Sample records for led flip chip

  1. Efficiency and Droop Improvement in GaN-Based High-Voltage Flip Chip LEDs

    Directory of Open Access Journals (Sweden)

    Yen-Chih Chiang


    Full Text Available The GaN-based high-voltage flip chip light-emitting diode (HVFC-LED is designed and developed for the purpose of efficiency enhancement. In our design, the distributed Bragg reflector (DBR is deposited at the bonded substrate to increase the light extraction. After the flip chip process, the general current-voltage characteristics between the flip chip sample and the traditional sample are essentially the same. With the help of great thermal conductive silicon substrate and the bottom DBR, the HVFC-LED is able to enhance the power by 37.1% when compared to the traditional high-voltage LEDs. The wall-plug efficiencies of the HVFC-LED also show good droop reduction as high as 9.9% compared to the traditional devices.

  2. Advanced flip chip packaging

    CERN Document Server

    Lai, Yi-Shao; Wong, CP


    Advanced Flip Chip Packaging presents past, present and future advances and trends in areas such as substrate technology, material development, and assembly processes. Flip chip packaging is now in widespread use in computing, communications, consumer and automotive electronics, and the demand for flip chip technology is continuing to grow in order to meet the need for products that offer better performance, are smaller, and are environmentally sustainable. This book also: Offers broad-ranging chapters with a focus on IC-package-system integration Provides viewpoints from leading industry executives and experts Details state-of-the-art achievements in process technologies and scientific research Presents a clear development history and touches on trends in the industry while also discussing up-to-date technology information Advanced Flip Chip Packaging is an ideal book for engineers, researchers, and graduate students interested in the field of flip chip packaging.

  3. Comparative experimental and simulation studies of high-power AlGaN-based 353 nm ultraviolet flip-chip and top-emitting LEDs (United States)

    Liu, Mengling; Zhou, Shengjun; Liu, Xingtong; Gao, Yilin; Ding, Xinghuo


    Experimental and simulation studies of high-power AlGaN-based 353 nm ultraviolet (UV) flip-chip (FC) and top-emitting (TE) light-emitting diodes (LEDs) are performed here. To improve the optical and electrical properties of ultraviolet LEDs, we fabricate high-power FC-UV LEDs with Ta2O5/SiO2 distributed Bragg reflectors (DBRs) and a strip-shaped SiO2 current blocking layer (CBL). The reflectance of fourteen pairs of Ta2O5/SiO2 DBRs is 96.4% at 353 nm. The strip-shaped SiO2 CBL underneath the strip-shaped p-electrode can prevent the current concentrating in regions immediately adjacent to the p-electrode where the overlying opaque p-electrode metal layer absorbs the emitted UV light. Moreover, two-level metallization electrodes are used to improve current spreading. Our numerical results show that FC-UV LED has a more favorable current spreading uniformity than TE-UV LED. The light output power of 353 nm FC-UV LED was 23.22 mW at 350 mA, which is 24.7% higher than that of TE-UV LED.

  4. Flip-chip integrated optical wireless transceivers (United States)

    O'Brien, Dominic C.; Faulkner, Grahame E.; Zyambo, Emmanuel B.; Edwards, David J.; Stavrinou, Paul N.; Parry, Gareth; Bellon, Jacques; Sibley, Martin J. N.; Lalithambika, Vinod A.; Joyner, Valencia M.; Samsudin, Rina J.; Holburn, David M.; Mears, Robert J.


    The widespread use of Optical LANs is dependent on the ability to fabricate low cost transceiver components. These are usually complex, and fabrication involves the integration of optoelectronic and electronic devices, as well as optical components. A consortium of four UK universities are currently involved in a project to demonstrate integrated optical wireless transceiver subsystems that can provide eye-safe line of sight in-building communication at 155Mbit/s and above. In this paper we discuss the flip-chip integration of two-dimensional arrays of novel microcavity LEDs with custom CMOS integrated circuits in order to produce solid state tracking emitters. Design, fabrication and integration of these structures are detailed. The scaleability and future capability available given further optimisation and development of these systems is also discussed.

  5. Output Properties of Transparent Submount Packaged FlipChip Light-Emitting Diode Modules

    Directory of Open Access Journals (Sweden)

    Preetpal Singh


    Full Text Available Flip chip technology has been widely adopted in modern power light-emitting diode (LED fabrications and its output efficiency is closely related to the submount material properties. Here, we present the electrical, optical and thermal properties of flip chip light-emitting diodes mounted on transparent sapphire and borosilicate glass which have shown a higher output luminous flux when compared to the traditional non-transparent mounted LEDs. Exhibiting both better thermal conductivity and good optical transparency, flip chip LEDs with a sapphire submount showed superior performance when compared to the non-transparent silicon submount ones, and also showed better optical performance than the flip chip LEDs mounted on transparent but poor-thermal-conducting glass substrates. The correspondent analysis was carried out using ANSYS 14 to compare the experimental thermal imaging with the simulation results. TracePro software was also used to check the output luminous flux dependency on different LED mounting designs.

  6. GaN-based flip-chip LEDs with highly reflective ITO/DBR p-type and via hole-based n-type contacts for enhanced current spreading and light extraction (United States)

    Zhou, Shengjun; Zheng, Chenju; Lv, Jiajiang; Gao, Yilin; Wang, Ruiqing; Liu, Sheng


    We demonstrate GaN-based double-layer electrode flip-chip light-emitting diodes (DLE-FCLED) with highly reflective indium-tin oxide (ITO)/distributed bragg reflector (DBR) p-type contact and via hole-based n-type contacts. Transparent thin ITO in combination with TiO2/SiO2 DBR is used for reflective p-type ohmic contact, resulting in a significant reduction in absorption of light by opaque metal electrodes. The finely distributed via hole-based n-type contacts are formed on the n-GaN layer by etching via holes through p-GaN and multiple quantum well (MQW) active layer, leading to reduced lateral current spreading length, and hence alleviated current crowding effect. The forward voltage of the DLE-FCLED is 0.31 V lower than that of the top-emitting LED at 90 mA. The light output power of DLE-FCLED is 15.7% and 80.8% higher than that of top-emitting LED at 90 mA and 300 mA, respectively. Compared to top- emitting LED, the external quantum efficiency (EQE) of DLE-FCLED is enhanced by 15.4% and 132% at 90 mA and 300 mA, respectively. The maximum light output power of the DLE-FCLED obtained at 195.6 A/cm2 is 1.33 times larger than that of the top-emitting LED obtained at 93 A/cm2.

  7. Polymer Flip Chips with Extreme Temperature Stability in Space Project (United States)

    National Aeronautics and Space Administration — The objective of the proposed SBIR Phase I program is to develop highly thermally and electrically conductive nanocomposites for space-based flip chips for...

  8. Experiences in flip chip production of radiation detectors

    International Nuclear Information System (INIS)

    Savolainen-Pulli, Satu; Salonen, Jaakko; Salmi, Jorma; Vaehaenen, Sami


    Modern imaging devices often require heterogeneous integration of different materials and technologies. Because of yield considerations, material availability, and various technological limitations, an extremely fine pitch is necessary to realize high-resolution images. Thus, there is a need for a hybridization technology that is able to join together readout amplifiers and pixel detectors at a very fine pitch. This paper describes radiation detector flip chip production at VTT. Our flip chip technology utilizes 25-μm diameter tin-lead solder bumps at a 50-μm pitch and is based on flux-free bonding. When preprocessed wafers are used, as is the case here, the total yield is defined only partly by the flip chip process. Wafer preprocessing done by a third-party silicon foundry and the flip chip process create different process defects. Wafer-level yield maps (based on probing) provided by the customer are used to select good readout chips for assembly. Wafer probing is often done outside of a real clean room environment, resulting in particle contamination and/or scratches on the wafers. Factors affecting the total yield of flip chip bonded detectors are discussed, and some yield numbers of the process are given. Ways to improve yield are considered, and finally guidelines for process planning and device design with respect to yield optimization are given

  9. Comparison of the properties of AlGaInN light-emitting diode chips of vertical and flip-chip design using silicon as the a submount

    International Nuclear Information System (INIS)

    Markov, L. K.; Smirnova, I. P.; Pavlyuchenko, A. S.; Kukushkin, M. V.; Vasil’eva, E. D.; Chernyakov, A. E.; Usikov, A. S.


    Vertical and flip-chip light-emitting diode (LED) chips are compared from the viewpoint of the behavior of current spreading in the active region and the distribution of local temperatures and thermal resistances of chips. AlGaInN LED chips of vertical design are fabricated using Si as a submount and LED flipchips were fabricated with the removal of a sapphire substrate. The latter are also mounted on a Si submount. The active regions of both chips are identical and are about 1 mm 2 in size. It is shown that both the emittance of the crystal surface in the visible range and the distribution of local temperatures estimated from radiation in the infrared region are more uniform in crystals of vertical design. Heat removal from flip-chips is insufficient in regions of the n contact, which do not possess good thermal contact with the submount. As a result, the total thermal resistances between the p-n junction and the submount both for the vertical chips and for flip-chips are approximately 1 K/W. The total area of the flip-chips exceeds that of the vertical design chips by a factor of 1.4.

  10. Development of gold based solder candidates for flip chip assembly

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri


    Flip chip technology is now rapidly replacing the traditional wire bonding interconnection technology in the first level packaging applications due to the miniaturization drive in the microelectronics industry. Flip chip assembly currently involves the use of high lead containing solders...... for interconnecting the chip to a carrier in certain applications due to the unique properties of lead. Despite of all the beneficial attributes of lead, its potential environmental impact when the products are discarded to land fills has resulted in various legislatives to eliminate lead from the electronic products...... based on its notorious legacy as a major health hazard across the spectrum of human generations and cultures. Flip chip assembly is also now increasingly being used for the high-performance (H-P) systems. These H-P systems perform mission-critical operations and are expected to experience virtually...

  11. Development of Flip Chip Rework Method for High Dense Printed Circuit Board


    森, 史成; 鳥山, 和重; 勝, 直樹; 荘司, 郁夫


    Flip chip attach technology has many advantages and is considered one of the most important technology in the micro joining field. However, the flip chip rework is difficult when the flip chip bonding is formed on the high density card. We developed new flip chip rework method using the solder capped chip technology. In this technology, Sn-37Pb solder, which is neccessary to form the flip chip joint again, is applied on Pb-3Sn bumps of bare chip by the paste printing method. That solder cappe...

  12. Flip chip assembly of thinned chips for hybrid pixel detector applications

    International Nuclear Information System (INIS)

    Fritzsch, T; Zoschke, K; Rothermund, M; Oppermann, H; Woehrmann, M; Ehrmann, O; Lang, K D; Huegging, F


    There is a steady trend to ultra-thin microelectronic devices. Especially for future particle detector systems a reduced readout chip thickness is required to limit the loss of tracking precision due to scattering. The reduction of silicon thickness is performed at wafer level in a two-step thinning process. To minimize the risk of wafer breakage the thinned wafer needs to be handled by a carrier during the whole process chain of wafer bumping. Another key process is the flip chip assembly of thinned readout chips onto thin sensor tiles. Besides the prevention of silicon breakage the minimization of chip warpage is one additional task for a high yield and reliable flip chip process. A new technology using glass carrier wafer will be described in detail. The main advantage of this technology is the combination of a carrier support during wafer processing and the chip support during flip chip assembly. For that a glass wafer is glue-bonded onto the backside of the thinned readout chip wafer. After the bump deposition process the glass-readout chip stack is diced in one step. Finally the glass carrier chip is released by laser illumination after flip chip assembly of the readout chip onto sensor tile. The results of the flip chip assembly process development for the ATLAS IBL upgrade are described more in detail. The new ATLAS FEI4B chip with a size of 20 × 19 mm 2 is flip chip bonded with a thickness of only 150 μm, but the capability of this technology has been demonstrated on hybrid modules with a reduced readout chip thickness of down to 50 μm which is a major step for ultra-thin electronic systems

  13. Identifying Professional Competencies of the Flip-Chip Packaging Engineer in Taiwan (United States)

    Guu, Y. H.; Lin, Kuen-Yi; Lee, Lung-Sheng


    This study employed a literature review, expert interviews, and a questionnaire survey to construct a set of two-tier competencies for a flip-chip packaging engineer. The fuzzy Delphi questionnaire was sent to 12 flip-chip engineering experts to identify professional competencies that a flip-chip packaging engineer must have. Four competencies,…

  14. Estimate the thermomechanical fatigue life of two flip chip packages

    International Nuclear Information System (INIS)

    Pash, R.A.; Ullah, H.S.; Khan, M.Z.


    The continuing demand towards high density and low profile integrated circuit packaging has accelerated the development of flip chip structures as used in direct chip attach (DCA) technology, ball grid array (BOA) and chip scale package (CSP). In such structures the most widely used flip chip interconnects are solder joints. The reliability of flip chip structures largely depends on the reliability of solder joints. In this work solder joint fatigue life prediction for two chip scale packages is carried out. Elasto-plastic deformation behavior of the solder was simulated using ANSYS. Two dimensional plain strain finite element models were developed for each package to numerically compute the stress and total strain of the solder joints under temperature cycling. These stress and strain values are then used to predict the solder joint lifetime through modified Coffin Manson equation. The effect of solder joint's distance from edge of silicon die on life of the package is explored. The solder joint fatigue response is modeled for a typical temperature cycling of -60 to 140 degree C. (author)

  15. A flip chip process based on electroplated solder bumps (United States)

    Salonen, J.; Salmi, J.


    Compared to wire bonding and TAB, flip chip technology using solder joints offers the highest pin count and packaging density and superior electrical performance. The chips are mounted upside down on the substrate, which can be made of silicon, ceramic, glass or - in some cases - even PCB. The extra processing steps required for chips are the deposition of a suitable thin film metal layer(s) on the standard Al pad and the formation of bumps. Also, the development of new fine line substrate technologies is required to utilize the full potential of the technology. In our bumping process, bump deposition is done by electroplating, which was chosen for its simplicity and economy. Sputter deposited molybdenum and copper are used as thin film layers between the aluminum pads and the solder bumps. A reason for this choice is that the metals can be selectively etched after bumping using the bumps as a mask, thus circumventing the need for a separate mask for etching the thin film metals. The bumps are electroplated from a binary Pb-Sn bath using a thick liquid photoresist. An extensively modified commercial flip chip bonder is used for alignment and bonding. Heat assisted tack bonding is used to attach the chips to the substrate, and final reflow joining is done without flux in a vacuum furnace.

  16. Silver flip chip interconnect technology and solid state bonding (United States)

    Sha, Chu-Hsuan

    -section, there is no void or gap observed. The new bonding technique presented should be valuable in packaging high power electronic devices for high temperature operations. It should also be useful to bond two 304SS parts together at low bonding temperature of 190ºC. Solid state bonding technique is then introduced to bond semiconductor chips, such as Si, to common substrates, such as Cu or alumina, using pure Ag and Au at a temperature matching the typical reflow temperature used in packaging industries, 260°C. In bonding, we realize the possibilities of solid state bonding of Au to Au, Au to Ag, and Ag to Cu. The idea comes from that Cu, Ag, and Au are located in the same column on periodic table, meaning that they have similar electronic configuration. They therefore have a better chance to share electrons. Also, the crystal lattice of Cu, Ag, and Au is the same, face-centered cubic. In the project, the detailed bonding mechanism is beyond the scope and here we determine the bonding by the experimental result. Ag is chosen as the joint material because of its superior physical properties. It has the highest electrical and thermal conductivities among all metals. It has low yield strength and is relatively ductile. Au is considered as well because its excellent ductility and fatigue resistance. Thus, the Ag or Au joints can deform to accommodate the shear strain caused by CTE mismatch between Si and Cu. Ag and Au have melting temperatures higher than 950°C, so the pure Ag or Au joints are expected to sustain in high operating temperature. The resulting joints do not contain any intermetallic compound. Thus, all reliability issues associated with intermetallic growth in commonly used solder joints do not exist anymore. We finally move to the applications of solid state Ag bonding in flip chip interconnects design. At present, nearly all large-scale integrated circuit (IC) chips are packaged with flip-chip technology. This means that the chip is flipped over and the active

  17. System for mounting flip chips on substrates; Kiban`yo furippu chip jisso system

    Energy Technology Data Exchange (ETDEWEB)



    Two mass production facilities are developed for mounting bumped IC chips on high-density substrates as in notebook size personal computers. The high-accuracy flip chip bonder is capable of alignment accuracy of {+-}5 micrometers, and installs multiple pin ICs of narrow bump pitches of 80 micrometers on substrates. It delicately controls pressure/heat-related conditions as required for each of the various bonding processes, and is also capable of performing the MCM (multi chip module) packaging in which plural IC chips are mounted on one and the same substrate. The underfill applicator injects sealing resin into between the substrate and ICs, and performs fixed quantity application with a variation of {+-}10% or less through the accurate management of viscosity, application rate, and gaps. (translated by NEDO)

  18. Fluxless flip chip bonding with joint-in-via architecture

    International Nuclear Information System (INIS)

    Kheng Lee, Teck; Zhang, Sam; Wong, C.C.; Tan, A.C.


    Flux and its residues impede flip chip deployment in the packaging and integration of microelectronic, optoelectronic, and micro-electromechanical systems. This paper describes a novel fluxless method of bonding Au studs with eutectic solder confined within cavities on a flex substrate. The joint structure was examined by scanning electron microscopy and energy-dispersive X-ray. In solid-state bonding, the joints are weak and unable to endure assembly processes. Bonding can occur with a joint-in-via (JIV) architecture with an optimized bonding condition when the solder is molten. Instantaneous fluxless bonding, known as thermo-mechanical bonding, was assessed and tolerated a standard reliability test. This fluxless bonding technique is applicable to heat-sensitive devices because of its heat-isolating bonding capability

  19. Contact Resistance of Flip-Chip Joints in Wearable Electronic Textiles (United States)

    Choi, Jung-Yeol; Oh, Tae Sung


    Flip-chip bonding to a Cu lead frame transferred to a fabric was achieved by use of a non-conducting adhesive. Average contact resistance of the flip-chip joints was evaluated on variation of the Cu and Sn thickness of Cu/Sn bumps of size 150 × 220 μm2. The total thickness of the Cu/Sn bumps was fixed at 15 μm. The average contact resistance of the flip-chip joints on the fabric was 5.4-10.8 mΩ, depending on the Sn thickness of the Cu/Sn bumps; this was lower than for flip-chip joints on a rigid Si substrate (15.6-26.5 mΩ). The average contact resistance of flip-chip joints on the fabric decreased from 10.8 mΩ to 5.5 mΩ when the chip-bump configuration was changed from 15- μm-thick Sn to 7- μm-thick Cu/8- μm-thick Sn. The contact resistance of flip-chip joints bonded with the 7- μm-thick Cu/8- μm-thick Sn bumps remained below 10 mΩ for up to 750 h in the 85°C/85% relative humidity test and even decreased to below 4 mΩ in the storage test at 125°C for up to 1000 h.

  20. Polymer Flip Chips with Extreme Temperature Stability in Space, Phase I (United States)

    National Aeronautics and Space Administration — The objective of the proposed SBIR Phase I program is to develop highly thermally and electrically conductive nanocomposites for space-based flip chips for...

  1. Phosphor-Free InGaN White Light Emitting Diodes Using Flip-Chip Technology

    Directory of Open Access Journals (Sweden)

    Ying-Chang Li


    Full Text Available Monolithic phosphor-free two-color gallium nitride (GaN-based white light emitting diodes (LED have the potential to replace current phosphor-based GaN white LEDs due to their low cost and long life cycle. Unfortunately, the growth of high indium content indium gallium nitride (InGaN/GaN quantum dot and reported LED’s color rendering index (CRI are still problematic. Here, we use flip-chip technology to fabricate an upside down monolithic two-color phosphor-free LED with four grown layers of high indium quantum dots on top of the three grown layers of lower indium quantum wells separated by a GaN tunneling barrier layer. The photoluminescence (PL and electroluminescence (EL spectra of this white LED reveal a broad spectrum ranging from 475 to 675 nm which is close to an ideal white-light source. The corresponding color temperature and color rendering index (CRI of the fabricated white LED, operated at 350, 500, and 750 mA, are comparable to that of the conventional phosphor-based LEDs. Insights of the epitaxial structure and the transport mechanism were revealed through the TEM and temperature dependent PL and EL measurements. Our results show true potential in the Epi-ready GaN white LEDs for future solid state lighting applications.

  2. Optimization of Indium Bump Morphology for Improved Flip Chip Devices (United States)

    Jones, Todd J.; Nikzad, Shouleh; Cunningham, Thomas J.; Blazejewski, Edward; Dickie, Matthew R.; Hoenk, Michael E.; Greer, Harold F.


    Flip-chip hybridization, also known as bump bonding, is a packaging technique for microelectronic devices that directly connects an active element or detector to a substrate readout face-to-face, eliminating the need for wire bonding. In order to make conductive links between the two parts, a solder material is used between the bond pads on each side. Solder bumps, composed of indium metal, are typically deposited by thermal evaporation onto the active regions of the device and substrate. While indium bump technology has been a part of the electronic interconnect process field for many years and has been extensively employed in the infrared imager industry, obtaining a reliable, high-yield process for high-density patterns of bumps can be quite difficult. Under the right conditions, a moderate hydrogen plasma exposure can raise the temperature of the indium bump to the point where it can flow. This flow can result in a desirable shape where indium will efficiently wet the metal contact pad to provide good electrical contact to the underlying readout or imager circuit. However, it is extremely important to carefully control this process as the intensity of the hydrogen plasma treatment dramatically affects the indium bump morphology. To ensure the fine-tuning of this reflow process, it is necessary to have realtime feedback on the status of the bumps. With an appropriately placed viewport in a plasma chamber, one can image a small field (a square of approximately 5 millimeters on each side) of the bumps (10-20 microns in size) during the hydrogen plasma reflow process. By monitoring the shape of the bumps in real time using a video camera mounted to a telescoping 12 magnifying zoom lens and associated optical elements, an engineer can precisely determine when the reflow of the bumps has occurred, and can shut off the plasma before evaporation or de-wetting takes place.

  3. A fast template matching method for LED chip Localization

    Directory of Open Access Journals (Sweden)

    Zhong Fuqiang


    Full Text Available Efficiency determines the profits of the semiconductor producers. So the producers spare no effort to enhance the efficiency of every procedure. The purpose of the paper is to present a method to shorten the time to locate the LED chips on wafer. The method consists of 3 steps. Firstly, image segmentation and blob analyzation are used to predict the positions of potential chips. Then predict the orientations of potential chips based on their dominant orientations. Finally, according to the positions and orientations predicted above, locate the chips precisely based on gradient orientation features. Experiments show that the algorithm is faster than the traditional method we choose to locate the LED chips. Besides, even the orientations of the chips on wafer are of big deviation to the orientation of the template, the efficiency of this method won't be affected.

  4. Packaging and Non-Hermetic Encapsulation Technology for Flip Chip on Implantable MEMS Devices. (United States)

    Sutanto, Jemmy; Anand, Sindhu; Sridharan, Arati; Korb, Robert; Zhou, Li; Baker, Michael S; Okandan, Murat; Muthuswamy, Jit


    We report here a successful demonstration of a flip-chip packaging approach for a microelectromechanical systems (MEMS) device with in-plane movable microelectrodes implanted in a rodent brain. The flip-chip processes were carried out using a custom-made apparatus that was capable of the following: 1) creating Ag epoxy microbumps for first-level interconnect; 2) aligning the die and the glass substrate; and 3) creating non-hermetic encapsulation (NHE). The completed flip-chip package had an assembled weight of only 0.5 g significantly less than the previously designed wire-bonded package of 4.5 g. The resistance of the Ag bumps was found to be negligible. The MEMS micro-electrodes were successfully tested for its mechanical movement with microactuators generating forces of 450 μ N with a displacement resolution of 8.8 μ m/step. An NHE on the front edge of the package was created by patterns of hydrophobic silicone microstructures to prevent contamination from cerebrospinal fluid while simultaneously allowing the microelectrodes to move in and out of the package boundary. The breakdown pressure of the NHE was found to be 80 cm of water, which is significantly (4.5-11 times) larger than normal human intracranial pressures. Bench top tests and in vivo tests of the MEMS flip-chip packages for up to 75 days showed reliable NHE for potential long-term implantation.

  5. Tin-Silver Alloys for Flip-Chip Bonding Studied with a Rotating Cylinder Electrode

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Pedersen, E.H.; Bech-Nielsen, G.


    Electrodeposition of solder for flip-chip bonding is studied in the form of a pyrophosphate/iodide tin-silver alloy bath. The objective is to obtain a uniform alloy composition, with 3.8 At.% silver, over a larger area. This specific alloy will provide an eutectic solder melting at 221°C (or 10°C...

  6. Effect of Metal Bond-Pad Configurations on the Solder Microstructure Development of Flip-Chip Solder Joints (United States)

    Hu, Y. J.; Hsu, Y. C.; Huang, T. S.; Lu, C. T.; Wu, Albert T.; Liu, C. Y.


    Various microstructural zones were observed in the solidified solder of flip-chip solder joints with three metal bond-pad configurations (Cu/Sn/Cu, Ni/Sn/Cu, and Cu/Sn/Ni). The developed microstructures of the solidified flip-chip solder joints were strongly related to the associated metal bond pad. A hypoeutectic microstructure always developed near the Ni bond pad, and a eutectic or hypereutectic microstructure formed near the Cu pad. The effect of the metal bond pads on the solder microstructure alters the Cu solubility in the molten solder. The Cu content (solubility) in the molten Sn(Cu) solder eventually leads to the development of particular microstructures. In addition to the effect of the associated metal bond pads, the developed microstructure of the flip-chip solder joint depends on the configuration of the metal bond pads. A hypereutectic microstructure formed near the bottom Cu pad, and a eutectic microstructure formed near the top Cu pad. Directional cooling in the flip-chip solder joint during the solidification process causes the effects of the metal bond-pad configuration. Directional cooling causes the Cu content to vary in the liquid Sn(Cu) phase, resulting in the formation of distinct microstructural zones in the developed microstructure of the flip-chip solder joint.

  7. Novel First-Level Interconnect Techniques for Flip Chip on MEMS Devices. (United States)

    Sutanto, Jemmy; Anand, Sindhu; Patel, Chetan; Muthuswamy, Jit


    Flip-chip packaging is desirable for microelectro-mechanical systems (MEMS) devices because it reduces the overall package size and allows scaling up the number of MEMS chips through 3-D stacks. In this report, we demonstrate three novel techniques to create first-level interconnect (FLI) on MEMS: 1) Dip and attach technology for Ag epoxy; 2) Dispense technology for solder paste; 3) Dispense, pull, and attach technology (DPAT) for solder paste. The above techniques required no additional microfabrication steps, produced no visible surface contamination on the MEMS active structures, and generated high-aspect-ratio interconnects. The developed FLIs were successfully tested on MEMS moveable microelectrodes microfabricated by SUMMiTV TM process producing no apparent detrimental effect due to outgassing. The bumping processes were successfully applied on Al-deposited bond pads of 100 μ m × 100 μ m with an average bump height of 101.3 μ m for Ag and 184.8 μ m for solder (63Sn, 37Pb). DPAT for solder paste produced bumps with the aspect ratio of 1.8 or more. The average shear strengths of Ag and solder bumps were 78 MPa and 689 kPa, respectively. The electrical test on Ag bumps at 794 A/cm 2 demonstrated reliable electrical interconnects with negligible resistance. These scalable FLI technologies are potentially useful for MEMS flip-chip packaging and 3-D stacking.

  8. Application of electronic speckle-pattern interferometry to measure in-plane thermal displacement in flip-chip packages

    International Nuclear Information System (INIS)

    Lee, Baik-Woo; Jang, Woosoon; Kim, Dong-Won; Jeong, Jeung-hyun; Nah, Jae-Woong; Paik, Kyung-Wook; Kwon, Dongil


    Electronic speckle-pattern interferometry (ESPI) was applied for noncontact, real-time evaluation of thermal deformation in a flip-chip package. The spatial resolution of ESPI was increased to submicron scale by magnifying the areas studied in order to measure the deformation of such small-scale components as the solder in the flip-chip package. Thermal deformation in the horizontal and vertical directions around the solder joints was measured as two-dimensional mappings during heating from 25 to 125 deg. C. ESPI was successful in obtaining information on the complicated deformation field around the solder joints. Furthermore, the shear strain could also be calculated using the measured thermal deformation around each solder joint. The applicability of ESPI to flip-chip packages was verified by comparing the ESPI results with those of finite-element analysis (FEA)

  9. Development of new assembly techniques for a silicon micro-vertex detector unit using the flip-chip bonding method

    International Nuclear Information System (INIS)

    Saitoh, Y.; Takeuchi, H.; Mandai, M.; Kanazawa, H.; Yamanaka, J.; Miyahara, S.; Kamiya, M.; Fujita, Y.; Higashi, Y.; Ikeda, H.; Ikeda, M.; Koike, S.; Matsuda, T.; Ozaki, H.; Tanaka, M.; Tsuboyama, T.; Avrillon, S.; Okuno, S.; Haba, J.; Hanai, H.; Mori, S.; Yusa, K.; Fukunaga, C.


    Full-size models of a detector unit for a silicon micro-vertex detector were built for the KEK B factory. The Flip-Chip Bonding (FCB) method using a new type anisotropic conductive film was examined. The structure using the FCB method successfully provides a new architecture for the silicon micro-vertex detector unit. (orig.)

  10. Mechanism of Void Prediction in Flip Chip Packages with Molded Underfill (United States)

    Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang


    Voids have always been present using the molded underfill (MUF) package process, which is a problem that needs further investigation. In this study, the process was studied using the Moldex3D numerical analysis software. The effects of gas (air vent effect) on the overall melt front were also considered. In this isothermal process containing two fluids, the gas and melt colloid interact in the mold cavity. Simulation enabled an appropriate understanding of the actual situation to be gained, and, through analysis, the void region and exact location of voids were predicted. First, the global flow end area was observed to predict the void movement trend, and then the local flow ends were observed to predict the location and size of voids. In the MUF 518 case study, simulations predicted the void region as well as the location and size of the voids. The void phenomenon in a flip chip ball grid array underfill is discussed as part of the study.

  11. Evaluating Student Motivation in Organic Chemistry Courses: Moving from a Lecture-Based to a Flipped Approach with Peer-Led Team Learning (United States)

    Liu, Yujuan; Raker, Jeffrey R.; Lewis, Jennifer E.


    Academic Motivation Scale-Chemistry (AMS-Chemistry), an instrument based on the self-determination theory, was used to evaluate students' motivation in two organic chemistry courses, where one course was primarily lecture-based and the other implemented flipped classroom and peer-led team learning (Flip-PLTL) pedagogies. Descriptive statistics…

  12. A novel model for simulating the racing effect in capillary-driven underfill process in flip chip (United States)

    Zhu, Wenhui; Wang, Kanglun; Wang, Yan


    Underfill is typically applied in flip chips to increase the reliability of the electronic packagings. In this paper, the evolution of the melt-front shape of the capillary-driven underfill flow is studied through 3D numerical analysis. Two different models, the prevailing surface force model and the capillary model based on the wetted wall boundary condition, are introduced to test their applicability, where level set method is used to track the interface of the two phase flow. The comparison between the simulation results and experimental data indicates that, the surface force model produces better prediction on the melt-front shape, especially in the central area of the flip chip. Nevertheless, the two above models cannot simulate properly the racing effect phenomenon that appears during underfill encapsulation. A novel ‘dynamic pressure boundary condition’ method is proposed based on the validated surface force model. Utilizing this approach, the racing effect phenomenon is simulated with high precision. In addition, a linear relationship is derived from this model between the flow front location at the edge of the flip chip and the filling time. Using the proposed approach, the impact of the underfill-dispensing length on the melt-front shape is also studied.

  13. Statistical and Physical Analyses of Electromigration-induced Failure in Lead-free Flip Chip Solder Joints (United States)

    Choi, Daechul

    While electromigration in Al and Cu interconnects has been a persistent reliability issue in microelectronic industry, the trend of miniaturization in wireless and portable devices has caused electromigration in Pb-free flip chip solder joints to become another most challenging problem in electronic manufacturing industry. Up to now, the link between statistical and physical analyses of electromigration failure is weak, for example, we do not have a deep understanding of the reliability failure on the basis of kinetics of void nucleation and growth. In this study, we intend to make a direct link between Weibull distribution of Pb-free flip chip solder joint failure and Johnson-Mehl-Avrami's equations of phase transformations in terms of void nucleation and growth based on the assumption that void nucleation and propagation can be treated as a phase transformation induced by electromigration in the interconnect which is the main cause of failure in Pb-free solder joints. The statistical failure data from Pb-free flip chip solder joints were systematically collected by DAQ (data acquisition) program which measures in-situ resistance change due to a set of constant current densities stressed at a set of temperatures, and the data were statistically analyzed by Weibull distribution by using Minitab program. The test samples are from industry and the data are reproducible. It is worth mentioning that Weibull distribution function and Avrami's equation have the same mathematical form, and we shall develop the mathematical and physical links between them. Physical analysis of failure was supported by SEM (scanning electron microscope) examination and FIB (focused ion beam) of the cross-section of failed samples, 3-dimensional finite element simulation, and 3-D images obtained by using synchrotron radiation x-ray tomography at Advanced Light Source of Lawrence Berkeley National Laboratory. The final goal of this research is to establish a tool for critical analysis of

  14. An Investigation into the Package and Printed Circuit Board Assembly Solutions of an Ultrathin Coreless Flip-Chip Substrate (United States)

    Chang, Jing-Yao; Chaung, Tung-Han; Chang, Tao-Chih


    Flip-chip technology has been widely accepted as a solution for electronic packaging of high-pin-count devices. Due to the demand for smaller and thinner package dimensions, coreless build-up substrates will be used in industry to carry the die by solder bumps due to the advantages of shorter transmission route and lower inductance and thermal resistance. However, coefficient of thermal expansion (CTE) mismatch between the Cu trace and the laminate often causes the coreless substrate to warp, which leads to failures such as nonwetted solder bumps and interfacial cracking during assembly and reliability tests. In a previous study, assembly of a six-layer polyimide-based coreless flip-chip package was achieved by a 17 mm × 17 mm die with 4355 Sn-37Pb solder bumps, an amide-based underfill, and 1521 Sn-3.0Ag-0.5Cu solder balls. For determination of its board-level reliability characteristics, the component was mounted on a printed circuit board (PCB) using a conventional surface mount technology, and 10 test vehicles were assembled for assessment of their reliability under a temperature cycling environment. The experimental results show that the characteristic life of the PCB assembly exceeded 1500 cycles and that failure resulted from fracture of the outermost solder balls on the substrate side. This was different from the failure mode of die cracking when the package experienced hundreds of temperature cycles at the component level because the rigid PCB, through solder balls, moderated the deformation of the coreless flip-chip package. Hence, the concentrated bending stress at the die edge region was lowered. Finally, the local CTE mismatch between the stiffener and the PCB dominated the fatigue fracture of the outermost solder balls to become the main failure mode.

  15. Bewertung und Zuverlässigkeitsanalyse von Underfillmaterialien für die Flip-Chip-Technik


    Rau, Ingolf


    In dieser Arbeit wurde ein zeitsparender Kombinationstest für Underfillmaterialien entwickelt, der aus der Lagerung eines realen Flip-Chip-Aufbaus in einem Pressure-Cooker-Gefäß bei 121 °C und 100 % relativer Luftfeuchte und einer anschließenden mechanischen Beanspruchung durch Vibration bei Raumtemperatur besteht. Durch die definierte mechanische Beanspruchung im Vibrationstest wird es möglich, die Fläche der Delaminationen als Bewertungskriterium für die Adhäsion des Underfillers an der Pol...

  16. High conductivity composite flip-chip joints and silver-indium bonding to bismuth telluride for high temperature applications (United States)

    Lin, Wen P.

    Two projects are reported. First, the barrier layer and silver (Ag)-indium (In) transient liquid phase (TLP) bonding for thermoelectric (TE) modules at high temperature were studied, and followed with a survey of Ag microstructure and grain growth kinetics. Second, the high electrical conductivity joint materials bonded by both Ag-AgIn TLP and solid-state bonding processes for small size flip-chip applications were designed. In the first project, barrier and Ag-In TLP bonding layer for TE module at high temperature application were studied. Bismuth telluride (Bi2 Te3) and its alloys are used as materials for a TE module. A barrier/bonding composite was developed to satisfy the TE module for high temperature operation. Titanium (Ti)/ gold (Au) was chosen as the barrier layers and an Ag-rich Ag-In joint was chosen as the bonding layer. An electron-beam evaporated Ti layer was selected as the barrier layer. An Ag-In fluxless TLP bonding process was developed to bond the Bi 2Te3 chips to the alumina substrates for high temperature applications. To prepare for bonding, the Bi2Te3 chips were coated with a Ti/Au barrier layer followed by a Ag layer. The alumina substrates with titanium-tungsten (TiW)/Au were then electroplated with the Ag/In/Ag structure. These Bi2Te3 chips were bonded to alumina substrates at a bonding temperature of 180ºC with a static pressure as low as 100psi. The resulting void-free joint consists of five regions: Ag, (Ag), Ag2In, (Ag), and Ag, where (Ag) is Ag-rich solid solution with In atoms in it and Ag is pure Ag. This joint has a melting temperature higher than 660ºC, and it manages the coefficient of thermal expansion (CTE) mismatch between the Bi2Te3 and alumina substrate. The whole Ti/Au barrier layer and Ag-In bonding composite between Bi 2Te3 and alumina survived after an aging test at 250°C for 200 hours. The Ag-In joint transformed from Ag/(Ag)/Ag2In/(Ag)/Ag to a more reliable (Ag) rich layer after the aging test. Ag thin films were

  17. Flipped classroom

    DEFF Research Database (Denmark)

    Skov, Tobias Kidde; Jørgensen, Søren


    Artiklen beskriver Flipped Classroom som et didaktisk princip, der kan være med til at organisere og tilrettelægge en undervisning, med fokus på forskellige læringsformer. Det handler om at forstå Flipped Classroom som en opdeling i 2 faser og 3 led, som samlet set skaber en didaktisk organisering....

  18. Development of n+-in-p planar pixel quadsensor flip-chipped with FE-I4 readout ASICs

    International Nuclear Information System (INIS)

    Unno, Y.; Hanagaki, K.; Hori, R.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Kamada, S.; Yamamura, K.; Yamamoto, H.; Takashima, R.; Tojo, J.; Kono, T.; Nagai, R.; Saito, S.; Sugibayashi, K.; Hirose, M.; Jinnouchi, O.; Sato, S.; Sawai, H.; Hara, K.


    We have developed flip-chip modules applicable to the pixel detector for the HL-LHC. New radiation-tolerant n + -in-p planar pixel sensors of a size of four FE-I4 application-specific integrated circuits (ASICs) are laid out in a 6-in wafer. Variation in readout connection for the pixels at the boundary of ASICs is implemented in the design of quadsensors. Bump bonding technology is developed for four ASICs onto one quadsensor. Both sensors and ASICs are thinned to 150 μm before bump bonding, and are held flat with vacuum chucks. Using lead-free SnAg solder bumps, we encounter deficiency with large areas of disconnected bumps after thermal stress treatment, including irradiation. Surface oxidation of the solder bumps is identified as a critical source of this deficiency after bump bonding trials, using SnAg bumps with solder flux, indium bumps, and SnAg bumps with a newly-introduced hydrogen-reflow process. With hydrogen-reflow, we establish flux-less bump bonding technology with SnAg bumps, appropriate for mass production of the flip-chip modules with thin sensors and thin ASICs.

  19. Three-chip LED illumination system for laparoscopy and minimal access surgery applications (United States)

    Ye, Bin; Wang, Liqiang; Duan, Huilong


    Light-emitting diodes (LEDs) bring great flexibility in color choice and high luminous efficacy design for biomedical illumination. Based on the state-of-the-art LED chips, a three-chip LED illumination system was developed specially for laparoscopy and minimal access surgery. White light is produced by mixing three specific wavelengths of amber red, true green and blue, and then coupled into a fiber-optic light guide with 2mm diameter. The whole device has a compact size of 145mm × 92mm × 84 mm which is more suitable than a conventional xenon lamp source for portable endoscopes. The illuminance and color characteristic of the three-chip model were analyzed, compared to those of traditional light source. A maximum illuminance of 1960 lux was obtained at the distance of 100 mm, with the average current of 450 mA of the LEDs. Additionally, a simulation environment had been set up to find out the performance of the endo-illuminator in the specific circumstance, which was closer distance and crawl space. Experiments showed that images taken under the three-chip LED illumination had better contrast and saturation. With the temperature of 31.5 degrees Celsius at the end of the fiber bundle, the endo-illuminator is also a cold light source.

  20. Chip design for thin-film deep ultraviolet LEDs fabricated by laser lift-off of the sapphire substrate (United States)

    Cho, H. K.; Krüger, O.; Külberg, A.; Rass, J.; Zeimer, U.; Kolbe, T.; Knauer, A.; Einfeldt, S.; Weyers, M.; Kneissl, M.


    We report on a chip design which allows the laser lift-off (LLO) of the sapphire substrate sustaining the epitaxial film of flip-chip mounted deep ultraviolet light emitting diodes. A nanosecond pulsed excimer laser with a wavelength of 248 nm was used for the LLO. A mechanically stable chip design was found to be the key to prevent crack formation in the epitaxial layers and material chipping during the LLO process. Stabilization was achieved by introducing a Ti/Au leveling layer that mechanically supports the fragile epitaxial film. The electrical and optical characterization of devices before and after the LLO process shows that the device performance did not degrade by the LLO.

  1. Numerical thermal analysis and optimization of multi-chip LED module using response surface methodology and genetic algorithm

    NARCIS (Netherlands)

    Tang, Hong Yu; Ye, Huai Yu; Chen, Xian Ping; Qian, Cheng; Fan, Xue Jun; Zhang, G.Q.


    In this paper, the heat transfer performance of the multi-chip (MC) LED module is investigated numerically by using a general analytical solution. The configuration of the module is optimized with genetic algorithm (GA) combined with a response surface methodology. The space between chips, the

  2. Flip Chip on Organic Substrates: A Feasibility Study for Space Applications (United States)


    ain opens were 50 hours. The umption due to those observed erature storage high level of also consistent Underfill B. die each of the for each of the performed in Condition B, c between hot ain continuity ed among the rfill materials erfill exhibited d Underfill B die size ramp rate p chip solder st ramp rate ain coarsening . of th expo phen close cyclin form Fig

  3. Impact of Isothermal Aging and Testing Temperature on Large Flip-Chip BGA Interconnect Mechanical Shock Performance (United States)

    Lee, Tae-Kyu; Chen, Zhiqiang; Guirguis, Cherif; Akinade, Kola


    The stability of solder interconnects in a mechanical shock environment is crucial for large body size flip-chip ball grid array (FCBGA) electronic packages. Additionally, the junction temperature increases with higher electric power condition, which brings the component into an elevated temperature environment, thus introducing another consideration factor for mechanical stability of interconnection joints. Since most of the shock performance data available were produced at room temperature, the effect of elevated temperature is of interest to ensure the reliability of the device in a mechanical shock environment. To achieve a stable␣interconnect in a dynamic shock environment, the interconnections must tolerate mechanical strain, which is induced by the shock wave input and reaches the particular component interconnect joint. In this study, large body size (52.5 × 52.5 mm2) FCBGA components assembled on 2.4-mm-thick boards were tested with various isothermal pre-conditions and testing conditions. With a heating element embedded in the test board, a test temperature range from room temperature to 100°C was established. The effects of elevated temperature on mechanical shock performance were investigated. Failure and degradation mechanisms are identified and discussed based on the microstructure evolution and grain structure transformations.

  4. Aging Studies of Cu-Sn Intermetallics in Cu Micropillars Used in Flip Chip Attachment onto Cu Lead Frames (United States)

    Roma, Maria Penafrancia C.; Kudtarkar, Santosh; Kierse, Oliver; Sengupta, Dipak; Cho, Junghyun


    Copper micropillars plated onto a silicon die and soldered with Sn-Ag solder to a copper lead frame in a flip chip on lead package have been subjected to high-temperature storage at 150°C and 175°C for 500 h, 1000 h, and 1500 h. Cu6Sn5 and Cu3Sn intermetallic compounds were found on both sides of the solder, but the growth rates were not the same as evidenced by different values of the growth exponent n. Cu and Sn diffusion controlled the Cu3Sn growth in the Cu pillar interface ( n ≈ 0.5), while interface reactions controlled the growth in the Cu lead frame interface ( n ≈ 0.8). Increasing the aging temperature increased the growth of Cu3Sn as well as the presence of microvoids in the Cu lead frame side. Adding Ni as a barrier layer on the Cu pillar prevented the growth of Cu3Sn in the Cu pillar interface and reduced its growth rate on the lead frame side, even at higher aging temperatures.

  5. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip

    DEFF Research Database (Denmark)

    Liu, Liu; Kumar, R.; Huybrechts, K.


    Ultra-small, low-power, all-optical switching and memory elements, such as all-optical flip-flops, as well as photonic integrated circuits of many such elements, are in great demand for all-optical signal buffering, switching and processing. Silicon-on-insulator is considered to be a promising pl...

  6. Thermal Characteristics of InGaN/GaN Flip-Chip Light Emitting Diodes with Diamond-Like Carbon Heat-Spreading Layers

    Directory of Open Access Journals (Sweden)

    Pai-Yang Tsai


    Full Text Available The temperature-dependent optical, electrical, and thermal properties of flip-chip light emitting diodes (FCLEDs with diamond-like carbon (DLC heat-spreading layers were investigated. On the basis of the measured results in the 20°C to 100°C temperature range, a significant performance improvement can be achieved for FCLEDs with DLC heat-spreading layers (DLC-FCLED compared with FCLEDs without DLC heat-spreading layers (non-DLC-FCLED. The external quantum efficiency (EQE of the DLC-FCLED improves by 9% at an injection current of 1000 mA and a temperature of 100°C. The forward voltage and spectra variations are smaller than those of non-DLC-FCLEDs. The DLC-FCLED provides high efficiency and high stability performance for high-power and high-temperature applications.

  7. Time-resolved electro-luminescence studies of InGaN blue LEDs with chip size variations

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shih-Wei; Huang, C.J. [Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan (China); Tsai, Tzong-Liang [Huga Optotech Inc., NO. 40 Industrial 34th Road, Taichung Industrial Park, Taichung, Taiwan (China); Lan, Wen-How; Shih, Ming-Chang [Department of Electrical Engineering, National University of Kaohsiung, Kaohsiung, Taiwan (China)


    In this study, we report carrier dynamics of three InGaN Blue LEDs with three chip sizes by time-resolved electroluminescence (TREL) measurements. Experiments results show that the sample with the largest chip size has the smallest EL width and longest response time among the three samples. It implies that the current spreading for larger chip size need more time. It is partially attributed to the fact that carrier relaxation into the strongly localized states (high-indium clusters) need more time. Furthermore, the long decay times are due to the carrier recombination from the deep trapped localization states and/or the high defect density inside the samples. Also, the decay times of the three samples are nearly independent of the chip size and applied voltage. This implies that the sum densities of localization states and defects of the three samples have nearly the same order of magnitude. By reducing the density of the defects, the quantum efficiency of the LEDs can be increased at least by a factor of 10. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. An integrated circuit with transmit beamforming flip-chip bonded to a 2-D CMUT array for 3-D ultrasound imaging. (United States)

    Wygant, Ira O; Jamal, Nafis S; Lee, Hyunjoo J; Nikoozadeh, Amin; Oralkan, Omer; Karaman, Mustafa; Khuri-Yakub, Butrus T


    State-of-the-art 3-D medical ultrasound imaging requires transmitting and receiving ultrasound using a 2-D array of ultrasound transducers with hundreds or thousands of elements. A tight combination of the transducer array with integrated circuitry eliminates bulky cables connecting the elements of the transducer array to a separate system of electronics. Furthermore, preamplifiers located close to the array can lead to improved receive sensitivity. A combined IC and transducer array can lead to a portable, high-performance, and inexpensive 3-D ultrasound imaging system. This paper presents an IC flip-chip bonded to a 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array for 3-D ultrasound imaging. The IC includes a transmit beamformer that generates 25-V unipolar pulses with programmable focusing delays to 224 of the 256 transducer elements. One-shot circuits allow adjustment of the pulse widths for different ultrasound transducer center frequencies. For receiving reflected ultrasound signals, the IC uses the 32-elements along the array diagonals. The IC provides each receiving element with a low-noise 25-MHz-bandwidth transimpedance amplifier. Using a field-programmable gate array (FPGA) clocked at 100 MHz to operate the IC, the IC generated properly timed transmit pulses with 5-ns accuracy. With the IC flip-chip bonded to a CMUT array, we show that the IC can produce steered and focused ultrasound beams. We present 2-D and 3-D images of a wire phantom and 2-D orthogonal cross-sectional images (Bscans) of a latex heart phantom.

  9. Flip-chip integration of Si bare dies on polymeric substrates at low temperature using ICA vias made in dry film photoresist (United States)

    Vásquez Quintero, Andrés; Briand, Danick; de Rooij, Nico F.


    In this paper, a low temperature flip-chip integration technique for Si bare dies is demonstrated on flexible PET substrates with screen-printed circuits. The proposed technique is based on patterned blind vias in dry film photoresist (DP) filled with isotropic conductive adhesive (ICA). The DP material serves to define the vias, to confine the ICA paste (80 µm-wide and potentially 25 µm-wide vias), as an adhesion layer to improve the mechanical robustness of the assembly, and to protect additional circuitry on the substrate. The technique is demonstrated using gold-bumped daisy chain chips (DCCs), with electrical vias resistances in the order to hundreds of milliohms, and peel/shear adhesion strengths of 0.7 N mm-1 and 3.2 MPa, respectively, (i.e. at 1.2 MPa of bonding pressure). Finally, the mechanical robustness to bending forces was optimized through flexural mechanics models by placing the neutral plane at the DCC/DP adhesive interface. The optimization was performed by reducing the Si thickness from 400 to 37 µm, and resulted in highly robust integrated assemblies withstanding 10 000 cycles of dynamic bending at 40 mm of radius, with relative changes in vias resistance lower than 20%. In addition, the electrical vias resistance and adhesion strengths were compared to samples integrated with anisotropic conductive adhesives (ACAs). Besides the low temperature and high integration resolution, the proposed method is compatible with large area fabrication and multilayer architectures on foil.

  10. Performance Improvement of GaN-Based Flip-Chip White Light-Emitting Diodes with Diffused Nanorod Reflector and with ZnO Nanorod Antireflection Layer

    Directory of Open Access Journals (Sweden)

    Hsin-Ying Lee


    Full Text Available The GaN-based flip-chip white light-emitting diodes (FCWLEDs with diffused ZnO nanorod reflector and with ZnO nanorod antireflection layer were fabricated. The ZnO nanorod array grown using an aqueous solution method was combined with Al metal to form the diffused ZnO nanorod reflector. It could avoid the blue light emitted out from the Mg-doped GaN layer of the FCWLEDs, which caused more blue light emitted out from the sapphire substrate to pump the phosphor. Moreover, the ZnO nanorod array was utilized as the antireflection layer of the FCWLEDs to reduce the total reflection loss. The light output power and the phosphor conversion efficiency of the FCWLEDs with diffused nanorod reflector and 250 nm long ZnO nanorod antireflection layer were improved from 21.15 mW to 23.90 mW and from 77.6% to 80.1% in comparison with the FCWLEDs with diffused nanorod reflector and without ZnO nanorod antireflection layer, respectively.

  11. Flipped Learning

    DEFF Research Database (Denmark)

    Holmboe, Peter; Hachmann, Roland

    I FLIPPED LEARNING – FLIP MED VIDEO kan du læse om, hvordan du som underviser kommer godt i gang med at implementere video i undervisning, der har afsæt i tankerne omkring flipped learning. Bogen indeholder fire dele: I Del 1 fokuserer vi på det metarefleksive i at tænke video ind i undervisningen...

  12. Study on the Thermal Resistance of Multi-chip Module High Power LED Packaging Heat Dissipation System

    Directory of Open Access Journals (Sweden)

    Kailin Pan


    Full Text Available Thermal resistance is a key technical index which indicates the thermal management of multi-chip module high power LED (MCM-LED packaging heat dissipation system. In this paper, the prototype structure of MCM-LED packaging heat dissipation system is proposed to study the reliable thermal resistance calculation method. In order to analyze the total thermal resistance of the MCM-LED packaging heat dissipation system, three kinds of thermal resistance calculation method including theoretical calculation, experimental testing and finite element simulation are developed respectively. Firstly, based on the thermal resistance network model and the principle of steady state heat transfer, the theoretical value of total thermal resistance is 6.111 K/W through sum of the thermal resistance of every material layer in the major direction of heat flow. Secondly, the thermal resistance experiment is carried out by T3Ster to obtain the experimental result of total thermal resistance, and the value is 6.729 K/W. Thirdly, a three-dimensional finite element model of MCM-LED packaging heat dissipation system is established, and the junction temperature experiment is also performed to calculated the finite element simulated result of total thermal resistance, the value is 6.99 K/W. Finally, by comparing the error of all the three kinds of result, the error of total thermal resistance between the theoretical value and experimental result is 9.2 %, and the error of total thermal resistance between the experimental result and finite element simulation is only about -3.9 %, meanwhile, the main reason of each error is discussed respectively.

  13. Photometric and Colorimetric Assessment of LED Chip Scale Packages by Using a Step-Stress Accelerated Degradation Test (SSADT) Method. (United States)

    Qian, Cheng; Fan, Jiajie; Fang, Jiayi; Yu, Chaohua; Ren, Yi; Fan, Xuejun; Zhang, Guoqi


    By solving the problem of very long test time on reliability qualification for Light-emitting Diode (LED) products, the accelerated degradation test with a thermal overstress at a proper range is regarded as a promising and effective approach. For a comprehensive survey of the application of step-stress accelerated degradation test (SSADT) in LEDs, the thermal, photometric, and colorimetric properties of two types of LED chip scale packages (CSPs), i.e., 4000 °K and 5000 °K samples each of which was driven by two different levels of currents (i.e., 120 mA and 350 mA, respectively), were investigated under an increasing temperature from 55 °C to 150 °C and a systemic study of driving current effect on the SSADT results were also reported in this paper. During SSADT, junction temperatures of the test samples have a positive relationship with their driving currents. However, the temperature-voltage curve, which represents the thermal resistance property of the test samples, does not show significant variance as long as the driving current is no more than the sample's rated current. But when the test sample is tested under an overdrive current, its temperature-voltage curve is observed as obviously shifted to the left when compared to that before SSADT. Similar overdrive current affected the degradation scenario is also found in the attenuation of Spectral Power Distributions (SPDs) of the test samples. As used in the reliability qualification, SSADT provides explicit scenes on color shift and correlated color temperature (CCT) depreciation of the test samples, but not on lumen maintenance depreciation. It is also proved that the varying rates of the color shift and CCT depreciation failures can be effectively accelerated with an increase of the driving current, for instance, from 120 mA to 350 mA. For these reasons, SSADT is considered as a suitable accelerated test method for qualifying these two failure modes of LED CSPs.

  14. Flipped Learning

    DEFF Research Database (Denmark)

    Hachmann, Roland; Holmboe, Peter

    arbejde med faglige problemstillinger gennem problembaserede og undersøgende didaktiske designs. Flipped Learning er dermed andet og mere end at distribuere digitale materialer til eleverne forud for undervisning. Flipped Learning er i lige så høj grad et syn på, hvordan undervisning med digitale medier...

  15. Flipping Excel (United States)

    Frydenberg, Mark


    The "flipped classroom" model has become increasingly popular in recent years as faculty try new ways to engage students in the classroom. In a flipped classroom setting, students review the lecture online prior to the class session and spend time in class working on problems or exercises that would have been traditionally assigned as…

  16. Photometric and Colorimetric Assessment of LED Chip Scale Packages by Using a Step-Stress Accelerated Degradation Test (SSADT Method

    Directory of Open Access Journals (Sweden)

    Cheng Qian


    Full Text Available By solving the problem of very long test time on reliability qualification for Light-emitting Diode (LED products, the accelerated degradation test with a thermal overstress at a proper range is regarded as a promising and effective approach. For a comprehensive survey of the application of step-stress accelerated degradation test (SSADT in LEDs, the thermal, photometric, and colorimetric properties of two types of LED chip scale packages (CSPs, i.e., 4000 °K and 5000 °K samples each of which was driven by two different levels of currents (i.e., 120 mA and 350 mA, respectively, were investigated under an increasing temperature from 55 °C to 150 °C and a systemic study of driving current effect on the SSADT results were also reported in this paper. During SSADT, junction temperatures of the test samples have a positive relationship with their driving currents. However, the temperature-voltage curve, which represents the thermal resistance property of the test samples, does not show significant variance as long as the driving current is no more than the sample’s rated current. But when the test sample is tested under an overdrive current, its temperature-voltage curve is observed as obviously shifted to the left when compared to that before SSADT. Similar overdrive current affected the degradation scenario is also found in the attenuation of Spectral Power Distributions (SPDs of the test samples. As used in the reliability qualification, SSADT provides explicit scenes on color shift and correlated color temperature (CCT depreciation of the test samples, but not on lumen maintenance depreciation. It is also proved that the varying rates of the color shift and CCT depreciation failures can be effectively accelerated with an increase of the driving current, for instance, from 120 mA to 350 mA. For these reasons, SSADT is considered as a suitable accelerated test method for qualifying these two failure modes of LED CSPs.

  17. High-Modulation-Speed LEDs Based on III-Nitride (United States)

    Chen, Hong

    III-nitride InGaN light-emitting diodes (LEDs) enable wide range of applications in solid-state lighting, full-color displays, and high-speed visible-light communication. Conventional InGaN quantum well LEDs grown on polar c-plane substrate suffer from quantum confined Stark effect due to the large internal polarization-related fields, leading to a reduced radiative recombination rate and device efficiency, which limits the performance of InGaN LEDs in high-speed communication applications. To circumvent these negative effects, non-trivial-cavity designs such as flip-chip LEDs, metallic grating coated LEDs are proposed. This oral defense will show the works on the high-modulation-speed LEDs from basic ideas to applications. Fundamental principles such as rate equations for LEDs/laser diodes (LDs), plasmonic effects, Purcell effects will be briefly introduced. For applications, the modal properties of flip-chip LEDs are solved by implementing finite difference method in order to study the modulation response. The emission properties of highly polarized InGaN LEDs coated by metallic gratings are also investigated by finite difference time domain method.

  18. Embeded photonic crystal at the interface of p-GaN and Ag reflector to improve light extraction of GaN-based flip-chip light-emitting diode

    International Nuclear Information System (INIS)

    Zhen, Aigong; Ma, Ping; Zhang, Yonghui; Guo, Enqing; Tian, Yingdong; Liu, Boting; Guo, Shikuan; Shan, Liang; Wang, Junxi; Li, Jinmin


    In this experiment, a flip-chip light-emitting diode with photonic crystal was fabricated at the interface of p-GaN and Ag reflector via nanospheres lithography technique. In this structure, photonic crystal could couple with the guide-light efficiently by reason of the little distance between photonic crystal and active region. The light output power of light emitting diode with embedded photonic crystal was 1.42 times larger than that of planar flip-chip light-emitting diode. Moreover, the embedded photonic crystal structure makes the far-field divergence angle decreased by 18° without spectra shift. The three-dimensional finite difference time domain simulation results show that photonic crystal could improve the light extraction, and enhance the light absorption caused by Ag reflector simultaneously, because of the roughed surface. The depth of photonic crystal is the key parameter affecting the light extraction and absorption. Light extraction efficiency increases with the depth photonic crystal structure rapidly, and reaches the maximum at the depth 80 nm, beyond which light extraction decrease drastically

  19. High power LEDs - technology status and market applications

    International Nuclear Information System (INIS)

    Steranka, F.M.; Bhat, J.; Collins, D.; Cook, L.; Craford, M.G.; Fletcher, R.; Gardner, N.; Grillot, P.; Goetz, W.; Keuper, M.; Khare, R.; Kim, A.; Krames, M.; Harbers, G.; Ludowise, M.; Martin, P.S.; Misra, M.; Mueller, G.; Mueller-Mach, R.; Rudaz, S.; Shen, Y.C.; Steigerwald, D.; Subramanya, S.; Trottier, T.; Wierer, J.J.


    High power light emitting diodes (LEDs) continue to increase in output flux with the best III-nitride based devices today emitting over 150 lm of white, cyan, or green light. The key design features of such products will be covered with special emphasis on power packaging, flip-chip device design, and phosphor coating technology. The high-flux performance of these devices is enabling many new applications for LEDs. Two of the most interesting of these applications are LCD display backlighting and vehicle forward lighting. The advantages of LEDs over competing lighting technologies will be covered in detail. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  20. Flipped Physics (United States)

    Kettle, Maria


    This paper defines flipped learning and then examines its practical implementation in AS and A2 level physics classes, that is, classes for 16-18 year olds. The effect of this teaching style on student learning behaviour and its impact on test results are evaluated. The paper recounts the difficulties of implementing it and evaluates student…

  1. SU-8 cantilever chip interconnection

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte; Janting, Jakob; Schultz, Peter


    the electrodes on the SU-8 chip to a printed circuit board. Here, we present two different methods of electrically connecting an SU-8 chip, which contains a microfluidic network and free-hanging mechanical parts. The tested electrical interconnection techniques are flip chip bonding using underfill or flip chip...... bonding using an anisotropic conductive film (ACF). These are both widely used in the Si industry and might also be used for the large scale interconnection of SU-8 chips. The SU-8 chip, to which the interconnections are made, has a microfluidic channel with integrated micrometer-sized cantilevers...... that can be used for label-free biochemical detection. All the bonding tests are compared with results obtained using similar Si chips. It is found that it is significantly more complicated to interconnect SU-8 than Si cantilever chips primarily due to the softness of SU-8....

  2. Heat Transfer Characteristics in High Power LED Packaging

    Directory of Open Access Journals (Sweden)

    Chi-Hung Chung


    Full Text Available This study uses the T3Ster transient thermal resistance measuring device to investigate the effects to heat transfer performances from different LED crystal grains, packaging methods and heat-sink substrates through the experimental method. The experimental parameters are six different types of LED modules that are made alternatively with the crystal grain structure, the die attach method and the carrying substrate. The crystal grain structure includes the lateral type, flip chip type and vertical type. The die attach method includes silver paste and the eutectic structure. The carrying substrates are aluminum oxide (Alumina and aluminum nitride (AIN ceramic substrates and metal core PCB (MCPCB. The experimental results show that, under the conditions of the same crystal grain and die attach method, the thermal resistance values for the AIN substrate and the Alumina substrate are 2.1K/W and 5.1K/W, respectively and the total thermal resistance values are 7.3K/W and 10.8K/W. Compared to the Alumina substrate, the AIN substrate can effectively lower the total thermal resistance value by 32.4%. This is because the heat transfer coefficient of the AIN substrate is higher than that of the Alumina substrate, thus effectively increasing its thermal conductivity. In addition, under the conditions of the same crystal grain and the same substrate, the packaging methods are using silver paste and the eutectic structure for die attach. Their thermal resistance values are 5.7K/W and 2.7K/W, respectively, with a variance of 3K/W. Comparisons of the crystal grain structure show that the thermal resistance for the flip chip type is lower than that of the traditional lateral type by 0.9K/W. This is because the light emitting layer of the flip chip crystal grain is closer to the heat-sink substrate, shortening the heat dissipation route, and thus lowering the thermal resistance value. For the total thermal resistance, the crystal grain structure has a lesser

  3. Flipping HCI

    Directory of Open Access Journals (Sweden)

    C. Evans


    Full Text Available This paper presents the results of two studies involving “flipping the classroom”. Teaching material was delivered via interactive “e-lectures”, allowing face-to-face sessions to focus instead on practice. The e-lectures were designed according to standard usability principles coupled with recent research into the effect of interactivity on learning. The effectiveness of the use of e-lectures was then evaluated using an online survey. The results suggest that students prefer the flexibility offered by e-lectures compared to conventional lectures. The results contribute to our understanding of how this technology fits with face-to-face teaching in the digital age.

  4. Die-Bonding of LED Chips on Ag/Cu Substrate Using Sn/Zn/Bi/Sn and Sn/Bi/Zn/Bi/Sn Bonding Systems (United States)

    Tang, Y. K.; Lin, E. J.; Wang, J. Y.; Lin, Y. S.; Hu, Y. J.; Hsu, Y. C.; Liu, C. Y.


    Two multilayer bonding structures have been designed to die-bond light-emitting diode (LED) chips on Ag/Cu thermal substrate, viz. Sn/ZnBi/Sn bilayer solder structure and Sn/BiZnBi/Sn sandwich solder structure. Both multilayer bonding structures successfully achieved LED chip die-attachment on Ag/Cu thermal substrate at relatively low temperature of 150°C. However, voids formed more seriously at the bonding interface for the Sn/ZnBi/Sn bilayer structure. On the other hand, little voiding was seen at the bonding interface for the Sn/BiZnBi/Sn sandwich structure. The average shear strength of the Sn/ZnBi/Sn bilayer solder structure and Sn/BiZnBi/Sn sandwich solder structure was 25 MPa and 40 MPa, respectively. We believe that the improved shear strength results for the sandwich solder structure compared with the bilayer solder structure are mainly due to less voiding at the bonding interface, which weakens the interface joint shear strength. Also, the intermetallic compounds (IMCs) jointing region at the joint interface of the sandwich solder structure was larger than at the joint interface of the bilayer solder structure. We believe that the IMC jointing at the interface could improve the die-bonding strength, while the Zn content in the bonding structure promoted voiding at the bonding interface for both solder structures. Moreover, the Zn content in the bonding structure slightly reduced the IMC joint region at the bonding interface for both solder structures.

  5. Performance and Perception in the Flipped Classroom (United States)

    Blair, Erik; Maharaj, Chris; Primus, Simone


    Changes in the conceptualisation of higher education have led to instructional methods that embrace technology as a teaching medium. These changes have led to the flipped classroom phenomenon--where content is delivered outside class, through media such as video and podcast, and engagement with the content, through problem-solving and/or group…

  6. Flipping for Mastery (United States)

    Bergmann, Jonathan; Sams, Aaron


    What if all students had an opportunity to work through content at their own pace? What if all students had to master content before they moved on? The authors take their flipped-classroom model to the next level by flipping their classroom for mastery. In the flipped-mastery model, the teacher begins by organizing content around specific…

  7. The Wetting Properties of UBM-coated Si-wafer to the Lead-free Solders in Si-wafer/Bumps/Glass Flip-Chip Bonding System

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.M.; Park, J.Y. [Seoul National University, Seoul (Korea); Park, C.B.; Jung, J.P. [University of Seoul, Seoul (Korea); Kang, C.S. [Seoul National University, Seoul (Korea)


    In an attempt to estimate the wetting properties of wettable metal layers by wetting balance method, an analysis of wetting curves of the coating later was performed. Based on the analysis, wetting properties of UBM-coated Si-plate were estimated by the new wettability indices. The wetting curves of the one and both sides-coated UBM layers have the similar shape and show the similar tendency to the temperature. So the wetting property estimation of one side coating is possible with wetting balance method. For UBM of Si-chip, Cr/Cu/Au UBM is better than Ti/Ni/Au in the point of wetting time. At general reflow temperature, the wettability of high melting point solders (Sn-Sb, Sn-Ag) is better than that of low melting point ones (Sn-Bi, Sn-In). The contact angle of the one side coated plate to the solder can be calculated from the force balance equation by measuring the static state force and the tilt angle. (author). 4 refs., 2 tabs., 9 figs.

  8. Photoelectrochemical liftoff of LEDs grown on freestanding c-plane GaN substrates

    KAUST Repository

    Hwang, David


    We demonstrate a thin-film flip-chip (TFFC) process for LEDs grown on freestanding c-plane GaN substrates. LEDs are transferred from a bulk GaN substrate to a sapphire submount via a photoelectrochemical (PEC) undercut etch. This PEC liftoff method allows for substrate reuse and exposes the N-face of the LEDs for additional roughening. The LEDs emitted at a wavelength of 432 nm with a turn on voltage of ~3 V. Etching the LEDs in heated KOH after transferring them to a sapphire submount increased the peak external quantum efficiency (EQE) by 42.5% from 9.9% (unintentionally roughened) to 14.1% (intentionally roughened).

  9. Flipped Classroom Approach

    Directory of Open Access Journals (Sweden)

    Fezile Ozdamli


    Full Text Available Flipped classroom is an active, student-centered approach that was formed to increase the quality of period within class. Generally this approach whose applications are done mostly in Physical Sciences, also attracts the attention of educators and researchers in different disciplines recently. Flipped classroom learning which wide-spreads rapidly in the world, is not well recognized in our country. That is why the aim of study is to attract attention to its potential in education field and provide to make it recognize more by educators and researchers. With this aim, in the study what flipped classroom approach is, flipped classroom technology models, its advantages and limitations were explained.

  10. DomFLIP++

    International Nuclear Information System (INIS)

    Hendrysiak, W.; Raggl, A.; Slany, W.


    DomFLIP++ is the knowledge engineering module of the *FLIP++ project. *FLIP++ is a tool for optimizing multiple criteria problems. It uses fuzzy constraints to model optimizing criteria and applies algorithms such as Tabu search or genetic algorithms to the problems. DomFLIP++ is a C++ library. It allows the definition of new optimization problems. It helps a domain engineer to design the structure of a new problem. However, there is a domain independent interface to other *FLIP++ modules such as OptiFLIP++, DynaFLIP++, and InterFLIP++. After each iteration in the optimization process, the considered instantiations of the problem are evaluated. Each evaluation produces a list of violated constraints. For each constraint in further iterations of the optimization. A domain can be fine-tuned through modifications of constraints, through editing their repair lists, and through change in the optimizing parameters. A well-tuned domain can be successfully applied for optimization. Object-oriented design and implementation makes this module easy to modify and to reuse. Definition of new domains, system extensions with new optimizing algorithms, and definition of specific domain-dependent repair steps can be done efficiently. DomFLIP++ is tested on real-world example, namely scheduling the steel plant LD3 in Linz, Austria

  11. Flipped Classroom Approach (United States)

    Ozdamli, Fezile; Asiksoy, Gulsum


    Flipped classroom is an active, student-centered approach that was formed to increase the quality of period within class. Generally this approach whose applications are done mostly in Physical Sciences, also attracts the attention of educators and researchers in different disciplines recently. Flipped classroom learning which wide-spreads rapidly…

  12. Flipped Learning in the Workplace (United States)

    Nederveld, Allison; Berge, Zane L.


    Purpose: The purpose of this paper is to serve as a summary of resources on flipped learning for workplace learning professionals. A recent buzzword in the training world is "flipped". Flipped learning and the flipped classroom are hot topics that have emerged in K-12 education, made their way to the university and are now being noticed…

  13. Chip, Chip, Hooray! (United States)

    Kelly, Susan


    Presents a science laboratory using different brands of potato chips in which students test their oiliness, size, thickness, saltiness, quality, and cost, then analyze the results to determine the best chip. Gives a brief history of potato chips. (YDS)

  14. Low-Cost Illumination-Grade LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Epler, John [Philips Lumileds Lighting Company LLC, San Jose, CA (United States)


    Solid State Lighting is a cost-effective, energy-conserving technology serving a rapidly expand- ing multi-billion dollar market. This program was designed to accelerate this lighting revolution by reducing the manufacturing cost of Illumination-Grade LEDs. The technical strategy was to investigate growth substrate alternatives to standard planar sapphire, select the most effective and compatible option, and demonstrate a significant increase in Lumen/$ with a marketable LED. The most obvious alternate substrate, silicon, was extensively studied in the first two years of the program. The superior thermal and mechanical properties of Si were expected to improve wavelength uniformity and hence color yield in the manufacture of high-power illumination- grade LEDs. However, improvements in efficiency and epitaxy uniformity on standard c-plane sapphire diminished the advantages of switching to Si. Furthermore, the cost of sapphire decreased significantly and the cost of processing Si devices using our thin film process was higher than expected. We concluded that GaN on Si was a viable technology but not a practical option for Philips Lumileds. Therefore in 2012 and 2013, we sought and received amendments which broadened the scope to include other substrates and extended the time of execution. Proprietary engineered substrates, off-axis (non-c-plane) sapphire, and c-plane patterned sapphire substrates (PSS) were all investigated in the final 18 months of this program. Excellent epitaxy quality was achieved on all three candidates; however we eliminated engineered substrates and non-c-plane sapphire because of their higher combined cost of substrate, device fabrication and packaging. Ultimately, by fabricating a flip-chip (FC) LED based upon c-plane PSS we attained a 42% reduction in LED manufacturing cost relative to our LUXEON Rebel product (Q1-2012). Combined with a flux gain from 85 to 102 Lm, the LUXEON Q delivered a 210% increase in Lm/$ over this time period. The


    Directory of Open Access Journals (Sweden)

    Olena Kuzminska


    Full Text Available The article is devoted to issues of implementation of the flipped learning technology in the practice of higher education institutions. The article defines the principles of technology and a model of the educational process, it notes the need to establish an information support system. The article defines online platforms and resources; it describes recommendations for the design of electronic training courses and organization of the students in the process of implementing the proposed model, as well as tools for assessing its effectiveness. The article provides a description of flipped learning implementation scenario and formulates suggestions regarding the use of this model as a mechanism to improve the efficiency of the learning process in the ICT-rich environment of high school: use of learning management systems (LMS and personal learning environments (PLE of participants in a learning process. The article provides an example of implementation of the flipped learning model as a part of the Information Technologies course in the National University of Life and Environmental Sciences of Ukraine (NULES. The article gives examples of tasks, resources and services, results of students’ research activity, as well as an example of the personal learning network, established in the course of implementation of the flipped learning model and elements of digital student portfolios. It presents the results of the monitoring of learning activities and students’ feedback. The author describes cautions against the mass introduction of the flipped learning model without monitoring of readiness of the participants of the educational process for its implementation

  16. The Flipped Journal Club. (United States)

    Bounds, Richard; Boone, Stephen


    Educators struggle to develop a journal club format that promotes active participation from all levels of trainees. The explosion of social media compels residencies to incorporate the evaluation and application of these resources into evidence-based practice. We sought to design an innovative "flipped journal club" to achieve greater effectiveness in meeting goals and objectives among residents and faculty. Each journal club is focused on a specific clinical question based on a landmark article, a background article, and a podcast or blog post. With the "flipped" model, residents are assigned to prepare an in-depth discussion of one of these works based on their level of training. At journal club, trainees break into small groups and discuss their assigned readings with faculty facilitation. Following the small-group discussions, all participants convene to summarize key points. In redesigning our journal club, we sought to achieve specific educational outcomes, and improve participant engagement and overall impressions. Sixty-one residents at our emergency medicine program participated in the flipped journal club during the 2015-2016 academic year, with supervision by core faculty. Program evaluation for the flipped journal club was performed using an anonymous survey, with response rates of 70% and 56% for residents and faculty, respectively. Overall, 95% of resident respondents and 100% of faculty respondents preferred the flipped format. The "flipped journal club" hinges upon well-selected articles, incorporation of social media, and small-group discussions. This format engages all residents, holds learners accountable, and encourages greater participation among residents and faculty.

  17. Flipping the Classroom (United States)

    Riendeau, Diane


    A recent trend in education is the ``flipped'' or ``reversed'' classroom. In this educational model, students view videos of the lectures as their homework and class time is used for activities and solving problems that might have been assigned as homework in a traditional classroom. Although far from an expert on flipping the classroom, I can see some merit in the idea. When students watch the videos at home, they can start and restart the lecture as often as they like. The lectures are also available for review before the exam. Class time can be used for higher-order questioning, experiments, and problem solving.

  18. What millennial medical students say about flipped learning (United States)

    Pettit, Robin K; McCoy, Lise; Kinney, Marjorie


    Flipped instruction is gaining popularity in medical schools, but there are unanswered questions such as the optimum amount of the curriculum to flip and whether flipped sessions should be mandatory. We were in a unique position to evaluate feedback from first-year medical students who had experienced both flipped and lecture-based courses during their first semester of medical school. A key finding was that the students preferred a variety of different learning formats over an “all or nothing” learning format. Learning format preferences did not necessarily align with perceptions of which format led to better course exam performance. Nearly 70% of respondents wanted to make their own decisions regarding attendance. Candid responses to open-ended survey prompts reflected millennial preferences for choice, flexibility, efficiency, and the ability to control the pace of their learning, providing insight to guide curricular improvements. PMID:28769600

  19. What millennial medical students say about flipped learning. (United States)

    Pettit, Robin K; McCoy, Lise; Kinney, Marjorie


    Flipped instruction is gaining popularity in medical schools, but there are unanswered questions such as the optimum amount of the curriculum to flip and whether flipped sessions should be mandatory. We were in a unique position to evaluate feedback from first-year medical students who had experienced both flipped and lecture-based courses during their first semester of medical school. A key finding was that the students preferred a variety of different learning formats over an "all or nothing" learning format. Learning format preferences did not necessarily align with perceptions of which format led to better course exam performance. Nearly 70% of respondents wanted to make their own decisions regarding attendance. Candid responses to open-ended survey prompts reflected millennial preferences for choice, flexibility, efficiency, and the ability to control the pace of their learning, providing insight to guide curricular improvements.

  20. Flipping the Classroom Revisited (United States)

    Riendeau, Diane


    I received many emails following the first column on flipping the classroom. Many of my local colleagues also approached me at our physics alliance, Physics Northwest. Teachers are very interested in this new pedagogy. As I result, I wanted to share some more videos to inspire you.

  1. The flipped classroom

    DEFF Research Database (Denmark)

    Triantafyllou, Evangelia


    communication and information sharing in such classrooms. Furthermore, it provides guidelines for supporting out-of-class instruction in the flipped model by using quizzes and feedback in Moodle, and comments on the potential to follow student use of resources by using Moodle reports. This paper concludes...

  2. Miniaturized tool for optogenetics based on an LED and an optical fiber interfaced by a silicon housing. (United States)

    Schwaerzle, M; Elmlinger, P; Paul, O; Ruther, P


    This paper reports on the design, simulation, fabrication and characterization of a tool for optogenetic experiments based on a light emitting diode (LED). A minimized silicon (Si) interface houses the LED and aligns it to an optical fiber. With a Si housing size of 550×500×380 μm(3) and an electrical interconnection of the LED by a highly flexible polyimide (PI) ribbon cable is the system very variable. PI cables and Si housings are fabricated using established microsystem technologies. A 270×220×50 μm(3) bare LED chip is flip-chip-bonded onto the PI cable. The Si housing is adhesively attached to the PI cable, thereby hosting the LED in a recess. An opposite recess guides the optical fiber with a diameter of 125 μm. An aperture in-between restricts the emitted LED light to the fiber core. The optical fiber is adhesively fixed into the Si housing recess. An optical output intensity at the fiber end facet of 1.71 mW/mm(2) was achieved at a duty cycle of 10 % and a driving current of 30 mA.

  3. MathsFlip: Flipped Learning. Evaluation Report and Executive Summary (United States)

    Rudd, Peter; Aguilera, Alaidde Berenice Villaneuva; Elliott, Louise; Chambers, Bette


    The MathsFlip intervention aimed to improve the attainment of pupils in Years 5 and 6. The programme, developed by Shireland Collegiate Academy, used a 'flipped learning' approach involving pupils learning core content online, outside of class time, and then participating in activities in class to reinforce their learning. The programme used an…

  4. Large area LED package (United States)

    Goullon, L.; Jordan, R.; Braun, T.; Bauer, J.; Becker, F.; Hutter, M.; Schneider-Ramelow, M.; Lang, K.-D.


    Solid state lighting using LED-dies is a rapidly growing market. LED-dies with the needed increasing luminous flux per chip area produce a lot of heat. Therefore an appropriate thermal management is required for general lighting with LEDdies. One way to avoid overheating and shorter lifetime is the use of many small LED-dies on a large area heat sink (down to 70 μm edge length), so that heat can spread into a large area while at the same time light also appears on a larger area. The handling with such small LED-dies is very difficult because they are too small to be picked with common equipment. Therefore a new concept called collective transfer bonding using a temporary carrier chip was developed. A further benefit of this new technology is the high precision assembly as well as the plane parallel assembly of the LED-dies which is necessary for wire bonding. It has been shown that hundred functional LED-dies were transferred and soldered at the same time. After the assembly a cost effective established PCB-technology was applied to produce a large-area light source consisting of many small LED-dies and electrically connected on a PCB-substrate. The top contacts of the LED-dies were realized by laminating an adhesive copper sheet followed by LDI structuring as known from PCB-via-technology. This assembly can be completed by adding converting and light forming optical elements. In summary two technologies based on standard SMD and PCB technology have been developed for panel level LED packaging up to 610x 457 mm2 area size.

  5. Flipped Classroom Learning Model and Its Availability in Turkish Education (United States)

    Akin, Erhan


    Technological developments, which entered into educational environment, led up new developments on behalf of rescuing education from locking in certain environments by expanding its domain. One of these developments, subject of our study, is the learning model called Flipped Classroom. In this model, students are able to continue their education…

  6. Adventures in Flipping College Algebra (United States)

    Van Sickle, Jenna


    This paper outlines the experience of a university professor who implemented flipped learning in two sections of college algebra courses for two semesters. It details how the courses were flipped, what technology was used, advantages, challenges, and results. It explains what students do outside of class, what they do inside class, and discusses…

  7. Relationships in the Flipped Classroom (United States)

    McCollum, Brett M.; Fleming, Cassidy L.; Plotnikoff, Kara M.; Skagen, Darlene N.


    This study examines the effectiveness of flipped classrooms in chemistry, and identifies relationships as a major factor impacting the success of flipped instruction methods. Examination of student interview data reveals factors that affect the development of peer-peer, peer-peer leader, and peer-expert relationships in firstyear general chemistry…

  8. Involvement of FLIP in 2-methoxyestradiol-induced tumor regression in transgenic adenocarcinoma of mouse prostate model. (United States)

    Ganapathy, Manonmani; Ghosh, Rita; Jianping, Xie; Zhang, Xiaoping; Bedolla, Roble; Schoolfield, John; Yeh, I-Tien; Troyer, Dean A; Olumi, Aria F; Kumar, Addanki P


    The purpose of this study is to investigate whether Fas-associated death domain interleukin-1 converting enzyme like inhibitory protein (FLIP) inhibition is a therapeutic target associated with 2-methoxyestradiol (2-ME2)-mediated tumor regression. Expression and levels of FLIP were analyzed using (a) real-time PCR and immunoblot analysis in androgen-independent PC-3 cells treated with the newly formulated 2-ME2 and (b) immunohistochemistry in different Gleason pattern human prostate tumors. Transient transfections and chromatin immunoprecipitation (ChIP) assays were used to identify the transcription factors that regulate FLIP. Involvement of FLIP in 2-ME2-induced tumor regression was evaluated in transgenic adenocarcinoma mouse prostate (TRAMP) mice. High Gleason pattern (5+5) human prostate tumors exhibit significant increase in FLIP compared with low Gleason pattern 3+3 (P=ormanagement.

  9. What millennial medical students say about flipped learning

    Directory of Open Access Journals (Sweden)

    Pettit RK


    Full Text Available Robin K Pettit, Lise McCoy, Marjorie Kinney School of Osteopathic Medicine in Arizona, A. T. Still University, Mesa, AZ, USA Abstract: Flipped instruction is gaining popularity in medical schools, but there are unanswered questions such as the optimum amount of the curriculum to flip and whether flipped sessions should be mandatory. We were in a unique position to evaluate feedback from first-year medical students who had experienced both flipped and lecture-based courses during their first semester of medical school. A key finding was that the students preferred a variety of different learning formats over an “all or nothing” learning format. Learning format preferences did not necessarily align with perceptions of which format led to better course exam performance. Nearly 70% of respondents wanted to make their own decisions regarding attendance. Candid responses to open-ended survey prompts reflected millennial preferences for choice, flexibility, efficiency, and the ability to control the pace of their learning, providing insight to guide ­curricular improvements. Keywords: flipped classroom, mandatory attendance, medical education, lecture-based, variety

  10. Flipped GUT Inflation

    CERN Document Server

    Ellis, John; Harz, Julia; Huang, Wei-Chih


    We analyse the prospects for constructing hybrid models of inflation that provide a dynamical realisation of the apparent closeness between the supersymmetric GUT scale and the possible scale of cosmological inflation. In the first place, we consider models based on the flipped SU(5)$\\times$U(1) gauge group, which has no magnetic monopoles. In one model, the inflaton is identified with a sneutrino field, and in the other model it is a gauge singlet. In both cases we find regions of the model parameter spaces that are compatible with the experimental magnitudes of the scalar perturbations, $A_s$, and the tilt in the scalar perturbation spectrum, $n_s$, as well as with an indicative upper limit on the tensor-to-scalar perturbation ratio, $r$. We also discuss embeddings of these models into SO(10), which is broken at a higher scale so that its monopoles are inflated away.

  11. Practical quantum coin flipping

    International Nuclear Information System (INIS)

    Pappa, Anna; Diamanti, Eleni; Chailloux, Andre; Kerenidis, Iordanis


    We show that in the unconditional security model, a single quantum strong coin flip with security guarantees that are strictly better than in any classical protocol is possible to implement with current technology. Our protocol takes into account all aspects of an experimental implementation, including losses, multiphoton pulses emitted by practical photon sources, channel noise, detector dark counts, and finite quantum efficiency. We calculate the abort probability when both players are honest, as well as the probability of one player forcing his desired outcome. For a channel length up to 21 km and commonly used parameter values, we can achieve honest abort and cheating probabilities that are better than in any classical protocol. Our protocol is, in principle, implementable using attenuated laser pulses, with no need for entangled photons or any other specific resources.

  12. FLIP for FLAG model visualization

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, Hasani Omar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    A graphical user interface has been developed for FLAG users. FLIP (FLAG Input deck Parser) provides users with an organized view of FLAG models and a means for efficiently and easily navigating and editing nodes, parameters, and variables.

  13. An analysis of the pull strength behaviors of fine-pitch, flip chip solder interconnections using a Au-Pt-Pd thick film conductor on Low-Temperature, Co-fired Ceramic (LTCC) substrates.

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, Fernando R.; Kilgo, Alice C.; Grazier, John Mark; Vianco, Paul Thomas; Zender, Gary L.; Hlava, Paul Frank; Rejent, Jerome Andrew


    inconsistent proportions of metal and glassy phase particles present during the subsequent firing process. The consequences were subtle, intermittent changes to the thick film microstructure that gave rise to the reaction layer and, thus, the low pull strength phenomenon. A mitigation strategy would be the use of physical vapor deposition (PVD) techniques to create thin film bond pads; this is multi-chip module, deposited (MCM-D) technology.

  14. High-Voltage LED Light Engine with Integrated Driver

    Energy Technology Data Exchange (ETDEWEB)

    Soer, Wouter [Lumileds LLC, San Jose, CA (United States)


    LED luminaires have seen dramatic changes in cost breakdown over the past few years. The LED component cost, which until recently was the dominant portion of luminaire cost, has fallen to a level of the same order as the other luminaire components, such as the driver, housing, optics etc. With the current state of the technology, further luminaire performance improvement and cost reduction is realized most effectively by optimization of the whole system, rather than a single component. This project focuses on improving the integration between LEDs and drivers. Lumileds has developed a light engine platform based on low-cost high-power LEDs and driver topologies optimized for integration with these LEDs on a single substrate. The integration of driver and LEDs enables an estimated luminaire cost reduction of about 25% for targeted applications, mostly due to significant reductions in driver and housing cost. The high-power LEDs are based on Lumileds’ patterned sapphire substrate flip-chip (PSS-FC) technology, affording reduced die fabrication and packaging cost compared to existing technology. Two general versions of PSS-FC die were developed in order to create the desired voltage and flux increments for driver integration: (i) small single-junction die (0.5 mm2), optimal for distributed lighting applications, and (ii) larger multi-junction die (2 mm2 and 4 mm2) for high-power directional applications. Two driver topologies were developed: a tapped linear driver topology and a single-stage switch-mode topology, taking advantage of the flexible voltage configurations of the new PSS-FC die and the simplification opportunities enabled by integration of LEDs and driver on the same board. A prototype light engine was developed for an outdoor “core module” application based on the multi-junction PSS-FC die and the single-stage switch-mode driver. The light engine meets the project efficacy target of 128 lm/W at a luminous flux

  15. To Flip or Not to Flip? An Exploratory Study Comparing Student Performance in Calculus I (United States)

    Schroeder, Larissa B.; McGivney-Burelle, Jean; Xue, Fei


    The purpose of this exploratory, mixed-methods study was to compare student performance in flipped and non-flipped sections of Calculus I. The study also examined students' perceptions of the flipping pedagogy. Students in the flipped courses reported spending, on average, an additional 1-2 hours per week outside of class on course content.…

  16. Chip-level interconnections realized via the laser-induced forward transfer technique


    Kaur, Kamalpreet; Missinne, Jeroen; Van Steenberge, Geert


    In this paper, successful flip-chip bonding and DC characterization of single photodiode and VCSEL chips via Laser-Induced Forward Transfer (LIFT) printed micro-bumps of indium, silver nano-particle (AgNP) based inks and pastes, is reported.

  17. LED lamp (United States)

    Galvez, Miguel; Grossman, Kenneth; Betts, David


    There is herein described a lamp for providing white light comprising a plurality of light sources positioned on a substrate. Each of said light sources comprises a blue light emitting diode (LED) and a dome that substantially covers said LED. A first portion of said blue light from said LEDs is transmitted through said domes and a second portion of said blue light is converted into a red light by a first phosphor contained in said domes. A cover is disposed over all of said light sources that transmits at least a portion of said red and blue light emitted by said light sources. The cover contains a second phosphor that emits a yellow light in response to said blue light. The red, blue and yellow light combining to form the white light and the white light having a color rendering index (CRI) of at least about 80.

  18. Single-transistor-clocked flip-flop

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Peiyi; Darwish, Tarek; Bayoumi, Magdy


    The invention provides a low power, high performance flip-flop. The flip-flop uses only one clocked transistor. The single clocked transistor is shared by the first and second branches of the device. A pulse generator produces a clock pulse to trigger the flip-flop. In one preferred embodiment the device can be made as a static explicit pulsed flip-flop which employs only two clocked transistors.

  19. A Flipped Classroom Redesign in General Chemistry (United States)

    Reid, Scott A.


    The flipped classroom continues to attract significant attention in higher education. Building upon our recent parallel controlled study of the flipped classroom in a second-term general chemistry course ("J. Chem. Educ.," 2016, 93, 13-23), here we report on a redesign of the flipped course aimed at scaling up total enrollment while…

  20. The Flipped Classroom in Counselor Education (United States)

    Moran, Kristen; Milsom, Amy


    The flipped classroom is proposed as an effective instructional approach in counselor education. An overview of the flipped-classroom approach, including advantages and disadvantages, is provided. A case example illustrates how the flipped classroom can be applied in counselor education. Recommendations for implementing or researching flipped…

  1. Flipping a Calculus Class: One Instructor's Experience (United States)

    Palmer, Katrina


    This paper describes one instructor's experiences during a year of flipping four calculus classes. The first exploration attempts to understand student expectations of a math class and their preference towards a flipped classroom. The second examines success of students from a flipped classroom, and the last investigates relationships with student…

  2. The Marriage of Constructivism and Flipped Learning (United States)

    Chang, Sau Hou


    This report talks about how a constructivist teacher used flipped learning in a college class. To illustrate how to use flipped learning in a constructivist classroom, examples were given with the four pillars of F-L-I-P: Flexible environment, learning culture, intentional content, and professional educator.

  3. Flipped learning in science education

    DEFF Research Database (Denmark)

    Andersen, Thomas Dyreborg; Foss, Kristian Kildemoes; Nissen, Stine Karen


    ICT in a meaningful way, and make way that the potential of ICT may be unleashed. This poster presentation will present the methodological framework for a study on the implementation of Flipped Learning in science classrooms in the Danish elementary school system – and the research following this. Our...... research questions are “To what extent can teachers using the FL-teaching method improve Danish pupils' learning outcomes in science subject’s physics / chemistry, biology and geography in terms of the results of national tests?” And “What factors influence on whether FL-teaching improves pupils' learning......?” During a 3-year period 84 science teachers at 18 schools will participate in a program where they will lean to conduct teaching based on flipped learning principals. The teachers will undertake a 3 + 1 + 1 day course where essential technical and didactical issues regarding flipped learning...

  4. Flipped Learning fra et elevperspektiv

    DEFF Research Database (Denmark)

    Holmboe, Peter; Hachmann, Roland


    Antologi er et resultat af et toårigt udviklingsprojekt om Flipped Learning baseret på et samarbejde mellem IT-Center Fyn og Region Syddanmark. Bidraget her præsenterer en række overvejelser, vi har gjort os på baggrund af observationer af undervisning og interviews med elever i projektet. Vores...... overordnede undersøgelsesspørgsmål var: "Hvilke forhold i undervisning og læringsmiljø fremme hhv. begrænser elevens opfattelse af mening og fagligt udbytte i et Flipped Learning design?"....

  5. A counting pixel chip and sensor system for X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, P.; Hausmann, J.; Helmich, A.; Lindner, M.; Wermes, N. [Universitaet Bonn (Germany). Physikalisches Institut; Blanquart, L. [CNRS, Marseille (France). Centre de Physique des Particules


    Results obtained with a (photon) counting pixel imaging chip connected to a silicon pixel sensor using the bump and flip-chip technology are presented. The performance of the chip electronics is characterized by an average equivalent noise charge (ENC) below 135 e and a threshold spread of less than 35 e after individual threshold adjust, both measured with a sensor attached. First results on the imaging performance are also reported.

  6. Flipped learning in science education

    DEFF Research Database (Denmark)

    Andersen, Thomas Dyreborg; Foss, Kristian Kildemoes; Nissen, Stine Karen


    During the last decade, massive investment in ICT has been made in Danish schools. There seems, however, to be a need to rethink how to better integrate ICT in education (Bundgaard et al. 2014 p. 216) Flipped learning might be a didactical approach that could contribute to finding a method to use...

  7. Extracting light out of LEDs (United States)

    Muschaweck, Julius; Wiesmann, Christopher


    `External quantum efficiency', that is, the number of photons generated per electron passing through the p-n junction of an LED is probably the most important number to quantify the performance of an LED chip. Although advances in epitaxy have increased the fraction of radiative recombination to extremely high values, the extraction of the precious photons that are trapped in a high refractive index crystal is still tricky. In this brief tutorial, we look at the physics of light extraction both from a geometrical optics/thermodynamic and a wave optics point of view, discussing both random and deterministic surface structures.


    Directory of Open Access Journals (Sweden)

    Maxim S. Fudin


    Full Text Available Frequency characteristics of modern LED phosphor materials have been considered for the purpose of assessing the prospects of phosphor-based LEDs in wireless communication data systems which use optical wavelengths. The measurements have been carried out on the dependence of the emission intensity of single LEDs and LED chip-on-board modules with phosphors based on yttrium-aluminum and lutetium-aluminum garnets (with or without addition of nitridebased phosphors as well as silicate-based phosphors, on the frequency of electric pulses exciting the emission. It was shown that from the point of view of data transmission rate, garnet-based phosphors (including systems with added nitride phosphors are more promising than silicate–based ones. Garnet-based materials can be used in optical communication data systems with bandwidth (without extra modulation applied up to 3 MHz with single–chip LEDs and up to 4.5 MHz with 9- chip LED chip-on-board modules. The results of the work indicate that a significant part of white LEDs used in general lighting systems can be even now used for data transfer, for example, in systems assisting positioning in closed spaces to facilitate people searching necessary rooms or objects

  9. Flip-J: Development of the System for Flipped Jigsaw Supported Language Learning (United States)

    Yamada, Masanori; Goda, Yoshiko; Hata, Kojiro; Matsukawa, Hideya; Yasunami, Seisuke


    This study aims to develop and evaluate a language learning system supported by the "flipped jigsaw" technique, called "Flip-J". This system mainly consists of three functions: (1) the creation of a learning material database, (2) allocation of learning materials, and (3) formation of an expert and jigsaw group. Flip-J was…

  10. How to Flip the Classroom--"Productive Failure or Traditional Flipped Classroom" Pedagogical Design? (United States)

    Song, Yanjie; Kapur, Manu


    The paper reports a quasi-experimental study comparing the "traditional flipped classroom" pedagogical design with the "productive failure" (Kapur, 2016) pedagogical design in the flipped classroom for a 2-week curricular unit on polynomials in a Hong Kong Secondary school. Different from the flipped classroom where students…

  11. Flipped Classroom Experiences: Student Preferences and Flip Strategy in a Higher Education Context (United States)

    McNally, Brenton; Chipperfield, Janine; Dorsett, Pat; Del Fabbro, Letitia; Frommolt, Valda; Goetz, Sandra; Lewohl, Joanne; Molineux, Matthew; Pearson, Andrew; Reddan, Gregory; Roiko, Anne; Rung, Andrea


    Despite the popularity of the flipped classroom, its effectiveness in achieving greater engagement and learning outcomes is currently lacking substantial empirical evidence. This study surveyed 563 undergraduate and postgraduate students (61% female) participating in flipped teaching environments and ten convenors of the flipped courses in which…

  12. Flipping the Graduate Qualitative Research Methods Classroom: Did It Lead to Flipped Learning? (United States)

    Earley, Mark


    The flipped, or inverted, classroom has gained popularity in a variety of fields and at a variety of educational levels, from K-12 through higher education. This paper describes the author's positive experience flipping a graduate qualitative research methods classroom. After a review of the current literature on flipped classrooms in higher…

  13. Pixel readout chip for the ATLAS experiment

    CERN Document Server

    Ackers, M; Blanquart, L; Bonzom, V; Comes, G; Fischer, P; Keil, M; Kühl, T; Meuser, S; Delpierre, P A; Treis, J; Raith, B A; Wermes, N


    Pixel detectors with a high granularity and a very large number of sensitive elements (cells) are a very recent development used for high precision particle detection. At the Large Hadron Collider LHC at CERN (Geneva) a pixel detector with 1.4*10/sup 8/ individual pixel cells is developed for the ATLAS detector. The concept is a hybrid detector. Consisting of a pixel sensor connected to a pixel electronics chip by bump and flip chip technology in one-to-one cell correspondence. The development and prototype results of the pixel front end chip are presented together with the physical and technical requirements to be met at LHC. Lab measurements are reported. (6 refs).

  14. To Flip or Not to Flip? Analysis of a Flipped Classroom Pedagogy in a General Biology Course (United States)

    Heyborne, William H.; Perrett, Jamis J.


    In an attempt to better understand the flipped technique and evaluate its purported superiority in terms of student learning gains, the authors conducted an experiment comparing a flipped classroom to a traditional lecture classroom. Although the outcomes were mixed, regarding the superiority of either pedagogical approach, there does seem to be a…

  15. Comparison of Upright and Flipped Spoon Presentations to Guide Treatment of Food Refusal (United States)

    Sharp, William G.; Odom, Ashley; Jaquess, David L.


    The current study examined the effects of bite placement with a flipped versus upright spoon on expulsion and mouth clean (product measure of swallowing) in the treatment of 3 children diagnosed with a pediatric feeding disorder and oral-motor deficits. For all 3 participants, extinction in the form of nonremoval of the spoon led to improvements…

  16. Flipping the Educational System: Putting Teachers at the Heart of Teaching (United States)

    Kneyber, René


    This article describes an initiative led by two classroom teachers from the Netherlands to put teachers back at the centre of the educational process. The article argues that the educational system has become inverted, with those who are most influential (teachers) having the least opportunity to influence. The challenge is to "flip the…

  17. Root-flipped multiband refocusing pulses. (United States)

    Sharma, Anuj; Lustig, Michael; Grissom, William A


    To design low peak power multiband refocusing radiofrequency pulses, with application to simultaneous multislice spin echo MRI. Multiband Shinnar-Le Roux β polynomials were designed using convex optimization. A Monte Carlo algorithm was used to determine patterns of β polynomial root flips that minimized the peak power of the resulting refocusing pulses. Phase-matched multiband excitation pulses were also designed to obtain linear-phase spin echoes. Simulations compared the performance of the root-flipped pulses with time-shifted and phase-optimized pulses. Phantom and in vivo experiments at 7T validated the function of the root-flipped pulses and compared them to time-shifted spin echo signal profiles. Averaged across number of slices, time-bandwidth product, and slice separation, the root-flipped pulses have 46% shorter durations than time-shifted pulses with the same peak radiofrequency amplitude. Unlike time-shifted and phase-optimized pulses, the root-flipped pulses' excitation errors do not increase with decreasing band separation. Experiments showed that the root-flipped pulses excited the desired slices at the target locations, and that for equivalent slice characteristics, the shorter root-flipped pulses allowed shorter echo times, resulting in higher signal than time-shifted pulses. The proposed root-flipped multiband radiofrequency pulse design method produces low peak power pulses for simultaneous multislice spin echo MRI. © 2015 Wiley Periodicals, Inc.

  18. Conceptualizing "Homework" in Flipped Mathematics Classes (United States)

    de Araujo, Zandra; Otten, Samuel; Birisci, Salih


    Flipped instruction is becoming more common in the United States, particularly in mathematics classes. One of the defining characteristics of this increasingly popular instructional format is the homework teachers assign. In contrast to traditional mathematics classes in which homework consists of problem sets, homework in flipped classes often…

  19. Examining the Flipped Classroom through Action Research (United States)

    Lo, Chung Kwan


    There is a growing interest in using a flipped classroom format in day-to-day teaching. Direct computer-based individual instruction outside the classroom and interactive group learning activities inside the classroom are the two essential components of the flipped classroom model. By watching instructional videos, students can work through some…

  20. Just in Time to Flip Your Classroom (United States)

    Lasry, Nathaniel; Dugdale, Michael; Charles, Elizabeth


    With advocates like Sal Khan and Bill Gates, flipped classrooms are attracting an increasing amount of media and research attention. We had heard Khan's TED talk and were aware of the concept of inverted pedagogies in general. Yet it really hit home when we accidentally flipped our classroom. Our objective was to better prepare our students…

  1. The Flipped Classroom: A Twist on Teaching (United States)

    Schmidt, Stacy M. P.; Ralph, David L.


    The traditional classroom has utilized the "I Do", "We Do", "You Do" as a strategy for teaching for years. The flipped classroom truly flips that strategy. The teacher uses "You Do", "We Do", "I Do" instead. Homework, inquiry, and investigation happen in the classroom. At home students…

  2. Flipped Classroom Instruction for Inclusive Learning (United States)

    Altemueller, Lisa; Lindquist, Cynthia


    The flipped classroom is a teaching methodology that has gained recognition in primary, secondary and higher education settings. The flipped classroom inverts traditional teaching methods, delivering lecture instruction outside class, and devoting class time to problem solving, with the teacher's role becoming that of a learning coach and…

  3. Diverse Perspectives on a Flipped Biostatistics Classroom (United States)

    Schwartz, Todd A.; Andridge, Rebecca R.; Sainani, Kirstin L.; Stangle, Dalene K.; Neely, Megan L.


    "Flipping" the classroom refers to a pedagogical approach in which students are first exposed to didactic content outside the classroom and then actively use class time to apply their newly attained knowledge. The idea of the flipped classroom is not new, but has grown in popularity in recent years as the necessary technology has…

  4. Flipping the Calculus Classroom: An Evaluative Study (United States)

    Maciejewski, Wes


    Classroom flipping is the practice of moving new content instruction out of class time, usually packaging it as online videos and reading assignments for students to cover on their own, and devoting in-class time to interactive engagement activities. Flipping has garnered a large amount of hype from the popular education media and has been adopted…

  5. Limited flip angle MR imaging: Hemorrhagic applications

    International Nuclear Information System (INIS)

    Drayer, B.P.; Rigamonti, D.; Johnson, P.C.; Spetzler, R.F.; Keller, P.J.; Flom, R.A.; Bird, C.R.; Hodak, J.A.


    The authors studied 64 patients with hemorrhagic brain lesions, including vascular malformations (n = 29), hemorrhagic infarctions (n = 9), chronic slit hemorrhagic residua of hypertensive hematoma (n = 10), trauma (n = 8), and gliobastoma multiforme (n = 8). With a 1.5-T MR imaging system, 5-mm sections were obtained at a repetition time of 300 msec (or 500), an echo time of 12.3 msec (or 10 and 40), and a flip angle of 60 0 (or 20 0 ). The limited flip angle study was always extremely sensitive for the detection of hemosiderin. With multiple cavernous angiomas, additional small lesions (in five of 18 patients) were detected only with the limited flip angle technique. The hemosiderin-laden macrophage residua of hemorrhagic infarction and hypertensive hematoma were better seen on limited flip angle images than on T2-weighted spin-echo images. The detection of blood on limited flip angle images permitted the grading of glioma as glioblastoma multiforme

  6. Just in Time to Flip Your Classroom (United States)

    Lasry, Nathaniel; Dugdale, Michael; Charles, Elizabeth


    With advocates like Sal Khan and Bill Gates, flipped classrooms are attracting an increasing amount of media and research attention.2 We had heard Khan's TED talk and were aware of the concept of inverted pedagogies in general. Yet it really hit home when we accidentally flipped our classroom. Our objective was to better prepare our students for class. We set out to effectively move some of our course content outside of class and decided to tweak the Just-in-Time Teaching approach (JiTT).3 To our surprise, this tweak—which we like to call the flip-JiTT—ended up completely flipping our classroom. What follows is narrative of our experience and a procedure that any teacher can use to extend JiTT to a flipped classroom.

  7. Cytometer on a Chip (United States)

    Fernandez, Salvador M.


    various species in a sample of cells is spatially encoded in the chip by the pattern of capture spots. The number of cells of a particular species is determined from the magnitude of the GCSPRI signal from that spot. GCSPRI as used here can be summarized as follows: The cytometer chip is fabricated with a diffraction grating on its front surface. The chip is illuminated with a light emitting diode (LED) from the front. By proper choice of grating parameters and of the wavelength and the angle of incidence of a laser beam, laser light can be made to be coupled into an electromagnetic mode that resonates with surface plasmons and thus couples light into surface plasmons. Coupling of light into a surface plasmon at a given location reduces the amount of incident light reflected from that location. A change in the index of refraction at the surface of a capture spot gives rise to a change in the resonance condition. Depending on the specific design, the change in the index of refraction could manifest itself as a brightening or darkening, a change in the wavelength needed to excite the plasmon at a given angle of incidence, or a change in the angle of incidence needed to excite the plasmon at a given wavelength. Whereas a multiwavelength laser system with multichannel detection would be needed to detect multiple species in conventional flow cytometry, it suffices to use an LED and a single detector channel in the GCSPRI approach: this contributes significantly to reductions in cost, complexity, size, mass, and power. GCSPRI cytometer chips could be made of plastic and could be mass-produced cheaply by use of molding and other methods adopted from the manufacture of digital video disks. These methods are amenable to a high degree of miniaturization: such additional features as fluidic channels, reaction chambers, and fluid-coupling ports could readily be incorporated into the chips, without incurring substantial additional costs.

  8. Flipping the Electromagnetic Theory classroom (United States)

    Berger, Andrew J.


    Electromagnetic Theory is a required junior-year course for Optics majors at the University of Rochester. This foundational course gives students their first rigorous exposure to electromagnetic vector fields, dipole radiation patterns, Fresnel reflection/transmission coefficients, waveguided modes, Jones vectors, waveplates, birefringence, and the Lorentz model of refractive index. To increase the percentage of class time devoted to student-centered conceptual reasoning and instructor feedback, this course was recently "flipped". Nearly all of the mathematically-intensive derivations were converted to narrated screencasts ("Khan Academy" style) and made available to students through the course's learning management system. On average, the students were assigned two 10-15 minute videos to watch in advance of each lecture. An electronic survey after each tutorial encouraged reflection and counted towards the student's participation grade. Over the past three years, students have consistently rated the videos as being highly valuable. This presentation will discuss the technical aspects of creating tutorial videos and the educational tradeoffs of flipping a mathematically-intensive upper-level course. The most important advantage is the instructor's increased ability to identify and respond to student confusion, via activities that would consume too much time in a lecture-centered course. Several examples of such activities will be given. Two pitfalls to avoid are the temptation for the instructor not to update the videos from year to year and the tendency of students not to take lecture notes while watching the videos.

  9. Flipped classroom: a review of recent literature

    Directory of Open Access Journals (Sweden)

    Huseyin Uzunboylu


    Full Text Available The use of learning technologies, especially multimedia provide varied facilities for students’ learning that are not possible with other media. Pedagogical literature has proved that individuals have different learning styles. Flipped classroom is a pedagogical approach which means that activities that have traditionally taken place inside the classroom take place outside the classroom and vice versa. Flipped classroom environment ensures that students become more active participants compared with the traditional classroom. The purpose of this paper is to fulfil the needs regarding the review of recent literature on the use of flipped classroom approach in education. The contribution of flipped classroom to education is discussed in relation to the change of students' and instructors' role. Subsequently, flipped classroom applications in various disciplines of education are illustrated. The recommendations made in the literature for design specifications that integrate flipped classrooms with technology are discussed. The paper concludes that a careful consideration of the warnings and recommendations made in the literature can help to produce effective flipped classroom environments and also this paper attempts to inform those who are thinking of using new technologies and approaches to deliver courses.

  10. The Partially Flipped Classroom: The Effects of Flipping a Module on "Junk Science" in a Large Methods Course (United States)

    Burgoyne, Stephanie; Eaton, Judy


    Flipped classrooms are gaining popularity, especially in psychology statistics courses. However, not all courses lend themselves to a fully flipped design, and some instructors might not want to commit to flipping every class. We tested the effectiveness of flipping just one component (a module on junk science) of a large methods course. We…

  11. Comparing the Effectiveness of Blended, Semi-Flipped, and Flipped Formats in an Engineering Numerical Methods Course (United States)

    Clark, Renee M.; Kaw, Autar; Besterfield-Sacre, Mary


    Blended, flipped, and semi-flipped instructional approaches were used in various sections of a numerical methods course for undergraduate mechanical engineers. During the spring of 2014, a blended approach was used; in the summer of 2014, a combination of blended and flipped instruction was used to deliver a semi-flipped course; and in the fall of…

  12. Teaching & Learning Tips 6: The flipped classroom. (United States)

    Shi, Connie R; Rana, Jasmine; Burgin, Susan


    Challenge: The "flipped classroom" is a pedagogical model in which instructional materials are delivered to learners outside of class, reserving class time for application of new principles with peers and instructors. Active learning has forever been an elusive ideal in medical education, but the flipped class model is relatively new to medical education. What is the evidence for the "flipped classroom," and how can these techniques be applied to the teaching of dermatology to trainees at all stages of their medical careers? © 2018 The International Society of Dermatology.

  13. Enhancing student engagement using the flipped classroom. (United States)

    Gilboy, Mary Beth; Heinerichs, Scott; Pazzaglia, Gina


    The flipped classroom is an innovative pedagogical approach that focuses on learner-centered instruction. The purposes of this report were to illustrate how to implement the flipped classroom and to describe students' perceptions of this approach within 2 undergraduate nutrition courses. The template provided enables faculty to design before, during, and after class activities and assessments based on objectives using all levels of Bloom's taxonomy. The majority of the 142 students completing the evaluation preferred the flipped method compared with traditional pedagogical strategies. The process described in the report was successful for both faculty and students. Copyright © 2015 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  14. Chips 2020

    CERN Document Server


    The release of this second volume of CHIPS 2020 coincides with the 50th anniversary of Moore’s Law, a critical year marked by the end of the nanometer roadmap and by a significantly reduced annual rise in chip performance. At the same time, we are witnessing a data explosion in the Internet, which is consuming 40% more electrical power every year, leading to fears of a major blackout of the Internet by 2020. The messages of the first CHIPS 2020, published in 2012, concerned the realization of quantum steps for improving the energy efficiency of all chip functions. With this second volume, we review these messages and amplify upon the most promising directions: ultra-low-voltage electronics, nanoscale monolithic 3D integration, relevant-data, brain- and human-vision-inspired processing, and energy harvesting for chip autonomy. The team of authors, enlarged by more world leaders in low-power, monolithic 3D, video, and Silicon brains, presents new vistas in nanoelectronics, promising  Moore-like exponential g...

  15. Base flipping in tn10 transposition: an active flip and capture mechanism.

    Directory of Open Access Journals (Sweden)

    Julien Bischerour


    Full Text Available The bacterial Tn5 and Tn10 transposases have a single active site that cuts both strands of DNA at their respective transposon ends. This is achieved using a hairpin intermediate that requires the DNA to change conformation during the reaction. In Tn5 these changes are controlled in part by a flipped nucleoside that is stacked on a tryptophan residue in a hydrophobic pocket of the transposase. Here we have investigated the base flipping mechanism in Tn10 transposition. As in Tn5 transposition, we find that base flipping takes place after the first nick and is required for efficient hairpin formation and resolution. Experiments with an abasic substrate show that the role of base flipping in hairpin formation is to remove the base from the DNA helix. Specific interactions between the flipped base and the stacking tryptophan residue are required for hairpin resolution later in the reaction. We show that base flipping in Tn10 transposition is not a passive reaction in which a spontaneously flipped base is captured and retained by the protein. Rather, it is driven in part by a methionine probe residue that helps to force the flipped base from the base stack. Overall, it appears that base flipping in Tn10 transposition is similar to that in Tn5 transposition.

  16. FLIP the Switch: Regulation of Apoptosis and Necroptosis by cFLIP

    Directory of Open Access Journals (Sweden)

    Yuichi Tsuchiya


    Full Text Available cFLIP (cellular FLICE-like inhibitory protein is structurally related to caspase-8 but lacks proteolytic activity due to multiple amino acid substitutions of catalytically important residues. cFLIP protein is evolutionarily conserved and expressed as three functionally different isoforms in humans (cFLIPL, cFLIPS, and cFLIPR. cFLIP controls not only the classical death receptor-mediated extrinsic apoptosis pathway, but also the non-conventional pattern recognition receptor-dependent apoptotic pathway. In addition, cFLIP regulates the formation of the death receptor-independent apoptotic platform named the ripoptosome. Moreover, recent studies have revealed that cFLIP is also involved in a non-apoptotic cell death pathway known as programmed necrosis or necroptosis. These functions of cFLIP are strictly controlled in an isoform-, concentration- and tissue-specific manner, and the ubiquitin-proteasome system plays an important role in regulating the stability of cFLIP. In this review, we summarize the current scientific findings from biochemical analyses, cell biological studies, mathematical modeling, and gene-manipulated mice models to illustrate the critical role of cFLIP as a switch to determine the destiny of cells among survival, apoptosis, and necroptosis.

  17. Front propagation in flipping processes

    International Nuclear Information System (INIS)

    Antal, T; Ben-Avraham, D; Ben-Naim, E; Krapivsky, P L


    We study a directed flipping process that underlies the performance of the random edge simplex algorithm. In this stochastic process, which takes place on a one-dimensional lattice whose sites may be either occupied or vacant, occupied sites become vacant at a constant rate and simultaneously cause all sites to the right to change their state. This random process exhibits rich phenomenology. First, there is a front, defined by the position of the leftmost occupied site, that propagates at a nontrivial velocity. Second, the front involves a depletion zone with an excess of vacant sites. The total excess Δ k increases logarithmically, Δ k ≅ ln k, with the distance k from the front. Third, the front exhibits ageing-young fronts are vigorous but old fronts are sluggish. We investigate these phenomena using a quasi-static approximation, direct solutions of small systems and numerical simulations

  18. FLIP celebrates 20th anniversary (United States)

    Richman, Barbara T.

    During the past 20 years, vessels have often diverted their courses to aid what appeared to be a sinking ship. What they found as they steamed closer, though, was—and still is—an exceptionally stable ocean-going research vessel. Its ability to tip from the conventional horizontal position to a vertical one makes the ship both a stable research platform and a startling sight.The Floating Instrument Platform, better known as FLIP, is the result of a quest during the late 1950's for a ship that would enable oceanographers to perform accurate underwater acoustic experiments. The motion of conventional research ships rolling with the ocean's movements makes such work difficult. Allyn Vine of the Woods Hole Oceanographic Institution suggested a vessel that has the stability of a long, narrow, buoyant object that floats with the long dimension vertical, as does a spar buoy. Under the direction of Fred Spiess, with the support of the Office of Naval Research, the Marine Physical Laboratory (MPL) at the Scripps Institution of Oceanography adapted the spar buoy design idea to the floating platform. Frederick H. Fisher, then a research physicist at MPL and now a research oceanographer and associate director, was the project officer. He, with the assistance of Spiess, the now late Philip Rudnick, and Charles ‘Bud’ Mundy, was largely responsible for developing the shape, size, and capabilities of the vessel. After final design, engineering, and construction, FLIP was launched on June 22, 1962. A ceremony at the Scripps Institution of Oceanography marked its 20th anniversary.

  19. Flipping primary health care: A personal story. (United States)

    Mate, Kedar S; Salinas, Gilbert


    There is considerable interest in ideas borrowed from education about "flipping the classroom" and how they might be applied to "flipping" aspects of health care to reach the Triple Aim of improved health outcomes, improved experience of care, and reduced costs. There are few real-life case studies of "flipping health care" in practice at the individual patient level. This article describes the experience of one of the authors as he experienced having to "flip" his primary health care. We describe seven inverted practices in his care, report outcomes of this experiment, describe the enabling factors, and derive lessons for patient-centered primary care redesign. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Flip-flops of FK Comae Berenices

    DEFF Research Database (Denmark)

    Hackman, T.; Pelt, J.; Mantere, M. J.


    Context.FK Comae Berenices is a rapidly rotating magnetically active star, the light curve of which is modulated by cool spots on its surface. It was the first star where the "flip-flop" phenomenon was discovered. Since then, flip-flops in the spot activity have been reported in many other stars...... of photometric observations with two different time series analysis methods, with a special emphasis on detecting flip-flop type events from the data. Methods. We apply the continuous period search and carrier fit methods on long-term standard Johnson-Cousins V-observations from the years 1995......-2010. The observations were carried out with two automated photometric telescopes, Phoenix-10 and Amadeus T7 located in Arizona. Results. We identify complex phase behaviour in 6 of the 15 analysed data segments. We identify five flip-flop events and two cases of phase jumps, where the phase shift is ¿f

  1. The charge-flipping algorithm in crystallography

    Czech Academy of Sciences Publication Activity Database

    Palatinus, Lukáš


    Roč. 69, Jan (2013), s. 1-16 ISSN 2052-5192 Institutional support: RVO:68378271 Keywords : charge-flipping algorithm * dual-space methods * structure solution Subject RIV: BM - Solid Matter Physics ; Magnetism

  2. Discouraging Students’ Academic Dishonesty in Flipped Classroom

    Directory of Open Access Journals (Sweden)

    Lucia Nino Widiasmoro Dewati


    Full Text Available Flipped Classroom presents teaching process at home through videos, handouts and listening passages before the class session. While in-class time is mostly devoted for questions and answers session, exercises, projects and discussion. The reason flipped classroom is needed for teachers in this era, simply because at the time students do the assignments inside the classroom, teachers would have the opportunities to observe students’ interaction, activities, improvement and even to solve students’ problem such as academic dishonesty. Thus, the question would be: to what extent is the urgency of implementing flipped classroom as one solution to discourage students’ academic dishonesty in writing classes? The study is conducted by employing Action Research. The findings confirm that performing Flipped Classroom is essential in order to discourage students’ academic dishonesty while assisting the teacher to observe students’ development in writing classes. DOI:

  3. Flipped Science Inquiry@Crescent Girls' School

    Directory of Open Access Journals (Sweden)

    Peishi Goh


    Full Text Available This study shares the findings of a school-based Action Research project to explore how inquiry-based science practical lessons designed using the Flipped Science Inquiry@CGS classroom pedagogical model influence the way students learn scientific knowledge and also students' development of 21st century competencies, in particular, in the area of Knowledge Construction. Taking on a broader definition of the flipped classroom pedagogical model, the Flipped Science Inquiry@CGS framework adopts a structure that inverted the traditional science learning experience. Scientific knowledge is constructed through discussions with their peers, making use of their prior knowledge and their experiences while engaging in hands-on activities. Through the study, it is found that with the use of the Flipped Science Inquiry@CGS framework, learning experiences that are better aligned to the epistemology of science while developing 21st century competencies in students are created.

  4. How we flipped the medical classroom. (United States)

    Sharma, Neel; Lau, C S; Doherty, Iain; Harbutt, Darren


    Flipping the classroom centres on the delivery of print, audio or video based material prior to a lecture or class session. The class session is then dedicated to more active learning processes with application of knowledge through problem solving or case based scenarios. The rationale behind this approach is that teachers can spend their face-to-face time supporting students in deeper learning processes. In this paper we provide a background literature review on the flipped classroom along with a three step approach to flipping the classroom comprising implementing, enacting and evaluating this form of pedagogy. Our three step approach is based on actual experience of delivering a flipped classroom at the University of Hong Kong. This initiative was evaluated with positive results. We hope our experience will be transferable to other medical institutions.

  5. En didaktisk model for Flipped Classroom

    DEFF Research Database (Denmark)

    Levinsen, Henrik; Foss, Kristian Kildemoes; Andersen, Thomas Dyreborg


    I artiklen præsenterer vi en model over flipped classroom som didaktisk metode udviklet med henblik på at stilladsere både de lærere, som gerne vil prøve kræfter med en flipped classroom-baseret praksis, og dem som allerede har erfaring, men kan have glæde af at bruge modellen til at kvalificere...... deres flipped classroom-undervisning. Modellen kan bidrage til erkendelsen af, at flipped classroom er noget nær et paradigmeskifte i forståelsen af god undervisning. Her tænkes på det skift i fokus metoden indebærer fra, at læreren er mest aktiv, til at eleverne er de mest aktive. Særligt for den...

  6. Experimental loss-tolerant quantum coin flipping. (United States)

    Berlín, Guido; Brassard, Gilles; Bussières, Félix; Godbout, Nicolas; Slater, Joshua A; Tittel, Wolfgang


    Coin flipping is a cryptographic primitive in which two distrustful parties wish to generate a random bit to choose between two alternatives. This task is impossible to realize when it relies solely on the asynchronous exchange of classical bits: one dishonest player has complete control over the final outcome. It is only when coin flipping is supplemented with quantum communication that this problem can be alleviated, although partial bias remains. Unfortunately, practical systems are subject to loss of quantum data, which allows a cheater to force a bias that is complete or arbitrarily close to complete in all previous protocols and implementations. Here we report on the first experimental demonstration of a quantum coin-flipping protocol for which loss cannot be exploited to cheat better. By eliminating the problem of loss, which is unavoidable in any realistic setting, quantum coin flipping takes a significant step towards real-world applications of quantum communication.

  7. Equine First Aid Information Flip Booklet


    Nay, Karah; Hoopes, Karl


    This is a flip chart type booklet with first aid information for horses, including checking vitals, pulse rate, respiration, mucus membrane color and capillary refill, signs of colic, deworming, vaccinations recommended for Utah, hoof care, and dental care.

  8. 3D chip stacking with through silicon-vias (TSVs) for vertical interconnect and underfill dispensing (United States)

    Le, Fuliang; Lee, Shi-Wei Ricky; Zhang, Qiming


    3D chip stacking with through silicon vias (TSVs) has been identified as one of the major technologies for achieving higher silicon packaging density and shorter interconnect. The test vehicle presented in this paper is a 3D chip stack package. Each layer of the test vehicle has two silicon flip chips mounted at the bottom of a silicon interposer with solder bumps. The flip chip has the equivalent dimensions and pad patterns as commercial memory chips. The interposer, with multiple interconnect TSVs for electrical connection and a central TSV for underfill dispensing, can function as a logic chip or as a redistribution chip in a real application. The assembly steps of the test vehicle include conductive adhesive filling for the interconnect TSVs, bonding two bumped flip chips on an interposer (to form a single layer), vertical stacking of the single layers and underfill dispensing. For the filling of the interconnect TSVs, an auger-dispensing method is first adopted to overfill the interconnect TSVs, followed by removing the excessive adhesive beyond the interconnect TSVs by squeegeeing. A jet valve continuously dispenses free dots of an underfill encapsulant into the central TSVs. The central TSVs function as an entrance for underfill dispensing and an uninterrupted point-source to provide fluid for each layer. The free dots form a capillary flow to fill the under-chip spaces of the test vehicle. The usage of TSVs rather than chip edges eliminates the presence of a wide edge reservoir, resulting in smaller ‘keep-out’ area occupation on the substrate.



    Dr. N. Ramakrishnan; Mrs. J. Johnsi Priya


    Flipped Classroom is an instructional strategy and a type of blended learning that reverses the traditional learning environment by delivering instructional content, often online, outside of the classroom. It moves activities, including those that may have traditionally been considered homework, into the classroom. In a flipped classroom, students watch online lectures, collaborate in online discussions, or carry out research at home and engage in concepts in the classroom with the guidance o...

  10. Does "Flipping" Promote Engagement?: A Comparison of a Traditional, Online, and Flipped Class (United States)

    Burke, Alison S.; Fedorek, Brian


    "Flipped" or inverted classrooms are designed to utilize class time for application and knowledge building, while course content is delivered through the use of online lectures and watched at home on the students' time. It is believed that flipped classrooms promote student engagement and a deeper understanding of the class material. The…

  11. Detection of trans-cis flips and peptide-plane flips in protein structures

    NARCIS (Netherlands)

    Touw, W.G.; Joosten, R.P.; Vriend, G.


    A coordinate-based method is presented to detect peptide bonds that need correction either by a peptide-plane flip or by a trans-cis inversion of the peptide bond. When applied to the whole Protein Data Bank, the method predicts 4617 trans-cis flips and many thousands of hitherto unknown

  12. LED structure with enhanced mirror reflectivity (United States)

    Bergmann, Michael; Donofrio, Matthew; Heikman, Sten; Schneider, Kevin S; Haberern, Kevin W; Edmond, John A


    Embodiments of the present invention are generally related to LED chips having improved overall emission by reducing the light-absorbing effects of barrier layers adjacent mirror contacts. In one embodiment, a LED chip comprises one or more LEDs, with each LED having an active region, a first contact under the active region having a highly reflective mirror, and a barrier layer adjacent the mirror. The barrier layer is smaller than the mirror such that it does not extend beyond the periphery of the mirror. In another possible embodiment, an insulator is further provided, with the insulator adjacent the barrier layer and adjacent portions of the mirror not contacted by the active region or by the barrier layer. In yet another embodiment, a second contact is provided on the active region. In a further embodiment, the barrier layer is smaller than the mirror such that the periphery of the mirror is at least 40% free of the barrier layer, and the second contact is below the first contact and accessible from the bottom of the chip.

  13. DNA Chip

    Indian Academy of Sciences (India)

    Imagine a world without identity cards; no I-cards for the college or office or bank account or anything! All you are carrying is a small (say, 2cm x 2cm) 'DNA-chip', which has the whole of your genetic profile on it. Your identity cannot get more authentic than that. Imagine a world where marriages are not decided by matching ...

  14. White LEDs with limit luminous efficacy (United States)

    Lisitsyn, V. M.; Lukash, V. S.; Stepanov, S. A.; Yangyang, Ju


    In most promising widespread gallium nitride based LEDs emission is generated in the blue spectral region with a maximum at about 450 nm which is converted to visible light with the desired spectrum by means of phosphor. The thermal energy in the conversion is determined by the difference in the energies of excitation and emission quanta and the phosphor quantum yield. Heat losses manifest themselves as decrease in the luminous efficacy. LED heating significantly reduces its efficiency and life. In addition, while heating, the emission generation output and the efficiency of the emission conversion decrease. Therefore, the reduction of the energy losses caused by heating is crucial for LED development. In this paper, heat losses in phosphor-converted LEDs (hereinafter chips) during spectrum conversion are estimated. The limit values of the luminous efficacy for white LEDs are evaluated.

  15. White LEDs with limit luminous efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Lisitsyn, V. M.; Stepanov, S. A., E-mail:; Yangyang, Ju [National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Lukash, V. S. [JSC Research Institute of Semiconductor Devices, 99a Krasnoarmeyskaja St., Tomsk, 634050 (Russian Federation)


    In most promising widespread gallium nitride based LEDs emission is generated in the blue spectral region with a maximum at about 450 nm which is converted to visible light with the desired spectrum by means of phosphor. The thermal energy in the conversion is determined by the difference in the energies of excitation and emission quanta and the phosphor quantum yield. Heat losses manifest themselves as decrease in the luminous efficacy. LED heating significantly reduces its efficiency and life. In addition, while heating, the emission generation output and the efficiency of the emission conversion decrease. Therefore, the reduction of the energy losses caused by heating is crucial for LED development. In this paper, heat losses in phosphor-converted LEDs (hereinafter chips) during spectrum conversion are estimated. The limit values of the luminous efficacy for white LEDs are evaluated.

  16. Ultra-thin silicon (UTSi) on insulator CMOS transceiver and time-division multiplexed switch chips for smart pixel integration (United States)

    Zhang, Liping; Sawchuk, Alexander A.


    We describe the design, fabrication and functionality of two different 0.5 micron CMOS optoelectronic integrated circuit (OEIC) chips based on the Peregrine Semiconductor Ultra-Thin Silicon on insulator technology. The Peregrine UTSi silicon- on-sapphire (SOS) technology is a member of the silicon-on- insulator (SOI) family. The low-loss synthetic sapphire substrate is optically transparent and has good thermal conductivity and coefficient of thermal expansion properties, which meet the requirements for flip-chip bonding of VCSELs and other optoelectronic input-output components. One chip contains transceiver and network components, including four channel high-speed CMOS transceiver modules, pseudo-random bit stream (PRBS) generators, a voltage controlled oscillator (VCO) and other test circuits. The transceiver chips can operate in both self-testing mode and networking mode. An on- chip clock and true-single-phase-clock (TSPC) D-flip-flop have been designed to generate a PRBS at over 2.5 Gb/s for the high-speed transceiver arrays to operate in self-testing mode. In the networking mode, an even number of transceiver chips forms a ring network through free-space or fiber ribbon interconnections. The second chip contains four channel optical time-division multiplex (TDM) switches, optical transceiver arrays, an active pixel detector and additional test devices. The eventual applications of these chips will require monolithic OEICs with integrated optical input and output. After fabrication and testing, the CMOS transceiver array dies will be packaged with 850 nm vertical cavity surface emitting lasers (VCSELs), and metal-semiconductor- metal (MSM) or GaAs p-i-n detector die arrays to achieve high- speed optical interconnections. The hybrid technique could be either wire bonding or flip-chip bonding of the CMOS SOS smart-pixel arrays with arrays of VCSELs and photodetectors onto an optoelectronic chip carrier as a multi-chip module (MCM).

  17. Use of Flipped Classroom Technology in Language Learning


    Evseeva, Arina Mikhailovna; Solozhenko, Anton


    The flipped classroom as a key component of blended learning arouses great interest among researchers and educators nowadays. The technology of flipped classroom implies such organization of the educational process in which classroom activities and homework assignments are reversed. The present paper gives the overview of the flipped classroom technology and explores its potential for both teachers and students. The authors present the results obtained from the experience of the flipped class...

  18. The evidence for 'flipping out': A systematic review of the flipped classroom in nursing education. (United States)

    Betihavas, Vasiliki; Bridgman, Heather; Kornhaber, Rachel; Cross, Merylin


    The flipped classroom has generated interest in higher education providing a student-centred approach to learning. This has the potential to engage nursing students in ways that address the needs of today's students and the complexity of contemporary healthcare. Calls for educational reform, particularly in healthcare programs such as nursing, highlight the need for students to problem-solve, reason and apply theory into practice. The drivers towards student-based learning have manifested in team, problem and case-based learning models. Though there has been a shift towards the flipped classroom, comparatively little is known about how it is used in nursing curricula. The aims of this systematic review were to examine how the flipped classroom has been applied in nursing education and outcomes associated with this style of teaching. Five databases were searched and resulted in the retrieval of 21 papers: PubMed, CINAHL, EMBASE, Scopus and ERIC. After screening for inclusion/exclusion criteria, each paper was evaluated using a critical appraisal tool. Data extraction and analysis were completed on all included studies. This systematic review screened 21 titles and abstracts resulting in nine included studies. All authors critically appraised the quality of the included studies. Five studies were identified and themes identified were: academic performance outcomes, and student satisfaction implementing the flipped classroom. Use of the flipped classroom in higher education nursing programmes yielded neutral or positive academic outcomes and mixed results for satisfaction. Engagement of students in the flipped classroom model was achieved when academics informed and rationalised the purpose of the flipped classroom model to students. However, no studies in this review identified the evaluation of the process of implementing the flipped classroom. Studies examining the process and ongoing evaluation and refinement of the flipped classroom in higher education nursing

  19. Dynamics of spin-flip photon-assisted tunneling

    NARCIS (Netherlands)

    Braakman, F.R.; Danon, J.; Schreiber, L.R.; Wegscheider, W.; Vandersypen, L.M.K.


    We present time-resolved measurements of spin-flip photon-assisted tunneling and spin-flip relaxation in a doubly occupied double quantum dot. The photon-assisted excitation rate as a function of magnetic field indicates that spin-orbit coupling is the dominant mechanism behind the spin-flip under

  20. Applying the Flipped Classroom Model to English Language Arts Education (United States)

    Young, Carl A., Ed.; Moran, Clarice M., Ed.


    The flipped classroom method, particularly when used with digital video, has recently attracted many supporters within the education field. Now more than ever, language arts educators can benefit tremendously from incorporating flipped classroom techniques into their curriculum. "Applying the Flipped Classroom Model to English Language Arts…

  1. Deep Exploration of the Flipped Classroom before Implementing (United States)

    Logan, Brenda


    This paper is a review of the literature that attempts to explain and document the literature on the flipped classroom. It examines 49 studies that explain the flipped approach in the classroom. This paper, particularly, delineates the history, the theory, benefits, criticisms, recommended practices, and what the research on flipping reveals.…

  2. Impacts of Flipped Classroom in High School Health Education (United States)

    Chen, Li-Ling


    As advanced technology increasingly infiltrated into classroom, the flipped classroom has come to light in secondary educational settings. The flipped classroom is a new instructional approach that intends to flip the traditional teacher-centered classroom into student centered. The purpose of this research is to investigate the impact of the…

  3. Flipping the statistics classroom in nursing education. (United States)

    Schwartz, Todd A


    Flipped classrooms are so named because they substitute the traditional lecture that commonly encompasses the entire class period with active learning techniques, such as small-group work. The lectures are delivered instead by using an alternative mode--video recordings--that are made available for viewing online outside the class period. Due to this inverted approach, students are engaged with the course material during the class period, rather than participating only passively. This flipped approach is gaining popularity in many areas of education due to its enhancement of student learning and represents an opportunity for utilization by instructors of statistics courses in nursing education. This article presents the author's recent experiences with flipping a statistics course for nursing students in a PhD program, including practical considerations and student outcomes and reaction. This transformative experience deepened the level of student learning in a way that may not have occurred using a traditional format. Copyright 2014, SLACK Incorporated.

  4. Experimental plug and play quantum coin flipping. (United States)

    Pappa, Anna; Jouguet, Paul; Lawson, Thomas; Chailloux, André; Legré, Matthieu; Trinkler, Patrick; Kerenidis, Iordanis; Diamanti, Eleni


    Performing complex cryptographic tasks will be an essential element in future quantum communication networks. These tasks are based on a handful of fundamental primitives, such as coin flipping, where two distrustful parties wish to agree on a randomly generated bit. Although it is known that quantum versions of these primitives can offer information-theoretic security advantages with respect to classical protocols, a demonstration of such an advantage in a practical communication scenario has remained elusive. Here we experimentally implement a quantum coin flipping protocol that performs strictly better than classically possible over a distance suitable for communication over metropolitan area optical networks. The implementation is based on a practical plug and play system, developed by significantly enhancing a commercial quantum key distribution device. Moreover, we provide combined quantum coin flipping protocols that are almost perfectly secure against bounded adversaries. Our results offer a useful toolbox for future secure quantum communications.

  5. White LED with High Package Extraction Efficiency

    International Nuclear Information System (INIS)

    Yi Zheng; Stough, Matthew


    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W e using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat generated

  6. Blended Course with Flipped Classroom Approach

    DEFF Research Database (Denmark)

    Timcenko, Olga; Purwins, Hendrik; Triantafyllou, Evangelia


    This paper presents and analyses design decisions and development process of producing teaching materials for a blended course with flipped classroom approach at bachelor level at Aalborg University in Copenhagen, Denmark. Our experiences, as well as students’ reactions and opinions will be descr......This paper presents and analyses design decisions and development process of producing teaching materials for a blended course with flipped classroom approach at bachelor level at Aalborg University in Copenhagen, Denmark. Our experiences, as well as students’ reactions and opinions...

  7. Just in Time to Flip Your Classroom


    Lasry, Nathaniel; Dugdale, Michael; Charles, Elizabeth


    With advocates like Sal Khan and Bill Gates, flipped classrooms are attracting an increasing amount of media and research attention. We had heard Khan's TED talk and were aware of the concept of inverted pedagogies in general. Yet, it really hit home when we accidentally flipped our classroom. Our objective was to better prepare our students for class. We set out to effectively move some of our course content outside of class and decided to tweak the Just-in-Time-Teaching approach (JiTT). To ...

  8. Flipped Classrooms for Advanced Science Courses (United States)

    Tomory, Annette; Watson, Sunnie Lee


    This article explains how issues regarding dual credit and Advanced Placement high school science courses could be mitigated via a flipped classroom instructional model. The need for advanced high school courses will be examined initially, followed by an analysis of advanced science courses and the reform they are experiencing. Finally, it will conclude with an explanation of flipped classes as well as how they may be a solution to the reform challenges teachers are experiencing as they seek to incorporate more inquiry-based activities.

  9. Generation of solar spectrum by using LEDs (United States)

    Lu, Pengzhi; Yang, Hua; Pei, Yanrong; Li, Jing; Xue, Bin; Wang, Junxi; Li, Jinmin


    Light emitting diode (LED) has been recognized as an applicable light source for indoor and outdoor lighting, city beautifying, landscape facilities, and municipal engineering etc. Conventional LED has superior characteristics such as long life time, low power consumption, high contrast, and wide viewing angle. Recently, LED with high color-rendering index and special spectral characteristics has received more and more attention. This paper is intended to report a solar spectrum simulated by multichip LED light source. The typical solar spectrum of 5500k released by CIE was simulated as a reference. Four types of LEDs with different spectral power distributions would be used in the LED light source, which included a 430nm LED, a 480nm LED, a 500nm LED and a white LED. In order to obtain better simulation results, the white LED was achieved by a 450nm LED chip with the mixture of phosphor. The phosphor combination was prepared by mixing green phosphor, yellow phosphor and red phosphor in a certain proportion. The multichip LED light source could provide a high fidelity spectral match with the typical solar spectrum of 5500k by adjusting injection current to each device. The luminous flux, CIE chromaticity coordinate x, y, CCT, and Ra were 104.7 lm, 0.3337, 0.3681, 5460K, and 88.6, respectively. Because of high color-rendering index and highly match to the solar spectrum, the multichip LED light source is a competitive candidate for applications where special spectral is required, such as colorimetric measurements, visual inspection, gemstone identification and agriculture.

  10. All-optical SR flip-flop based on SOA-MZI switches monolithically integrated on a generic InP platform (United States)

    Pitris, St.; Vagionas, Ch.; Kanellos, G. T.; Kisacik, R.; Tekin, T.; Broeke, R.; Pleros, N.


    At the dawning of the exaflop era, High Performance Computers are foreseen to exploit integrated all-optical elements, to overcome the speed limitations imposed by electronic counterparts. Drawing from the well-known Memory Wall limitation, imposing a performance gap between processor and memory speeds, research has focused on developing ultra-fast latching devices and all-optical memory elements capable of delivering buffering and switching functionalities at unprecedented bit-rates. Following the master-slave configuration of electronic Flip-Flops, coupled SOA-MZI based switches have been theoretically investigated to exceed 40 Gb/s operation, provided a short coupling waveguide. However, this flip-flop architecture has been only hybridly integrated with silica-on-silicon integration technology exhibiting a total footprint of 45x12 mm2 and intra-Flip-Flop coupling waveguide of 2.5cm, limited at 5 Gb/s operation. Monolithic integration offers the possibility to fabricate multiple active and passive photonic components on a single chip at a close proximity towards, bearing promises for fast all-optical memories. Here, we present for the first time a monolithically integrated all-optical SR Flip-Flop with coupled master-slave SOA-MZI switches. The photonic chip is integrated on a 6x2 mm2 die as a part of a multi-project wafer run using library based components of a generic InP platform, fiber-pigtailed and fully packaged on a temperature controlled ceramic submount module with electrical contacts. The intra Flip-Flop coupling waveguide is 5 mm long, reducing the total footprint by two orders of magnitude. Successful flip flop functionality is evaluated at 10 Gb/s with clear open eye diagram, achieving error free operation with a power penalty of 4dB.

  11. Assisted crack tip flipping under Mode I thin sheet tearing

    DEFF Research Database (Denmark)

    Felter, Christian Lotz; Nielsen, Kim Lau


    Crack tip flipping, where the fracture surface alternates from side to side in roughly 45° shear bands, seems to be an overlooked propagation mode in Mode I thin sheet tearing. In fact, observations of crack tip flipping is rarely found in the literature. Unlike the already established modes...... such as slanting, cup-cone (rooftop), or cup-cup (bathtub) the flipping crack never settles in a steady-state as the near tip stress/strain field continuously change when the flip successively initiates and develops shear-lips. A recent experimental investigation has revealed new insight by exploiting 3D X......-ray tomography scanning of a developing crack tip flip. But, it remains to be understood what makes the crack flip systematically, what sets the flipping frequency, and under which material conditions this mode occurs. The present study aims at investigating the idea that a slight out-of-plane action (Mode III...

  12. 6 Expert Tips for Flipping the Classroom (United States)

    Demski, Jennifer


    In a flipped classroom, professors assign pre-class homework consisting of brief, recorded lectures and presentations, digital readings with collaborative annotation capabilities, and discussion board participation. This frees up classroom time to promote active learning through collaborative, project-based activities using simple display and…

  13. Flip-flopping binary black holes. (United States)

    Lousto, Carlos O; Healy, James


    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.

  14. Using lightboard to flip the course

    DEFF Research Database (Denmark)

    Timcenko, Olga; Triantafyllou, Evangelia; Nilsson, Niels Chr.

    , and exercises for in-class work. However, the quality of videos that students have to watch before coming to the class is also important. In this paper, we will describe videos prepared for flipped classroom using light board, an invention from 2014. That allows natural flow of presentation, as it combines...

  15. The Flipped Classroom in World History (United States)

    Gaughan, Judy E.


    The flipped Classroom is one in which lectures are presented as homework outside of class in online videos so that class time is reserved for engaging directly with the materials. This technique offers more personalized guidance and interaction with students, instead of lecturing. In this article, Judy Gaughan details her journey through choosing…

  16. Experiences with Flipping the Marketing Capstone Course (United States)

    Scovotti, Carol


    This article reviews the experiences of a flipped classroom approach in a marketing capstone course. Students completed readings, watched lecture videos, took a quiz, and submitted a short assignment for 10 course modules. While a few minutes were devoted to clarifying confusion from lecture topics, class time was used for experiential-learning…

  17. Exploring Flipped Classroom Instruction in Calculus III (United States)

    Wasserman, Nicholas H.; Quint, Christa; Norris, Scott A.; Carr, Thomas


    In an undergraduate Calculus III class, we explore the effect of "flipping" the instructional delivery of content on both student performance and student perceptions. Two instructors collaborated to determine daily lecture notes, assigned the same homework problems, and gave identical exams; however, compared to a more traditional…

  18. Flipping an Agricultural Education Teaching Methods Course (United States)

    Conner, Nathan W.; Stripling, Christopher T.; Blythe, Jessica M.; Roberts, T. Grady; Stedman, Nicole L. P.


    Flipping or inverting a course is a relatively new approach to structuring a course. Using this method, the lectures traditionally delivered during regularly scheduled class time are converted to a media for delivery online, often in the form of videos. Learners are expected to view the online lectures prior to class. Then in turn, in-class time…

  19. Hybrid chip-on-board LED module with patterned encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Soer, Wouter Anthon; Helbing, Rene; Huang, Guan


    Different wavelength conversion materials, or different concentrations of a wavelength conversion material are used to encapsulate the light emitting elements of different colors of a hybrid light emitting module. In an embodiment of this invention, second light emitting elements (170) of a particular color are encapsulated with a transparent second encapsulant (120;420;520), while first light emitting elements (160) of a different color are encapsulated with a wavelength conversion first encapsulant (110;410;510). In another embodiment of this invention, a particular second set of second and third light emitting elements (170,580) of different colors is encapsulated with a different encapsulant than another first set of first light emitting elements (160).


    Sharp, William G; Odom, Ashley; Jaquess, David L


    The current study examined the effects of bite placement with a flipped versus upright spoon on expulsion and mouth clean (product measure of swallowing) in the treatment of 3 children diagnosed with a pediatric feeding disorder and oral-motor deficits. For all 3 participants, extinction in the form of nonremoval of the spoon led to improvements in inappropriate mealtime behavior and acceptance of bites; however, re-presentation did not reduce expulsion or improve mouth clean. Results showed a lower level of expulsion and higher percentage of mouth clean during flipped spoon presentations and re-presentations for all participants. Findings from follow-up analyses supported transitioning back to an upright spoon in all 3 cases, although the time required for this to occur differed across participants. PMID:22403451

  1. LED-roulette : LED's vervangen balletje

    NARCIS (Netherlands)

    Goossens, P.


    Iedereen waagt wel eens een gokje, in een loterij of misschien ook in een casino. Wie droomt er immers niet van om op een gemakkelijke manier rijk te worden? Met de hier beschreven LED-roulette valt weliswaar weinig te winnen, maar het is wel een uitstekende manier om het roulettespel thuis te

  2. Influence of storage temperature of eucalypt chips on the quality of wood and of kraft pulp

    Energy Technology Data Exchange (ETDEWEB)

    Zvinakevicius, C.; Foelkel, C.E.B.; Andrade, J.R.


    Storage of eucalypt chips at high temperature (up to 70 degrees C) led to a reduction in yield and strength (particularly folding strength) of kraft pulp made from the chips. Storage also increased the content of 1% NaOH extractives in the chips and lowered their pH.

  3. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection


    Diwei He; Stephen P. Morgan; Dimitrios Trachanis; Jan van Hese; Dimitris Drogoudis; Franco Fummi; Francesco Stefanni; Valerio Guarnieri; Barrie R. Hayes-Gill


    Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 ?m CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the...

  4. Multi-LED parallel transmission for long distance underwater VLC system with one SPAD receiver (United States)

    Wang, Chao; Yu, Hong-Yi; Zhu, Yi-Jun; Wang, Tao; Ji, Ya-Wei


    In this paper, a multiple light emitting diode (LED) chips parallel transmission (Multi-LED-PT) scheme for underwater visible light communication system with one photon-counting single photon avalanche diode (SPAD) receiver is proposed. As the lamp always consists of multi-LED chips, the data rate could be improved when we drive these multi-LED chips parallel by using the interleaver-division-multiplexing technique. For each chip, the on-off-keying modulation is used to reduce the influence of clipping. Then a serial successive interference cancellation detection algorithm based on ideal Poisson photon-counting channel by the SPAD is proposed. Finally, compared to the SPAD-based direct current-biased optical orthogonal frequency division multiplexing system, the proposed Multi-LED-PT system could improve the error-rate performance and anti-nonlinearity performance significantly under the effects of absorption, scattering and weak turbulence-induced channel fading together.

  5. Flipping Classrooms in a School of Public Health (United States)

    Howard, Steven W.; Scharff, Darcell P.; Loux, Travis M.


    Alternative course formats are gaining increasing attention in higher education. The literature provides a number of examples and studies of flipped classrooms in the medical sciences and liberal arts and sciences. However, fewer than five papers on flipped classes in graduate public health courses have been published, and none in health management. Because graduate public health education is competency based, it seems that a flipped approach with its applied nature would be an appropriate form of teaching public health courses. This paper describes three successfully flipped courses taught in a school of public health. We provide a rationale for flipping, description of each course, and lessons learned. Once some of the challenges are overcome, we believe flipping courses can provide an alternative approach that enhances active learning in applied, public health, and health management courses. PMID:28447028

  6. The Flipped Learning Approach in Nursing Education: A Literature Review. (United States)

    Presti, Carmen Rosa


    This integrative review examines the application of the pedagogical methodology-the flipped classroom-in nursing education. A literature search of the CINAHL, ERIC, and the National Library of Medicine (PubMed and MEDLINE) databases was conducted, using the following key words: flipped classroom, inverted classroom, and nursing education. Results of a literature search yielded 94 articles, with 13 meeting the criteria of the flipped classroom approach in nursing education. Themes identified include the theoretical underpinning, strategies for implementation of a flipped classroom, and student satisfaction with and outcomes of the flipped classroom approach. Syntheses of the findings indicate that the flipped classroom approach can yield positive outcomes, but further study of this methodology is needed to guide future implementation. [J Nurs Educ. 2016;55(5):252-257.]. Copyright 2016, SLACK Incorporated.

  7. Flipped Learning With Simulation in Undergraduate Nursing Education. (United States)

    Kim, HeaRan; Jang, YounKyoung


    Flipped learning has proliferated in various educational environments. This study aimed to verify the effects of flipped learning on the academic achievement, teamwork skills, and satisfaction levels of undergraduate nursing students. For the flipped learning group, simulation-based education via the flipped learning method was provided, whereas traditional, simulation-based education was provided for the control group. After completion of the program, academic achievement, teamwork skills, and satisfaction levels were assessed and analyzed. The flipped learning group received higher scores on academic achievement, teamwork skills, and satisfaction levels than the control group, including the areas of content knowledge and clinical nursing practice competency. In addition, this difference gradually increased between the two groups throughout the trial. The results of this study demonstrated the positive, statistically significant effects of the flipped learning method on simulation-based nursing education. [J Nurs Educ. 2017;56(6):329-336.]. Copyright 2017, SLACK Incorporated.

  8. Student Perceptions of a Flipped Pharmacotherapy Course. (United States)

    Khanova, Julia; McLaughlin, Jacqueline E; Rhoney, Denise H; Roth, Mary T; Harris, Suzanne


    To evaluate student perception of the flipped classroom redesign of a required pharmacotherapy course. Key foundational content was packaged into interactive, text-based online modules for self-paced learning prior to class. Class time was used for active and applied-but primarily case-based-learning. For students with a strong preference for traditional lecture learning, the perception of the learning experience was negatively affected by the flipped course design. Module length and time required to complete preclass preparation were the most frequently cited impediments to learning. Students desired instructor-directed reinforcement of independently acquired knowledge to connect foundational knowledge and its application. This study illustrates the challenges and highlights the importance of designing courses to effectively balance time requirements and connect preclass and in-class learning activities. It underscores the crucial role of the instructor in bridging the gap between material learned as independent study and its application.

  9. Flipped neutrino emissivity from strange matter

    International Nuclear Information System (INIS)

    Goyal, A.; Dutta, S.


    Energy loss due to wrong helicity sterile neutrinos through spin flip processes leads to rapid cooling of nascent neutron stars. The observed cooling of neutron stars associated with SN 1987A seems to preclude the existence of Dirac neutrinos with a mass in excess of 20 keV. Assuming that nuclear matter in the core of the neutron star undergoes a phase transition to quark matter leading to a strange star or a neutron star with a strange matter core, we examine the emission of flipped Dirac neutrinos for two dominant processes: quark-neutrino scattering [q+ν - (bar ν + )→q+ν + (bar ν - )] and the quark neutrino pair bremsstrahlung process [q+q→q+q+ν - bar ν - (ν+bar ν + )]. We determine the composition of quark matter just after core bounce and examine the effect of neutrino degeneracy on the emission rate and mean free path of the wrong helicity neutrinos

  10. The flipped classroom for medical students. (United States)

    Morgan, Helen; McLean, Karen; Chapman, Chris; Fitzgerald, James; Yousuf, Aisha; Hammoud, Maya


    The objectives of this curricular innovation project were to implement a flipped classroom curriculum for the gynaecologic oncology topics of the obstetrics and gynaecology medical student clerkship, and to evaluate student satisfaction with the change. Four short online videos on the topics of endometrial hyperplasia, cervical dysplasia, evaluation of an adnexal mass, and ovarian cancer were created, and students were instructed to view them prior to a class-time active learning session. The Learning Activity Management System (lams) open-source online platform was used to create an active learning class-time activity that consisted of a coached discussion of cases. Student satisfaction with the two aspects of the flipped curriculum was obtained. In addition, lecture assessment for the gynaecologic oncology topics and aggregate student performance on the gynaecological oncology questions of the US National Board of Medical Examiners (NBME) Subject Examination were compared before and after implementation of the curriculum. Eighty-nine students rotated on the clerkship during the pilot period of analysis. Seventy-one students (80%) viewed the videos prior to the class session, and 84 (94%) attended the session. Student satisfaction was very high for both parts of the curriculum. There was no significant difference in aggregate student performance on the gynaecological oncology questions of the NBME Subject Examination. The flipped classroom curriculum demonstrates a promising platform for using technology to make better use of students' time Our implementation of the flipped classroom curriculum for the gynaecologic oncology topics successfully demonstrates a promising platform for using technology to make better use of our students' time, and for increasing their satisfaction with the necessary didactic learning of the clerkship. © 2015 John Wiley & Sons Ltd.

  11. Assessment of learning gains in a flipped biochemistry classroom. (United States)

    Ojennus, Deanna Dahlke


    The flipped classroom has become an increasingly popular pedagogical approach to teaching and learning. In this study, learning gains were assessed in a flipped biochemistry course and compared to gains in a traditional lecture. Although measured learning gains were not significantly different between the two courses, student perception of learning gains did differ and indicates a higher level of satisfaction with the flipped lecture format. © 2015 The International Union of Biochemistry and Molecular Biology.

  12. Student experiences across multiple flipped courses in a single curriculum. (United States)

    Khanova, Julia; Roth, Mary T; Rodgers, Jo Ellen; McLaughlin, Jacqueline E


    The flipped classroom approach has garnered significant attention in health professions education, which has resulted in calls for curriculum-wide implementations of the model. However, research to support the development of evidence-based guidelines for large-scale flipped classroom implementations is lacking. This study was designed to examine how students experience the flipped classroom model of learning in multiple courses within a single curriculum, as well as to identify specific elements of flipped learning that students perceive as beneficial or challenging. A qualitative analysis of students' comments (n = 6010) from mid-course and end-of-course evaluations of 10 flipped courses (in 2012-2014) was conducted. Common and recurring themes were identified through systematic iterative coding and sorting using the constant comparison method. Multiple coders, agreement through consensus and member checking were utilised to ensure the trustworthiness of findings. Several themes emerged from the analysis: (i) the perceived advantages of flipped learning coupled with concerns about implementation; (ii) the benefits of pre-class learning and factors that negatively affect these benefits, such as quality and quantity of learning materials, as well as overall increase in workload, especially in the context of multiple concurrent flipped courses; (iii) the role of the instructor in the flipped learning environment, particularly in engaging students in active learning and ensuring instructional alignment, and (iv) the need for assessments that emphasise the application of knowledge and critical thinking skills. Analysis of data from 10 flipped courses provided insight into common patterns of student learning experiences specific to the flipped learning model within a single curriculum. The study points to the challenges associated with scaling the implementation of the flipped classroom across multiple courses. Several core elements critical to the effective design

  13. Broadband Radiometric LED Measurements. (United States)

    Eppeldauer, G P; Cooksey, C C; Yoon, H W; Hanssen, L M; Podobedov, V B; Vest, R E; Arp, U; Miller, C C


    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed.

  14. Bridging the gap with flipped classroom

    DEFF Research Database (Denmark)

    Selberg, Hanne; Topperzer, Martha

    Bridging the gap with flipped classroom Hanne Selberg, Metropolitan University College, Copenhagen, Martha Topperzer, University Hospital Rigshospitalet, Copenhagen, Denmark Background and aims Consistent with the strategy of increasing digitization and learner-centred teaching models in the nurs......Bridging the gap with flipped classroom Hanne Selberg, Metropolitan University College, Copenhagen, Martha Topperzer, University Hospital Rigshospitalet, Copenhagen, Denmark Background and aims Consistent with the strategy of increasing digitization and learner-centred teaching models...... in the nursing curriculum, we have reversed selected traditional lectures into simulation based teaching activities embedded in a ten week Pediatric Nursing module for third year nursing students. The current pilot study seeks to explore the impact on students’ learning and commitment when flipping the classroom...... the theoretical knowledge acquired during the course to their participation in the simulations. It is of pivotal importance that all students obtain hands-on experience during the sessions to reduce the theory-practice gap. The ongoing study has been pilot tested during three courses with participation of 90...

  15. Characterisation of hybrid integrated all-optical flip-flop

    DEFF Research Database (Denmark)

    Liu, Y.; McDougall, R.; Seoane, Jorge


    We present a fully-packaged, hybrid-integrated all-optical flip-flop with separate optical set and reset operation. The flip-flop can control a wavelength converter to route 40 Gb/s data packets all-optically. The experimental results are given.......We present a fully-packaged, hybrid-integrated all-optical flip-flop with separate optical set and reset operation. The flip-flop can control a wavelength converter to route 40 Gb/s data packets all-optically. The experimental results are given....

  16. Retention of Content Utilizing a Flipped Classroom Approach. (United States)

    Shatto, Bobbi; LʼEcuyer, Kristine; Quinn, Jerod

    The flipped classroom experience promotes retention and accountability for learning. The authors report their evaluation of a flipped classroom for accelerated second-degree nursing students during their primary medical-surgical nursing course. Standardized HESI® scores were compared between a group of students who experienced the flipped classroom and a previous group who had traditional teaching methods. Short- and long-term retention was measured using standardized exams 3 months and 12 months following the course. Results indicated that short-term retention was greater and long- term retention was significantly great in the students who were taught using flipped classroom methodology.

  17. The flipped classroom: practices and opportunities for health sciences librarians. (United States)

    Youngkin, C Andrew


    The "flipped classroom" instructional model is being introduced into medical and health sciences curricula to provide greater efficiency in curriculum delivery and produce greater opportunity for in-depth class discussion and problem solving among participants. As educators employ the flipped classroom to invert curriculum delivery and enhance learning, health sciences librarians are also starting to explore the flipped classroom model for library instruction. This article discusses how academic and health sciences librarians are using the flipped classroom and suggests opportunities for this model to be further explored for library services.

  18. Dansk LED - Museumsbelysning

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Dam-Hansen, Carsten; Thorseth, Anders

    Projektet har til formål at anvende dansk forskning inden for optik og lys til at realisere innovative energieffektive LED lyssystemer til museumsbranchen.......Projektet har til formål at anvende dansk forskning inden for optik og lys til at realisere innovative energieffektive LED lyssystemer til museumsbranchen....

  19. Pixel detector readout chip

    CERN Multimedia


    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  20. Luminaries-level structure improvement of LEDs for heat dissipation ...

    Indian Academy of Sciences (India)

    Due to its significant advantages such as high efficiency, long lifetime, low power consump- tion, inconceivable controllability and high ... However, till now LED chip can only convert 20% of the input power into light while the rest 80% is converted ... the middle of computational domain. Turbulence natural convection and ...

  1. Advances in LEDs for automotive applications (United States)

    Bhardwaj, Jy; Peddada, Rao; Spinger, Benno


    High power LEDs were introduced in automotive headlights in 2006-2007, for example as full LED headlights in the Audi R8 or low beam in Lexus. Since then, LED headlighting has become established in premium and volume automotive segments and beginning to enable new compact form factors such as distributed low beam and new functions such as adaptive driving beam. New generations of highly versatile high power LEDs are emerging to meet these application needs. In this paper, we will detail ongoing advances in LED technology that enable revolutionary styling, performance and adaptive control in automotive headlights. As the standards which govern the necessary lumens on the road are well established, increasing luminance enables not only more design freedom but also headlight cost reduction with space and weight saving through more compact optics. Adaptive headlighting is based on LED pixelation and requires high contrast, high luminance, smaller LEDs with high-packing density for pixelated Matrix Lighting sources. Matrix applications require an extremely tight tolerance on not only the X, Y placement accuracy, but also on the Z height of the LEDs given the precision optics used to image the LEDs onto the road. A new generation of chip scale packaged (CSP) LEDs based on Wafer Level Packaging (WLP) have been developed to meet these needs, offering a form factor less than 20% increase over the LED emitter surface footprint. These miniature LEDs are surface mount devices compatible with automated tools for L2 board direct attach (without the need for an interposer or L1 substrate), meeting the high position accuracy as well as the optical and thermal performance. To illustrate the versatility of the CSP LEDs, we will show the results of, firstly, a reflector-based distributed low beam using multiple individual cavities each with only 20mm height and secondly 3x4 to 3x28 Matrix arrays for adaptive full beam. Also a few key trends in rear lighting and impact on LED light

  2. Implementing A Flipped Classroom: A Case Study of Biology Teaching in A Greek High School

    Directory of Open Access Journals (Sweden)



    Full Text Available The purpose of this study was to investigate the application of the model of the “flipped classroom” as a complementary method to school distance education in junior high school Biology. The “flipped classroom” model attempts a different way of organizing the educational process according to which the traditional methods of learning at school and studying at home are interchanged, the learners’ active involvement is supported, their autonomy is reinforced, ICT is utilized and learning occurs partially by distance (blended learning. We performed an action research implementing flipped classroom in Biology teaching in a class of 17 students attending the1st year of junior high school. The educational platform used was the Learning Activity Management System (LAMS. The findings were evaluated qualitative rather than quantitative, and can provide evidence about the prevailing situation. During the action research, it became evident that time management in the classroom was improved. Furthermore, it was observed that students’ involvement in the educational process was also improved. Students had already familiarized themselves with the cognitive aspect of the lesson before entering the class and they considered the learning process as an individual affair which does not only depend on the teacher. The implementation of digital activities accomplished by distance led to taking action and initiative and finally to active learning. School distance education combined with the radical development of ICT can be complementary with the use of various methods, like the “flipped learning”, and give a new perspective and potential to the limited choices of conventional education in the Greek educational system which is worth further investigation.

  3. Flipping Every Student? A Case Study of Content-Based Flipped Language Classrooms (United States)

    Sun, Yu-Chih


    The study aims to explore university-level foreign language learners' perceptions of the content-based flipped classroom approach and factors influencing their perceptions. The research questions guiding the study are three-fold. (a) What attitudes and perceptions do students have about language and knowledge acquisition in the content-based…

  4. PHYSICS: Toward Atom Chips. (United States)

    Fortágh, József; Zimmermann, Claus


    As a novel approach for turning the peculiar features of quantum mechanics into practical devices, researchers are investigating the use of ultracold atomic clouds above microchips. Such "atom chips" may find use as sensitive probes for gravity, acceleration, rotation, and tiny magnetic forces. In their Perspective, Fortagh and Zimmermann discuss recent advances toward creating atom chips, in which current-carrying conductors in the chips create magnetic microtraps that confine the atomic clouds. Despite some intrinsic limits to the performance of atom chips, existing technologies are capable of producing atom chips, and many possibilities for their construction remain to be explored.

  5. LED roadway luminaires evaluation. (United States)


    This research explores whether LED roadway luminaire technologies are a viable future solution to providing roadway lighting. Roadway lighting : enhances highway safety and traffic flow during limited lighting conditions. The purpose of this evaluati...

  6. Surface plasmon enhanced LED


    Vučković, Jelena; Lončar, Marko; Painter, Oskar; Scherer, Axel


    Summary form only given. We designed and fabricated an LED based on a thin semiconductor membrane (λ/2) with silver mirrors. A large spontaneous emission enhancement and a high modulation speed are obtainable due to the strong localization of the electromagnetic field in the microcavity. The coupling to surface plasmon modes which are subsequently scattered out by means of a grating is used to improve the extraction efficiency of the LED. The bottom mirror is thick and unpatterned. The top mi...

  7. Assessing the Flipped Classroom in Operations Management: A Pilot Study (United States)

    Prashar, Anupama


    The author delved into the results of a flipped classroom pilot conducted for an operations management course module. It assessed students' perception of a flipped learning environment after making them experience it in real time. The classroom environment was construed using a case research approach and students' perceptions were studied using…

  8. Flipping College Algebra: Effects on Student Engagement and Achievement (United States)

    Ichinose, Cherie; Clinkenbeard, Jennifer


    This study compared student engagement and achievement levels between students enrolled in a traditional college algebra lecture course and students enrolled in a "flipped" course. Results showed that students in the flipped class had consistently higher levels of achievement throughout the course than did students in the traditional…

  9. Flipping the Calculus Classroom: A Cost-Effective Approach (United States)

    Young, Andrea


    This article discusses a cost-effective approach to flipping the calculus classroom. In particular, the emphasis is on low-cost choices, both monetarily and with regards to faculty time, that make the daunting task of flipping a course manageable for a single instructor. Student feedback and overall impressions are also presented.

  10. Partially Flipped Linear Algebra: A Team-Based Approach (United States)

    Carney, Debra; Ormes, Nicholas; Swanson, Rebecca


    In this article we describe a partially flipped Introductory Linear Algebra course developed by three faculty members at two different universities. We give motivation for our partially flipped design and describe our implementation in detail. Two main features of our course design are team-developed preview videos and related in-class activities.…

  11. Student Perceptions of the Flipped Classroom in College Algebra (United States)

    Ogden, Lori


    The flipped classroom approach was implemented across three semesters of a College Algebra course. This paper is part of a larger design and development research study and focuses on student perceptions of the flipped classroom teaching approach. Qualitative methodology was used to describe how students perceived the instruction of their College…

  12. The Flipped Class: Experience in a University Business Communication Course (United States)

    Sherrow, Tammy; Lang, Brenda; Corbett, Rod


    Business, like many other programs in higher education, continues to rely largely on traditional classroom environments. In this article, another approach to teaching and learning, the flipped classroom, is explored. After a review of relevant literature, the authors present their experience with the flipped classroom approach to teaching and…

  13. Assessment of Learning Gains in a Flipped Biochemistry Classroom (United States)

    Ojennus, Deanna Dahlke


    The flipped classroom has become an increasingly popular pedagogical approach to teaching and learning. In this study, learning gains were assessed in a flipped biochemistry course and compared to gains in a traditional lecture. Although measured learning gains were not significantly different between the two courses, student perception of…

  14. The Implementation of a Flipped Classroom in Foreign Language Teaching (United States)

    Basal, Ahmet


    Alongside the rise of educational technology, many teachers have been taking gradual but innovative steps to redesign their teaching methods. For example, in flipped learning or a flipped classroom, students watch instructional videos outside the classroom and do assignments or engage in activities inside the classroom. Language teachers are one…

  15. Flipped Classroom Research and Trends from Different Fields of Study (United States)

    Zainuddin, Zamzami; Halili, Siti Hajar


    This paper aims to analyse the trends and contents of flipped classroom research based on 20 articles that report on flipped learning classroom initiatives from 2013-2015. The content analysis was used as a methodology to investigate methodologies, area of studies, technology tools or online platforms, the most frequently used keywords and works…

  16. Flipped Classroom: Effects on Education for the Case of Economics (United States)

    Kurihara, Yutaka


    The notion of the flipped classroom has been received much attention in the literature as it may increase learning outcomes and learning effectiveness elementary and secondary education as well as university learning. In the author's class on international finance (economics) features a blended flipped classroom and lecture; questionnaires were…

  17. Exploring Flipped Classroom Effects on Second Language Learners' Cognitive Processing (United States)

    Kim, Jeong-eun; Park, Hyunjin; Jang, Mijung; Nam, Hosung


    This study investigated the cognitive effects of the flipped classroom approach in a content-based instructional context by comparing second language learners' discourse in flipped vs. traditional classrooms in terms of (1) participation rate, (2) content of comments, (3) reasoning skills, and (4) interactional patterns. Learners in two intact…

  18. Implementing the Flipped Classroom in Teacher Education: Evidence from Turkey (United States)

    Kurt, Gökçe


    The flipped classroom, a form of blended learning, is an emerging instructional strategy reversing a traditional lecture-based teaching model to improve the quality and efficiency of the teaching and learning process. The present article reports a study that focused on the implementation of the flipped approach in a higher education institution in…

  19. Malaysian Students' Perceptions of Flipped Classroom: A Case Study (United States)

    Zainuddin, Zamzami; Attaran, Mohammad


    The purpose of this study was to evaluate a class in University of Malaya where flipped learning was applied, and to examine students' perceptions and feedback towards flipped classroom. Data were collected using both quantitative and qualitative methods, i.e. survey, focus group and individual interviews. The results indicated that most students…

  20. Does the Flipped Classroom Improve Learning in Graduate Medical Education? (United States)

    Riddell, Jeff; Jhun, Paul; Fung, Cha-Chi; Comes, James; Sawtelle, Stacy; Tabatabai, Ramin; Joseph, Daniel; Shoenberger, Jan; Chen, Esther; Fee, Christopher; Swadron, Stuart P


    The flipped classroom model for didactic education has recently gained popularity in medical education; however, there is a paucity of performance data showing its effectiveness for knowledge gain in graduate medical education. We assessed whether a flipped classroom module improves knowledge gain compared with a standard lecture. We conducted a randomized crossover study in 3 emergency medicine residency programs. Participants were randomized to receive a 50-minute lecture from an expert educator on one subject and a flipped classroom module on the other. The flipped classroom included a 20-minute at-home video and 30 minutes of in-class case discussion. The 2 subjects addressed were headache and acute low back pain. A pretest, immediate posttest, and 90-day retention test were given for each subject. Of 82 eligible residents, 73 completed both modules. For the low back pain module, mean test scores were not significantly different between the lecture and flipped classroom formats. For the headache module, there were significant differences in performance for a given test date between the flipped classroom and the lecture format. However, differences between groups were less than 1 of 10 examination items, making it difficult to assign educational importance to the differences. In this crossover study comparing a single flipped classroom module with a standard lecture, we found mixed statistical results for performance measured by multiple-choice questions. As the differences were small, the flipped classroom and lecture were essentially equivalent.

  1. Re-Visiting the Flipped Classroom in a Design Context (United States)

    Coyne, Richard David; Lee, John; Denitsa, Petrova


    After explaining our experience with a flipped classroom model of learning, we argue that the approach brings to light the dramaturgical and mediatized aspects of learning experiences that favour a closer connection between recorded content and "live" presentation by the lecturer. We adopted the flipped classroom approach to learning and…

  2. Flipped @ SBU: Student Satisfaction and the College Classroom (United States)

    Gross, Benjamin; Marinari, Maddalena; Hoffman, Mike; DeSimone, Kimberly; Burke, Peggy


    In this paper, the authors find empirical support for the effectiveness of the flipped classroom model. Using a quasi-experimental method, the authors compared students enrolled in flipped courses to their counterparts in more traditional lecture-based ones. A survey instrument was constructed to study how these two different groups of students…

  3. Evaluating the Flipped Classroom: A Randomized Controlled Trial (United States)

    Wozny, Nathan; Balser, Cary; Ives, Drew


    Despite recent interest in flipped classrooms, rigorous research evaluating their effectiveness is sparse. In this study, the authors implement a randomized controlled trial to evaluate the effect of a flipped classroom technique relative to a traditional lecture in an introductory undergraduate econometrics course. Random assignment enables the…

  4. Flipping Preservice Elementary Teachers' Mathematics Anxieties (United States)

    Dove, Anthony; Dove, Emily


    In preparing future elementary educators in mathematics, helping them overcome their anxieties of mathematics and teaching mathematics is paramount. This study examined how different instructional practices (in-class lecture, flipped learning with teacher-created videos, flipped classroom with Khan Academy videos) compared in improving students'…

  5. On Flipping First-Semester Calculus: A Case Study (United States)

    Petrillo, Joseph


    High failure rates in calculus have plagued students, teachers, and administrators for decades, while science, technology, engineering, and mathematics programmes continue to suffer from low enrollments and high attrition. In an effort to affect this reality, some educators are "flipping" (or inverting) their classrooms. By flipping, we…

  6. Enhancing the Design and Analysis of Flipped Learning Strategies (United States)

    Jenkins, Martin; Bokosmaty, Rena; Brown, Melanie; Browne, Chris; Gao, Qi; Hanson, Julie; Kupatadze, Ketevan


    There are numerous calls in the literature for research into the flipped learning approach to match the flood of popular media articles praising its impact on student learning and educational outcomes. This paper addresses those calls by proposing pedagogical strategies that promote active learning in "flipped" approaches and improved…

  7. The Flipped Museum: Leveraging Technology to Deepen Learning (United States)

    Harrell, Michelle H.; Kotecki, Emily


    The Flipped Museum is an innovative model in which high school students engage in online learning before and after a museum experience at the North Carolina Museum of Art. This model, inspired by the "flipped classroom," inverts the delivery and application of knowledge in a museum setting. Beginning with an overview of the pedagogical…

  8. Curriculum Design of a Flipped Classroom to Enhance Haematology Learning (United States)

    Porcaro, Pauline A.; Jackson, Denise E.; McLaughlin, Patricia M.; O'Malley, Cindy J.


    A common trend in higher education is the "flipped" classroom, which facilitates active learning during class. The flipped approach to teaching was instituted in a haematology "major" class and the students' attitudes and preferences for the teaching materials were surveyed. The curriculum design was explicit and involved four…

  9. Flipped Classrooms and Student Learning: Not Just Surface Gains (United States)

    McLean, Sarah; Attardi, Stefanie M.; Faden, Lisa; Goldszmidt, Mark


    The flipped classroom is a relatively new approach to undergraduate teaching in science. This approach repurposes class time to focus on application and discussion; the acquisition of basic concepts and principles is done on the students' own time before class. While current flipped classroom research has focused on student preferences and…

  10. Evaluation of a "Flipped Classroom" Approach in Management Education (United States)

    Bergfjord, Ole Jakob; Heggernes, Tarjei


    In this paper, a "flipped classroom" approach is evaluated using three different datasets. We use student evaluations of the "flipped classroom" in particular, in addition to regular course evaluations and exam results for the past three years in order to allow for statistical comparisons. Overall, the results are quite…

  11. Flipping the Classroom: Strategies for Psychiatric-Mental Health Course. (United States)

    Burden, Marsha L; Carlton, Kay Hodson; Siktberg, Linda; Pavlechko, Gary


    Experiences over 2 years substantiate the value of the pedagogical shift of "flipping the classroom" as an effective strategy in preparing students for didactic and clinical experiences in a psychiatric-mental health nursing course. This article describes strategies used to flip the classroom in the course. Student perceptions of the changed pedagogy and implications for nurse educators are presented.

  12. Using Presentation Software to Flip an Undergraduate Analytical Chemistry Course (United States)

    Fitzgerald, Neil; Li, Luisa


    An undergraduate analytical chemistry course has been adapted to a flipped course format. Course content was provided by video clips, text, graphics, audio, and simple animations organized as concept maps using the cloud-based presentation platform, Prezi. The advantages of using Prezi to present course content in a flipped course format are…

  13. Flipped Instruction in a High School Science Classroom (United States)

    Leo, Jonathan; Puzio, Kelly


    This paper reports on a quasi-experimental study examining the effectiveness of flipped instruction in a 9th grade biology classroom. This study included four sections of freshmen-level biology taught by the first author at a private secondary school in the Pacific Northwest. Using a block randomized design, two sections were flipped and two…

  14. Examining Student Perceptions of Flipping an Agricultural Teaching Methods Course (United States)

    Conner, Nathan W.; Rubenstein, Eric D.; DiBenedetto, Cathy A.; Stripling, Christopher T.; Roberts, T. Grady; Stedman, Nicole L. P.


    To meet the needs of the 21st century student, college instructors have been challenged to transform their classrooms from passive to active, "minds-on" learning environments. This qualitative study examined an active learning approach known as a flipped classroom and sought to explore student perceptions of flipping a teaching methods…

  15. uFlip: Understanding Flash IO Patterns

    DEFF Research Database (Denmark)

    Bouganim, Luc; Jonsson, Bjørn; Bonnet, Philippe


    want to establish what kind of IOs should be favored (or avoided) when designing algorithms and architectures for flash-based systems. In this paper, we focus on flash IO patterns, that capture relevant distribution of IOs in time and space, and our goal is to quantify their performance. We define u......FLIP, a benchmark for measuring the response time of flash IO patterns. We also present a benchmarking methodology which takes into account the particular characteristics of flash devices. Finally, we present the results obtained by measuring eleven flash devices, and derive a set of design hints that should drive...

  16. Assessing Behavioral Engagement in Flipped and Non-Flipped Mathematics Classrooms: Teacher Abilities and Other Potential Factors (United States)

    Hodgson, Theodore R.; Cunningham, Abby; McGee, Daniel; Kinne, Lenore J.; Murphy, Teri J.


    There is a growing evidence that flipped classrooms are associated with increased levels of student engagement, as compared to engagement in "traditional" settings. Much of this research, however, occurs in post-secondary classrooms and is based upon self-reported engagement data. This study seeks to extend existing flipped classroom…

  17. A Quasi Experiment to Determine the Effectiveness of a "Partially Flipped" versus "Fully Flipped" Undergraduate Class in Genetics and Evolution (United States)

    Adams, Alison E. M.; Garcia, Jocelyn; Traustadóttir, Tinna


    Two sections of Genetics and Evolution were taught by one instructor. One group (the fully flipped section) had the entire class period devoted to active learning (with background material that had to be watched before class), and the other group (the partially flipped section) had just a portion of class time spent on active learning (with the…

  18. Light Emitting Diode (LED) (United States)


    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.

  19. Light Emitting Diodes (LEDs) (United States)


    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. 'A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back,' said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.

  20. Led-sukellusvalaisin


    Saarelainen, Mikko


    Opinnäytetyön aiheena on LED ja sen käyttö sukellusvalaisimissa. Työn tarkoitus oli tutkia miten LED toimii ja miten se soveltuu käytettäväksi sukellusvalaisimessa, sekä syventää omaa tietoutta valosta, mitä se on ja miten sitä mitataan. Työssä käydään läpi LEDin ominaisuuksia ja miten se eroaa muista sukellusvalaisimissa käytetyistä lampuista. Työ on toteutettu tutustumalla LEDiin ja valoon käyttämällä erilaisia lähteitä ja päivittämällä nykyinen sukellusvalaisimeni LED-sukellusvalaisime...

  1. [LED lights in dermatology]. (United States)

    Noé, C; Pelletier-Aouizerate, M; Cartier, H


    The use in dermatology of light-emitting diodes (LEDs) continues to be surrounded by controversy. This is due mainly to poor knowledge of the physicochemical phases of a wide range of devices that are difficult to compare to one another, and also to divergences between irrefutable published evidence either at the level of in vitro studies or at the cellular level, and discordant clinical results in a variety of different indications: rejuvenation, acne, wound healing, leg ulcers, and cutaneous inflammatory or autoimmune processes. Therapeutic LEDs can emit wavelengths ranging from the ultraviolet, through visible light, to the near infrared (247-1300 nm), but only certain bands have so far demonstrated any real value. We feel certain that if this article remains factual, then readers will have a different, or at least more nuanced, opinion concerning the use of such LED devices in dermatology. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Re-Envisioning the Archaic Higher Education Learning Environment: Implementation Processes for Flipped Classrooms (United States)

    Rabidoux, Salena; Rottmann, Amy


    Flipped classrooms are often utilized in PK-12 classrooms; however, there is also a growing trend of flipped classrooms in higher education. This paper presents the benefits and limitations of implementing flipped classrooms in higher education as well as resources for integrating a flipped classroom design to instruction. The various technology…

  3. Fair loss-tolerant quantum coin flipping

    International Nuclear Information System (INIS)

    Berlin, Guido; Brassard, Gilles; Bussieres, Felix; Godbout, Nicolas


    Coin flipping is a cryptographic primitive in which two spatially separated players, who do not trust each other, wish to establish a common random bit. If we limit ourselves to classical communication, this task requires either assumptions on the computational power of the players or it requires them to send messages to each other with sufficient simultaneity to force their complete independence. Without such assumptions, all classical protocols are so that one dishonest player has complete control over the outcome. If we use quantum communication, on the other hand, protocols have been introduced that limit the maximal bias that dishonest players can produce. However, those protocols would be very difficult to implement in practice because they are susceptible to realistic losses on the quantum channel between the players or in their quantum memory and measurement apparatus. In this paper, we introduce a quantum protocol and we prove that it is completely impervious to loss. The protocol is fair in the sense that either player has the same probability of success in cheating attempts at biasing the outcome of the coin flip. We also give explicit and optimal cheating strategies for both players.

  4. Development of a Flipped Medical School Dermatology Module. (United States)

    Fox, Joshua; Faber, David; Pikarsky, Solomon; Zhang, Chi; Riley, Richard; Mechaber, Alex; O'Connell, Mark; Kirsner, Robert S


    The flipped classroom module incorporates independent study in advance of in-class instructional sessions. It is unproven whether this methodology is effective within a medical school second-year organ system module. We report the development, implementation, and effectiveness of the flipped classroom methodology in a second-year medical student dermatology module at the University of Miami Leonard M. Miller School of Medicine. In a retrospective cohort analysis, we compared attitudinal survey data and mean scores for a 50-item multiple-choice final examination of the second-year medical students who participated in this 1-week flipped course with those of the previous year's traditional, lecture-based course. Each group comprised nearly 200 students. Students' age, sex, Medical College Admission Test scores, and undergraduate grade point averages were comparable between the flipped and traditional classroom students. The flipped module students' mean final examination score of 92.71% ± 5.03% was greater than that of the traditional module students' 90.92% ± 5.51% ( P flipped methodology to attending live lectures or watching previously recorded lectures. The flipped classroom can be an effective instructional methodology for a medical school second-year organ system module.

  5. Results of a Flipped Classroom Teaching Approach in Anesthesiology Residents. (United States)

    Martinelli, Susan M; Chen, Fei; DiLorenzo, Amy N; Mayer, David C; Fairbanks, Stacy; Moran, Kenneth; Ku, Cindy; Mitchell, John D; Bowe, Edwin A; Royal, Kenneth D; Hendrickse, Adrian; VanDyke, Kenneth; Trawicki, Michael C; Rankin, Demicha; Guldan, George J; Hand, Will; Gallagher, Christopher; Jacob, Zvi; Zvara, David A; McEvoy, Matthew D; Schell, Randall M


    In a flipped classroom approach, learners view educational content prior to class and engage in active learning during didactic sessions. We hypothesized that a flipped classroom improves knowledge acquisition and retention for residents compared to traditional lecture, and that residents prefer this approach. We completed 2 iterations of a study in 2014 and 2015. Institutions were assigned to either flipped classroom or traditional lecture for 4 weekly sessions. The flipped classroom consisted of reviewing a 15-minute video, followed by 45-minute in-class interactive sessions with audience response questions, think-pair-share questions, and case discussions. The traditional lecture approach consisted of a 55-minute lecture given by faculty with 5 minutes for questions. Residents completed 3 knowledge tests (pretest, posttest, and 4-month retention) and surveys of their perceptions of the didactic sessions. A linear mixed model was used to compare the effect of both formats on knowledge acquisition and retention. Of 182 eligible postgraduate year 2 anesthesiology residents, 155 (85%) participated in the entire intervention, and 142 (78%) completed all tests. The flipped classroom approach improved knowledge retention after 4 months (adjusted mean = 6%; P  = .014; d  = 0.56), and residents preferred the flipped classroom (pre = 46%; post = 82%; P  < .001). The flipped classroom approach to didactic education resulted in a small improvement in knowledge retention and was preferred by anesthesiology residents.

  6. Studenters erfaringer med Flipped Classroom i en helsefagutdanning

    Directory of Open Access Journals (Sweden)

    Christine Tørris


    Full Text Available Background: The flipped classroom approach has gained increased attention in educational research literature. The purpose of this study was to investigate how students experience a flipped classroom approach in health education, compared to ordinary lectures. Method: Bachelor students (n=25 who watched the video-based material in the flipped classrooms pre-session, answered a questionnaire to evaluate their flipped classroom experience. The questionnaire consisted of both closed and open questions. Results: Ninety six per cent (24/25 of respondents found the video-based material in the pre-session useful. Seventy six per cent (19/25 of respondents found that the flipped classroom approach resulted in the highest learning outcome, over the traditional approach (16%, 4/25. Barriers to the flipped classroom approach was technical problems with the video-based material, such as screen view. Conclusion: The flipped classroom approach is promising as an acceptable approach for teaching in health science curricular in higher education.


    CERN Document Server

    Ferrère, D; Zsenei, A; Kaplon, J; Lacasta, C; Dabrowski, W; Kudlaty, J; Wolter, M; Azman, S


    The ABCD chip is one of the two technological options for the binary readout architecture under development for the Silicon Tracker (SCT) in ATLAS. The chip is realised in the DMILL technology (a 0.8 mum BICMOS trench isolation process). This note reports on the first results obtained at CERN on the p-type ABCD chips of the first batch delivered by TEMIC in February 1998.

  8. Evaluation of a flipped classroom approach to learning introductory epidemiology. (United States)

    Shiau, Stephanie; Kahn, Linda G; Platt, Jonathan; Li, Chihua; Guzman, Jason T; Kornhauser, Zachary G; Keyes, Katherine M; Martins, Silvia S


    Although the flipped classroom model has been widely adopted in medical education, reports on its use in graduate-level public health programs are limited. This study describes the design, implementation, and evaluation of a flipped classroom redesign of an introductory epidemiology course and compares it to a traditional model. One hundred fifty Masters-level students enrolled in an introductory epidemiology course with a traditional format (in-person lecture and discussion section, at-home assignment; 2015, N = 72) and a flipped classroom format (at-home lecture, in-person discussion section and assignment; 2016, N = 78). Using mixed methods, we compared student characteristics, examination scores, and end-of-course evaluations of the 2016 flipped classroom format and the 2015 traditional format. Data on the flipped classroom format, including pre- and post-course surveys, open-ended questions, self-reports of section leader teaching practices, and classroom observations, were evaluated. There were no statistically significant differences in examination scores or students' assessment of the course between 2015 (traditional) and 2016 (flipped). In 2016, 57.1% (36) of respondents to the end-of-course evaluation found watching video lectures at home to have a positive impact on their time management. Open-ended survey responses indicated a number of strengths of the flipped classroom approach, including the freedom to watch pre-recorded lectures at any time and the ability of section leaders to clarify targeted concepts. Suggestions for improvement focused on ways to increase regular interaction with lecturers. There was no significant difference in students' performance on quantitative assessments comparing the traditional format to the flipped classroom format. The flipped format did allow for greater flexibility and applied learning opportunities at home and during discussion sections.

  9. CHIP Reporting in the CPS (United States)

    U.S. Department of Health & Human Services — CHIP reporting in the CPS is unreliable. Only 10 to 30 percent of those with CHIP (but not Medicaid) report this type of coverage in the CPS. Many with CHIP report...

  10. Model studies of lipid flip-flop in membranes

    DEFF Research Database (Denmark)

    Parisio, Giulia; Ferrarini, Alberta; Sperotto, Maria Maddalena


    , and growth heavily depend. Such transverse motion—commonly called flip-flop—has been studied both experimentally and computationally. Experimental investigations face difficulties related to time-scales and probe-induced membrane perturbation issues. Molecular dynamics simulations play an important role...... for the molecular-level understanding of flip-flop. In this review we present a summary of the state of the art of computational studies of spontaneous flip-flop of phospholipids, sterols and fatty acids. Also, we highlight critical issues and strategies that have been developed to solve them, and what remains...

  11. Physical and transportation requirements for a FLIP fueled TRIGA

    International Nuclear Information System (INIS)

    Johnson, A.G.; Ringle, J.C.; Anderson, T.V.


    Several major changes to the OSTR Physical Security Plan were required by the NRC prior to the August 1976 receipt and installation of a new core consisting entirely of FLIP fuel. The general nature of these changes will be reviewed along with several decisions we faced during their implementation. At the previous TRIGA Owners' Conference in Salt Lake City, Utah, we reported on Oregon's regulatory program for research reactor emergency response planning and physical security. The latter program was of particular interest to us in light of the projected FLIP fuel shipments. The impact of the State's program for physical security of FLIP fuel during transportation will be presented. (author)

  12. Fitness Probability Distribution of Bit-Flip Mutation. (United States)

    Chicano, Francisco; Sutton, Andrew M; Whitley, L Darrell; Alba, Enrique


    Bit-flip mutation is a common mutation operator for evolutionary algorithms applied to optimize functions over binary strings. In this paper, we develop results from the theory of landscapes and Krawtchouk polynomials to exactly compute the probability distribution of fitness values of a binary string undergoing uniform bit-flip mutation. We prove that this probability distribution can be expressed as a polynomial in p, the probability of flipping each bit. We analyze these polynomials and provide closed-form expressions for an easy linear problem (Onemax), and an NP-hard problem, MAX-SAT. We also discuss a connection of the results with runtime analysis.

  13. Introducing a Flipped Classroom for a Statistics Course

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga


    One of the novel ideas in teaching that heavily relies on current technology is the “flipped classroom” approach, or “inverse teaching”. In a flipped classroom the traditional lecture and homework sessions are inverted. Students are provided with online material in order to gain necessary knowledge...... students in a Bachelor program in Media Technology. The results of the experiment revealed some strengths and weaknesses of this instructional model. We conclude that the flipped classroom can be beneficial for students, provided that it is based on a careful design....

  14. Research, Perspectives, and Recommendations on Implementing the Flipped Classroom. (United States)

    Rotellar, Cristina; Cain, Jeff


    Flipped or inverted classrooms have become increasingly popular, and sometimes controversial, within higher education. Many educators have touted the potential benefits of this model and initial research regarding implementation has been primarily positive. The rationale behind the flipped classroom methodology is to increase student engagement with content, increase and improve faculty contact time with students, and enhance learning. This paper presents a summary of primary literature regarding flipped classrooms, discusses concerns and unanswered questions from both a student and faculty member perspective, and offers recommendations regarding implementation.

  15. Bit-commitment-based quantum coin flipping

    International Nuclear Information System (INIS)

    Nayak, Ashwin; Shor, Peter


    In this paper we focus on a special framework for quantum coin-flipping protocols, bit-commitment-based protocols, within which almost all known protocols fit. We show a lower bound of 1/16 for the bias in any such protocol. We also analyze a sequence of multiround protocols that tries to overcome the drawbacks of the previously proposed protocols in order to lower the bias. We show an intricate cheating strategy for this sequence, which leads to a bias of 1/4. This indicates that a bias of 1/4 might be optimal in such protocols, and also demonstrates that a more clever proof technique may be required to show this optimality

  16. [Flipped classroom in basic medical education]. (United States)

    Merenmies, Jussi; Niemi-Murola, Leila; Pyörälä, Eeva


    Medical education is facing changes in order to improve young doctors' competency to respond better to current needs of the patients and the society. Both curriculum content and teaching methods are revised. In addition to vibrant research in academic medical education, teachers are supported by the improved web-based learning environments and novel technical tools. Flipped classroom, a new paradigm that benefits from technical development, provides many opportunities for medical education. This teaching method always consists of two mutually complementary parts. The first part of the learning action takes place independently off classroom with video lectures or other stimuli for learning. The second part takes place in conjunction with the teacher and other students, and requires student group interactions.


    Cambridge Healthtech Institute recently held the 4th installment of their popular "Lab-on-a-Chip" series in Zurich, Switzerland. As usual, it was enthusiastically received and over 225 people attended the 2-1/2 day meeting to see and hear about some of the latest developments an...

  18. Thermal management for LED applications

    CERN Document Server

    Poppe, András


    Thermal Management for LED Applications provides state-of-the-art information on recent developments in thermal management as it relates to LEDs and LED-based systems and their applications. Coverage begins with an overview of the basics of thermal management including thermal design for LEDs, thermal characterization and testing of LEDs, and issues related to failure mechanisms and reliability and performance in harsh environments. Advances and recent developments in thermal management round out the book with discussions on advances in TIMs (thermal interface materials) for LED applications, advances in forced convection cooling of LEDs, and advances in heat sinks for LED assemblies. This book also: Presents a comprehensive overview of the basics of thermal management as it relates to LEDs and LED-based systems Discusses both design and thermal management considerations when manufacturing LEDs and LED-based systems Covers reliability and performance of LEDs in harsh environments Has a hands-on applications a...

  19. Evaluation of a Flipped Drug Literature Evaluation Course. (United States)

    Giuliano, Christopher Alan; Moser, Lynette R


    Objective. To evaluate a flipped drug literature evaluation course for first-year pharmacy students. Design. A drug literature evaluation course was flipped during the 2014 winter semester. Homework from 2013 was transformed into activities and lectures were transformed into multiple short YouTube videos. Assessment. Average examination scores increased from 75.6% to 86.1%. Eighty-two of 94 students completed the postcourse survey in 2014. Compared to traditional lecture, 59.8% of students indicated they preferred the flipped course. Additionally, students felt the course was important, the in-class activities were helpful, and some of the YouTube videos could be improved. We found length of the video to be significantly correlated with the percentage of videos viewed. Conclusion. The flipped model should be considered in drug literature evaluation courses that seek to increase the amount of active learning in the classroom.

  20. An evaluation of flipped e-learning experiences. (United States)

    Jones-Bonofiglio, Kristen Dawn; Willett, Timothy; Ng, Stella


    The "flipped" classroom is an educational strategy gaining popularity for its growing evidence base that suggests it may successfully improve learning outcomes. Also known as reverse instruction, this approach has been typically implemented and studied in in-person post-secondary settings. The utilization of a flipped approach in the healthcare education literature has been examined in a wide range of contexts, but little has been written regarding continuing professional development (CPD). Therefore, with success in other contexts there is potential for the flipped classroom approach to enhance student satisfaction, learner engagement, and learning outcomes in the context of online education for CPD. In this paper, we describe the structure and format of such a course using a qualitative case study framework. This study contributes to a more comprehensive understanding of effective ways of overcoming distributed learning challenges in online CPD using a flipped approach.


    Directory of Open Access Journals (Sweden)

    Muhammad Ridha


    Tujuan dari penelitian ini adalah untuk mengetahui pengaruh penerapan strategi flipped mastery classroom terhadap perolehan hasil belajar kognitif mahasiswa pada matakuliah psikologi pendidikan. Subjek dalam penelitian ini adalah mahasiswa Jurusan Teknologi Pendidikan Universitas Negeri Malang semester genap tahun ajaran 2015/2016 pada kelas utuh. Kelas eksperimen dibelajarkan dengan strategi flipped-mastery classroom dan kelas kontrol dibelajarkan dengan strategi tradisional.  Penelitian ini menggunakan rancangan kuasi eksperimen Non Equivalent Control Group Design. Hasil penelitian menunjukkan bahwa penerapan strategi flipped mastery classroom memberikan pengaruh positif terhadap perolehan hasil belajar kognitif mahasiswa. Perolehan hasil belajar kognitif mahasiswa yang dibelajarkan dengan strategi flipped-mastery lebih tinggi secara signifikan dari pada perolehan hasil belajar mahasiswa yang dibelajarkan dengan strategi tradisional.

  2. Online Learning Room for ”Flipped Classroom”

    DEFF Research Database (Denmark)

    Bugge, Ellen Margrethe; Nielsen, Linda Susanna Hauschildt


    learning with learning in the classroom. The learning room must support the students’ unassisted learning, their preparation for class and their preparation for supervision in both a motivating and clear way. At the Nursing Education Programme at University College Lillebaelt in Denmark, we have been...... working actively and innovatively to create a didactic design in our online learning rooms in our LMS that satisfy the demands for flipped learning and at the same time adapted to the special needs of each learning module at the nursing education programme. Keywords: Online learning, flipped classroom......Abstract The “flipped classroom” learning concept is an alternative way of teaching & learning. The fundamental idea of the "flipped classroom" is to change the way students prepare for classes and the work that takes place when the students are together in the classroom. This integrates online...

  3. Flipped classroom model for learning evidence-based medicine. (United States)

    Rucker, Sydney Y; Ozdogan, Zulfukar; Al Achkar, Morhaf


    Journal club (JC), as a pedagogical strategy, has long been used in graduate medical education (GME). As evidence-based medicine (EBM) becomes a mainstay in GME, traditional models of JC present a number of insufficiencies and call for novel models of instruction. A flipped classroom model appears to be an ideal strategy to meet the demands to connect evidence to practice while creating engaged, culturally competent, and technologically literate physicians. In this article, we describe a novel model of flipped classroom in JC. We present the flow of learning activities during the online and face-to-face instruction, and then we highlight specific considerations for implementing a flipped classroom model. We show that implementing a flipped classroom model to teach EBM in a residency program not only is possible but also may constitute improved learning opportunity for residents. Follow-up work is needed to evaluate the effectiveness of this model on both learning and clinical practice.

  4. Step to improve neural cryptography against flipping attacks. (United States)

    Zhou, Jiantao; Xu, Qinzhen; Pei, Wenjiang; He, Zhenya; Szu, Harold


    Synchronization of neural networks by mutual learning has been demonstrated to be possible for constructing key exchange protocol over public channel. However, the neural cryptography schemes presented so far are not the securest under regular flipping attack (RFA) and are completely insecure under majority flipping attack (MFA). We propose a scheme by splitting the mutual information and the training process to improve the security of neural cryptosystem against flipping attacks. Both analytical and simulation results show that the success probability of RFA on the proposed scheme can be decreased to the level of brute force attack (BFA) and the success probability of MFA still decays exponentially with the weights' level L. The synchronization time of the parties also remains polynomial with L. Moreover, we analyze the security under an advanced flipping attack.

  5. Teachers' development and reflection in the flipped classroom

    DEFF Research Database (Denmark)

    Triantafyllou, Evangelia; Timcenko, Olga; Kofoed, Lise


    The flipped classroom is an instruction method that has gained momentum during the last years due to technological advances allowing the online sharing of teaching material and learning activities. Bishop and Verleger defined the flipped classroom as “ educational technique that consists....... Our experience has shown that teachers reflected on their own teaching even before the event of teaching, because the design of a flipped classroom requires careful consideration of the course structure and content. In many cases, the teachers had to come up with new activities or redesign the whole...... course in order to adjust it to the flipped classroom model. We have also seen that these considerations have forced teachers to also reconsider the learning objectives of specific activities. Another aspect that promoted reflection was the production of video lectures. Finally, teachers reflected...

  6. ALICE chip processor

    CERN Multimedia

    Maximilien Brice


    This tiny chip provides data processing for the time projection chamber on ALICE. Known as the ALICE TPC Read Out (ALTRO), this device was designed to minimize the size and power consumption of the TPC front end electronics. This single chip contains 16 low-power analogue-to-digital converters with six million transistors of digital processing and 8 kbits of data storage.

  7. Ontology-Navigated Tutoring System for Flipped-Mastery Model


    Masao Okabe


    Nowadays, in Japan, variety of students get into a university and one of the main roles of introductory courses for freshmen is to make such students well prepared for subsequent intermediate courses. For that purpose, the flipped-mastery model is not enough because videos usually used in a flipped classroom is not adaptive and does not fit all freshmen with different academic performances. This paper proposes an ontology-navigated tutoring system called EduGraph. Using EduGraph, students can...

  8. Pengaruh Flipped Mastery Classrom Terhadap Perolehan Hasil Belajar Kognitif Mahasiswa


    Ridha, Muhammad; Setyosari, Punaji; Kuswandi, Dedi


    This study aims to investigate the effect of flipped mastery classroom towards students learning outcomes on educational psychology subject. Subject of this research are students of Educational Department of State University of Malang academic year 2015/2016 in intact group. Flipped mastery classroom is a strategy uses in experimental group and traditional strategy is a strategy uses in control group. The design of the research is Quasi Experiment Non Equivalent Control Group Design. The resu...

  9. Quantum protocol for cheat-sensitive weak coin flipping. (United States)

    Spekkens, R W; Rudolph, Terry


    We present a quantum protocol for the task of weak coin flipping. We find that, for one choice of parameters in the protocol, the maximum probability of a dishonest party winning the coin flip if the other party is honest is 1/sqrt[2]. We also show that if parties restrict themselves to strategies wherein they cannot be caught cheating, their maximum probability of winning can be even smaller. As such, the protocol offers additional security in the form of cheat sensitivity.

  10. Dynamics of Methylated Cytosine Flipping by UHRF1. (United States)

    Kilin, Vasyl; Gavvala, Krishna; Barthes, Nicolas P F; Michel, Benoît Y; Shin, Dongwon; Boudier, Christian; Mauffret, Olivier; Yashchuk, Valeriy; Mousli, Marc; Ruff, Marc; Granger, Florence; Eiler, Sylvia; Bronner, Christian; Tor, Yitzhak; Burger, Alain; Mély, Yves


    DNA methylation patterns, which are critical for gene expression, are replicated by DNA methyltransferase 1 (DNMT1) and ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) proteins. This replication is initiated by the recognition of hemimethylated CpG sites and further flipping of methylated cytosines (mC) by the Set and Ring Associated (SRA) domain of UHRF1. Although crystallography has shed light on the mechanism of mC flipping by SRA, tools are required to monitor in real time how SRA reads DNA and flips the modified nucleobase. To accomplish this aim, we have utilized two distinct fluorescent nucleobase surrogates, 2-thienyl-3-hydroxychromone nucleoside (3HCnt) and thienoguanosine ( th G), incorporated at different positions into hemimethylated (HM) and nonmethylated (NM) DNA duplexes. Large fluorescence changes were associated with mC flipping in HM duplexes, showing the outstanding sensitivity of both nucleobase surrogates to the small structural changes accompanying base flipping. Importantly, the nucleobase surrogates marginally affected the structure of the duplex and its affinity for SRA at positions where they were responsive to base flipping, illustrating their promise as nonperturbing probes for monitoring such events. Stopped-flow studies using these two distinct tools revealed the fast kinetics of SRA binding and sliding to NM duplexes, consistent with its reader role. In contrast, the kinetics of mC flipping was found to be much slower in HM duplexes, substantially increasing the lifetime of CpG-bound UHRF1, and thus the probability of recruiting DNMT1 to faithfully duplicate the DNA methylation profile. The fluorescence-based approach using these two different fluorescent nucleoside surrogates advances the mechanistic understanding of the UHRF1/DNMT1 tandem and the development of assays for the identification of base flipping inhibitors.

  11. Using the flipped classroom in graduate nursing education. (United States)

    Critz, Catharine M; Knight, Diane


    A flipped classroom is a pedagogical model that involves having students view online lectures, read current evidence-based articles, and complete text readings prior to class. Students then come to class ready to actively engage in collaborative learning through case scenarios, small group discussion, or other meaningful, interactive activities. The flipped classroom model described here was an overwhelming success for both students and faculty.

  12. A cluster expansion for interacting spin-flip processes

    Directory of Open Access Journals (Sweden)

    Campanino Massimo


    Full Text Available We consider a system of spin flip processes, one-for each point of ℤ${\\mathbb Z}$, interacting through an Ising type interaction. We construct a cluster expansion and prove that it is convergent when the intensity h of the spin-flip processes is sufficiently high. The system is relevant in the study of the ground state of a quantum Ising process with transverse magnetic field.

  13. Deslumbramiento en dispositivos led


    Ixtaina, Rubén Pablo; Presso, Matías; Ferreyra, Joaquín


    En el presente trabajo se presenta un estudio realizado en el LAL a dispositivos para señalización (semáforos, balizas, barrales lumínicos) con tecnología led. Las mediciones tradicionales de intensidad luminosa se complementaron con el análisis de la luminancia de los dispositivos, evaluada para diversas aperturas angula-res. Los resultados obtenidos marcan un notorio incre-mento en las luminancias puntuales, para valores de emisión globales comparables a los obtenidos en dispo-sitivos conve...

  14. Study and practice of flipped classroom in optoelectronic technology curriculum (United States)

    Shi, Jianhua; Lei, Bing; Liu, Wei; Yao, Tianfu; Jiang, Wenjie


    "Flipped Classroom" is one of the most popular teaching models, and has been applied in more and more curriculums. It is totally different from the traditional teaching model. In the "Flipped Classroom" model, the students should watch the teaching video afterschool, and in the classroom only the discussion is proceeded to improve the students' comprehension. In this presentation, "Flipped Classroom" was studied and practiced in opto-electronic technology curriculum; its effect was analyzed by comparing it with the traditional teaching model. Based on extensive and deep investigation, the phylogeny, the characters and the important processes of "Flipped Classroom" are studied. The differences between the "Flipped Classroom" and the traditional teaching model are demonstrated. Then "Flipped Classroom" was practiced in opto-electronic technology curriculum. In order to obtain high effectiveness, a lot of teaching resources were prepared, such as the high-quality teaching video, the animations and the virtual experiments, the questions that the students should finish before and discussed in the class, etc. At last, the teaching effect was evaluated through analyzing the result of the examination and the students' surveys.

  15. Flipped Classroom as an Alternative Strategy for Teaching Stoichiometry

    Directory of Open Access Journals (Sweden)

    Norrie E. Gayeta


    Full Text Available This study aimed to compare the effectiveness of flipped classroom and traditional classroom instruction in measuring conceptual change and to determine if flipped classroom instruction would be an alternative method of teaching to traditional lecture method. This study covered the level of conceptual understanding of students on stoichiometry and the type of conceptual change before and after exposure to flipped and traditional classroom environment. Qualitative and quantitative research methods were used in the study. Respondents were two sections of third year Bachelor of Secondary Education, Biological Science. Frequency, percentage, ranking, mean, standard deviation, Hake factor test, and t-test were the statistical tools applied to answer specific questions. Results showed profound increase towards conceptual change representing a shift from intuitive understanding to correct incomplete understanding level. Thus, change for the better, in theoretical type was determined from pretest to posttest of students exposed to flipped and traditional classroom. Results also indicated that there is no significant difference on students’ conceptual change on stoichiometry exposed to flipped and traditional classroom environment thus, flipped classroom instruction can be used as an alternative teaching method to traditional lecture method in teaching stoichiometry

  16. Influence of variation of electrical parameters values of RGB LEDs on the radiation uniformity of LED displays at minimal luminosity grade

    Directory of Open Access Journals (Sweden)

    Veleschuk V. P.


    Full Text Available The emission uniformity of LED chips in the entire range of brightness and colors is the problem in LED displays manufacture process. It was approved that at lowering brightness gradations appearing the radiation nonuniformity between LED chips, and the higher disorders will be seen on the lesser emission levels. The RGB LED chips, observed by us, were based on AlGaInP (red, In0.3Ga0.7N/GaN (green, and In0,2Ga0,8NN/ GaN (blue and had nominal working current 20 mA. Analysis of the current-voltage characteristics and capacitance-voltage characteristics showed the presence of inhomogeneous semiconductor junctions and ohmic contacts in blue LEDs structures that are the source of possible irregularities in the final emission of LED displays. The variation of voltages (at current 10 mA were 2.81—2.98 V for blue structures, and 1.9—2.0 V for red ones. Some of the blue structures had additional parasite current-flow mechanism at low current. Rise time and fall time of electroluminescence pulse of blue structures were measured. The shortest LED pulse time in LED displays is limited by duration of 6—8 ns. The quality of LED displays may be improved by implementating the preliminary control of LED chips in a narrower range of voltage variation at operating currents, or more narrow interval of I—V variation. This additional LEDs sorting will of course reduce the percentage of the total amount of light-emitting diodes, but may improve the image (video, photo quality at translations by using a lower brightness gradations.

  17. The Flipped Classroom in Active Learning: On the Application of Flipped Classroom Methodology in Beginning Chinese Language


    趙, 菁


    Since the 2012–2013 academic year, Flipped Classroom has attracted a great deal of attention at the University level in the Japanese education system. This paper reports on an attempt at using the Flipped Classroom method in beginning Chinese Language classes. The results show that this method increased the beginning Chinese Language Learners studying time after each lesson and improved communication among classmates during classroom activities.

  18. Nitride micro-LEDs and beyond--a decade progress review. (United States)

    Jiang, H X; Lin, J Y


    Since their inception, micro-size light emitting diode (µLED) arrays based on III-nitride semiconductors have emerged as a promising technology for a range of applications. This paper provides an overview on a decade progresses on realizing III-nitride µLED based high voltage single-chip AC/DC-LEDs without power converters to address the key compatibility issue between LEDs and AC power grid infrastructure; and high-resolution solid-state self-emissive microdisplays operating in an active driving scheme to address the need of high brightness, efficiency and robustness of microdisplays. These devices utilize the photonic integration approach by integrating µLED arrays on-chip. Other applications of nitride µLED arrays are also discussed.

  19. Flipped classrooms and student learning: not just surface gains. (United States)

    McLean, Sarah; Attardi, Stefanie M; Faden, Lisa; Goldszmidt, Mark


    The flipped classroom is a relatively new approach to undergraduate teaching in science. This approach repurposes class time to focus on application and discussion; the acquisition of basic concepts and principles is done on the students' own time before class. While current flipped classroom research has focused on student preferences and comparative learning outcomes, there remains a lack of understanding regarding its impact on students' approaches to learning. Focusing on a new flipped classroom-based course for basic medical sciences students, the purpose of the present study was to evaluate students' adjustments to the flipped classroom, their time on task compared with traditional lectures, and their deep and active learning strategies. Students in this course worked through interactive online learning modules before in-class sessions. Class time focused on knowledge application of online learning module content through active learning methods. Students completed surveys and optional prequiz questions throughout the term to provide data regarding their learning approaches. Our results showed that the majority of students completed their prework in one sitting just before class. Students reported performing less multitasking behavior in the flipped classroom compared with lecture-based courses. Students valued opportunities for peer-peer and peer-instructor interactions and also valued having multiple modes of assessment. Overall, this work suggests that there is the potential for greater educational gains from the flipped classroom than the modest improvements in grades previously demonstrated in the literature; in this implementation of the flipped classroom, students reported that they developed independent learning strategies, spent more time on task, and engaged in deep and active learning. Copyright © 2016 The American Physiological Society.

  20. The characteristics of GaN-based blue LED on Si substrate

    International Nuclear Information System (INIS)

    Xiong Chuanbing; Jiang Fengyi; Fang Wenqing; Wang Li; Mo Chunnan; Liu Hechu


    InGaN multiple quantum well (MQW) light-emitting diodes (LEDs), grown by metalorganic chemical vapor deposition (MOCVD) on Si (1 1 1) substrates, were successfully bonded and transferred onto new Si substrate. After chemical etching Si substrate and inductively coupled plasma (ICP) etching buffer layer, vertical structure GaN blue LEDs were fabricated. The characteristics of the lateral structure LEDs (grown on Si substrate) and the vertical structure LEDs (bonded on new Si substrate) have been investigated, and the performance of the vertical structure LEDs have obviously been improved compared to the lateral structure LEDs. The improved performance is due to the smaller tensile stress and series resistance in the vertical LEDs than that in lateral LEDs. The electroluminescence difference between vertical LEDs chips and the vertical LEDs lamps can be explained by the difference in heat dissipation

  1. Constrained Supersymmetric Flipped SU(5) GUT Phenomenology

    CERN Document Server

    Ellis, John; Olive, Keith A


    We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, $M_{in}$, above the GUT scale, $M_{GUT}$. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino and the lighter stau is sensitive to $M_{in}$, as is the relationship between the neutralino mass and the masses of the heavier Higgs bosons. For these reasons, prominent features in generic $(m_{1/2}, m_0)$ planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to $M_{in}$, as we illustrate for several cases with tan(beta)...

  2. Flipping organic chemistry course: Possibilities and challenges (United States)

    Cha, J.; Kim, H. B.


    The flipped classroom approach was applied to an introductory organic chemistry course. A total of 76 video clips (15 hours of running time) were developed and delivered to 41 sophomores (21 females and 20 males) through Youtube in addition to the university's learning management system. The students were asked to preview the lecture contents before each class by watching a pre-class video. For in-class activities, exercise problems were presented to groups of 3-5 students. An instructor and a teaching assistant guided each group to solve problems cooperatively, monitored the students’ group activity and answered their questions. At the end of every chapter, the students were asked to evaluate their group work and personal preparedness for the class and also to write a short reflective journal. The muddiest point of each chapter, i.e., the topic posing the most difficulty to students’ understanding, was surveyed through Google Forms®. The students liked watching the videos before each class and performing student-centered, in-class group activities but a few limitations were also found and reported.

  3. Flipped classroom or an active lecture? (United States)

    Pickering, James D; Roberts, David J H


    Recent changes in anatomy education have seen the introduction of flipped classrooms as a replacement to the traditional didactic lecture. This approach utilizes the increasing availability of digital technology to create learning resources that can be accessed prior to attending class, with face-to-face sessions then becoming more student-centered via discussion, collaborative learning, and problem-solving activities. Although this approach may appear intuitive, this viewpoint commentary presents a counter opinion and highlights a simple alternative that utilizes evidence-based active learning approaches as part of the traditional lecture. The active lecture takes the traditional lecture, and (1) ensures the lecture content is relevant and has clear objectives, (2) contains lecture material that is designed according to the latest evidence-base, (3) complements it with additional supplementary material, (4) creates space to check prior understanding and knowledge levels, and (5) utilizes suitable technology to facilitate continual engagement and interaction. Clin. Anat. 31:118-121, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. The flipped classroom: now or never? (United States)

    Hawks, Sharon J


    Pedagogical changes and new models of delivering educational content should be considered in the effort to address the recommendations of the 2007 Institute of Medicine report and Benner's recommendations on the radical transformation of nursing. Transition to the nurse anesthesia practice doctorate addresses the importance of these recommendations, but educational models and specific strategies on how to implement changes in educational models and systems are still emerging. The flipped classroom (FC) is generating a considerable amount of buzz in academic circles. The FC is a pedagogical model that employs asynchronous video lectures, reading assignments, practice problems, and other digital, technology-based resources outside the classroom, and interactive, group-based, problem-solving activities in the classroom. This FC represents a unique combination of constructivist ideology and behaviorist principles, which can be used to address the gap between didactic education and clinical practice performance. This article reviews recent evidence supporting use of the FC in health profession education and suggests ways to implement the FC in nurse anesthesia educational programs.

  5. Chip to System Testability

    National Research Council Canada - National Science Library

    McNamer, Michael


    The ultimate objective of the Chip-to-System Testability program was the development of a structured testability implementation methodology which will be used as a basis for a PC-based tool called TESPAD...

  6. Medicaid CHIP ESPC Database (United States)

    U.S. Department of Health & Human Services — The Environmental Scanning and Program Characteristic (ESPC) Database is in a Microsoft (MS) Access format and contains Medicaid and CHIP data, for the 50 states and...

  7. High performance low cost interconnections for flip chip attachment with electrically conductive adhesive. Final report

    Energy Technology Data Exchange (ETDEWEB)



    This final report is a compilation of final reports from each of the groups participating in the program. The main three groups involved in this effort are the Thomas J. Watson Research Center of IBM Corporation in Yorktown Heights, New York, Assembly Process Design of IBM Corporation in Endicott, New York, and SMT Laboratory of Universal Instruments Corporation in Binghamton, New York. The group at the research center focused on the conductive adhesive materials development and characterization. The group in process development focused on processing of the Polymer-Metal-Solvent Paste (PMSP) to form conductive adhesive bumps, formation of the Polymer-Metal Composite (PMC) on semiconductor devices and study of the bonding process to circuitized organic carriers, and the long term durability and reliability of joints formed using the process. The group at Universal Instruments focused on development of an equipment set and bonding parameters for the equipment to produce bond assembly tooling. Reports of each of these individual groups are presented here reviewing their technical efforts and achievements.

  8. On flipping first-semester calculus: a case study (United States)

    Petrillo, Joseph


    High failure rates in calculus have plagued students, teachers, and administrators for decades, while science, technology, engineering, and mathematics programmes continue to suffer from low enrollments and high attrition. In an effort to affect this reality, some educators are 'flipping' (or inverting) their classrooms. By flipping, we mean administering course content outside of the classroom and replacing the traditional in-class lectures with discussion, practice, group work, and other elements of active learning. This paper presents the major results from a three-year study of a flipped, first-semester calculus course at a small, comprehensive, American university with a well-known engineering programme. The data we have collected help quantify the positive and substantial effects of our flipped calculus course on failure rates, scores on the common final exam, student opinion of calculus, teacher impact on measurable outcomes, and success in second-semester calculus. While flipping may not be suitable for every teacher, every student, and in every situation, this report provides some evidence that it may be a viable option for those seeking an alternative to the traditional lecture model.

  9. Flipped classroom model for learning evidence-based medicine

    Directory of Open Access Journals (Sweden)

    Rucker SY


    Full Text Available Sydney Y Rucker,1 Zulfukar Ozdogan,1 Morhaf Al Achkar2 1School of Education, Indiana University, Bloomington, IN, 2Department of Family Medicine, School of Medicine, University of Washington, Seattle, WA, USA Abstract: Journal club (JC, as a pedagogical strategy, has long been used in graduate medical education (GME. As evidence-based medicine (EBM becomes a mainstay in GME, traditional models of JC present a number of insufficiencies and call for novel models of instruction. A flipped classroom model appears to be an ideal strategy to meet the demands to connect evidence to practice while creating engaged, culturally competent, and technologically literate physicians. In this article, we describe a novel model of flipped classroom in JC. We present the flow of learning activities during the online and face-to-face instruction, and then we highlight specific considerations for implementing a flipped classroom model. We show that implementing a flipped classroom model to teach EBM in a residency program not only is possible but also may constitute improved learning opportunity for residents. Follow-up work is needed to evaluate the effectiveness of this model on both learning and clinical practice. Keywords: evidence-based medicine, flipped classroom, residency education

  10. Student performance in a flipped classroom dental anatomy course. (United States)

    Chutinan, S; Riedy, C A; Park, S E


    The purpose of this study was to assess dental student learning in a dental anatomy module between traditional lecture and flipped classroom cohorts. Two cohorts of predoctoral dental students (N = 70 within each cohort) participated in a dental anatomy module within an Introduction to the Dental Patient (IDP) course ([traditional/lecture cohort: academic year (AY) 2012, 2013] and [flipped classroom cohort: AY 2014, 2015]). For the dental anatomy module, both cohorts were evaluated on pre-clinical tooth waxing exercises immediately after each of five lectures and tooth identification after all lectures were given. Additionally, the cohorts' performance on the overall IDP course examination was compared. The flipped classroom cohort had statistically significant higher waxing scores (dental anatomy module) than students in the traditional classroom. There was no statistically significant difference for tooth identification scores and the overall IDP course examination between the traditional vs flipped approach cohorts. This is due to the latter two assessments conducted at the end of the course gave all students enough time to review the lecture content prior to the assessment resulting in similar scores for both cohorts. The flipped classroom cohort promoted students' individual learning and resulted in improved students' performance on immediate evaluation but not on the end of the course evaluation. Redesign of courses to include a new pedagogical approach should be carefully implemented and evaluated for student's educational success. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. [Flipped classroom as a strategy to enhance active learning]. (United States)

    Wakabayashi, Noriyuki


    This paper reviews the introduction of a flipped class for fourth grade dentistry students, and analyzes the characteristics of the learning method. In fiscal 2013 and 2014, a series of ten three-hour units for removable partial prosthodontics were completed with the flipped class method; a lecture video of approximately 60 minutes was made by the teacher (author) and uploaded to the university's e-learning website one week before each class. Students were instructed to prepare for the class by watching the streaming video on their PC, tablet, or smartphone. In the flipped class, students were not given a lecture, but were asked to solve short questions displayed on screen, to make a short presentation about a part of the video lecture, and to discuss a critical question related to the main subject of the day. An additional team-based learning (TBL) session with individual and group answers was implemented. The average individual scores were considerably higher in the last two years, when the flipped method was implemented, than in the three previous years when conventional lectures were used. The following learning concepts were discussed: the role of the flipped method as an active learning strategy, the efficacy of lecture videos and short questions, students' participation in the class discussion, present-day value of the method, cooperation with TBL, the significance of active learning in relation with the students' learning ability, and the potential increase in the preparation time and workload for students.

  12. Scaffolded Semi-Flipped General Chemistry Designed to Support Rural Students' Learning (United States)

    Lenczewski, Mary S.


    Students who lack academic maturity can sometimes feel overwhelmed in a fully flipped classroom. Here an alternative, the Semi-Flipped method, is discussed. Rural students, who face unique challenges in transitioning from high school learning to college-level learning, can particularly profit from the use of the Semi-Flipped method in the General…

  13. The Flipped Classroom in Systems Analysis & Design: Leveraging Technology to Increase Student Engagement (United States)

    Saulnier, Bruce M.


    Problems associated with the ubiquitous presence of technology on college campuses are discussed and the concept of the flipped classroom is explained. Benefits of using the flipped classroom to offset issues associated with the presence of technology in the classroom are explored. Fink's Integrated Course Design is used to develop a flipped class…

  14. Implementing the Flipped Classroom: An Exploration of Study Behaviour and Student Performance (United States)

    Boevé, Anja J.; Meijer, Rob R.; Bosker, Roel J.; Vugteveen, Jorien; Hoekstra, Rink; Albers, Casper J.


    The flipped classroom is becoming more popular as a means to support student learning in higher education by requiring students to prepare before lectures and actively engaging students during lectures. While some research has been conducted into student performance in the flipped classroom, students' study behaviour throughout a flipped course…

  15. [Evaluation of flipped classroom teaching model in undergraduates education of oral and maxillofacial surgery]. (United States)

    Cai, Ming; Cao, Xia; Fang, Xiao; Wang, Xu-dong; Zhang, Li-li; Zheng, Jia-wei; Shen, Guo-fang


    Flipped classroom is a new teaching model which is different from the traditional teaching method. The history and characteristics of flipped classroom teaching model were introduced in this paper. A discussion on how to establish flipped classroom teaching protocol in oral and maxillofacial surgery education was carried out. Curriculum transformation, construction of education model and possible challenges were analyzed and discussed.

  16. To What Extent Does 'Flipping' Make Lessons Effective in a Multimedia Production Class? (United States)

    Choi, Jaeho; Lee, Youngju


    This study examines the effects of a flipped classroom in a technology integration course for pre-service teachers. In total, 79 students were randomly assigned into a flipped classroom or a traditional classroom group and given three multimedia production tasks. Students in the flipped group reviewed an e-book for lessons on multimedia…

  17. Present Research on the Flipped Classroom and Potential Tools for the EFL Classroom (United States)

    Mehring, Jeff


    The flipped classroom can support the implementation of a communicative, student-centered learning environment in the English as a foreign language classroom. Unfortunately, there is little research which supports the incorporation of flipped learning in the English as a foreign language classroom. Numerous studies have focused on flipped learning…

  18. Strange attractors in a chaotic coin flip simulation

    International Nuclear Information System (INIS)

    Cooper, Crystal


    Presented is a computer simulation used to model a variation of the game known as the gambler's ruin. A rich player gambles with a set amount of money m. The poor player starts out with zero capital, and is allowed to flip a coin in order to try to win the money. If the coin is heads, the poor player wins a dollar but if it is tails, the player loses a dollar. The poor player is always allowed to win the first flip, and is allowed to flip n times, even when the amount of money lost reaches zero. The dynamics of this process is chaotic due to fluctuations in the variance of the amount of money


    Directory of Open Access Journals (Sweden)

    Rida Afrilyasanti


    Full Text Available Flipped classroom is an approach to learning to write that allows teachers to have one-on-one assistance to help learners in the “during writing” stage in the classroom. Theories are given to the students in a video lectures to watch before class. Because problems in writing mostly occur in “during writing” stage, teacher assistance is crucial. This paper aims to share theoretical review and research findings pertaining to the implementation of flipped classroom model to EFL writing. Research findings show that flipped classroom is able to give greater opportunities for interactive sessions in class which focus on the students’ own concerns, questions, and needs. Therefore, students’ difficulties in “during writing” stage can be minimized

  20. Crack Tip Flipping Under Mode I/III Tearing

    DEFF Research Database (Denmark)

    Felter, Christian Lotz; Specht Jensen, Lasse; Nielsen, Kim Lau

    Crack tip flipping, where the fracture surface alternates from side to side in 45° shear bands, seems to be an overlooked propagation mode in Mode I sheet tearing often disregarded as  “transitional” or tied to randomness in the material. In fact, such observations rarely make it to the literature....... However, crack tip flipping is a true propagation mode, but unlike those already established: i) it never settles in a steady-state as the near tip stress/strain field continuously change, and ii) the mechanism governing failure evolves behind the leading crack tip. Recent research has revealed new...... insight into this intriguing behavior of a crack propagating by the void nucleation and growth mechanism, and the work presented compiles both published and unpublished experimental and numerical findings. E.g. in a recent attempt to gain control of the flipping crack a slight Mode III was imposed...

  1. Flipping the classroom to improve student performance and satisfaction. (United States)

    Missildine, Kathy; Fountain, Rebecca; Summers, Lynn; Gosselin, Kevin


    This study aimed to determine the effects of a flipped classroom (i.e., reversal of time allotment for lecture and homework) and innovative learning activities on academic success and the satisfaction of nursing students. A quasi-experimental design was used to compare three approaches to learning: traditional lecture only (LO), lecture and lecture capture back-up (LLC), and the flipped classroom approach of lecture capture with innovative classroom activities (LCI). Examination scores were higher for the flipped classroom LCI group (M = 81.89, SD = 5.02) than for both the LLC group (M = 80.70, SD = 4.25), p = 0.003, and the LO group (M = 79.79, SD = 4.51), p method than with either of the other methods (p teaching technologies with interactive classroom activities can result in improved learning but not necessarily improved student satisfaction. Copyright 2013, SLACK Incorporated.

  2. Out of Classroom Instruction in the Flipped Classroom

    DEFF Research Database (Denmark)

    Triantafyllou, Evangelia; Timcenko, Olga


    This article presents experiences and student perceptions on the introduction of the flipped classroom model in two consecutive semesters at Media Technology department of Aalborg University, Copenhagen, Denmark. We introduced the flipped instruction model to a statistics course and a mathematics...... workshop. We collected data by two online survey studies, which show support for student perceptions that out-of-classroom instruction with online resources enhances learning, by providing visual and in depth explanations, and can engage the learner. However, students stated that they miss just......-in-time explanations when learning with online resources and they questioned the quality and validity of some of them. Based on these findings and our own experience, we discuss requirements for resources and activities in flipped classrooms in order for the student to engage and learn. Finally, we present a framework...

  3. Flipped Instruction in a High School Science Classroom (United States)

    Leo, Jonathan; Puzio, Kelly


    This paper reports on a quasi-experimental study examining the effectiveness of flipped instruction in a 9th grade biology classroom. This study included four sections of freshmen-level biology taught by the first author at a private secondary school in the Pacific Northwest. Using a block randomized design, two sections were flipped and two remained traditional. The quiz and posttest data were adjusted for pretest differences using ANCOVA. The results suggest that flipped instruction had a positive effect student achievement, with effect sizes ranging from +0.16 to +0.44. In addition, some students reported that they preferred watching video lectures outside of class and appreciated more active approaches to learning.

  4. Graphene Layer Growth Chemistry: Five-Six-Ring Flip Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Whitesides, R.; Domin, D.; Salomon-Ferrer, R.; Lester Jr., W.A.; Frenklach, M.


    Reaction pathways are presented for hydrogen-mediated isomerization of a five and six member carbon ring complex on the zigzag edge of a graphene layer. A new reaction sequence that reverses orientation of the ring complex, or 'flips' it, was identified. Competition between the flip reaction and 'ring separation' was examined. Ring separation is the reverse of the five and six member ring complex formation reaction, previously reported as 'ring collision'. The elementary steps of the pathways were analyzed using density-functional theory (DFT). Rate coefficients were obtained by solution of the energy master equation and classical transition state theory utilizing the DFT energies, frequencies, and geometries. The results indicate that the flip reaction pathway dominates the separation reaction and should be competitive with other pathways important to the graphene zigzag edge growth in high temperature environments.

  5. Spin flip of multiqubit states in discrete phase space (United States)

    Srinivasan, K.; Raghavan, G.


    Time reversal and spin flip are discrete symmetry operations of substantial importance to quantum information and quantum computation. Spin flip arises in the context of separability, quantification of entanglement and the construction of universal NOT gates. The present work investigates the relationship between the quantum state of a multiqubit system represented by the discrete Wigner function (DWFs) and its spin-flipped counterpart. The two are shown to be related through a Hadamard matrix that is independent of the choice of the quantum net used for the tomographic reconstruction of the DWF. These results are of interest to cases involving the direct tomographic reconstruction of the DWF from experimental data, and in the analysis of entanglement related properties purely in terms of the DWF.

  6. Switched Flip-Flop based Preprocessing Circuit for ISFETs

    Directory of Open Access Journals (Sweden)

    Martin Kollár


    Full Text Available In this paper, a preprocessing circuit for ISFETs (Ion-sensitive field-effecttransistors to measure hydrogen-ion concentration in electrolyte is presented. A modifiedflip-flop is the main part of the circuit. The modification consists in replacing the standardtransistors by ISFETs and periodically switching the supply voltage on and off.Concentration of hydrogen ions to be measured discontinues the flip-flop value symmetry,which means that by switching the supply voltage on the flip-flop goes to one of two stablestates, ‘one’ or ‘zero’. The recovery of the value symmetry can be achieved by changing abalanced voltage, which is incorporated to the flip-flop, to bring the flip-flop to a 50%position (probability of ‘one’ equals to probability of ‘zero’. Thus, the balanced voltagereflects the measured concentration of hydrogen ions. Its magnitude is set automatically byusing a feedback circuit whose input is connected to the flip-flop output. The preprocessingcircuit, as the whole, is the well-known δ modulator in which the switched flip-flop servesas a comparator and a sampling circuit. The advantages of this approach in comparison tothose of standard approaches are discussed. Finally, theoretical results are verified bysimulations with TSPICE and a good agreement is reported.

  7. Student learning and perceptions in a flipped linear algebra course (United States)

    Love, Betty; Hodge, Angie; Grandgenett, Neal; Swift, Andrew W.


    The traditional lecture style of teaching has long been the norm in college science, technology, engineering, and mathematics (STEM) courses, but an innovative teaching model, facilitated by recent advances in technology, is gaining popularity across college campuses. This new model inverts or 'flips' the usual classroom paradigm, in that students learn initial course concepts outside of the classroom, while class time is reserved for more active problem-based learning and practice activities. While the flipped classroom model shows promise for improving STEM learning and increasing student interest in STEM fields, discussions to date of the model and its impact are more anecdotal than data driven - very little research has been undertaken to rigorously assess the potential effects on student learning that can result from the flipped classroom environment. This study involved 55 students in 2 sections of an applied linear algebra course, using the traditional lecture format in one section and the flipped classroom model in another. In the latter, students were expected to prepare for the class in some way, such as watching screencasts prepared by the instructor, or reading the textbook or the instructor's notes. Student content understanding and course perceptions were examined. Content understanding was measured by the performance on course exams, and students in the flipped classroom environment had a more significant increase between the sequential exams compared to the students in the traditional lecture section, while performing similarly in the final exam. Course perceptions were represented by an end-of-semester survey that indicated that the flipped classroom students were very positive about their experience in the course, and particularly appreciated the student collaboration and instructional video components.

  8. I mål med flipped learning

    DEFF Research Database (Denmark)

    Hachmann, Roland


    Kapitlet belyser, hvordan synlige læringsmål og stilladsering er to vigtige elementer i Flipped Learning. Kapitlet belyser en række metoder til at bringe eleven i centrum for sin egen læring og hvorledes underviseren kan differentiere sin undervisning for netop at støtte denne proces......Kapitlet belyser, hvordan synlige læringsmål og stilladsering er to vigtige elementer i Flipped Learning. Kapitlet belyser en række metoder til at bringe eleven i centrum for sin egen læring og hvorledes underviseren kan differentiere sin undervisning for netop at støtte denne proces...

  9. Flip-Flop Recovery System for sounding rocket payloads (United States)

    Flores, A., Jr.


    The design, development, and testing of the Flip-Flop Recovery System, which protects sensitive forward-mounted instruments from ground impact during sounding rocket payload recovery operations, are discussed. The system was originally developed to reduce the impact damage to the expensive gold-plated forward-mounted spectrometers in two existing Taurus-Orion rocket payloads. The concept of the recovery system is simple: the payload is flipped over end-for-end at a predetermined time just after parachute deployment, thus minimizing the risk of damage to the sensitive forward portion of the payload from ground impact.

  10. A Flipped Classroom experience: the lateral instability phenomenon


    Sgambi, Luca; Nowicki, Alexandre; Garavaglia, Elsa; Basso, Noemi; Bath 2017 - Creativity and Collaboration


    For a teacher, to inspire creativity and innovation is definitely a big challenge. One of the best ways that a teacher can use to get this result, it is an instructional strategy based on active learning such as the “Flipped Classroom”. This paper describes a small Flipped Classroom experience developed at the school of Architecture of Politecnico di Milano and subsequently at the Université catholique de Louvain. To develop this activity the students of architecture are invited to reflect on...

  11. Controlling spin flips of molecules in an electromagnetic trap (United States)

    Reens, David; Wu, Hao; Langen, Tim; Ye, Jun


    Doubly dipolar molecules exhibit complex internal spin dynamics when electric and magnetic fields are both applied. Near magnetic trap minima, these spin dynamics lead to enhancements in Majorana spin-flip transitions by many orders of magnitude relative to atoms and are thus an important obstacle for progress in molecule trapping and cooling. We conclusively demonstrate and address this with OH molecules in a trap geometry where spin-flip losses can be tuned from over 200 s-1 to below our 2 s-1 vacuum-limited loss rate with only a simple external bias coil and with minimal impact on trap depth and gradient.

  12. Markov chain analysis of single spin flip Ising simulations

    International Nuclear Information System (INIS)

    Hennecke, M.


    The Markov processes defined by random and loop-based schemes for single spin flip attempts in Monte Carlo simulations of the 2D Ising model are investigated, by explicitly constructing their transition matrices. Their analysis reveals that loops over all lattice sites using a Metropolis-type single spin flip probability often do not define ergodic Markov chains, and have distorted dynamical properties even if they are ergodic. The transition matrices also enable a comparison of the dynamics of random versus loop spin selection and Glauber versus Metropolis probabilities

  13. Emphasizing peer learning in a virtually flipped classroom

    DEFF Research Database (Denmark)

    Jensen, Lars Peter


    in groups facilitated by teachers. Aalborg University also offers online part-time master programmes using the PBL principles transformed to online environments where face to interface replaces face to face and courses uses flipped lecture formats instead of transmission based lectures. Participants...... in these programmes are often very motivated and they follow the flipped instructions and read the suggested material, but do they also use their study group and experience peer learning? This question is investigated in this paper using one semester in the 2-year part-time programme: Master in Problem Based Learning...

  14. Fully simulatable quantum-secure coin-flipping and applications

    DEFF Research Database (Denmark)

    Lunemann, Carolin; Nielsen, Jesper Buus


    schemes which we show how to construct in the given setting. We then show that the interactive generation of random coins at the beginning or during outer protocols allows for quantum-secure realizations of classical schemes, again without any set-up assumptions. As example applications we discuss quantum...... zero-knowledge proofs of knowledge and quantum-secure two-party function evaluation. Both applications assume only fully simulatable coin-flipping and mixed commitments. Since our framework allows to construct fully simulatable coin-flipping from mixed commitments, this in particular shows that mixed...

  15. Restricted active space spin-flip configuration interaction: theory and examples for multiple spin flips with odd numbers of electrons. (United States)

    Zimmerman, Paul M; Bell, Franziska; Goldey, Matthew; Bell, Alexis T; Head-Gordon, Martin


    The restricted active space spin flip (RAS-SF) method is extended to allow ground and excited states of molecular radicals to be described at low cost (for small numbers of spin flips). RAS-SF allows for any number of spin flips and a flexible active space while maintaining pure spin eigenfunctions for all states by maintaining a spin complete set of determinants and using spin-restricted orbitals. The implementation supports both even and odd numbers of electrons, while use of resolution of the identity integrals and a shared memory parallel implementation allow for fast computation. Examples of multiple-bond dissociation, excited states in triradicals, spin conversions in organic multi-radicals, and mixed-valence metal coordination complexes demonstrate the broad usefulness of RAS-SF.

  16. Librarians Flip for Students: Teaching Searching Skills to Medical Students Using a Flipped Classroom Approach. (United States)

    Minuti, Aurelia; Sorensen, Karen; Schwartz, Rachel; King, Winifred S; Glassman, Nancy R; Habousha, Racheline G


    This article describes the development of a flipped classroom instructional module designed by librarians to teach first- and second-year medical students how to search the literature and find evidence-based articles. The pre-class module consists of an online component that includes reading, videos, and exercises relating to a clinical case. The in-class sessions, designed to reinforce important concepts, include various interactive activities. The specifics of designing both components are included for other health sciences librarians interested in presenting similar instruction. Challenges encountered, particularly in the live sessions, are detailed, as are the results of evaluations submitted by the students, who largely enjoyed the online component. Future plans are contingent on solving technical problems encountered during the in-class sessions.

  17. Optimal selection of TLD chips

    International Nuclear Information System (INIS)

    Phung, P.; Nicoll, J.J.; Edmonds, P.; Paris, M.; Thompson, C.


    Large sets of TLD chips are often used to measure beam dose characteristics in radiotherapy. A sorting method is presented to allow optimal selection of chips from a chosen set. This method considers the variation

  18. Implementeringen af flipped learning i fysik/kemi undervisningen i grundskolen

    DEFF Research Database (Denmark)

    Nissen, Stine Karen; Levinsen, Henrik


    This paper presents the preliminary findings and methodological framework from a study on the implementation of Flipped Learning in science classrooms in the Danish elementary school system. As a mixed methods case study consisting of observations and interviews, three science classrooms have been...... documented over the course of 15 weeks; prior to-, during- and after the implementation of a Flipped Learning approach to teaching and learning. Although ideas of Flipped Learning and Flipped Classroom have gained increased popularity amongst practitioners within different levels in the educational system...... for changes in classroom practices as expected. However, the experience of Flipped Learning by students and teachers offers a different and more optimistic set of narratives....

  19. Applying a learning design methodology in the flipped classroom approach – empowering teachers to reflect

    DEFF Research Database (Denmark)

    Triantafyllou, Evangelia; Kofoed, Lise; Purwins, Hendrik


    One of the recent developments in teaching that heavily relies on current technology is the “flipped classroom” approach. In a flipped classroom the traditional lecture and homework sessions are inverted. Students are provided with online material in order to gain necessary knowledge before class...... through flipped classroom designs. In order to discuss the opportunities arising by this approach, the different components of the Learning Design – Conceptual Map (LD-CM) are presented and examined in the context of the flipped classroom. It is shown that viewing the flipped classroom through the lens......, tools and resources used in specific flipped classroom models, and it can make educators more aware of the decisions that have to be taken and people who have to be involved when designing a flipped classroom. By using the LD-CM, this paper also draws attention to the importance of characteristics...

  20. The space of colored interval exchange transformations with flips

    International Nuclear Information System (INIS)

    Zaw, Myint


    We study the space Cr(2h, c) of c-colored exchange transformations with flips on 2h-intervals. We describe its relation to the moduli space M g,c *c of non-orientable Riemann surfaces of genus g≥0 with one boundary curve and c≥0 extra points where g=h-c-1. (author)

  1. Spin flipping in ring-coupled-cluster-doubles theory

    DEFF Research Database (Denmark)

    Klopper, Wim; M. Teale, Andrew; Coriani, Sonia


    We report a critical analysis and comparison of a variety of random-phase-approximation (RPA) based approaches to determine the electronic ground-state energy. Interrelations between RPA variants are examined by numerical examples with particular attention paid to the role of spin-flipped...

  2. Current-type flipped-Γ-source inverters

    DEFF Research Database (Denmark)

    Loh, Poh Chiang; Li, Ding; Blaabjerg, Frede


    are of interest since they use lesser components. Their winding turns might however become too excessive for higher demanded gains. Avoiding this usual trend, a new family of current-type flipped-Γ-source inverters are proposed, whose common gain is raised by lowering, and not increasing, the winding turns...

  3. Pair production of helicity-flipped neutrinos in supernovae (United States)

    Perez, Armando; Gandhi, Raj


    The emissivity was calculated for the pair production of helicity-flipped neutrinos, in a way that can be used in supernova calculations. Also presented are simple estimates which show that such process can act as an efficient energy-loss mechanism in the shocked supernova core, and this fact is used to extract neutrino mass limits from SN 1987A neutrino observations.

  4. A Qualitative Investigation of Student Engagement in a Flipped Classroom (United States)

    Steen-Utheim, Anna Therese; Foldnes, Njål


    The flipped classroom is gaining acceptance in higher education as an alternative to more traditional methods of teaching. In the current study, twelve students in a Norwegian higher education institution were in-depth interviewed about their learning experiences in a two-semester long mathematics course. The first semester was taught using…

  5. Flipping the Classroom in Teaching Chinese as a Foreign Language (United States)

    Yang, Jia; Yin, Chengxu; Wang, Wei


    Through an in-depth analysis of quantitative and qualitative data, this article offers a case study of the advantages and challenges in the application of the flipped learning approach in the instruction of Chinese as a foreign language at the beginning level. Data were collected from two first-year Chinese classes (one in traditional and the…

  6. Case Study: Student-Produced Videos for the Flipped Classroom (United States)

    Prud'homme-Genereux, Annie


    This column provides original articles on innovations in case study teaching, assessment of the method, as well as case studies with teaching notes. This month's issue describes a way of building a library of student-produced videos to use in the flipped classroom.

  7. Fermion helicity flip in higher-derivative electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Accioly, A.J. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Mukai, H. [Universidade Estadual de Maringa, PR (Brazil). Dept. de Fisica


    It is shown that massive fermions have their helicity flipped on account of their interaction with an electromagnetic field described by Podolsky`s generalized electrodynamics. Massless fermions, in turn, seem to be unaffected by the electromagnetic field as far as their helicity is concerned. (author).

  8. Flipped Heavy Neutrinos from the Solar Neutrino Problem to Baryogenesis

    CERN Document Server

    Ellis, Jonathan Richard; Olive, Keith A


    We discuss baryogenesis using the flipped $SU(5)$ model for lepton mass matrices. We show that the generalized see-saw mechanism in this model can not only provide MSW neutrino mixing suitable for solving the solar neutrino problem, and supply a hot dark matter candidate ($\

  9. Student Learning and Perceptions in a Flipped Linear Algebra Course (United States)

    Love, Betty; Hodge, Angie; Grandgenett, Neal; Swift, Andrew W.


    The traditional lecture style of teaching has long been the norm in college science, technology, engineering, and mathematics (STEM) courses, but an innovative teaching model, facilitated by recent advances in technology, is gaining popularity across college campuses. This new model inverts or "flips" the usual classroom paradigm, in…

  10. A New Learning Approach: Flipped Classroom and Its Impacts (United States)

    Yildirim, Gürkan


    The aim of this study is to present opinions of undergraduate students towards Flipped Classroom (FC) practices and to determine their different aspects then traditional learning approaches. The case study approach is preferred to conduct the study. In this context, 34 volunteered students were included in the study group by purposive sampling…

  11. The Flipped Classroom Model: When Technology Enhances Professional Skills (United States)

    Baytiyeh, Hoda


    Purpose: The purpose of this paper is to investigate the effectiveness of the flipped classroom model in teaching and learning as well as the skills that can be acquired by students after being exposed to this learning style. Design/methodology/approach: This paper uses a qualitative case study design. In total, 20 students, from various majors,…

  12. Student Attitudes toward Flipping the General Chemistry Classroom (United States)

    Smith, J. Dominic


    The idea of ''flipping the classroom'' to make class time more engaging and student-centred has gained ground in recent years. The lecture portion of General Chemistry I and General Chemistry II courses were pushed outside the classroom using pre-recording technology and streaming delivery of content, in order to make in-class time more…

  13. Preparing Students for Flipped or Team-Based Learning Methods (United States)

    Balan, Peter; Clark, Michele; Restall, Gregory


    Purpose: Teaching methods such as Flipped Learning and Team-Based Learning require students to pre-learn course materials before a teaching session, because classroom exercises rely on students using self-gained knowledge. This is the reverse to "traditional" teaching when course materials are presented during a lecture, and students are…

  14. Inquiry-Based Learning and the Flipped Classroom Model (United States)

    Love, Betty; Hodge, Angie; Corritore, Cynthia; Ernst, Dana C.


    The flipped classroom model of teaching can be an ideal venue for turning a traditional classroom into an engaging, inquiry-based learning (IBL) environment. In this paper, we discuss how two instructors at different universities made their classrooms come to life by moving the acquisition of basic course concepts outside the classroom and using…

  15. Flipped Top-Down is Systematic Bottom-Up

    NARCIS (Netherlands)

    Zaytsev, V.; Sturm, A.; Clark, T.


    The paper presents an experience report in course design for a versatile group of computer science students where their needs were surfaced and met by the combination of strict top-down exposure to course material and the flipped classroom model of lecturing.

  16. Hidden Expectations behind the Promise of the Flipped Classroom (United States)

    Sammel, Alison; Townend, Geraldine; Kanasa, Harry


    The purpose of this study was to evaluate the student experience of pre-service teachers in a compulsory primary science education course that adopted a flipped classroom approach. Participants (n = 79) were surveyed at the conclusion of the course exploring their perceptions of engagement, enjoyment, and degree of learning as a result of…

  17. On flipping the classroom in large first year calculus courses (United States)

    Jungić, Veselin; Kaur, Harpreet; Mulholland, Jamie; Xin, Cindy


    Over the course of two years, 2012--2014, we have implemented a 'flipping' the classroom approach in three of our large enrolment first year calculus courses: differential and integral calculus for scientists and engineers. In this article we describe the details of our particular approach and share with the reader some experiences of both instructors and students.

  18. How do medical students prepare for flipped classrooms?

    NARCIS (Netherlands)

    Bouwmeester, RAM; de Kleijn, R.A.M.; ten Cate, TJ; van Rijen, HVM; Westerveld, HE

    A flipped classroom, an approach abandoning traditional lectures and having students come together to apply acquired knowledge, requires students to come to class well prepared. The nature of this preparation is currently being debated. Watching web lectures as a preparation has typically been

  19. Using Flip Camcorders for Active Classroom Metacognitive Reflection (United States)

    Hargis, Jace; Marotta, Sebastian M.


    A Center for Teaching and Learning provided Flip camcorders to a group of 10 new faculty members, who were asked to use this teaching tool in their classroom instruction. The classes included mathematics, political science, computer engineering, psychology, business, music and dance. The qualitative results indicate that all faculty members and…

  20. Flipped Learning for ESL Writing in a Sudanese School (United States)

    Abdelrahman, Limia Ali Mohamed; DeWitt, Dorothy; Alias, Norlidah; Rahman, Mohd Nazri Abdul


    Sudanese students seem to lack proficiency in writing English. In addition, teachers continue to use traditional, teacher-centered methods in teaching English as a second language (ESL). The flipped learning (FL) approach where video lectures are assigned as online homework before class, followed by learning activities during class, might be able…

  1. A Primer for Creating a Flipped Psychology Course (United States)

    Hussey, Heather D.; Richmond, Aaron S.; Fleck, Bethany


    Instructional design for psychology courses is ever changing. Recently, there has been an explosion of scholarly literature related to flipped classroom pedagogy in higher education. This essentially entails inverting a course so that lectures are viewed outside of class, and class time is devoted to active learning through activities such as…

  2. On Flipping the Classroom in Large First Year Calculus Courses (United States)

    Jungic, Veselin; Kaur, Harpreet; Mulholland, Jamie; Xin, Cindy


    Over the course of two years, 2012-2014, we have implemented a "flipping" the classroom approach in three of our large enrolment first year calculus courses: differential and integral calculus for scientists and engineers. In this article we describe the details of our particular approach and share with the reader some experiences of…

  3. The ideal flip-through impact: experimental and numerical investigation

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Hunt-Raby, A.; Jayaratne, R.


    Results from a physical experiment and a numerical computation are compared for a flip-through type wave impact on a vertical face, typical of a seawall or breakwater. The physical wave was generated by application of the focused-wave group technique to the amplitudes of a JONSWAP spectrum, with ...

  4. University and Flipped Learning TIC & DIL Project: Framework and Design (United States)

    Pinnelli, Stefania; Fiorucci, Andrea


    The flipped classroom approach (FC) is for the educational world a chance of recovery and improvement of pedagogical student-centered model and collaborative teaching methods aimed at optimizing the time resource and to promote personalization and self-learning in a perspective of autonomy. The paper moving from a pedagogical reflection on…

  5. Interaction flip identities for non-centered spin glasses (United States)

    Contucci, Pierluigi; Giardinà, Cristian; Giberti, Claudio


    We consider spin glass models with non-centered interactions and investigate the effect, on the random free energies, of flipping the interaction in a subregion of the entire volume. A fluctuation bound obtained by martingale methods produces, with the help of integration by parts technique, a family of polynomial identities involving overlaps and magnetizations.

  6. Just Do It: Flipped Lecture, Determinants and Debate (United States)

    Kensington-Miller, Barbara; Novak, Julia; Evans, Tanya


    This paper describes a case study of two pure mathematicians who flipped their lecture to teach matrix determinants in two large mathematics service courses (one at Stage I and the other at Stage II). The purpose of the study was to transform the passive lecture into an active learning opportunity and to introduce valuable mathematical skills,…

  7. Excellent color rendering indexes of multi-package white LEDs. (United States)

    Oh, Ji Hye; Yang, Su Ji; Sung, Yeon-Goog; Do, Y R


    This study introduces multi-package white light-emitting diodes (LEDs) system with the ability to realize high luminous efficacy and an excellent color rendering index (CRI, R a) using the R B,M A B,M G B,M C B (R B,M A B,M G B,M denoted as a long-pass dichroic filter (LPDF)-capped, monochromatic red, amber and green phosphor converted-LED (pc-LED) pumped by a blue LED chip, and C B denoted as a cyan and blue mixed pc-LED pumped by a blue LED) system. The luminous efficacy and color rendering index (CRI) of multi-package white LED systems are compared while changing the concentration of the cyan phosphor used in the paste of a cyan-blue LED package and the driving current of individual LEDs in multi-package white LEDs at correlated color temperatures (CCTs) ranging from 6,500 K (cold white) to 2,700 K (warm white) using a set of eight CCTs as specified by the American National Standards Institute (ANSI) standard number C78.377-2008. A R B,M A B,M G B,M C B white LED system provides high luminous efficacy (≥ 96 lm/W) and a color rendering index (≥ 91) encompassing the complete CCT range. We also compare the optical properties of the R B,M A B,M G B,M C B system with those of the R B,M A B,M G B,M B and RAGB (red, amber, green, and blue semiconductor-type narrow-spectrum-band LEDs) systems. It can be expected that the cyan color added to a blue LED in multi-package white LEDs based on LPDF-capped, phosphor-converted monochromatic LEDs will meet the needs of the high-quality, highly efficient, full-color white LED lighting market in the near future.

  8. LED driver for stroboscopic interferometry (United States)

    Paulin, T.; Heikkinen, V.; Kassamakov, I.; Hæggström, E.


    Three different types of white light emitting diodes (LEDs) and three types of single color LEDs were tested as light sources for stroboscopic scanning white light interferometry (SSWLI) for dynamic (MEMS) characterization. Short, intense, light pulses and low duty cycle (DC-10 MHz), and can drive single LEDs at 5A peak current (0.7% duty cycle at 1 MHz). The shortest measured electrical pulses were 6.2 +/- 0.1 ns FDHM. The minimum measured Full Duration at Half Maximum (FDHM) of the optical pulse was 8.4 +/- 0.1 ns using nonphosphor white LED and 32.1 +/- 0.1 ns using white phosphor-converted LED (0.7 % duty cycle at 1 MHz in both cases). The minimum optical pulse FDHM for a single color blue/green LED was 6.4 +/- 0.1 ns. The maximum intensity of these pulses was 630 +/- 40 μW and 540 +/- 30 μW, respectively. All types of white LEDs could be used for stroboscopic SWLI measurements at frequencies up to 2 MHz. For higher frequencies, non-phosphor white LEDs must be used together with a cyan LED to avoid ringing in the SWLI interferogram.

  9. Nobel Prize for blue LEDs

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov


    A brief review of lighting technologies is presented. Unavoidable restrictions for incandescent light bulbs caused by the Planck distribution and properties of the human eye are illustrated. The efficiency and luminous efficacy of thermal radiation are calculated for various temperatures; the results clearly show the limitations for thermal radiators. The only way to overcome these limitations is using non-thermal radiators, such as fluorescent lamps and light-emitting diodes (LEDs). Unique advantages of LEDs undoubtedly made a revolution in this field. A crucial element of this progress is the blue LEDs (Nobel Prize 2014). Some experiments with a blue and a green LED are described: (i) the luminescence triggered in a green-yellow phosphor inside a white LED by the blue LED; (ii) radiant spectra and ‘efficiency droop’ in the LEDs; (iii) modulation of the blue LED up to 4 MHz; and (iv) the h/e ratio from the turn-on voltage of the green LED. The experiments are suitable for undergraduate laboratories and usable as classroom demonstrations. (paper)

  10. Nobel Prize for blue LEDs (United States)

    Kraftmakher, Yaakov


    A brief review of lighting technologies is presented. Unavoidable restrictions for incandescent light bulbs caused by the Planck distribution and properties of the human eye are illustrated. The efficiency and luminous efficacy of thermal radiation are calculated for various temperatures; the results clearly show the limitations for thermal radiators. The only way to overcome these limitations is using non-thermal radiators, such as fluorescent lamps and light-emitting diodes (LEDs). Unique advantages of LEDs undoubtedly made a revolution in this field. A crucial element of this progress is the blue LEDs (Nobel Prize 2014). Some experiments with a blue and a green LED are described: (i) the luminescence triggered in a green-yellow phosphor inside a white LED by the blue LED; (ii) radiant spectra and ‘efficiency droop’ in the LEDs; (iii) modulation of the blue LED up to 4 MHz; and (iv) the h/e ratio from the turn-on voltage of the green LED. The experiments are suitable for undergraduate laboratories and usable as classroom demonstrations.

  11. Designing low cost LED display for the billboard (United States)

    Hong, Yi-Jian; Uang, Chii-Maw; Wang, Ping-Chieh; Ho, Zu-Sheng


    With quickly advance of the computer, microelectronics and photonics technologies, LED display panel becomes a new electronic advertising media. It can be used to show any information whatever characters or graphics. Most LED display panels are built of many Light-Emitting Diodes arranged in a matrix form. The display has many advantages such as low power, low cost, long life and high definition. Because the display panel is asked to show rich color, the LED display panel's driving system becomes very complex. The design methodology of LED display panel's driver becomes more and more important to meet the market requirements. Cost is always the most important issue in public market domain. In this paper, we report a design methodology of LED display panel's driver based on the microprocessor control unit (MCU) system and LED display controller IC, HT1632C, to control three colors, RGB, color LED display panel and the modular panel size is 24*16 in matrix form. The HT1632C is a memory mapping LED display controller, it can be used on many applications, such as digital clock, thermometer, counter, voltmeter or other instrumentation readouts. Three pieces of HT1632C are used to drive a 24*16 RGB LED display panel, in our design case. Each HT163C chip is used to control one of the R, G and B color. As the drive mode is driven in DC mode, the RGB display panel can create and totally of seven colors under the control of MCU. The MCU generates the control signal to drive HT1632C. In this study, the software design methodology is adopted with dynamic display principle. When the scan frequency is 60Hz, LED display panel will get the clear picture and be able to display seven colors.

  12. A Flipped Writing Classroom: Effects on EFL Learners’ Argumentative Essays

    Directory of Open Access Journals (Sweden)

    Fatemeh Soltanpour


    Full Text Available According to the literature, flipped teaching is a relatively new pedagogical approach in which the typical activities of classroom lectures followed by homework in common teaching practice are reversed in order, and most often integrated or supplemented with some types of instructional materials, such as instructional videos or PowerPoint files. This experimental study, using a pre-test-treatment-posttest-delayed posttest design, was aimed at investigating the effect of flipped instruction on Iranian EFL learners’ quality of argumentative essays. The participants were 55 students, who were assigned to two groups: the flipped classroom (FC and the traditional classroom (TC. Each group received 3 sessions of treatment. First, whether there was any significant difference between the FC and TC in the overall quality of the essays was investigated. The FC group significantly outperformed the TC one. Then, whether the difference between the groups varied over time was explored, and it was revealed that the FC was still significantly superior over the TC. Next, whether there would be any significant change in the FC in the long run was examined, and no significant change was seen. The promising results found in FC group can be attributed to not only the flipped instruction but also the process of actively engaging the learners in their learning in addition to incorporating different techniques, such as the video screencasting, collaborative writing, as well as in-class teacher-learner interaction and negotiation because it is argued that the crucial point in flipped instruction is how teachers best use in-class-time with students.

  13. Polarizing a stored proton beam by spin-flip?

    Energy Technology Data Exchange (ETDEWEB)

    Oellers, Dieter Gerd Christian


    The present thesis discusses the extraction of the electron-proton spin-flip cross-section. The experimental setup, the data analysis and the results are pictured in detail. The proton is described by a QCD-based parton model. In leading twist three functions are needed. The quark distribution, the helicity distribution and the transversity distribution. While the first two are well-known, the transversity distribution is largely unknown. A self-sufficient measurement of the transversity is possible in double polarized proton-antiproton scattering. This rises the need of a polarized antiproton beam. So far spin filtering is the only tested method to produce a polarized proton beam, which may be capable to hold also for antiprotons. In-situ polarization build-up of a stored beam either by selective removal or by spin-flip of a spin-(1)/(2) beam is mathematically described. A high spin-flip cross-section would create an effective method to produce a polarized antiproton beam by polarized positrons. Prompted by conflicting calculations, a measurement of the spin-flip cross-section in low-energy electron-proton scattering was carried out. This experiment uses the electron beam of the electron cooler at COSY as an electron target. The depolarization of the stored proton beam is detected. An overview of the experiment is followed by detailed descriptions of the cycle setup, of the electron target and the ANKE silicon tracking telescopes acting as a beam polarimeter. Elastic protondeuteron scattering is the analyzing reaction. The event selection is depicted and the beam polarization is calculated. Upper limits of the two electron-proton spin-flip cross-sections {sigma} {sub parallel} and {sigma} {sub perpendicular} {sub to} are deduced using the likelihood method. (orig.)

  14. Mikrofluidik-Chips

    NARCIS (Netherlands)

    Verpoorte, E.; Lichtenberg, J.


    Microfluidic chips are becoming the new paradigm for chemical processing and analysis in the laboratory. Hair-fine channels made in planar substrates using silicon processing technologies replace beakers and tubing for automated liquid transport and handling on a sub-μ L scale. Reduced conduit

  15. Radiometer on a Chip (United States)

    Chattopadhyay, Goutam; Gill, John J.; Mehdi, Imran; Lee, Choonsup; Schlecht, Erich T.; Skalare, Anders; Ward, John S.; Siegel, Peter H.; Thomas, Bertrand C.


    The radiometer on a chip (ROC) integrates whole wafers together to p rovide a robust, extremely powerful way of making submillimeter rece ivers that provide vertically integrated functionality. By integratin g at the wafer level, customizing the interconnects, and planarizing the transmission media, it is possible to create a lightweight asse mbly performing the function of several pieces in a more conventiona l radiometer.

  16. Aluminum: Reflective Aluminum Chips

    Energy Technology Data Exchange (ETDEWEB)

    Recca, L.


    This fact sheet reveals how the use of reflective aluminum chips on rooftops cuts down significantly on heat absorption, thus decreasing the need for air conditioning. The benefits, including energy savings that could reach the equivalent of 1.3 million barrels of oil annually for approximately 100,000 warehouses, are substantial.

  17. Should We Flip the Social Studies Classrooms? The Opinions of Social Studies Teacher Candidates on Flipped Classroom (United States)

    Erdogan, Erdi; Akbaba, Bulent


    The technology revolution continues to profoundly influence the educational process. Thus, the traditional teaching process is changing and education which is individualized with technology supported teaching processes comes to the forefront. One of the concrete indicators is the flipped classroom model. The purpose of this study is to determine…

  18. Flipping the Learning: An Investigation into the Use of the Flipped Classroom Model in an Introductory Teaching Course (United States)

    Vaughan, Michelle


    With a classroom full of millennial learners, it is essential that teacher educators adjust their pedagogy to meet their students' needs. This study explores the use of a flipped classroom model to engage preservice teachers in an Introduction to the Teaching Profession course. In addition, it explores the need for teacher education…

  19. Element nodes of sports equipment double back flip factions and double back flip hunched performed gymnast in floor exercise

    Directory of Open Access Journals (Sweden)

    V.A. Potop


    Full Text Available Purpose: to identify the node elements of sports equipment double back somersault tuck and double back flip bent. To compare the two types of nodes for double somersault. Material : the study involved eight gymnasts (age 12 - 14 years. All finalists in the competition floor exercise - reserve team Romania. The method of video - computer research and method of postural orientation movements. Results : identified nodal elements of sports equipment double back somersault tuck and double back flip bent. In the preparatory phase of motor actions - launcher body posture for reaching is repulsive to flip. In the phase of basic motor action - animation body postures (double back somersault tuck and bent (bent double back flip. Exercises are performed on the ascending and descending parts of the flight path of the demonstration of individual maximum lift height common center of mass. In the final phase of motor actions - final body posture - steady landing. Conclusions : indicators of key elements of sports equipment acrobatic exercises contain new scientific facts kinematic and dynamic structures of motor actions. They are necessary for the development of modern training programs acrobatic exercises in step specialized base preparation.

  20. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection. (United States)

    He, Diwei; Morgan, Stephen P; Trachanis, Dimitrios; van Hese, Jan; Drogoudis, Dimitris; Fummi, Franco; Stefanni, Francesco; Guarnieri, Valerio; Hayes-Gill, Barrie R


    Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1%) with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring.

  1. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection

    Directory of Open Access Journals (Sweden)

    Diwei He


    Full Text Available Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1% with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring.

  2. New dental applications with LEDs

    DEFF Research Database (Denmark)

    Argyraki, A.; Ou, Yiyu; Petersen, Paul Michael

    Visible and ultraviolet LEDs will in the future give rise to new dental applications. Fluorescence imaging, photodynamic therapy and photoactivated disinfection are important future candidates for diagnostics and treatment in dentistry.......Visible and ultraviolet LEDs will in the future give rise to new dental applications. Fluorescence imaging, photodynamic therapy and photoactivated disinfection are important future candidates for diagnostics and treatment in dentistry....

  3. Silicone materials for LED packaging (United States)

    Bahadur, Maneesh; Norris, Ann W.; Zarisfi, Afrooz; Alger, James S.; Windiate, Christopher C.


    Silicone based materials have attracted considerable attention from light emitting diode (LED) manufacturers for use as encapsulants and lenses for many high brightness LED (HB LED) devices. Currently silicones function in two key roles in HB LED devices, (1) as protective lenses and (2) stress relieving encapsulants for wire bond protection. The key attributes of silicones that make them attractive as light path materials for high brightness HB LEDs include their high transparency in the UV-visible region, controlled refractive index (RI), stable thermo-mechanical properties, and tuneable modulus from soft gels to hard resins. This paper will describe recent developments in moldable silicone hard resin materials. Progress on cavity moldable and liquid injection moldable (LIM) silicone compositions for discreet components is described. Also, an example of liquid injection overmolding is presented.

  4. How Well Is CHIP Addressing Oral Health Care Needs and Access for Children? (United States)

    Clemans-Cope, Lisa; Kenney, Genevieve; Waidmann, Timothy; Huntress, Michael; Anderson, Nathaniel


    We examine how access to and use of oral and dental care under the Children's Health Insurance Program (CHIP) compared to private coverage and being uninsured in 10 states. We report on findings drawn from a 2012 survey of CHIP enrollees in 10 states. We examined a range of parent-reported dental care access and use measures among CHIP enrollees. Comparisons of the experiences of established CHIP enrollees to the experiences of newly enrolling children who had been uninsured or privately insured were used to estimate the impacts of CHIP on children's oral health and dental care. Most children enrolled in CHIP had a usual source of dental care and had received a dental checkup or cleaning in the past year, and most over age 6 had had sealants placed on their molars. In addition, parents of most CHIP enrollees were aware that CHIP covered dental benefits, and most reported not having trouble finding a dentist to see their child. Even so, 12% of CHIP enrollees had unmet dental care needs. Compared to being uninsured, CHIP enrollees did better across nearly all oral health measures. Compared to being privately insured, CHIP enrollees were more likely to have dental benefits, to have a usual source of dental care, and to have had a dental checkup/cleaning, but they were more likely to have trouble finding a dentist and less likely to say that their child's teeth were in excellent/very good condition. Enrolling eligible uninsured children in CHIP led to improvements in their access to preventive dental care, as well as reductions in their unmet dental care needs, yet the CHIP program has more work to do to address the oral health problems of children. Copyright © 2015 Academic Pediatric Association. All rights reserved.

  5. Targeting the Anti-Apoptotic Protein c-FLIP for Cancer Therapy

    International Nuclear Information System (INIS)

    Safa, Ahmad R.; Pollok, Karen E.


    Cellular FLICE (FADD-like IL-1beta-converting enzyme)-inhibitory protein (c-FLIP) is a major resistance factor and critical anti-apoptotic regulator that inhibits tumor necrosis factor-alpha (TNF-alpha), Fas-L, and TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis as well as chemotherapy-triggered apoptosis in malignant cells. c-FLIP is expressed as long (c-FLIP L ), short (c-FLIP S ), and c-FLIP R splice variants in human cells. c-FLIP binds to FADD and/or caspase-8 or -10 in a ligand-dependent and-independent fashion, which in turn prevents death-inducing signaling complex (DISC) formation and subsequent activation of the caspase cascade. Moreover, c-FLIP L and c-FLIP S are known to have multifunctional roles in various signaling pathways, as well as activating and/or upregulating several cytoprotective signaling molecules. Upregulation of c-FLIP has been found in various tumor types, and its downregulation has been shown to restore apoptosis triggered by cytokines and various chemotherapeutic agents. Hence, c-FLIP is an important target for cancer therapy. For example, small interfering RNAs (siRNAs) that specifically knockdown the expression of c-FLIP L in diverse human cancer cell lines augmented TRAIL-induced DISC recruitment and increased the efficacy of chemotherapeutic agents, thereby enhancing effector caspase stimulation and apoptosis. Moreover, small molecules causing degradation of c-FLIP as well as decreasing mRNA and protein levels of c-FLIP L and c-FLIP S splice variants have been found, and efforts are underway to develop other c-FLIP-targeted cancer therapies. This review focuses on (1) the functional role of c-FLIP splice variants in preventing apoptosis and inducing cytokine and drug resistance; (2) the molecular mechanisms that regulate c-FLIP expression; and (3) strategies to inhibit c-FLIP expression and function

  6. Targeting the Anti-Apoptotic Protein c-FLIP for Cancer Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Safa, Ahmad R., E-mail: [Department of Pharmacology and Toxicology, Indiana University School of Medicine, 980 W. Walnut Street, R3-C524, Indianapolis, IN 46202 (United States); Indiana University Simon Cancer Center, Indiana University School of Medicine, 980 W. Walnut Street, R3-C524, Indianapolis, IN 46202 (United States); Pollok, Karen E. [Department of Pharmacology and Toxicology, Indiana University School of Medicine, 980 W. Walnut Street, R3-C524, Indianapolis, IN 46202 (United States); Indiana University Simon Cancer Center, Indiana University School of Medicine, 980 W. Walnut Street, R3-C524, Indianapolis, IN 46202 (United States); Herman B. Wells Center for Pediatric Research, 980 W. Walnut Street, R3-C524, Indianapolis, IN 46202 (United States)


    Cellular FLICE (FADD-like IL-1beta-converting enzyme)-inhibitory protein (c-FLIP) is a major resistance factor and critical anti-apoptotic regulator that inhibits tumor necrosis factor-alpha (TNF-alpha), Fas-L, and TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis as well as chemotherapy-triggered apoptosis in malignant cells. c-FLIP is expressed as long (c-FLIP{sub L}), short (c-FLIP{sub S}), and c-FLIP{sub R} splice variants in human cells. c-FLIP binds to FADD and/or caspase-8 or -10 in a ligand-dependent and-independent fashion, which in turn prevents death-inducing signaling complex (DISC) formation and subsequent activation of the caspase cascade. Moreover, c-FLIP{sub L} and c-FLIP{sub S} are known to have multifunctional roles in various signaling pathways, as well as activating and/or upregulating several cytoprotective signaling molecules. Upregulation of c-FLIP has been found in various tumor types, and its downregulation has been shown to restore apoptosis triggered by cytokines and various chemotherapeutic agents. Hence, c-FLIP is an important target for cancer therapy. For example, small interfering RNAs (siRNAs) that specifically knockdown the expression of c-FLIP{sub L} in diverse human cancer cell lines augmented TRAIL-induced DISC recruitment and increased the efficacy of chemotherapeutic agents, thereby enhancing effector caspase stimulation and apoptosis. Moreover, small molecules causing degradation of c-FLIP as well as decreasing mRNA and protein levels of c-FLIP{sub L} and c-FLIP{sub S} splice variants have been found, and efforts are underway to develop other c-FLIP-targeted cancer therapies. This review focuses on (1) the functional role of c-FLIP splice variants in preventing apoptosis and inducing cytokine and drug resistance; (2) the molecular mechanisms that regulate c-FLIP expression; and (3) strategies to inhibit c-FLIP expression and function.

  7. The GenoChip: A New Tool for Genetic Anthropology (United States)

    Elhaik, Eran; Greenspan, Elliott; Staats, Sean; Krahn, Thomas; Tyler-Smith, Chris; Xue, Yali; Tofanelli, Sergio; Francalacci, Paolo; Cucca, Francesco; Pagani, Luca; Jin, Li; Li, Hui; Schurr, Theodore G.; Greenspan, Bennett; Spencer Wells, R.


    The Genographic Project is an international effort aimed at charting human migratory history. The project is nonprofit and nonmedical, and, through its Legacy Fund, supports locally led efforts to preserve indigenous and traditional cultures. Although the first phase of the project was focused on uniparentally inherited markers on the Y-chromosome and mitochondrial DNA (mtDNA), the current phase focuses on markers from across the entire genome to obtain a more complete understanding of human genetic variation. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism (SNP) genotyping, they were designed for medical genetic studies and contain medically related markers that are inappropriate for global population genetic studies. GenoChip, the Genographic Project’s new genotyping array, was designed to resolve these issues and enable higher resolution research into outstanding questions in genetic anthropology. The GenoChip includes ancestry informative markers obtained for over 450 human populations, an ancient human (Saqqaq), and two archaic hominins (Neanderthal and Denisovan) and was designed to identify all known Y-chromosome and mtDNA haplogroups. The chip was carefully vetted to avoid inclusion of medically relevant markers. To demonstrate its capabilities, we compared the FST distributions of GenoChip SNPs to those of two commercial arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, the GenoChip autosomal and X-chromosomal distributions had the highest mean FST, attesting to its ability to discern subpopulations. The chip performances are illustrated in a principal component analysis for 14 worldwide populations. In summary, the GenoChip is a dedicated genotyping platform for genetic anthropology. With an unprecedented number of approximately 12,000 Y-chromosomal and approximately 3,300 mtDNA SNPs and over 130,000 autosomal and X-chromosomal SNPs without any known health, medical, or phenotypic



    Efremov N. S.


    Currently, artificial irradiation of lettuce seedlings is produced with gas discharge lamps that have a low energy efficiency and a significant proportion of the spectrum in the green region. LED chips can be chosen in such a way as to ensure maximum photosynthesis of lettuce with optimal consumption of electrical energy

  9. Monolithically Integrated Light Feedback Control Circuit for Blue/UV LED Smart Package

    NARCIS (Netherlands)

    Koladouz Esfahani, Z.; Tohidian, M.; van Zeijl, H.W.; Kolahdouz, Mohammadreza; Zhang, G.Q.


    Given the performance decay of high-power light-emitting diode (LED) chips over time and package condition changes, having a reliable output light for sensitive applications is a point of concern. In this study, a light feedback control circuit, including blue-selective photodiodes, for

  10. Preservation of forest wood chips

    Energy Technology Data Exchange (ETDEWEB)

    Kofman, P.D.; Thomsen, I.M.; Ohlsson, C.; Leer, E.; Ravn Schmidt, E.; Soerensen, M.; Knudsen, P.


    As part of the Danish Energy Research Programme on biomass utilisation for energy production (EFP), this project concerns problems connected to the handling and storing of wood chips. In this project, the possibility of preserving wood chips of the Norway Spruce (Picea Abies) is addressed, and the potential improvements by anaerobic storage are tested. Preservation of wood chips aims at reducing dry matter losses from extensive heating during storage and to reduce production of fungal spores. Fungal spores pose a health hazards to workers handling the chips. Further the producers of wood chips are interested in such a method since it would enable them to give a guarantee for the delivery of homogeneous wood chips also during the winter period. Three different types of wood chips were stored airtight and further one of these was stored in accordance with normal practise and use as reference. The results showed that airtight storage had a beneficial impact on the quality of the chips: no redistribution of moisture, low dry matter losses, unfavourable conditions for microbial activity of most fungi, and the promotion of yeasts instead of fungi with airborne spores. Likewise the firing tests showed that no combustion problems, and no increased risk to the environment or to the health of staff is caused by anaerobic storage of wood chips. In all, the tests of the anaerobic storage method of forest wood chips were a success and a large-scale test of the method will be carried out in 1999. (au)

  11. Information Literacy and the Flipped Classroom: Examining the Impact of a One-Shot Flipped Class on Student Learning and Perceptions

    Directory of Open Access Journals (Sweden)

    Andrea Wilcox Brooks


    Full Text Available This article examines the flipped classroom approach in higher education and its use in one-shot information literacy instruction sessions. The author presents findings from a pilot study of student learning and student perceptions pertaining to flipped model IL instruction. Students from two sections of the same course participated in this study. One section received one-shot information literacy instruction using a flipped approach, while the other section received traditional one-shot instruction. No difference was found between the two groups on a pre- and post-test analysis; however, an analysis of students’ final papers from the flipped section showed more bibliography citations to scholarly journal articles. In addition, a survey was conducted showing the majority of students preferred the flipped approach.

  12. Nanoparticle Reactions on Chip (United States)

    Köhler, J. M.; Kirner, Th.; Wagner, J.; Csáki, A.; Möller, R.; Fritzsche, W.

    The handling of heterogenous systems in micro reactors is difficult due to their adhesion and transport behaviour. Therefore, the formation of precipitates and gas bubbles has to be avoided in micro reaction technology, in most cases. But, micro channels and other micro reactors offer interesting possibilities for the control of reaction conditions and transport by diffusion and convection due to the laminar flow caused by small Reynolds numbers. This can be used for the preparation and modification of objects, which are much smaller than the cross section of microchannels. The formation of colloidal solutions and the change of surface states of nano particles are two important tasks for the application of chip reactors in nanoparticle technology. Some concepts for the preparation and reaction of nanoparticles in modular chip reactor arrangements will be discussed.

  13. Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC. (United States)

    Yeh, Chien-Hung; Chen, Hsing-Yu; Chow, Chi-Wai; Liu, Yen-Liang


    To increase the traffic rate in phosphor-LED visible light communication (VLC), a multi-band orthogonal frequency division multiplexed (OFDM) modulation is first proposed and demonstrated. In the measurement, we do not utilize optical blue filter to increase modulation bandwidth of phosphor-LED in the VLC system. In this proposed scheme, different bands of OFDM signals are applied to different LED chips in a LED lamp, this can avoid the power fading and nonlinearity issue by applying the same OFDM signal to all the LED chips in a LED lamp. Here, the maximum increase percentages of traffic rates are 41.1%, 17.8% and 17.8% under received illuminations of 200, 500 and 1000 Lux, respectively, when the proposed three-band OFDM modulation is used in the VLC system. In addition, the analysis and verification by experiments are also performed.

  14. Light pipes for LED measurements (United States)

    Floyd, S. R.; Thomas, E. F., Jr.


    Light pipe directly couples LED optical output to single detector. Small area detector measures total optical output of diode. Technique eliminates thermal measurement problems and channels optical output to remote detector.

  15. Amdahl 470 Chip Package

    CERN Multimedia


    In the late 70s the larger IBM computers were water cooled. Amdahl, an IBM competitor, invented an air cooling technology for it's computers. His company worked hard, developing a computer that was faster and less expensive than the IBM System/360 mainframe computer systems. This object contains an actual Amdahl series 470 computer logic chip with an air cooling device mounted on top. The package leads and cooling tower are gold-plated.

  16. Silicon Chip-to-Chip Mode-Division Multiplexing

    DEFF Research Database (Denmark)

    Baumann, Jan Markus; Porto da Silva, Edson; Ding, Yunhong


    A chip-to-chip mode-division multiplexing connection is demonstrated using a pair of multiplexers/demultiplexers fabricated on the silicon-on-insulator platform. Successful mode multiplexing and demultiplexing is experimentally demonstrated, using the LP01, LP11a and LP11b modes.......A chip-to-chip mode-division multiplexing connection is demonstrated using a pair of multiplexers/demultiplexers fabricated on the silicon-on-insulator platform. Successful mode multiplexing and demultiplexing is experimentally demonstrated, using the LP01, LP11a and LP11b modes....

  17. Practical lighting design with LEDs

    CERN Document Server

    Lenk, Ron


    The second edition of Practical Lighting Design with LEDs has been revised and updated to provide the most current information for developing light-emitting diodes products. The authors, noted authorities in the field, offer a review of the most relevant topics including optical performance, materials, thermal design, and modeling and measurement. Comprehensive in scope, the text covers all the information needed to design LEDs into end products.

  18. A New Pixels Flipping Method for Huge Watermarking Capacity of the Invoice Font Image

    Directory of Open Access Journals (Sweden)

    Li Li


    Full Text Available Invoice printing just has two-color printing, so invoice font image can be seen as binary image. To embed watermarks into invoice image, the pixels need to be flipped. The more huge the watermark is, the more the pixels need to be flipped. We proposed a new pixels flipping method in invoice image for huge watermarking capacity. The pixels flipping method includes one novel interpolation method for binary image, one flippable pixels evaluation mechanism, and one denoising method based on gravity center and chaos degree. The proposed interpolation method ensures that the invoice image keeps features well after scaling. The flippable pixels evaluation mechanism ensures that the pixels keep better connectivity and smoothness and the pattern has highest structural similarity after flipping. The proposed denoising method makes invoice font image smoother and fiter for human vision. Experiments show that the proposed flipping method not only keeps the invoice font structure well but also improves watermarking capacity.

  19. A new pixels flipping method for huge watermarking capacity of the invoice font image. (United States)

    Li, Li; Hou, Qingzheng; Lu, Jianfeng; Xu, Qishuai; Dai, Junping; Mao, Xiaoyang; Chang, Chin-Chen


    Invoice printing just has two-color printing, so invoice font image can be seen as binary image. To embed watermarks into invoice image, the pixels need to be flipped. The more huge the watermark is, the more the pixels need to be flipped. We proposed a new pixels flipping method in invoice image for huge watermarking capacity. The pixels flipping method includes one novel interpolation method for binary image, one flippable pixels evaluation mechanism, and one denoising method based on gravity center and chaos degree. The proposed interpolation method ensures that the invoice image keeps features well after scaling. The flippable pixels evaluation mechanism ensures that the pixels keep better connectivity and smoothness and the pattern has highest structural similarity after flipping. The proposed denoising method makes invoice font image smoother and fiter for human vision. Experiments show that the proposed flipping method not only keeps the invoice font structure well but also improves watermarking capacity.

  20. Student evaluation of the flipped classroom instruction method: is it aligned with Problem-Based Learning?

    DEFF Research Database (Denmark)

    Triantafyllou, Evangelia; Timcenko, Olga; Kofoed, Lise


    The flipped classroom approach is an instructional method that has gained momentum in the last years. In a flipped classroom the traditional lecture and homework sessions are inverted. We believe that the flipped classroom, which employs computer-based individual instruction outside the classroom...... and devotes classroom time to group activities with the teacher as facilitator is well justified by the core principles of Problem-Based Learning (PBL) and therefore we applied for two consecutive years the flipped classroom approach to an undergraduate statistics course during a whole semester. This paper...... presents data from the second year, where we conducted a survey study among students participating in the flipped statistics course. This study consisted of two surveys designed to gather student perceptions on the out-of-classroom preparation material (videos and quizzes) and the flipped classroom...

  1. Comparison of Pharmaceutical Calculations Learning Outcomes Achieved Within a Traditional Lecture or Flipped Classroom Andragogy. (United States)

    Anderson, H Glenn; Frazier, Lisa; Anderson, Stephanie L; Stanton, Robert; Gillette, Chris; Broedel-Zaugg, Kim; Yingling, Kevin


    Objective. To compare learning outcomes achieved from a pharmaceutical calculations course taught in a traditional lecture (lecture model) and a flipped classroom (flipped model). Methods. Students were randomly assigned to the lecture model and the flipped model. Course instructors, content, assessments, and instructional time for both models were equivalent. Overall group performance and pass rates on a standardized assessment (Pcalc OSCE) were compared at six weeks and at six months post-course completion. Results. Student mean exam scores in the flipped model were higher than those in the lecture model at six weeks and six months later. Significantly more students passed the OSCE the first time in the flipped model at six weeks; however, this effect was not maintained at six months. Conclusion. Within a 6 week course of study, use of a flipped classroom improves student pharmacy calculation skill achievement relative to a traditional lecture andragogy. Further study is needed to determine if the effect is maintained over time.

  2. Dynamics of chiral oscillations: a comparative analysis with spin flipping

    International Nuclear Information System (INIS)

    Bernardini, A E


    Chiral oscillation as well as spin flipping effects correspond to quantum phenomena of fundamental importance in the context of particle physics and, in particular, of neutrino physics. From the point of view of first quantized theories, we are specifically interested in pointing out the differences between chirality and helicity by obtaining their dynamic equations for a fermionic Dirac-type particle (neutrino). We also identify both effects when the non-minimal coupling with an external (electro)magnetic field in the neutrino interacting Lagrangian is taken into account. We demonstrate that, however, there is no constraint between chiral oscillations, when it takes place in vacuum, and the process of spin flipping related to the helicity quantum number, which does not take place in vacuum. To conclude, we show that the origin of chiral oscillations (in vacuum) can be interpreted as projections of very rapid oscillations of position onto the longitudinal direction of momentum

  3. Large family of quantum weak coin-flipping protocols

    International Nuclear Information System (INIS)

    Mochon, Carlos


    Each classical public-coin protocol for coin flipping is naturally associated with a quantum protocol for weak coin flipping. The quantum protocol is obtained by replacing classical randomness with quantum entanglement and by adding a cheat detection test in the last round that verifies the integrity of this entanglement. The set of such protocols defines a family which contains the protocol with bias 0.192 previously found by the author, as well as protocols with bias as low as 1/6 described herein. The family is analyzed by identifying a set of optimal protocols for every number of messages. In the end, tight lower bounds for the bias are obtained which prove that 1/6 is optimal for all protocols within the family

  4. Pharmacists correcting schedule II prescriptions: DEA flip-flops continue. (United States)

    Abood, Richard R


    The Drug Enforcement Administration (DEA) has in recent years engaged in flip-flopping over important policy decisions. The most recent example involved whether a pharmacist can correct a written schedule II prescription upon verification with the prescriber. For several years the DEA's policy permitted this practice. Then the DEA issued a conflicting policy statement in 2007 in the preamble to the multiple schedule II prescription regulation, causing a series of subsequent contradictory statements ending with the policy that pharmacists should follow state law or policy until the Agency issues a regulation. It is doubtful that the DEA's opinion in the preamble would in itself constitute legal authority, or that the Agency would try to enforce the opinion. Nonetheless, these flip-flop opinions have confused pharmacists, caused some pharmacies to have claims rejected by third party payors, and most likely have inconvenienced patients.

  5. Implementing the Flipped Classroom Model in the Teaching of History

    Directory of Open Access Journals (Sweden)

    Siti Waznah Abdul Latif


    Full Text Available This study investigated the effectiveness in implementing the Flipped Classroom model in teaching History and to identify the students’ perceptions using this approach towards their learning. The chosen History topic was on ‘James Brooke’s activities in Sarawak in the 1840s’. The sample consisted of twelve students from two Year 9 classes in one of the secondary schools in Brunei Darussalam. In adopting the Flipped Classroom approach, the students were required to watch a video lesson outside the classroom setting. To measure its effectiveness, a test instrument was used, and five students were interviewed. The findings revealed that the utilisation of this instructional method was effective in teaching History, as there were improvements in the students’ test results. The analyses of the students’ perceptions using this approach revealed that while some students believed that it helped them improve in their communication and writing skills, others did not perceive it effective for their learning.

  6. A Spin-Flip Cavity for Microwave Spectroscopy of Antihydrogen

    CERN Document Server

    Federmann, Silke; Widmann, Eberhard

    The present thesis is a contribution to the Asacusa (Atomic Spectroscopy And Collisions Using Slow Antiprotons) experiment. The aim of this experiment is to measure the ground-state hyperfine structure of antihydrogen. This is done using a Rabi-like spectrometer line consisting of an antihydrogen source, a microwave cavity, a sextupole magnet and a detector. The cavity induces spin-flip transitions in the ground-state hyperfine levels of antihydrogen whereas the sextupole magnet selects the antihydrogen atoms according to their spin state. Such a configuration allows the measurements of the hyperfine transition in antihydrogen with very high precision. A comparison with the corresponding transitions in hydrogen would thus provide a very sensitive test of the charge-parity-time (Cpt) symmetry. In the context of this thesis, the central piece of this spectrometer line, the spin flip cavity, was designed and implemented. The delicacy of this task was achieving the required field homogeneity: It needs to be bette...

  7. An Integrated Solid-State LED Luminaire for General Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Dowling; Fritz Morgan Ihor Lys; Mike Datta; Bernd Keller; Thomas Yuan


    A strong systems approach to designing and building practical LED-based replacement lamps is lacking. The general method of taking high-performance LEDs and marrying them to standard printed circuit boards, drivers and a heat sink has fallen short of the promise of LED lighting. In this program, a top-down assessment of requirements and a bottom-up reinvention of LED sources, electronics, optics and mechanics have resulted in the highest performance lamp possible. The team, comprised of Color Kinetics, the leaders in LED lighting and Cree, the leaders in LED devices took an approach to reinvent the package, the driver and the overall form and aesthetic of a replacement source. The challenge was to create a new benchmark in LED lighting - the resultant lamp, a PAR38 equivalent, met the light output, color, color quality and efficacy marks set out in the program as well as being dimmable, which is important for market acceptance. The approach combined the use of multiple source die, a chip-on-board approach, a very efficient driver topology, the use of both direct emission and phosphor conversion, and a unique faceted optic to avoid the losses, artifacts and hotspots of lensed approaches. The integral heat sink provided a mechanical base and airflow using a chimney-effect for use in a wide variety of locations and orientations. These research results led to a much better understanding of the system effects of component level technologies. It was clear that best-of-breed sub-system results do not necessarily result in the best end result for the complete system. In doing this work, we did not neglect the practical aspects of these systems. These were not rarified results and commercially impractical but lent themselves to eventual commercial products in the marketplace. The end result - a high performance replacement lamp - will save significant energy while providing a high-quality light source.

  8. Mathematik im Chip-Design (United States)

    Koehl, Jürgen; Korte, Bernhard; Vygen, Jens

    Chips sind die wohl komplexesten Strukturen, die vom Menschen entworfen und gefertigt wurden. Auf einem kleinen Silizium-Chip von der Größe eines Fingernagels werden heute Milliarden von Transistoren untergebracht, die mit vielen Millionen Verbindungen untereinander verknüpft sind, wobei die Gesamtlänge dieser Netze mehrere Kilometer betragen kann. Abb. 1 zeigt einen kleinen Ausschnitt (˜ 1 Milliardstel) eines Chips mit zweilagiger Verdrahtung im Raster-Tunnel-Mikroskop.

  9. Forensic Analysis of BIOS Chips (United States)

    Gershteyn, Pavel; Davis, Mark; Shenoi, Sujeet

    Data can be hidden in BIOS chips without hindering computer performance. This feature has been exploited by virus writers and computer game enthusiasts. Unused BIOS storage can also be used by criminals, terrorists and intelligence agents to conceal secrets. However, BIOS chips are largely ignored in digital forensic investigations. Few techniques exist for imaging BIOS chips and no tools are available specifically for analyzing BIOS data.

  10. Flipped Classroom Research: From “Black Box” to “White Box” Evaluation


    Christian Stöhr; Tom Adawi


    The flipped (or inverted) classroom model has gained increasing interest among university teachers in recent years. In the flipped classroom approach, students are encouraged to watch short video lectures as preparation for class, and classroom time is dedicated to more active forms of learning. In this editorial, we provide a thumbnail sketch of the origins and concept of the flipped classroom followed by a summary of the contributions to this special issue, which highlight the importance of...

  11. The Flipped Classroom - From Theory to Practice in Health Professional Education. (United States)

    Persky, Adam M; McLaughlin, Jacqueline E


    The flipped classroom is growing in popularity in health professional education. As such, instructors are experiencing various growing pains in functionalizing this model, from justifying the approach to managing time inside and outside of class to assessing impact on learning. This review focuses on some key theories that support the flipped model and translates those key theories into practice across core aspects of the flipped classroom: pre-class preparation, in-class activities, after-class activities and assessment of student learning.

  12. Pengaruh Model Flipped Classroom Terhadap Self-confidence Dan Hasil Belajar Siswa Sman 8 Pontianak


    Pratiwi, Astri; Sahputra, Rachmat; Hadi, Lukman


    Self-confidence and learning achievement of XI MIPA students at SMAN 8 Pontianak were still unsatisfactory. This research was conducted to determine whether there was a significant difference between self-confidence of students taught using flipped classroom and conventional learning model, and whether there was a significant difference between learning achievement of students taught using flipped classroom and conventional learning model, and to determine effect size of flipped classroom lea...

  13. The flipped classroom and cooperative learning: Evidence from a randomised experiment


    Foldnes, Njål


    This article describes a study which compares the effectiveness of the flipped classroom relative to the traditional lecturebased classroom.We investigated two implementations of the flipped classroom. The first implementation did not actively encourage cooperative learning, with students progressing through the course at their own pace. With this implementation student examination scores did not differ between the lecture classes and the flipped classroom. The second implementation ...

  14. Supermassive black hole spin-flip during the inspiral

    International Nuclear Information System (INIS)

    Gergely, Laszlo A; Biermann, Peter L; Caramete, Laurentiu I


    During post-Newtonian evolution of a compact binary, a mass ratio ν different from 1 provides a second small parameter, which can lead to unexpected results. We present a statistics of supermassive black hole candidates, which enables us first to derive their mass distribution, and then to establish a logarithmically even probability in ν of the mass ratios at their encounter. In the mass ratio range ν in (1/30, 1/3) of supermassive black hole mergers representing 40% of all possible cases, the combined effect of spin-orbit precession and gravitational radiation leads to a spin-flip of the dominant spin during the inspiral phase of the merger. This provides a mechanism for explaining a large set of observations on X-shaped radio galaxies. In another 40% with mass ratios ν in (1/30, 1/1000) a spin-flip never occurs, while in the remaining 20% of mergers with mass ratios ν in (1/3, 1) it may occur during the plunge. We analyze the magnitude of the spin-flip angle occurring during the inspiral as a function of the mass ratio and original relative orientation of the spin and orbital angular momentum. We also derive a formula for the final spin at the end of the inspiral in this mass ratio range.

  15. Base Flipping in Open Complex Formation at Bacterial Promoters

    Directory of Open Access Journals (Sweden)

    Mary E. Karpen


    Full Text Available In the process of transcription initiation, the bacterial RNA polymerase binds double-stranded (ds promoter DNA and subsequently effects strand separation of 12 to 14 base pairs (bp, including the start site of transcription, to form the so-called “open complex” (also referred to as RPo. This complex is competent to initiate RNA synthesis. Here we will review the role of σ70 and its homologs in the strand separation process, and evidence that strand separation is initiated at the −11A (the A of the non-template strand that is 11 bp upstream from the transcription start site of the promoter. By using the fluorescent adenine analog, 2-aminopurine, it was demonstrated that the −11A on the non-template strand flips out of the DNA helix and into a hydrophobic pocket where it stacks with tyrosine 430 of σ70. Open complexes are remarkably stable, even though in vivo, and under most experimental conditions in vitro, dsDNA is much more stable than its strand-separated form. Subsequent structural studies of other researchers have confirmed that in the open complex the −11A has flipped into a hydrophobic pocket of σ70. It was also revealed that RPo was stabilized by three additional bases of the non-template strand being flipped out of the helix and into hydrophobic pockets, further preventing re-annealing of the two complementary DNA strands.

  16. "Flipping" educational technology professional development for K-12 educators (United States)

    Spencer, Daniel

    As the demand for more effective professional development increases in K-12 schools, trainers must adjust their training methods to meet the needs of their teacher learners. Just as lecture-heavy, teacher-centered instruction only meet the learning needs of a small minority of students, "sit and get" professional development rarely results in the teachers gaining the skills and confidence necessary to use technology effectively in their instruction. To resolve the frustrations of teachers related to ineffective professional development, a "Flipped PD" training model was developed based on the learning needs of adult learners, the integration of technological, pedagogical, and content knowledge (TPACK), learning activities, and the Flipped Classroom concept. Under this model, training shifts from a passive, trainer-centered format, to an active, learner-centered format where teachers learn to use technology in their classrooms by first focusing on pedagogical issues, then choosing the options that work best for addressing those issues in their unique situation, and completing "learn-by-doing" projects. Those who participate in "Flipped PD" style trainings tend to have more confidence upon completion that they can use the tools they were trained on in their teaching, as well as believe that the PD was engaging and a good use of their time.

  17. Quasilinear theory of a spin-flip laser

    International Nuclear Information System (INIS)

    Arunasalam, V.


    A discussion of the nonlinear electrodynamic behavior of a gas of spin 1/2 particles in a uniform external magnetic field is presented. In particular, the quasilinear time evolution of a spin-flip laser system is examined in detail both from the point of view of the thermodynamics of negative temperature systems and the quantum kinetic methods of nonequilibrium statistical mechanics. It is shown that the quasilinear steady state of a spin-flip laser system is that state at which the populations of the spin-up and the spin-down states are equal to each other, and this quasilinear steady state is the state of minimum entropy production. The maximum output power of the spin-flip laser predicted by the theory presented in this paper is shown to be in reasonably good agreement with experimental results. The method used here is based on the general principles of nonrelativistic quantum theory and takes account of the Doppler broadening, collisional broadening, and Compton recoil effects. 30 refs., 1 fig

  18. Flipped classroom instructional approach in undergraduate medical education. (United States)

    Fatima, Syeda Sadia; Arain, Fazal Manzoor; Enam, Syed Ather


    In this study we implemented the "flipped classroom" model to enhance active learning in medical students taking neurosciences module at Aga Khan University, Karachi. Ninety eight undergraduate medical students participated in this study. The study was conducted from January till March 2017. Study material was provided to students in form of video lecture and reading material for the non-face to face sitting, while face to face time was spent on activities such as case solving, group discussions, and quizzes to consolidate learning under the supervision of faculty. To ensure deeper learning, we used pre- and post-class quizzes, work sheets and blog posts for each session. Student feedback was recorded via a likert scale survey. Eighty four percent students gave positive responses towards utility of flipped classroom in terms of being highly interactive, thought provoking and activity lead learning. Seventy five percent of the class completed the pre-session preparation. Students reported that their queries and misconceptions were cleared in a much better way in the face-to-face session as compared to the traditional setting (4.09 ±1.04). Flipped classroom(FCR) teaching and learning pedagogy is an effective way of enhancing student engagement and active learning. Thus, this pedagogy can be used as an effective tool in medical schools.

  19. Digital Storytelling in a Flipped Classroom for Effective Learning

    Directory of Open Access Journals (Sweden)

    Clemens Bechter


    Full Text Available Conclusive empirical evidence on whether virtual classrooms result in higher performance, satisfaction, or an improvement in problem solving skills when compared with traditional face-to-face lecturing does not exist. Various studies point in different directions. However, blended learning outperforms the traditional classroom in student performance and satisfaction. A flipped classroom is one type of blended learning. For more than 20 years, this approach has been used at a European executive MBA (EMBA program delivering online content combined with six residential weeks where students collaborate and reflect upon their online learning. Our research examined the overall setup of this program, and assessed one course in depth. As part of the course—International Management—an intercultural negotiation project was chosen to highlight the integration of online and offline activities. The flipped classroom is a demonstration of the reform-based teaching approach. The power of reform-based learning in executive education is the engaging combination of practice and theory, which improves the performance of executives. The participants considered the flipped approach exciting, dynamic, and insightful. The emphasis on a negotiation process involving classmates from around the world increased their global understanding. Beginning with a negotiation experience in the digital story project gave them a better appreciation of the relevant theories, techniques, and applications. Focusing on the practice of international negotiation and a cross-cultural analysis with reflection on cultural intelligence improved the competencies of the participants both during the course and after it.

  20. Curriculum Design of a Flipped Classroom to Enhance Haematology Learning (United States)

    Porcaro, Pauline A.; Jackson, Denise E.; McLaughlin, Patricia M.; O'Malley, Cindy J.


    A common trend in higher education is the "flipped" classroom, which facilitates active learning during class. The flipped approach to teaching was instituted in a haematology `major' class and the students' attitudes and preferences for the teaching materials were surveyed. The curriculum design was explicit and involved four major components (1) the preparation of the students; (2) the weekly pre-class work; (3) the in-class active learning strategies and (4) closing the learning loop using formative quizzes. Each of these components is discussed in detail and was informed by sound pedagogical strategies. Several different sources of information and several freely available software tools to engage the students are discussed. Two iterations are reported here, with improved pass rate for the final examination from 47 to 48 % in the traditional class to 56-65 % in the flipped classroom approach. The majority of students (93 and 89 %) came to the class prepared, after viewing the screencasts and engaged fully with the activities within the face-to-face time. The students perceived that solving case studies (93 %) was the most beneficial activity for their learning and this was closely followed by the production of essay plans (71 %). The majority of students recommended that this approach be repeated the following year (69 and 75 %).


    Directory of Open Access Journals (Sweden)

    E. Lubbe


    Full Text Available Accounting students often have a negative attitude towards the subject andstruggle to understand core concepts of accounting standards. A large percentageof accounting students do not prepare for class and homework is either not doneor neglected. Many factors contributed to students struggling to prepare for classand complete homework assignments. The flipped classroom approach has grownat a rapid pace and was perceived very successful in many subjects. Little researchhas been done on the effectiveness of this approach for accounting students.Videos was created whereby accounting theory was explained and questions withexamples were given and explained. All contact sessions were transformed into anactive learning environment. During contact sessions, students were provided withquestions. Guidance was given with regards to the interpretation of a practicalcase study. Students had to analyze questions before feedback was provided tothem. Contact sessions commenced with easy questions, and progressedto moredifficult questions.Research was conducted in order to determine whether a flipped classroommethod could improve the learning experience of accounting students at a highereducation institution. The study indicated that students watched the videos beforecontact sessions, they felt more positive about their performance in accountingand improved their time management. The majority of students that completed thesurvey preferred the flipped classroom method. It enables students to learn fromtheir own mistakes in class.

  2. Perforin rapidly induces plasma membrane phospholipid flip-flop.

    Directory of Open Access Journals (Sweden)

    Sunil S Metkar

    Full Text Available The cytotoxic cell granule secretory pathway is essential for host defense. This pathway is fundamentally a form of intracellular protein delivery where granule proteases (granzymes from cytotoxic lymphocytes are thought to diffuse through barrel stave pores generated in the plasma membrane of the target cell by the pore forming protein perforin (PFN and mediate apoptotic as well as additional biological effects. While recent electron microscopy and structural analyses indicate that recombinant PFN oligomerizes to form pores containing 20 monomers (20 nm when applied to liposomal membranes, these pores are not observed by propidium iodide uptake in target cells. Instead, concentrations of human PFN that encourage granzyme-mediated apoptosis are associated with pore structures that unexpectedly favor phosphatidylserine flip-flop measured by Annexin-V and Lactadherin. Efforts that reduce PFN mediated Ca influx in targets did not reduce Annexin-V reactivity. Antigen specific mouse CD8 cells initiate a similar rapid flip-flop in target cells. A lipid that augments plasma membrane curvature as well as cholesterol depletion in target cells enhance flip-flop. Annexin-V staining highly correlated with apoptosis after Granzyme B (GzmB treatment. We propose the structures that PFN oligomers form in the membrane bilayer may include arcs previously observed by electron microscopy and that these unusual structures represent an incomplete mixture of plasma membrane lipid and PFN oligomers that may act as a flexible gateway for GzmB to translocate across the bilayer to the cytosolic leaflet of target cells.

  3. Vortex Flipping in Superconductor-Ferromagnet Spin Valve Structures (United States)

    Patino, Edgar J.; Aprili, Marco; Blamire, Mark; Maeno, Yoshiteru


    We report in plane magnetization measurements on Ni/Nb/Ni/CoO and Co/Nb/Co/CoO spin valve structures with one of the ferromagnetic layers pinned by an antiferromagnetic layer. In samples with Ni, below the superconducting transition Tc, our results show strong evidence of vortex flipping driven by the ferromagnets magnetization. This is a direct consequence of proximity effect that leads to vortex supercurrents leakage into the ferromagnets. Here the polarized electron spins are subject to vortices magnetic field occasioning vortex flipping. Such novel mechanism has been made possible for the first time by fabrication of the F/S/F/AF multilayered spin valves with a thin-enough S layer to barely confine vortices inside as well as thin-enough F layers to align and control the magnetization within the plane. When Co is used there is no observation of vortex flipping effect. This is attributed to Co shorter coherence length. Interestingly instead a reduction in pinning field of about 400 Oe is observed when the Nb layer is in superconducting state. This effect cannot be explained in terms of vortex fields. In view of these facts any explanation must be directly related to proximity effect and thus a remarkable phenomenon that deserves further investigation. Programa Nacional de Ciencias Basicas COLCIENCIAS (No. 120452128168).

  4. High-power UV-B LEDs with long lifetime (United States)

    Rass, Jens; Kolbe, Tim; Lobo-Ploch, Neysha; Wernicke, Tim; Mehnke, Frank; Kuhn, Christian; Enslin, Johannes; Guttmann, Martin; Reich, Christoph; Mogilatenko, Anna; Glaab, Johannes; Stoelmacker, Christoph; Lapeyrade, Mickael; Einfeldt, Sven; Weyers, Markus; Kneissl, Michael


    UV light emitters in the UV-B spectral range between 280 nm and 320 nm are of great interest for applications such as phototherapy, gas sensing, plant growth lighting, and UV curing. In this paper we present high power UV-B LEDs grown by MOVPE on sapphire substrates. By optimizing the heterostructure design, growth parameters and processing technologies, significant progress was achieved with respect to internal efficiency, injection efficiency and light extraction. LED chips emitting at 310 nm with maximum output powers of up to 18 mW have been realized. Lifetime measurements show approximately 20% decrease in emission power after 1,000 operating hours at 100 mA and 5 mW output power and less than 30% after 3,500 hours of operation, thus indicating an L50 lifetime beyond 10,000 hours.

  5. The Flipped Classroom Teaching Model and Its Use for Information Literacy Instruction

    Directory of Open Access Journals (Sweden)

    Sara Arnold-Garza


    Full Text Available The “flipped classroom” teaching model has emerged in a variety of educational settings. It provides many advantages for students and exploits the affordances of modern technology. This article describes some of the pedagogical and logistical characteristics of the flipped teaching model. It situates the flipped classroom in higher education and library instruction, and make the case that there are characteristics of information literacy instruction that fit well with the flipped teaching model, in addition to providing some unique challenges.

  6. Pengembangan Media Pembelajaran Berbasis 3D PageFlip Fisika untuk Materi Getaran dan Gelombang Bunyi


    Hani Kurniawati; Desnita Desnita; Siswoyo Siswoyo


    Abstract The 3D FlipBook development has been widely used in the fields of education and produce a media that can enhance students' interest and motivation. Even so, the use of 3D PageFlip itself is still relatively rare. The lack of socialization is said to be the main reason that caused rare users of 3D PageFlip software. Accordingly, a medium to generate a 3D PageBook and in the same time to learn 3D PageFlip techniques is needed. This paper will discuss how to create media-based learni...

  7. The implementation of flipped classroom model in CIE in the environment of non-target language (United States)

    Xiao, Renfei; Mustofa, Ali; Zhang, Fang; Su, Xiaoxue


    This paper sets a theoretical framework that it’s both feasible and indispensable of flipping classroom in Chinese International Education (CIE) in the non-target language environments. There are mainly three sections included: 1) what is flipped classroom and why it becomes inevitable existence; 2) why should we flip the classroom in CIE environments, especially in non-target language environments; 3) take Pusat Bahasa Mandarin Universitas Negeri Surabaya as an instance to discuss the application of flipped classroom in non-target language environments.

  8. CHIP and Medicaid: Evolving to Meet the Needs of Children. (United States)

    Hill, Ian; Benatar, Sarah; Howell, Embry; Courtot, Brigette; Wilkinson, Margaret; Hoag, Sheila D; Orfield, Cara; Peebles, Victoria


    To examine the evolution of Children's Health Insurance Program (CHIP) and Medicaid programs after passage of the Children's Health Insurance Program Reauthorization Act of 2009 (CHIPRA), focusing on policies affecting eligibility, enrollment, renewal, benefits, access to care, cost sharing, and preparation for health care reform. Case studies were conducted in 10 states during 2012-which included key informant interviews and consumer focus groups-and a national survey of state CHIP program administrators was conducted in early 2013. Despite the recession that persisted during much of the study period, many states expanded children's coverage by raising upper income eligibility limits or by covering new groups made eligible by CHIPRA. Simplifying rules and procedures for enrollment and renewal continued to be a major priority for CHIP and Medicaid, and CHIPRA played a direct role in spurring innovation. CHIPRA's outreach grants played an important role in supporting and supplementing state outreach efforts. Important legacies of CHIPRA are the law's mandatory requirements for comprehensive dental benefits coverage and mental health parity for all types of CHIP programs. Although most states already offered generous coverage of these benefits, the mandate may have protected them from cuts during the economic downturn. Federal Maintenance of Effort rules were a crucial protection for CHIP, especially during the recession when state budget shortfalls could have led to program cuts. Passage of the Affordable Care Act has raised questions surrounding the future role of CHIP in a reformed health care system. A growing number of stakeholders have recommended a 2-year extension of federal CHIP funding to allow complex transition issues to be resolved. Copyright © 2015 Academic Pediatric Association. All rights reserved.

  9. Experiment list: SRX122465 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 6 || chip antibody=Relb || treatment=LPS || time=120 min || chip antibody manufacturer 1=Bethyl || chip antibody catalog... number 1=A302-183A || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2

  10. Experiment list: SRX122496 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available || chip antibody=Rel || treatment=LPS || time=120 min || chip antibody manufacturer 1=Santa Cruz || chip antibody catalog... number 1=sc-71 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc

  11. Improving current spreading of GaN-based LEDs by N-pad current surrounding design

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Chun-Fu [Institute of Microelectronics, Department of Electrical Engineering, National Cheng-Kung University, No. 1 University Road, Tainan City (China); Su, Yan-Kuin [Institute of Microelectronics, Department of Electrical Engineering, National Cheng-Kung University, No. 1 University Road, Tainan City (China); Department of Electrical Engineering, Kun-Shan University, Yung-Kang City, Tainan County 710 (China); Lin, Chun-Liang [Department of Electronic Engineering, Kun-Shan University, Yung-Kang City, Tainan County 710 (China)


    In this report, the motivation of why we attempt to design current spreading, or current surrounding, is try to provide other current paths, expect to improve the current spreading of LEDs and get lower forward voltage at the same time. Attempt to avoid the trade-off between p -electrode area for uniform current spreading and emitting area for light output of LEDs. Compared to reference LEDs, we can find that the light output intensity of chips with n -pad current surrounding design will decay at higher current injection. This can be attributed to the metal on pitch we design, with better current spreading and much metal area connected to n -pad, so less current crowding effect and less heat-accumulation in chips (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Epitaxial Growth of GaN-based LEDs on Simple Sacrificial Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ian Ferguson; Chris Summers


    The objective of this project is to produce alternative substrate technologies for GaN-based LEDs by developing an ALD interlayer of Al{sub 2}O{sub 3} on sacrificial substrates such as ZnO and Si. A sacrificial substrate is used for device growth that can easily be removed using a wet chemical etchant leaving only the thin GaN epi-layer. After substrate removal, the GaN LED chip can then be mounted in several different ways to a metal heat sink/reflector and light extraction techniques can then be applied to the chip and compared for performance. Success in this work will lead to high efficiency LED devices with a simple low cost fabrication method and high product yield as stated by DOE goals for its solid state lighting portfolio.

  13. Semiconductor lasers and herterojunction leds

    CERN Document Server

    Kressel, Henry


    Semiconductor Lasers and Heterojunction LEDs presents an introduction to the subject of semiconductor lasers and heterojunction LEDs. The book reviews relevant basic solid-state and electromagnetic principles; the relevant concepts in solid state physics; and the p-n junctions and heterojunctions. The text also describes stimulated emission and gain; the relevant concepts in electromagnetic field theory; and the modes in laser structures. The relation between electrical and optical properties of laser diodes; epitaxial technology; binary III-V compounds; and diode fabrication are also consider

  14. Design of asymmetric freeform lens for low glared LED street light with total internal reflection. (United States)

    Lai, Min-Feng; Chen, Yi-Chian; Anh, Nguyen Doan Quoc; Chen, Tsai-Yu; Ma, Hsin-Yi; Lee, Hsiao-Yi


    The study is focused on the asymmetric secondary freeform lens (ASFL) design for creating a low glared light-emitting diode (LED) street light. The lens is mounted on a chip on board (COB) LED as the new LED street light module to perform a non-axial symmetric light intensity distribution. The experimental results show that the street light can work without inclining lamps and reach Chinese National Standards (CNS) and Illuminating Engineering Society of North America (IESNA) standards at the same time.

  15. The next generation platform for System-on-Chip; Neste generasjons plattform for System-on-Chip

    Energy Technology Data Exchange (ETDEWEB)

    Tallaksen, Espen


    An increasing demand for including analog functionality in order to have a complete system on one chip requires a new step in the methodology: second-generation System-on-Chip (SoC) platforms. The capacity, or amount of functionality, which can be put into an ASIC (Application Specific Integrated Circuit) chip is doubled for each one and a half year. The design methodology has not kept up with this development, which has resulted in a gap between what can go into the ASIC physically and our ability to do it in practice. This design gap is increasing and has led to increased attention to design efficiency. The semi conductor industry has introduced concepts such as Intellectual Property (P), Virtual Components (VC), System-on-Chip (SoC) and Platform Based Design (PBD). Digital design has been in focus, since traditionally it is digital design that has given momentum to the development of ASIC methodology and it is above all the digital part that increases in functionality. Today, however, the market increasingly demands increased analog functionality to have a complete system on one single chip.

  16. On-chip data communication

    NARCIS (Netherlands)

    Schinkel, Daniel


    On-chip data communication is an active research area, as interconnects are rapidly becoming a speed, power and reliability bottleneck for digital CMOS systems. Especially for global interconnects that have to span large parts of a chip, there is an increasing gap between transistor speed and

  17. Theoretical analyses on a flipping mechanism of UV-induced DNA damage (United States)

    Sato, Ryuma; Harada, Ryuhei; Shigeta, Yasuteru


    As for UV-induced DNA damage, which may induce skin cancer in animals and growth inhibition in plants, there are two types of photoproducts, namely cis-sin cyclobutane pyrimidine dimers (CPD) and pyrimidine-pyrimidone (6-4) photoproducts. When they are to be repaired, base-flipping occurs, and they bind to enzymes. However, this process remains relatively unknown at a molecular level. We analyze conformation and interaction energy changes upon base-flipping using classical molecular dynamics (CMD) simulations and ab initio electronic structure calculations. CMD simulations starting with a CPD in the flipped-in and flipped-out states showed that both states were unchanged for 500 ns, indicating the flipped-in and flipped-out processes do not occur spontaneously (without any help of the enzyme) after photo-damage. To deeply understand the reasons, we investigated interaction energy changes among bases upon structure changes during the flipped-in and flipped-out processes using Parallel Cascade Selection-MD (PaCS-MD) simulations at 400 K, followed by a fragment molecular orbital (FMO) method. The total inter-fragment interaction energy (IFIE) between CPD and other bases at the flipped-in state is estimated to be −60.08 kcal/mol. In particular, four bases strongly interact with CPD with interaction energies being −10.96, −13.70, −21.52, and −14.46 kcal/mol each. On the other hand, the total IFIE at the obtained flipped-out state increased to −10.40 kcal/mol by partly losing hydrogen bonds and π-π stacking interactions, respectively. These results clearly indicate that the base-flipping process of DNA lesions occurs with the help of external forces like interactions with appropriate enzymes such as photolyases. PMID:28409083

  18. White LED motorcycle headlamp design (United States)

    Sun, Wen-Shing


    The motorcycle headlamp is composed of a white LED module, an elliptical reflector, a parabolic reflector and a toric lens. We use non-sequential ray to improve the optical efficiency of the compound reflectors. Using the toric lens can meet ECE_113 regulation and obtain a good uniformity.

  19. UV-LED photopolymerised monoliths

    Czech Academy of Sciences Publication Activity Database

    Abele, S.; Nie, F.; Foret, František; Paull, B.; Macka, M.


    Roč. 133, č. 7 (2008), s. 864-866 ISSN 0003-2654 R&D Projects: GA AV ČR KAN400310651 Institutional research plan: CEZ:AV0Z40310501 Keywords : photopolymerisation * UV-LED * polymethacrylate monolith Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.761, year: 2008

  20. Architecture-Led Safety Process (United States)


    Contents Acknowledgments iv Abstract v 1 Introduction 1 2 Architecture -Led Processes and ALSA 2 3 ALSA Practices 5 3.1 Example System 8 4 Identify... Architecture Models 13 5 Identify Operational Hazards and Hazard Contributors 15 5.1 System Partitioning 15 5.2 Operational Context as a Control

  1. Flipped Library Instruction Does Not Lead to Learning Gains for First-Year English Students

    Directory of Open Access Journals (Sweden)

    Kimberly Miller


    Full Text Available A Review of: Rivera, E. (2017. Flipping the classroom in freshman English library instruction: A comparison study of a flipped class versus a traditional lecture method. New Review of Academic Librarianship, 23(1, 18-27. Abstract Objective – To determine whether a flipped classroom approach to freshman English information literacy instruction improves student learning outcomes. Design – Quasi-experimental. Setting – Private suburban university with 7,000 graduate and undergraduate students. Subjects – First-year English students. Methods – Students in six sections of first-year “English 2” received library instruction; three sections received flipped library instruction and three sections received traditional library instruction. Students in the flipped classroom sections were assigned two videos to watch before class, as an introduction to searching the Library’s catalog and key academic databases. These students were also expected to complete pre-class exercises that allowed them to practice what they learned through the videos. The face-to-face classes involved a review of the flipped materials alongside additional activities. Works cited pages from the students’ final papers were collected from all six sections, 31 from the flipped sections and 34 from the non-flipped sections. A rubric was used to rate the works cited pages. The rubric was based on the Association of College and Research Libraries’ Information Literacy Competency Standards for Higher Education (ACRL, 2000, Standard Two, Outcome 3a, and included three criteria: “authority,” “timeliness,” and “variety.” Each criterion was rated at one of three levels: “exemplary,” “competent,” or “developing.” Main Results – Works cited pages from the students who received non-flipped instruction were more likely to score “exemplary” for at least one of the three criteria when compared to works

  2. Chips with everything

    CERN Multimedia

    CERN. Geneva


    In March 1972, Sir Robin Saxby gave a talk to the Royal Television Society called 'TV and Chips' about a 'state of the art' integrated circuit, containing 50 resistors and 50 transistors. Today's 'state of the art' chips contain up to a billion transistors. This enormous leap forward illustrates how dramatically the semiconductor industry has evolved in the past 34 years. The next 10 years are predicted to bring times of turbulent change for the industry, as more and more digital devices are used around the world. In this talk, Sir Robin will discuss the history of the Microchip Industry in parallel with ARM's history, demonstrating how a small European start-up can become a world player in the IT sector. He will also present his vision of important applications and developments in the next 20 years that are likely to become even more pervasive than the mobile phone is today, and will provide anecdotes and learning points from his own experience at ARM. About ARM: Sir Robin and a group of designers from Acorn...

  3. Low Power High-Efficiency Shift Register Using Implicit Pulse-Triggered Flip-Flop in 130 nm CMOS Process for a Cryptographic RFID Tag

    Directory of Open Access Journals (Sweden)

    Mohammad Torikul Islam Badal


    Full Text Available The shift register is a type of sequential logic circuit which is mostly used for storing digital data or the transferring of data in the form of binary numbers in radio frequency identification (RFID applications to improve the security of the system. A power-efficient shift register utilizing a new flip-flop with an implicit pulse-triggered structure is presented in this article. The proposed flip-flop has features of high performance and low power. It is composed of a sampling circuit implemented by five transistors, a C-element for rise and fall paths, and a keeper stage. The speed is enhanced by executing four clocked transistors together with a transition condition technique. The simulation result confirms that the proposed topology consumes the lowest amounts of power of 30.1997 and 22.7071 nW for parallel in –parallel out (PIPO and serial in –serial out (SISO shift register respectively covering 22 µm2 chip area. The overall design consist of only 16 transistors and is simulated in 130 nm complementary-metal-oxide-semiconductor (CMOS technology with a 1.2 V power supply.

  4. Quantification and analysis of color stability based on thermal transient behavior in white LED lamps. (United States)

    Nisa Khan, M


    We present measurement and analysis of color stability over time for two categories of white LED lamps based on their thermal management scheme, which also affects their transient lumen depreciation. We previously reported that lumen depreciation in LED lamps can be minimized by properly designing the heat sink configuration that allows lamps to reach a thermal equilibrium condition quickly. Although it is well known that lumen depreciation degrades color stability of white light since color coordinates vary with total lumen power by definition, quantification and characterization of color shifts based on thermal transient behavior have not been previously reported in literature for LED lamps. Here we provide experimental data and analysis of transient color shifts for two categories of household LED lamps (from a total of six lamps in two categories) and demonstrate that reaching thermal equilibrium more quickly provides better stability for color rendering, color temperature, and less deviation of color coordinates from the Planckian blackbody locus line, which are all very important characterization parameters of color for white light. We report for the first time that a lamp's color degradation from the turn-on time primarily depends on thermal transient behavior of the semiconductor LED chip, which experiences a wavelength shift as well as a decrease in its dominant wavelength peak value with time, which in turn degrades the phosphor conversion. For the first time, we also provide a comprehensive quantitative analysis that differentiates color degradation due to the heat rise in GaN/GaInN LED chips and subsequently the boards these chips are mounted on-from that caused by phosphor heating in a white LED module. Finally, we briefly discuss why there are some inevitable trade-offs between omnidirectionality and color and luminous output stability in current household LED lamps and what will help eliminate these trade-offs in future lamp designs.

  5. LED lamp power management system and method (United States)

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A. M.


    An LED lamp power management system and method including an LED lamp having an LED controller 58; a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 reduces power loss in one of the channel switch 62 and the shunt switch 68 when LED lamp electronics power loss (P.sub.loss) exceeds an LED lamp electronics power loss limit (P.sub.lim); and each of the channel switches 62 receives a channel switch control signal 63 from the LED controller 58 and each of the shunt switches 68 receives a shunt switch control signal 69 from the LED controller 58.

  6. LED lamp color control system and method (United States)

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A.M.


    An LED lamp color control system and method including an LED lamp having an LED controller 58; and a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 determines whether the LED source 80 is in a feedback controllable range, stores measured optical flux for the LED source 80 when the LED source 80 is in the feedback controllable range, and bypasses storing the measured optical flux when the LED source 80 is not in the feedback controllable range.

  7. Four Perspectives on Flipping the Statistics Classroom: Changing Pedagogy to Enhance Student-Centered Learning (United States)

    Kuiper, Shonda R.; Carver, Robert H.; Posner, Michael A.; Everson, Michelle G.


    The term "flipped" or "inverted" classroom includes a broad range of pedagogical innovations, and has recently received a significant amount of press. Although flipping an entire course might be a more extreme step than most are able to take, we discuss modular ideas for change that can be more easily implemented. This paper…

  8. Spin-flip transitions in magneto-optics and magneto-transport

    International Nuclear Information System (INIS)

    Zawadzki, W.


    Three-level model for InSb- and HgTe-type semiconductors is used to describe recent observations of spin-flip magnetophonon oscillations, spin-flip scattering in Shubnikov-de Haas effect, phonon- and impurity-assisted magnetooptical resonances, and resonant spin-optic-phonon interaction. (Auth.)

  9. Clickers in the Flipped Classroom: Bring Your Own Device (BYOD) to Promote Student Learning (United States)

    Hung, Hsiu-Ting


    Flipped classrooms continue to grow in popularity across all levels of education. Following this pedagogical trend, the present study aimed to enhance the face-to-face instruction in flipped classrooms with the use of clickers. A game-like clicker application was implemented through a bring your own device (BYOD) model to gamify classroom dynamics…

  10. Using Flipped Learning Model in Teaching English Language among Female English Majors in Majmaah University (United States)

    Abdelshaheed, Bothina S. M.


    This study aims at investigating the effect of using Flipped Learning Model in teaching English language among female English majors in Majmaah University on their achievement in two different English courses and identifying their feelings and satisfaction about flipping their classes. The study used a pre-post test design and included two…

  11. Flipping the Classroom for English Language Learners to Foster Active Learning (United States)

    Hung, Hsiu-Ting


    This paper describes a structured attempt to integrate flip teaching into language classrooms using a WebQuest active learning strategy. The purpose of this study is to examine the possible impacts of flipping the classroom on English language learners' academic performance, learning attitudes, and participation levels. Adopting a…

  12. FLIPPED: A Case Study in Fundamental of Accounting in Malaysian Polytechnic (United States)

    Jamaludin, Rozinah; Osman, Siti Zuraidah Md; Yusof, Wan Mustaffa Wan; Jasni, Nur Farrah Azwa


    The new pedagogical flipped classroom was designed, developed and implemented using Flexible environments, Learning culture, Intentional content, Professional educators, Progressive activities, Engaging experiences, and Diversified platforms, also known as the FLIPPED model. The objective of this study is to investigate the effect of student…

  13. How to Flip a Classroom and Improve Student Learning and Engagement: The Case of PSYC1030 (United States)

    Isaias, Pedro; McKimmie, Blake; Bakharia, Aneesha; Zornig, John; Morris, Anna


    The flipped classroom's pervasiveness in different educational contexts derives from the growing need to focus on student-centered and active learning approaches. The fact that the flipped classroom allocates the lecture delivery to the outside of the classroom endows teachers with the possibility of using the in-class time to develop active…

  14. Supporting Our Students to Achieve Academic Success in the Unfamiliar World of Flipped and Blended Classrooms (United States)

    Miles, Carol A.; Fogget, Keith


    The past few years have seen a rapid increase in the integration of flipped and blended modes of learning in the Australian university classroom. Flipped and blended learning incorporates both online and face-to-face interaction. This changing nature of delivery has created the need for students to adopt study patterns that incorporate learning…

  15. Using Flipped Classroom Approach to Explore Deep Learning in Large Classrooms (United States)

    Danker, Brenda


    This project used two Flipped Classroom approaches to stimulate deep learning in large classrooms during the teaching of a film module as part of a Diploma in Performing Arts course at Sunway University, Malaysia. The flipped classes utilized either a blended learning approach where students first watched online lectures as homework, and then…

  16. Using a Flipped Spoon to Decrease Packing in Children with Feeding Disorders (United States)

    Volkert, Valerie M.; Vaz, Petula C. M.; Piazza, Cathleen C.; Frese, Jana; Barnett, Lara


    We evaluated the effects of redistribution and swallow facilitation with a flipped spoon on packing in 2 children with a feeding disorder. For both participants, packing decreased when we implemented the flipped spoon treatment package. Mechanisms responsible for behavior change and areas of future research are discussed. (Contains 1 figure.)

  17. Cultural Conceptions of Flipped Learning: Examining Asian Perspectives in the 21st Century (United States)

    Skelcher, Shannon


    The use of flipped learning as a pedagogical approach has increased in the 21st century. While there is an existing survey of literature regarding the development in American educational institutions--and fewer in an Asian context--there are some unique cultural considerations that may need to be examined regarding flipped learning's adoption and…

  18. Optical flip-flop: Based on two-coupled mode-locked ring lasers

    NARCIS (Netherlands)

    Tangdiongga, E.; Yang, X.X.; Li, Z.; Liu, Y.S.; Lenstra, D.; Khoe, G.D.; Dorren, H.J.S.


    We report an all-optical flip-flop that is based on two coupled actively mode-locked fiber ring lasers. The lasers are coupled so that when one of the lasers lases, it quenches lasing in the other laser. The state of the flip-flop is determined by the wavelength of the laser that is currently

  19. Hardened Flip-Flop Optimized for Subthreshold Operation Heavy Ion Characterization of a Radiation

    Directory of Open Access Journals (Sweden)

    Eric Bozeman


    Full Text Available A novel Single Event Upset (SEU tolerant flip-flop design is proposed, which is well suited for very-low power electronics that operate in subthreshold ( < Vt ≈ 500 mV. The proposed flip-flop along with a traditional (unprotected flip-flop, a Sense-Amplifier-based Rad-hard Flip-Flop (RSAFF and a Dual Interlocked storage Cell (DICE flip-flop were all fabricated in MIT Lincoln Lab’s XLP 0.15 μm fully-depleted SOI CMOS technology—a process optimized for subthreshold operation. At the Cyclotron Institute at Texas A&M University, all four cells were subjected to heavy ion characterization in which the circuits were dynamically updated with alternating data and then checked for SEUs at both subthreshold (450 mV and superthreshold (1.5 V levels. The proposed flip-flop never failed, while the traditional and DICE designs did demonstrate faulty behavior. Simulations were conducted with the XLP process and the proposed flip-flop provided an improved energy delay product relative to the other non-faulty rad-hard flip-flop at subthreshold voltage operation. According to the XLP models operating in subthreshold at 250 mV, performance was improved by 31% and energy consumption was reduced by 27%.

  20. Using Flipped Classroom Components in Blended Courses to Maximize Student Learning (United States)

    Heinerichs, Scott; Pazzaglia, Gina; Gilboy, Mary Beth


    Context: The flipped classroom is an educational approach that has become popular in higher education because it is student centered. Objective: To provide a rationale for a specific way of approaching the flipped classroom using a blended course design and resources necessary to help instructors be successful. Main Outcome Measure(s): Three class…

  1. Comparative Case Study on Designing and Applying Flipped Classroom at Universities (United States)

    Lim, Cheolil; Kim, Sunyoung; Lee, Jihyun; Kim, Hyeonsu; Han, Hyeongjong


    There have been many reports on cases where flipped classroom was applied which put greater emphasis on conducting various learning activities during class. However, there is a limitation in redesigning existing university lectures as flipped classrooms merely based on reports that describe the learning activities of and their effects on…

  2. The Impact of the Flipped Classroom on Mathematics Concept Learning in High School (United States)

    Bhagat, Kaushal Kumar; Chang, Cheng-Nan; Chang, Chun-Yen


    The present study aimed to examine the effectiveness of the flipped classroom learning environment on learner's learning achievement and motivation, as well as to investigate the effects of flipped classrooms on learners with different achievement levels in learning mathematics concepts. The learning achievement and motivation were measured by the…

  3. Implementing a Flipped Classroom: A Case Study of Biology Teaching in a Greek High School (United States)

    Gariou-Papalexiou, Angeliki; Papadakis, Spyros; Manousou, Evangelia; Georgiadu, Irene


    The purpose of this study was to investigate the application of the model of the "flipped classroom" as a complementary method to school distance education in junior high school Biology. The "flipped classroom" model attempts a different way of organizing the educational process according to which the traditional methods of…

  4. Implementing the Flipped Classroom : An exploration of study behaviour and student performance

    NARCIS (Netherlands)

    Boevé, Anna J.; Meijer, Rob R.; Bosker, Roel J.; Vugteveen, Jorien; Hoekstra, Rink; Albers, Casper J.


    The flipped classroom is becoming more popular as a means to support student learning in higher education by requiring students to prepare before lectures and actively engaging students during lectures. While some research has been conducted into student performance in the flipped classroom,

  5. Motivation and Cognitive Load in the Flipped Classroom: Definition, Rationale and a Call for Research (United States)

    Abeysekera, Lakmal; Dawson, Phillip


    Flipped classroom approaches remove the traditional transmissive lecture and replace it with active in-class tasks and pre-/post-class work. Despite the popularity of these approaches in the media, Google search, and casual hallway chats, there is very little evidence of effectiveness or consistency in understanding what a flipped classroom…

  6. Evolution in Student Perceptions of a Flipped Classroom in a Computer Programming Course (United States)

    Davenport, Casey E.


    The "flipped classroom" pedagogical approach is used for a combined undergraduate and graduate computer programming course in meteorology. Details of how the course was flipped are discussed, as well as how student perceptions of the approach, which were gathered from qualitative feedback collected throughout the semester, evolved.…

  7. An Application of Flipped Classroom Method in the Instructional Technologies and Material Development Course (United States)

    Özpinar, Ilknur; Yenmez, Arzu Aydogan; Gökçe, Semirhan


    A natural outcome of change in technology, new approaches towards teaching and learning have emerged and the applicability of the flipped classroom method, a new educational strategy, in the field of education has started to be discussed. It was aimed with the study to examine the effect of using flipped classroom method in academic achievements…

  8. The "Flipped Classroom" Approach: Stimulating Positive Learning Attitudes and Improving Mastery of Histology among Medical Students (United States)

    Cheng, Xin; Ka Ho Lee, Kenneth; Chang, Eric Y.; Yang, Xuesong


    Traditional medical education methodologies have been dramatically impacted by the introduction of new teaching approaches over the past few decades. In particular, the "flipped classroom" format has drawn a great deal of attention. However, evidence regarding the effectiveness of the flipped model remains limited due to a lack of…

  9. The Flipped Classroom Teaching Model and Its Use for Information Literacy Instruction (United States)

    Arnold-Garza, Sara


    The flipped classroom, a teaching method that delivers lecture content to students at home through electronic means and uses class time for practical application activities, may be useful for information literacy instruction. This article describes many of the characteristics of the flipped classroom teaching model, illustrated with examples from…

  10. Flipped Classrooms: A Review of Key Ideas and Recommendations for Practice (United States)

    DeLozier, Sarah J.; Rhodes, Matthew G.


    Flipped classrooms refer to the practice of assigning lectures outside of class and devoting class time to a variety of learning activities. In this review, we discuss the range of approaches to the flipped classroom and focus on activities frequently used in these settings. Amongst these, we examine both out-of-class activities (e.g., video…

  11. A Study on the Motivational Strategies in College English Flipped Classroom (United States)

    Suo, Jia; Hou, Xiuying


    Flipped classroom is a great reform that brings a huge impact on the classroom teaching. Its essence is autonomous leaning, whose effect is determined by students' motivation. Therefore, to bring the advantages of the flipped classroom into full play, the top priority is to stimulate students' motivation. The paper makes a study on the…

  12. Implementing Flipped Classroom in Blended Learning Environments: A Proposal Based on the Cognitive Flexibility Theory (United States)

    Andrade, Mariel; Coutinho, Clara


    Flipped Classroom is an issue that gains increased attention in Blended Learning models. Generally, in the traditional classroom, the teacher uses the time in the classroom to explain the theoretical and conceptual body content and leaves the practices and exercises as extracurricular activities. In the Flipped Classroom, students study at home…

  13. Turning the Classroom Upside Down: Experimenting with the Flipped Classroom in American Government (United States)

    Whitman Cobb, Wendy N.


    With the concept of the flipped classroom taking the teaching world by storm, research into its effectiveness, particularly in higher education, has been lacking. This research aims to rectify this by detailing the results of an experiment comparing student success in American Federal Government in a flipped classroom, a traditional, lecture-based…

  14. Use of the Flipped Classroom Instructional Model in Higher Education: Instructors' Perspectives (United States)

    Long, Taotao; Cummins, John; Waugh, Michael


    The flipped classroom model is an instructional model in which students learn basic subject matter knowledge prior to in-class meetings, then come to the classroom for active learning experiences. Previous research has shown that the flipped classroom model can motivate students towards active learning, can improve their higher-order thinking…

  15. The Flipped Classroom and Cooperative Learning: Evidence from a Randomised Experiment (United States)

    Foldnes, Njål


    This article describes a study which compares the effectiveness of the flipped classroom relative to the traditional lecture-based classroom. We investigated two implementations of the flipped classroom. The first implementation did not actively encourage cooperative learning, with students progressing through the course at their own pace. With…

  16. Quality-Improving Strategies of College English Teaching Based on Microlesson and Flipped Classroom (United States)

    Zhang, Fan


    Microlesson and flipped classroom, which incorporate the educational information technologies, are a new trend of college English teaching. Exploration on how the flipped classroom and microlesson promote innovation and application of educational information technology are of great significance. According to a survey among teachers, strategies…

  17. The Flipped Classroom: Implementing Technology to Aid in College Mathematics Student's Success (United States)

    Buch, George R.; Warren, Carryn B.


    August 2016 there was a call (Braun, Bremser, Duval, Lockwood & White, 2017) for post-secondary instructors to use active learning in their classrooms. Once such example of active learning is what is called the "flipped" classroom. This paper presents the need for, and the methodology of the flipped classroom, results of…

  18. The Flipped Classroom and College Physics Students' Motivation and Understanding of Kinematics Graphs (United States)

    Cagande, Jeffrey Lloyd L.; Jugar, Richard R.


    Reversing the traditional classroom activities, in the flipped classroom model students view lectures at home and perform activities during class period inside the classroom. This study investigated the effect of a flipped classroom implementation on college physics students' motivation and understanding of kinematics graphs. A Solomon four-group…

  19. Quasi-experimental study on the effectiveness of a flipped classroom for teaching adult health nursing. (United States)

    Park, Esther O; Park, Ji Hyun


    The effectiveness of flipped learning as one of the teaching methods of active learning has been left unexamined in nursing majors, compared to the frequent attempts to uncover the effectiveness of it in other disciplines. The purpose of this study was to reveal the effectiveness of flipped learning pedagogy in an adult health nursing course, controlling for other variables. The study applied a quasi-experimental approach, comparing pre- and post-test results in learning outcomes. Included in this analysis were the records of 81 junior nursing major students. The convenience sampling method was used to select the participants. Those in the experimental group were exposed to a flipped classroom experience that was given after the completion of their traditional class. The students' learning outcomes and the level of critical thinking skills were evaluated before and after the intervention of the flipped classroom. After the flipped classroom experience, the scores of the students' achievement in subject topics and critical thinking skills, specifically intellectual integrity and creativity, showed a greater level of increase than those of their controlled counterparts. This remained true even after controlling for previous academic performance and the level of creativity. This study confirmed the effectiveness of the flipped classroom as a measure of active learning by applying a quantitative approach. But, regarding the significance of the initial contribution of flipped learning in the discipline of nursing science, carrying out a more authentic experimental study could justify the impact of flipped learning pedagogy. © 2017 Japan Academy of Nursing Science.

  20. The Role of Flipped Learning in Managing the Cognitive Load of a Threshold Concept in Physiology (United States)

    Akkaraju, Shylaja


    To help students master challenging, threshold concepts in physiology, I used the flipped learning model in a human anatomy and physiology course with very encouraging results in terms of student motivation, preparedness, engagement, and performance. The flipped learning model was enhanced by pre-training and formative assessments that provided…

  1. Researching into a MOOC Embedded Flipped Classroom Model for College English Reading and Writing Course (United States)

    Xinying, Zhang


    There is obvious pressure for higher education institutions to undergo transformation now in China. Reflecting this, the computer and information technology give rise to the development of a Massive Open Online Course (MOOC) embedded flipped classroom. Flipped classroom approaches replace the traditional transmissive teaching with engaging…

  2. An Experiential Learning Perspective on Students' Satisfaction Model in a Flipped Classroom Context (United States)

    Zhai, Xuesong; Gu, Jibao; Liu, Hefu; Liang, Jyh-Chong; Tsai, Chin-Chung


    Recent years have witnessed an increasing interest in the flipped classroom model, and many flipped programs have been funded and implemented to explore the effectiveness of this new model. However, previous studies centering on comparative assessment have indicated that it is not always entirely successful in terms of promoting students'…

  3. A Controlled Study of the Flipped Classroom with Numerical Methods for Engineers (United States)

    Bishop, Jacob L.


    Recent advances in technology and ideology have unlocked entirely new directions for education research. Mounting pressure from increasing tuition costs and free, online course offerings are opening discussion and catalyzing change in the physical classroom. The flipped classroom is at the center of this discussion. The flipped classroom is a new…

  4. The Flipped Classroom Impact in Grammar Class on EFL Saudi Secondary School Students' Performances and Attitudes (United States)

    Al-Harbi, Sarah S.; Alshumaimeri, Yousif A.


    The aim of this study was to apply the flipped classroom strategy in teaching English grammar to examine its impact on secondary school students' performances, perceptions, and attitudes toward learning English independently. The researcher implemented the flipped classroom strategy by selecting videos based on the students' textbook and uploading…

  5. Exploring Student Perceptions, Learning Outcome and Gender Differences in a Flipped Mathematics Course (United States)

    Chen, So-Chen; Yang, Stephen J. H.; Hsiao, Chia-Chang


    The flipped classroom approach has recently gained prominence in education. However, a review of previous studies shows that the relationship associated with gender difference, student perceptions and learning outcomes has still remained unexplored, and there has been little discussion regarding flipped classroom environment. To fill this gap,…

  6. Search Strategy Development in a Flipped Library Classroom: A Student-Focused Assessment (United States)

    Goates, Michael C.; Nelson, Gregory M.; Frost, Megan


    Librarians at Brigham Young University compared search statement development between traditional lecture and flipped instruction sessions. Students in lecture sessions scored significantly higher on developing search statements than those in flipped sessions. However, student evaluations show a strong preference for pedagogies that incorporate…

  7. How A Flipped Learning Environment Affects Learning In A Course On Theoretical Computer Science

    DEFF Research Database (Denmark)

    Gnaur, Dorina; Hüttel, Hans


    This paper reports initial experiences with flipping the classroom in an undergraduate computer science course as part of an overall attempt to enhance the pedagogical support for student learning. Our findings indicate that, just as the flipped classroom implies, a shift of focus in the learning...

  8. Why No Difference? A Controlled Flipped Classroom Study for an Introductory Differential Equations Course (United States)

    Yong, Darryl; Levy, Rachel; Lape, Nancy


    Flipped classrooms have the potential to improve student learning and metacognitive skills as a result of increased time for active learning and group work and student control over pacing, when compared with traditional lecture-based courses. We are currently running a 4-year controlled study to examine the impact of flipping an Introductory…

  9. Flipped Learning in Higher Education Chemistry: Emerging Trends and Potential Directions (United States)

    Seery, Michael K.


    Flipped learning has grown in popularity in recent years as a mechanism of incorporating an active learning environment in classrooms and lecture halls. There has been an increasing number of reports for flipped learning in chemistry at higher education institutions. The purpose of this review is to survey these reports with a view to examining…

  10. A Quantitative Evaluation of the Flipped Classroom in a Large Lecture Principles of Economics Course (United States)

    Balaban, Rita A.; Gilleskie, Donna B.; Tran, Uyen


    This research provides evidence that the flipped classroom instructional format increases student final exam performance, relative to the traditional instructional format, in a large lecture principles of economics course. The authors find that the flipped classroom directly improves performance by 0.2 to 0.7 standardized deviations, depending on…

  11. Flipped Classroom with Problem Based Activities: Exploring Self-Regulated Learning in a Programming Language Course (United States)

    Çakiroglu, Ünal; Öztürk, Mücahit


    This study intended to explore the development of self-regulation in a flipped classroom setting. Problem based learning activities were carried out in flipped classrooms to promote self-regulation. A total of 30 undergraduate students from Mechatronic department participated in the study. Self-regulation skills were discussed through students'…

  12. QED polarization asymmetries for e+e- scattering due to helicity flips

    International Nuclear Information System (INIS)

    Anders, T.B.; Sell, E.W.


    The polarization asymmetries for the e + e - scattering with polarized incoming of outgoing beams, which are proportional to the amplitudes φ 5 describing one helicity flip and φ 2 describing two helicity flips, have been calculated including their pure QED radiative corrections. These asymmetries are partly large and can be observed well at low energies. (orig.)

  13. A View from the Inside: Collaborating with Students to Flip the Classroom in Real Time (United States)

    Zavattaro, Staci M.; Kus, Kristina; Lademann, Jason; Peeple-Briggs, Elizabeth


    This article details decisions made to flip a small, public administration graduate-level course in real time. Interweaving student feedback with instructor notes and reflections gives a unique, personal look into a scenario-based course that changed weekly. We detail this dynamism, highlighting successes and failures in flipping the classroom.…

  14. Flipped Classrooms: An Agenda for Innovative Marketing Education in the Digital Era (United States)

    Green, Teegan


    Flipped classrooms reverse traditional lecturing because students learn content before class through readings and prerecorded videos, freeing lectures for hands-on activities and discussion. However, there is a dearth of literature in marketing education addressing flipped classrooms. This article fills this void using grounded theory to develop a…

  15. Academic Achievements and Satisfaction of the Clicker-Aided Flipped Business English Writing Class (United States)

    Zhonggen, Yu; Guifang, Wang


    The flipped classroom has been achieving a great success in teaching innovation. This study, aiming to determine the effectiveness of the flipped model in business English writing course, combined the quantitative with the qualitative research methods. Participants were randomly selected from undergraduate students majoring in business English.…

  16. Effects of PCB Pad Metal Finishes on the Cu-Pillar/Sn-Ag Micro Bump Joint Reliability of Chip-on-Board (COB) Assembly (United States)

    Kim, Youngsoon; Lee, Seyong; Shin, Ji-won; Paik, Kyung-Wook


    While solder bumps have been used as the bump structure to form the interconnection during the last few decades, the continuing scaling down of devices has led to a change in the bump structure to Cu-pillar/Sn-Ag micro-bumps. Cu-pillar/Sn-Ag micro-bump interconnections differ from conventional solder bump interconnections in terms of their assembly processing and reliability. A thermo-compression bonding method with pre-applied b-stage non-conductive films has been adopted to form solder joints between Cu pillar/Sn-Ag micro bumps and printed circuit board vehicles, using various pad metal finishes. As a result, various interfacial inter-metallic compounds (IMCs) reactions and stress concentrations occur at the Cu pillar/Sn-Ag micro bumps joints. Therefore, it is necessary to investigate the influence of pad metal finishes on the structural reliability of fine pitch Cu pillar/Sn-Ag micro bumps flip chip packaging. In this study, four different pad surface finishes (Thin Ni ENEPIG, OSP, ENEPIG, ENIG) were evaluated in terms of their interconnection reliability by thermal cycle (T/C) test up to 2000 cycles at temperatures ranging from -55°C to 125°C and high-temperature storage test up to 1000 h at 150°C. The contact resistances of the Cu pillar/Sn-Ag micro bump showed significant differences after the T/C reliability test in the following order: thin Ni ENEPIG > OSP > ENEPIG where the thin Ni ENEPIG pad metal finish provided the best Cu pillar/Sn-Ag micro bump interconnection in terms of bump joint reliability. Various IMCs formed between the bump joint areas can account for the main failure mechanism.

  17. 76 FR 36576 - Certain Flip-Top Vials and Products Using the Same; Notice of Institution of Investigation... (United States)


    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-779] Certain Flip-Top Vials and Products Using the... the sale within the United States after importation of certain flip-top vials and products using the... importation, or the sale within the United States after importation of certain flip-top vials and products...

  18. The Flipped Classroom: Primary and Secondary Teachers' Views on an Educational Movement in Schools in Sweden Today (United States)

    Hultén, Magnus; Larsson, Bo


    The aim of this study is to contribute to an increased understanding of the flipped classroom movement. A total of 7 teachers working in school years 4-9 and who both actively flipped their classrooms and had been early adopters in this movement were interviewed. Two research questions were posed: "What characterizes flipped classroom…

  19. A Learning Analytics Approach to Investigating Factors Affecting EFL Students' Oral Performance in a Flipped Classroom (United States)

    Lin, Chi-Jen; Hwang, Gwo-Jen


    Flipped classrooms have been widely adopted and discussed by school teachers and researchers in the past decade. However, few studies have been conducted to formally evaluate the effectiveness of flipped classrooms in terms of improving EFL students' English oral presentation, not to mention investigating factors affecting their flipped learning…

  20. Impact of the Flipped Classroom on Student Performance and Retention: A Parallel Controlled Study in General Chemistry (United States)

    Ryan, Michael D.; Reid, Scott A.


    Despite much recent interest in the flipped classroom, quantitative studies are slowly emerging, particularly in the sciences. We report a year-long parallel controlled study of the flipped classroom in a second-term general chemistry course. The flipped course was piloted in the off-semester course in Fall 2014, and the availability of the…

  1. Celebrity-led development organisations

    DEFF Research Database (Denmark)

    Budabin, Alexandra Cosima; Rasmussen, Louise Mubanda; Richey, Lisa Ann


    The past decade has seen a frontier open up in international development engagement with the entrance of new actors such as celebrity-led organisations. We explore how such organisations earn legitimacy with a focus on Madonna’s Raising Malawi and Ben Affleck’s Eastern Congo Initiative. The study...... draws from organisational materials, interviews, mainstream news coverage, and the texts of the celebrities themselves to investigate the construction of authenticity, credibility, and accountability. We find these organisations earn legitimacy and flourish rapidly amid supportive elite networks...... for funding, endorsements, and expertise. We argue that the ways in which celebrity-led organisations establish themselves as legitimate development actors illustrate broader dynamics of the machinery of development....

  2. Luminescent ceramics for LED conversion (United States)

    Raukas, M.; Wei, G.; Bergenek, K.; Kelso, J.; Zink, N.; Zheng, Y.; Hannah, M.; Stough, M.; Wirth, R.; Linkov, A.; Jermann, F.; Eisert, D.


    Many LED-based applications would benefit from more efficient and/or high lumen output devices that enable usage in both white and single color illumination schemes. In the present article we briefly review the materials research history leading to optical ceramic converters and discuss their typical characteristics. Recently demonstrated high performance values in terms of efficacy and external quantum efficiency in orange (amber) spectral region are described.

  3. Automotive LED lamp lighted appearance (United States)

    Conn, Lawrence G.; Bennett, Larry R.


    The automotive optical engineer has an entirely new set of rules to follow for a 'smooth lighted appearance' with the introduction of LEDs into the automotive signal lighting market. To move away from the 'polka-dot' appearance long associated with the usage of LEDs as the light source for automotive lighting, and give the consumer a smooth lighted appearance to his lamp, there are several optical parameters that must be observed. The number and type of LEDs used, the size of the optical elements used, the spacing of the optical elements, plus many other factors all play a critical role and must be considered in the solution to the 'smooth lighted appearance' in an automotive signal lamp. The 'smooth lighted appearance' in an automotive signal lamp has long been a difficult problem to which there is more than one solution. The most visually pleasing and effective solution is not always the most easily obtainable solution since photometry requirements and smooth lighted appearance can be diametric goals. Subsequently the most cost effective and the easily 'doable' solution may not give the ultimate in aesthetically pleasing results for the consumer. Therefore, it is the purpose and intent of this paper to outline the parameters that need to be considered to obtain a 'smooth lighted appearance' for an automotive signal lamp, and to clarify the methods and 'tools' that are required to meet this goal.

  4. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover


    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  5. Serial composition of quantum coin flipping and bounds on cheat detection for bit commitment

    International Nuclear Information System (INIS)

    Mochon, Carlos


    Quantum protocols for coin flipping can be composed in series in such a way that a cheating party gains no extra advantage from using entanglement between different rounds. This composition principle applies to coin-flipping protocols with cheat sensitivity as well, and is used to derive two results: There are no quantum strong coin-flipping protocols with cheat sensitivity that is linear in the bias (or bit-commitment protocols with linear cheat detection) because these can be composed to produce strong coin flipping with arbitrarily small bias. On the other hand, it appears that quadratic cheat detection cannot be composed in series to obtain even weak coin flipping with arbitrarily small bias

  6. Student Performance in a Pharmacotherapy Oncology Module Before and After Flipping the Classroom (United States)

    Panus, Peter; Stewart, David W.; Hagemeier, Nick E; George, Joshua


    Objective. To determine if a flipped classroom improved student examination performance in a pharmacotherapy oncology module. Design. Third-year pharmacy students in 2012 experienced the oncology module as interactive lectures with optional case studies as supplemental homework. In 2013, students experienced the same content in a primarily flipped classroom. Students were instructed to watch vodcasts (video podcasts) before in-class case studies but were not held accountable (ie, quizzed) for preclass preparation. Examination questions were identical in both cohorts. Performance on examination questions was compared between the two cohorts using analysis of covariance (ANCOVA), with prior academic performance variables (grade point average [GPA]) as covariates. Assessment. The students who experienced the flipped classroom approach performed poorer on examination questions than the cohort who experienced interactive lecture, with previous GPA used as a covariate. Conclusion. A flipped classroom does not necessarily improve student performance. Further research is needed to determine optimal classroom flipping techniques. PMID:27073284

  7. The flipped classroom: A learning model to increase student engagement not academic achievement

    Directory of Open Access Journals (Sweden)

    Masha Smallhorn


    Full Text Available A decrease in student attendance at lectures both nationally and internationally, has prompted educators to re-evaluate their teaching methods and investigate strategies which promote student engagement. The flipped classroom model, grounded in active learning pedagogy, transforms the face-to-face classroom. Students prepare for the flipped classroom in their own time by watching short online videos and completing readings. Face-to-face time is used to apply learning through problem-solving with peers. To improve the engagement and learning outcomes of our second year cohort, lectures were replaced with short online videos and face-to-face time was spent in a flipped classroom. The impact of the flipped classroom was analysed through surveys, attendance records, learning analytics and exam data before and after the implementation of the flipped classroom. Results suggest an increase in student engagement and a positive attitude towards the learning method. However, there were no measurable increases in student learning outcomes.

  8. Acerca de la utilidad del aula invertida o flipped classroom


    Berenguer-Albaladejo, Cristina


    El aula invertida o flipped classroom es un método de enseñanza cuyo principal objetivo es que el alumno asuma un rol mucho más activo en su proceso de aprendizaje que el que venía ocupando tradicionalmente. A grandes rasgos consiste en que el alumno estudie los conceptos teóricos por sí mismo a través de diversas herramientas que el docente pone a su alcance, principalmente vídeos o podcasts grabados por su profesor o por otras personas, y el tiempo de clase se aproveche para resolver dudas ...

  9. Dimer-flipping-assisted diffusion on a Si(001) surface

    International Nuclear Information System (INIS)

    Zi, J.; Min, B. J.; Lu, Y.; Wang, C. Z.; Ho, K. M.


    The binding sites and diffusion pathways of Si adatoms on a c(4x2) reconstructed Si(001) surface are investigated by a tight-binding method with an environment-dependent silicon potential in conjunction with ab initio calculations using the Car--Parrinello method. A new diffusion pathway along the trough edge driven by dimer flipping is found with a barrier of 0.74 eV, comparable to that of 0.68 eV along the top of the dimer rows

  10. Ultra-thin chip technology and applications

    CERN Document Server


    Ultra-thin chips are the "smart skin" of a conventional silicon chip. This book shows how very thin and flexible chips can be fabricated and used in many new applications in microelectronics, microsystems, biomedical and other fields. It provides a comprehensive reference to the fabrication technology, post processing, characterization and the applications of ultra-thin chips.

  11. Towards Dependable Network-on-Chip Architectures

    NARCIS (Netherlands)

    Chen, C.


    The aggressive semiconductor technology scaling provides the means for doubling the amount of transistors on a single chip each and every 18 months. To efficiently utilize these vast chip resources, Multi-Processor Systems on Chip (MPSoCs) integrated with a Network-on-Chip (NoC) communication

  12. Imaging in ChIPS (United States)

    Miller, J.; Burke, D.; Evans, I.; Evans, J. D.; McLaughlin, W.


    The Chandra Interactive Plotting System (ChIPS) included in CIAO now allows users to incorporate and manipulate images in their plots. ChIPS uses the Visualization Toolkit (VTK) as a back end to provide basic imaging support, which includes displaying images in pseudo color or RGBA true color, adjusting the translucency of images, and several ways to threshold images. Users also have the ability to enhance them with annotations and place curves and contours directly onto the image. ChIPS imaging support provides a mechanism to adjust the image display resolution as necessary to provide high quality publication ready output. Beyond basic imaging, ChIPS includes the ability to recognize and incorporate WCS metadata into plots. ChIPS accurately calculates the intersections of world coordinate grids and plot axes, ensuring that these elements distort correctly with a tangent plane projection. Multiple image overlays are handled by reprojecting the overlaid images onto the reference image's coordinate system. New zooming and panning functions, and existing limits commands, use the WCS information from the image overlays to update the axes to reflect the new field of view being displayed. Although ChIPS already provides a number of user interactive commands, additional interactive capabilities are being considered for future releases. Enhanced interactive interfaces alongside the ability to script ChIPS in Python provide a more capable and user-friendly system.

  13. Investigating Flipped Learning: Student Self-Regulated Learning, Perceptions, and Achievement in an Introductory Biology Course (United States)

    Sletten, Sarah Rae


    In flipped classrooms, lectures, which are normally delivered in-class, are assigned as homework in the form of videos, and assignments that were traditionally assigned as homework, are done as learning activities in class. It was hypothesized that the effectiveness of the flipped model hinges on a student's desire and ability to adopt a self-directed learning style. The purpose of this study was twofold; it aimed at examining the relationship between two variables—students' perceptions of the flipped model and their self-regulated learning (SRL) behaviors—and the impact that these variables have on achievement in a flipped class. For the study, 76 participants from a flipped introductory biology course were asked about their SRL strategy use and perceptions of the flipped model. SRL strategy use was measured using a modified version of the Motivated Strategies for Learning Questionnaire (MSLQ; Wolters et al. 2005), while the flipped perceptions survey was newly derived. Student letter grades were collected as a measure of achievement. Through regression analysis, it was found that students' perceptions of the flipped model positively predict students' use of several types of SRL strategies. However, the data did not indicate a relationship between student perceptions and achievement, neither directly nor indirectly, through SRL strategy use. Results suggest that flipped classrooms demonstrate their successes in the active learning sessions through constructivist teaching methods. Video lectures hold an important role in flipped classes, however, students may need to practice SRL skills to become more self-directed and effectively learn from them.

  14. Flipping around the classroom: Accelerated Bachelor of Science in Nursing students' satisfaction and achievement. (United States)

    El-Banna, Majeda M; Whitlow, Malinda; McNelis, Angela M


    The flipped classroom approach is based on shared responsibility for learning by students and teachers, and empowers students to take an active role in the learning process. While utilization of this approach has resulted in higher exam scores compared to traditional approaches in prior studies, the flipped classroom has not included learners in Accelerated Bachelor of Science in Nursing (ABSN) programs. To examine differences on exam scores and satisfaction of teaching between a 3-week flipped and traditional classroom approach. Mixed methods, crossover repeated measures design. Private school of nursing located in the eastern United States. 76 ABSN students. Two separate sections of a Pharmacology course received either 3-weeks of flipped or traditional classroom during Period 1, then switched approaches during Period 2. Two exam scores measuring knowledge and a questionnaire assessing satisfaction of teaching were collected. Focus groups were conducted to learn about students' experience in the flipped classroom. Descriptive statistics, Wilcoxon rank sum test, and stepwise linear mixed model were used to analyze quantitative data. Focus group data were transcribed, coded, and categorized in themes. Students in the flipped classroom achieved significantly higher scores on the first Pharmacology exam than students in the traditional classroom, but there was no significant difference on the second exam. Three themes emerged from focus groups on student perception of integrating the flipped approach: don't fix what isn't broken; treat me as an adult; and remember the work is overwhelming. Both traditional and flipped classroom approaches successfully prepared students for the Pharmacology exams. While results support the use of the flipped approach, judicious use of this instructional pedagogy with dense or difficult content, particularly in accelerated programs, is recommended. Instructors should also provide students with enough information and rationale for using

  15. Characteristics of magnetic resonance imaging with partial flip angle and gradient field echo

    International Nuclear Information System (INIS)

    Hamada, Tatsumi; Uto, Tatsurou; Okafuji, Tatsumasa; Ookusa, Akihiko; Oonishi, Takuya; Mabuchi, Nobuhisa; Fujii, Kouichi; Yoshioka, Hiroyasu; Ishida, Osamu


    Characteristics of a magnetic resonance (MR) imaging pulse sequence with short repetition time (Tr), short echo time (Te), partial flip angle and gradient field echo, at 0.5 T, were studied. A series of sagittal images of the cerebrospinal region was obtained with varied Tr, Te and flip angle, signal intensities were measured by means of a region of interest (ROI) function, and optimal parameters to achieve maximum tissue contrast were found. Of the parameters flip angle had the greatest effect on tissue contrast. Flip angles less than 20 or more than 60 degrees were necessary to discriminate between spinal cord and cerebrospinal fluid. So called MR myelography was obtained with the flip angle of 15 degrees. Opposed and inphase images were obtained at the Te levels of 21 and 28 ms, respectively. Likewise, a series of transverse images of the abdomen with short Tr, short Te and varied flip angles was obtained in a breath-holding interval, and signal intensities of ROIs were measured. Maximum intensities of the liver, the spleen and perirenal fat were obtained at the flip angles of 40, 30 and 60 degrees, respectively. Although maximum intensity was found at the flip angle of 30 degrees for both of the renal cortex and medulla, the maximum contrast between the two tissues was obtained at the flip angles of 50-60 degrees. The image contrast obtained by these pulse sequences was also theoretically predictable, and so it is thought possible that flip angle, Tr and Te are manipulated to yield a desired contrast. (author)

  16. Universal fingerprinting chip server. (United States)

    Casique-Almazán, Janet; Larios-Serrato, Violeta; Olguín-Ruíz, Gabriela Edith; Sánchez-Vallejo, Carlos Javier; Maldonado-Rodríguez, Rogelio; Méndez-Tenorio, Alfonso


    The Virtual Hybridization approach predicts the most probable hybridization sites across a target nucleic acid of known sequence, including both perfect and mismatched pairings. Potential hybridization sites, having a user-defined minimum number of bases that are paired with the oligonucleotide probe, are first identified. Then free energy values are evaluated for each potential hybridization site, and if it has a calculated free energy of equal or higher negative value than a user-defined free energy cut-off value, it is considered as a site of high probability of hybridization. The Universal Fingerprinting Chip Applications Server contains the software for visualizing predicted hybridization patterns, which yields a simulated hybridization fingerprint that can be compared with experimentally derived fingerprints or with a virtual fingerprint arising from a different sample. The database is available for free at

  17. Packaging commercial CMOS chips for lab on a chip integration. (United States)

    Datta-Chaudhuri, Timir; Abshire, Pamela; Smela, Elisabeth


    Combining integrated circuitry with microfluidics enables lab-on-a-chip (LOC) devices to perform sensing, freeing them from benchtop equipment. However, this integration is challenging with small chips, as is briefly reviewed with reference to key metrics for package comparison. In this paper we present a simple packaging method for including mm-sized, foundry-fabricated dies containing complementary metal oxide semiconductor (CMOS) circuits within LOCs. The chip is embedded in an epoxy handle wafer to yield a level, large-area surface, allowing subsequent photolithographic post-processing and microfluidic integration. Electrical connection off-chip is provided by thin film metal traces passivated with parylene-C. The parylene is patterned to selectively expose the active sensing area of the chip, allowing direct interaction with a fluidic environment. The method accommodates any die size and automatically levels the die and handle wafer surfaces. Functionality was demonstrated by packaging two different types of CMOS sensor ICs, a bioamplifier chip with an array of surface electrodes connected to internal amplifiers for recording extracellular electrical signals and a capacitance sensor chip for monitoring cell adhesion and viability. Cells were cultured on the surface of both types of chips, and data were acquired using a PC. Long term culture (weeks) showed the packaging materials to be biocompatible. Package lifetime was demonstrated by exposure to fluids over a longer duration (months), and the package was robust enough to allow repeated sterilization and re-use. The ease of fabrication and good performance of this packaging method should allow wide adoption, thereby spurring advances in miniaturized sensing systems.

  18. Injection molding of high precision optics for LED applications made of liquid silicone rubber

    International Nuclear Information System (INIS)

    Hopmann, Christian; Röbig, Malte


    Light Emitting Diodes (LED) conquer the growing global market of lighting technologies. Due to their advantages, they are increasingly used in consumer products, in lighting applications in the home and in the mobility sector as well as in industrial applications. Particularly, with regard to the increasing use of high-power LED (HP-LED) the materials in the surrounding area of the light emitting semiconductor chip are of utmost importance. While the materials behind the semiconductor chip are optimized for maximum heat dissipation, the materials currently used for the encapsulation of the semiconductor chip (primary optics) and the secondary optics encounter their limits due to the high temperatures. In addition certain amounts of blue UV radiation degrade the currently used materials such as epoxy resins or polyurethanes for primary optics. In the context of an ongoing joint research project with various partners from the industry, an innovative manufacturing method for high precision optics for LED applications made of liquid silicone rubber (LSR) is analyzed at the Institut of Plastics Processing (IKV), Aachen. The aim of this project is to utilize the material-specific advantages of high transparent LSR, especially the excellent high temperature resistance and the great freedom in design. Therefore, a high integrated injection molding process is developed. For the production of combined LED primary and secondary optics a LED board is placed in an injection mold and overmolded with LSR. Due to the integrated process and the reduction of subcomponents like the secondary optics the economics of the production process can be improved significantly. Furthermore combined LED optics offer an improved effectiveness, because there are no losses of the light power at the transition of the primary and secondary optics.

  19. Injection molding of high precision optics for LED applications made of liquid silicone rubber

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Christian; Röbig, Malte [Institute of Plastics Processing (IKV), RWTH Aachen University, Pontstraße 49, 52062 Aachen (Germany)


    Light Emitting Diodes (LED) conquer the growing global market of lighting technologies. Due to their advantages, they are increasingly used in consumer products, in lighting applications in the home and in the mobility sector as well as in industrial applications. Particularly, with regard to the increasing use of high-power LED (HP-LED) the materials in the surrounding area of the light emitting semiconductor chip are of utmost importance. While the materials behind the semiconductor chip are optimized for maximum heat dissipation, the materials currently used for the encapsulation of the semiconductor chip (primary optics) and the secondary optics encounter their limits due to the high temperatures. In addition certain amounts of blue UV radiation degrade the currently used materials such as epoxy resins or polyurethanes for primary optics. In the context of an ongoing joint research project with various partners from the industry, an innovative manufacturing method for high precision optics for LED applications made of liquid silicone rubber (LSR) is analyzed at the Institut of Plastics Processing (IKV), Aachen. The aim of this project is to utilize the material-specific advantages of high transparent LSR, especially the excellent high temperature resistance and the great freedom in design. Therefore, a high integrated injection molding process is developed. For the production of combined LED primary and secondary optics a LED board is placed in an injection mold and overmolded with LSR. Due to the integrated process and the reduction of subcomponents like the secondary optics the economics of the production process can be improved significantly. Furthermore combined LED optics offer an improved effectiveness, because there are no losses of the light power at the transition of the primary and secondary optics.

  20. STS-114 Space Shuttle Discovery Performs Back Flip For Photography (United States)


    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery's heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.