18. Monte carlo analysis of multicolour LED light engine

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Thorseth, Anders; Jepsen, Jørgen


    A new Monte Carlo simulation as a tool for analysing colour feedback systems is presented here to analyse the colour uncertainties and achievable stability in a multicolour dynamic LED system. The Monte Carlo analysis presented here is based on an experimental investigation of a multicolour LED...... light engine designed for white tuneable studio lighting. The measured sensitivities to the various factors influencing the colour uncertainty for similar system are incorporated. The method aims to provide uncertainties in the achievable chromaticity coordinates as output over the tuneable range, e...

  19. High quality Danish design with intelligent LED light. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Paul Michael; Dam-Hansen, C.; Thestrup, B.; Pedersen, Henrik (Technical Univ. of Denmark, DTU Fotonik, Roskilde (Denmark)); Olsen, Jesper (JesperOlsen ApS, Frederiksberg (Denmark)); Falleboe, H.; Andersen, Jakob (MORFOSO, Copenhagen (Denmark))


    Based on the results achieved in a previous project, which enabled a number of designers to be trained in the potential of LED lighting technology, this project developed intelligent LED fixtures for work purposes and for private homes. The two types of fixtures both meet the original project objective of good colour rendition with Ra indices above 90 and colour temperatures variable within the interval 3,300 to 4,400 K. Furthermore, with luminous efficacies of 60 lumen/W, both fixtures have energy efficiencies exceeding that of an average energy-friendly light source. (ln)

  20. Modeling of light-emitting diode wavefronts for the optimization of transmission holograms. (United States)

    Karthaus, Daniela; Giehl, Markus; Sandfuchs, Oliver; Sinzinger, Stefan


    The objective of applying transmission holograms in automotive headlamp systems requires the adaptation of holograms to divergent and polychromatic light sources like light-emitting diodes (LEDs). In this paper, four different options to describe the scalar light waves emitted by a typical automotive LED are regarded. This includes a new approach to determine the LED's wavefront from interferometric measurements. Computer-generated holograms are designed considering the different LED approximations and recorded into a photopolymer. The holograms are reconstructed with the LED and the resulting images are analyzed to evaluate the quality of the wave descriptions. In this paper, we show that our presented new approach leads to better results in comparison to other wave descriptions. The enhancement is evaluated by the correlation between reconstructed and ideal images. In contrast to the next best approximation, a spherical wave, the correlation coefficient increased by 0.18% at 532 nm, 1.69% at 590 nm, and 0.75% at 620 nm.

  1. Application of Thin Films of Conjugated Polymers in Novel LED's and Liquid Crystal 'Light Valves'

    National Research Council Canada - National Science Library

    MacDiarmid, A


    Light emitting electroluminescent devices have been studied in which the conjugated light emitting polymer is separated on both sides from the device electrodes by a film of non-conducting polyaniline...

  2. Submicrometre resolved optical characterization of green nanowire-based light emitting diodes

    International Nuclear Information System (INIS)

    Bavencove, A-L; Tourbot, G; Garcia, J; Desieres, Y; Gilet, P; Levy, F; Andre, B; Gayral, B; Daudin, B; Dang, Le Si


    The electroluminescent properties of InGaN/GaN nanowire-based light emitting diodes (LEDs) are studied at different resolution scales. Axial one-dimensional heterostructures were grown by plasma-assisted molecular beam epitaxy (PAMBE) directly on a silicon (111) substrate and consist of the following sequentially deposited layers: n-type GaN, three undoped InGaN/GaN quantum wells, p-type AlGaN electron blocking layer and p-type GaN. From the macroscopic point of view, the devices emit light in the green spectral range (around 550 nm) under electrical injection. At 100 mA DC current, a 1 mm 2 chip that integrates around 10 7 nanowires emits an output power on the order of 10 μW. However, the emission of the nanowire-based LED shows a spotty and polychromatic emission. By using a confocal microscope, we have been able to improve the spatial resolution of the optical characterizations down to the submicrometre scale that can be assessed to a single nanowire. Detailed μ-electroluminescent characterization (emission wavelength and output power) over a representative number of single nanowires provides new insights into the vertically integrated nanowire-based LED operation. By combining both μ-electroluminescent and μ-photoluminescent excitation, we have experimentally shown that electrical injection failure is the major source of losses in these nanowire-based LEDs.

  3. Universal fixture design for body mounted LED lights (United States)

    Hajra, Debdyut


    Today LED headlamps, armbands and ankle-bands, shoe-lights etc. have become very popular. These find extensive use in search and rescue operations, mining, carving, etc. and are also used by individuals during hiking, trekking, running, etc. during dark hours. They serve two main purposes: they provide sufficient illumination in low light conditions and they are used to indicate the presence of a person after dark. These have the same basic requirements. They must produce sufficient light, have high durability, long battery life, must be light weight and energy efficient. This paper discusses possibilities of designing a universal LED fixture can be designed so that it meets the respective needs of everyone irrespective of their background and industry. It discusses the materials to be used for its different body parts, innovative clip design for attachment with support structures like head and armbands, helmets, shoes, etc.

  4. Numerical Investigation on Micro-Cavity Effect of Top-Emitting Organic Light Emitting Diode. (United States)

    Lee, Hyeongi; Hwang, Youngwook; Won, Taeyoung


    In this paper, we report our numerical investigation on the top-emitting OLED (Organic Light Emitting Diodes) with micro-cavity. Our numerical model includes an ensemble of radiating dipole antennas for light emission as well as Poisson Equation for carrier injection and transportation. We formulated a set of differential equations by the Finite Element Method. Our simulation revealed that the recombination rate is affected by the thickness of each layer comprising the OLED structure and the amount of emission is determined by the total thickness of the OLED structure due to micro-cavity effect which is observed in between the total reflection layer and the half reflection layer. Our numerical solver enables us to optimize the OLED structure and thereby improve the external quantum efficiency.

  5. Semiconductor-nanocrystals-based white light-emitting diodes. (United States)

    Dai, Quanqin; Duty, Chad E; Hu, Michael Z


    In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid-state lighting, such as white light-emitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid-state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement can cut the ever-increasing level of energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, the recent progress in semiconductor-nanocrystals-based WLEDs is highlighted, the different approaches for generating white light are compared, and the benefits and challenges of the solid-state lighting technology are discussed.

  6. Solution processed, white emitting tandem organic light-emitting diodes with inverted device architecture. (United States)

    Höfle, Stefan; Schienle, Alexander; Bernhard, Christoph; Bruns, Michael; Lemmer, Uli; Colsmann, Alexander


    Fully solution processed monochromatic and white-light emitting tandem or multi-photon polymer OLEDs with an inverted device architecture have been realized by employing WO3 /PEDOT:PSS/ZnO/PEI charge carrier generation layers. The luminance of the sub-OLEDs adds up in the stacked device indicating multi-photon emission. The white OLEDs exhibit a CRI of 75. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Increase of energy efficiency in horticultural tissue culture with high-power-LED lighting systems; Energieeffizienzsteigerung pflanzlicher In-vitro-Kulturverfahren mit Hochleistungs-LED-Belichtungssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Bornwasser, Thorsten


    The lighting of tissue cultures is one of the main cost factors in growing rooms due to the high energy need. A lighting system with high-power light-emitting diodes (HP-LEDs) was tested as an alternative to the conventionally used fluorescent tubes. Therefore the HP-LED-types royal-blue, red, and cool white were used to create different spectral outputs. The photon flux yield, level of efficiency, and spectral shift of the single HP-LEDs were measured beforehand at different operating conditions (i.e. increasing current and junction temperature). The energy efficiency of the HP-LED lighting system was determined at 0.83 {mu}mol W{sup -1}s{sup -1} with the same shelf board distance (300 mm) and average PPFD on the exposed surface as compared to the control lighting system. The energy efficiency of the fluorescent lighting system could reach a maximum value of 0.68 {mu}mol W{sup -1}s{sup -1}. In addition to the reduced energy needs, HP-LED lighting systems reduce the need for cooling energy in culture rooms to regulate the room temperature. HP-LED lighting systems allow the reduction of the shelf board distance due to the small mass volume of LEDs and diminished radiant heat output towards the plant. The lower shelf board distance led to an additional increase of the energy efficiency up to 1.16 {mu}mol W{sup -1}s{sup -1} at a distance of 210 mm. Simultaneously the PPFD distribution was more regular than under the exposure with a fluorescent tube. Beside the increase of energy efficiency, HP-LEDs facilitate the control of the spectral composition. The spectral output can be adjusted to the plants' needs and thereby permit a more optimal production and influence the plant morphology (Nhut und Na, 2010; Morrow, 2008). Various plant tissue cultures and their response to different spectral compositions were investigated with the developed HP-LED lighting system. For none of the tested cultures could a preference for one of the spectral compositions be determined

  8. Sugarcane micropropagation using light emitting diodes and adjustment in growth-medium sucrose concentration

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Gomes da Rocha


    Full Text Available The aim of this research was to evaluate the use of light emitting diodes (LEDs instead of white fluorescent lamps as light source and adequate growth-medium sucrose concentration for sugarcane micropropagation (Saccharum officinarum L.. Sugarcane (RB 872552 variety bud explants were evaluated during the multiplication and rooting phases under controlled growth-room conditions. Different light sources (blue, red and green LEDs; Growlux and white fluorescent lamps and different medium sucrose concentrations (0; 15; 30 and 45g L-1 were used, maintaining constant light intensity (20µmol m-2 s-1, photoperiod (16h and temperature (25+2°C. The experiment was a completely randomized design, and treatments were arranged in a 5x4 factorial (five light sources and four medium sucrose concentrations with six replications. Sugarcane bud growth was satisfactory under the three LED types studied. The presence of sucrose in growth media was essential for bud multiplication and rooting. Nevertheless, each light source requires the respective medium sucrose concentration adjustment for best results. Red LEDs provided a significantly high multiplication rate (although not the highest with 8.5 buds per sub-culture and 34.9g L-1 of sucrose; also, the highest bud length (33.3mm and the best plantlet acclimatization. Therefore, LED sources can advantageously substitute fluorescent lamps in laboratories of sugarcane micropropagation.


    Directory of Open Access Journals (Sweden)

    A. I. Podosinnikov


    Full Text Available Subject of study. The paper deals with light quality improvement of multi–chip RGB light-emitting diodes (LEDs and luminaries on their basis. In particular, we have studied the issues of the edge effect reducing, which is non–uniformity of color when observing the source of light under different angles as well as non-uniformity of color distribution on the illuminated surface. Methods. Experimental study of the edge effect has been performed, namely, the analysis of the halo at the periphery of the illuminated area and the non–uniformity of area at the surface of the screen illuminated with RGB LEDs with and without light concentrators. Modeling of illumination distribution at various distances from the source for the system containing four RGB LEDs with reflectors by ZEMAX software has been carried out. Assessment of the uniformity for light distribution via calculating the chromaticity coordinates has been performed. Main results. The possibility of modeling application at the stage of a luminary design is shown on the example of RGB LEDs for assessing the efficiency of light flux usage and colorimetric parameters. Suggested method simplifies significantly the design of luminaries and reduces associated costs. Practical relevance. The findings can be used in the design of luminaries based on RGB LEDs, including the ones with secondary optics elements.

  10. Curing performance of a new-generation light-emitting diode dental curing unit. (United States)

    Wiggins, Kim M; Hartung, Martin; Althoff, Olaf; Wastian, Christine; Mitra, Sumita B


    BACKGROUND; Recent technological advances have resulted in the marketing of high-powered, or HP, battery-operated light-emitting diode, or LED, dental curing lights. The authors examine the curing efficiency and peak polymerization temperature, or Tp, of a new HP LED curing light. The authors studied four visible light-curing, or VLC, units: HP LED (A), first-generation LED (B), conventional halogen (C) and high-intensity halogen (D). They determined the depth of cure, or DOC; adhesion; and Tp of three types of VLC resin-based composites after exposure to each light. The exposure times for units A and D were one-half those for units B and C. The power density of unit A was 1,000 milliwatts per square centimeter, which was comparable to that of unit D with turbo charge. The DOC and adhesion attained for all three resin-based composites after being light cured by unit A for a 10-second exposure time were equivalent to those after being light cured by unit D for a 10-second exposure time and to those after being light cured by units B and C for 20-second exposure times. The resin-based composites light cured by unit A attained significantly lower Tps than did those light cured by unit D at equivalent cure, or exposure, times and by unit C at twice the cure time. The authors found that Unit A effectively cured the resin-based composites at one-half the cure time of units B and C and at the same time as unit D, while maintaining low Tp. The battery-operated HP LED curing light might be an effective, time-saving alternative for clinicians to use in light curing resin-based composites.

  11. LED vs halogen light-curing of adhesive-precoated brackets. (United States)

    Mirabella, Davide; Spena, Raffaele; Scognamiglio, Giovanni; Luca, Lombardo; Gracco, Antonio; Siciliani, Giuseppe


    To test the hypothesis that bonding with a blue light-emitting diode (LED) curing unit produces no more failures in adhesive-precoated (APC) orthodontic brackets than bonding carried out by a conventional halogen lamp. Sixty-five patients were selected for this randomized clinical trial, in which a total of 1152 stainless steel APC brackets were employed. In order to carry out a valid comparison of the bracket failure rate following use of each type of curing unit, each patient's mouth was divided into four quadrants. In 34 of the randomly selected patients, designated group A, the APC brackets of the right maxillary and left mandibular quadrants were bonded using a halogen light, while the remaining quadrants were treated with an LED curing unit. In the other 31 patients, designated group B, halogen light was used to cure the left maxillary and right mandibular quadrants, whereas the APC brackets in the remaining quadrants were bonded using an LED dental curing light. The bonding date, the type of light used for curing, and the date of any bracket failures over a mean period of 8.9 months were recorded for each bracket and, subsequently, the chi-square test, the Yates-corrected chi-square test, the Fisher exact test, Kaplan-Meier survival estimates, and the log-rank test were employed in statistical analyses of the results. No statistically significant difference in bond failure rate was found between APC brackets bonded with the halogen light-curing unit and those cured with LED light. However, significantly fewer bonding failures were noted in the maxillary arch (1.67%) than in the mandibular arch (4.35%) after each light-curing technique. The hypothesis cannot be rejected since use of an LED curing unit produces similar APC bracket failure rates to use of conventional halogen light, with the advantage of a far shorter curing time (10 seconds).

  12. LED and Halogen Light Transmission through a CAD/CAM Lithium Disilicate Glass-Ceramic. (United States)

    Pereira, Carolina Nemesio de Barros; De Magalhães, Cláudia Silami; Daleprane, Bruno; Peixoto, Rogéli Tibúrcio Ribeiro da Cunha; Ferreira, Raquel da Conceição; Cury, Luiz Alberto; Moreira, Allyson Nogueira


    The effect of thickness, shade and translucency of CAD/CAM lithium disilicate glass-ceramic on light transmission of light-emitting diode (LED) and quartz-tungsten-halogen units (QTH) were evaluated. Ceramic IPS e.max CAD shades A1, A2, A3, A3.5, high (HT) and low (LT) translucency were cut (1, 2, 3, 4 and 5 mm). Light sources emission spectra were determined. Light intensity incident and transmitted through each ceramic sample was measured to determine light transmission percentage (TP). Statistical analysis used a linear regression model. There was significant interaction between light source and ceramic translucency (p=0.008) and strong negative correlation (R=-0.845, pceramic thickness and TP. Increasing one unit in thickness led to 3.17 reduction in TP. There was no significant difference in TP (p=0.124) between shades A1 (ß1=0) and A2 (ß1=-0.45) but significant reduction occurred for A3 (ß1=-0.83) and A3.5 (ß1=-2.18). The interaction QTH/HT provided higher TP (ß1=0) than LED/HT (ß1=-2.92), QTH/LT (ß1=-3.75) and LED/LT (ß1=-5.58). Light transmission was more effective using halogen source and high-translucency ceramics, decreased as the ceramic thickness increased and was higher for the lighter shades, A1 and A2. From the regression model (R2=0.85), an equation was obtained to estimate TP value using each variable ß1 found. A maximum TP of 25% for QTH and 20% for LED was found, suggesting that ceramic light attenuation could compromise light cured and dual cure resin cements polymerization.

  13. Si light-emitting device in integrated photonic CMOS ICs (United States)

    Xu, Kaikai; Snyman, Lukas W.; Aharoni, Herzl


    The motivation for integrated Si optoelectronics is the creation of low-cost photonics for mass-market applications. Especially, the growing demand for sensitive biochemical sensors in the environmental control or medicine leads to the development of integrated high resolution sensors. Here CMOS-compatible Si light-emitting device structures are presented for investigating the effect of various depletion layer profiles and defect engineering on the photonic transition in the 1.4-2.8 eV. A novel Si device is proposed to realize both a two-terminal Si-diode light-emitting device and a three-terminal Si gate-controlled diode light-emitting device in the same device structure. In addition to the spectral analysis, differences between two-terminal and three-terminal devices are discussed, showing the light emission efficiency change. The proposed Si optical source may find potential applications in micro-photonic systems and micro-optoelectro-mechanical systems (MOEMS) in CMOS integrated circuitry.

  14. A calibrated UV-LED based light source for water purification and characterisation of photocatalysis. (United States)

    Sergejevs, A; Clarke, C T; Allsopp, D W E; Marugan, J; Jaroenworaluck, A; Singhapong, W; Manpetch, P; Timmers, R; Casado, C; Bowen, C R


    Photocatalysis has a potential to become a cost effective industrial process for water cleaning. One of the most studied photocatalysts is titanium dioxide which, as a wide band gap semiconductor, requires ultraviolet (UV) light for its photoactivation. This is at the wavelengths where the efficiency of present-day light emitting diodes (LEDs) decreases rapidly, which presents a challenge in the use of UV-LEDs for commercially viable photocatalysis. There is also a need for accurate photocatalysis measurement of remediation rates of water-borne contaminants for determining optimum exposure doses in industrial applications. In response to these challenges, this paper describes a UV-LED based photocatalytic test reactor that provides a calibrated adjustable light source and pre-defined test conditions to remove as many sources of uncertainty in photocatalytic analysis as possible and thereby improve data reliability. The test reactor provides a selectable intensity of up to 1.9 kW m -2 at the photocatalyst surface. The comparability of the results is achieved through the use of pre-calibration and control electronics that minimize the largest sources of uncertainty; most notably variations in the intensity and directionality of the UV light emission of LEDs and in LED device heating.

  15. Active targeting of tumor cells using light emitting bacteria

    International Nuclear Information System (INIS)

    Moon, Sung Min; Min, Jung Joon; Hong, Yeong Jin; Kim, Hyun Ju; Le, Uuenchi N.; Rhee, Joon Haeng; Song, Ho Chun; Heo, Young Jun; Bom, Hee Seung; Choy, Hyon E


    The presence of bacteria and viruses in human tumors has been recognized for more than 50 years. Today, with the discovery of bacterial strains that specifically target tumors, and aided by genomic sequencing and genetic engineering, there is new interest in the use of bacteria as tumor vectors. Here, we show that bacteria injected intravenously into live animals entered and replicated in solid tumors and metastases using the novel imaging technology of biophotonics. Bioluminescence operon (LuxCDABE) or fluorescence protein, GFP) has been cloned into pUC19 plasmid to engineer pUC19lux or pUC19gfp. Engineered plasmid was transformed into different kinds of wild type (MG1655) or mutant E. coli (DH5, ppGpp, fnr, purE, crpA, flagella, etc.) strains to construct light emitting bacteria. Xenograft tumor model has been established using CT26 colon cancer cell line. Light emitting bacteria was injected via tail vein into tumor bearing mouse. In vivo bioluminescence imaging has been done after 20 min to 14 days of bacterial injection. We observed localization of tumors by light-emitting E. coli in tumor (CT-26) bearing mice. We confirmed the presence of light-emitting bacteria under the fluorescence microscope with E. coli expressing GFP. Althoug varying mutants strain with deficient invading function has been found in tumor tissues, mutant strains of movement (flagella) couldn't show any light signal from the tumor tissue under the cooled CCD camera, indicating bacteria may actively target the tumor cells. Based on their 'tumor-finding' nature, bacteria may be designed to carry multiple genes or drugs for detection and treatment of cancer, such as prodrug-converting enzymes, toxins, angiogenesis inhibitors and cytokines

  16. Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes. (United States)

    Kim, Byung-Jae; Mastro, Michael A; Hite, Jennifer; Eddy, Charles R; Kim, Jihyun


    We report a graphene-based transparent conductive electrode for use in ultraviolet (UV) GaN light emitting diodes (LEDs). A few-layer graphene (FLG) layer was mechanically deposited. UV light at a peak wavelength of 368 nm was successfully emitted by the FLG layer as transparent contact to p-GaN. The emission of UV light through the thin graphene layer was brighter than through the thick graphene layer. The thickness of the graphene layer was characterized by micro-Raman spectroscopy. Our results indicate that this novel graphene-based transparent conductive electrode holds great promise for use in UV optoelectronics for which conventional ITO is less transparent than graphene.

  17. Integration of 3D printed lens with InGaN light-emitting diodes with enhanced light extraction efficiency (United States)

    Ooi, Yu Kee; Ugras, Christopher; Liu, Cheng; Hartensveld, Matthew; Gandhi, Shaunak; Cormier, Denis; Zhang, Jing


    III-nitride based light-emitting diodes (LEDs) have great potential in various applications due to their higher efficiency and longer lifetime. However, conventional planar structure InGaN LED suffers from total internal reflection due to large refractive index contrast between GaN (nGaN = 2.5) and air (nair = 1), which results in low light extraction efficiency (ηextraction). Accordingly, various approaches have been proposed previously to enhance the ηextraction. Nevertheless, most of the proposed methods involve elaborated fabrication processes. Therefore, in this work, we proposed the integration of three-dimensional (3D) printing with LED fabrication as a straightforward and highlyreproducible method to improve the ηextraction. Specifically, 500-μm diameter dome-shaped lens of optically transparent acrylate-based photopolymer is 3D-printed on planar structure 500 × 500 μm2 blue-emitting LEDs. Light output power measurement shows that up to 9% enhancement at injection current 4 mA can be obtained from the LEDs with 3D printed lens on top as compared to LEDs without the lens. Angle-dependent electroluminescence measurement also exhibits significant light output enhancement between angles 0 and 30° due to the larger photon escape cone introduced by the higher refractive index of the 3D printed lens (nlens = 1.5) than the air medium as well as the enhanced light scattering effect attributed to the curvature surface of the 3D printed lens. Our simulation results based on 3D finitedifference time-domain method also show that up to 1.61-times enhancement in ηextraction can be achieved by the use of 3D-printed lens of various dimensions as compared to conventional structure without the lens.

  18. Improvement in light-extraction efficiency of light emitting diode ...

    Indian Academy of Sciences (India)

    ) to obtain the microlenses. Dimension of these microlenses was measured to be the order of 1–2 μ m. The effect of various microlens parameters such as diameter and area fraction on light-extraction efficiency was systematically studied.

  19. Plant experiments with light-emitting diode module in Svet space greenhouse (United States)

    Ilieva, Iliana; Ivanova, Tania; Naydenov, Yordan; Dandolov, Ivan; Stefanov, Detelin


    Light is necessary for photosynthesis and shoot orientation in the space plant growth facilities. Light modules (LM) must provide sufficient photosynthetic photon flux for optimal efficiency of photosynthetic processes and also meet the constraints for power, volume and mass. A new LM for Svet space greenhouse using Cree® XLamp® 7090 XR light-emitting diodes (LEDs) was developed. Monochromic LEDs emitting in the red, green, and blue regions of the spectrum were used. The LED-LM contains 36 LED spots - 30 LED spots with one red, green and blue LED and 6 LED spots with three red LEDs. Digital Multiplex Control Unit controls the LED spots and can set 231 levels of light intensity thus achieving Photosynthetic Photon Flux Density (PPFD) in the range 0-400 μmol m -2 s -1 and different percentages of the red, green and blue light, depending on the experimental objectives. Two one-month experiments with plants - lettuce and radicchio were carried out at 400 μmol m -2 s -1 PPFD (high light - HL) and 220 μmol m -2 s -1 PPFD (low light - LL) and 70% red, 20% green and 10% blue light composition. To evaluate the efficiency of photosynthesis, in vivo modulated chlorophyll fluorescence was measured by Pulse Amplitude Modulation (PAM) fluorometer on leaf discs and the following parameters: effective quantum yield of Photosystem II ( ΦPSII) and non-photochemical quenching (NPQ) were calculated. Both lettuce and radicchio plants grown at LL express higher photochemical activity of Photosystem II (PSII) than HL grown plants, evaluated by ΦPSII. Accelerated rise in NPQ in both LL grown plants was observed, while steady state NPQ values were higher in LL grown lettuce plants and did not differ in LL and HL grown radicchio plants. The extent of photoinhibition process in both plants was evaluated by changes in malonedialdehyde (MDA) concentration, peroxidase (POX) activity and hydrogen peroxide (H 2O 2) content. Accumulation of high levels of MDA and increased POX activity

  20. A color management system for multi-colored LED lighting

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Thorseth, Anders; Jepsen, Jørgen


    A new color control system is described and implemented for a five–color LED light engine, covering a wide white gamut. The system combines a new way of using pre-calibrated look-up tables and a rule-based optimization of chromaticity distance from the Planckian locus with a calibrated color sensor...

  1. Flower-Like Internal Emission Distribution of LEDs with Monolithic Integration of InGaN-based Quantum Wells Emitting Narrow Blue, Green, and Red Spectra. (United States)

    Lee, Kwanjae; Choi, Ilgyu; Lee, Cheul-Ro; Chung, Tae-Hoon; Kim, Yoon Seok; Jeong, Kwang-Un; Chung, Dong Chul; Kim, Jin Soo


    We report a phosphor-free white light-emitting diodes (LED) realized by the monolithic integration of In 0.18 Ga 0.82 N/GaN (438 nm, blue), In 0.26 Ga 0.74 N/GaN (513 nm, green), and In 0.45 Ga 0.55 N/In 0.13 Ga 0.87 N (602 nm, red) quantum wells (QWs) as an active medium. The QWs corresponding to blue and green light were grown using a conventional growth mode. For the red spectral emission, five-stacked In 0.45 Ga 0.55 N/In 0.13 Ga 0.87 N QWs were realized by the so-called Ga-flow-interruption (Ga-FI) technique, wherein the Ga supply was periodically interrupted during the deposition of In 0.3 Ga 0.7 N to form an In 0.45 Ga 0.55 N well. The vertical and lateral distributions of the three different light emissions were investigated by fluorescence microscope (FM) images. The FM image measured at a focal point in the middle of the n-GaN cladding layer for the red-emitting LED shows that light emissions with flower-like patterns with six petals are periodically observed. The chromaticity coordinates of the electroluminescence spectrum for the white LEDs at an injection current of 80 mA are measured to be (0.316, 0.312), which is close to ideal white light. In contrast with phosphor-free white-light-emitting devices based on nanostructures, our white light device exhibits a mixture of three independent wavelengths by monolithically grown InGaN-based QWs, thus demonstrating a more facile technique to obtain white LEDs.

  2. Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Arto V. Nurmikko; Jung Han


    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  3. Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Arto V. Nurmikko; Jung Han


    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the second 12 month contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  4. Efficient light emitting diodes by photon recycling and their application in pixelless infrared imaging devices (United States)

    Dupont, E.; Chiu, S.


    The success of the pixelless imaging concept using a quantum well infrared photodetector integrated with a light emitting diode (QWIP-LED) depends critically on the extent of spatial lateral spreading of both photocurrent generated in the QWIP and near infrared (NIR) photons emitted by the LED as they escape from the device layers. According to the photon recycling model proposed by Schnitzer et al. [Appl. Phys. Lett. 62, 131 (1993)] there appears to be a trade-off between a high LED external quantum efficiency and a small photon lateral spread, the former being a necessary condition for achieving high detector sensitivity. This lateral spreading due to multireflections and reincarnations of the NIR photons could potentially degrade the image quality or resolution of the device. By adapting Schnitzer's model to the QWIP-LED structure, we have identified device parameters that could potentially influence the NIR photon lateral spread and the LED external efficiency. In addition, we have developed a simple sequential model to estimate the crosstalk between the incoming far infrared image and the up-converted NIR image. We have found that the thickness of the LED is an important parameter that needs to be optimized in order to maximize the external efficiency and to minimize the crosstalk. A 6000-Å-thick LED active layer should give a resolution of ˜30 μm and an external efficiency of ˜10%.

  5. Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode. (United States)

    Poher, V; Zhang, H X; Kennedy, G T; Griffin, C; Oddos, S; Gu, E; Elson, D S; Girkin, M; French, P M W; Dawson, M D; Neil, M A


    We describe an optical sectioning microscopy system with no moving parts based on a micro-structured stripe-array light emitting diode (LED). By projecting arbitrary line or grid patterns onto the object, we are able to implement a variety of optical sectioning microscopy techniques such as grid-projection structured illumination and line scanning confocal microscopy, switching from one imaging technique to another without modifying the microscope setup. The micro-structured LED and driver are detailed and depth discrimination capabilities are measured and calculated.

  6. Structural, electrical and luminescent characteristics of ultraviolet light emitting structures grown by hydride vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    A.Y. Polyakov


    Full Text Available Electrical and luminescent properties of near-UV light emitting diode structures (LEDs prepared by hydride vapor phase epitaxy (HVPE were studied. Variations in photoluminescence and electroluminescence efficiency observed for LEDs grown under nominally similar conditions could be attributed to the difference in the structural quality (dislocation density, density of dislocations agglomerates of the GaN active layers, to the difference in strain relaxation achieved by growth of AlGaN/AlGaN superlattice and to the presence of current leakage channels in current confining AlGaN layers of the double heterostructure.

  7. Electric-field-induced spin accumulation in polymer light-emitting diodes. (United States)

    Li, Sheng; George, Thomas F; Sun, Xin; Chen, Liang-Shan


    An electric-field-induced spin accumulation phenomenon is presented for electroluminescent conjugated polymers as light-emitting diodes (LEDs). When an electric field is applied along a polymer chain and exceeds a critical value, it quenches the luminescence and dissociates the singlet exciton into two carriers with opposite spin signs. Simultaneously, the field drives these two opposite spin carriers to move in opposite directions, leading to spin accumulation at the two ends of the organic material LED, which can be detected through Kerr rotation microscopy.

  8. Organic light-emitting diodes from homoleptic square planar complexes (United States)

    Omary, Mohammad A


    Homoleptic square planar complexes [M(N.LAMBDA.N).sub.2], wherein two identical N.LAMBDA.N bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes ("OLEDs"). Improved white organic light emitting diode ("WOLED") designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) ("Pt(ptp).sub.2").

  9. Phosphorescent organic light emitting diodes with high efficiency and brightness

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, Stephen R; Zhang, Yifan


    An organic light emitting device including a) an anode; b) a cathode; and c) an emissive layer disposed between the anode and the cathode, the emissive layer comprising an organic host compound and a phosphorescent compound exhibiting a Stokes Shift overlap greater than 0.3 eV. The organic light emitting device may further include a hole transport layer disposed between the emissive layer and the anode; and an electron transport layer disposed between the emissive layer and the cathode. In some embodiments, the phosphorescent compound exhibits a phosphorescent lifetime of less than 10 .mu.s. In some embodiments, the concentration of the phosphorescent compound ranges from 0.5 wt. % to 10 wt. %.

  10. Application of a novel red-emitting cationic iridium(III) coordination polymer in warm white light-emitting diodes (United States)

    Chen, Mingxian; Sun, Riyong; Ye, Yanchun; Tang, Huaijun; Dong, Xueyan; Yan, Jialun; Wang, Kaimin; Zhou, Qiang; Wang, Zhengliang


    A novel red-emitting cationic iridium(III) coordination polymer using 2-(9-(2-ethylhexyl)-9H-carbazol-3-yl)benzo[d]thiazole as main ligands, 4,4‧-bipyridine as bridging auxiliary ligands and Clˉ as anions was synthesized. It had high thermal stability with a thermal decomposition temperature (Td) of 345 °C and low thermal quenching with an activation energy (Ea) of 0.2760 eV, with the temperature increasing from 20 °C to 100 °C, its photoluminescent intensity decreased to 76.7%. It can be efficiently excited by blue light of GaN chips, the cold white light of GaN-based LEDs using only Y3Al5O12:Ce3+ (YAG:Ce, 7.0 wt% in silicone) as phosphors can become warmer when it was blended in. When blending concentrations were 0.1 wt% and 0.2 wt%, the cold white light became neutral white light, the correlated color temperature (CCT) decreased from 6157 K to 5240 K, then to 4043 K, the color rendering index (CRI) changed from 72.7 to 81.3, then to 78.6, the luminous efficiency (ηL) changed from 134.1 lm·w-1 to 61.9 lm·w-1, then to 46.3 lm·w-1, the Commission Internationale de L'Eclairage (CIE) chromaticity coordinates changed from (0.32, 0.33) to (0.34, 0.33), then to (0.38, 0.36). At 0.3 wt%, the light became warm white light, the corresponding CCT was 3475 K, CRI was 75.6, ηL was 36.9 lm·w-1, and CIE value was (0.41, 0.40). The results suggest the coordination polymer is a promising red-emitting phosphor candidate for neutral and warm white LEDs, especially for warm white LEDs.

  11. Effect of LED-LCU light irradiance distribution on mechanical properties of resin based materials

    Energy Technology Data Exchange (ETDEWEB)

    Magalhães Filho, T.R.; Weig, K.M. [Faculdade de Odontologia, Universidade Federal Fluminense, Rua São Paulo 28, CEP 24020-150 Niterói (Brazil); Engenharia Metalúrgica e de Materiais (COPPE), Universidade Federal do Rio de Janeiro, CP 68505, CEP: 21941-972 Rio de Janeiro (Brazil); Costa, M.F. [Engenharia Metalúrgica e de Materiais (COPPE), Universidade Federal do Rio de Janeiro, CP 68505, CEP: 21941-972 Rio de Janeiro (Brazil); Werneck, M.M. [Engenharia Elétrica (COPPE), Universidade Federal do Rio de Janeiro, CP 68504, CEP: 21941-972 Rio de Janeiro (Brazil); Barthem, R.B. [Instituto de Física, Universidade Federal do Rio de Janeiro, CP 68528, CEP: 21941-972 Rio de Janeiro (Brazil); Costa Neto, C.A., E-mail: [Engenharia Metalúrgica e de Materiais (COPPE), Universidade Federal do Rio de Janeiro, CP 68505, CEP: 21941-972 Rio de Janeiro (Brazil)


    The objective of this study is to analyze the light power distribution along the tip end of the light guide of three LED-LCUs (Light Curing Units) and to evaluate its effect on the mechanical properties of a polymer based dental composite. Firstly, the light power distribution over the whole area of LED-LCU light guide surface was analyzed by three methods: visual projection observation, spectral measurement and optical spectral analysis (OSA). The light power distribution and the total irradiance were different for the three LEDs used, but the wavelength was within the camphorquinone absorption spectrum. The use of a blank sheet was quite on hand to make a qualitative analysis of a beam, and it is costless. Secondly, specimens of a hybrid composite with approximately 8 mm diameter and 2 mm thickness were produced and polymerized by 20 s exposition time to each LED-LCU. Thirdly, the elastic modulus (E) and hardness (HV) were measured throughout the irradiated area by instrumented micro-indentation test (IIT), allowing to correlate localized power and mechanical properties. Both E and HV showed to be very sensitive to local power and wavelength dependent, but they followed the beam power profile. It was also shown that the mechanical properties could be directly correlated to the curing process. Very steep differences in mechanical properties over very short distances may impair the material performance, since residual stresses can easily be built over it. - Highlights: • A resin based composite (RBC) was polymerized by three different Light Emitting Diodes. • Each LED had its beam profile visually, wavelength and power analyzed. • The effective polymerization power (EPP) varied from 28% to 52% of the total beam power. • Wavelength seems to be as relevant as power in the light curing process. • Mechanical properties depend on the simultaneous effect of wavelength and power.

  12. Versatile multispectral microscope based on light emitting diodes. (United States)

    Brydegaard, Mikkel; Merdasa, Aboma; Jayaweera, Hiran; Ålebring, Jens; Svanberg, Sune


    We describe the development of a novel multispectral microscope, based on light-emitting diodes, capable of acquiring megapixel images in thirteen spectral bands from the ultraviolet to the near infrared. The system captures images and spectra in transmittance, reflectance, and scattering modes. We present as examples of applications ground truth measurements for remote sensing and parasitology diagnostics. The system is a general purpose scientific instrument that could be used to develop dedicated simplified instruments with optimal bands and mode selection.

  13. Electric field distribution in polymer light-emitting electrochemical cells (United States)

    deMello; Halls; Graham; Tessler; Friend


    We use electroabsorption spectroscopy and modeling studies to probe the electric field in light-emitting electrochemical cells. At room temperature and constant applied bias, the steady-state internal field is zero for a range of biases. However, when the ions are frozen in place by cooling under steady bias, and the bias is subsequently changed, the profile of the electric potential resembles a typical p-n junction.

  14. Lead Iodide Perovskite Light-Emitting Field-Effect Transistor


    Chin, Xin Yu; Cortecchia, Daniele; Yin, Jun; Bruno, Annalisa; Soci, Cesare


    Despite the widespread use of solution-processable hybrid organic?inorganic perovskites in photovoltaic and light-emitting applications, determination of their intrinsic charge transport parameters has been elusive due to the variability of film preparation and history-dependent device performance. Here we show that screening effects associated to ionic transport can be effectively eliminated by lowering the operating temperature of methylammonium lead iodide perovskite (CH3NH3PbI3) field-eff...

  15. Phosphor-Free InGaN White Light Emitting Diodes Using Flip-Chip Technology

    Directory of Open Access Journals (Sweden)

    Ying-Chang Li


    Full Text Available Monolithic phosphor-free two-color gallium nitride (GaN-based white light emitting diodes (LED have the potential to replace current phosphor-based GaN white LEDs due to their low cost and long life cycle. Unfortunately, the growth of high indium content indium gallium nitride (InGaN/GaN quantum dot and reported LED’s color rendering index (CRI are still problematic. Here, we use flip-chip technology to fabricate an upside down monolithic two-color phosphor-free LED with four grown layers of high indium quantum dots on top of the three grown layers of lower indium quantum wells separated by a GaN tunneling barrier layer. The photoluminescence (PL and electroluminescence (EL spectra of this white LED reveal a broad spectrum ranging from 475 to 675 nm which is close to an ideal white-light source. The corresponding color temperature and color rendering index (CRI of the fabricated white LED, operated at 350, 500, and 750 mA, are comparable to that of the conventional phosphor-based LEDs. Insights of the epitaxial structure and the transport mechanism were revealed through the TEM and temperature dependent PL and EL measurements. Our results show true potential in the Epi-ready GaN white LEDs for future solid state lighting applications.

  16. Optical and thermal design of light emitting diodes omnidirectional bulb. (United States)

    Ye, Zhi Ting; Kuo, Hao-Chung; Chen, Cheng-Huan


    The penetration of LED light bulbs into the lighting market is growing quickly in recent years due to significant increase of LED efficiency and reduction of cost. One major issue to be improved is the overall light bulb efficiency, which can fulfill "Energy Star for Lamps" while keeping sufficiently high efficiency. The efficiency issue results mainly from the high directionality of the LED sources and the corresponding solutions to make the emission more diverse. In this paper, a diffusion white reflection sheet (DWRS) with an array of holes is proposed as a high efficiency solution for modulating a light emission profile with SMD type LED source. The hole size is adjusted with fixed hole pitch to both maximize the efficiency and meet the omnidirectional specification. In addition, the concept of thermal plastic insertion molding metal is proposed for thermal management without fins for cooling. The prototype demonstrates the efficiency (Ef.) of 87.6% and LED pad temperature of 85°C, which shows the feasibility as a total solution for high efficiency LED omnidirectional bulbs.

  17. Is the light-emitting diode a better light source than fluorescent tube for phototherapy of neonatal jaundice in preterm infants?


    Mohammadizadeh, Majid; Eliadarani, Fereshteh Kadkhodaei; Badiei, Zohreh


    Background: Light-emitting diodes (LEDs) are light sources recently used for phototherapy in neonatal jaundice. We compared the efficacy and safety of LEDs with fluorescent phototherapy in the treatment of indirect hyperbilirubinemia. Materials and Methods: This controlled trial was conducted on preterm infants hospitalized in neonatal intensive care unit of Shahid Beheshti Hospital in Isfahan (Iran) who needed conventional phototherapy for uncomplicated indirect hyperbilirubinemia. Neon...

  18. Lead iodide perovskite light-emitting field-effect transistor (United States)

    Chin, Xin Yu; Cortecchia, Daniele; Yin, Jun; Bruno, Annalisa; Soci, Cesare


    Despite the widespread use of solution-processable hybrid organic-inorganic perovskites in photovoltaic and light-emitting applications, determination of their intrinsic charge transport parameters has been elusive due to the variability of film preparation and history-dependent device performance. Here we show that screening effects associated to ionic transport can be effectively eliminated by lowering the operating temperature of methylammonium lead iodide perovskite (CH3NH3PbI3) field-effect transistors. Field-effect carrier mobility is found to increase by almost two orders of magnitude below 200 K, consistent with phonon scattering-limited transport. Under balanced ambipolar carrier injection, gate-dependent electroluminescence is also observed from the transistor channel, with spectra revealing the tetragonal to orthorhombic phase transition. This demonstration of CH3NH3PbI3 light-emitting field-effect transistors provides intrinsic transport parameters to guide materials and solar cell optimization, and will drive the development of new electro-optic device concepts, such as gated light-emitting diodes and lasers operating at room temperature.

  19. Light-emitting diode lighting for forest nursery seedling production (United States)

    R. Kasten Dumroese; Jeremiah R. Pinto; Anthony S. Davis


    Crop lighting is an energy-intensive necessity for nursery production of high-quality native plants and forest tree seedlings. During the winter months (especially in northern USA latitudes) or overcast or cloudy days, the amount of solar radiation reaching greenhouse crops is insufficient resulting in growth cessation, early terminal bud formation, and failure of...

  20. Improvement in light-extraction efficiency of light emitting diode ...

    Indian Academy of Sciences (India)


    Feb 2, 2018 ... ranging from 20 to 40 nm. Then, this PS film was kept in dewetting solution namely methylethylketone (MEK) to obtain the microlenses. Dimension of these microlenses was measured to be the order of 1–2 μm. The effect of various microlens parameters such as diameter and area fraction on light-extraction ...