WorldWideScience

Sample records for led array illumination

  1. Uniform illumination rendering using an array of LEDs: a signal processing perspective

    NARCIS (Netherlands)

    Yang, Hongming; Bergmans, J.W.M.; Schenk, T.C.W.; Linnartz, J.P.M.G.; Rietman, R.

    2009-01-01

    An array of a large number of LEDs will be widely used in future indoor illumination systems. In this paper, we investigate the problem of rendering uniform illumination by a regular LED array on the ceiling of a room. We first present two general results on the scaling property of the basic

  2. Uniform illumination rendering using an array of LEDs: a signal processing perspective

    OpenAIRE

    Yang, Hongming; Bergmans, J.W.M.; Schenk, T.C.W.; Linnartz, J.P.M.G.; Rietman, R.

    2009-01-01

    An array of a large number of LEDs will be widely used in future indoor illumination systems. In this paper, we investigate the problem of rendering uniform illumination by a regular LED array on the ceiling of a room. We first present two general results on the scaling property of the basic illumination pattern, i.e., the light pattern of a single LED, and the setting of LED illumination levels, respectively. Thereafter, we propose to use the relative mean squared error as the cost function ...

  3. Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array.

    Science.gov (United States)

    Lee, Hsiao-Wen; Lin, Bor-Shyh

    2012-11-05

    LED flat panel light is an innovative lighting product in recent years. However, current flat panel light products still contain some drawbacks, such as narrow lighting areas and hot spots. In this study, a micro-secondary lens array technique was proposed and applied for the design of the light guide surface to improve the illumination uniformity. By using the micro-secondary lens array, the candela distribution of the LED flat panel light can be adjusted to similar to batwing distribution to improve the illumination uniformity. The experimental results show that the enhancement of the floor illumination uniformity is about 61%, and that of the wall illumination uniformity is about 20.5%.

  4. Investigation of illumination efficiency on the LED therapy with different array types

    Science.gov (United States)

    Chen, Hsi-Chao; Liou, Cheng-Jyun

    2009-08-01

    Light-emitting diodes (LEDs) are a major discovery in twenty-one century for its advantages including small size, long lifetime, low voltage, high response and good mechanical properties. It is an environment-friendly product and maybe becomes a lighting source in future. In the other way LED lighting also is used for the lighting source of cosmetology. LED phototherapy provided medicine with a new tool capable of delivering light deep into tissues of the body, at wavelengths that are biologically optimal for pain treatment and holistic healing. The illumination efficiency is one of the key indexes for the LED phototherapy. LEDs were arranged on a disk of diameter of 100mm with different array types: a radial, a rhombus, an octagon, and a square. Then the LEDs with view angle of 120 degree were used for the lighting sources. Trace-Pro software was used for the optical simulation. The array types of radial and square were better than those of rhombus and octagon for illumination efficiency. In the mixture efficiency of a radial array was observed by different distances from 1mm to 100mm. However lighting could reach the well mixture after the treatment distance of 30mm by optical simulation. The view angle could reach +/-60 degree at the treatment distance of 50 mm for the LED phototherapy mockup.

  5. Color Calibration for Colorized Vision System with Digital Sensor and LED Array Illuminator

    Directory of Open Access Journals (Sweden)

    Zhenmin Zhu

    2016-01-01

    Full Text Available Color measurement by the colorized vision system is a superior method to achieve the evaluation of color objectively and continuously. However, the accuracy of color measurement is influenced by the spectral responses of digital sensor and the spectral mismatch of illumination. In this paper, two-color vision system illuminated by digital sensor and LED array, respectively, is presented. The Polynomial-Based Regression method is applied to solve the problem of color calibration in the sRGB and CIE  L⁎a⁎b⁎ color spaces. By mapping the tristimulus values from RGB to sRGB color space, color difference between the estimated values and the reference values is less than 3ΔE. Additionally, the mapping matrix ΦRGB→sRGB has proved a better performance in reducing the color difference, and it is introduced subsequently into the colorized vision system proposed for a better color measurement. Necessarily, the printed matter of clothes and the colored ceramic tile are chosen as the application experiment samples of our colorized vision system. As shown in the experimental data, the average color difference of images is less than 6ΔE. It indicates that a better performance of color measurement is obtained via the colorized vision system proposed.

  6. Light-controlled microwave whispering-gallery-mode quasi-optical resonators at 50W LED array illumination

    Directory of Open Access Journals (Sweden)

    V. B. Yurchenko

    2015-08-01

    Full Text Available We present experimental observations of light-controlled resonance effects in microwave whispering-gallery-mode quasi-optical dielectric-semiconductor disk resonators in the frequency band of 5 GHz to 20 GHz arising due to illumination from a light emitting diode (LED of 50W power range. We obtain huge enhancement of photo-sensitivity (growing with the resonator Q-factor that makes light-microwave interaction observable with an ordinary light (no laser at conventional brightness (like an office lighting in quasi-optical microwave structures at rather long (centimeter-scale wavelength. We also demonstrate non-conventional photo-response of Fano resonances when the light suppresses one group of resonances and enhances another group. The effects could be used for the optical control and quasi-optical switching of microwave propagation through either one or another frequency channel.

  7. Freeform lens design for LED collimating illumination.

    Science.gov (United States)

    Chen, Jin-Jia; Wang, Te-Yuan; Huang, Kuang-Lung; Liu, Te-Shu; Tsai, Ming-Da; Lin, Chin-Tang

    2012-05-07

    We present a simple freeform lens design method for an application to LED collimating illumination. The method is derived from a basic geometric-optics analysis and construction approach. By using this method, a highly collimating lens with LED chip size of 1.0 mm × 1.0 mm and optical simulation efficiency of 86.5% under a view angle of ± 5 deg is constructed. To verify the practical performance of the lens, a prototype of the collimator lens is also made, and an optical efficiency of 90.3% with a beam angle of 4.75 deg is measured.

  8. Direct illumination LED calibration for telescope photometry

    International Nuclear Information System (INIS)

    Barrelet, E.; Juramy, C.

    2008-01-01

    A calibration method for telescope photometry, based on the direct illumination of a telescope with a calibrated light source regrouping multiple LEDs, is proposed. Its purpose is to calibrate the instrument response. The main emphasis of the proposed method is the traceability of the calibration process and a continuous monitoring of the instrument in order to maintain a 0.2% accuracy over a period of years. Its specificity is to map finely the response of the telescope and its camera as a function of all light ray parameters. This feature is essential to implement a computer model of the instrument representing the variation of the overall light collection efficiency of each pixel for various filter configurations. We report on hardware developments done for SNDICE, the first application of this direct illumination calibration system which will be installed in Canada France Hawaii telescope (CFHT) for its leading supernova experiment (SNLS)

  9. Uniform LED illuminator for miniature displays

    Science.gov (United States)

    Medvedev, Vladimir; Pelka, David G.; Parkyn, William A.

    1998-10-01

    The Total Internally Reflecting (TIR) lens is a faceted structure composed of prismatic elements that collect a source's light over a much larger angular range than a conventional Fresnel lens. It has been successfully applied to the efficient collimation of light from incandescent and fluorescent lamps, and from light-emitting diodes (LEDs). A novel LED-powered collimating backlight is presented here, for uniformly illuminating 0.25'-diagonal miniature liquid- crystal displays, which are a burgeoning market for pagers, cellular phones, digital cameras, camcorders, and virtual- reality displays. The backlight lens consists of a central dual-asphere refracting section and an outer TIR section, properly curved with a curved exit face.

  10. Open LED Illuminator: A Simple and Inexpensive LED Illuminator for Fast Multicolor Particle Tracking in Neurons

    Science.gov (United States)

    Bosse, Jens B.; Tanneti, Nikhila S.; Hogue, Ian B.; Enquist, Lynn W.

    2015-01-01

    Dual-color live cell fluorescence microscopy of fast intracellular trafficking processes, such as axonal transport, requires rapid switching of illumination channels. Typical broad-spectrum sources necessitate the use of mechanical filter switching, which introduces delays between acquisition of different fluorescence channels, impeding the interpretation and quantification of highly dynamic processes. Light Emitting Diodes (LEDs), however, allow modulation of excitation light in microseconds. Here we provide a step-by-step protocol to enable any scientist to build a research-grade LED illuminator for live cell microscopy, even without prior experience with electronics or optics. We quantify and compare components, discuss our design considerations, and demonstrate the performance of our LED illuminator by imaging axonal transport of herpes virus particles with high temporal resolution. PMID:26600461

  11. Open LED Illuminator: A Simple and Inexpensive LED Illuminator for Fast Multicolor Particle Tracking in Neurons.

    Directory of Open Access Journals (Sweden)

    Jens B Bosse

    Full Text Available Dual-color live cell fluorescence microscopy of fast intracellular trafficking processes, such as axonal transport, requires rapid switching of illumination channels. Typical broad-spectrum sources necessitate the use of mechanical filter switching, which introduces delays between acquisition of different fluorescence channels, impeding the interpretation and quantification of highly dynamic processes. Light Emitting Diodes (LEDs, however, allow modulation of excitation light in microseconds. Here we provide a step-by-step protocol to enable any scientist to build a research-grade LED illuminator for live cell microscopy, even without prior experience with electronics or optics. We quantify and compare components, discuss our design considerations, and demonstrate the performance of our LED illuminator by imaging axonal transport of herpes virus particles with high temporal resolution.

  12. Tolerancing a lens for LED uniform illumination

    Science.gov (United States)

    Ryu, Jieun; Sasian, Jose

    2017-08-01

    A method to evaluate tolerance sensitivities for lenses used to produce uniform illumination is presented. Closed form surfaces are used to define optical surfaces and relative illumination is calculated from light etendue considerations.

  13. Optimal LED-based illumination control via distributed convex optimization

    NARCIS (Netherlands)

    Aslam, Muhammad; Hermans, R.M.; Pandharipande, A.; Lazar, M.; Boje, Edward; Xia, Xiaohua

    2014-01-01

    Achieving illumination and energy consumption targets is essential in indoor lighting design. The provision of localized illumination to occupants, and the utilization of natural light and energy-efficient light-emitting diode (LED) luminaires can help meet both objectives. Localized illumination

  14. Energy efficient LED layout optimization for near-uniform illumination

    Science.gov (United States)

    Ali, Ramy E.; Elgala, Hany

    2016-09-01

    In this paper, we consider the problem of designing energy efficient light emitting diodes (LEDs) layout while satisfying the illumination constraints. Towards this objective, we present a simple approach to the illumination design problem based on the concept of the virtual LED. We formulate a constrained optimization problem for minimizing the power consumption while maintaining a near-uniform illumination throughout the room. By solving the resulting constrained linear program, we obtain the number of required LEDs and the optimal output luminous intensities that achieve the desired illumination constraints.

  15. Notes on LED Installations in Street Illumination

    Directory of Open Access Journals (Sweden)

    Elisabeta Spunei

    2014-09-01

    Full Text Available The paper presents a study made on choosing LED street lighting installations, such that the quality requirements for exterior artificial lighting are fulfilled. We analyze two types of LED street lighting installations from a technical point of view, together with lighting level and brightness values obtained during the measurements. Following on the field measurements, the lighting quality parameters are calculated, and, for the lighting installation with the best performance, optimal mounting suggestions are made. The optimal quality parameters are calculated by simulations using the Dialux software. The same software and the same light sources we also compute an optimal street lighting by determining the size of the installation that provides the best lighting parameter values.

  16. LED power consumption in joint illumination and communication system

    NARCIS (Netherlands)

    Deng, X.; Wu, Y.; Khalid, A.M.; Long, X.; Linnartz, J.-P.M.G.

    This paper addresses the power penalty in an illumination LED caused by visible light communication (VLC). This study models the extra power consumption of the LED by taking into account the convex relation between the dissipated electrical power versus the LED current on one hand and the concave

  17. Two-way visible light communication and illumination with LEDs

    NARCIS (Netherlands)

    Li, S.; Pandharipande, A.; Willems, F.M.J.

    2017-01-01

    Visible light communications (VLC) with light-emitting diodes (LEDs) has attracted applications, such as data communications, lighting control, and light interaction. In this paper, we propose a system by which two LED devices are used for two-way VLC while also providing illumination. We consider

  18. The possible ocular hazards of LED dental illumination applications.

    Science.gov (United States)

    Stamatacos, Catherine; Harrison, Janet L

    2013-01-01

    The use of high-intensity illumination via Light-Emitting Diode (LED) headlamps is gaining in popularity with dentists and student dentists. Practitioners are using LED headlamps together with magnifying loupes, overhead LED illumination and fiber-optic dental handpieces for long periods of time. Although most manufacturers of these LED illuminators advertise that their devices emit "white" light, these still consist of two spectral bands--the blue spectral band, with its peak at 445 nm, and the green with its peak at 555 nm. While manufacturers suggest that their devices emit "white" light, spectral components of LED lights from different companies are significantly different. Dental headlamp manufacturers strive to create a white LED, and they advertise that this type of light emitted from their product offers bright white-light illumination. However, the manufacturing of a white LED light is done through selection of a white LED-type based on the peak blue strength in combination with the green peak strength and thus creating a beam-forming optic, which determines the beam quality. Some LED illuminators have a strong blue-light component versus the green-light component. Blue-light is highly energized and is close in the color spectrum to ultraviolet-light. The hazards of retinal damage with the use of high-intensity blue-lights has been well-documented. There is limited research regarding the possible ocular hazards of usage of high-intensity illuminating LED devices. Furthermore, the authors have found little research, standards, or guidelines examining the possible safety issues regarding the unique dental practice setting consisting of the combined use of LED illumination systems. Another unexamined component is the effect of high-intensity light reflective glare and magnification back to the practitioner's eyes due to the use of water during dental procedures. Based on the result of Dr. Janet Harrison's observations of beginning dental students in a

  19. New reversing freeform lens design method for LED uniform illumination with extended source and near field

    Science.gov (United States)

    Zhao, Zhili; Zhang, Honghai; Zheng, Huai; Liu, Sheng

    2018-03-01

    In light-emitting diode (LED) array illumination (e.g. LED backlighting), obtainment of high uniformity in the harsh condition of the large distance height ratio (DHR), extended source and near field is a key as well as challenging issue. In this study, we present a new reversing freeform lens design algorithm based on the illuminance distribution function (IDF) instead of the traditional light intensity distribution, which allows uniform LED illumination in the above mentioned harsh conditions. IDF of freeform lens can be obtained by the proposed mathematical method, considering the effects of large DHR, extended source and near field target at the same time. In order to prove the claims, a slim direct-lit LED backlighting with DHR equal to 4 is designed. In comparison with the traditional lenses, illuminance uniformity of LED backlighting with the new lens increases significantly from 0.45 to 0.84, and CV(RMSE) decreases dramatically from 0.24 to 0.03 in the harsh condition. Meanwhile, luminance uniformity of LED backlighting with the new lens is obtained as high as 0.92 at the condition of extended source and near field. This new method provides a practical and effective way to solve the problem of large DHR, extended source and near field for LED array illumination.

  20. An overview of LED applications for general illumination

    Science.gov (United States)

    Pelka, David G.; Patel, Kavita

    2003-11-01

    This paper begins by reviewing the current state of development of LEDs, their existing markets as well as their potential for energy conservation and their potential for gaining market share in the general illumination market. It discusses LED metrics such as chip size, lumens per watt, thermal resistance, and the recommended maximum current rating. The paper then goes on to consider the importance of non-imaging optics for both optically efficient and extremely compact LED lighting systems. Finally, microstructures useful for controlling the fields-of-view of LED lighting systems are considered and described in some detail. An extremely efficient and cost effective microstructure, called kinoform diffusers, is shown to have very unique properties that make this technology almost ideal for shaping the output beams of LED lighting systems. It concludes by illustrating some general illumination LED lighting systems

  1. 'No blue' LED solution for photolithography room illumination

    DEFF Research Database (Denmark)

    Ou, Haiyan; Corell, Dennis Dan; Dam-Hansen, Carsten

    2010-01-01

    This paper explored the feasibility of using a LED-based bulb as the illumination light source for photolithography room. A no-blue LED was designed, and the prototype was fabricated. The spectral power distribution of both the LED bulb and the yellow fluorescent tube was measured. Based on that...... color rendering ability than the YFT. Furthermore, LED solution has design flexibility to improve it further. The prototype has been tested with photoresist SU8-2005. Even after 15 days of illumination, no effect was observed. So this LED-based solution was demonstrated to be a very promising light......, colorimetric values were calculated and compared on terms of chromatic coordinates, correlated color temperature, color rendering index, and chromatic deviation. Gretagmacbeth color charts were used as a more visional way to compare the two light sources, which shows that our no-blue LED bulb has much better...

  2. Infrared LED Array For Silicon Strip Detector Qualification

    CERN Document Server

    Dirkes, Guido; Hartmann, Frank; Heier, Stefan; Schwerdtfeger, Wolfgang; Waldschmitt, M; Weiler, K W; Weseler, Siegfried

    2003-01-01

    The enormous amount of silicon strip detector modules for the CMS tracker requires a test-sytem to allow qualification of each individual detector module and its front-end electronics within minutes. The objective is to test the detector with a physical signal. Signals are generated in the detector by illumination with lightpulses emitted by a LED at 950~nm and with a rise time of 10~ns. In order to avoid a detector moving, an array of 64 LEDs is used, overlaping the complete detector width. The total length of an array is 15~cm. The spot size of an individual LED is controlled by apertures to illuminate about 25 strips. Furthermore it is possible to simulate the high leakage current of irradiated sensors by constant illumination of the sensor. This provides an effective mean to identfy pinholes on a sensor.

  3. LED Uniform Illumination Using Double Linear Fresnel Lenses for Energy Saving

    Directory of Open Access Journals (Sweden)

    Ngoc Hai Vu

    2017-12-01

    Full Text Available We present a linear Fresnel lens design for light-emitting diode (LED uniform illumination applications. The LED source is an array of LEDs. An array of collimating lens is applied to collimate output from the LED array. Two linear Fresnel lenses are used to redistribute the collimated beam along two dimensions in the illumination area. Collimating lens and linear Fresnel lens surfaces are calculated by geometrical optics and nonimaging optics. The collimated beam output from the collimating lens array is divided into many fragments. Each fragment is refracted by a segment of Fresnel lens and distributed over the illumination area, so that the total beam can be distributed to the illumination target uniformly. The simulation results show that this design has a compact structure, high optical efficiency of 82% and good uniformity of 76.9%. Some consideration of the energy savings and optical performance are discussed by comparison with other typical light sources. The results show that our proposed LED lighting system can reduce energy consumption five-times in comparison to using a conventional fluorescent lamp. Our research is a strong candidate for low cost, energy savings for indoor and outdoor lighting applications.

  4. 130 LPW 1000 Lm Warm White LED for Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Soer, Wouter [Philips Lumileds Lighting Company LLC, San Jose, CA (United States)

    2012-12-21

    An illumination-grade warm-white LED, having correlated color temperature (CCT) between 2700 and 3500 K and capable of producing 1000 lm output at over 130 lm/W at room temperature, has been developed in this program. The high-power warm-white LED is an ideal source for use in indoor and outdoor lighting applications. Over the two year period, we have made the following accomplishments: • Developed a low-cost high-power white LED package and commercialized a series of products with CCT ranging from 2700 to 5700 K under the product name LUXEON M; • Demonstrated a record efficacy of 124.8 lm/W at a flux of 1023 lm, CCT of 3435 K and color rendering index (CRI) over 80 at room temperature in the productized package; • Demonstrated a record efficacy of 133.1 lm/W at a flux of 1015 lm, CCT of 3475 K and CRI over 80 at room temperature in an R&D package. The new high-power LED package is a die-on-ceramic surface mountable LED package. It has four 2 mm2 InGaN pump dice, flip-chip attached to a ceramic submount in a 2x2 array configuration. The submount design utilizes a design approach that combines a high-thermal- conductivity ceramic core for die attach and a low-cost and low-thermal-conductivity ceramic frame for mechanical support and as optical lens carrier. The LED package has a thermal resistance of less than 1.25 K/W. The white LED fabrication also adopts a new batch level (instead of die-by-die) phosphor deposition process with precision layer thickness and composition control, which provides not only tight color control, but also low cost. The efficacy performance goal was achieved through the progress in following key areas: (1) high-efficiency royal blue pump LED development through active region design and epitaxial growth quality improvement (funded by internal programs); (2) improvement in extraction efficiency from the LED package through improvement of InGaN-die-level and package-level optical extraction efficiency; and (3) improvement in phosphor

  5. Design of High Efficiency Illumination for LED Lighting

    OpenAIRE

    Chang, Yong-Nong; Cheng, Hung-Liang; Kuo, Chih-Ming

    2013-01-01

    A high efficiency illumination for LED street lighting is proposed. For energy saving, this paper uses Class-E resonant inverter as main electric circuit to improve efficiency. In addition, single dimming control has the best efficiency, simplest control scheme and lowest circuit cost among other types of dimming techniques. Multiple serial-connected transformers used to drive the LED strings as they can provide galvanic isolation and have the advantage of good current distribution against de...

  6. Anti-glare LED lamps with adjustable illumination light field.

    Science.gov (United States)

    Chen, Yung-Sheng; Lin, Chung-Yi; Yeh, Chun-Ming; Kuo, Chie-Tong; Hsu, Chih-Wei; Wang, Hsiang-Chen

    2014-03-10

    We introduce a type of LED light-gauge steel frame lamp with an adjustable illumination light field that does not require a diffusion plate. Base on the Monte Carlo ray tracing method, this lamp has a good glare rating (GR) of 17.5 at 3050 lm. Compared with the traditional LED light-gauge steel frame lamp (without diffusion plate), the new type has low GR. The adjustability of the illumination light field could improve the zebra effect caused by the inadequate illumination light field of the lamp. Meanwhile, we adopt the retinal image analysis to discuss the influence of GR on vision. High GR could reflect stray light on the retinal image, which will reduce vision clarity and hasten the feeling of eye fatigue.

  7. Occupancy-based illumination control of LED lighting systems

    NARCIS (Netherlands)

    Caicedo Fernandez, D.R.; Pandharipande, A.; Leus, G.

    2011-01-01

    Light emitting diode (LED)-based systems are considered to be the future of lighting. We consider the problem of energy-efficient illumination control of such systems. Energy-efficient system design is based on two aspects: localised information on occupancy and optimisation of dimming levels of the

  8. Design of High Efficiency Illumination for LED Lighting

    Directory of Open Access Journals (Sweden)

    Yong-Nong Chang

    2013-01-01

    Full Text Available A high efficiency illumination for LED street lighting is proposed. For energy saving, this paper uses Class-E resonant inverter as main electric circuit to improve efficiency. In addition, single dimming control has the best efficiency, simplest control scheme and lowest circuit cost among other types of dimming techniques. Multiple serial-connected transformers used to drive the LED strings as they can provide galvanic isolation and have the advantage of good current distribution against device difference. Finally, a prototype circuit for driving 112 W LEDs in total was built and tested to verify the theoretical analysis.

  9. Uniformity of LED light illumination in application to direct imaging lithography

    Science.gov (United States)

    Huang, Ting-Ming; Chang, Shenq-Tsong; Tsay, Ho-Lin; Hsu, Ming-Ying; Chen, Fong-Zhi

    2016-09-01

    Direct imaging has widely applied in lithography for a long time because of its simplicity and easy-maintenance. Although this method has limitation of lithography resolution, it is still adopted in industries. Uniformity of UV irradiance for a designed area is an important requirement. While mercury lamps were used as the light source in the early stage, LEDs have drawn a lot of attention for consideration from several aspects. Although LED has better and better performance, arrays of LEDs are required to obtain desired irradiance because of limitation of brightness for a single LED. Several effects are considered that affect the uniformity of UV irradiance such as alignment of optics, temperature of each LED, performance of each LED due to production uniformity, and pointing of LED module. Effects of these factors are considered to study the uniformity of LED Light Illumination. Numerical analysis is performed by assuming a serious of control factors to have a better understanding of each factor.

  10. Microfluidic mixing triggered by an external LED illumination.

    Science.gov (United States)

    Venancio-Marques, Anna; Barbaud, Fanny; Baigl, Damien

    2013-02-27

    The mixing of confined liquids is a central yet challenging operation in miniaturized devices. Microfluidic mixing is usually achieved with passive mixers that are robust but poorly flexible, or active mixers that offer dynamic control but mainly rely on electrical or mechanical transducers, which increase the fragility, cost, and complexity of the device. Here, we describe the first remote and reversible control of microfluidic mixing triggered by a light illumination simply provided by an external LED illumination device. The approach is based on the light-induced generation of water microdroplets acting as reversible stirrers of two continuous oil phase flows containing samples to be mixed. We demonstrate many cycles of reversible photoinduced transitions between a nonmixing behavior and full homogenization of the two oil phases. The method is cheap, portable, and adaptable to many device configurations, thus constituting an essential brick for the generation of future all-optofluidic chip.

  11. Improved illumination system of laparoscopes using an aspherical lens array.

    Science.gov (United States)

    Wu, Rengmao; Qin, Yi; Hua, Hong

    2016-06-01

    The current fiber-based illumination systems of laparoscopes are unable to uniformly illuminate a large enough area in abdomen due to the limited numerical aperture (NA) of the fiber bundle. Most energy is concentrated in a small region at the center of the illumination area. This limitation becomes problematic in laparoscopes which require capturing a wide field of view. In this paper, we propose an aspherical lens array which is used to direct the outgoing rays from the fiber bundle of laparoscope to produce a more uniformly illuminated, substantially larger field coverage than standalone fiber source. An intensity feedback method is developed to design the aspherical lens unit for extended non-Lambertian sources, which is the key to the design of this lens array. By this method, the lens unit is obtained after only one iteration, and the lens array is constructed by Boolean operation. Then, the ray-tracing technique is used to verify the design. Further, the lens array is fabricated and experimental tests are performed. The results clearly show that the well-illuminated area is increased to about 0.107m(2) from 0.02m(2) (about 5x larger than a standard fiber illumination source). More details of the internal organs can be clearly observed under this improved illumination condition, which also reflects the significant improvement in the optical performance of the laparoscope.

  12. Signal processing for LED lighting systems : illumination rendering and sensing

    NARCIS (Netherlands)

    Yang, H.

    2010-01-01

    Solid state lighting, employing high brightness light emitting diodes (LEDs), is becoming increasingly widely used. The advantages of LEDs include high radiative efficiency, long lifetime, limited heat generation and superior tolerance to humidity. Another important advantage of LED lighting systems

  13. Integrated LED/Imaging Illumination Panels Demonstrated within a Small Plant Growth Chamber Project

    Data.gov (United States)

    National Aeronautics and Space Administration — LED light sources are ideal for plant growth systems. However, commercially available multi-color LED illumination panels are designed and manufactured to produce a...

  14. Unidirectional visible light communication and illumination with LEDs

    NARCIS (Netherlands)

    Li, S.; Pandharipande, A.; Willems, F.M.J.

    2016-01-01

    Visible light communication (VLC) with light emitting diodes (LEDs) has attracted interest for interactive and networked lighting control, and consumer infotainment applications. In this paper, we propose an LED system for jointly achieving unidirectional VLC while providing flicker-free

  15. High Efficiency Driving Electronics for General Illumination LED Luminaires

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Anand

    2012-10-31

    New generation of standalone LED driver platforms developed, which are more efficient These LED Drivers are more efficient (≥90%), smaller in size ( 0.15 in3/watt), lower in cost ( 12 cents/watt in high volumes in millions of units). And these products are very reliable having an operating life of over 50,000 hours. This technology will enable growth of LED light sources in the use. This will also help in energy saving and reducing total life cycle cost of LED units. Two topologies selected for next generation of LED drivers: 1) Value engineered single stage Flyback topology. This is suitable for low powered LED drivers up to 50W power. 2) Two stage boost power factor correction (PFC) plus LLC half bridge platform for higher powers. This topology is suitable for 40W to 300W LED drivers. Three new product platforms were developed to cover a wide range of LED drivers: 1) 120V 40W LED driver, 2) Intellivolt 75W LED driver, & 3) Intellivolt 150W LED driver. These are standalone LED drivers for rugged outdoor lighting applications. Based on these platforms number of products are developed and successfully introduced in the market place meeting key performance, size and cost goals.

  16. Tomographic Particle Image Velocimetry using Pulsed, High Power LED Volume Illumination

    OpenAIRE

    Buchmann, N. A.; Willert, C.; Soria, J.

    2011-01-01

    This paper investigates the use of high-power light emitting diode (LED) illumination in Particle Image Velocimetry (PIV) as an alternative to traditional laser-based illumination. The solid-state LED devices can provide averaged radiant power in excess of 10W and by operating the LEDs with short current pulses, considerably higher than in continuous operation, light pulses of sufficient energy suitable for imaging micron-sized particles can be generated. The feasibility of this LED-based ill...

  17. Illumination sensing in LED lighting systems based on frequency-division multiplexing

    NARCIS (Netherlands)

    Yang, Hongming; Bergmans, J.W.M.; Schenk, T.C.W.

    2009-01-01

    Recently, light emitting diode (LED) based illumination systems have attracted considerable research interest. Such systems normally consist of a large number of LEDs. In order to facilitate the control of such high-complexity system, a novel signal processing application, namely illumination

  18. Wide-area SWIR arrays and active illuminators

    Science.gov (United States)

    MacDougal, Michael; Hood, Andrew; Geske, Jon; Wang, Chad; Renner, Daniel; Follman, David; Heu, Paula

    2012-01-01

    We describe the factors that go into the component choices for a short wavelength (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7°C. We have mated our InGaAs detector arrays to 640x512 readout integrated integrated circuits (ROICs) to make focal plane arrays (FPAs). In addition, we have fabricated high definition 1920x1080 FPAs for wide field of view imaging. The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 microns at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0°C. FLIR has also developed a high definition, 1920x1080, 15 um pitch SWIR sensor. In addition, FLIR has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, provide artifact-free imagery versus conventional laser illuminators.

  19. LEDs Illuminate Bulbs for Better Sleep, Wake Cycles

    Science.gov (United States)

    2015-01-01

    Life on the International Space Station (ISS) wreaks havoc on an astronaut’s biological rhythms, and one way NASA mitigates the problem is through the use of LED lighting to alternately stimulate energy and focus and induce relaxation. Satellite Beach, Florida-based Lighting Science partnered with Kennedy Space Center to commercialize an LED system designed for the ISS, resulting in its DefinityDigital product line of light bulbs now used in numerous homes, hotel chains, and resorts.

  20. The effect of LED illumination on endodontic biofilms

    DEFF Research Database (Denmark)

    Markvart, Merete

    Within endodontics photodynamic therapy (PDT) has been suggested as a disinfectant procedure during root canal treatment. A photoactive dye (photosensitizer), methylene blue or toluidine blue, are activated by a light source, usually lasers or light emitting diodes (LEDs), thereby forming free...

  1. Daylight integrated illumination control of LED systems based on enhanced presence sensing

    NARCIS (Netherlands)

    Pandharipande, A.; Caicedo Fernandez, D.R.

    2011-01-01

    Light emitting diodes (LEDs) are considered to become the dominant source of illumination in the future, offering long life times, energy efficiency and flexible tunability. The flexibility of adapting LED parameters offers multiple degrees of freedom in designing LED based lighting systems. In this

  2. Nano-LED array fabrication suitable for future single photon lithography

    International Nuclear Information System (INIS)

    Mikulics, M; Hardtdegen, H

    2015-01-01

    We report on an alternative illumination concept for a future lithography based on single-photon emitters and important technological steps towards its implementation. Nano light-emitting diodes (LEDs) are chosen as the photon emitters. First, the development of their fabrication and their integration technology is presented, then their optical characteristics assessed. Last, size-controlled nano-LEDs, well positioned in an array, are electrically driven and utilized for illumination. Nanostructures are lithographically formed, demonstrating the feasibility of the approach. The potential of single-photon lithography to reach the ultimate scale limits in mass production is discussed. (paper)

  3. Rectangular illumination using a secondary optics with cylindrical lens for LED street light.

    Science.gov (United States)

    Chen, Hsi-Chao; Lin, Jun-Yu; Chiu, Hsuan-Yi

    2013-02-11

    The illumination pattern of an LED street light is required to have a rectangular distribution at a divergence-angle ratio of 7:3 for economical illumination. Hence, research supplying a secondary optics with two cylindrical lenses was different from free-form curvature for rectangular illumination. The analytical solution for curvatures with different ratio rectangles solved this detail by light tracing and boundary conditions. Similarities between the experiments and the simulation for a single LED and a 9-LED module were analyzed by Normalized Cross Correlation (NCC), and the error rate was studied by the Root Mean Square (RMS). The tolerance of position must be kept under ± 0.2 mm in the x, y and z directions to ensure that the relative illumination is over 99%.

  4. Investigations on LED illumination for micro-PIV including a novel front-lit configuration

    DEFF Research Database (Denmark)

    Hagsäter, Melker; Bruus, Henrik; Kutter, Jörg Peter

    2008-01-01

    In this study, we provide a general investigation on micro-PIV with LED illumination. A number of improvements over previous LED-based systems are suggested, in particular, we present a novel front-lit configuration. As a demonstration of its versatility we have used this front-lit configuration...

  5. Communications and sensing of illumination contributins in a power LED lighting system

    NARCIS (Netherlands)

    Linnartz, J.P.M.G.; Feri, L.; Yang, Hongming; Colak, S.B.; Schenk, T.C.W.

    2008-01-01

    In recent years, LED technology emerged as a prime candidate for the future illumination light source, due to high energy efficiency and long life time. In addition, LEDs offer a superior flexibility in terms of colors and shapes, which leads to a potentially infinite variety of available light

  6. Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating.

    Science.gov (United States)

    Hu, Run; Luo, Xiaobing; Zheng, Huai; Qin, Zong; Gan, Zhiqiang; Wu, Bulong; Liu, Sheng

    2012-06-18

    A conformal phosphor coating can realize a phosphor layer with uniform thickness, which could enhance the angular color uniformity (ACU) of light-emitting diode (LED) packaging. In this study, a novel freeform lens was designed for simultaneous realization of LED uniform illumination and conformal phosphor coating. The detailed algorithm of the design method, which involves an extended light source and double refractions, was presented. The packaging configuration of the LED modules and the modeling of the light-conversion process were also presented. Monte Carlo ray-tracing simulations were conducted to validate the design method by comparisons with a conventional freeform lens. It is demonstrated that for the LED module with the present freeform lens, the illumination uniformity and ACU was 0.89 and 0.9283, respectively. The present freeform lens can realize equivalent illumination uniformity, but the angular color uniformity can be enhanced by 282.3% when compared with the conventional freeform lens.

  7. New illuminations approaches with single-use micro LEDs endoilluminators for the pars plana vitrectomy

    Science.gov (United States)

    Koelbl, Philipp Simon; Koch, Frank H. J.; Lingenfelder, Christian; Hessling, Martin

    2018-02-01

    The illumination of the intraocular space during pars plana vitrectomy always bears the risk of retina damage by irradiation. Conventional illumination systems consist of an external light source and an optical fiber to transfer the visible light (radiation) into the eye. Often xenon arc and halogen lamps are employed for this application with some disadvantageous properties like high phototoxicity and low efficiency. Therefore, we propose to generate the light directly within the eye by inserting a white micro LED with a diameter of 0.6 mm. The LED offers a luminous flux of 0.6 lm of white light with a blue peak @ 450 nm and a yellow peak @ 555 nm. The presented prototypes fit through a standard 23 G trocar and are the first intraocular light sources worldwide. Two different single-use approaches have already been developed: a handguided and a chandelier device. The hand-guided applicator enables a directly navigation and illumination up to a working distance of 6 mm. The chandelier device is much smaller and does not need an active navigation of the light cone. The brightness and homogeneity of the illumination of these LED devices have been successfully tested on porcine eyes. Presented measurements and calculations prove that even for high LED currents and small distances to the retina these intraocular micro LED devices expose the retina to less hazard than conventional illumination sources like fiber based xenon systems. Even under the worst circumstances application durations of 180 hours would be justifiable.

  8. Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting.

    Science.gov (United States)

    Tsuei, Chih-Hsuan; Sun, Wen-Shing; Kuo, Chien-Cheng

    2010-11-08

    A hybrid method for using sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting is simulated and presented in this study. We can illuminate an indoor space and collect the solar energy using an optical switching system. When the system is turned off, the full spectrum of the sunlight is concentrated by a concentrator, to be absorbed by solar photovoltaic devices that provide the electricity to power the LEDs. When the system is turned on, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The visible rays pass through the light guide into a light box where it is mixed with LED light to ultimately provide uniform illumination by a diffuser. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. Simulation results show that the efficiency of the hybrid sunlight/LED illumination with the renewable solar energy saving design is better than that of LED and traditional lighting systems.

  9. Colour differences in Caucasian and Oriental women's faces illuminated by white LED sources.

    Science.gov (United States)

    Melgosa, M; Richard, N; Fernández-Maloigne, C; Xiao, K; de Clermont-Gallerande, H; Jost-Boissard, S; Okajima, K

    2018-04-10

    To provide an approach to facial contrast, analysing CIELAB colour differences (ΔE* ab,10 ) and its components in women's faces from two different ethnic groups, illuminated by modern white light-emitting diodes (LEDs) or traditional illuminants recommended by the International Commission on Illumination (CIE). We performed spectrophotometric measurements of spectral reflectance factors on forehead and cheek of 87 young healthy women (50 Caucasians and 37 Orientals), plus 5 commercial red lipsticks. We considered a set of 10 white LED illuminants, representative of technologies currently available on the market, plus 8 main illuminants currently recommended by the CIE, representative of conventional incandescent, daylight, and fluorescent light sources. Under each of these 18 illuminants we analysed the magnitude and components of ΔE* ab,10 between Caucasian and Oriental women (considering cheek and forehead), as well as for cheek-forehead and cheek-lipsticks in Caucasian and Oriental women. Colour-inconstancy indices for cheek, forehead, and lipsticks were computed, assuming D65 and A as reference illuminants. ΔE* ab,10 between forehead and cheek were quantitatively and qualitatively different in Orientals and Caucasians, but discrepancies with respect to average values for 18 illuminants were small (1.5% and 5.0% for Orientals and Caucasians, respectively). ΔE* ab,10 between Caucasians and Orientals were also quantitatively and qualitatively different both for forehead and cheek, and discrepancies with respect to average values were again small (1.0% and 3.9% for forehead and cheek, respectively). ΔE* ab,10 between lipsticks and cheek were at least 2 times higher than those between forehead and cheek. Regarding ΔE* ab,10 between lipsticks and cheeks, discrepancies with respect to average values were in the range 1.5% - 12.3%, although higher values of up to 54.2% were found for a white RGB LED. This white RGB LED provided the highest average colour

  10. Energy-Saving Tunnel Illumination System Based on LED's Intelligent Control

    International Nuclear Information System (INIS)

    Guo Shanshan; Wu Lan; Gu Hanting; Jiang Shuixiu

    2011-01-01

    At present there is a lot of electric energy wastage in tunnel illumination, whose design is based on the maximum brightness outside and the maximum vehicle speed all year round. LED's energy consumption is low, and the control of its brightness is simple and effective. It can be quickly adjusted between 0-100% of its maximum brightness, and will not affect the service life. Therefore, using LED as tunnel's illumination source, we can achieve a good energy saving effect. According to real-time data acquisition of vehicle speed, traffic flow and brightness outside the tunnel, the auto real-time control of tunnel illumination can be achieved. And the system regulated the LED luminance by means of combination of LED power module and intelligent control module. The tunnel information was detected by inspection equipments, which included luminometer, vehicle detector, and received by RTU(Remote Terminal Unit), then synchronously transmitted to PC. After data processing, RTU emitted the dimming signal to the LED driver to adjust the brightness of LED. Despite the relatively high cost of high-power LED lights, the enormous energy-saving effect and the well-behaved controllability is beyond compare to other lighting devices.

  11. Application of Wireless Intelligent Control System for HPS Lamps and LEDs Combined Illumination in Road Tunnel

    Science.gov (United States)

    Lai, Jinxing; Qiu, Junling; Chen, Jianxun; Wang, Yaqiong; Fan, Haobo

    2014-01-01

    Because of the particularity of the environment in the tunnel, the rational tunnel illumination system should be developed, so as to optimize the tunnel environment. Considering the high cost of traditional tunnel illumination system with high-pressure sodium (HPS) lamps as well as the effect of a single light source on tunnel entrance, the energy-saving illumination system with HPS lamps and LEDs combined illumination in road tunnel, which could make full use of these two kinds of lamps, was proposed. The wireless intelligent control system based on HPS lamps and LEDs combined illumination and microcontrol unit (MCU) Si1000 wireless communication technology was designed. And the remote monitoring, wireless communication, and PWM dimming module of this system were designed emphatically. Intensity detector and vehicle flow detector can be configured in wireless intelligent control system, which gather the information to the master control unit, and then the information is sent to the monitoring center through the Ethernet. The control strategies are got by the monitoring center according to the calculated results, and the control unit wirelessly sends parameters to lamps, which adjust the luminance of each segment of the tunnel and realize the wireless intelligent control of combined illumination in road tunnel. PMID:25587266

  12. Vision communications based on LED array and imaging sensor

    Science.gov (United States)

    Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.

  13. Observed Minimum Illuminance Threshold for Night Market Vendors in Kenya who use LED Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, Peter; Jacobson, Arne; Mills, Evan; Radecsky, Kristen

    2009-03-21

    Creation of light for work, socializing, and general illumination is a fundamental application of technology around the world. For those who lack access to electricity, an emerging and diverse range of LED based lighting products hold promise for replacing and/or augmenting their current fuel-based lighting sources that are costly and dirty. Along with analysis of environmental factors, economic models for total cost-ofownership of LED lighting products are an important tool for studying the impacts of these products as they emerge in markets of developing countries. One important metric in those models is the minimum illuminance demanded by end-users for a given task before recharging the lamp or replacing batteries. It impacts the lighting service cost per unit time if charging is done with purchased electricity, batteries, or charging services. The concept is illustrated in figure 1: LED lighting products are generally brightest immediately after the battery is charged or replaced and the illuminance degrades as the battery is discharged. When a minimum threshold level of illuminance is reached, the operational time for the battery charge cycle is over. The cost to recharge depends on the method utilized; these include charging at a shop at a fixed price per charge, charging on personal grid connections, using solar chargers, and purchasing dry cell batteries. This Research Note reports on the observed"charge-triggering" illuminance level threshold for night market vendors who use LED lighting products to provide general and task oriented illumination. All the study participants charged with AC power, either at a fixed-price charge shop or with electricity at their home.

  14. Side-emitting high-power LEDs and their application in illumination

    Science.gov (United States)

    West, Robert S.

    2002-11-01

    Due to the rapid increase in flux performance from High Power LED's, illumination is an exciting growth market for solid state lighting. Today a white LED is 100+ Lm per device. This is approximately an order of magnitude below the kLm metric used for illumination applications. The radiation pattern from the LED is key in increasing the usable flux resulting in improved systems optical performance. This advancement in radiation pattern will allow new market opportunities, which were not yet feasible. In the future this effect of usable lumens will become more important as the flux per package increases. The radiation pattern of the LEDs can be controlled to optimize performance, appearance, and shape of the secondary optics. This advantage is unique to LEDs and can greatly improve system performance, control, and cosmetic appeal for the application. This paper will review the side emitting lens design, the integrated performance of this technology to secondary optics and how the Luxeon side emitter enables improved performance by creating more useable lumens.

  15. "Light-box" accelerated growth of poinsettias: LED-only illumination

    Science.gov (United States)

    Weerasuriya, Charitha; Detez, Stewart; Hock Ng, Soon; Hughes, Andrew; Callaway, Michael; Harrison, Iain; Katkus, Tomas; Juodkazis, Saulius

    2018-01-01

    For the current commercialized agricultural industry which requires a reduced product lead time to customer and supply all year round, an artificial light emitting diodes (LEDs)-based illumination has high potential due to high efficiency of electrical-to-light conversion. The main advantage of the deployed Red Green Blue Amber LED lighting system is colour mixing capability, which means ability to generate all the colours in the spectrum by using three or four primary colours LEDs. The accelerated plant growth was carried out in a "light-box" which was made to generate an artificial day/night cycle by moving the colour mixing ratio along the colour temperature curve of the chromaticity diagram. The control group of plants form the same initial batch was grown on the same shelf in a greenhouse at the same conditions with addition of artificial illumination by incandescent lamps for few hours. Costs and efficiency projections of LED lamps for horticultural applications is discussed together with required capital investment. The total cost of the "light-box" including LED lamps and electronics was 850 AUD.

  16. DMD-based LED-illumination super-resolution and optical sectioning microscopy.

    Science.gov (United States)

    Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei

    2013-01-01

    Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×10(7) pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens.

  17. Temperature increase inside LED-based illuminators for in vitro aPDT photodamage studies

    Science.gov (United States)

    Battisti, A.; Morici, P.; Tortora, G.; Menciassi, A.; Checcucci, G.; Ghetti, F.; Sgarbossa, A.

    2018-06-01

    Antimicrobial PhotoDynamic Therapy (aPDT) is an emerging strategy aimed at the eradication of bacterial infections, with a special focus on antibiotic-resistant bacteria. This method is easy to apply, not expensive and particularly interesting in case of bacteria that spontaneously produce the required photosensitizers. In the framework of a project aimed at the development of an ingestible pill for the application of aPDT to gastric infections by Helicobacter pylori, a LED-based illuminating prototype (LED-BIP) was purposely designed in order to evaluate the photodamage induced by light of different wavelengths on porphyrin-producing bacteria. This short paper reports about temperature tests performed to assess the maximum exposure time and light dose that can be administered to bacterial cultures inside LED-BIP without reaching temperatures exceeding the physiological range.

  18. Micro-light-emitting-diode array with dual functions of visible light communication and illumination

    International Nuclear Information System (INIS)

    Huang Yong; Guo Zhi-You; Sun Hui-Qing; Huang Hong-Yong

    2017-01-01

    We demonstrate high-speed blue 4 × 4 micro-light-emitting-diode (LED) arrays with 14 light-emitting units (two light-emitting units are used as the positive and negative electrodes for power supply, respectively) comprising multiple quantum wells formed of GaN epitaxial layers grown on a sapphire substrate, and experimentally test their applicability for being used as VLC transmitters and illuminations. The micro-LED arrays provide a maximum −3-dB frequency response of 60.5 MHz with a smooth frequency curve from 1 MHz to 500 MHz for an optical output power of 165 mW at an injection current of 30 mA, which, to our knowledge, is the highest response frequency ever reported for blue GaN-based LEDs operating at that level of optical output power. The relationship between the frequency and size of the device single pixel diameter reveals the relationship between the response frequency and diffusion capacitance of the device. (paper)

  19. Inactivation and changes in metabolic profile of selected foodborne bacteria by 460 nm LED illumination.

    Science.gov (United States)

    Kumar, Amit; Ghate, Vinayak; Kim, Min-Jeong; Zhou, Weibiao; Khoo, Gek Hoon; Yuk, Hyun-Gyun

    2017-05-01

    The objective of this study was to investigate the effect of 460 nm light-emitting diode (LED) on the inactivation of foodborne bacteria. Additionally, the change in the endogenous metabolic profile of LED illuminated cells was analyzed to understand the bacterial response to the LED illumination. Six different species of bacteria (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, Pseudomonas aeruginosa and Salmonella Typhimurium) were illuminated with 460 nm LED to a maximum dose of 4080 J/cm 2 at 4, 10 and 25 °C. Inactivation curves were modeled using Hom model. Metabolic profiling of the non-illuminated and illuminated cells was performed using a Liquid chromatography-mass spectrometry system. Results indicate that the 460 nm LED significantly (p illuminated cells indicated that several metabolites e.g. 11-deoxycortisol, actinonin, coformycin, tyramine, chitobiose etc. were regulated during LED illumination. These results elucidate the effectiveness of 460 nm LED against foodborne bacteria and hence, its suitability as a novel antimicrobial control method to ensure food safety. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens.

    Science.gov (United States)

    Brazaitytė, Aušra; Sakalauskienė, Sandra; Samuolienė, Giedrė; Jankauskienė, Julė; Viršilė, Akvilė; Novičkovas, Algirdas; Sirtautas, Ramūnas; Miliauskienė, Jurga; Vaštakaitė, Viktorija; Dabašinskas, Laurynas; Duchovskis, Pavelas

    2015-04-15

    The objective of this study was to evaluate the effects of irradiance levels and spectra produced by solid-state light-emitting diodes (LEDs) on carotenoid content and composition changes in Brassicaceae microgreens. A system of five high-power, solid-state lighting modules with standard 447-, 638-, 665-, and 731-nm LEDs was used in the experiments. Two experiments were performed: (1) evaluation of LED irradiance levels of 545, 440, 330, 220, and 110 μmol m(-2) s(-1) photosynthetically active flux density (PPFD) and (2) evaluation of the effects of 520-, 595-, and 622-nm LEDs supplemental to the standard set of LEDs. Concentrations of various carotenoids in red pak choi and tatsoi were higher under illumination of 330-440 μmol m(-2) s(-1) and at 110-220 μmol m(-2) s(-1) in mustard. All supplemental wavelengths increased total carotenoid content in mustard but decreased it in red pak choi. Carotenoid content increased in tatsoi under supplemental yellow light. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Supplemental Blue LED Lighting Array to Improve the Signal Quality in Hyperspectral Imaging of Plants

    Directory of Open Access Journals (Sweden)

    Anne-Katrin Mahlein

    2015-06-01

    Full Text Available Hyperspectral imaging systems used in plant science or agriculture often have suboptimal signal-to-noise ratio in the blue region (400–500 nm of the electromagnetic spectrum. Typically there are two principal reasons for this effect, the low sensitivity of the imaging sensor and the low amount of light available from the illuminating source. In plant science, the blue region contains relevant information about the physiology and the health status of a plant. We report on the improvement in sensitivity of a hyperspectral imaging system in the blue region of the spectrum by using supplemental illumination provided by an array of high brightness light emitting diodes (LEDs with an emission peak at 470 nm.

  2. Photoprotection and photoreception of intraocular lenses under xenon and white LED illumination.

    Science.gov (United States)

    Artigas, J M; Navea, A; García-Domene, M C; Artigas, C; Lanzagorta, A

    2016-05-01

    To analyze the photoprotection and phototransmission that various intraocular lenses (IOLs) provide under the illumination of a xenon (Xe) lamp and white LEDs (light emitting diode). The spectral transmission curves of six representative IOLs were measured using a Perkin-Elmer Lambda 35 UV/VIS spectrometer. Various filtering simulations were performed using a Xe lamp and white LEDs. The spectral emissions of these lamps were measured with an ILT-950 spectroradiometer. The IOLs analyzed primarily show transmission of nearly 100% in the visible spectrum. In the ultraviolet (UV) region, the filters incorporated in the various IOLs did not filter equally, and some of them let an appreciable amount of UV through. The Xe lamp presented a strong emission of ultraviolet A (UVA), and its emission under 300nm was not negligible. The white LED did not present an appreciable emission under 380nm. The cut-off wavelength of most filters is between 380 and 400nm (Physiol Hydriol60C(®), IOLTECH E4T(®), Alcon SA60AT(®), Alcon IQ SN60WF(®)), so that their UV protection is very effective. Nonetheless, the IOL OPHTEC Oculaid(®) contains a filter that, when a Xe lamp is used, lets through up to 20% for 350nm and up to 15% for 300nm, which at this point is ultraviolet B (UVB). The OPHTEC(®) Artisan IOL has a transmission peak below 300nm, which must be taken into account under Xe illumination. White LEDs do not emit energy below 380nm, so no special protection is required in the UV region. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Aerial LED signage by use of crossed-mirror array

    Science.gov (United States)

    Yamamoto, Hirotsugu; Kujime, Ryousuke; Bando, Hiroki; Suyama, Shiro

    2013-03-01

    3D representation of digital signage improves its significance and rapid notification of important points. Real 3D display techniques such as volumetric 3D displays are effective for use of 3D for public signs because it provides not only binocular disparity but also motion parallax and other cues, which will give 3D impression even people with abnormal binocular vision. Our goal is to realize aerial 3D LED signs. We have specially designed and fabricated a reflective optical device to form an aerial image of LEDs with a wide field angle. The developed reflective optical device composed of crossed-mirror array (CMA). CMA contains dihedral corner reflectors at each aperture. After double reflection, light rays emitted from an LED will converge into the corresponding image point. The depth between LED lamps is represented in the same depth in the floating 3D image. Floating image of LEDs was formed in wide range of incident angle with a peak reflectance at 35 deg. The image size of focused beam (point spread function) agreed to the apparent aperture size.

  4. Tunable output-frequency filter algorithm for imaging through scattering media under LED illumination

    Science.gov (United States)

    Zhou, Meiling; Singh, Alok Kumar; Pedrini, Giancarlo; Osten, Wolfgang; Min, Junwei; Yao, Baoli

    2018-03-01

    We present a tunable output-frequency filter (TOF) algorithm to reconstruct the object from noisy experimental data under low-power partially coherent illumination, such as LED, when imaging through scattering media. In the iterative algorithm, we employ Gaussian functions with different filter windows at different stages of iteration process to reduce corruption from experimental noise to search for a global minimum in the reconstruction. In comparison with the conventional iterative phase retrieval algorithm, we demonstrate that the proposed TOF algorithm achieves consistent and reliable reconstruction in the presence of experimental noise. Moreover, the spatial resolution and distinctive features are retained in the reconstruction since the filter is applied only to the region outside the object. The feasibility of the proposed method is proved by experimental results.

  5. The study of LED light source illumination conditions for ideal algae cultivation

    Science.gov (United States)

    Tsai, Chun-Chin; Huang, Chien-Fu; Chen, Cin-Fu; Yue, Cheng-Feng

    2017-02-01

    Utilizing LED light source modules with 3 different RGB colors, the illumination effect of different wavelengths had been investigated on the growth curve of the same kind of micro algae. It was found that the best micro algae culturing status came out with long wavelength light such as red light (650 670 nm). Based on the same condition for a period of 3 weeks , the grown micro algae population density ratio represented by Optical Density (O.D.) ratio is 1?0.4?0.7 corresponding to growth with Red, Green, Blue light sources, respectively. Mixing 3 types and 2 types of LEDs with different parameters, the grown micro algae population densities were compared in terms of O.D. Interestingly enough, different light sources resulted in significant discoloration on micro algae growth, appearing yellow, brown, green, etc. Our experiments results showed such discoloration effect is reversible. Based on the same lighting condition, micro algae growth can be also affected by incubator size, nutrition supply, and temperature variation. In recent years, micro algae related technologies have been international wise a hot topic of energy and environmental protection for research and development institutes, and big energy companies among those developed countries. There will be an economically prosperous future. From this study of LED lighting to ideal algae cultivation, it was found that such built system would be capable of optimizing artificial cultivation system, leading to economic benefits for its continuous development. Since global warming causing weather change, accompanying with reducing energy sources and agriculture growth shortage are all threatening human being survival.

  6. P1-15: Categorical Color Perception of LED Illuminant Color for Deuteranomals

    Directory of Open Access Journals (Sweden)

    Saeko Oishi

    2012-10-01

    Full Text Available Color information has great value in our everyday lives, but it is not mindful of people with color vision deficiency (CVD. We can choose several color names to categorize a lot of colors around us. Eleven color names (white, black, red, green, yellow, blue, brown, orange, pink, and gray are known as basic color categories, but people with CVD cannot necessarily describe colors as people who are color vision normal (CVN do. Previous studies showed that it was hard for people with CVD to discriminate illuminant color from object color, and their color perception changed largely depending on experimental conditions. In this study we investigated categorical color perception of illuminant color for deuteranomals, using a mixture of light which consists of a red, a green, and a blue LED as a test stimulus. We tested those stimuli with three luminance levels (180 cd/m2, 18 cd/m2, 1.8 cd/m2 and two visual angles (10 deg, 0.5 deg. Subjects were three deuteranomals and three people who are CVN. Our result showed that the categorical color of mild deuteranomals was similar to that of those who were CVN, but that of severe deuteranomals was not. Severe deuteranomals judged more low chromatic colors as achromatic colors than those who were CVN. The smaller visual angle or lower luminance level the test stimulus had, the more deuteranomals confused color. The results suggest that the effect of the Bezold-Brucke phenomenon is greater to deuteranomals than to those who are CVN. Furthermore, deuteranomals use not only chromatic information but also luminance information when they describe color.

  7. Low-Light-Level InGaAs focal plane arrays with and without illumination

    Science.gov (United States)

    Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David

    2010-04-01

    Short wavelength IR imaging using InGaAs-based FPAs is shown. Aerius demonstrates low dark current in InGaAs detector arrays with 15 μm pixel pitch. The same material is mated with a 640x 512 CTIA-based readout integrated circuit. The resulting FPA is capable of imaging photon fluxes with wavelengths between 1 and 1.6 microns at low light levels. The mean dark current density on the FPAs is extremely low at 0.64 nA/cm2 at 10°C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling (CDS). In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide speckle-free illumination, provide artifact-free imagery versus conventional laser illuminators.

  8. Analysis of the transient response of LED-illuminated diodes under heavy radiation damage

    CERN Document Server

    Passeri, D; Bilei, G M; Casse, G L; Lemeilleur, F

    2000-01-01

    The changes of the electrical properties induced by hadron irradiation on silicon detectors have been studied by using the device level simulator HFIELDS. The model of the radiation damage assumes the introduction of radiation-induced acceptor and donor "deep-levels". The electric field profile and the space charge region extension have been calculated for differently irradiated structures. The simulation has been carried out at different biases in order to study the evolution of the space charge region of irradiated detectors as a function of the applied voltages, below and above the full depletion. The time-dependent current responses and the charge collection properties of the structure illuminated by a red LED light have been calculated. The use of the red light results in a shallow (quasi-surface) generation of e-h pairs in silicon, which has been properly taken into account by the simulation. The results of the simulations have been compared to experimental measurements carried out at CERN on samples ir...

  9. MECHANISMS OF MELATONIN EFFECTS UPON IMMUNE STATE IN EXPERIMENTAL DESYNCHRONOSES PRODUCED UNDER THE LED ILLUMINATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    M. V. Osikov

    2015-01-01

    Full Text Available Disorders of immune state in desynchronosis may be associated with reduced concentrations of melatonin in blood, thus being a prerequisite for pharmacological correction of appropriate homeostatic changes. The purpose of this work was to explore some mechanisms of exogenous melatonin actions upon parameters of innate and adaptive immunity in experimental model of desynchronosis under the conditions of LED illumination. The study was performed with 196 adult guinea pigs. Light desynchronosis was produced by day-and-night illumination of the animals having been continued for 30 days. Melatonin was administered applied per os daily at the total dose of 30 mg/kg. A solution of melatonin in isotonic NaCl solution was prepared from the Melaxen drug (INN: melatonin, “Unipharm Inc.,” USA ex tempore. To study innate immunity of blood cells, we determined leukocyte numbers, WBC differential counts, and functional activity of phagocytes, as spontaneous and induced NBT test, as well as engulfment of polystyrene latex particles. Th1-specific immune response was studied according to degree of delayed type hypersensitivity reaction; Th2-dependent response was assessed as the numbers of antibody-forming cells in the spleen of the animals after immunization with allogeneic erythrocytes. Serum concentrations of interleukin 4 (IL-4, interferon-gamma (IFNγ, melatonin, and cortisol were measured by enzyme immunoassay, using the “Immulayt 2000” (USA with guinea pigspecific test systems. It was found that experimental desynchronosis was associated with leukocytosis, lymphoand monocytopenia, activation of oxygen-dependent metabolism of blood phagocytes, suppression of Th1-and Th2-dependent immune response. Desynchronosis was also accompanied by decreased concentrations of serum melatonin, IFNγ and IL-4, along with increased cortisol concentrations. Reduced IFNγ and IL-4 amounts was associated with decreased melatonin concentrations

  10. Measuring the electromagnetic chirality of 2D arrays under normal illumination.

    Science.gov (United States)

    Garcia-Santiago, X; Burger, S; Rockstuhl, C; Fernandez-Corbaton, I

    2017-10-15

    We present an electromagnetic chirality measure for 2D arrays of subwavelength periodicities under normal illumination. The calculation of the measure uses only the complex reflection and transmission coefficients from the array. The measure allows the ordering of arrays according to their electromagnetic chirality, which further allows a quantitative comparison of different design strategies. The measure is upper bounded, and the extreme properties of objects with high values of electromagnetic chirality make them useful in both near- and far-field applications. We analyze the consequences that different possible symmetries of the array have on its electromagnetic chirality. We use the measure to study four different arrays. The results indicate the suitability of helices for building arrays of high electromagnetic chirality, and the low effectiveness of a substrate for breaking the transverse mirror symmetry.

  11. Photoreceptor spectral sensitivity of the compound eyes of black soldier fly (Hermetia illucens) informing the design of LED-based illumination to enhance indoor reproduction.

    Science.gov (United States)

    Oonincx, D G A B; Volk, N; Diehl, J J E; van Loon, J J A; Belušič, G

    2016-12-01

    Mating in the black soldier fly (BSF) is a visually mediated behaviour that under natural conditions occurs in full sunlight. Artificial light conditions promoting mating by BSF were designed based on the spectral characteristics of the compound eye retina. Electrophysiological measurements revealed that BSF ommatidia contained UV-, blue- and green-sensitive photoreceptor cells, allowing trichromatic vision. An illumination system for indoor breeding based on UV, blue and green LEDs was designed and its efficiency was compared with illumination by fluorescent tubes which have been successfully used to sustain a BSF colony for five years. Illumination by LEDs and the fluorescent tubes yielded equal numbers of egg clutches, however, the LED illumination resulted in significantly more larvae. The possibilities to optimize the current LED illumination system to better approximate the skylight illuminant and potentially optimize the larval yield are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Design Secondary Optical System Applied in White-LED General Illumination

    International Nuclear Information System (INIS)

    Chen Chen; Zhang Xianhui

    2011-01-01

    As a new generation of light source, LED has many advantages that other light sources do not have. However, due to the nonuniform lighting of LED, secondary LED optical system design is particularly important. Freeform surface tailoring method, an important method of lighting design, establishes a light intensity change model after smooth surface refraction (reflection) of the light and simplifies the solution process for more complex issues of solution using the free surface tailoring method. Based on this method, secondary LED optical system is designed, and the light intensity distribution is simulated after LED light passes through the secondary optical system. The results show that the method has not only simplified the calculation process of the free surface tailoring method, but also the designed LED secondary optical system has achieved the purpose of uniform lighting to a certain degree.

  13. High-aggregate-capacity visible light communication links using stacked multimode polymer waveguides and micro-pixelated LED arrays

    Science.gov (United States)

    Bamiedakis, N.; McKendry, J. J. D.; Xie, E.; Gu, E.; Dawson, M. D.; Penty, R. V.; White, I. H.

    2018-02-01

    In recent years, light emitting diodes (LEDs) have gained renewed interest for use in visible light communication links (VLC) owing to their potential use as both high-quality power-efficient illumination sources as well as low-cost optical transmitters in free-space and guided-wave links. Applications that can benefit from their use include optical wireless systems (LiFi and Internet of Things), in-home and automotive networks, optical USBs and short-reach low-cost optical interconnects. However, VLC links suffer from the limited LED bandwidth (typically 100 MHz). As a result, a combination of novel LED devices, advanced modulation formats and multiplexing methods are employed to overcome this limitation and achieve high-speed (>1 Gb/s) data transmission over such links. In this work, we present recent advances in the formation of high-aggregate-capacity low cost guided wave VLC links using stacked polymer multimode waveguides and matching micro-pixelated LEDLED) arrays. μLEDs have been shown to exhibit larger bandwidths (>200 MHz) than conventional broad-area LEDs and can be formed in large array configurations, while multimode polymer waveguides enable the formation of low-cost optical links onto standard PCBs. Here, three- and four-layered stacks of multimode waveguides, as well as matching GaN μLED arrays, are fabricated in order to generate high-density yet low-cost optical interconnects. Different waveguide topologies are implemented and are investigated in terms of loss and crosstalk performance. The initial results presented herein demonstrate good intrinsic crosstalk performance and indicate the potential to achieve >= 0.5 Tb/s/mm2 aggregate interconnection capacity using this low-cost technology.

  14. Monolithic blue LED series arrays for high-voltage AC operation

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Jin-Ping [Satellite Venture Business Laboratory, University of Tokushima, Tokushima 770-8506 (Japan); Sato, Hisao; Mizobuchi, Takashi; Morioka, Kenji; Kawano, Shunsuke; Muramoto, Yoshihiko; Sato, Daisuke; Sakai, Shiro [Nitride Semiconductor Co. Ltd., Naruto, Tokushima 771-0360 (Japan); Lee, Young-Bae; Ohno, Yasuo [Department of Electrical and Electronic Engineering, University of Tokushima, Tokushima 770-8506 (Japan)

    2002-12-16

    Design and fabrication of monolithic blue LED series arrays that can be operated under high ac voltage are described. Several LEDs, such as 3, 7, and 20, are connected in series and in parallel to meet ac operation. The chip size of a single device is 150 {mu}m x 120 {mu}m and the total size is 1.1 mm x 1 mm for a 40(20+20) LED array. Deep dry etching was performed as device isolation. Two-layer interconnection and air bridge are utilized to connect the devices in an array. The monolithic series array exhibit the expected operation function under dc and ac bias. The output power and forward voltage are almost proportional to LED numbers connected in series. On-wafer measurement shows that the output power is 40 mW for 40(20+20) LED array under ac 72 V. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  15. P1-16: The Effect of Visual Stimuli of LED Lighting by Color Temperature and Illuminance Control on Attention and Meditation Level of Mind

    Directory of Open Access Journals (Sweden)

    Chan-Su Lee

    2012-10-01

    Full Text Available Recently LED (Lighting Emitting Diode lighting sources are applied not only for displays like LED BLU (back light unit TV but also for general lighting like LED lamps for home and office. The color temperature, or chromaticity, and brightness of LED lighting can be easily controlled. Preferred combinations between illuminance and color temperature of lighting depend on daily living activities (Oi et al., 2007 Symposium on Design of Artificial Environments 214–215. Changes in intensity can be more easily detected than color changes (Almeida et al., 2009 Perception 38 1109–1117. We investigated whether the illumination stimuli of LED lighting can enhance attention and relaxation level by controlling color temperature and illuminance according to activities. EEG signals are used to estimate attention and relaxation levels of human subjects under different lighting conditions. Nine participants with normal eye sight and color vision participated in the experiments with four different activities under different illumination conditions. LED lighting with color temperature 3600 K in 240 lux is used for relaxation activities, and LED lighting with 6600 K in 794 lux is used for the task which requires attention. These lighting conditions are compared with conventional lighting condition with 4600 K in 530 lux. Preliminary experiment results show that low color temperature with low illumination intensity of LED lighting enhances relaxation level and high color temperature with high illuminance improves attention level compared with conventional lighting environment without illuminance and color temperature changes.

  16. Fundamentals of solid-state lighting LEDs, OLEDs, and their applications in illumination and displays

    CERN Document Server

    Khanna, Vinod Kumar

    2014-01-01

    History and Basics of LightingChronological History of LightingLearning Objectives How Early Man Looked at the ""Sun"" The Need for Artificial Light Sources First Steps in the Evolution of Artificial Lighting The First Solid-State Lighting Device The First Practical Electrical Lighting Device The Incandescent Filament Lamp Mercury and Sodium Vapor Lamps The Fluorescent Lamp The Compact Fluorescent Lamp Revolution in the World of Lighting: Advent of Light-Emitting Diodes Birth of the First LED and the Initial Stages of LED Development The Father of the LED: Holonyak Jr. The Post-1962 Developmen

  17. [Hygienic aspects of the use of LED light sources for general illumination in schools].

    Science.gov (United States)

    Kuchma, V R; Sukhareva, L M; Teksheva, L M; Stepanova, M I; Sazaniuk, Z I

    2013-01-01

    For the time present becoming more common semiconductor sources of artificial lighting has become a more and more frequent practice. With the aim to study the impact of LEDs on the health of schoolchildren studies in experimental conditions (specially equipped classrooms) were performed. The comparative analysis of the state of vision, mental health and emotional state of pupils in primary, middle and high schools under fluorescent and LED lighting, meeting to the regulatory requirements, has revealed that the physiological cost of schooling in the use of LED units in classrooms is lower than in a traditional, fluorescent lighting.

  18. Arrays of microLEDs and astrocytes: biological amplifiers to optogenetically modulate neuronal networks reducing light requirement.

    Directory of Open Access Journals (Sweden)

    Rolando Berlinguer-Palmini

    Full Text Available In the modern view of synaptic transmission, astrocytes are no longer confined to the role of merely supportive cells. Although they do not generate action potentials, they nonetheless exhibit electrical activity and can influence surrounding neurons through gliotransmitter release. In this work, we explored whether optogenetic activation of glial cells could act as an amplification mechanism to optical neural stimulation via gliotransmission to the neural network. We studied the modulation of gliotransmission by selective photo-activation of channelrhodopsin-2 (ChR2 and by means of a matrix of individually addressable super-bright microLEDsLEDs with an excitation peak at 470 nm. We combined Ca2+ imaging techniques and concurrent patch-clamp electrophysiology to obtain subsequent glia/neural activity. First, we tested the μLEDs efficacy in stimulating ChR2-transfected astrocyte. ChR2-induced astrocytic current did not desensitize overtime, and was linearly increased and prolonged by increasing μLED irradiance in terms of intensity and surface illumination. Subsequently, ChR2 astrocytic stimulation by broad-field LED illumination with the same spectral profile, increased both glial cells and neuronal calcium transient frequency and sEPSCs suggesting that few ChR2-transfected astrocytes were able to excite surrounding not-ChR2-transfected astrocytes and neurons. Finally, by using the μLEDs array to selectively light stimulate ChR2 positive astrocytes we were able to increase the synaptic activity of single neurons surrounding it. In conclusion, ChR2-transfected astrocytes and μLEDs system were shown to be an amplifier of synaptic activity in mixed corticalneuronal and glial cells culture.

  19. Arrays of microLEDs and astrocytes: biological amplifiers to optogenetically modulate neuronal networks reducing light requirement.

    Science.gov (United States)

    Berlinguer-Palmini, Rolando; Narducci, Roberto; Merhan, Kamyar; Dilaghi, Arianna; Moroni, Flavio; Masi, Alessio; Scartabelli, Tania; Landucci, Elisa; Sili, Maria; Schettini, Antonio; McGovern, Brian; Maskaant, Pleun; Degenaar, Patrick; Mannaioni, Guido

    2014-01-01

    In the modern view of synaptic transmission, astrocytes are no longer confined to the role of merely supportive cells. Although they do not generate action potentials, they nonetheless exhibit electrical activity and can influence surrounding neurons through gliotransmitter release. In this work, we explored whether optogenetic activation of glial cells could act as an amplification mechanism to optical neural stimulation via gliotransmission to the neural network. We studied the modulation of gliotransmission by selective photo-activation of channelrhodopsin-2 (ChR2) and by means of a matrix of individually addressable super-bright microLEDsLEDs) with an excitation peak at 470 nm. We combined Ca2+ imaging techniques and concurrent patch-clamp electrophysiology to obtain subsequent glia/neural activity. First, we tested the μLEDs efficacy in stimulating ChR2-transfected astrocyte. ChR2-induced astrocytic current did not desensitize overtime, and was linearly increased and prolonged by increasing μLED irradiance in terms of intensity and surface illumination. Subsequently, ChR2 astrocytic stimulation by broad-field LED illumination with the same spectral profile, increased both glial cells and neuronal calcium transient frequency and sEPSCs suggesting that few ChR2-transfected astrocytes were able to excite surrounding not-ChR2-transfected astrocytes and neurons. Finally, by using the μLEDs array to selectively light stimulate ChR2 positive astrocytes we were able to increase the synaptic activity of single neurons surrounding it. In conclusion, ChR2-transfected astrocytes and μLEDs system were shown to be an amplifier of synaptic activity in mixed corticalneuronal and glial cells culture.

  20. Dim-light photoreceptor of chub mackerel Scomber japonicus and the photoresponse upon illumination with LEDs of different wavelengths.

    Science.gov (United States)

    Jang, Jun-Chul; Choi, Mi-Jin; Yang, Yong-Soo; Lee, Hyung-Been; Yu, Young-Moon; Kim, Jong-Myoung

    2016-06-01

    To study the absorption characteristics of rhodopsin, a dim-light photoreceptor, in chub mackerel (Scomber japonicus) and the relationship between light wavelengths on the photoresponse, the rod opsin gene was cloned into an expression vector, pMT4. Recombinant opsin was transiently expressed in COS-1 cells and reconstituted with 11-cis-retinal. Cells containing the regenerated rhodopsin were solubilized and subjected to UV/Vis spectroscopic analysis in the dark and upon illumination. Difference spectra from the lysates indicated an absorption maximum of mackerel rhodopsin around 500 nm. Four types of light-emitting diode (LED) modules with different wavelengths (red, peak 627 nm; cyan, 505 nm; blue, 442 nm; white, 447 + 560 nm) were constructed to examine their effects on the photoresponse in chub mackerel. Behavioral responses of the mackerels, including speed and frequencies acclimated in the dark and upon LED illumination, were analyzed using an underwater acoustic camera. Compared to an average speed of 22.25 ± 1.57 cm/s of mackerel movement in the dark, speed increased to 22.97 ± 0.29, 24.66 ± 1.06, 26.28 ± 2.28, and 25.19 ± 1.91 cm/s upon exposure to red, blue, cyan, and white LEDs, respectively. There were increases of 103.48 ± 1.58, 109.37 ± 5.29, 118.48 ± 10.82, and 109.43 ± 3.92 %, respectively, in the relative speed of the fishes upon illumination with red, blue, cyan, and white LEDs compared with that in the dark (set at 100 %). Similar rate of wavelength-dependent responses was observed in a frequency analysis. These results indicate that an LED emitting a peak wavelength close to an absorption maximum of rhodopsin is more effective at eliciting a response to light.

  1. High-efficiency VCSEL arrays for illumination and sensing in consumer applications

    Science.gov (United States)

    Seurin, Jean-Francois; Zhou, Delai; Xu, Guoyang; Miglo, Alexander; Li, Daizong; Chen, Tong; Guo, Baiming; Ghosh, Chuni

    2016-03-01

    There has been increased interest in vertical-cavity surface-emitting lasers (VCSELs) for illumination and sensing in the consumer market, especially for 3D sensing ("gesture recognition") and 3D image capture. For these applications, the typical wavelength range of interest is 830~950nm and power levels vary from a few milli-Watts to several Watts. The devices are operated in short pulse mode (a few nano-seconds) with fast rise and fall times for time-of-flight applications (ToF), or in CW/quasi-CW for structured light applications. In VCSELs, the narrow spectrum and its low temperature dependence allows the use of narrower filters and therefore better signal-to-noise performance, especially for outdoor applications. In portable devices (mobile devices, wearable devices, laptops etc.) the size of the illumination module (VCSEL and optics) is a primary consideration. VCSELs offer a unique benefit compared to other laser sources in that they are "surface-mountable" and can be easily integrated along with other electronics components on a printed circuit board (PCB). A critical concern is the power-conversion efficiency (PCE) of the illumination source operating at high temperatures (>50 deg C). We report on various VCSEL based devices and diffuser-integrated modules with high efficiency at high temperatures. Over 40% PCE was achieved in broad temperature range of 0-70 °C for either low power single devices or high power VCSEL arrays, with sub- nano-second rise and fall time. These high power VCSEL arrays show excellent reliability, with extracted mean-time-to-failure (MTTF) of over 500 years at 60 °C ambient temperature and 8W peak output.

  2. A DP based scheme for real-time reconfiguration of solar cell arrays exposed to dynamic changing inhomogeneous illuminations

    DEFF Research Database (Denmark)

    Shi, Liping; Brehm, Robert

    2016-01-01

    The overall energy conversion efficiency of solar cell arrays is highly effected by partial shading effects. Especially for solar panel arrays installed in environments which are exposed to inhomogeneous dynamic changing illuminations such as on roof tops of electrical vehicles the overall system...... efficiency is drastically reduced. Dynamic real-time reconfiguration of the solar panel array can reduce effects on the output efficiency due to partial shading. This results in a maximized power output of the panel array when exposed to dynamic changing illuminations. The optimal array configuration...... with respect to shading patterns can be stated as a combinatorial optimization problem and this paper proposes a dynamic programming (DP) based algorithm which finds the optimal feasible solution to reconfigure the solar panel array for maximum efficiency in real-time with linear time complexity. It is shown...

  3. Effection of UV-LED Illuminant on the Curation of Photolatent-amidine Mixed with Bisphenol A Epoxy Acrylate under Printing Conditions

    Directory of Open Access Journals (Sweden)

    Duan Huawei

    2016-01-01

    Full Text Available In order to make photocuring ink or coating cured by UV-LED illuminant, we synthesized (4-((hexahydropyrrolo[1,2-a]pyrimidin-1 (2H-ylmethylphenyl(phenylmethanone(PL -DBN and (4-((octahydropyrimido[1,2-a]azepin-1(2H-ylmethylphenyl(phenylmet hanone(PL -DBU as photoinitiators. Different mass fraction of the photoinitiators was mixed with bisphenol A epoxy acrylate, cured by different wavelengths and power of UV-LED illuminant,and investigated the curing effects of photoinitiators on bisphenol A epoxy acrylate. The results show that the conversion of C=C double bonds of bisphenol A epoxy acrylate will increase as the mass fraction of the photoinitiators or the power of UV-LED illuminant increase. In the same conditions, the curing effect of using 365nm UV-LED illuminant on bisphenol A epoxy acrylate is better than using 395nm UV-LED illuminant. PL-DBU has a better curing effect on the bisphenol A epoxy acrylate rather than PL-DBN. When using the 8W/cm2 of 365nm UV-LED illuminant to cure a mixture of 3% PL-DBU and 97% bisphenol A epoxy acrylate, it will be dry completely in 2 seconds, moreover, the conversion reach 79%.

  4. GaN-based micro-LED arrays on flexible substrates for optical cochlear implants

    International Nuclear Information System (INIS)

    Goßler, Christian; Bierbrauer, Colin; Moser, Rüdiger; Kunzer, Michael; Holc, Katarzyna; Pletschen, Wilfried; Köhler, Klaus; Wagner, Joachim; Schwarz, Ulrich T; Schwaerzle, Michael; Ruther, Patrick; Paul, Oliver; Neef, Jakob; Keppeler, Daniel; Hoch, Gerhard; Moser, Tobias

    2014-01-01

    Currently available cochlear implants are based on electrical stimulation of the spiral ganglion neurons. Optical stimulation with arrays of micro-sized light-emitting diodes (µLEDs) promises to increase the number of distinguishable frequencies. Here, the development of a flexible GaN-based micro-LED array as an optical cochlear implant is reported for application in a mouse model. The fabrication of 15 µm thin and highly flexible devices is enabled by a laser-based layer transfer process of the GaN-LEDs from sapphire to a polyimide-on-silicon carrier wafer. The fabricated 50 × 50 µm 2 LEDs are contacted via conducting paths on both p- and n-sides of the LEDs. Up to three separate channels could be addressed. The probes, composed of a linear array of the said µLEDs bonded to the flexible polyimide substrate, are peeled off the carrier wafer and attached to flexible printed circuit boards. Probes with four µLEDs and a width of 230 µm are successfully implanted in the mouse cochlea both in vitro and in vivo. The LEDs emit 60 µW at 1 mA after peel-off, corresponding to a radiant emittance of 6 mW mm −2 . (paper)

  5. Mono- and dichromatic LED illumination leads to enhanced growth and energy conversion for high-efficiency cultivation of microalgae for application in space.

    Science.gov (United States)

    Wagner, Ines; Steinweg, Christian; Posten, Clemens

    2016-08-01

    Illumination with red and blue photons is known to be efficient for cultivation of higher plants. For microalgae cultivation, illumination with specific wavelengths rather than full spectrum illumination can be an alternative where there is a lack of knowledge about achievable biomass yields. This study deals with the usage of color LED illumination to cultivate microalgae integrated into closed life support systems for outer space. The goal is to quantify biomass yields using color illumination (red, blue, green and mixtures) compared to white light. Chlamydomonas reinhardtii was cultivated in plate reactors with color compared to white illumination regarding PCE, specific pigment concentration and cell size. Highest PCE values were achieved under low PFDs with a red/blue illumination (680 nm/447 nm) at a 90 to 10% molar ratio. At higher PFDs saturation effects can be observed resulting from light absorption characteristics and the linear part of PI curve. Cell size and aggregation are also influenced by the applied light color. Red/blue color illumination is a promising option applicable for microalgae-based modules of life support systems under low to saturating light intensities and double-sided illumination. Results of higher PCE with addition of blue photons to red light indicate an influence of sensory pigments. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Spacing optimization of high power LED arrays for solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Y. Sing; Lee, S. W. Ricky, E-mail: rickylee@ust.hk [Electronic Packaging Laboratory, Center for Advanced Microsystems Packaging, Hong Kong University of Science and Technology (Hong Kong)

    2011-01-15

    This paper provides an analytical approach to determine the optimum pitch by utilizing a thermal resistance network, under the assumption of constant luminous efficiency. This work allows an LED array design which is mounted on a printed circuit board (PCB) attached with a heat sink subject to the natural convection cooling. Being validated by finite element (FE) models, the current approach can be shown as an effective method for the determination of optimal component spacing in an LED array assembly for SSL. (semiconductor devices)

  7. The LED and fiber based calibration system for the photomultiplier array of SNO+

    Science.gov (United States)

    Seabra, L.; Alves, R.; Andringa, S.; Bradbury, S.; Carvalho, J.; Clark, K.; Coulter, I.; Descamps, F.; Falk, L.; Gurriana, L.; Kraus, C.; Lefeuvre, G.; Maio, A.; Maneira, J.; Mottram, M.; Peeters, S.; Rose, J.; Sinclair, J.; Skensved, P.; Waterfield, J.; White, R.; Wilson, J.; SNO+ Collaboration

    2015-02-01

    A new external LED/fiber light injection calibration system was designed for the calibration and monitoring of the photomultiplier array of the SNO+ experiment at SNOLAB. The goal of the calibration system is to allow an accurate and regular measurement of the photomultiplier array's performance, while minimizing the risk of radioactivity ingress. The choice in SNO+ was to use a set of optical fiber cables to convey into the detector the light pulses produced by external LEDs. The quality control was carried out using a modified test bench that was used in QC of optical fibers for TileCal/ATLAS. The optical fibers were characterized for transmission, timing and angular dispersions. This article describes the setups used for the characterization and quality control of the system based on LEDs and optical fibers and their results.

  8. LED arrays as cost effective and efficient light sources for widefield microscopy.

    Directory of Open Access Journals (Sweden)

    Dinu F Albeanu

    Full Text Available New developments in fluorophores as well as in detection methods have fueled the rapid growth of optical imaging in the life sciences. Commercial widefield microscopes generally use arc lamps, excitation/emission filters and shutters for fluorescence imaging. These components can be expensive, difficult to maintain and preclude stable illumination. Here, we describe methods to construct inexpensive and easy-to-use light sources for optical microscopy using light-emitting diodes (LEDs. We also provide examples of its applicability to biological fluorescence imaging.

  9. Design and fabrication of adjustable red-green-blue LED light arrays for plant research

    Directory of Open Access Journals (Sweden)

    Kenitz J Dustin

    2005-08-01

    Full Text Available Abstract Background Although specific light attributes, such as color and fluence rate, influence plant growth and development, researchers generally cannot control the fine spectral conditions of artificial plant-growth environments. Plant growth chambers are typically outfitted with fluorescent and/or incandescent fixtures that provide a general spectrum that is accommodating to the human eye and not necessarily supportive to plant development. Many studies over the last several decades, primarily in Arabidopsis thaliana, have clearly shown that variation in light quantity, quality and photoperiod can be manipulated to affect growth and control developmental transitions. Light emitting diodes (LEDs has been used for decades to test plant responses to narrow-bandwidth light. LEDs are particularly well suited for plant growth chambers, as they have an extraordinary life (about 100,000 hours, require little maintenance, and use negligible energy. These factors render LED-based light strategies particularly appropriate for space-biology as well as terrestrial applications. However, there is a need for a versatile and inexpensive LED array platform where individual wavebands can be specifically tuned to produce a series of light combinations consisting of various quantities and qualities of individual wavelengths. Two plans are presented in this report. Results In this technical report we describe the practical construction of tunable red-green-blue LED arrays to support research in plant growth and development. Two light fixture designs and corresponding circuitry are presented. The first is well suited for a laboratory environment for use in a finite area with small plants, such as Arabidopsis. The second is expandable and appropriate for growth chambers. The application of these arrays to early plant developmental studies has been validated with assays of hypocotyl growth inhibition/promotion and phototropic curvature in Arabidopsis seedlings

  10. Microscopy refocusing and dark-field imaging by using a simple LED array

    OpenAIRE

    Zheng, Guoan; Kolner, Christopher; Yang, Changhuei

    2011-01-01

    The condenser is one of the main components in most transmitted light compound microscopes. In this Letter, we show that such a condenser can be replaced by a programmable LED array to achieve greater imaging flexibility and functionality. Without mechanically scanning the sample or changing the microscope setup, the proposed approach can be used for dark-field imaging, bright-field imaging, microscopy sectioning, and digital refocusing. Images of a starfish embryo were acquired by using such...

  11. Fully transparent conformal organic thin-film transistor array and its application as LED front driving.

    Science.gov (United States)

    Cui, Nan; Ren, Hang; Tang, Qingxin; Zhao, Xiaoli; Tong, Yanhong; Hu, Wenping; Liu, Yichun

    2018-02-22

    A fully transparent conformal organic thin-film field-effect transistor array is demonstrated based on a photolithography-compatible ultrathin metallic grid gate electrode and a solution-processed C 8 -BTBT film. The resulting organic field-effect transistor array exhibits a high optical transparency of >80% over the visible spectrum, mobility up to 2 cm 2 V -1 s -1 , on/off ratio of 10 5 -10 6 , switching current of >0.1 mA, and excellent light stability. The transparent conformal transistor array is demonstrated to adhere well to flat and curved LEDs as front driving. These results present promising applications of the solution-processed wide-bandgap organic semiconductor thin films in future large-scale transparent conformal active-matrix displays.

  12. In vitro Evaluation of Magnification and LED Illumination for Detection of Occlusal Caries in Primary and Permanent Molars Using ICDAS Criteria

    Directory of Open Access Journals (Sweden)

    Timucin Ari

    2013-09-01

    Full Text Available Background: Early detection of occlusal caries in children is challenging for the dentists, because of the morphology of pit and fissures. Aim: The aim of the present study was to investigate the use of low-powered magnification (×2.5 and its association with LED headlight illumination for occlusal caries detection in primary and permanent molars using International Caries Detection and Assessment System (ICDAS criteria.Methods: The occlusal surfaces of 36 extracted teeth (n=18 primary molars, n=18 permanent molars were examined using ICDAS criteria with unaided visual examination, low-powered magnification and low-powered magnification plus LED headlight illumination. Three examiners evaluated one occlusal site per tooth twice independently with one week interval, using all methods. The teeth (n = 36 were sectioned and examined under light microscopy using Downer’s histological criteria as the gold standard. Results: The weighted kappa values for inter- and intraexaminer reproducibility for the ICDAS examinations were almost perfect (Kappa values 0.72–0.96 in all three examination methods. The correlation with histology and overall AUC performance (0.96–0.98 of low-powered magnification plus LED headlight illumination was statistically significant in permanent molars. In primary molars, both low-powered magnification (0.82–0.90 and low-powered magnification plus LED headlight illumination (0.87–0.93 showed statistically significant correlation with histology and good to excellent AUC performance than unaided examination. Conclusion: Visual aids have the potential to improve the performance of early caries detection and clinical diagnostics in children.

  13. Long-term lumen depreciation behavior and failure modes of multi-die array LEDs

    Science.gov (United States)

    Jayawardena, Asiri; Marcus, Daniel; Prugue, Ximena; Narendran, Nadarajah

    2013-09-01

    One of the main advantages of multi-die array light-emitting diodes (LEDs) is their high flux density. However, a challenge for using such a product in lighting fixture applications is the heat density and the need for thermal management to keep the junction temperatures of all the dies low for long-term reliable performance. Ten multi-die LED array samples for each product from four different manufacturers were subjected to lumen maintenance testing (as described in IES-LM-80-08), and their resulting lumen depreciation and failure modes were studied. The products were tested at the maximum case (or pin) temperature reported by the respective manufacturer by appropriately powering the LEDs. In addition, three samples for each product from two different manufacturers were subjected to rapid thermal cycling, and the resulting lumen depreciation and failure modes were studied. The results showed that the exponential lumen decay model using long-term lumen maintenance data as recommended in IES TM-21 does not fit for all package types. The failure of a string of dies and single die failure in a string were observed in some of the packages.

  14. A transition to white LED increases ecological impacts of nocturnal illumination on aquatic primary producers in a lowland agricultural drainage ditch.

    Science.gov (United States)

    Grubisic, Maja; van Grunsven, Roy H A; Manfrin, Alessandro; Monaghan, Michael T; Hölker, Franz

    2018-05-14

    The increasing use of artificial light at night (ALAN) has led to exposure of freshwater ecosystems to light pollution worldwide. Simultaneously, the spectral composition of nocturnal illumination is changing, following the current shift in outdoor lighting technologies from traditional light sources to light emitting diodes (LED). LEDs emit broad-spectrum white light, with a significant amount of photosynthetically active radiation, and typically a high content of blue light that regulates circadian rhythms in many organisms. While effects of the shift to LED have been investigated in nocturnal animals, its impact on primary producers is unknown. We performed three field experiments in a lowland agricultural drainage ditch to assess the impacts of a transition from high-pressure sodium (HPS) to white LED illumination (color temperature 4000 K) on primary producers in periphyton. In all experiments, we compared biomass and pigment composition of periphyton grown under a natural light regime to that of periphyton exposed to nocturnal HPS or, consecutively, LED light of intensities commonly found in urban waters (approximately 20 lux). Periphyton was collected in time series (1-13 weeks). We found no effect of HPS light on periphyton biomass; however, following a shift to LED the biomass decreased up to 62%. Neither light source had a substantial effect on pigment composition. The contrasting effects of the two light sources on biomass may be explained by differences in their spectral composition, and in particular the blue content. Our results suggest that spectral composition of the light source plays a role in determining the impacts of ALAN on periphyton and that the ongoing transition to LED may increase the ecological impacts of artificial lighting on aquatic primary producers. Reduced biomass in the base of the food web can impact ecosystem functions such as productivity and food supply for higher trophic levels in nocturnally-lit ecosystems. Copyright

  15. The analysis of colour uniformity for a volumetric display based on a rotating LED array

    International Nuclear Information System (INIS)

    Wu, Jiang; Liu, Xu; Yan, Caijie; Xia, XinXing; Li, Haifeng

    2011-01-01

    There is a colour nonuniformity zone existing in three-dimensional (3D) volumetric displays which is based on the rotating colour light-emitting diode (LED) array. We analyse the reason for the colour nonuniformity zone by measuring the light intensity distribution and chromaticity coordinates of the LED in the volumetric display. Two boundaries of the colour nonuniformity zone are calculated. We measure the colour uniformities for a single cuboid of 3*3*4 voxels to display red, green, blue and white colour in different horizontal viewing angles, and for 64 cuboids distributed in the whole cylindrical image space with a fixed viewpoint. To evaluate the colour uniformity of a 3D image, we propose three evaluation indices of colour uniformity: the average of colour difference, the maximum colour difference and the variance of colour difference. The measurement results show that the character of colour uniformity is different for the 3D volumetric display and the two-dimensional display

  16. Illuminating the Pecking Order in Off-Grid Lighting: A Demonstration of LED Lighting for Saving Energy in the Poultry Sector

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, Jennifer; Mills, Evan

    2010-11-06

    The Lumina Project and Lighting Africa conducted a full-scale field test involving a switch from kerosene to solar-LED lighting for commercial broiler chicken production at an off-grid farm in Kenya. The test achieved lower operating costs, produced substantially more light, improved the working environment, and had no adverse effect on yields. A strategy using conventional solar-fluorescent lighting also achieved comparable yields, but entailed a six-fold higher capital cost and significantly higher recurring battery replacement costs. Thanks to higher energy and optical efficiencies, the LED system provided approximately twice the illumination to the chicken-production area and yet drew less than half the power.At the study farm, 3000 chickens were grown in each of three identical houses under kerosene, fluorescent, and LED lighting configurations. Under baseline conditions, a yearly expenditure of 1,200 USD is required to illuminate the three houses with kerosene. The LED system eliminates this fuel use and expense with a corresponding simple payback time of 1.5 years, while the solar-fluorescent system has a payback time of 9.3 years. The corresponding reduction in fuel expenditure in both cases represents a 15percent increase in after-tax net income (revenues minus expenses) across the entire business operation. The differential cost-effectiveness between the LED and fluorescent systems would be substantially greater if the fluorescent system were upsized to provide the same light as the LED system. Providing light with the fluorescent or LED systems is also far more economical than connecting to the grid in this case. The estimated grid-connection cost at this facility is 1.7 million Kenya Schillings (approximately 21,250 USD), which is nearly six-times the cost of the fluorescent system and 35-times the cost of the LED system.The LED system also confers various non-energy benefits. The relative uniformity of LED lighting, compared to the fluorescent or

  17. RF-MMW Dipole Antenna Arrays From Laser Illuminated GaAs

    National Research Council Canada - National Science Library

    Umphenour, D

    1998-01-01

    High resistivity photoconductive Gallium Arsenide (GaAs) can be used as elemental Hertzian dipole antenna arrays in which the time varying dipole current is produced by temporally modulating a laser (0.63um...

  18. Evaluation of shear bond strength of orthodontic brackets using trans-illumination technique with different curing profiles of LED light-curing unit in posterior teeth.

    Science.gov (United States)

    Heravi, Farzin; Moazzami, Saied Mostafa; Ghaffari, Negin; Jalayer, Javad; Bozorgnia, Yasaman

    2013-11-21

    Although using light-cured composites for bonding orthodontic brackets has become increasingly popular, curing light cannot penetrate the metallic bulk of brackets and polymerization of composites is limited to the edges. Limited access and poor direct sight may be a problem in the posterior teeth. Meanwhile, effectiveness of the trans-illumination technique is questionable due to increased bucco-lingual thickness of the posterior teeth. Light-emitting diode (LED) light-curing units cause less temperature rise and lower risk to the pulpal tissue. The purpose of this study was to evaluate the clinical effectiveness of trans-illumination technique in bonding metallic brackets to premolars, using different light intensities and curing times of an LED light-curing unit. Sixty premolars were randomly divided into six groups. Bonding of brackets was done with 40- and 80-s light curing from the buccal or lingual aspect with different intensities. Shear bond strengths of brackets were measured using a universal testing machine. Data were analyzed by one-way analysis of variance test and Duncan's post hoc test. The highest shear bond belonged to group 2 (high intensity, 40 s, buccal) and the lowest belonged to group 3 (low intensity, 40 s, lingual). Bond strength means in control groups were significantly higher than those in experimental groups. In all experimental groups except group 6 (80 s, high intensity, lingual), shear bond strength was below the clinically accepted values. In clinical limitations where light curing from the same side of the bracket is not possible, doubling the curing time and increasing the light intensity during trans-illumination are recommended for achieving acceptable bond strengths.

  19. Electrical crosstalk in front-illuminated photodiode array with different guard ring designs for medical CT applications

    International Nuclear Information System (INIS)

    Ji Fan; Juntunen, Mikko; Hietanen, Iiro

    2009-01-01

    This paper presents electrical crosstalk studies on front-illuminated photodiode arrays for medical computed tomography (CT) applications. Crosstalk is an important factor to the system noise and image quality. The electrical crosstalk depends on silicon substrate properties and photodiode structures. The photodiode samples employed in this paper are planar processed on high-resistivity n-type silicon substrate, resulting in a p+/n-/n+ diode structure. Two types of guard ring structures are designed and applied to the same geometry of two-dimensional photodiode arrays. One structure is an n guard ring in the gap area between pixels, and the other structure is an additional p+ guard ring around each pixel together with the n guard ring. A 10 μm light spot with wavelength of 525 nm is used to scan across the surface of the photodiode array in the electrical crosstalk measurements. The electrical currents of two neighbor pixels are measured and the results are compared between two guard ring designs. The design with the p+ guard ring structure gives better electrical crosstalk suppression. Moreover, the measurement results show much smaller influence on surrounding pixels with the p+ guard ring structure in the case of disconnected pixel. Besides the electrical crosstalk, the light sensitivity within the gap area is also discussed between two guard ring designs.

  20. A new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array

    Science.gov (United States)

    Xia, Wenze; Ma, Yayun; Han, Shaokun; Wang, Yulin; Liu, Fei; Zhai, Yu

    2018-06-01

    One of the most important goals of research on three-dimensional nonscanning laser imaging systems is the improvement of the illumination system. In this paper, a new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array is proposed. This array is obtained using a fiber array connected to a laser array with each unit laser having independent control circuits. This system uses a point-to-point imaging process, which is realized using the exact corresponding optical relationship between the point-light-source array and a linear-mode avalanche photodiode array detector. The complete working process of this system is explained in detail, and the mathematical model of this system containing four equations is established. A simulated contrast experiment and two real contrast experiments which use the simplified setup without a laser array are performed. The final results demonstrate that unlike a conventional three-dimensional nonscanning laser imaging system, the proposed system meets all the requirements of an eligible illumination system. Finally, the imaging performance of this system is analyzed under defocusing situations, and analytical results show that the system has good defocusing robustness and can be easily adjusted in real applications.

  1. Design of an elliptic spot illumination system in LED-based color filter-liquid-crystal-on-silicon pico projectors for mobile embedded projection.

    Science.gov (United States)

    Chen, Enguo; Yu, Feihong

    2012-06-01

    We present an elliptic spot illumination system for a color filter-liquid-crystal-on-silicon (CF-LCoS) pico projector employing a specifically designed free-form lens and a cylindrical lens to improve on previous designs in terms of optical efficiency while yielding an ultracompact and low-cost optical architecture. The detailed design description of the optical system is thoroughly investigated. Simulation results coincide well with the theoretical calculation. The single 1  mm×1  mm LED chip-powered optical engine, which employs a CF-LCoS panel with a diagonal of 0.28 in and an aspect ratio of 4:3, has an estimated output efficiency over 9.8% (11.8 lm@1 W) and an ANSI 9-point uniformity over 88.5%, with the ultrasmall volume 24  mm×19  mm×7  mm. Compared to the circular spot-illuminated projection system, a total increment of about 23% of system efficiency is available with this improved optical engine. It is believed that there would be a huge market potential to commercialize our design.

  2. Short-wavelength infrared imaging using low dark current InGaAs detector arrays and vertical-cavity surface-emitting laser illuminators

    Science.gov (United States)

    Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David

    2011-06-01

    We describe the factors that go into the component choices for a short wavelength IR (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7 °C. In addition, we have mated our InGaAs detector arrays to 640×512 readout integrated integrated circuits to make focal plane arrays (FPAs). The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 μm at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0 °C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling. In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, and provide artifact-free imagery versus conventional laser illuminators.

  3. High-frequency annular array with coaxial illumination for dual-modality ultrasonic and photoacoustic imaging

    Science.gov (United States)

    Filoux, Erwan; Sampathkumar, Ashwin; Chitnis, Parag V.; Aristizábal, Orlando; Ketterling, Jeffrey A.

    2013-05-01

    This paper presents a combined ultrasound and photoacoustic (PA) imaging (PAI) system used to obtain high-quality, co-registered images of mouse-embryo anatomy and vasculature. High-frequency ultrasound (HFU, >20 MHz) is utilized to obtain high-resolution anatomical images of small animals while PAI provides high-contrast images of the vascular network. The imaging system is based on a 40 MHz, 5-element, 6 mm aperture annular-array transducer with a 800 μm diameter hole through its central element. The transducer was integrated in a cage-plate assembly allowing for a collimated laser beam to pass through the hole so that the optical and acoustic beams were collinear. The assembly was mounted on a two-axis, motorized stage to enable the simultaneous acquisition of co-registered HFU and PA volumetric data. Data were collected from all five elements in receive and a synthetic-focusing algorithm was applied in post-processing to beamform the data and increase the spatial resolution and depth-of-field (DOF) of the HFU and PA images. Phantom measurements showed that the system could achieve high-resolution images (down to 90 μm for HFU and 150 μm for PAI) and a large DOF of >8 mm. Volume renderings of a mouse embryo showed that the scanner allowed for visualizing morphologically precise anatomy of the entire embryo along with corresponding co-registered vasculature. Major head vessels, such as the superior sagittal sinus or rostral vein, were clearly identified as well as limb bud vasculature.

  4. Construction of an array of LEDs coupled to a concentrator for phototherapy

    Science.gov (United States)

    Almeida, Joana; Liang, Dawei

    2011-07-01

    The use of LED devices for phototherapy has been expanding in the last decade. This technology provides a safer emission spectrum in large target tissue areas when compared to laser emissions. For enhancing the phototherapeutic effects of red light emitted by LEDs, a simple optical concentrator capable of efficient light concentration and homogenization was developed. The LEDs wavelength of 660 nm is coincident with an absorption peak of the mitochondrial photoreceptor molecule cytochrome c oxidase. The prototype was optimized by non-sequential ray-tracing software ZEMAX, attaining both excellent light uniformity and 50mW/cm2 irradiance at the concentrator output end. Heat emanated from the LEDs source is effectively dissipated by the side walls of the concentrator, ensuring a nearly constant temperature environment for tissue treatment. The prototype was tested on cutaneous hyperpigmented marks caused by cupping in two healthy volunteers. Marks were irradiated by LEDs radiations with or without the use of concentrator respectively. Equal exposure durations and light fluences were tested. The use of the concentrator-coupled LEDs source revealed an activation of blood movement immediately after LEDs exposure, an effect not attainable by the LEDs source without the concentrator even at extended exposure time. Promising futures for the treatment of inflammation, tissue repair and skin rejuvenation could be expected by adopting this simple technique.

  5. Development of flying spot illumination system for stage lighting

    Science.gov (United States)

    Asakawa, Hisashi; Ishii, Katsunori; Koshiro, Hikari; Baba, Junko; Wakaki, Moriaki

    2014-02-01

    The system to control the area of illumination is important for the luminaires used for stages and TV studios. Presently the methods to change the distance between a lamp and lenses, or to use a zooming projection of the aperture illuminated by the lamp are used to control the area. However, these methods require many optical components or mechanical components. Moreover, the energy of the light source is partially consumed by the absorption of the shutter on adjusting the illumination area. On the other hand, the control of the illuminance over the illuminated area is not possible by the methods. In this study, we developed the lighting system which enables to control both the illuminated area and the illuminance distribution within the area by scanning the beam from a LED array light source. The area of illumination was expanded along one dimension by scanning the LED beam using a rotating polygon mirror. The selection of the illuminated width and the control of the illuminance distribution were achieved by synchronizing the pulse width modulation (PWM) control of the LED with the rotation of the mirror using a time sharing control. As a result, various illuminance distributions can be realized at real time by using software control for the luminaire. The developed system has the merits of compact and high efficiency.

  6. Morphological study of lipid vesicles in presence of amphotericin B via modification of the microfluidic CellASIC platform and LED illumination microscopy

    International Nuclear Information System (INIS)

    Genova, J; Decheva-Zarkova, M; Pavlič, J I

    2016-01-01

    Giant lipid vesicles (liposomes) are the simplest model of the biological cell and can be easily formed from natural or synthetic lipid species with controlled composition and properties. This is the reason why they are the preferred objects for various scientific investigations. Amphotericin B (AmB) is a membrane active drug, used for treatment of systemic fungal infections. In this work we studied the morphological behavior of giant SOPC vesicles in asymmetrical presence of amphotericin B antibiotic in the vicinity of the lipid membrane. The visualization of the vesicles was carried out via inverted phase contrast microscopy. The illumination source was modified in a way that tungsten light bulb was replaced by 10 W white LED chip. All the experiments were performed using CellASIC ONIX Microfluidic Platform. The setup has been modified thus opening new opportunities for a variety of experimental realizations. The performed morphological studies showed strong and irreversible effect on the vesicle shape at the presence of amphotericin B in concentration 10 -5 g/l in the outer for the liposome's membrane solution. At concentration 10 -3 g/l AmB the effect was less visible and in 15-20 minutes the vesicles regained its initial spherical shape. (paper)

  7. Light-Emitting Diode-Based Illumination System for In Vitro Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Defu Chen

    2012-01-01

    Full Text Available The aim of this study is to develop a light-emitting diode- (LED- based illumination system that can be used as an alternative light source for in vitro photodynamic therapy (PDT. This illumination system includes a red LED array composed of 70 LEDs centered at 643 nm, an air-cooling unit, and a specific-designed case. The irradiance as a function of the irradiation distance between the LED array and the sample, the homogeneity and stability of irradiation, and the effect of long-time irradiation on culture medium temperature were characterized. Furthermore, the survival rate of the CNE1 cells that sensitized with 5-aminolevulinic acid after PDT treatment was evaluated to demonstrate the efficiency of the new LED-based illumination system. The obtained results show that the LED-based illumination system is a promising light source for in vitro PDT that performed in standard multiwell plate.

  8. Light-Emitting Diode-Based Illumination System for In Vitro Photodynamic Therapy

    OpenAIRE

    Defu Chen; Huifen Zheng; Zhiyong Huang; Huiyun Lin; Zhidong Ke; Shusen Xie; Buhong Li

    2012-01-01

    The aim of this study is to develop a light-emitting diode- (LED-) based illumination system that can be used as an alternative light source for in vitro photodynamic therapy (PDT). This illumination system includes a red LED array composed of 70 LEDs centered at 643 nm, an air-cooling unit, and a specific-designed case. The irradiance as a function of the irradiation distance between the LED array and the sample, the homogeneity and stability of irradiation, and the effect of long-time irrad...

  9. CdS nanorods/organic hybrid LED array and the piezo-phototronic effect of the device for pressure mapping.

    Science.gov (United States)

    Bao, Rongrong; Wang, Chunfeng; Dong, Lin; Shen, Changyu; Zhao, Kun; Pan, Caofeng

    2016-04-21

    As widely applied in light-emitting diodes and optical devices, CdS has attracted the attention of many researchers due to its nonlinear properties and piezo-electronic effect. Here, we demonstrate a LED array composed of PSS and CdS nanorods and research the piezo-photonic effect of the array device. The emission intensity of the device depends on the electron-hole recombination at the interface of the p-n junction which can be adjusted using the piezo-phototronic effect and can be used to map the pressure applied on the surface of the device with spatial resolution as high as 1.5 μm. A flexible LED device array has been prepared using a CdS nanorod array on a Au/Cr/kapton substrate. This device may be used in the field of strain mapping using its high pressure spatial-resolution and flexibility.

  10. Effects of wavelength mixing ratio and photoperiod on microalgal biomass and lipid production in a two-phase culture system using LED illumination.

    Science.gov (United States)

    Sirisuk, Phunlap; Ra, Chae-Hun; Jeong, Gwi-Taek; Kim, Sung-Koo

    2018-04-01

    Blue and red light-emitting diodes (LEDs) were used to study the effects of wavelength mixing ratios, photoperiod regimes, and green wavelength stress on Nannochloropsis salina, Isochrysis galbana, and Phaeodactylum tricornutum cell biomass and lipid production. The maximum specific growth rates of I. galbana and P. tricornutum were obtained under a 50:50 mixing ratio of blue and red wavelength LEDs; that of N. salina was obtained under red LED. Maximum cell biomass for N. salina and P. tricornutum was 0.75 and 1.07 g dcw/L, respectively, obtained under a 24:0 h light/dark cycle. However, the maximum I. galbana biomass was 0.89 g dcw/L under an 18:6 h light/dark cycle. The maximum lipid contents for N. salina, I. galbana, and P. tricornutum were 49.4, 63.3 and 62.0% (w/w), respectively, after exposure to green LED. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were obtained 1% in P. tricornutum and 2% in I. galbana. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A 2 x 2 imaging MIMO system based on LED Visible Light Communications employing space balanced coding and integrated PIN array reception

    DEFF Research Database (Denmark)

    Li, Jiehui; Xu, Yinfan; Shi, Jianyang

    2016-01-01

    In this paper, we proposed a 2 x 2 imaging Multi-Input Multi-Output (MIMO)-Visible Light Communication (VLC) system by employing Space Balanced Coding (SBC) based on two RGB LEDs and integrated PIN array reception. We experimentally demonstrated 1.4-Gbit/s VLC transmission at a distance of 2.5 m...

  12. A self-calibrating led-based solar test platform

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Sylvester-Hvid, Kristian O.; Jørgensen, Mikkel

    2011-01-01

    A compact platform for testing solar cells is presented. The light source comprises a multi-wavelength high-power LED (light emitting diode) array allowing the homogenous illumination of small laboratory solar cell devices (substrate size 50 × 25 mm) within the 390–940 nm wavelength range......, it is possible to perform all the commonly employed measurements on the solar cell at very high speed without moving the sample. In particular, the LED-based illumination system provides an alternative to light-biased incident photon-to-current efficiency measurement to be performed which we demonstrate. Both...

  13. LED; Zum Thema LED

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This collection of articles on the subject of light emitting diodes (LED) provides technical information on LED technology, examines latest developments and provides examples of LED use in practice. An 'ABC' of LED technology is presented and fifteen common LED mistakes are noted. The chances and risks of LED use are discussed as is the retrofitting of lighting installations with LEDs. The use of LEDs in street lighting is examined. The journal also includes interviews with architects and a lighting designer. Practical examples of the use of LEDs include the refurbished parliamentary library in Berne, their use in the bird sanctuary headquarters in Sempach, Switzerland, as well as LED use in sales outlets. Also, the use of LED lighting in a spa gazebo in Lucerne is examined.

  14. Characterization of an array of honeys of different types and botanical origins through fluorescence emission based on LEDs.

    Science.gov (United States)

    Lastra-Mejías, Miguel; Torreblanca-Zanca, Albertina; Aroca-Santos, Regina; Cancilla, John C; Izquierdo, Jesús G; Torrecilla, José S

    2018-08-01

    A set of 10 honeys comprising a diverse range of botanical origins have been successfully characterized through fluorescence spectroscopy using inexpensive light-emitting diodes (LEDs) as light sources. It has been proven that each LED-honey combination tested originates a unique emission spectrum, which enables the authentication of every honey, being able to correctly label it with its botanical origin. Furthermore, the analysis was backed up by a mathematical analysis based on partial least square models which led to a correct classification rate of each type of honey of over 95%. Finally, the same approach was followed to analyze rice syrup, which is a common honey adulterant that is challenging to identify when mixed with honey. A LED-dependent and unique fluorescence spectrum was found for the syrup, which presumably qualifies this approach for the design of uncomplicated, fast, and cost-effective quality control and adulteration assessing tools for different types of honey. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Bias-polarity-dependent UV/visible transferable electroluminescence from ZnO nanorod array LED with graphene oxide electrode supporting layer

    Science.gov (United States)

    Liu, Weizhen; Wang, Wei; Xu, Haiyang; Li, Xinghua; Yang, Liu; Ma, Jiangang; Liu, Yichun

    2015-09-01

    A simple top electrode preparation process, employing continuous graphene oxide films as electrode supporting layers, was adopted to fabricate a ZnO nanorod array/p-GaN heterojunction LED. The achieved LED demonstrated different electroluminescence behaviors under forward and reverse biases: a yellow-red emission band was observed under forward bias, whereas a blue-UV emission peak was obtained under reverse bias. Electroluminescence spectra under different currents and temperatures, as well as heterojunction energy-band alignments, reveal that the yellow-red emission under forward bias originates from recombinations related to heterointerface defects, whereas the blue-UV electroluminescence under reverse bias is ascribed to transitions from near-band-edge and Mg-acceptor levels in p-GaN.

  16. American Illuminations

    DEFF Research Database (Denmark)

    Nye, David

    Illuminated fêtes and civic celebrations began in Renaissance Italy and spread through the courts of Europe. Their fireworks, torches, lamps, and special effects glorified the monarch, marked the birth of a prince, or celebrated military victory. Nineteenth-century Americans rejected such monarch...

  17. Natural light illumination system.

    Science.gov (United States)

    Whang, Allen Jong-Woei; Chen, Yi-Yung; Yang, Shu-Hua; Pan, Po-Hsuan; Chou, Kao-Hsu; Lee, Yu-Chi; Lee, Zong-Yi; Chen, Chi-An; Chen, Cheng-Nan

    2010-12-10

    In recent years, green energy has undergone a lot of development and has been the subject of many applications. Many research studies have focused on illumination with sunlight as a means of saving energy and creating healthy lighting. Natural light illumination systems have collecting, transmitting, and lighting elements. Today, most daylight collectors use dynamic concentrators; these include Sun tracking systems. However, this design is too expensive to be cost effective. To create a low-cost collector that can be easily installed on a large building, we have designed a static concentrator, which is prismatic and cascadable, to collect sunlight for indoor illumination. The transmission component uses a large number of optical fibers. Because optical fibers are expensive, this means that most of the cost for the system will be related to transmission. In this paper, we also use a prismatic structure to design an optical coupler for coupling n to 1. With the n-to-1 coupler, the number of optical fibers necessary can be greatly reduced. Although this new natural light illumination system can effectively guide collected sunlight and send it to the basement or to other indoor places for healthy lighting, previously there has been no way to manage the collected sunlight when lighting was not desired. To solve this problem, we have designed an optical switch and a beam splitter to control and separate the transmitted light. When replacing traditional sources, the lighting should have similar characteristics, such as intensity distribution and geometric parameters, to those of traditional artificial sources. We have designed, simulated, and optimized an illumination lightpipe with a dot pattern to redistribute the collected sunlight from the natural light illumination system such that it equals the qualities of a traditional lighting system. We also provide an active lighting module that provides lighting from the natural light illumination system or LED auxiliary

  18. Demonstration of a large-size horizontal light-field display based on the LED panel and the micro-pinhole unit array

    Science.gov (United States)

    Yang, Le; Sang, Xinzhu; Yu, Xunbo; Liu, Boyang; Liu, Li; Yang, Shenwu; Yan, Binbin; Du, Jingyan; Gao, Chao

    2018-05-01

    A 54-inch horizontal-parallax only light-field display based on the light-emitting diode (LED) panel and the micro-pinhole unit array (MPUA) is demonstrated. Normally, the perceived 3D effect of the three-dimensional (3D) display with smooth motion parallax and abundant light-field information can be enhanced with increasing the density of viewpoints. However, the density of viewpoints is inversely proportional to the spatial display resolution for the conventional integral imaging. Here, a special MPUA is designed and fabricated, and the displayed 3D scene constructed by the proposed horizontal light-field display is presented. Compared with the conventional integral imaging, both the density of horizontal viewpoints and the spatial display resolution are significantly improved. In the experiment, A 54-inch horizontal light-field display with 42.8° viewing angle based on the LED panel with the resolution of 1280 × 720 and the MPUA is realized, which can provide natural 3D visual effect to observers with high quality.

  19. Effects of illumination on image reconstruction via Fourier ptychography

    Science.gov (United States)

    Cao, Xinrui; Sinzinger, Stefan

    2017-12-01

    The Fourier ptychographic microscopy (FPM) technique provides high-resolution images by combining a traditional imaging system, e.g. a microscope or a 4f-imaging system, with a multiplexing illumination system, e.g. an LED array and numerical image processing for enhanced image reconstruction. In order to numerically combine images that are captured under varying illumination angles, an iterative phase-retrieval algorithm is often applied. However, in practice, the performance of the FPM algorithm degrades due to the imperfections of the optical system, the image noise caused by the camera, etc. To eliminate the influence of the aberrations of the imaging system, an embedded pupil function recovery (EPRY)-FPM algorithm has been proposed [Opt. Express 22, 4960-4972 (2014)]. In this paper, we study how the performance of FPM and EPRY-FPM algorithms are affected by imperfections of the illumination system using both numerical simulations and experiments. The investigated imperfections include varying and non-uniform intensities, and wavefront aberrations. Our study shows that the aberrations of the illumination system significantly affect the performance of both FPM and EPRY-FPM algorithms. Hence, in practice, aberrations in the illumination system gain significant influence on the resulting image quality.

  20. Hotsphere illumination

    Science.gov (United States)

    Razavi, Bahar S.; Hoang, Duyen; Liu, Shibin; Kuzyakov, Yakov

    2017-04-01

    Soils are the most heterogeneous parts of the biosphere, with an extremely high differentiation of properties and processes at all spatial and temporal scales. Importance of hotspheres- environment with abundant high microbial activity- i.e.: rhizosphere, detritusphere, biopores, spermosphere and hyphasphere calls for spatially explicit methods to illuminate distribution of microbial activities (Kuzyakov and Blagodatskaya, 2015). Zymography technique has previously been adapted to visualize the spatial dynamics of enzyme activities in rhizosphere. Here, we further developed soil zymography to obtain a higher resolution of enzyme activities by enabling direct contact of substrate-saturated membranes with soil. For the first time, we aimed at quantitative imaging of enzyme activities in various hotspheres. We calculated and compared percentage of enzymatic hotspots of four hotspheres: Spermosphere, rhizosphere, detritusphere and biopores. Spatial distribution of activities of two enzymes: β-glucosidase and phosphatase were analyzed in the spermosphere and rhizosphere of maize and lentil. Zymography has been done 3 days (spermosphere), 14 days (rhizosphere) after sowing. Further, manure was placed on surface of rhizoboxes to visualize spatio-temporal distribution of the enzyme activities in detritusphere after 25 days. Biopores were produced by earthworms (Lumbricus terrestris L.) in transparent boxes for 2 weeks and enzyme distribution were measured by zymography thereafter. The developed in situ direct soil zymography visualized the heterogeneity of enzyme activities along and across the roots. Spatial patterns of enzyme activities as a function of distance along the root demonstrated plant specific patterns of enzyme distribution: it was uniform and homogenous along the lentil roots, whereas the enzyme activities in maize rhizosphere were higher at the apical or proximal root parts. For the first time were applied "spatial point pattern analysis" to determine

  1. Development of highly durable deep-ultraviolet AlGaN-based LED multichip array with hemispherical encapsulated structures using a selected resin through a detailed feasibility study

    Science.gov (United States)

    Nagai, Shoko; Yamada, Kiho; Hirano, Akira; Ippommatsu, Masamichi; Ito, Masahiro; Morishima, Naoki; Aosaki, Ko; Honda, Yoshio; Amano, Hiroshi; Akasaki, Isamu

    2016-08-01

    To replace mercury lamps with AlGaN-based deep-ultraviolet (DUV) LEDs, a simple and low-cost package with increased light extraction efficiency (LEE) is indispensable. Therefore, resin encapsulation is considered to be a key technology. However, the photochemical reactions induced by DUV light cause serious problems, and conventional resins cannot be used. In the former part of this study, a comparison of a silicone resin and fluorine polymers was carried out in terms of their suitability for encapsulation, and we concluded that only one of the fluorine polymers can be used for encapsulation. In the latter part, the endurance of encapsulation using the selected fluorine polymer was investigated, and we confirmed that the selected fluorine polymer can guarantee a lifetime of over 6,000 h at a wavelength of 265 nm. Furthermore, a 3 × 4 array module of encapsulated dies on a simple AlN submount was fabricated, demonstrating the possibility of W/cm2-class lighting.

  2. Illumination influences working memory: an EEG study.

    Science.gov (United States)

    Park, Jin Young; Min, Byoung-Kyong; Jung, Young-Chul; Pak, Hyensou; Jeong, Yeon-Hong; Kim, Eosu

    2013-09-05

    Illumination conditions appear to influence working efficacy in everyday life. In the present study, we obtained electroencephalogram (EEG) correlates of working-memory load, and investigated how these waveforms are modulated by illumination conditions. We hypothesized that illumination conditions may affect cognitive performance. We designed an EEG study to monitor and record participants' EEG during the Sternberg working memory task under four different illumination conditions. Illumination conditions were generated with a factorial design of two color-temperatures (3000 and 7100 K) by two illuminance levels (150 and 700 lx). During a working memory task, we observed that high illuminance led to significantly lower frontal EEG theta activity than did low illuminance. These differences persisted despite no significant difference in task performance between illumination conditions. We found that the latency of an early event-related potential component, such as N1, was significantly modulated by the illumination condition. The fact that the illumination condition affects brain activity but not behavioral performance suggests that the lighting conditions used in the present study did not influence the performance stage of behavioral processing. Nevertheless, our findings provide objective evidence that illumination conditions modulate brain activity. Further studies are necessary to refine the optimal lighting parameters for facilitating working memory. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. High Throughput, High Yield Fabrication of High Quantum Efficiency Back-Illuminated Photon Counting, Far UV, UV, and Visible Detector Arrays

    Science.gov (United States)

    Nikzad, Shouleh; Hoenk, M. E.; Carver, A. G.; Jones, T. J.; Greer, F.; Hamden, E.; Goodsall, T.

    2013-01-01

    In this paper we discuss the high throughput end-to-end post fabrication processing of high performance delta-doped and superlattice-doped silicon imagers for UV, visible, and NIR applications. As an example, we present our results on far ultraviolet and ultraviolet quantum efficiency (QE) in a photon counting, detector array. We have improved the QE by nearly an order of magnitude over microchannel plates (MCPs) that are the state-of-the-art UV detectors for many NASA space missions as well as defense applications. These achievements are made possible by precision interface band engineering of Molecular Beam Epitaxy (MBE) and Atomic Layer Deposition (ALD).

  4. Smart LED allocation scheme for efficient multiuser visible light communication networks.

    Science.gov (United States)

    Sewaiwar, Atul; Tiwari, Samrat Vikramaditya; Chung, Yeon Ho

    2015-05-18

    In a multiuser bidirectional visible light communication (VLC), a large number of LEDs or an LED array needs to be allocated in an efficient manner to ensure sustainable data rate and link quality. Moreover, in order to support an increasing or decreasing number of users in the network, the LED allocation is required to be performed dynamically. In this paper, a novel smart LED allocation scheme for efficient multiuser VLC networks is presented. The proposed scheme allocates RGB LEDs to multiple users in a dynamic and efficient fashion, while satisfying illumination requirements in an indoor environment. The smart LED array comprised of RGB LEDs is divided into sectors according to the location of the users. The allocated sectors then provide optical power concentration toward the users for efficient and reliable data transmission. An algorithm for the dynamic allocation of the LEDs is also presented. To verify its effective resource allocation feature of the proposed scheme, simulations were performed. It is found that the proposed smart LED allocation scheme provides the effect of optical beamforming toward individual users, thereby increasing the collective power concentration of the optical signals on the desirable users and resulting in significantly increased data rate, while ensuring sufficient illumination in a multiuser VLC environment.

  5. Parallel hierarchical global illumination

    Energy Technology Data Exchange (ETDEWEB)

    Snell, Quinn O. [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Solving the global illumination problem is equivalent to determining the intensity of every wavelength of light in all directions at every point in a given scene. The complexity of the problem has led researchers to use approximation methods for solving the problem on serial computers. Rather than using an approximation method, such as backward ray tracing or radiosity, the authors have chosen to solve the Rendering Equation by direct simulation of light transport from the light sources. This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like progressive radiosity methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for ray histories. The algorithm, called Photon, produces a scene which converges to the global illumination solution. This amounts to a huge task for a 1997-vintage serial computer, but using the power of a parallel supercomputer significantly reduces the time required to generate a solution. Currently, Photon can be run on most parallel environments from a shared memory multiprocessor to a parallel supercomputer, as well as on clusters of heterogeneous workstations.

  6. Enhanced photoelectrochemical performance of PbS sensitized Sb–SnO{sub 2}/TiO{sub 2} nanotube arrays electrode under visible light illumination

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jia; Tang, Chengli [Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Hao, E-mail: xuhao@mail.xjtu.edu.cn [Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Yan, Wei, E-mail: yanwei@mail.xjtu.edu.cn [Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-06-05

    Highlights: • Sb–SnO{sub 2} is used to modify TiO{sub 2} NTAs by microwave method. • PbS is employed to sensitive Sb–SnO{sub 2}/TiO{sub 2} NTAs by S-SILAR method. • Sb–SnO{sub 2} improves electrons transfer and PbS enhances visible light absorption. • The composite electrode shows enhanced photoelectrochemical properties. • The composite electrode exhibits high hydrogen evolution and high QE. - Abstract: The novel PbS sensitized Sb–SnO{sub 2}/TiO{sub 2} nanotube arrays (NTAs) composite electrode (PbS/Sb–SnO{sub 2}/TiO{sub 2} NTAs) was fabricated by microwave combined with sonication-assisted successive ionic layer adsorption and reaction technique (S-SILAR). The obtained electrodes were characterized by field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–Vis diffuse reflectance absorption spectra techniques. Enhanced photocurrent (15.52 mA/cm{sup 2}) of the PbS/Sb–SnO{sub 2}/TiO{sub 2} NTAs electrode was observed and can be attributed to the facile photo-generated electrons transfer and enhanced charge separation efficiency. Furthermore, the PbS/Sb–SnO{sub 2}/TiO{sub 2} NTAs composite electrode shows a higher H{sub 2} production rate than the Sb–SnO{sub 2}/TiO{sub 2} NTAs electrode and PbS/TiO{sub 2} NTAs electrode. The results indicate that the PbS/Sb–SnO{sub 2}/TiO{sub 2} NTAs electrode is a promising photoanode in visible photocatalytic water splitting.

  7. High power light emitting diode (LED) arrays versus halogen light polymerization of oral biomaterials: Barcol hardness, compressive strength and radiometric properties.

    Science.gov (United States)

    Mills, Robin W; Uhl, Alexander; Blackwell, Gordon B; Jandt, Klaus D

    2002-07-01

    The clinical performance of light polymerized dental composites is greatly influenced by the quality of the light curing unit (LCU) used. Commonly used halogen LCUs have some specific drawbacks such as decreasing light output with time. This may result in a low degree of monomer conversion of the composites with negative clinical implications. Previous studies have shown that blue light emitting diode (LED) LCUs have the potential to polymerize dental composites without having the drawbacks of halogen LCUs. Since these studies were carried out LED technology has advanced significantly and commercial LED LCUs are now becoming available. This study investigates the Barcol hardness as a function of depth, and the compressive strength of dental composites that had been polymerized for 40 or 20s with two high power LED LCU prototypes, a commercial LED LCU, and a commercial halogen LCU. In addition the radiometric properties of the LCUs were characterized. The two high power prototype LED LCUs and the halogen LCU showed a satisfactory and similar hardness-depth performance whereas the hardness of the materials polymerized with the commercial LED LCU rapidly decreased with sample depth and reduced polymerization time (20 s). There were statistically significant differences in the overall compressive strengths of composites polymerized with different LCUs at the 95% significance level (p = 0.0016) with the two high power LED LCU prototypes and the halogen LCU forming a statistically homogenous group. In conclusion, LED LCU polymerization technology can reach the performance level of halogen LCUs. One of the first commercial LED LCUs however lacked the power reserves of the high power LED LCU prototypes.

  8. Fibre illumination system

    DEFF Research Database (Denmark)

    2012-01-01

    Source: EP2426402A The invention relates to a fibre illumination module and system for the collection and delivery of daylight for illumination purposes. The fibre illumination module comprises a plurality of collector elements, each collector element comprising an input fibre having a first end......-directional arrangement. The fibre illumination system comprises a fibre illumination module of the above-mentioned type. By the invention, daylight may be exploited for the illumination of remote interior spaces of buildings in order to save energy, and improve the well-being of users in both housing and working...

  9. Effects of illuminants and illumination time on lettuce growth, yield and nutritional quality in a controlled environment

    Science.gov (United States)

    Shen, Y. Z.; Guo, S. S.; Ai, W. D.; Tang, Y. K.

    2014-07-01

    Effects of illuminants and illumination time on the growth of lettuce were researched. Red-blue light-emitting diodes (LEDs, 90% red light +10% blue light) and white light fluorescent (WF) lamps were compared as the illuminants for plant cultivation. Under each type of illuminant, lettuce was grown at 4 illumination times: 12 h, 16 h, 20 h and 24 h, with the same light intensity of 600 μmolm-2s-1. The leaf net photosynthetic rate (Pn) under the two illuminants was comparable but the shape of lettuce was obviously affected by the illuminant. The WF lamps produced more compact plant, while red-blue LED resulted in less but longer leaves. However, the total leaf area was not significantly affected by the illuminant. The red-blue LED produced nearly same aboveground biomass with far less energy consumption relative to WF lamps. The underground biomass was lowered under red-blue LED in comparison with WF lamps. Red-blue LED could improve the nutritional quality of lettuce by increasing the concentration of soluble sugar and vitamin C (VC) and reducing the concentration of nitrate. Under each type of illuminant, longer illumination time resulted in higher Pn, more leaves and larger leaf area. The total chlorophyll concentration increased while the concentration ratio of chlorophyll a/b decreased with the extension of illumination time. Illumination time had highly significant positive correlation with biomass. Moreover, when total daily light input was kept the same, longer illumination time increased the biomass significantly as well. In addition, longer illumination time increased the concentration of crude fiber, soluble sugar and VC and reduced the concentration of nitrate. In summary, red-blue LEDs and 24 h illumination time were demonstrated to be more suitable for lettuce cultivation in the controlled environment.

  10. Determination of illuminants representing typical white light emitting diodes sources

    DEFF Research Database (Denmark)

    Jost, S.; Ngo, M.; Ferrero, A.

    2017-01-01

    is to develop LED-based illuminants that describe typical white LED products based on their Spectral Power Distributions (SPDs). Some of these new illuminants will be recommended in the update of the CIE publication 15 on colorimetry with the other typical illuminants, and among them, some could be used......Solid-state lighting (SSL) products are already in use by consumers and are rapidly gaining the lighting market. Especially, white Light Emitting Diode (LED) sources are replacing banned incandescent lamps and other lighting technologies in most general lighting applications. The aim of this work...... to complement the CIE standard illuminant A for calibration use in photometry....

  11. Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations.

    Directory of Open Access Journals (Sweden)

    Bradley Pearce

    Full Text Available The phenomenon of colour constancy in human visual perception keeps surface colours constant, despite changes in their reflected light due to changing illumination. Although colour constancy has evolved under a constrained subset of illuminations, it is unknown whether its underlying mechanisms, thought to involve multiple components from retina to cortex, are optimised for particular environmental variations. Here we demonstrate a new method for investigating colour constancy using illumination matching in real scenes which, unlike previous methods using surface matching and simulated scenes, allows testing of multiple, real illuminations. We use real scenes consisting of solid familiar or unfamiliar objects against uniform or variegated backgrounds and compare discrimination performance for typical illuminations from the daylight chromaticity locus (approximately blue-yellow and atypical spectra from an orthogonal locus (approximately red-green, at correlated colour temperature 6700 K, all produced in real time by a 10-channel LED illuminator. We find that discrimination of illumination changes is poorer along the daylight locus than the atypical locus, and is poorest particularly for bluer illumination changes, demonstrating conversely that surface colour constancy is best for blue daylight illuminations. Illumination discrimination is also enhanced, and therefore colour constancy diminished, for uniform backgrounds, irrespective of the object type. These results are not explained by statistical properties of the scene signal changes at the retinal level. We conclude that high-level mechanisms of colour constancy are biased for the blue daylight illuminations and variegated backgrounds to which the human visual system has typically been exposed.

  12. White LEDs as broad spectrum light sources for spectrophotometry: demonstration in the visible spectrum range in a diode-array spectrophotometric detector.

    Science.gov (United States)

    Piasecki, Tomasz; Breadmore, Michael C; Macka, Mirek

    2010-11-01

    Although traditional lamps, such as deuterium lamps, are suitable for bench-top instrumentation, their compatibility with the requirements of modern miniaturized instrumentation is limited. This study investigates the option of utilizing solid-state light source technology, namely white LEDs, as a broad band spectrum source for spectrophotometry. Several white light LEDs of both RGB and white phosphorus have been characterized in terms of their emission spectra and energy output and a white phosphorus Luxeon LED was then chosen for demonstration as a light source for visible-spectrum spectrophotometry conducted in CE. The Luxeon LED was fixed onto the base of a dismounted deuterium (D(2) ) lamp so that the light-emitting spot was geometrically positioned exactly where the light-emitting spot of the original D(2) lamp is placed. In this manner, the detector of a commercial CE instrument equipped with a DAD was not modified in any way. As the detector hardware and electronics remained the same, the change of the deuterium lamp for the Luxeon white LED allowed a direct comparison of their performances. Several anionic dyes as model analytes with absorption maxima between 450 and 600 nm were separated by CE in an electrolyte of 0.01 mol/L sodium tetraborate. The absorbance baseline noise as the key parameter was 5 × lower for the white LED lamp, showing clearly superior performance to the deuterium lamp in the available, i.e. visible part of the spectrum. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer.

    Science.gov (United States)

    Klughammer, Christof; Schreiber, Ulrich

    2016-05-01

    A newly developed compact measuring system for assessment of transmittance changes in the near-infrared spectral region is described; it allows deconvolution of redox changes due to ferredoxin (Fd), P700, and plastocyanin (PC) in intact leaves. In addition, it can also simultaneously measure chlorophyll fluorescence. The major opto-electronic components as well as the principles of data acquisition and signal deconvolution are outlined. Four original pulse-modulated dual-wavelength difference signals are measured (785-840 nm, 810-870 nm, 870-970 nm, and 795-970 nm). Deconvolution is based on specific spectral information presented graphically in the form of 'Differential Model Plots' (DMP) of Fd, P700, and PC that are derived empirically from selective changes of these three components under appropriately chosen physiological conditions. Whereas information on maximal changes of Fd is obtained upon illumination after dark-acclimation, maximal changes of P700 and PC can be readily induced by saturating light pulses in the presence of far-red light. Using the information of DMP and maximal changes, the new measuring system enables on-line deconvolution of Fd, P700, and PC. The performance of the new device is demonstrated by some examples of practical applications, including fast measurements of flash relaxation kinetics and of the Fd, P700, and PC changes paralleling the polyphasic fluorescence rise upon application of a 300-ms pulse of saturating light.

  14. Tachistoscopic illumination and masking of real scenes.

    Science.gov (United States)

    Chichka, David; Philbeck, John W; Gajewski, Daniel A

    2015-03-01

    Tachistoscopic presentation of scenes has been valuable for studying the emerging properties of visual scene representations. The spatial aspects of this work have generally been focused on the conceptual locations (e.g., next to the refrigerator) and directional locations of objects in 2-D arrays and/or images. Less is known about how the perceived egocentric distance of objects develops. Here we describe a novel system for presenting brief glimpses of a real-world environment, followed by a mask. The system includes projectors with mechanical shutters for projecting the fixation and masking images, a set of LED floodlights for illuminating the environment, and computer-controlled electronics to set the timing and initiate the process. Because a real environment is used, most visual distance and depth cues can be manipulated using traditional methods. The system is inexpensive, robust, and its components are readily available in the marketplace. This article describes the system and the timing characteristics of each component. We verified the system's ability to control exposure to time scales as low as a few milliseconds.

  15. A filter bank approach for LED illumintaion sensing based on frequency division multiplexing

    NARCIS (Netherlands)

    Yang, Hongming; Bergmans, J.W.M.; Schenk, T.C.W.

    2009-01-01

    In this work, we consider illumination sensing in a light emitting diode (LED) based illumination system that normally consists of a large number of LEDs. Illumination sensing is used in order to facilitate the control of such system whose complexity, due to the large number of LEDs, can be quite

  16. ‘No Blue’ White LED

    DEFF Research Database (Denmark)

    Ou, Haiyan; Corell, Dennis Dan; Dam-Hansen, Carsten

    2010-01-01

    This paper explored the feasibility of making a white LED light source by color mixing method without using the blue color. This ‘no blue’ white LED has potential applications in photolithography room illumination, medical treatment and biophotonics research. A no-blue LED was designed......-2005. Even after 15 days of illumination, no effect was observed. So this LED-based solution was demonstrated to be a very promising light source for photolithography room illumination due to its better color rendering in addition to energy efficiency, long life time and design flexibility. Additionally......, and the prototype was fabricated. The spectral power distribution of both the LED bulb and the yellow fluorescent tube was measured. Based on that, colorimetric values were calculated and compared on terms of chromatic coordinates, correlated color temperature, color rendering index, and chromatic deviation...

  17. Wood's lamp illumination (image)

    Science.gov (United States)

    A Wood's lamp emits ultraviolet light and can be a diagnostic aid in determining if someone has a fungal ... is an infection on the area where the Wood's lamp is illuminating, the area will fluoresce. Normally ...

  18. Colorimetric characterization of LED luminaires

    International Nuclear Information System (INIS)

    Costa, C L M; Vieira, R R; Pereira, R C; Silva, P V M; Oliveira, I A A; Sardinha, A S; Viana, D D; Barbosa, A H; Souza, L P; Alvarenga, A D

    2015-01-01

    The Optical Metrology Division of Inmetro – National Institute of Metrology, Quality and Technology has recently started the colorimetric characterization of lamps by implementing Correlated Color Temperature (CCT) and Color Rendering Index (CRI) measurements of incandescent lamps, followed by the CFL, and LED lamps and luminaires. Here we present the results for the verification of the color characterization of samples of SSL luminaires for public as well as indoor illumination that are sold in Brazil

  19. Hybrid daylight/light-emitting diode illumination system for indoor lighting.

    Science.gov (United States)

    Ge, Aiming; Qiu, Peng; Cai, Jinlin; Wang, Wei; Wang, Junwei

    2014-03-20

    A hybrid illumination method using both daylight and light-emitting diodes (LEDs) for indoor lighting is presented in this study. The daylight can be introduced into the indoor space by a panel-integration system. The daylight part and LEDs are combined within a specific luminaire that can provide uniform illumination. The LEDs can be turned on and dimmed through closed-loop control when the daylight illuminance is inadequate. We simulated the illumination and calculated the indoor lighting efficiency of our hybrid daylight and LED lighting system, and compared this with that of LED and fluorescent lighting systems. Simulation results show that the efficiency of the hybrid daylight/LED illumination method is better than that of LED and traditional lighting systems, under the same lighting conditions and lighting time; the method has hybrid lighting average energy savings of T5 66.28%, and that of the LEDs is 41.62%.

  20. Dynamic Control Based Photovoltaic Illuminating System

    Directory of Open Access Journals (Sweden)

    Zhang Chengkai

    2016-01-01

    Full Text Available Smart LED illumination system can use the power from whether the photovoltaic cell or the power grid automatically based on the SOC (State Of Charge of the photovoltaic cell. This paper proposes a feedback control of the photovoltaic cells and a dynamic control strategy for the Energy system. The dynamic control strategy is used to determine the switching state of the photovoltaic cell based on the illumination load in the past one hour and the battery capacity. These controls are manifested by experimental prototype that the control scheme is correct and effective.

  1. Effect of different illumination sources on reading and visual performance

    Directory of Open Access Journals (Sweden)

    Male Shiva Ram

    2018-01-01

    Conclusion: This study demonstrates the influence of illumination on reading rate; there were no significant differences between males and females under different illuminations, however, males preferred CFL and females preferred FLUO for faster reading and visual comfort. Interestingly, neither preferred LED or TUNG. Although energy-efficient, visual performance under LED is poor; it is uncomfortable for prolonged reading and causes early symptoms of fatigue.

  2. Nonimaging optical illumination system

    Energy Technology Data Exchange (ETDEWEB)

    Winston, R.; Ries, H.

    2000-02-01

    A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source, a light reflecting surface, and a family of light edge rays defined along a reference line with the reflecting surface defined in terms of the reference line 104 as a parametric function R(t) where t is a scalar parameter position and R(t) = k(t) + Du(t) where k(t) is a parameterization of the reference line 104, and D is a distance from a point on the reference line 104 to the reflection surface 108 along the desired edge ray through the point.

  3. Tailored reflectors for illumination.

    Science.gov (United States)

    Jenkins, D; Winston, R

    1996-04-01

    We report on tailored reflector design methods that allow the placement of general illumination patterns onto a target plane. The use of a new integral design method based on the edge-ray principle of nonimaging optics gives much more compact reflector shapes by eliminating the need for a gap between the source and the reflector profile. In addition, the reflectivity of the reflector is incorporated as a design parameter. We show the performance of design for constant irradiance on a distant plane, and we show how a leading-edge-ray method may be used to achieve general illumination patterns on nearby targets.

  4. Simulation and comparison of the illuminance, uniformity, and efficiency of different forms of lighting used in basketball court illumination.

    Science.gov (United States)

    Sun, Wen-Shing; Tien, Chuen-Lin; Tsuei, Chih-Hsuan; Pan, Jui-Wen

    2014-10-10

    We simulate and compare the illuminance, uniformity, and efficiency of metal-halide lamps, white LED light sources, and hybrid light box designs combining sunlight and white LED lighting used for indoor basketball court illumination. According to the optical simulation results and our examination of real situations, we find that hybrid light box designs combining sunlight and white LEDs do perform better than either metal-halide lamps or white LED lights. An evaluation of the sunlight concentrator system used in our inverted solar cell shows that the energy consumption of stadium lighting can be reduced significantly.

  5. Construction of a photochemical reactor combining a CCD spectrophotometer and a LED radiation source.

    Science.gov (United States)

    Gombár, Melinda; Józsa, Éva; Braun, Mihály; Ősz, Katalin

    2012-10-01

    An inexpensive photoreactor using LED light sources and a fibre-optic CCD spectrophotometer as a detector was built by designing a special cell holder for standard 1.000 cm cuvettes. The use of this device was demonstrated by studying the aqueous photochemical reaction of 2,5-dichloro-1,4-benzoquinone. The developed method combines the highly quantitative data collection of CCD spectrophotometers with the possibility of illuminating the sample independently of the detecting light beam, which is a substantial improvement of the method using diode array spectrophotometers as photoreactors.

  6. Predicting Ground Illuminance

    Science.gov (United States)

    Lesniak, Michael V.; Tregoning, Brett D.; Hitchens, Alexandra E.

    2015-01-01

    Our Sun outputs 3.85 x 1026 W of radiation, of which roughly 37% is in the visible band. It is directly responsible for nearly all natural illuminance experienced on Earth's surface, either in the form of direct/refracted sunlight or in reflected light bouncing off the surfaces and/or atmospheres of our Moon and the visible planets. Ground illuminance, defined as the amount of visible light intercepting a unit area of surface (from all incident angles), varies over 7 orders of magnitude from day to night. It is highly dependent on well-modeled factors such as the relative positions of the Sun, Earth, and Moon. It is also dependent on less predictable factors such as local atmospheric conditions and weather.Several models have been proposed to predict ground illuminance, including Brown (1952) and Shapiro (1982, 1987). The Brown model is a set of empirical data collected from observation points around the world that has been reduced to a smooth fit of illuminance against a single variable, solar altitude. It provides limited applicability to the Moon and for cloudy conditions via multiplicative reduction factors. The Shapiro model is a theoretical model that treats the atmosphere as a three layer system of light reflectance and transmittance. It has different sets of reflectance and transmittance coefficients for various cloud types.In this paper we compare the models' predictions to ground illuminance data from an observing run at the White Sands missile range (data was obtained from the United Kingdom's Meteorology Office). Continuous illuminance readings were recorded under various cloud conditions, during both daytime and nighttime hours. We find that under clear skies, the Shapiro model tends to better fit the observations during daytime hours with typical discrepancies under 10%. Under cloudy skies, both models tend to poorly predict ground illuminance. However, the Shapiro model, with typical average daytime discrepancies of 25% or less in many cases

  7. Advanced illumination control algorithm for medical endoscopy applications

    Science.gov (United States)

    Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Morgado-Dias, F.

    2015-05-01

    CMOS image sensor manufacturer, AWAIBA, is providing the world's smallest digital camera modules to the world market for minimally invasive surgery and one time use endoscopic equipment. Based on the world's smallest digital camera head and the evaluation board provided to it, the aim of this paper is to demonstrate an advanced fast response dynamic control algorithm of the illumination LED source coupled to the camera head, over the LED drivers embedded on the evaluation board. Cost efficient and small size endoscopic camera modules nowadays embed minimal size image sensors capable of not only adjusting gain and exposure time but also LED illumination with adjustable illumination power. The LED illumination power has to be dynamically adjusted while navigating the endoscope over changing illumination conditions of several orders of magnitude within fractions of the second to guarantee a smooth viewing experience. The algorithm is centered on the pixel analysis of selected ROIs enabling it to dynamically adjust the illumination intensity based on the measured pixel saturation level. The control core was developed in VHDL and tested in a laboratory environment over changing light conditions. The obtained results show that it is capable of achieving correction speeds under 1 s while maintaining a static error below 3% relative to the total number of pixels on the image. The result of this work will allow the integration of millimeter sized high brightness LED sources on minimal form factor cameras enabling its use in endoscopic surgical robotic or micro invasive surgery.

  8. Diffuse-Illumination Systems for Growing Plants

    Science.gov (United States)

    May, George; Ryan, Robert

    2010-01-01

    Agriculture in both terrestrial and space-controlled environments relies heavily on artificial illumination for efficient photosynthesis. Plant-growth illumination systems require high photon flux in the spectral range corresponding with plant photosynthetic active radiation (PAR) (400 700 nm), high spatial uniformity to promote uniform growth, and high energy efficiency to minimize electricity usage. The proposed plant-growth system takes advantage of the highly diffuse reflective surfaces on the interior of a sphere, hemisphere, or other nearly enclosed structure that is coated with highly reflective materials. This type of surface and structure uniformly mixes discrete light sources to produce highly uniform illumination. Multiple reflections from within the domelike structures are exploited to obtain diffuse illumination, which promotes the efficient reuse of photons that have not yet been absorbed by plants. The highly reflective surfaces encourage only the plant tissue (placed inside the sphere or enclosure) to absorb the light. Discrete light sources, such as light emitting diodes (LEDs), are typically used because of their high efficiency, wavelength selection, and electronically dimmable properties. The light sources are arranged to minimize shadowing and to improve uniformity. Different wavelengths of LEDs (typically blue, green, and red) are used for photosynthesis. Wavelengths outside the PAR range can be added for plant diagnostics or for growth regulation

  9. Optical characterization of ultrabright LEDs

    International Nuclear Information System (INIS)

    Benavides, Juan Manuel; Webb, Robert H.

    2005-01-01

    Ultrabright light emitting diodes (LEDs) are a new light source for visual psychophysics and microscopy. The new LEDs are intended primarily for room and exterior illumination, and the manufacturers' specifications are adequate for that. However, we use them as light sources in situations where a more complete characterization may be useful. For one set of LEDs we have measured the radiometric intensity and its distribution in space and wavelength, and we have tested for interactions of these variables and their dependence on driver configuration. We describe techniques for making these measurements and give a link to a simple calculator for converting among radiometric and photometric measures, as well as an evaluation of the safety considerations these very bright sources demand

  10. Testing of focal plane arrays

    International Nuclear Information System (INIS)

    Merriam, J.D.

    1988-01-01

    Problems associated with the testing of focal plane arrays are briefly examined with reference to the instrumentation and measurement procedures. In particular, the approach and instrumentation used as the Naval Ocean Systems Center is presented. Most of the measurements are made with flooded illumination on the focal plane array. The array is treated as an ensemble of individual pixels, data being taken on each pixel and array averages and standard deviations computed for the entire array. Data maps are generated, showing the pixel data in the proper spatial position on the array and the array statistics

  11. Nonimaging optical illumination system

    Science.gov (United States)

    Winston, Roland; Ries, Harald

    1996-01-01

    A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source 102, a light reflecting surface 108, and a family of light edge rays defined along a reference line 104 with the reflecting surface 108 defined in terms of the reference line 104 as a parametric function R(t) where t is a scalar parameter position and R(t)=k(t)+Du(t) where k(t) is a parameterization of the reference line 104, and D is a distance from a point on the reference line 104 to the reflection surface 108 along the desired edge ray through the point.

  12. Illuminance: Computerized simulation

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, A

    1991-03-01

    One of the main objectives of a graphics work-station is to create images that are as realistic as possible. This paper reviews and assesses the state-of-the-art in the field of illuminance simulation. The techniques examined are: ray tracing, in which illuminance in a given ambient is calculated in an approximate way by tracing individual rays of light; the 'radiosity' (a term combining surface radiancy and reflectivity) method, based on the calculation of the ambient's thermodynamics and which considers the effects of different surface colours; progressive improvement, in which 'radiosity' is calculated step by step with increasing levels of detail. The Gouraud and Phong methods of representing the effects of shade are also compared.

  13. Integrated chemical sensor array platform based on a light emitting diode, xerogel-derived sensor elements, and high-speed pin printing

    International Nuclear Information System (INIS)

    Cho, Eun Jeong; Bright, Frank V.

    2002-01-01

    We report a new, solid-state, integrated optical array sensor platform. By using pin printing technology in concert with sol-gel-processing methods, we form discrete xerogel-based microsensor elements that are on the order of 100 μm in diameter and 1 μm thick directly on the face of a light emitting diode (LED). The LED serves as the light source to excite chemically responsive luminophores sequestered within the doped xerogel microsensors and the analyte-dependent emission from within the doped xerogel is detected with a charge coupled device (CCD). We overcome the problem of background illumination from the LED reaching the CCD and the associated biasing that results by coating the LED first with a thin layer of blue paint. The thin paint layer serves as an optical filter, knocking out the LEDs red-edge spectral tail. The problem of the spatially-dependent fluence across the LED face is solved entirely by performing ratiometric measurements. We illustrate the performance of the new sensor scheme by forming an array of 100 discrete O 2 -responsive sensing elements on the face of a single LED. The combination of pin printing with an integrated sensor and light source platform results in a rapid method of forming (∼1 s per sensor element) reusable sensor arrays. The entire sensor array can be calibrated using just one sensor element. Array-to-array reproducibly is <8%. Arrays can be formed using single or multiple pins with indistinguishable analytical performance

  14. Infrared Illuminated CdZnTe detectors with improved performance

    International Nuclear Information System (INIS)

    Ivanov, V.; Loutchanski, A.; Dorogov, P.; Khinoverov, S.

    2013-06-01

    It was found that IR illumination of a properly chosen wavelength and intensity can significantly improve spectrometric characteristics of CdZnTe quasi-hemispherical detectors [1]. Improving of the spectrometric characteristics is due to improvement of uniformity of charge collection by the detector volume. For operation at room temperature the optimal wavelength of IR illumination is about 940 nm, but for operation at lower temperature of -20 deg. C the optimal wavelengths of IR illumination is about 1050 nm. Infrared illumination can be performed using conventional low-power IR LEDs. Application of SMD LEDs allows produce miniature detection probes with IR illuminated CdZnTe detectors. We have fabricated and tested a variety of detection probes with CdZnTe quasi-hemispherical detectors from the smallest with volumes of 1-5 mm 3 to larger with volumes of 1.5 cm 3 and 4.0 cm 3 . The use of IR illumination significantly improves spectrometric characteristics of the probes operating at room temperature, especially probes with detectors of large volumes. The probe with the detector of 4 cm 3 without IR illumination had energy resolution of 24.2 keV at 662 keV and of 12.5 keV with IR illumination. (authors)

  15. Optimization of laboratory illumination in optical dating

    DEFF Research Database (Denmark)

    Sohbati, Reza; Murray, Andrew; Lindvold, Lars René

    2017-01-01

    As part of the development of new laboratory lighting, we present a methodological approach applicable to the characterization of any light source intended for illumination in optical dating laboratories. We derive optical absorption cross-sections for quartz and feldspar from published data......-emitting diodes (LEDs); this comparison demonstrates the significant advantage of the LED sources over the filtered light sources, because essentially all of the reduction of both OSL and IRSL signals by the LEDs occurs at wavelengths to which the human eye is most sensitive. We conclude that exposure of quartz...... and feldspar extracts from various samples to the light from an LED with emission peak at 594 nm results in a 1% OSL or IRSL signal loss for a 48-h exposure at a power density of ~0.2 mW.cm-2....

  16. Lighting system with illuminance control

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an illumination control system comprising a plurality of outdoor luminaries and a motorized service vehicle. Each luminaire comprises a controllable light source producing a light illuminance. The motorized service vehicle comprises a light sensor configured...... to detect the light illuminance generated by the controllable light source at the motorized service vehicle. The motorized service vehicle computes light illuminance data based on the detected light illuminance and transmits these to the outdoor luminaire through a wireless communication link or stores...... the light illuminance data on a data recording device of the motorized service vehicle. The outdoor luminaire receives may use the light illuminance data to set or adjust a light illuminance of the controllable light source....

  17. A spectral image processing algorithm for evaluating the influence of the illuminants on the reconstructed reflectance

    Science.gov (United States)

    Toadere, Florin

    2017-12-01

    A spectral image processing algorithm that allows the illumination of the scene with different illuminants together with the reconstruction of the scene's reflectance is presented. Color checker spectral image and CIE A (warm light 2700 K), D65 (cold light 6500 K) and Cree TW Series LED T8 (4000 K) are employed for scene illumination. Illuminants used in the simulations have different spectra and, as a result of their illumination, the colors of the scene change. The influence of the illuminants on the reconstruction of the scene's reflectance is estimated. Demonstrative images and reflectance showing the operation of the algorithm are illustrated.

  18. Photocatalytic degradation effect of malachite green and catalytic hydrogenation by UV-illuminated CeO2/CdO multilayered nanoplatelet arrays: Investigation of antifungal and antimicrobial activities.

    Science.gov (United States)

    Maria Magdalane, C; Kaviyarasu, K; Judith Vijaya, J; Jayakumar, C; Maaza, M; Jeyaraj, B

    2017-04-01

    CeO 2 /CdO multi-layered nanoplatelet arrays have been synthesized by sol-gel method at two different temperatures using Citrus limonum fruit extract and the effect of particle size on the photocatalytic performance is studied. The particle size and phases was analysed by X-ray diffraction pattern (XRD) which brought out the formation of cubic phase in the synthesized samples. Field Emission Scanning electron microscopy (FESEM) revealed the surface morphology and made up of cumulative form of platelet shaped arrays with an average size of 10nm. The elemental composition and the purity of the nanomaterials were confirmed by Energy Dispersive X-ray spectroscopy (EDX). CeO 2 /CdO multilayered binary metal oxide nanoplatelet arrays were formed which was further explored with Fourier transform infrared spectroscopy (FTIR), it reveals that the nanocomposites contain CeO and CdO bonds. Determination of the direct and indirect bandgap energy of the nanoplatelet arrays was carried out by UV-Vis-DRS studies. In MG degradation, both the hole (h + ) and hydroxyl radical (OH) played a major role than the superoxide radical (O 2 - ). Possible photo degradation mechanisms are proposed and discussed in this article. CeO 2 /CdO multi-layered nanoplatelet arrays showed antibacterial activity and among the tested ones, it showed better growth inhibition towards P. aeruginosa MTCC73. Thus, this greener synthetic procedure was a highly effective method due to low-cost, highly effective UV light responsive material for environmental safety. Copyright © 2017. Published by Elsevier B.V.

  19. Comparison of two structured illumination techniques based on different 3D illumination patterns

    Science.gov (United States)

    Shabani, H.; Patwary, N.; Doblas, A.; Saavedra, G.; Preza, C.

    2017-02-01

    Manipulating the excitation pattern in optical microscopy has led to several super-resolution techniques. Among different patterns, the lateral sinusoidal excitation was used for the first demonstration of structured illumination microscopy (SIM), which provides the fastest SIM acquisition system (based on the number of raw images required) compared to the multi-spot illumination approach. Moreover, 3D patterns that include lateral and axial variations in the illumination have attracted more attention recently as they address resolution enhancement in three dimensions. A threewave (3W) interference technique based on coherent illumination has already been shown to provide super-resolution and optical sectioning in 3D-SIM. In this paper, we investigate a novel tunable technique that creates a 3D pattern from a set of multiple incoherently illuminated parallel slits that act as light sources for a Fresnel biprism. This setup is able to modulate the illumination pattern in the object space both axially and laterally with adjustable modulation frequencies. The 3D forward model for the new system is developed here to consider the effect of the axial modulation due to the 3D patterned illumination. The performance of 3D-SIM based on 3W interference and the tunable system are investigated in simulation and compared based on two different criteria. First, restored images obtained for both 3D-SIM systems using a generalized Wiener filter are compared to determine the effect of the illumination pattern on the reconstruction. Second, the effective frequency response of both systems is studied to determine the axial and lateral resolution enhancement that is obtained in each case.

  20. Rectenna array measurement results

    Science.gov (United States)

    Dickinson, R. M.

    1980-01-01

    The measured performance characteristics of a rectenna array are reviewed and compared to the performance of a single element. It is shown that the performance may be extrapolated from the individual element to that of the collection of elements. Techniques for current and voltage combining were demonstrated. The array performance as a function of various operating parameters is characterized and techniques for overvoltage protection and automatic fault clearing in the array demonstrated. A method for detecting failed elements also exists. Instrumentation for deriving performance effectiveness is described. Measured harmonic radiation patterns and fundamental frequency scattered patterns for a low level illumination rectenna array are presented.

  1. Performance of Series Connected GaAs Photovoltaic Converters under Multimode Optical Fiber Illumination

    Directory of Open Access Journals (Sweden)

    Tiqiang Shan

    2014-01-01

    Full Text Available In many military and industrial applications, GaAs photovoltaic (PV converters are connected in series in order to generate the required voltage compatible with most common electronics. Multimode optical fibers are usually used to carry high-intensity laser and illuminate the series connected GaAs PV converters in real time. However, multimode optical fiber illumination has a speckled intensity pattern. The series connected PV array is extremely sensitive to nonuniform illumination; its performance is limited severely by the converter that is illuminated the least. This paper quantifies the effects of multimode optical fiber illumination on the performance of series connected GaAs PV converters, analyzes the loss mechanisms due to speckles, and discusses the maximum illumination efficiency. In order to describe the illumination dependent behavior detailedly, modeling of the series connected PV array is accomplished based on the equivalent circuit for PV cells. Finally, a series of experiments are carried out to demonstrate the theory analysis.

  2. HERA: Illuminating Our Early Universe

    Science.gov (United States)

    DeBoer, David

    2014-06-01

    The Hydrogen Epoch of Reionization Arrays (HERA) roadmap is a staged plan for using the unique properties of the 21cm line from neutral hydrogen to probe our cosmic dawn, from the birth of the first stars and black holes, through the full reionization of the primordial intergalactic medium (IGM). HERA is a collaboration between the Precision Array Probing the Epoch of Reionization (PAPER), US-Murchison Widefield Array (MWA), and MIT Epoch of Reionization (MITEOR) teams.The first phase of the HERA roadmap entailed the operation of the PAPER and MWA telescopes to explore techniques and designs required to detect the primordial HI signal in the presence of radio continuum foreground emission some four orders of magnitude brighter. Studies with PAPER and the MWA have led to a new understanding of the interplay of foreground and instrumental systematics in the context of a three-dimensional cosmological intensity-mapping experiment. We are now able to remove foregrounds to the limits of our sensitivity with these instruments, culminating in the first physically meaningful upper limits on the power spectrum of 2 cm emission from reionization.Building on this understanding, the next stage of HERA entails a new 14m diameter antenna element that is optimized both for sensitivity and for minimizing foreground systematics. Arranging these elements in a compact hexagonal grid yields an array that facilitates calibration, leverages proven foreground removal techniques, and is scalable to large collecting areas. The HERA phase II will be located in the radio quiet environment of the SKA site in Karoo, South Africa, and have a sensitivity close to two orders of magnitude better than PAPER and the MWA, with broader frequency coverage, HERA can paint an uninterrupted picture through reionization, back to the end of the Dark Ages.This paper will present a summary of the current understanding of the signal characteristics and measurements and describe this planned HERA telescope to

  3. Optical design of a LED searchlight system

    Science.gov (United States)

    Gong, Chen; Xu, Haiping; Liang, Jinhua; Liu, Yunfei; Yuan, Zengquan

    2018-01-01

    A 1200m visible searchlight system is designed based on photometry and application of geometric optics. To generate intensity distribution of this relatively powerful light beam we propose to use a high power LED and several refractive optical elements, which are composed of two plane-convex lenses and a conventional Fresnel lens. Two plane-convex lenses enable refraction of the side rays from the LED to the front direction which incident on the Fresnel lens. Fresnel lens, in its turn, concentrate the light flux and provide a nearly collimated beam to meet the requirement of forming a well-illuminated area across the road in the far field. Simulation data shows that this searchlight allow generating an appropriate illumination distribution for the long range requirements. A proof-of-concept prototype producing acceptable illuminance is developed.

  4. A review of passive thermal management of LED module

    NARCIS (Netherlands)

    Ye, H.; Sau, K.; Zeijl, H. van; Gielen, A.W.J.; Zhang, G.

    2011-01-01

    Recently, the high-brightness LEDs have begun to be designed for illumination application. The increased electrical currents used to drive LEDs lead to thermal issues. Thermal management for LED module is a key design parameter as high operation temperature directly affects their maximum light

  5. Illumination and radiative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Shanhui; Raman, Aaswath Pattabhi; Zhu, Linxiao; Rephaeli, Eden

    2018-03-20

    Aspects of the present disclosure are directed to providing and/or controlling electromagnetic radiation. As may be implemented in accordance with one or more embodiments, an apparatus includes a first structure that contains an object, and a second structure that is transparent at solar wavelengths and emissive in the atmospheric electromagnetic radiation transparency window. The second structure operates with the first structure to pass light into the first structure for illuminating the object, and to radiatively cool the object while preserving the object's color.

  6. BiliLED low cost neonatal phototherapy, from prototype to industry

    Energy Technology Data Exchange (ETDEWEB)

    Geido, Daniel; Failache, Horacio [Instituto de Fisica de la Facultad de Ingenieria - Universidad de la Republica, Montevideo (Uruguay); Simini, Franco [Nucleo de Ingenieria Biomedica de las Facultades de Medicina e Ingenieria (Uruguay); Hospital de ClInicas. Av Italia S/N. Piso 15 sala 2, 11600 Montevideo (Uruguay)

    2007-11-15

    BiliLED is a phototherapy instrument designed to reduce bilirrubin blood rates in new born babies with jaundice. The light source is centred at 470 nm with a bandwidth of 35 nm and includes a matrix of 196 (14x14) InGaN LEDs. The optical elements are designed to maximize the light intensity useful for treatment, with a small number of LEDs in a compact and low cost unit. The optic array is such that every LED illuminates all the treatment area, which ensures redundancy and, thus, a high reliability not to be found in single-lamp instruments. Thermal dissipation and cost of BiliLED are both an order-of-magnitude smaller than conventional therapy lamps. BiliLED adjusts coetaneous irradiation with a feedback loop to compensate the loss or aging of LEDs achieving a calibrated light source for over a decade of use. A clinical trial in 20 hyperbilirrubinaemia patients shows 16% bilirrubin degradation within 24 hours of treatment, higher than most lamp phototherapy instruments. The steps from prototype to commercial model are described.

  7. BiliLED low cost neonatal phototherapy, from prototype to industry

    Science.gov (United States)

    Geido, Daniel; Failache, Horacio; Simini, Franco

    2007-11-01

    BiliLED is a phototherapy instrument designed to reduce bilirrubin blood rates in new born babies with jaundice. The light source is centred at 470 nm with a bandwidth of 35 nm and includes a matrix of 196 (14×14) InGaN LEDs. The optical elements are designed to maximize the light intensity useful for treatment, with a small number of LEDs in a compact and low cost unit. The optic array is such that every LED illuminates all the treatment area, which ensures redundancy and, thus, a high reliability not to be found in single-lamp instruments. Thermal dissipation and cost of BiliLED are both an order-of-magnitude smaller than conventional therapy lamps. BiliLED adjusts coetaneous irradiation with a feedback loop to compensate the loss or aging of LEDs achieving a calibrated light source for over a decade of use. A clinical trial in 20 hyperbilirrubinaemia patients shows 16% bilirrubin degradation within 24 hours of treatment, higher than most lamp phototherapy instruments. The steps from prototype to commercial model are described.

  8. BiliLED low cost neonatal phototherapy, from prototype to industry

    International Nuclear Information System (INIS)

    Geido, Daniel; Failache, Horacio; Simini, Franco

    2007-01-01

    BiliLED is a phototherapy instrument designed to reduce bilirrubin blood rates in new born babies with jaundice. The light source is centred at 470 nm with a bandwidth of 35 nm and includes a matrix of 196 (14x14) InGaN LEDs. The optical elements are designed to maximize the light intensity useful for treatment, with a small number of LEDs in a compact and low cost unit. The optic array is such that every LED illuminates all the treatment area, which ensures redundancy and, thus, a high reliability not to be found in single-lamp instruments. Thermal dissipation and cost of BiliLED are both an order-of-magnitude smaller than conventional therapy lamps. BiliLED adjusts coetaneous irradiation with a feedback loop to compensate the loss or aging of LEDs achieving a calibrated light source for over a decade of use. A clinical trial in 20 hyperbilirrubinaemia patients shows 16% bilirrubin degradation within 24 hours of treatment, higher than most lamp phototherapy instruments. The steps from prototype to commercial model are described

  9. Multiple Primary LED Lamp Colour Controller with Inherent Brightness Limitation

    NARCIS (Netherlands)

    Barcena, R.; Ackermann, B.

    2007-01-01

    There is a strong interest in using LEDs for general illumination due to the potential they offer for energy saving, environmental friendliness, new opportunities in lighting design, and control of the intensity, colour, and spatial distribution of light. General illumination requires primarily

  10. Broadband spectrally dynamic solid state illumination source

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, David B; Asghar, Ali; Gupta, Shalini; Kang, Hun; Pan, Ming [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250 (United States); Strassburg, Martin [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250 (United States); Georgia State University, Department of Physics and Astronomy, Atlanta, GA 30302-4106 (United States); Summers, Chris; Ferguson, Ian T [Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA 30332 (United States)

    2006-06-15

    Solid state lighting has done well recently in niche markets such as signage and displays, however, no available SSL technologies incorporate all the necessary attributes for general illumination. Development of a novel solid state general illumination source is discussed here. Two LEDs emitting at two distinct wavelengths can be monolithically grown and used to excite two or more phosphors with varied excitation spectra. The combined phosphorescence spectrum can then be controlled by adjusting the relative intensities of the two LED emissions. Preliminary phosphor analysis shows such a scheme to be viable for use in a spectrally dynamic broadband general illumination source. A tunnel junction is envisioned as a means of current spreading in a buried layer for three terminal operation. However, tunnel junction properties in GaN based materials are not well understood, and require further optimization to be practical devices. Preliminary results on GaN tunnel junctions are presented here as well. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Reflectance, illumination, and appearance in color constancy.

    Science.gov (United States)

    McCann, John J; Parraman, Carinna; Rizzi, Alessandro

    2014-01-01

    We studied color constancy using a pair of identical 3-D Color Mondrian displays. We viewed one 3-D Mondrian in nearly uniform illumination, and the other in directional, nonuniform illumination. We used the three dimensional structures to modulate the light falling on the painted surfaces. The 3-D structures in the displays were a matching set of wooden blocks. Across Mondrian displays, each corresponding facet had the same paint on its surface. We used only 6 chromatic, and 5 achromatic paints applied to 104 block facets. The 3-D blocks add shadows and multiple reflections not found in flat Mondrians. Both 3-D Mondrians were viewed simultaneously, side-by-side. We used two techniques to measure correlation of appearance with surface reflectance. First, observers made magnitude estimates of changes in the appearances of identical reflectances. Second, an author painted a watercolor of the 3-D Mondrians. The watercolor's reflectances quantified the changes in appearances. While constancy generalizations about illumination and reflectance hold for flat Mondrians, they do not for 3-D Mondrians. A constant paint does not exhibit perfect color constancy, but rather shows significant shifts in lightness, hue and chroma in response to the structure in the nonuniform illumination. Color appearance depends on the spatial information in both the illumination and the reflectances of objects. The spatial information of the quanta catch from the array of retinal receptors generates sensations that have variable correlation with surface reflectance. Models of appearance in humans need to calculate the departures from perfect constancy measured here. This article provides a dataset of measurements of color appearances for computational models of sensation.

  12. Reflectance, illumination, and appearance in color constancy

    Directory of Open Access Journals (Sweden)

    John J. McCann

    2014-01-01

    Full Text Available We studied color constancy using a pair of identical 3-D Color Mondrian displays. We viewed one 3-D Mondrian in nearly uniform illumination, and the other in directional, nonuniform illumination. We used the three dimensional structures to modulate the light falling on the painted surfaces. The 3-D structures in the displays were a matching set of wooden blocks. Across Mondrian displays, each corresponding facet had the same paint on its surface. We used only 6 chromatic, and 5 achromatic paints applied to 104 block facets. The 3-D blocks add shadows and multiple reflections not found in flat Mondrians. Both 3-D Mondrians were viewed simultaneously, side-by-side. We used two techniques to measure correlation of appearance with surface reflectance. First, observers made magnitude estimates of changes in the appearances of identical reflectances. Second, an author painted a watercolor of the 3-D Mondrians. The watercolor’s reflectances quantified the changes in appearances. While constancy generalizations about illumination and reflectance hold for flat Mondrians, they do not for 3-D Mondrians. A constant paint does not exhibit perfect color constancy, but rather shows significant shifts in lightness, hue and chroma in response to the structure in the nonuniform illumination. Color appearance depends on the spatial information in both the illumination and the reflectances of objects. The spatial information of the quanta catch from the array of retinal receptors generates sensations that have variable correlation with surface reflectance. Models of appearance in humans need to calculate the departures from perfect constancy measured here. This article provides a dataset of measurements of color appearances for computational models of sensation.

  13. EVALUATION OF ADOPTION OF LED LIGHTING TECHNOLOGY IN MALAYSIA

    OpenAIRE

    Khorasanizadeh, Hasti

    2017-01-01

    Electrical energy consumption in Malaysia is rapidly increasing with illumination being the second largest contributor to this increment. Light Emitting Diode (LED) could be a viable option to reduce the illumination based energy consumption. LEDs are energy efficient and easier to recycle compared to traditional lighting sources such as incandescent and fluorescent lamps. They also have longer life time and lower failure rate. In this thesis, the feasibility of replacing...

  14. A new LED light source for display cases

    DEFF Research Database (Denmark)

    Dam-Hansen, Carsten; Petersen, Paul Michael

    Abstract: We report a new LED light source suitable for illumination of gold objects. It has a variable correlated color temperature from 2760 K to 2200 K with a high color rendering index up to 97.......Abstract: We report a new LED light source suitable for illumination of gold objects. It has a variable correlated color temperature from 2760 K to 2200 K with a high color rendering index up to 97....

  15. Split-illumination electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Inada, Yoshikatsu [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Taniyama, Akira [Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., Amagasaki, Hyogo 660-0891 (Japan); Shindo, Daisuke [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Tonomura, Akira [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa 904-0495 (Japan); Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan)

    2012-07-23

    We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

  16. Split-illumination electron holography

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon; Inada, Yoshikatsu; Matsuda, Tsuyoshi; Taniyama, Akira; Shindo, Daisuke; Tonomura, Akira

    2012-01-01

    We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

  17. High-power LEDs for plant cultivation

    Science.gov (United States)

    Tamulaitis, Gintautas; Duchovskis, Pavelas; Bliznikas, Zenius; Breive, Kestutis; Ulinskaite, Raimonda; Brazaityte, Ausra; Novickovas, Algirdas; Zukauskas, Arturas; Shur, Michael S.

    2004-10-01

    We report on high-power solid-state lighting facility for cultivation of greenhouse vegetables and on the results of the study of control of photosynthetic activity and growth morphology of radish and lettuce imposed by variation of the spectral composition of illumination. Experimental lighting modules (useful area of 0.22 m2) were designed based on 4 types of high-power light-emitting diodes (LEDs) with emission peaked in red at the wavelengths of 660 nm and 640 nm (predominantly absorbed by chlorophyll a and b for photosynthesis, respectively), in blue at 455 nm (phototropic function), and in far-red at 735 nm (important for photomorphology). Morphological characteristics, chlorophyll and phytohormone concentrations in radish and lettuce grown in phytotron chambers under lighting with different spectral composition of the LED-based illuminator and under illumination by high pressure sodium lamps with an equivalent photosynthetic photon flux density were compared. A well-balanced solid-state lighting was found to enhance production of green mass and to ensure healthy morphogenesis of plants compared to those grown using conventional lighting. We observed that the plant morphology and concentrations of morphologically active phytohormones is strongly affected by the spectral composition of light in the red region. Commercial application of the LED-based illumination for large-scale plant cultivation is discussed. This technology is favorable from the point of view of energy consumption, controllable growth, and food safety but is hindered by high cost of the LEDs. Large scale manufacturing of high-power red AlInGaP-based LEDs emitting at 650 nm and a further decrease of the photon price for the LEDs emitting in the vicinity of the absorption peak of chlorophylls have to be achieved to promote horticulture applications.

  18. Optimization of sampling pattern and the design of Fourier ptychographic illuminator.

    Science.gov (United States)

    Guo, Kaikai; Dong, Siyuan; Nanda, Pariksheet; Zheng, Guoan

    2015-03-09

    Fourier ptychography (FP) is a recently developed imaging approach that facilitates high-resolution imaging beyond the cutoff frequency of the employed optics. In the original FP approach, a periodic LED array is used for sample illumination, and therefore, the scanning pattern is a uniform grid in the Fourier space. Such a uniform sampling scheme leads to 3 major problems for FP, namely: 1) it requires a large number of raw images, 2) it introduces the raster grid artefacts in the reconstruction process, and 3) it requires a high-dynamic-range detector. Here, we investigate scanning sequences and sampling patterns to optimize the FP approach. For most biological samples, signal energy is concentrated at low-frequency region, and as such, we can perform non-uniform Fourier sampling in FP by considering the signal structure. In contrast, conventional ptychography perform uniform sampling over the entire real space. To implement the non-uniform Fourier sampling scheme in FP, we have designed and built an illuminator using LEDs mounted on a 3D-printed plastic case. The advantages of this illuminator are threefold in that: 1) it reduces the number of image acquisitions by at least 50% (68 raw images versus 137 in the original FP setup), 2) it departs from the translational symmetry of sampling to solve the raster grid artifact problem, and 3) it reduces the dynamic range of the captured images 6 fold. The results reported in this paper significantly shortened acquisition time and improved quality of FP reconstructions. It may provide new insights for developing Fourier ptychographic imaging platforms and find important applications in digital pathology.

  19. Computer numerical control (CNC) lithography: light-motion synchronized UV-LED lithography for 3D microfabrication

    International Nuclear Information System (INIS)

    Kim, Jungkwun; Allen, Mark G; Yoon, Yong-Kyu

    2016-01-01

    This paper presents a computer-numerical-controlled ultraviolet light-emitting diode (CNC UV-LED) lithography scheme for three-dimensional (3D) microfabrication. The CNC lithography scheme utilizes sequential multi-angled UV light exposures along with a synchronized switchable UV light source to create arbitrary 3D light traces, which are transferred into the photosensitive resist. The system comprises a switchable, movable UV-LED array as a light source, a motorized tilt-rotational sample holder, and a computer-control unit. System operation is such that the tilt-rotational sample holder moves in a pre-programmed routine, and the UV-LED is illuminated only at desired positions of the sample holder during the desired time period, enabling the formation of complex 3D microstructures. This facilitates easy fabrication of complex 3D structures, which otherwise would have required multiple manual exposure steps as in the previous multidirectional 3D UV lithography approach. Since it is batch processed, processing time is far less than that of the 3D printing approach at the expense of some reduction in the degree of achievable 3D structure complexity. In order to produce uniform light intensity from the arrayed LED light source, the UV-LED array stage has been kept rotating during exposure. UV-LED 3D fabrication capability was demonstrated through a plurality of complex structures such as V-shaped micropillars, micropanels, a micro-‘hi’ structure, a micro-‘cat’s claw,’ a micro-‘horn,’ a micro-‘calla lily,’ a micro-‘cowboy’s hat,’ and a micro-‘table napkin’ array. (paper)

  20. Design of an Oximeter Based on LED-LED Configuration and FPGA Technology

    OpenAIRE

    Stojanovic, Radovan; Karadaglic, Dejan

    2013-01-01

    A fully digital photoplethysmographic (PPG) sensor and actuator has been developed. The sensing circuit uses one Light Emitting Diode (LED) for emitting light into human tissue and one LED for detecting the reflectance light from human tissue. A Field Programmable Gate Array (FPGA) is used to control the LEDs and determine the PPG and Blood Oxygen Saturation (SpO2). The configurations with two LEDs and four LEDs are developed for measuring PPG signal and Blood Oxygen Saturation (SpO2). N-LEDs...

  1. Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array

    Science.gov (United States)

    Li, Jiaji; Chen, Qian; Zhang, Jialin; Zhang, Zhao; Zhang, Yan; Zuo, Chao

    2017-08-01

    Optical diffraction tomography (ODT) is an effective label-free technique for quantitatively refractive index imaging, which enables long-term monitoring of the internal three-dimensional (3D) structures and molecular composition of biological cells with minimal perturbation. However, existing optical tomographic methods generally rely on interferometric configuration for phase measurement and sophisticated mechanical systems for sample rotation or beam scanning. Thereby, the measurement is suspect to phase error coming from the coherent speckle, environmental vibrations, and mechanical error during data acquisition process. To overcome these limitations, we present a new ODT technique based on non-interferometric phase retrieval and programmable illumination emitting from a light-emitting diode (LED) array. The experimental system is built based on a traditional bright field microscope, with the light source replaced by a programmable LED array, which provides angle-variable quasi-monochromatic illumination with an angular coverage of ±37 degrees in both x and y directions (corresponding to an illumination numerical aperture of ∼0.6). Transport of intensity equation (TIE) is utilized to recover the phase at different illumination angles, and the refractive index distribution is reconstructed based on the ODT framework under first Rytov approximation. The missing-cone problem in ODT is addressed by using the iterative non-negative constraint algorithm, and the misalignment of the LED array is further numerically corrected to improve the accuracy of refractive index quantification. Experiments on polystyrene beads and thick biological specimens show that the proposed approach allows accurate refractive index reconstruction while greatly reduced the system complexity and environmental sensitivity compared to conventional interferometric ODT approaches.

  2. Computational diffraction tomographic microscopy with transport of intensity equation using a light-emitting diode array

    Science.gov (United States)

    Li, Jiaji; Chen, Qian; Zhang, Jialin; Zuo, Chao

    2017-10-01

    Optical diffraction tomography (ODT) is an effective label-free technique for quantitatively refractive index imaging, which enables long-term monitoring of the internal three-dimensional (3D) structures and molecular composition of biological cells with minimal perturbation. However, existing optical tomographic methods generally rely on interferometric configuration for phase measurement and sophisticated mechanical systems for sample rotation or beam scanning. Thereby, the measurement is suspect to phase error coming from the coherent speckle, environmental vibrations, and mechanical error during data acquisition process. To overcome these limitations, we present a new ODT technique based on non-interferometric phase retrieval and programmable illumination emitting from a light-emitting diode (LED) array. The experimental system is built based on a traditional bright field microscope, with the light source replaced by a programmable LED array, which provides angle-variable quasi-monochromatic illumination with an angular coverage of +/-37 degrees in both x and y directions (corresponding to an illumination numerical aperture of ˜ 0.6). Transport of intensity equation (TIE) is utilized to recover the phase at different illumination angles, and the refractive index distribution is reconstructed based on the ODT framework under first Rytov approximation. The missing-cone problem in ODT is addressed by using the iterative non-negative constraint algorithm, and the misalignment of the LED array is further numerically corrected to improve the accuracy of refractive index quantification. Experiments on polystyrene beads and thick biological specimens show that the proposed approach allows accurate refractive index reconstruction while greatly reduced the system complexity and environmental sensitivity compared to conventional interferometric ODT approaches.

  3. An LED Approach for Measuring the Photocatalytic Breakdown of Crystal Violet Dye

    Science.gov (United States)

    Ryan, Robert E.; Underwood, Lauren W.; ONeal, Duane; Pagnutti, Mary; Davis, Bruce A.

    2009-01-01

    A simple technique to assess the reactivity of photocatalytic coatings sprayed onto transmissive glass surfaces was developed. This new method uses ultraviolet (UV) gallium nitride (GaN) light-emitting diodes (LEDs) to drive a photocatalytic reaction (the photocatalytic breakdown of a UV-resistant dye applied to a surface coated with the semiconductor titanium dioxide); and then a combination of a stabilized white light LED and a spectrometer to track the dye degradation as a function of time. Simple, standardized evaluation techniques that assess photocatalytic materials over a variety of environmental conditions, including illumination level, are not generally available and are greatly needed prior to in situ application of photocatalytic technologies. To date, much research pertaining to this aspect of photocatalysis has been limited and has focused primarily on laboratory experiments using mercury lamps. Mercury lamp illumination levels are difficult to control over large ranges and are temporally modulated by line power, limiting their use in helping to understand and predict how photocatalytic materials will behave in natural environmental settings and conditions. The methodology described here, using steady-state LEDs and time series spectroradiometric techniques, is a novel approach to explore the effect of UV light on the photocatalytic degradation of a UV resistant dye (crystal violet). GaN UV LED arrays, centered around 365 nm with an adjustable DC power supply, are used to create a small, spatially uniform light field where the steady state light level can be varied over three to four orders of magnitude. For this study, a set of glass microscope slides was custom coated with a thinly sprayed layer of photocatalytic titanium dioxide. Crystal violet was then applied to these titanium-dioxide coated slides and to uncoated control slides. The slides were then illuminated at various light levels from the dye side of the slide by the UV LED array. To monitor

  4. Numerical analysis of lateral illumination lightpipes using elliptical grooves

    Science.gov (United States)

    Sánchez-Guerrero, Guillermo E.; Viera-González, Perla M.; Martínez-Guerra, Edgar; Ceballos-Herrera, Daniel E.

    2017-09-01

    Lightpipes are used for illumination in applications such as back-lighting or solar cell concentrators due to the high irradiance uniformity, but its optimal design requires several parameters. This work presents a procedure to design a square lightpipe to control the light-extraction on its lateral face using commercial LEDs placed symmetrically in the lightpipe frontal face. We propose the use of grooves using total internal reflection placed successively in the same face of extraction to control the area of emission. The LED area of emission is small compared with the illuminated area, and, as expected, the lateral face total power is attenuated. These grooves reduce the optical elements in the system and can control areas of illumination. A mathematical and numerical analysis are presented to determine the dependencies on the light-extraction.

  5. Cryogenic characterization of LEDs for space application

    Science.gov (United States)

    Carron, Jérôme; Philippon, Anne; How, Lip Sun; Delbergue, Audrey; Hassanzadeh, Sahar; Cillierre, David; Danto, Pascale; Boutillier, Mathieu

    2017-09-01

    In the frame of EUCLID project, the Calibration Unit of the VIS (VISible Imager) instrument must provide an accurate and well characterized light source for in-flight instrument calibration without noise when it is switched off. The Calibration Unit consists of a set of LEDs emitting at various wavelengths in the visible towards an integrating sphere. The sphere's output provides a uniform illumination over the entire focal plane. Nine references of LEDs from different manufacturers were selected, screened and qualified under cryogenic conditions. Testing this large quantity of samples led to the implementation of automated testing equipment with complete in-situ monitoring of optoelectronic parameters as well as temperature and vacuum values. All the electrical and optical parameters of the LED have been monitored and recorded at ambient and cryogenic temperatures. These results have been compiled in order to show the total deviation of the LED electrical and electro-optical properties in the whole mission and to select the best suitable LED references for the mission. This qualification has demonstrated the robustness of COTS LEDs to operate at low cryogenic temperatures and in the space environment. Then 6 wavelengths were selected and submitted to an EMC sensitivity test at room and cold temperature by counting the number of photons when LEDs drivers are OFF. Characterizations were conducted in the full frequency spectrum in order to implement solutions at system level to suppress the emission of photons when the LED drivers are OFF. LEDs impedance was also characterized at room temperature and cold temperature.

  6. Biological Effects Of Artificial Illumination

    Science.gov (United States)

    Corth, Richard

    1980-10-01

    We are increasingly being warned of the possible effects of so called "polluted" light, that is light that differs in spectral content from that of sunlight. We should be concerned, we are told, because all animals and plants have evolved under this natural daylight and therefore any difference between that illuminant and the artificial illuminants that are on the market today, is suspect. The usual presentation of the differences between the sunlight and the artificial illuminants are as shown in Figure 1. Here we are shown the spectral power distribution of sunlight and Cool White fluorescent light. The spectral power distributions of each have been normalized to some convenient wavelength so that each can be seen and easily compared on the same figure. But this presentation is misleading for one does not experience artificial illuminants at the same intensity as one experiences sunlight. Sunlight intensities are ordinarily found to be in the 8000 to 10,000 footcandle range whereas artificial illuminants are rarely experienced at intensity levels greater than 100 footcandles. Therefore a representative difference between the two types of illumination conditions is more accurately represented as in Figure 2. Thus if evolutionary adaptations require that humans and other animals be exposed to sunlight to ensure wellbeing, it is clear that one must be exposed to sunlight intensities. It is not feasible to expect that artificially illuminated environments will be lit to the same intensity as sunlight

  7. High-power LED light sources for optical measurement systems operated in continuous and overdriven pulsed modes

    Science.gov (United States)

    Stasicki, Bolesław; Schröder, Andreas; Boden, Fritz; Ludwikowski, Krzysztof

    2017-06-01

    The rapid progress of light emitting diode (LED) technology has recently resulted in the availability of high power devices with unprecedented light emission intensities comparable to those of visible laser light sources. On this basis two versatile devices have been developed, constructed and tested. The first one is a high-power, single-LED illuminator equipped with exchangeable projection lenses providing a homogenous light spot of defined diameter. The second device is a multi-LED illuminator array consisting of a number of high-power LEDs, each integrated with a separate collimating lens. These devices can emit R, G, CG, B, UV or white light and can be operated in pulsed or continuous wave (CW) mode. Using an external trigger signal they can be easily synchronized with cameras or other devices. The mode of operation and all parameters can be controlled by software. Various experiments have shown that these devices have become a versatile and competitive alternative to laser and xenon lamp based light sources. The principle, design, achieved performances and application examples are given in this paper.

  8. Éalonnage de sources lumineuses de type LED

    DEFF Research Database (Denmark)

    Durix, Bastien; Quéau, Yvain; Lucas, Tom

    We describe three calibration methods of a LED (light-emitting diode), in order to apply photometric stereo to a scene illuminated by LEDs. The most accurate of these methods will allow us to obtain very realistic 3D models. Nevertheless, the scene must remain still during the whole shooting sequ...

  9. Investigation of Light-Emitting Diode (LED) Point Light Source Color Visibility against Complex Multicolored Backgrounds

    Science.gov (United States)

    2017-11-01

    authors. Statistical analyses and analysis plots were obtained using IBM SPSS Statistics.* 5.1 Threshold Visible Illuminance by LED Color and...LED Visibility vs. Outdoor Background Illuminance Across all camouflage materials, the outdoor distances of visibility are plotted with SPSS in Fig

  10. Design method of freeform light distribution lens for LED automotive headlamp based on DMD

    Science.gov (United States)

    Ma, Jianshe; Huang, Jianwei; Su, Ping; Cui, Yao

    2018-01-01

    We propose a new method to design freeform light distribution lens for light-emitting diode (LED) automotive headlamp based on digital micro mirror device (DMD). With the Parallel optical path architecture, the exit pupil of the illuminating system is set in infinity. Thus the principal incident rays of micro lens in DMD is parallel. DMD is made of high speed digital optical reflection array, the function of distribution lens is to distribute the emergent parallel rays from DMD and get a lighting pattern that fully comply with the national regulation GB 25991-2010.We use DLP 4500 to design the light distribution lens, mesh the target plane regulated by the national regulation GB 25991-2010 and correlate the mesh grids with the active mirror array of DLP4500. With the mapping relations and the refraction law, we can build the mathematics model and get the parameters of freeform light distribution lens. Then we import its parameter into the three-dimensional (3D) software CATIA to construct its 3D model. The ray tracing results using Tracepro demonstrate that the Illumination value of target plane is easily adjustable and fully comply with the requirement of the national regulation GB 25991-2010 by adjusting the exit brightness value of DMD. The theoretical optical efficiencies of the light distribution lens designed using this method could be up to 92% without any other auxiliary lens.

  11. Laser sources for object illumination

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, G.F. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The considerations which formulate the specifications for a laser illuminator are explained, using the example of an underwater object. Depending on the parameters which define the scenario, widely varying laser requirements result.

  12. Random laser illumination: an ideal source for biomedical polarization imaging?

    Science.gov (United States)

    Carvalho, Mariana T.; Lotay, Amrit S.; Kenny, Fiona M.; Girkin, John M.; Gomes, Anderson S. L.

    2016-03-01

    Imaging applications increasingly require light sources with high spectral density (power over spectral bandwidth. This has led in many cases to the replacement of conventional thermal light sources with bright light-emitting diodes (LEDs), lasers and superluminescent diodes. Although lasers and superluminescent diodes appear to be ideal light sources due to their narrow bandwidth and power, however, in the case of full-field imaging, their spatial coherence leads to coherent artefacts, such as speckle, that corrupt the image. LEDs, in contrast, have lower spatial coherence and thus seem the natural choice, but they have low spectral density. Random Lasers are an unconventional type of laser that can be engineered to provide low spatial coherence with high spectral density. These characteristics makes them potential sources for biological imaging applications where specific absorption and reflection are the characteristics required for state of the art imaging. In this work, a Random Laser (RL) is used to demonstrate speckle-free full-field imaging for polarization-dependent imaging in an epi-illumination configuration. We compare LED and RL illumination analysing the resulting images demonstrating that the RL illumination produces an imaging system with higher performance (image quality and spectral density) than that provided by LEDs.

  13. Demonstration Assessment of LED Roadway Lighting: Philadelphia, PA

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P.; Tuenge, Jason R.; Poplawski, Michael E.

    2012-09-01

    For this demonstration assessment, 10 different groups of LED luminaires were installed at three sites in Philadelphia, PA. Each of the three sites represented a different set of conditions, most importantly with regard to the incumbent HPS luminaires, which were nominally 100 W, 150 W, and 250 W. The performance of each product was evaluated based on manufacturer data, illuminance calculations, field measurements of illuminance, and the subjective impressions of both regular and expert observers.

  14. Garden's lighting by led-luminaries supplied by photovoltaic

    International Nuclear Information System (INIS)

    Vasilev, H.; Angelov, A.; Ganchev, G.

    2006-01-01

    The implementation of the project by investment entirely of Denima 2001 Ltd. for garden illumination of the part of the public garden 'Studentski' is consider. The illumination installation is implemented by PV batteries and by luminaries made up by fluorescent laps and LED. The goals of this pilot project are to make a comparative analyses and observation for the operation of the light system for future development

  15. LED-roulette : LED's vervangen balletje

    NARCIS (Netherlands)

    Goossens, P.

    2007-01-01

    Iedereen waagt wel eens een gokje, in een loterij of misschien ook in een casino. Wie droomt er immers niet van om op een gemakkelijke manier rijk te worden? Met de hier beschreven LED-roulette valt weliswaar weinig te winnen, maar het is wel een uitstekende manier om het roulettespel thuis te

  16. Converting a conventional wired-halogen illuminated indirect ophthalmoscope to a wireless-light emitting diode illuminated indirect ophthalmoscope in less than 1000/- rupees

    Directory of Open Access Journals (Sweden)

    Mihir Kothari

    2015-01-01

    Full Text Available Aim: To report the "do it yourself" method of converting an existing wired-halogen indirect ophthalmoscope (IO to a wireless-light emitting diode (LED IO and report the preferences of the patients and the ophthalmologists. Subjects and Methods: In this prospective observational study, a conventional IO was converted to wireless-LED IO using easily available, affordable electrical components. Conventional and the converted IO were then used to perform photo-stress test and take the feedback of subjects and the ophthalmologists regarding its handling and illumination characteristics. Results: The cost of conversion to wireless-LED was 815/- rupees. Twenty-nine subjects, mean age 34.3 ΁ 10 years with normal eyes were recruited in the study. Between the two illumination systems, there was no statistical difference in the magnitude of the visual acuity loss and the time to recovery of acuity and the bleached vision on photo-stress test, although the visual recovery was clinically faster with LED illumination. The heat sensation was more with halogen illumination than the LED (P = 0.009. The ophthalmologists rated wireless-LED IO higher than wired-halogen IO on the handling, examination comfort, patient′s visual comfort and quality of the image. Twenty-two (81% ophthalmologists wanted to change over to wireless-LED IO. Conclusions: Converting to wireless-LED IO is easy, cost-effective and preferred over a wired-halogen indirect ophthalmoscope.

  17. Converting a conventional wired-halogen illuminated indirect ophthalmoscope to a wireless-light emitting diode illuminated indirect ophthalmoscope in less than 1000/- rupees.

    Science.gov (United States)

    Kothari, Mihir; Kothari, Kedar; Kadam, Sanjay; Mota, Poonam; Chipade, Snehal

    2015-01-01

    To report the "do it yourself" method of converting an existing wired-halogen indirect ophthalmoscope (IO) to a wireless-light emitting diode (LED) IO and report the preferences of the patients and the ophthalmologists. In this prospective observational study, a conventional IO was converted to wireless-LED IO using easily available, affordable electrical components. Conventional and the converted IO were then used to perform photo-stress test and take the feedback of subjects and the ophthalmologists regarding its handling and illumination characteristics. The cost of conversion to wireless-LED was 815/- rupees. Twenty-nine subjects, mean age 34.3 [formula in text] 10 years with normal eyes were recruited in the study. Between the two illumination systems, there was no statistical difference in the magnitude of the visual acuity loss and the time to recovery of acuity and the bleached vision on photo-stress test, although the visual recovery was clinically faster with LED illumination. The heat sensation was more with halogen illumination than the LED (P = 0.009). The ophthalmologists rated wireless-LED IO higher than wired-halogen IO on the handling, examination comfort, patient's visual comfort and quality of the image. Twenty-two (81%) ophthalmologists wanted to change over to wireless-LED IO. Converting to wireless-LED IO is easy, cost-effective and preferred over a wired-halogen indirect ophthalmoscope.

  18. Broadband Radiometric LED Measurements

    OpenAIRE

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2016-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(��) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irr...

  19. Flat-panel video resolution LED display system

    Science.gov (United States)

    Wareberg, P. G.; Kennedy, D. I.

    The system consists of a 128 x 128 element X-Y addressable LED array fabricated from green-emitting gallium phosphide. The LED array is interfaced with a 128 x 128 matrix TV camera. Associated electronics provides for seven levels of grey scale above zero with a grey scale ratio of square root of 2. Picture elements are on 0.008 inch centers resulting in a resolution of 125 lines-per-inch and a display area of approximately 1 sq. in. The LED array concept lends itself to modular construction, permitting assembly of a flat panel screen of any desired size from 1 x 1 inch building blocks without loss of resolution. A wide range of prospective aerospace applications exist extending from helmet-mounted systems involving small dedicated arrays to multimode cockpit displays constructed as modular screens. High-resolution LED arrays are already used as CRT replacements in military film-marking reconnaissance applications.

  20. Broadband radiometric LED measurements

    Science.gov (United States)

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2016-09-01

    At present, broadband radiometric LED measurements with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed.

  1. Method of controlling illumination device based on current-voltage model

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an illumination device comprising a number of LEDs, means for receiving an input signal, means for generating an activation signal for at least one of the LEDs based on the input signal. The illumination device comprises further means for obtaining the voltage...... and the colorimetric properties of said light emitted by LED. The present invention relates also to a method of controlling and a meted of calibrating such illumination device....... across and current through the LED and the means for generating the activation signal is adapted to generate the activating signal based on the voltage, the current and a current- voltage model related to LED. The current-voltage model defines a relationship between the current, the voltage...

  2. Visual ergonomic evaluations on four different designs of LED traffic signs

    Science.gov (United States)

    Chen, Yi-Chun; Huang, Ting-Yuan; Lee, Tsung-Xian; Sun, Ching-Cherng

    2017-08-01

    To investigate the legibility and visual comfort of LED traffic signs, an ergonomic experiment is performed on four custom-designed LED traffic signs, including three self-luminous ones as LED lightbox, LED backlight and regional LED backlight, and one non-self-luminous sign with external LED lighting. The four signs are hanged side-by-side and evaluated by observers through questionnaires. The signage dimension is one-sixth of the real freeway traffic signs, and the observation distance is 25 m. The luminance of three self-luminous signs is 216 cd/m2. The illuminance of external LED lighting is 400 lux on the traffic sign. The ambient illuminance is 2.8 and 6.0 lux in two rounds. The results show that self-luminous traffic signs provide superior legibility, visual comfort and user preference than the non-self-luminous one. Among the three self-luminous signs, regional LED backlight is most susceptible to the ambient illumination. LED lightbox has significantly better preference score than LED backlight under darker ambient lighting. Only LED lightbox has significantly better visual comfort than external LED lighting in the brighter environment. Based on the four LED traffic signs evaluated in this study, we suggest LED lightbox as the prior choice. Further investigations on the effect of ambient illumination and other designs of self-luminous traffic signs are in progress.

  3. Establishment Of Illumination System For Investigation Of Monochromatic Lights Combination Effects On In Vitro Plant Growth

    International Nuclear Information System (INIS)

    Le Tien Thanh; Le Ngoc Trieu; Nguyen Tuong Mien; Huynh Thi Trung; Phan Quoc Minh

    2014-01-01

    Super blue and red light LEDs and other electric, electronic components are used to design and establish 11 independent illumination systems, each system can arbitrarily control to operate at 55 molarities of illumination which are different from together in monochromatic lights combination and total illumination intensity based on the microcontrollers. Programs for loading to microcontrollers were created to base on theoretical calculation and experimental correction. The illumination cycles can be controlled by setting the timer. These 11 systems and another fluorescent light illumination were used to execute the experiment for investigation the effects of monochromatic lights combination on in vitro shoot proliferation stage in Chrysanthemum and Phalaenopsis orchid. Results from this experiment showed that illumination intensity of 400 lux is suitable for chrysanthemum, 750 lux is suitable for Phalaenopsis orchid and rate of 70% red light-30% blue light are suitable for both kinds of these plants. (author)

  4. Dansk LED - Museumsbelysning

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Dam-Hansen, Carsten; Thorseth, Anders

    Projektet har til formål at anvende dansk forskning inden for optik og lys til at realisere innovative energieffektive LED lyssystemer til museumsbranchen.......Projektet har til formål at anvende dansk forskning inden for optik og lys til at realisere innovative energieffektive LED lyssystemer til museumsbranchen....

  5. A synthetic method of solar spectrum based on LED

    Science.gov (United States)

    Wang, Ji-qiang; Su, Shi; Zhang, Guo-yu; Zhang, Jian

    2017-10-01

    A synthetic method of solar spectrum which based on the spectral characteristics of the solar spectrum and LED, and the principle of arbitrary spectral synthesis was studied by using 14 kinds of LED with different central wavelengths.The LED and solar spectrum data were selected by Origin Software firstly, then calculated the total number of LED for each center band by the transformation relation between brightness and illumination and Least Squares Curve Fit in Matlab.Finally, the spectrum curve of AM1.5 standard solar spectrum was obtained. The results met the technical indexes of the solar spectrum matching with ±20% and the solar constant with >0.5.

  6. Solid-state semiconductors are better alternatives to arc-lamps for efficient and uniform illumination in minimal access surgery.

    Science.gov (United States)

    Lee, Alex C H; Elson, Daniel S; Neil, Mark A; Kumar, Sunil; Ling, Bingo W; Bello, Fernando; Hanna, George B

    2009-03-01

    Current arc-lamp illumination systems have a number of technical and ergonomic limitations. White light-emitting diodes (LEDs) are energy-efficient solid-state lighting devices which are small, durable and inexpensive. Their use as an alternative to arc-lamp light sources in minimal access surgery has not been explored. This study aims to develop an LED-based endo-illuminator and to determine its lighting characteristics for use in minimal access surgery. We developed an LED endo-illuminator using a white LED mounted at the tip of a steel rod. Offline image analysis was carried out to compare the illuminated field using the LED endo-illuminator or an arc-lamp based endoscope in terms of uniformity, shadow sharpness and overall image intensity. Direct radiometric power measurements in light intensity and stability were obtained. Visual perception of fine details at the peripheral endoscopic field was assessed by 13 subjects using the different illumination systems. Illumination from the LED endo-illuminator was more uniform compared to illumination from an arc-lamp source, especially at the closer distance of 4 cm (0.0006 versus 0.0028 arbitrary units--lower value indicates more uniform illumination). The shadows were also sharper (edge widths of 16 versus 44 pixels for the first edge and 15 versus 61 pixels for the second edge). The overall mean image intensity was higher (127 versus 100 arbitrary units) when using the autoshutter mode despite the lower direct radiometric power, about one tenth of the arc-lamp endoscopic system. The illumination was also more stable with less flickering (0.02% versus 5% of total power in non-DC components). Higher median scores on visual perception was also obtained (237 versus 157, p arc-lamp-based system currently used.

  7. Laser illuminated flat panel display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.

    1995-12-31

    A 10 inch laser illuminated flat panel Planar Optic Display (POD) screen has been constructed and tested. This POD screen technology is an entirely new concept in display technology. Although the initial display is flat and made of glass, this technology lends itself to applications where a plastic display might be wrapped around the viewer. The display screen is comprised of hundreds of planar optical waveguides where each glass waveguide represents a vertical line of resolution. A black cladding layer, having a lower index of refraction, is placed between each waveguide layer. Since the cladding makes the screen surface black, the contrast is high. The prototype display is 9 inches wide by 5 inches high and approximately I inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  8. Light Trapping with Silicon Light Funnel Arrays

    Directory of Open Access Journals (Sweden)

    Ashish Prajapati

    2018-03-01

    Full Text Available Silicon light funnels are three-dimensional subwavelength structures in the shape of inverted cones with respect to the incoming illumination. Light funnel (LF arrays can serve as efficient absorbing layers on account of their light trapping capabilities, which are associated with the presence of high-density complex Mie modes. Specifically, light funnel arrays exhibit broadband absorption enhancement of the solar spectrum. In the current study, we numerically explore the optical coupling between surface light funnel arrays and the underlying substrates. We show that the absorption in the LF array-substrate complex is higher than the absorption in LF arrays of the same height (~10% increase. This, we suggest, implies that a LF array serves as an efficient surface element that imparts additional momentum components to the impinging illumination, and hence optically excites the substrate by near-field light concentration, excitation of traveling guided modes in the substrate, and mode hybridization.

  9. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-08-29

    With declining production costs and increasing technical capabilities, LED adoption has recently gained momentum in general illumination applications. This is a positive development for our energy infrastructure, as LEDs use significantly less electricity per lumen produced than many traditional lighting technologies. The U.S. Department of Energy’s Energy Savings Forecast of Solid-State Lighting in General Illumination Applications examines the expected market penetration and resulting energy savings of light-emitting diode, or LED, lamps and luminaires from today through 2030.

  10. Design of an Oximeter Based on LED-LED Configuration and FPGA Technology

    Directory of Open Access Journals (Sweden)

    Radovan Stojanovic

    2013-01-01

    Full Text Available A fully digital photoplethysmographic (PPG sensor and actuator has been developed. The sensing circuit uses one Light Emitting Diode (LED for emitting light into human tissue and one LED for detecting the reflectance light from human tissue. A Field Programmable Gate Array (FPGA is used to control the LEDs and determine the PPG and Blood Oxygen Saturation (SpO2. The configurations with two LEDs and four LEDs are developed for measuring PPG signal and Blood Oxygen Saturation (SpO2. N-LEDs configuration is proposed for multichannel SpO2 measurements. The approach resulted in better spectral sensitivity, increased and adjustable resolution, reduced noise, small size, low cost and low power consumption.

  11. Design of an oximeter based on LED-LED configuration and FPGA technology.

    Science.gov (United States)

    Stojanovic, Radovan; Karadaglic, Dejan

    2013-01-04

    A fully digital photoplethysmographic (PPG) sensor and actuator has been developed. The sensing circuit uses one Light Emitting Diode (LED) for emitting light into human tissue and one LED for detecting the reflectance light from human tissue. A Field Programmable Gate Array (FPGA) is used to control the LEDs and determine the PPG and Blood Oxygen Saturation (S(p)O(2)). The configurations with two LEDs and four LEDs are developed for measuring PPG signal and Blood Oxygen Saturation (S(p)O(2)). N-LEDs configuration is proposed for multichannel S(p)O(2) measurements. The approach resulted in better spectral sensitivity, increased and adjustable resolution, reduced noise, small size, low cost and low power consumption.

  12. In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography

    Science.gov (United States)

    Lin, Li; Xia, Jun; Wong, Terence T. W.; Zhang, Ruiying; Wang, Lihong V.

    2015-03-01

    We demonstrate, by means of internal light delivery, photoacoustic imaging of the deep brain of rats in vivo. With fiber illumination via the oral cavity, we delivered light directly into the bottom of the brain, much more than can be delivered by external illumination. The study was performed using a photoacoustic computed tomography (PACT) system equipped with a 512-element full-ring transducer array, providing a full two-dimensional view aperture. Using internal illumination, the PACT system provided clear cross sectional photoacoustic images from the palate to the middle brain of live rats, revealing deep brain structures such as the hypothalamus, brain stem, and cerebral medulla.

  13. The use of holographic and diffractive optics for optimized machine vision illumination for critical dimension inspection

    Science.gov (United States)

    Lizotte, Todd E.; Ohar, Orest

    2004-02-01

    Illuminators used in machine vision applications typically produce non-uniform illumination onto the targeted surface being observed, causing a variety of problems with machine vision alignment or measurement. In most circumstances the light source is broad spectrum, leading to further problems with image quality when viewed through a CCD camera. Configured with a simple light bulb and a mirrored reflector and/or frosted glass plates, these general illuminators are appropriate for only macro applications. Over the last 5 years newer illuminators have hit the market including circular or rectangular arrays of high intensity light emitting diodes. These diode arrays are used to create monochromatic flood illumination of a surface that is to be inspected. The problem with these illumination techniques is that most of the light does not illuminate the desired areas, but broadly spreads across the surface, or when integrated with diffuser elements, tend to create similar shadowing effects to the broad spectrum light sources. In many cases a user will try to increase the performance of these illuminators by adding several of these assemblies together, increasing the intensity or by moving the illumination source closer or farther from the surface being inspected. In this case these non-uniform techniques can lead to machine vision errors, where the computer machine vision may read false information, such as interpreting non-uniform lighting or shadowing effects as defects. This paper will cover a technique involving the use of holographic / diffractive hybrid optical elements that are integrated into standard and customized light sources used in the machine vision industry. The bulk of the paper will describe the function and fabrication of the holographic/diffractive optics and how they can be tailored to improve illuminator design. Further information will be provided a specific design and examples of it in operation will be disclosed.

  14. The relationship between ambient illumination and psychological factors in viewing of display Images

    Science.gov (United States)

    Iwanami, Takuya; Kikuchi, Ayano; Kaneko, Takashi; Hirai, Keita; Yano, Natsumi; Nakaguchi, Toshiya; Tsumura, Norimichi; Yoshida, Yasuhiro; Miyake, Yoichi

    2009-01-01

    In this paper, we have clarified the relationship between ambient illumination and psychological factors in viewing of display images. Psychological factors were obtained by the factor analysis with the results of the semantic differential (SD) method. In the psychological experiments, subjects evaluated the impressions of displayed images with changing ambient illuminating conditions. The illumination conditions were controlled by a fluorescent ceiling light and a color LED illumination which was located behind the display. We experimented under two kinds of conditions. One was the experiment with changing brightness of the ambient illumination. The other was the experiment with changing the colors of the background illumination. In the results of the experiment, two factors "realistic sensation, dynamism" and "comfortable," were extracted under different brightness of the ambient illumination of the display surroundings. It was shown that the "comfortable" was improved by the brightness of display surroundings. On the other hand, when the illumination color of surroundings was changed, three factors "comfortable," "realistic sensation, dynamism" and "activity" were extracted. It was also shown that the value of "comfortable" and "realistic sensation, dynamism" increased when the display surroundings were illuminated by the average color of the image contents.

  15. [LED lights in dermatology].

    Science.gov (United States)

    Noé, C; Pelletier-Aouizerate, M; Cartier, H

    2017-04-01

    The use in dermatology of light-emitting diodes (LEDs) continues to be surrounded by controversy. This is due mainly to poor knowledge of the physicochemical phases of a wide range of devices that are difficult to compare to one another, and also to divergences between irrefutable published evidence either at the level of in vitro studies or at the cellular level, and discordant clinical results in a variety of different indications: rejuvenation, acne, wound healing, leg ulcers, and cutaneous inflammatory or autoimmune processes. Therapeutic LEDs can emit wavelengths ranging from the ultraviolet, through visible light, to the near infrared (247-1300 nm), but only certain bands have so far demonstrated any real value. We feel certain that if this article remains factual, then readers will have a different, or at least more nuanced, opinion concerning the use of such LED devices in dermatology. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. PV power system using hybrid converter for LED indictor applications

    International Nuclear Information System (INIS)

    Tseng, Sheng-Yu; Wang, Hung-Yuan; Chen, Chien-Chih

    2013-01-01

    Highlights: • This paper presents a LED indictor driving circuit with a PV arrays as its power source. • The perturb-and-observe method is adopted to extract the maximum power of PV arrays. • The proposed circuit structure has a less component counts and higher conversion efficiency. • A prototype of LED indictor driving circuit has been implemented to verify its feasibility. • The proposed hybrid converter is suitable for LED inductor applications. - Abstract: This paper presents a LED indictor driving circuit with a PV arrays as its power source. The LED indictor driving circuit includes battery charger and discharger (LED driving circuit). In this research, buck converter is used as a charger, and forward converter with active clamp circuit is adopted as a discharger to drive the LED indictor. Their circuit structures use switch integration technique to simplify them and to form the proposed hybrid converter, which has a less component counts, lighter weight, smaller size, and higher conversion efficiency. Moreover, the proposed hybrid converter uses a perturb-and-observe method to extract the maximum power from PV arrays. Finally, a prototype of an LED indictor driving circuit with output voltage of 10 V and output power of 20 W has been implemented to verify its feasibility. It is suitable for the LED inductor applications

  17. Structured illumination to spatially map chromatin motions.

    Science.gov (United States)

    Bonin, Keith; Smelser, Amanda; Moreno, Naike Salvador; Holzwarth, George; Wang, Kevin; Levy, Preston; Vidi, Pierre-Alexandre

    2018-05-01

    We describe a simple optical method that creates structured illumination of a photoactivatable probe and apply this method to characterize chromatin motions in nuclei of live cells. A laser beam coupled to a diffractive optical element at the back focal plane of an excitation objective generates an array of near diffraction-limited beamlets with FWHM of 340  ±  30  nm, which simultaneously photoactivate a 7  ×  7 matrix pattern of GFP-labeled histones, with spots 1.70  μm apart. From the movements of the photoactivated spots, we map chromatin diffusion coefficients at multiple microdomains of the cell nucleus. The results show correlated motions of nearest chromatin microdomain neighbors, whereas chromatin movements are uncorrelated at the global scale of the nucleus. The method also reveals a DNA damage-dependent decrease in chromatin diffusion. The diffractive optical element instrumentation can be easily and cheaply implemented on commercial inverted fluorescence microscopes to analyze adherent cell culture models. A protocol to measure chromatin motions in nonadherent human hematopoietic stem and progenitor cells is also described. We anticipate that the method will contribute to the identification of the mechanisms regulating chromatin mobility, which influences most genomic processes and may underlie the biogenesis of genomic translocations associated with hematologic malignancies. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  18. Quantum Illumination with Noiseless Linear Amplifier

    International Nuclear Information System (INIS)

    Zhang Sheng-Li; Wang -Kun; Guo Jian-Sheng; Shi Jian-Hong

    2015-01-01

    Quantum illumination, that is, quantum target detection, is to detect the potential target with two-mode quantum entangled state. For a given transmitted energy, the quantum illumination can achieve a target-detection probability of error much lower than the illumination scheme without entanglement. We investigate the usefulness of noiseless linear amplification (NLA) for quantum illumination. Our result shows that NLA can help to substantially reduce the number of quantum entangled states collected for joint measurement of multi-copy quantum state. Our analysis on the NLA-assisted scheme could help to develop more efficient schemes for quantum illumination. (paper)

  19. Advanced imaging techniques III: a scalable and modular dome illumination system for scientific microphotography on a budget

    Science.gov (United States)

    A scalable and modular LED illumination dome for microscopic scientific photography is described and illustrated, and methods for constructing such a dome are detailed. Dome illumination for insect specimens has become standard practice across the field of insect systematics, but many dome designs ...

  20. LED system reliability

    NARCIS (Netherlands)

    Driel, W.D. van; Yuan, C.A.; Koh, S.; Zhang, G.Q.

    2011-01-01

    This paper presents our effort to predict the system reliability of Solid State Lighting (SSL) applications. A SSL system is composed of a LED engine with micro-electronic driver(s) that supplies power to the optic design. Knowledge of system level reliability is not only a challenging scientific

  1. Wavelength tuneable led light source

    DEFF Research Database (Denmark)

    2017-01-01

    Disclosed herein is an illumination system (200) for spectrally tuning in fluorescence imaging applications such as endoscopic applications in a body cavity comprising bodily fluids or microscopic applications.......Disclosed herein is an illumination system (200) for spectrally tuning in fluorescence imaging applications such as endoscopic applications in a body cavity comprising bodily fluids or microscopic applications....

  2. Noise tolerant illumination optimization applied to display devices

    Science.gov (United States)

    Cassarly, William J.; Irving, Bruce

    2005-02-01

    Display devices have historically been designed through an iterative process using numerous hardware prototypes. This process is effective but the number of iterations is limited by the time and cost to make the prototypes. In recent years, virtual prototyping using illumination software modeling tools has replaced many of the hardware prototypes. Typically, the designer specifies the design parameters, builds the software model, predicts the performance using a Monte Carlo simulation, and uses the performance results to repeat this process until an acceptable design is obtained. What is highly desired, and now possible, is to use illumination optimization to automate the design process. Illumination optimization provides the ability to explore a wider range of design options while also providing improved performance. Since Monte Carlo simulations are often used to calculate the system performance but those predictions have statistical uncertainty, the use of noise tolerant optimization algorithms is important. The use of noise tolerant illumination optimization is demonstrated by considering display device designs that extract light using 2D paint patterns as well as 3D textured surfaces. A hybrid optimization approach that combines a mesh feedback optimization with a classical optimizer is demonstrated. Displays with LED sources and cold cathode fluorescent lamps are considered.

  3. Diffraction analysis of customized illumination technique

    Science.gov (United States)

    Lim, Chang-Moon; Kim, Seo-Min; Eom, Tae-Seung; Moon, Seung Chan; Shin, Ki S.

    2004-05-01

    Various enhancement techniques such as alternating PSM, chrome-less phase lithography, double exposure, etc. have been considered as driving forces to lead the production k1 factor towards below 0.35. Among them, a layer specific optimization of illumination mode, so-called customized illumination technique receives deep attentions from lithographers recently. A new approach for illumination customization based on diffraction spectrum analysis is suggested in this paper. Illumination pupil is divided into various diffraction domains by comparing the similarity of the confined diffraction spectrum. Singular imaging property of individual diffraction domain makes it easier to build and understand the customized illumination shape. By comparing the goodness of image in each domain, it was possible to achieve the customized shape of illumination. With the help from this technique, it was found that the layout change would not gives the change in the shape of customized illumination mode.

  4. The design of optical module of LED street lamp with non-axial symmetrical reflector

    Science.gov (United States)

    Lu, Ming-Jun; Chen, Chi-An; Chen, Yi-Yung; Whang, Allen Jong-Woei

    2010-05-01

    In recently, many research focus on the LED applications for environmental protection so a number of LED street lamps are presented. Although LED has many advantages for environmental protection, its special optical characteristics, such as intensity distribution, always limit the advantages in many applications. Therefore, we always need to do the secondary optical design for LED street lamp to replace the traditional optical designs that are designed for high-pressure sodium lamps and mercury lamps. According to the situation, we design an optical module of LED street lamp with LEDs and secondary optical design. First, the LEDs are placed on freeform reflector for the specific illuminated conditions. We design the optical module of street lamp with the two conditions that include the uniformity and the ratio of length to width in the illuminated area and without any light pollution. According to the simulation with the designed optical module, the uniformity in the illuminated area is about 0.6 that is better than the general condition, 0.3, and the ratio of length to width in the illuminated area is 3:1 in which the length is 30 meters and the width is 10 meters. Therefore, the design could let LED street lamp fits the two conditions, uniformity and ratio in the illuminated area.

  5. Development of constant-power driving control for light-emitting-diode (LED) luminaire

    International Nuclear Information System (INIS)

    Huang, Bin-Juine; Chen, Chun-Wei; Ong, Chin-Dian; Du, Bo-Han; Hsu, Po-Chien

    2013-01-01

    The illumination of an LED may be affected by operating temperature even under constant-current condition. A constant-power driving technique is proposed in the present study for LED luminaire. A linear system dynamics model of LED luminaire is first derived and used in the design of the feedback control system. The PI controller was designed and tuned taking into account the control accuracy and robust properties with respect to plant uncertainty and variation of operating conditions. The control system was implemented on a microprocessor and used to control a 150W LED luminaire. The test result shows that the feedback system accurately controls the input power of LED luminaire to within 1.3 per cent error. As the ambient temperature changes from 0 to 40 °C, the LED illumination varies slightly (−1.7%) for constant-power driving, as compared to that of constant-current driving (−12%) and constant-voltage driving (+50%). The constant-power driving has revealed advantage in stabilizing the illumination of LED under large temperature variation. - Highlights: ► A constant-power driving technique is proposed for LED luminaire. ► A linear system dynamics model of LED luminaire is used in the control system design. ► The test shows that the feedback system accurately controls the input power. ► The LED illumination varies slightly (−1.7%) for constant-power driving.

  6. Examination of the LED Source in Traffic Lights and the Effect of Airborne Dirt on its Performance

    Directory of Open Access Journals (Sweden)

    Amela Softić

    2017-05-01

    Full Text Available The performed evaluation consisted of two phases: measurement of the illumination levels of (new LED system and carrying out the public opinion poll on the subjective visual performance of LED in traffic lights. The results of the measured levels of illumination show that deposition of dirt considerably affects its values. The survey results confirm an overall positive impression on LED performances in traffic lights.

  7. Design of optical element combining Fresnel lens with microlens array for uniform light-emitting diode lighting.

    Science.gov (United States)

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Kong, Depeng

    2012-09-01

    One kind of optical element combining Fresnel lens with microlens array is designed simply for LED lighting based on geometrical optics and nonimaging optics. This design method imposes no restriction on the source intensity pattern. The designed element has compact construction and can produce multiple shapes of illumination distribution. Taking square lighting as an example, tolerance analysis is carried out to determine tolerance limits for applying the element in the assembly process. This element can produce on-axis lighting and off-axis lighting.

  8. Advances in LEDs for automotive applications

    Science.gov (United States)

    Bhardwaj, Jy; Peddada, Rao; Spinger, Benno

    2016-03-01

    High power LEDs were introduced in automotive headlights in 2006-2007, for example as full LED headlights in the Audi R8 or low beam in Lexus. Since then, LED headlighting has become established in premium and volume automotive segments and beginning to enable new compact form factors such as distributed low beam and new functions such as adaptive driving beam. New generations of highly versatile high power LEDs are emerging to meet these application needs. In this paper, we will detail ongoing advances in LED technology that enable revolutionary styling, performance and adaptive control in automotive headlights. As the standards which govern the necessary lumens on the road are well established, increasing luminance enables not only more design freedom but also headlight cost reduction with space and weight saving through more compact optics. Adaptive headlighting is based on LED pixelation and requires high contrast, high luminance, smaller LEDs with high-packing density for pixelated Matrix Lighting sources. Matrix applications require an extremely tight tolerance on not only the X, Y placement accuracy, but also on the Z height of the LEDs given the precision optics used to image the LEDs onto the road. A new generation of chip scale packaged (CSP) LEDs based on Wafer Level Packaging (WLP) have been developed to meet these needs, offering a form factor less than 20% increase over the LED emitter surface footprint. These miniature LEDs are surface mount devices compatible with automated tools for L2 board direct attach (without the need for an interposer or L1 substrate), meeting the high position accuracy as well as the optical and thermal performance. To illustrate the versatility of the CSP LEDs, we will show the results of, firstly, a reflector-based distributed low beam using multiple individual cavities each with only 20mm height and secondly 3x4 to 3x28 Matrix arrays for adaptive full beam. Also a few key trends in rear lighting and impact on LED light

  9. Illuminating the Effects of Dynamic Lighting on Student Learning

    Directory of Open Access Journals (Sweden)

    Michael S. Mott

    2012-05-01

    Full Text Available Light is universally understood as essential to the human condition. Yet light quality varies substantially in nature and in controlled environments leading to questions of which artificial light characteristics facilitate maximum learning. Recent research has examined lighting variables of color temperature, and illumination for affecting sleep, mood, focus, motivation, concentration, and work and school performance. This has resulted in artificial light systems intended to support human beings in their actualization through dynamic lighting technology allowing for different lighting conditions per task. A total of 84 third graders were exposed to either focus (6000K-100fc average maintained or normal lighting. Focus lighting led to a higher percentage increase in oral reading fluency performance (36% than did control lighting (17%. No lighting effects were found for motivation or concentration, possibly attributable to the younger age level of respondents as compared with European studies. These findings illuminate the need for further research on artificial light and learning.

  10. Thermal management for LED applications

    CERN Document Server

    Poppe, András

    2014-01-01

    Thermal Management for LED Applications provides state-of-the-art information on recent developments in thermal management as it relates to LEDs and LED-based systems and their applications. Coverage begins with an overview of the basics of thermal management including thermal design for LEDs, thermal characterization and testing of LEDs, and issues related to failure mechanisms and reliability and performance in harsh environments. Advances and recent developments in thermal management round out the book with discussions on advances in TIMs (thermal interface materials) for LED applications, advances in forced convection cooling of LEDs, and advances in heat sinks for LED assemblies. This book also: Presents a comprehensive overview of the basics of thermal management as it relates to LEDs and LED-based systems Discusses both design and thermal management considerations when manufacturing LEDs and LED-based systems Covers reliability and performance of LEDs in harsh environments Has a hands-on applications a...

  11. Ultraviolet excitation of remote phosphor with symmetrical illumination used in dual-sided liquid-crystal display.

    Science.gov (United States)

    Huang, Hsin-Tao; Tsai, Chuang-Chuang; Huang, Yi-Pai

    2010-08-01

    The UV-excited flat lighting (UFL) technique differs from conventional fluorescent lamp or LED illumination. It involves using a remote phosphor film to convert the wavelength of UV light to visible light, achieving high brightness and planar and uniform illumination. In particular, UFL can accomplish compact size, low power consumption, and symmetrical dual-sided illumination. Additionally, UFL utilizes a thermal radiation mechanism to release the large amount of heat that is generated upon illumination without thermal accumulation. These characteristics of the UFL technique can motivate a wide range of lighting applications in thin-film transistor LCD backlighting or general lighting.

  12. Sequential, progressive, equal-power, reflective beam-splitter arrays

    Science.gov (United States)

    Manhart, Paul K.

    2017-11-01

    The equations to calculate equal-power reflectivity of a sequential series of beam splitters is presented. Non-sequential optical design examples are offered for uniform illumination using diode lasers. Objects created using Boolean operators and Swept Surfaces can create objects capable of reflecting light into predefined elevation and azimuth angles. Analysis of the illumination patterns for the array are also presented.

  13. Visual color matching system based on RGB LED light source

    Science.gov (United States)

    Sun, Lei; Huang, Qingmei; Feng, Chen; Li, Wei; Wang, Chaofeng

    2018-01-01

    In order to study the property and performance of LED as RGB primary color light sources on color mixture in visual psychophysical experiments, and to find out the difference between LED light source and traditional light source, a visual color matching experiment system based on LED light sources as RGB primary colors has been built. By simulating traditional experiment of metameric color matching in CIE 1931 RGB color system, it can be used for visual color matching experiments to obtain a set of the spectral tristimulus values which we often call color-matching functions (CMFs). This system consists of three parts: a monochromatic light part using blazed grating, a light mixing part where the summation of 3 LED illuminations are to be visually matched with a monochromatic illumination, and a visual observation part. The three narrow band LEDs used have dominant wavelengths of 640 nm (red), 522 nm (green) and 458 nm (blue) respectively and their intensities can be controlled independently. After the calibration of wavelength and luminance of LED sources with a spectrophotometer, a series of visual color matching experiments have been carried out by 5 observers. The results are compared with those from CIE 1931 RGB color system, and have been used to compute an average locus for the spectral colors in the color triangle, with white at the center. It has been shown that the use of LED is feasible and has the advantages of easy control, good stability and low cost.

  14. Real time global illumination using the GPU

    OpenAIRE

    Bengtsson, Morgan

    2010-01-01

    Global illumination is an important factor when striving for photo realism in computergraphics. This thesis describes why this is the case, and why global illumination is considered acomplex problem to solve. The problem becomes even more demanding when considering realtime purposes. Resent research has proven it possible to produce global illumination in realtime. Therefore the subject of this thesis is to compare and evaluate a number of those methods. An implementation is presented based o...

  15. Growth and Cell Cycle of ULVA Compressa (Ulvophyceae) under Led Illumination

    Czech Academy of Sciences Publication Activity Database

    Kuwano, K.; Abe, N.; Nishi, Y.; Seno, H.; Nishihara, G.N.; Iima, M.; Zachleder, Vilém

    2014-01-01

    Roč. 50, č. 2 (2014), s. 744-752 ISSN 0022-3646 Grant - others:Ministry of Education, Science and Culture(JP) 22580379 Institutional support: RVO:61388971 Keywords : cell cycle * ulva * elongation Subject RIV: EE - Microbiology, Virology Impact factor: 2.844, year: 2014

  16. High-speed photoacoustic imaging using an LED-based photoacoustic imaging system

    Science.gov (United States)

    Sato, Naoto; Kuniyil Ajith Singh, Mithun; Shigeta, Yusuke; Hanaoka, Takamitsu; Agano, Toshitaka

    2018-02-01

    Recently we developed a multispectral LED-based photoacoustic/ultrasound imaging system (AcousticX) and have been continuously working on its technical/functional improvements. AcousticX is a linear array ultrasound transducer (128 elements, 10 MHz)-based system in which LED arrays (selectable wavelengths, pulse repetition frequency: 4 kHz, pulse width: tunable from 40 - 100 ns) are fixed on both sides of the transducer to illuminate the tissue for photoacoustic imaging. The ultrasound/photoacoustic data from all 128 elements can be simultaneously acquired, processed and displayed. We already demonstrated our system's capability to perform photoacoustic/ultrasound imaging for dynamic imaging of the tissue at a frame rate of 10 Hz (for example to visualize the pulsation of arteries in vivo in human subjects). In this work, we present the development of a new high-speed imaging mode in AcousticX. In this mode, instead of toggling between ultrasound and photoacoustic measurements, it is possible to continuously acquire only photoacoustic data for 1.5 seconds with a time interval of 1 ms. With this improvement, we can record photoacoustic signals from the whole aperture (38 mm) at fast rate and can be reviewed later at different speeds for analyzing dynamic changes in the photoacoustic signals. We believe that AcousticX with this new high-speed mode opens up a feasible technical path for multiple dynamic studies, for example one which focus on imaging the response of voltage sensitive dyes. We envisage to improve the acquisition speed further in future for exploring ultra-high-speed applications.

  17. Color homogeneity in LED spotlights

    NARCIS (Netherlands)

    Prins, C.R.

    2013-01-01

    Color variation in the light output of white LEDs is a common problem in LED lighting. We aim to design LED spotlights with a uniform color output while keeping the cost of the system low and the energy efficiency high. Therefore we design a special optic to eliminate the color variation of the LED.

  18. A new radiometric unit of measure to characterize SWIR illumination

    Science.gov (United States)

    Richards, A.; Hübner, M.

    2017-05-01

    We propose a new radiometric unit of measure we call the `swux' to unambiguously characterize scene illumination in the SWIR spectral band between 0.8μm-1.8μm, where most of the ever-increasing numbers of deployed SWIR cameras (based on standard InGaAs focal plane arrays) are sensitive. Both military and surveillance applications in the SWIR currently suffer from a lack of a standardized SWIR radiometric unit of measure that can be used to definitively compare or predict SWIR camera performance with respect to SNR and range metrics. We propose a unit comparable to the photometric illuminance lux unit; see Ref. [1]. The lack of a SWIR radiometric unit becomes even more critical if one uses lux levels to describe SWIR sensor performance at twilight or even low light condition, since in clear, no-moon conditions in rural areas, the naturally-occurring SWIR radiation from nightglow produces a much higher irradiance than visible starlight. Thus, even well-intentioned efforts to characterize a test site's ambient illumination levels in the SWIR band may fail based on photometric instruments that only measure visible light. A study of this by one of the authors in Ref. [2] showed that the correspondence between lux values and total SWIR irradiance in typical illumination conditions can vary by more than two orders of magnitude, depending on the spectrum of the ambient background. In analogy to the photometric lux definition, we propose the SWIR irradiance equivalent `swux' level, derived by integration over the scene SWIR spectral irradiance weighted by a spectral sensitivity function S(λ), a SWIR analog of the V(λ) photopic response function.

  19. Illumination correction in psoriasis lesions images

    DEFF Research Database (Denmark)

    Maletti, Gabriela Mariel; Ersbøll, Bjarne Kjær

    2003-01-01

    An approach to automatically correct illumination problems in dermatological images is presented. The illumination function is estimated after combining the thematic map indicating skin-produced by an automated classification scheme- with the dermatological image data. The user is only required t...

  20. Weld pool visual sensing without external illumination

    DEFF Research Database (Denmark)

    Liu, Jinchao; Fan, Zhun; Olsen, Soren Ingvor

    2011-01-01

    Visual sensing in arc welding has become more and more important, but still remains challenging because of the harsh environment with extremely strong illumination from the arc. This paper presents a low-cost camera-based sensor system, without using external Illumination, but nevertheless able...

  1. Anisotropic Density Estimation in Global Illumination

    DEFF Research Database (Denmark)

    Schjøth, Lars

    2009-01-01

    Density estimation employed in multi-pass global illumination algorithms gives cause to a trade-off problem between bias and noise. The problem is seen most evident as blurring of strong illumination features. This thesis addresses the problem, presenting four methods that reduce both noise...

  2. Light emitting diodes as an alternative ambient illumination source in photolithography environment

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Ou, Haiyan; Dam-Hansen, Carsten

    2009-01-01

    We explored an alternative light emitting diode (LED) - based solution to replace the existing yellow fluorescent light tubes (YFT) used in photolithography rooms. A no-blue LED lamp was designed and a prototype was fabricated. For both solutions, the spectral power distribution (SPD) was measured......, the colorimetric values were calculated, and a visual comparison using Gretagmacbeth colorcharts was performed. The visual comparison showed that the LED bulb was better to render colors despite a low color rendering index (CRI). Furthermore, the LED bulb was tested in a photolithography room...... and there was no exposure to the photoresist even after 168 hours illumination....

  3. LED--panacea or marketing hype?

    Science.gov (United States)

    Baillie, Jonathan

    2012-02-01

    With energy efficiency and carbon reduction, and the importance of a relaxing, therapeutic patient environment, ever more in the spotlight, LED lighting's proponents claim the technology offers healthcare estates personnel many of the answers on both fronts. However some observers believe its benefits are being over-sold, often to the detriment of other high-performing types of more 'conventional lighting', and to a sometimes uninitiated audience too easily swayed by slick sales patter. HEJ editor Jonathan Baillie spoke to one highly experienced lighting professional, Nicholas Bukorović, a former employee of Thorn, Cooper, and Thorlux Lighting, and the principal author of the last CIBSE/Society of Light and Lighting (SLL) Guide LG2 on healthcare lighting, to seek some expert illumination.

  4. Direct design of achromatic lens for Lambertian sources in collimating illumination

    Science.gov (United States)

    Yin, Peng; Xu, Xiping; Jiang, Zhaoguo; Wang, Hongshu

    2017-10-01

    Illumination design used to redistribute the spatial energy distribution of light source is a key technique in lighting applications. However, there is still no effective illumination design method for the removing of the chromatic dispersion. What we present here is an achromatic lens design to enhance the efficiency and uniform illumination of white light-emitting diode (LED) with diffractive optical element (DOE). We employ the chromatic aberration value (deg) to measure the degree of chromatic dispersion in illumination systems. Monte Carlo ray tracing simulation results indicate that the chromatic dispersion of the modified achromatic collimator significantly decreases from 0.5 to 0.1 with LED chip size of 1.0mm×1.0mm and simulation efficiency of 90.73%, compared with the traditional collimator. Moreover, with different corrected wavelengths we compared different chromatic aberration values that followed with the changing pupil percent. The achromatic collimator provided an effective way to achieve white LED with low chromatic dispersion at high efficiency and uniform illumination.

  5. Measurements of UGR of LED light by a DSLR colorimeter

    Science.gov (United States)

    Hsu, Shau-Wei; Chen, Cheng-Hsien; Jiaan, Yuh-Der

    2012-10-01

    We have developed an image-based measurement method on UGR (unified glare rating) of interior lighting environment. A calibrated DSLR (digital single-lens reflex camera) with an ultra wide-angle lens was used to measure the luminance distribution, by which the corresponding parameters can be automatically calculated. A LED lighting was placed in a room and measured at various positions and directions to study the properties of UGR. The testing results are fitted with visual experiences and UGR principles. To further examine the results, a spectroradiometer and an illuminance meter were respectively used to measure the luminance and illuminance at the same position and orientation of the DSLR. The calculation of UGR by this image-based method may solve the problem of non-uniform luminance-distribution of LED lighting, and was studied on segmentation of the luminance graph for the calculations.

  6. Single Step Formation of C-TiO2 Nanotubes: Influence of Applied Voltage and Their Photocatalytic Activity under Solar Illumination

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2013-01-01

    Full Text Available Self-aligned and high-uniformity carbon (C- titania (TiO2 nanotube arrays were successfully formed via single step anodization of titanium (Ti foil at 30 V for 1 h in a bath composed of ethylene glycol (EG, ammonium fluoride (NH4F, and hydrogen peroxide (H2O2. It was well established that applied voltage played an important role in controlling field-assisted oxidation and field-assisted dissolution during electrochemical anodization process. Therefore, the influences of applied voltage on the formation of C-TiO2 nanotube arrays were discussed. It was found that a minimal applied voltage of 30 V was required to form the self-aligned and high-uniformity C-TiO2 nanotube arrays with diameter of ~75 nm and length of ~2 μm. The samples synthesized using different applied voltages were then subjected to heat treatment for the conversion of amorphous phase to crystalline phase. The photocatalytic activity evaluation of C-TiO2 samples was made under degradation of organic dye (methyl orange (MO solution. The results revealed that controlled nanoarchitecture C-TiO2 photocatalyst led to a significant enhancement in photocatalytic activity due to the creation of more specific active surface areas for incident photons absorption from the solar illumination.

  7. Light out-coupling from LEDs by means of metal nanoparticles; Lichtauskopplung aus LEDs mittels Metallnanoteilchen

    Energy Technology Data Exchange (ETDEWEB)

    Goehler, Tino

    2010-12-17

    The external quantum efficiency of light-emitting diodes (LEDs) based on Al- GaAs/InGaAlP is limited by total internal reflection because of the high refractive index (typically between 3 and 4) of the semiconductor. Metal nanoparticles (MNP) deposited on the surface of the LED can be used as dipole scatterers in order to enhance the emission of the LED. In this thesis, first, single gold nanoparticles of various sizes deposited on such an LED were investigated. A clear enhancement is detected as long as the dipole plasmon resonance of the particle is at a shorter wavelength than the LED emission. If the plasmon resonance coincides with the LED emission or is at a larger wavelength, the enhancement turns into suppression. Numerical simulations indicate that this latter effect is mainly caused by the particle quadrupole resonance producing extra absorption. Arrays of MNPs can be produced by a special mask technique called ''Fischer pattern nanolithography'' and manipulated in shape and size by additional steps. Originally, the MNPs produced by this technique are triangular in shape and turn out to suppress the LED emission. After transformation of the particles to spheres, a clear enhancement was detected. Light that would otherwise remain trapped inside the substrate is coupled out by resonant plasmonic scattering. Investigations on analogous structures on a transparent high-index material (GaP) indicate a stronger coupling between the particles than expected on the basis of literature data. (orig.)

  8. High-performance LED luminaire for sports hall

    Science.gov (United States)

    Lee, Xuan-Hao; Yang, Jin-Tsung; Chien, Wei-Ting; Chang, Jung-Hsuan; Lo, Yi-Chien; Lin, Che-Chu; Sun, Ching-Cherng

    2015-09-01

    In this paper, we present a luminaire design with anti-glare and energy-saving effects for sports hall. Compared with traditional lamps using in a badminton court, the average illuminance on the ground of the proposed LED luminaire is enhanced about 300%. Besides, the uniformity is obviously enhanced and improved. The switch-on speed of lighting in sports hall is greatly reduced from 5-10 minutes to 1 second. The simulation analysis and the corresponding experiment results are demonstrated.

  9. Study on light and thermal energy of illumination device for plant factory design

    Science.gov (United States)

    Yoshida, A.; Moriuchi, K.; Ueda, Y.; Kinoshita, S.

    2018-01-01

    To investigate the effect of illumination devices on the yield of crops cultivated in a plant factory, it is necessary to measure the actual cultivation environmental factors related to the plant growth and understand the distribution ratio of light and thermal energy to the electrical energy injected into the illumination device. Based on cultivation results, we found that light intensity greatly affected the growth of plant weight. Regarding the selection of illumination device, its spectral components also affected the morphological change. Lighting experiments using a high frequency (Hf) fluorescent lamp and a light emitting diode (LED) bulb were performed. A certain difference was found in the distribution ratio of light energy to electrical energy between Hf and LED. It was showed that by placing the safety equipment or internal circuits outside the cultivated site, the air conditioning load could be reduced.

  10. Retrieval of 3D-Position af a Passive Object Using Infrared LED's and Photodiodes

    DEFF Research Database (Denmark)

    Christensen, Henrik Vie

    2005-01-01

    A sensor using infrared emitter/receiver pairs to determine the position of a passive object is presented. An array with a small number of infrared emitter/receiver pairs are proposed as sensing part to acquire information on the object position. The emitters illuminates the object and the intens......A sensor using infrared emitter/receiver pairs to determine the position of a passive object is presented. An array with a small number of infrared emitter/receiver pairs are proposed as sensing part to acquire information on the object position. The emitters illuminates the object...

  11. Antibacterial effect of light emitting diodes of visible wavelengths on selected foodborne pathogens at different illumination temperatures.

    Science.gov (United States)

    Ghate, Vinayak S; Ng, Kheng Siang; Zhou, Weibiao; Yang, Hyunsoo; Khoo, Gek Hoon; Yoon, Won-Byong; Yuk, Hyun-Gyun

    2013-09-16

    The antibacterial effect of light emitting diodes (LEDs) in the visible region (461, 521 and 642 nm) of the electromagnetic spectrum was investigated on Escherichia coli O157:H7, Salmonella typhimurium, Listeria monocytogenes and Staphylococcus aureus. The irradiances of the 461, 521 and 642 nm LEDs were 22.1, 16 and 25.4 mW/cm², respectively. Bacterial cultures suspended in tryptic soy broth were illuminated by 10-watt LEDs at a distance of 4.5 cm for 7.5h at 20, 15 and 10 °C. Regardless of the bacterial strains, bacterial inactivation was observed with the range of 4.6-5.2 logCFU/ml at 10 and 15 °C after illumination with the 461 nm LED, while illumination with the 521 nm LED resulted in only 1.0-2.0 log reductions after 7.5h. On the other hand, no antibacterial effect was observed using the 642 nm LED treatment. The photodynamic inactivation by 461 and 521 nm LEDs was found to be greater at the set temperatures of 10 and 15 °C than at 20 °C. The D-values for the four bacterial strains at 10 and 15 °C after the illumination of 461 nm LED ranged from 1.29 to 1.74 h, indicating that there was no significant difference in the susceptibility of the bacterial strains to the LED illumination between 10 and 15 °C, except for L. monocytogenes. Regardless of the illumination temperature, sublethal injury was observed in all bacterial strains during illumination with the 461 and the 521 nm LED and the percentage of injured cells increased as the treatment time increased. Thus, the results show that the antibacterial effect of the LEDs was highly dependent on the wavelength and the illumination temperature. This study suggests the potential of 461 and 521 nm LEDs in combination with chilling to be used as a novel food preservation technology. © 2013 Elsevier B.V. All rights reserved.

  12. Fluorescence digital photography of acne using a light-emitting diode illuminator.

    Science.gov (United States)

    Ahn, Hyo Hyun; Kim, Soo Nam; Kye, Young Chul

    2006-11-01

    The fluorescence findings of several dermatological diseases, such as erythrasma, tinea versicolor, and acne are helpful for diagnosis and follow-up. However, many experience difficulty taking photographic images of fluorescence. The aim of this study was to develop a 405 nm light-emitting diode (LED) system for fluorescence digital photography of acne and to determine whether such a diode can be used to evaluate acne. Eight healthy acne patients were compared with controls by fluorescence digital photography using a digital camera equipped with a 405 nm LED illuminator. Digital photographs were taken by two different ways of exposure, i.e. appropriate exposure level and longer exposure. One side of the nose, cheek, and glabella was compared. The numbers and extents of fluorescence dots were counted and measured. As normal controls, seven individuals with apparent oiliness and no acne were enrolled. Red fluorescent facial dots were observed and photographed digitally using the 405 nm LED illuminator. These were more numerous and extensive on the glabella and cheeks of acne patients. Fluorescence digital photography of acne was successfully performed using a 405 nm LED illuminator. This illuminator could be used for acne evaluations.

  13. Distributed illumination control with local sensing and actuation in networked lighting systems

    NARCIS (Netherlands)

    Caicedo Fernandez, D.R.; Pandharipande, A.

    2013-01-01

    We consider the problem of illumination control in a networked lighting system wherein luminaires have local sensing and actuation capabilities. Each luminaire (i) consists of a light emitting diode (LED) based light source dimmable by a local controller, (ii) is actuated based on sensing

  14. "Evaluation as Illumination: A New Approach to the Study of Innovatory Programs". Occasional Paper.

    Science.gov (United States)

    Parlett, Malcolm; Hamilton, David

    Conventional approaches to program evaluation have followed the experimental and psychometric traditions dominant in educational research. Their aim (unfulfilled) of achieving fully objective methods had led to studies that are artificial and restricted in scope. Illuminative evaluation is introduced as a total re-appraisal of the rationale and…

  15. Solar array flight dynamic experiment

    Science.gov (United States)

    Schock, Richard W.

    1987-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  16. Optical design applications for enhanced illumination performance

    Science.gov (United States)

    Gilray, Carl; Lewin, Ian

    1995-08-01

    Nonimaging optical design techniques have been applied in the illumination industry for many years. Recently however, powerful software has been developed which allows accurate simulation and optimization of illumination devices. Wide experience has been obtained in using such design techniques for practical situations. These include automotive lighting where safety is of greatest importance, commercial lighting systems designed for energy efficiency, and numerous specialized applications. This presentation will discuss the performance requirements of a variety of illumination devices. It will further cover design methodology and present a variety of examples of practical applications for enhanced system performance.

  17. LED Technology for Dental Applications

    DEFF Research Database (Denmark)

    Argyraki, Aikaterini; Ou, Yiyu; Soerensen, L. H.

    LEDs have a large potential in many dental and oral applications. Areas such as photo polymerization, fluorescence imaging, photodynamic therapy, and photoactivated disinfection are important future candidates for LED based diagnostics and treatment in dentistry.......LEDs have a large potential in many dental and oral applications. Areas such as photo polymerization, fluorescence imaging, photodynamic therapy, and photoactivated disinfection are important future candidates for LED based diagnostics and treatment in dentistry....

  18. Color homogeneity in LED spotlights

    NARCIS (Netherlands)

    Prins, C.R.; Tukker, T.W.; IJzerman, W.L.; Thije Boonkkamp, ten J.H.M.

    2014-01-01

    LED is a rising technology in the field of lighting. Halogen spotlights are nowadays replaced by LED spotlights because of their energy efficiency and long lifetime. However, color variation in the light output is a common problem. Poorly designed LED spotlights tend to have yellowish or bluish

  19. Deep UV LEDs

    Science.gov (United States)

    Han, Jung; Amano, Hiroshi; Schowalter, Leo

    2014-06-01

    Deep ultraviolet (DUV) photons interact strongly with a broad range of chemical and biological molecules; compact DUV light sources could enable a wide range of applications in chemi/bio-sensing, sterilization, agriculture, and industrial curing. The much shorter wavelength also results in useful characteristics related to optical diffraction (for lithography) and scattering (non-line-of-sight communication). The family of III-N (AlGaInN) compound semiconductors offers a tunable energy gap from infrared to DUV. While InGaN-based blue light emitters have been the primary focus for the obvious application of solid state lighting, there is a growing interest in the development of efficient UV and DUV light-emitting devices. In the past few years we have witnessed an increasing investment from both government and industry sectors to further the state of DUV light-emitting devices. The contributions in Semiconductor Science and Technology 's special issue on DUV devices provide an up-to-date snapshot covering many relevant topics in this field. Given the expected importance of bulk AlN substrate in DUV technology, we are pleased to include a review article by Hartmann et al on the growth of AlN bulk crystal by physical vapour transport. The issue of polarization field within the deep ultraviolet LEDs is examined in the article by Braut et al. Several commercial companies provide useful updates in their development of DUV emitters, including Nichia (Fujioka et al ), Nitride Semiconductors (Muramoto et al ) and Sensor Electronic Technology (Shatalov et al ). We believe these articles will provide an excellent overview of the state of technology. The growth of AlGaN heterostructures by molecular beam epitaxy, in contrast to the common organo-metallic vapour phase epitaxy, is discussed by Ivanov et al. Since hexagonal boron nitride (BN) has received much attention as both a UV and a two-dimensional electronic material, we believe it serves readers well to include the

  20. Integrated parabolic nanolenses on MicroLED color pixels

    Science.gov (United States)

    Demory, Brandon; Chung, Kunook; Katcher, Adam; Sui, Jingyang; Deng, Hui; Ku, Pei-Cheng

    2018-04-01

    A parabolic nanolens array coupled to the emission of a nanopillar micro-light emitting diode (LED) color pixel is shown to reduce the far field divergence. For a blue wavelength LED, the total emission is 95% collimated within a 0.5 numerical aperture zone, a 3.5x improvement over the same LED without a lens structure. This corresponds to a half-width at half-maximum (HWHM) line width reduction of 2.85 times. Using a resist reflow and etchback procedure, the nanolens array dimensions and parabolic shape are formed. Experimental measurement of the far field emission shows a HWHM linewidth reduction by a factor of 2x, reducing the divergence over the original LED.

  1. Array capabilities and future arrays

    International Nuclear Information System (INIS)

    Radford, D.

    1993-01-01

    Early results from the new third-generation instruments GAMMASPHERE and EUROGAM are confirming the expectation that such arrays will have a revolutionary effect on the field of high-spin nuclear structure. When completed, GAMMASHPERE will have a resolving power am order of magnitude greater that of the best second-generation arrays. When combined with other instruments such as particle-detector arrays and fragment mass analysers, the capabilites of the arrays for the study of more exotic nuclei will be further enhanced. In order to better understand the limitations of these instruments, and to design improved future detector systems, it is important to have some intelligible and reliable calculation for the relative resolving power of different instrument designs. The derivation of such a figure of merit will be briefly presented, and the relative sensitivities of arrays currently proposed or under construction presented. The design of TRIGAM, a new third-generation array proposed for Chalk River, will also be discussed. It is instructive to consider how far arrays of Compton-suppressed Ge detectors could be taken. For example, it will be shown that an idealised open-quote perfectclose quotes third-generation array of 1000 detectors has a sensitivity an order of magnitude higher again than that of GAMMASPHERE. Less conventional options for new arrays will also be explored

  2. Color constancy by characterization of illumination chromaticity

    Science.gov (United States)

    Nikkanen, Jarno T.

    2011-05-01

    Computational color constancy algorithms play a key role in achieving desired color reproduction in digital cameras. Failure to estimate illumination chromaticity correctly will result in invalid overall colour cast in the image that will be easily detected by human observers. A new algorithm is presented for computational color constancy. Low computational complexity and low memory requirement make the algorithm suitable for resource-limited camera devices, such as consumer digital cameras and camera phones. Operation of the algorithm relies on characterization of the range of possible illumination chromaticities in terms of camera sensor response. The fact that only illumination chromaticity is characterized instead of the full color gamut, for example, increases robustness against variations in sensor characteristics and against failure of diagonal model of illumination change. Multiple databases are used in order to demonstrate the good performance of the algorithm in comparison to the state-of-the-art color constancy algorithms.

  3. Iterative Adaptive Sampling For Accurate Direct Illumination

    National Research Council Canada - National Science Library

    Donikian, Michael

    2004-01-01

    This thesis introduces a new multipass algorithm, Iterative Adaptive Sampling, for efficiently computing the direct illumination in scenes with many lights, including area lights that cause realistic soft shadows...

  4. Catalyzed reactions at illuminated semiconductor interfaces

    International Nuclear Information System (INIS)

    Wrighton, M.S.

    1984-01-01

    Many desirable minority carrier chemical redox processes are too slow to compete with e - -h + recombination at illuminated semiconductor/liquid electrolyte junction interfaces. Reductions of H 2 O to H 2 or CO 2 to compounds having C--H bonds are too slow to compete with e - -h + recombination at illuminated p-type semiconductors, for example. Approaches to improve the rate of the desired processes involving surface modification techniques are described. Photoanodes are plagued by the additional problem of oxidative decomposition under illumination with > or =E/sub g/ illumination. The photo-oxidation of Cl - , Br - , and H 2 O is considered to illustrate the concepts involved. Proof of concept experiments establish that catalysis can be effective in dramatically improving direct solar fuel production; efficiencies of >10% have been demonstrated

  5. Multiobjective generalized extremal optimization algorithm for simulation of daylight illuminants

    Science.gov (United States)

    Kumar, Srividya Ravindra; Kurian, Ciji Pearl; Gomes-Borges, Marcos Eduardo

    2017-10-01

    Daylight illuminants are widely used as references for color quality testing and optical vision testing applications. Presently used daylight simulators make use of fluorescent bulbs that are not tunable and occupy more space inside the quality testing chambers. By designing a spectrally tunable LED light source with an optimal number of LEDs, cost, space, and energy can be saved. This paper describes an application of the generalized extremal optimization (GEO) algorithm for selection of the appropriate quantity and quality of LEDs that compose the light source. The multiobjective approach of this algorithm tries to get the best spectral simulation with minimum fitness error toward the target spectrum, correlated color temperature (CCT) the same as the target spectrum, high color rendering index (CRI), and luminous flux as required for testing applications. GEO is a global search algorithm based on phenomena of natural evolution and is especially designed to be used in complex optimization problems. Several simulations have been conducted to validate the performance of the algorithm. The methodology applied to model the LEDs, together with the theoretical basis for CCT and CRI calculation, is presented in this paper. A comparative result analysis of M-GEO evolutionary algorithm with the Levenberg-Marquardt conventional deterministic algorithm is also presented.

  6. Red versus blue light illumination in hexyl 5-aminolevulinate photodynamic therapy: the influence of light color and irradiance on the treatment outcome in vitro

    Science.gov (United States)

    Helander, Linda; Krokan, Hans E.; Johnsson, Anders; Gederaas, Odrun A.; Plaetzer, Kristjan

    2014-08-01

    Hexyl 5-aminolevulinate (HAL) is a lipophilic derivative of 5-aminolevulinate, a key intermediate in biosynthesis of the photosensitizer protoporphyrin IX (PpIX). The photodynamic efficacy and cell death mode after red versus blue light illumination of HAL-induced PpIX have been examined and compared using five different cancer cell lines. LED arrays emitting at 410 and 624 nm served as homogenous and adjustable light sources. Our results show that the response after HAL-PDT is cell line specific, both regarding the shape of the dose-survival curve, the overall dose required for efficient cell killing, and the relative amount of apoptosis. The ratio between 410 and 624 nm in absorption coefficient correlates well with the difference in cell killing at the same wavelengths. In general, the PDT efficacy was several folds higher for blue light as compared with red light, as expected. However, HAL-PDT624 induced more apoptosis than HAL-PDT410 and illumination with low irradiance resulted in more apoptosis than high irradiance at the same lethal dose. This indicates differences in death modes after low and high irradiance after similar total light doses. From a treatment perspective, these differences may be important.

  7. Red versus blue light illumination in hexyl 5-aminolevulinate photodynamic therapy: the influence of light color and irradiance on the treatment outcome in vitro.

    Science.gov (United States)

    Helander, Linda; Krokan, Hans E; Johnsson, Anders; Gederaas, Odrun A; Plaetzer, Kristjan

    2014-08-01

    Hexyl 5-aminolevulinate (HAL) is a lipophilic derivative of 5-aminolevulinate, a key intermediate in biosynthesis of the photosensitizer protoporphyrin IX (PpIX). The photodynamic efficacy and cell death mode after red versus blue light illumination of HAL-induced PpIX have been examined and compared using five different cancer cell lines. LED arrays emitting at 410 and 624 nm served as homogenous and adjustable light sources. Our results show that the response after HAL-PDT is cell line specific, both regarding the shape of the dose-survival curve, the overall dose required for efficient cell killing, and the relative amount of apoptosis. The ratio between 410 and 624 nm in absorption coefficient correlates well with the difference in cell killing at the same wavelengths. In general, the PDT efficacy was several folds higher for blue light as compared with red light, as expected. However, HAL-PDT₆₂₄ induced more apoptosis than HAL-PDT₄₁₀ and illumination with low irradiance resulted in more apoptosis than high irradiance at the same lethal dose. This indicates differences in death modes after low and high irradiance after similar total light doses. From a treatment perspective, these differences may be important.

  8. The Design and Comparison of Central and Distributed Light Sensored Smart LED Lighting Systems

    Directory of Open Access Journals (Sweden)

    Mehmet Ali Özçelik

    2018-01-01

    Full Text Available There is a lack of published peer-reviewed research comparing the efficiencies of distributed versus central sensor-controlled LED lighting systems. This research proposes improving the smart illumination of a room with external fenestration using central and distributed light sensors. The optical and electrical measurements of the daylight have been made in the case where the light was not distributed evenly and not sufficient. Test results show that the proposed distributed light sensor illumination system has increased the efficiency by 28% when compared to the proposed central system. It has also been shown that the two tested systems are more cost-effective than common smart illumination systems.

  9. Spiritual Art: A Study of Illuminated Drawings

    Directory of Open Access Journals (Sweden)

    Fatemeh Kateb

    2017-12-01

    Full Text Available Illumination can be seen as a collection of exquisite and novel designs that painters and illumination-workers use to make religious, scientific, cultural, historical, and other collections of work beautiful. The professionals of illumination use these techniques in books to beautifully virtualize the golden pages of the eternal literature and the religious texts of their homeland. In this way, the sides and margins of the pages are decorated with designs of Islimi (arabesque branches, stems, flowers, and Cathay (Khataei leaves. Illuminations like paintings have various schools and periods, such as the Seljuk, Bukhara, Timurid, Safavid, Qajar schools, with further branches within each school. The illuminations of different periods represent the states and spirits of those eras. However, the illustrated paintings have been performed in the primary state in each school and era with some minor differences in colors and designs, and it can be said that the basis of the illustrated designs are three geometric shapes of the square, circle and triangle, and the combination of these three shapes. In this article, we try to study illumination drawings in terms of the spiritual dimension and its effect on the soul and psych. Furthermore; we will study the spiritual nature of the motifs in order to achieve a deeper understanding of the spirit of Islamic art.

  10. AN ILLUMINATION INVARIANT TEXTURE BASED FACE RECOGNITION

    Directory of Open Access Journals (Sweden)

    K. Meena

    2013-11-01

    Full Text Available Automatic face recognition remains an interesting but challenging computer vision open problem. Poor illumination is considered as one of the major issue, since illumination changes cause large variation in the facial features. To resolve this, illumination normalization preprocessing techniques are employed in this paper to enhance the face recognition rate. The methods such as Histogram Equalization (HE, Gamma Intensity Correction (GIC, Normalization chain and Modified Homomorphic Filtering (MHF are used for preprocessing. Owing to great success, the texture features are commonly used for face recognition. But these features are severely affected by lighting changes. Hence texture based models Local Binary Pattern (LBP, Local Derivative Pattern (LDP, Local Texture Pattern (LTP and Local Tetra Patterns (LTrPs are experimented under different lighting conditions. In this paper, illumination invariant face recognition technique is developed based on the fusion of illumination preprocessing with local texture descriptors. The performance has been evaluated using YALE B and CMU-PIE databases containing more than 1500 images. The results demonstrate that MHF based normalization gives significant improvement in recognition rate for the face images with large illumination conditions.

  11. Optimal sun-shading design for enhanced daylight illumination of subtropical classrooms

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ming-Chin [Architecture and Building Research Institute, MOI (China); Chiang, Che-Ming [Department of Architecture, National Cheng-Kung University, Tainan 701 (China); Chou, Po-Cheng [Department of Interior Design, Shu-Te University, No. 59 Hun-Shan Road, Yenchau 82445, Kaohsiung County (China); Chang, Kuei-Feng [Department of Real Estate Management, National Pingtung Institute of Commerce (China); Lee, Chia-Yen [Department of Mechanical and Automation Engineering, Da-Yeh University, Changhua 515 (China)

    2008-07-01

    This study investigates the feasibility of fitting windows with sun-shadings in order to minimize the lighting power costs in daylight-illuminated classrooms lit from a single side in subtropical regions. An IES-CPC model is created of a representative classroom in Taiwan, and a series of simulations is performed to determine the average illuminance value and the uniformity of the illuminance distribution in the classroom under various lighting conditions with no sun-shadings fitted to the window. The numerical results are found to be in good agreement with the experimental measurements obtained using an array of nine-channel photometers. Having confirmed the validity of the simulation scheme, the illumination properties of four different sun-shading designs are considered. The results show that a double-layered sun-shading represents the optimal sun-shading design in terms of achieving a uniform illumination distribution within the classroom. Given appropriate physical dimensions, this daylight access device achieves the minimum illuminance requirement of 500 lx and improves the lighting uniformity ratio from 0.25-0.35 to 0.40-0.42. Furthermore, using this sun-shading device, the required illuminance ratio of 0.5 can be obtained simply by switching on one of the three rows of lights in the classroom. Accordingly, the daylight access device not only improves the illuminance conditions within the classroom, but also reduces the lighting power cost by 71.5% compared to the case where all of the lights are turned on. (author)

  12. SNP Arrays

    Directory of Open Access Journals (Sweden)

    Jari Louhelainen

    2016-10-01

    Full Text Available The papers published in this Special Issue “SNP arrays” (Single Nucleotide Polymorphism Arrays focus on several perspectives associated with arrays of this type. The range of papers vary from a case report to reviews, thereby targeting wider audiences working in this field. The research focus of SNP arrays is often human cancers but this Issue expands that focus to include areas such as rare conditions, animal breeding and bioinformatics tools. Given the limited scope, the spectrum of papers is nothing short of remarkable and even from a technical point of view these papers will contribute to the field at a general level. Three of the papers published in this Special Issue focus on the use of various SNP array approaches in the analysis of three different cancer types. Two of the papers concentrate on two very different rare conditions, applying the SNP arrays slightly differently. Finally, two other papers evaluate the use of the SNP arrays in the context of genetic analysis of livestock. The findings reported in these papers help to close gaps in the current literature and also to give guidelines for future applications of SNP arrays.

  13. Surface color perception under two illuminants: the second illuminant reduces color constancy

    Science.gov (United States)

    Yang, Joong Nam; Shevell, Steven K.

    2003-01-01

    This study investigates color perception in a scene with two different illuminants. The two illuminants, in opposite corners, simultaneously shine on a (simulated) scene with an opaque dividing wall, which controls how much of the scene is illuminated by each source. In the first experiment, the height of the dividing wall was varied. This changed the amount of each illuminant reaching objects on the opposite side of the wall. Results showed that the degree of color constancy decreased when a region on one side of the wall had cues to both illuminants, suggesting that cues from the second illuminant are detrimental to color constancy. In a later experiment, color constancy was found to improve when the specular highlight cues from the second illuminant were altered to be consistent with the first illuminant. This corroborates the influence of specular highlights in surface color perception, and suggests that the reduced color constancy in the first experiment is due to the inconsistent, though physically correct, cues from the two illuminants.

  14. Discriminative illumination: per-pixel classification of raw materials based on optimal projections of spectral BRDF.

    Science.gov (United States)

    Liu, Chao; Gu, Jinwei

    2014-01-01

    Classifying raw, unpainted materials--metal, plastic, ceramic, fabric, and so on--is an important yet challenging task for computer vision. Previous works measure subsets of surface spectral reflectance as features for classification. However, acquiring the full spectral reflectance is time consuming and error-prone. In this paper, we propose to use coded illumination to directly measure discriminative features for material classification. Optimal illumination patterns--which we call "discriminative illumination"--are learned from training samples, after projecting to which the spectral reflectance of different materials are maximally separated. This projection is automatically realized by the integration of incident light for surface reflection. While a single discriminative illumination is capable of linear, two-class classification, we show that multiple discriminative illuminations can be used for nonlinear and multiclass classification. We also show theoretically that the proposed method has higher signal-to-noise ratio than previous methods due to light multiplexing. Finally, we construct an LED-based multispectral dome and use the discriminative illumination method for classifying a variety of raw materials, including metal (aluminum, alloy, steel, stainless steel, brass, and copper), plastic, ceramic, fabric, and wood. Experimental results demonstrate its effectiveness.

  15. Microplasma light tiles: thin sheet lamps for general illumination

    Energy Technology Data Exchange (ETDEWEB)

    Eden, J G; Park, S-J [Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 (United States); Herring, C M; Bulson, J M [Eden Park Illumination, 903 North Country Fair Drive, Champaign, IL 61821 (United States)

    2011-06-08

    Flat, thin and lightweight lamps providing spatially uniform and dimmable illumination from active areas as large as 400 cm{sup 2} are being developed for general illumination and specialty applications. Comprising an array of low-temperature, nonequilibrium microplasmas driven by a dielectric barrier structure and operating at pressures of typically 400-700 Torr, these lamps have a packaged thickness <4 mm and yet produce luminance values beyond 26 000 cd m{sup -2} with a luminous efficacy approaching 30 lm W{sup -1}. Third generation lamps, presently in limited production, offer a correlated colour temperature in the 3000-4100 K interval and a colour rendering index of 80. Current lamps employ Xe{sub 2} ({lambda} {approx} 172 nm) as the primary emitter photoexciting a mixture of phosphors, and the pressure dependence of the wavelength-integrated fluorescence from the electronically excited dimer has been investigated with a vacuum ultraviolet spectrometer. In contrast to other promising lighting technologies, the decline in luminous efficacy of microplasma lamps with increasing power delivered to the lamp is small. For a 6 x 6 inch{sup 2} ({approx}225 cm{sup 2}) lamp, efficacy falls <16% when the radiant output (luminance) is raised from 2000 cd m{sup -2} to > 10 000 cd m{sup -2}.

  16. Scanless functional imaging of hippocampal networks using patterned two-photon illumination through GRIN lenses

    KAUST Repository

    Moretti, Claudio

    2016-09-12

    Patterned illumination through the phase modulation of light is increasingly recognized as a powerful tool to investigate biological tissues in combination with two-photon excitation and light-sensitive molecules. However, to date two-photon patterned illumination has only been coupled to traditional microscope objectives, thus limiting the applicability of these methods to superficial biological structures. Here, we show that phase modulation can be used to efficiently project complex two-photon light patterns, including arrays of points and large shapes, in the focal plane of graded index (GRIN) lenses. Moreover, using this approach in combination with the genetically encoded calcium indicator GCaMP6, we validate our system performing scanless functional imaging in rodent hippocampal networks in vivo ~1.2 mm below the brain surface. Our results open the way to the application of patterned illumination approaches to deep regions of highly scattering biological tissues, such as the mammalian brain.

  17. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  18. Innovations in LED lighting for reduced-ESM crop production in space

    Science.gov (United States)

    Massa, Gioia; Mitchell, Cary; Bourget, C. Michael; Morrow, Robert

    In controlled-environment crop production such as will be practiced at the lunar outpost and Mars base, the single most energy-demanding aspect is electric lighting for plant growth, including energy costs for energizing lamps as well as for removing excess heat. For a variety of reasons, sunlight may not be a viable option as the main source of crop lighting off-Earth and traditional electric lamps for crop lighting have numerous drawbacks for use in a space environment. A collaborative research venture between the Advanced Life Support Crops Group at Purdue University and the Orbital Technologies Corporation (ORBITEC) has led to the development of efficient, reconfigurable LED lighting technologies for crop growth in an ALSS. The light sources use printed-circuit red and blue LEDs, which are individually tunable for a range of photosynthetic photon fluxes and photomorphogenic plant responses. Initial lighting arrays have LEDs that can be energized from the bottom upward when deployed in a vertical, intracanopy configuration, allowing the illumination to be tailored for stand height throughout the cropping cycle. Preliminary testing with the planophile crop cowpea (Vigna unguiculata L. Walp, breeding line IT87D-941-1), resulted in optimizing internal reflectance of growth compartments by lining walls, floor, and a movable ceiling with white Poly film, as well as by determining optimal planting density and plant positioning. Additionally, these light strips, called "lightsicles", can be configured into an overhead plane of light engines. When intracanopy and overhead-LED-lit cowpea crop production was compared, cowpea plants grown with intracanopy lighting had much greater understory leaf retention and produced more dry biomass per kilowatt-hour of lighting energy than did overhead-lit plants. The efficiency of light capture is reduced in overhead-lit scenarios due to mutual shading of lower leaves by upper leaves in closed canopies leading to premature abscission

  19. Series-parallel method of direct solar array regulation

    Science.gov (United States)

    Gooder, S. T.

    1976-01-01

    A 40 watt experimental solar array was directly regulated by shorting out appropriate combinations of series and parallel segments of a solar array. Regulation switches were employed to control the array at various set-point voltages between 25 and 40 volts. Regulation to within + or - 0.5 volt was obtained over a range of solar array temperatures and illumination levels as an active load was varied from open circuit to maximum available power. A fourfold reduction in regulation switch power dissipation was achieved with series-parallel regulation as compared to the usual series-only switching for direct solar array regulation.

  20. Illumination Sufficiency Survey Techniques: In-situ Measurements of Lighting System Performance and a User Preference Survey for Illuminance in an Off-Grid, African Setting

    Energy Technology Data Exchange (ETDEWEB)

    Alstone, Peter; Jacobson, Arne; Mills, Evan

    2010-08-26

    Efforts to promote rechargeable electric lighting as a replacement for fuel-based light sources in developing countries are typically predicated on the notion that lighting service levels can be maintained or improved while reducing the costs and environmental impacts of existing practices. However, the extremely low incomes of those who depend on fuel-based lighting create a need to balance the hypothetically possible or desirable levels of light with those that are sufficient and affordable. In a pilot study of four night vendors in Kenya, we document a field technique we developed to simultaneously measure the effectiveness of lighting service provided by a lighting system and conduct a survey of lighting service demand by end-users. We took gridded illuminance measurements across each vendor's working and selling area, with users indicating the sufficiency of light at each point. User light sources included a mix of kerosene-fueled hurricane lanterns, pressure lamps, and LED lanterns.We observed illuminance levels ranging from just above zero to 150 lux. The LED systems markedly improved the lighting service levels over those provided by kerosene-fueled hurricane lanterns. Users reported that the minimum acceptable threshold was about 2 lux. The results also indicated that the LED lamps in use by the subjects did not always provide sufficient illumination over the desired retail areas. Our sample size is much too small, however, to reach any conclusions about requirements in the broader population. Given the small number of subjects and very specific type of user, our results should be regarded as indicative rather than conclusive. We recommend replicating the method at larger scales and across a variety of user types and contexts. Policymakers should revisit the subject of recommended illuminance levels regularly as LED technology advances and the price/service balance point evolves.

  1. Photocatalytic antibacterial activity of copper-based nanoparticles under visible light illumination

    Science.gov (United States)

    Wu, Zong-Yan; Abdullah, Hairus; Kuo, Dong-Hau

    2018-04-01

    Copper oxide and sulfide nanoparticles after annealing treatment at 400 °Chave been characterized and tested for their bactericidal properties toward Staphylococcus aureus and Escherichia coli under the dark and LED light illuminated conditions. It was found that the nanoparticles with the formation of CuS/Cu2S/CuO nanoheterostructuresexhibited a great capability of killing Staphylococcus aureus and Escherichia coli with or without light illumination. The antibacterial activity of the nanoparticles was demonstrated and simply observed with colony counting method. A mechanism of the antibacterial behaviour had been proposed and elucidated in this work.

  2. electrode array

    African Journals Online (AJOL)

    PROF EKWUEME

    A geoelectric investigation employing vertical electrical soundings (VES) using the Ajayi - Makinde Two-Electrode array and the ... arrangements used in electrical D.C. resistivity survey. These include ..... Refraction Tomography to Study the.

  3. [Study on the safety of blue light leak of LED].

    Science.gov (United States)

    Shen, Chong-Yu; Xu, Zheng; Zhao, Su-Ling; Huang, Qing-Yu

    2014-02-01

    In this paper, the blue light properties of LED illumination devices have been investigated. Against the status quo of China's LED lighting, we measured the spectrum component of LED lamps and analyzed the photobiological safety under the current domestic and international standards GB/T 20145-2006/CIE S009/E: 2002 and IEC62471: 2006 standards as well as CTL-0744_2009-laser resolution, which provides the reference to the manufacture of LED lighting lamps as well as related safety standards and laws. If the radiance intensity of blue light in LED is lower than 100 W x m(-2) x Sr(-1), there is no harm to human eyes. LEDs will not cause harm to human eyes under normal use, but we should pay attention to the protection of special populations (children), and make sure that they avoid looking at a light source for a long time. The research has found that the blue-rich lamps can affect the human rule of work and rest, and therefore, the LED lamps with color temperature below 4 000 K and color rendering index of 80 are suitable for indoor use. At the same time, the lamps with different parameters should be selected according to the different distances.

  4. Evaluation of OLED and edge-lit LED lighting panels

    Science.gov (United States)

    Mou, Xi; Narendran, Nadarajah; Zhu, Yiting; Freyssinier, Jean Paul

    2016-09-01

    Solid-state lighting (SSL) offers a new technology platform for lighting designers and end-users to illuminate spaces with low energy demand. Two types of SSL sources include organic light-emitting diodes (OLEDs) and light-emitting diodes (LEDs). OLED is an area light source, and its primary competing technology is the edge-lit LED panel. Generally, both of these technologies are considered similar in shape and appearance, but there is little understanding of how people perceive discomfort glare from large area light sources. The objective of this study was to evaluate discomfort glare for the two lighting technologies under similar operating conditions by gathering observers' reactions. The human factors study results showed no statistically significant difference in human response to discomfort glare between OLED and edge-lit LED panels when the two light sources produced the same lighting stimulus. This means both technologies appeared equally glary beyond a certain luminance.

  5. LED radiation: possible photobiological risks and safety regulations. Pt. 2

    International Nuclear Information System (INIS)

    Horak, W.

    2008-01-01

    With all due euphoria regarding the new illumination possibilities, one can quite often observe a certain degree of uncertainty concerning eye hazard issues in conjunction with intense LED radiation. Moreover, the related general requirements for product- as well as for workplace-safety are rather new. Thus, the possible hazards by the optical radiation of LEDs will be analyzed in this two-port contribution. Part 1 aims to provide a review of these hazards as well as of the bases for their evaluation. The impact of these requirements on state-of-the-art LEDs will be examined in part 2. Compared with conventional light sources, it turns out that there are hardly any differences in this respect. (orig.)

  6. Realtime global illumination using compressed pre-computed indirect illumination textures

    DEFF Research Database (Denmark)

    Bahnsen, Chris; Martin dit Neuville, Antoine; Pedersen, Casper

    2012-01-01

    and added to the direct illumination to produce the total illumination. Depending on the type of image produced, the algorithm allows a camera to move, and even objects to be added or modified at runtime to some extent. Finally, we will see that the amount of data to store and process can also be reduced...

  7. Content adaptive illumination for Fourier ptychography.

    Science.gov (United States)

    Bian, Liheng; Suo, Jinli; Situ, Guohai; Zheng, Guoan; Chen, Feng; Dai, Qionghai

    2014-12-01

    Fourier ptychography (FP) is a recently reported technique, for large field-of-view and high-resolution imaging. Specifically, FP captures a set of low-resolution images, under angularly varying illuminations, and stitches them together in the Fourier domain. One of FP's main disadvantages is its long capturing process, due to the requisite large number of incident illumination angles. In this Letter, utilizing the sparsity of natural images in the Fourier domain, we propose a highly efficient method, termed adaptive Fourier ptychography (AFP), which applies content adaptive illumination for FP, to capture the most informative parts of the scene's spatial spectrum. We validate the effectiveness and efficiency of the reported framework, with both simulated and real experiments. Results show that the proposed AFP could shorten the acquisition time of conventional FP, by around 30%-60%.

  8. New dental applications with LEDs

    DEFF Research Database (Denmark)

    Argyraki, A.; Ou, Yiyu; Petersen, Paul Michael

    Visible and ultraviolet LEDs will in the future give rise to new dental applications. Fluorescence imaging, photodynamic therapy and photoactivated disinfection are important future candidates for diagnostics and treatment in dentistry.......Visible and ultraviolet LEDs will in the future give rise to new dental applications. Fluorescence imaging, photodynamic therapy and photoactivated disinfection are important future candidates for diagnostics and treatment in dentistry....

  9. An extraocular non-invasive transscleral LED-endoilluminator for eye speculum integration.

    Science.gov (United States)

    Kölbl, Philipp Simon; Lindner, Christoph; Lingenfelder, Christian; Deuchler, Svenja; Singh, Pankaj; Koch, Frank; Hessling, Martin

    2015-09-01

    Conventional chandelier-endoilluminators used for pars-plana vitrectomy consist of a light-emitting tip attached to an optical fibre. The tip requires introduction into the ocular space through an incision. To achieve complete illumination of the intraocular space, the introduction of more than just one tip is sometimes necessary. An extraocular vitreoretinal LED-endoilluminator discussed in this paper represents a new approach to illuminate the intraocular space. The light source is integrated into a speculum and firmly apposed to the sclera. This approach offers the advantage of effectively illuminating the interior of the eye even though the procedure is non-invasive. Furthermore, this approach significantly reduces the risk of damage to the retina by phototoxic effects. A round white LED was used as a light source. By integrating the light source into a speculum, the LED was firmly held against the sclera. Thus, the ocular space was illuminated transsclerally. As a result, indirect uniform illumination of the complete intraocular space was achieved. The prototype was developed considering the relevant international standards. Porcine eyes were used because their properties are similar to those of human eyes. Porcine eyes could be acceptably illuminated with the selected LED. The LED-endoilluminator conforms with international standards for endoillumination. Thus, possible photochemical and thermal risks are considered and reduced to a minimum. A novel LED-endoilluminator which can be attached to a speculum was developed. The system does not need any connection to an external light source and, consequently, also avoids usage of an optical fibre. Regular and uniform illumination of the intraocular space was achieved by transmitted and scattered visible irradiation, avoiding an incision. The duration of potential light exposure, compared to existing illumination systems, can be significantly increased. This is also true when the illuminator is not directly placed

  10. EDITORIAL: LED light sources (light for the future) LED light sources (light for the future)

    Science.gov (United States)

    Grandjean, N.

    2010-09-01

    Generating white light from electricity with maximum efficacy has been a long quest since the first incandescent lamp was invented by Edison at the end of the 19th century. Nowadays, semiconductors are making reality the holy grail of converting electrons into photons with 100% efficiency and with colours that can be mixed for white light illumination. The revolution in solid-state lighting (SSL) dates to 1994 when Nakamura reported the first high-brightness blue LED based on GaN semiconductors. Then, white light was produced by simply combining a blue dye with a yellow phosphor. After more than a decade of intensive research the performance of white LEDs is quite impressive, beating by far the luminous efficacy of compact fluorescent lamps. We are likely close to replacing our current lighting devices by SSL lamps. However, there are still technological and fabrication cost issues that could delay large market penetration of white LEDs. Interestingly, SSL may create novel ways of using light that could potentially limit electricity saving. Whatever the impact of SSL, it will be significant on our daily life. The purpose of this special cluster issue is to produce a snapshot of the current situation of SSL from different viewing angles. In an introductory paper, Tsao and co-workers from Sandia National Laboratories, present an energy-economics perspective of SSL considering societal changes and SSL technology evolution. In a second article, Narukawa et al working at Nichia Corporation—the pioneer and still the leading company in SSL—describe the state of the art of current research products. They demonstrate record performance with white LEDs exhibiting luminous efficacy of 183 lm W-1 at high-current injection. Then, a series of topical papers discuss in detail various aspects of the physics and technology of white LEDs Carrier localization in InGaN quantum wells has been considered the key to white LEDs' success despite the huge density of defects. A

  11. Illumination engineering design with nonimaging optics

    CERN Document Server

    Koshel, R John

    2012-01-01

    This book brings together experts in the field who present material on a number of important and growing topics including lighting, displays, solar concentrators. The first chapter provides an overview of the field of nonimagin and illumination optics. Included in this chapter are terminology, units, definitions, and descriptions of the optical components used in illumination systems. The next two chapters provide material within the theoretical domain, including etendue, etendue squeezing, and the skew invariant. The remaining chapters focus on growing applications. This entire field of

  12. Illuminating the Decision Path: The Yucca Mountain Site Recommendation

    Energy Technology Data Exchange (ETDEWEB)

    Knox, E.; Slothouber, L.

    2003-02-25

    On February 14, 2002, U.S. Secretary of Energy Spencer Abraham provided to the President the ''Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982.'' This Recommendation, along with supporting materials, complied with statutory requirements for communicating a site recommendation to the President, and it did more: in 49 pages, the Recommendation also spoke directly to the Nation, illuminating the methodology and considerations that led toward the decision to recommend the site. Addressing technical suitability, national interests, and public concerns, the Recommendation helped the public understand the potential risks and benefits of repository development and placed those risks and benefits in a meaningful national context.

  13. Illuminating the Decision Path: The Yucca Mountain Site Recommendation

    International Nuclear Information System (INIS)

    Knox, E.; Slothouber, L.

    2003-01-01

    On February 14, 2002, U.S. Secretary of Energy Spencer Abraham provided to the President the ''Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982.'' This Recommendation, along with supporting materials, complied with statutory requirements for communicating a site recommendation to the President, and it did more: in 49 pages, the Recommendation also spoke directly to the Nation, illuminating the methodology and considerations that led toward the decision to recommend the site. Addressing technical suitability, national interests, and public concerns, the Recommendation helped the public understand the potential risks and benefits of repository development and placed those risks and benefits in a meaningful national context

  14. Re-designing illumination level in printing working area

    Science.gov (United States)

    Wahyuni, D.; Tambunan, M.; Panjaitan, N.; Budiman, I.

    2018-02-01

    This research was conducted in four printing business in Medan city. The illumination level on the research object is very low around 30 Lux far below the required value of government regulation at 200 Lux. Poor lighting has an impact on the number of defective products that pass the inspection, so we need to improve the workspace lighting to improve the quality of work. The method of determining the measuring point follows SNI 16-7062-2004, and the measuring instrument used is 4 in 1 Environment Meter. The results show that almost all workspaces under study require improved lighting, because the light bulbs used are not able to meet the lighting needs. This research recommends improving the workspace lighting using LED (Light Emitting Diode) lights because it has high energy efficiency and relatively more lifetime compared to the existing lamp.

  15. Improved Performances of a Fluidized Bed Photo reactor by a Microscale Illumination System

    International Nuclear Information System (INIS)

    Ciambelli, P.; Sannino, D.; Palma, V.; Vaiano, V.; Mazzei, R.S.; Ciambelli, P.; Sannino, D.

    2009-01-01

    The performances of a gas-solid two-dimensional fluidized bed reactor in photo catalytic selective oxidation reactions, irradiated with traditional UV lamps or with a microscale illumination system based on UV emitting diodes (UV A-LEDs), have been compared. In the photo catalytic oxidative dehydrogenation of cyclohexane to benzene on MoOx/TiO 2 -A1 2 O 3 catalyst the use of UV A-LEDs modules allowed to achieve a cyclohexane conversion and benzene yield higher than those obtained with traditional UV lamps. The better performances with UV A-LEDs are due to the UV A-LEDs small dimensions and small-angle emittance, which allow photons beam be directed towards the photo reactor windows, reducing the dispersion outside of photo reactor or the optical path length. As a consequence, the effectively illuminated mass of catalyst is greater. We have found that this illumination system is efficient for photo-oxidative dehydrogenation of cyclohexane to cyclohexene on sulphated MoOx-A1 2 O 3 and ethanol to acetaldehyde on VOx/TiO 2 .

  16. New developments in illumination, heating and cooling technologies for energy-efficient buildings

    International Nuclear Information System (INIS)

    Han, H.J.; Jeon, Y.I.; Lim, S.H.; Kim, W.W.; Chen, K.

    2010-01-01

    This paper gives a concise review of new designs and developments of illumination, heating and air-conditioning systems and technologies for energy-efficient buildings. Important breakthroughs in these areas include high-efficiency and/or reduced cost solar system components, LED lamps, smart windows, computer-controlled illumination systems, compact combined heat-power generation systems, and so on. To take advantage of these new technologies, hybrid or cascade energy systems have been proposed and/or investigated. A survey of innovative architectural and building envelope designs that have the potential to considerably reduce the illumination and heating and cooling costs for office buildings and residential houses is also included in the review. In addition, new designs and ideas that can be easily implemented to improve the energy efficiency and/or reduce greenhouse gas emissions and environmental impacts of new or existing buildings are proposed and discussed.

  17. Many-junction photovoltaic device performance under non-uniform high-concentration illumination

    Science.gov (United States)

    Valdivia, Christopher E.; Wilkins, Matthew M.; Chahal, Sanmeet S.; Proulx, Francine; Provost, Philippe-Olivier; Masson, Denis P.; Fafard, Simon; Hinzer, Karin

    2017-09-01

    A parameterized 3D distributed circuit model was developed to calculate the performance of III-V solar cells and photonic power converters (PPC) with a variable number of epitaxial vertically-stacked pn junctions. PPC devices are designed with many pn junctions to realize higher voltages and to operate under non-uniform illumination profiles from a laser or LED. Performance impacts of non-uniform illumination were greatly reduced with increasing number of junctions, with simulations comparing PPC devices with 3 to 20 junctions. Experimental results using Azastra Opto's 12- and 20-junction PPC illuminated by an 845 nm diode laser show high performance even with a small gap between the PPC and optical fiber output, until the local tunnel junction limit is reached.

  18. Development of constant-power driving control for light-emitting-diode (LED) luminaire

    KAUST Repository

    Huang, Bin-Juine

    2013-01-01

    The illumination of an LED may be affected by operating temperature even under constant-current condition. A constant-power driving technique is proposed in the present study for LED luminaire. A linear system dynamics model of LED luminaire is first derived and used in the design of the feedback control system. The PI controller was designed and tuned taking into account the control accuracy and robust properties with respect to plant uncertainty and variation of operating conditions. The control system was implemented on a microprocessor and used to control a 150W LED luminaire. The test result shows that the feedback system accurately controls the input power of LED luminaire to within 1.3 per cent error. As the ambient temperature changes from 0 to 40 °C, the LED illumination varies slightly (-1.7%) for constant-power driving, as compared to that of constant-current driving (-12%) and constant-voltage driving (+50%). The constant-power driving has revealed advantage in stabilizing the illumination of LED under large temperature variation. © 2012 Elsevier Ltd. All rights reserved.

  19. Filter arrays

    Science.gov (United States)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  20. Optimal colour quality of LED clusters based on memory colours.

    Science.gov (United States)

    Smet, Kevin; Ryckaert, Wouter R; Pointer, Michael R; Deconinck, Geert; Hanselaer, Peter

    2011-03-28

    The spectral power distributions of tri- and tetrachromatic clusters of Light-Emitting-Diodes, composed of simulated and commercially available LEDs, were optimized with a genetic algorithm to maximize the luminous efficacy of radiation and the colour quality as assessed by the memory colour quality metric developed by the authors. The trade-off of the colour quality as assessed by the memory colour metric and the luminous efficacy of radiation was investigated by calculating the Pareto optimal front using the NSGA-II genetic algorithm. Optimal peak wavelengths and spectral widths of the LEDs were derived, and over half of them were found to be close to Thornton's prime colours. The Pareto optimal fronts of real LED clusters were always found to be smaller than those of the simulated clusters. The effect of binning on designing a real LED cluster was investigated and was found to be quite large. Finally, a real LED cluster of commercially available AlGaInP, InGaN and phosphor white LEDs was optimized to obtain a higher score on memory colour quality scale than its corresponding CIE reference illuminant.

  1. Public illumination manual; Manual de iluminacao publica

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    This work aims to guide in the correct choice and usage of the adequate public illumination equipment. It also aims to help the public authorities in terms of the best economical and technical choice, as well as the adequate maintenance of the equipment in order to obtain the most efficiency and safety with minimum costs 22 figs., 11 tabs.

  2. Measurement of illumination exposure in postpartum women

    Directory of Open Access Journals (Sweden)

    Stein Martin T

    2003-05-01

    Full Text Available Abstract Background Low levels of light exposure at critical times are thought to cause seasonal affective disorder. Investigators, in studies demonstrating the usefulness of bright light therapy, also have implicated light's role in non-seasonal depression. The precise cause of postpartum depression has not been delineated, but it seemed possible that new mothers would spend reduced time in daylight. The goal of this study was to examine the levels of illumination experienced by postpartum mothers and to discover any relationship between light exposure and mood levels experienced during the postpartum period. Methods Fifteen postpartum women, who did not have any baseline indication of depression, wore a wrist device (Actillume for 72 hours to measure their exposure to light. At the end of the recording period, they completed a self-reported measure of mood. The mean light exposure of these postpartum women (expressed as the 24-hour average logarithm of illumination in lux was compared with that of a representative sample of women of comparable age, residence, and seasonal months of recording. Mood levels were then rank-ordered and tested for correlation with light exposure levels. Results There was no significant difference between the amount of light [log10lux] experienced by postpartum (1.01 SD 0.236 and control women (1.06 SD 0.285. Mood was not correlated with illumination in the postpartum sample. Conclusions Postpartum women in San Diego did not receive reduced light, nor was low mood related to low illumination.

  3. Lighting design for globally illuminated volume rendering.

    Science.gov (United States)

    Zhang, Yubo; Ma, Kwan-Liu

    2013-12-01

    With the evolution of graphics hardware, high quality global illumination becomes available for real-time volume rendering. Compared to local illumination, global illumination can produce realistic shading effects which are closer to real world scenes, and has proven useful for enhancing volume data visualization to enable better depth and shape perception. However, setting up optimal lighting could be a nontrivial task for average users. There were lighting design works for volume visualization but they did not consider global light transportation. In this paper, we present a lighting design method for volume visualization employing global illumination. The resulting system takes into account view and transfer-function dependent content of the volume data to automatically generate an optimized three-point lighting environment. Our method fully exploits the back light which is not used by previous volume visualization systems. By also including global shadow and multiple scattering, our lighting system can effectively enhance the depth and shape perception of volumetric features of interest. In addition, we propose an automatic tone mapping operator which recovers visual details from overexposed areas while maintaining sufficient contrast in the dark areas. We show that our method is effective for visualizing volume datasets with complex structures. The structural information is more clearly and correctly presented under the automatically generated light sources.

  4. Illuminating Everyday Performances of Privilege and Oppression

    Science.gov (United States)

    Heuman, Amy N.

    2018-01-01

    Courses: Intercultural Communication, Interracial Communication, Gender and Communication, Introduction to Communication Course (within a unit on culture), and any courses encouraging critical analyses of power. Objectives: This activity will: illuminate the ways in which everyday performances of privilege and resulting oppressions connect with…

  5. An illumination system for endoscopic applications

    DEFF Research Database (Denmark)

    2013-01-01

    The present disclosure relates to an illumination system for endoscopic applications comprising at least one substantially monochromatic light source having a predefined central wavelength between 400 and 500 nm or between 500 and 550 nm, an optical transmission path adapted to guide light emanat...... for photodynamic diagnosis and/or therapy of bladder cancer is further disclosed herein....

  6. Public illumination manual; Manual de iluminacao publica

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This work aims to guide in the correct choice and usage of the adequate public illumination equipment. It also aims to help the public authorities in terms of the best economical and technical choice, as well as the adequate maintenance of the equipment in order to obtain the most efficiency and safety with minimum costs 22 figs., 11 tabs.

  7. Interactive indirect illumination using adaptive multiresolution splatting.

    Science.gov (United States)

    Nichols, Greg; Wyman, Chris

    2010-01-01

    Global illumination provides a visual richness not achievable with the direct illumination models used by most interactive applications. To generate global effects, numerous approximations attempt to reduce global illumination costs to levels feasible in interactive contexts. One such approximation, reflective shadow maps, samples a shadow map to identify secondary light sources whose contributions are splatted into eye space. This splatting introduces significant overdraw that is usually reduced by artificially shrinking each splat's radius of influence. This paper introduces a new multiresolution approach for interactively splatting indirect illumination. Instead of reducing GPU fill rate by reducing splat size, we reduce fill rate by rendering splats into a multiresolution buffer. This takes advantage of the low-frequency nature of diffuse and glossy indirect lighting, allowing rendering of indirect contributions at low resolution where lighting changes slowly and at high-resolution near discontinuities. Because this multiresolution rendering occurs on a per-splat basis, we can significantly reduce fill rate without arbitrarily clipping splat contributions below a given threshold-those regions simply are rendered at a coarse resolution.

  8. Scene independent real-time indirect illumination

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Christensen, Niels Jørgen; Falster, Peter

    2005-01-01

    A novel method for real-time simulation of indirect illumination is presented in this paper. The method, which we call Direct Radiance Mapping (DRM), is based on basal radiance calculations and does not impose any restrictions on scene geometry or dynamics. This makes the method tractable for rea...

  9. LED tests TTO 2010-2011. Focus on energy. Final report; LED Proeven TTO 2010-2011. Focus op energie. Eindverslag

    Energy Technology Data Exchange (ETDEWEB)

    Peekstok, T.; Duyvesteijn, R.; Persoon, S.; Sanders, J.; De Jong, A. [Tuinbouw Techniek Ontwikkeling TTO, Honselersdijk (Netherlands)

    2011-07-15

    An overview is given of research results of the application of LED in the horticulture, focusing on high-growing vegetable crops. In this report LED illuminance research for tomatoes is outlined. The project has been carried out from October 2010 to May 2011 in the demonstration nursery Westland. Also, briefly attention is paid to LED lighting tests, performed by TTO (Horticulture Technology Development) in 2008 and 2009 [Dutch] Een overzicht wordt gegeven van de onderzoeksresultaten in de toepassing van LED belichting in de glastuinbouw, met nadruk op hoogopgaande groentegewassen. In dit verslag wordt het onderzoek met LED belichting in tomaat van telersvereniging 'Tuinbouw Techniek Ontwikkeling' (TTO) uiteengezet. Dit project heeft plaatsgevonden vanaf oktober 2010 tot mei 2011 in de Demokwekerij Westland. Hiernaast worden de proeven met LED belichting, welke uitgevoerd zijn door TTO in 2008 en 2009, kort samengevat.

  10. Forward Conduction Mode Controlled Piezoelectric Transformer-Based PFC LED Drive

    DEFF Research Database (Denmark)

    Roedgaard, M. S.; Weirich, M.; Andersen, M. A. E.

    2013-01-01

    Light-emitting diode (LED) illumination is getting more and more common; as LED's performance is rising, the price is falling and is getting competitive. Some of the challenges of ac mains supplied illumination are the requirement of power factor correction (PFC) and the competitiveness of a low...... priced market. In this paper, a new forward conduction mode (FCM) control method for piezoelectric transformer (PT)-based power converters is proposed. A PT-based LED drive facilitating passive PFC is developed, utilizing and validating the FCM control method. The drive utilizes an inductorless half...... LED drive has been developed, supplied from 230-V 50-Hz ac mains, achieving a power factor of 0.96....

  11. Improving InGaN-LED performance by optimizing the patterned sapphire substrate shape

    International Nuclear Information System (INIS)

    Huang Xiao-Hui; Liu Jian-Ping; Fan Ya-Ming; Kong Jun-Jie; Yang Hui; Wang Huai-Bing

    2012-01-01

    The epitaxial growths of GaN films and GaN-based LEDs on various patterned sapphire substrates (PSSes) with different values of fill factor (f) and slanted angle (θ) are investigated in detail. The threading dislocation (TD) density is lower in the film grown on the PSS with a smaller fill factor, resulting in a higher internal quantum efficiency (IQE). Also the ability of the LED to withstand the electrostatic discharge (ESD) increases as the fill factor decreases. The illumination output power of the LED is affected by both θ and f. It is found that the illumination output power of the LED grown on the PSS with a lower production of tan θ and f is higher than that with a higher production of tan θ and f. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Daylight illumination-color-contrast tables for full-form objects naturally illuminated objects

    CERN Document Server

    Nagel, M

    1978-01-01

    Daylight Illumination-Color-Contrast Tables for Full-form Objects is the result of a major computational project concerning the illumination, color, and contrast conditions in naturally illuminated objects. The project from which this two-chapter book is derived is originally conceived in support of the various remote sensing and image processing activities of the Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt, Oberpfaffenhofen, West Germany DFVLR, in particular, those depending on the quantitative photometric and colorimetric evaluation of photographs and other environmental

  13. Practical lighting design with LEDs

    CERN Document Server

    Lenk, Ron

    2016-01-01

    The second edition of Practical Lighting Design with LEDs has been revised and updated to provide the most current information for developing light-emitting diodes products. The authors, noted authorities in the field, offer a review of the most relevant topics including optical performance, materials, thermal design, and modeling and measurement. Comprehensive in scope, the text covers all the information needed to design LEDs into end products.

  14. Extending Whole Slide Imaging: Color Darkfield Internal Reflection Illumination (DIRI for Biological Applications.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Kawano

    Full Text Available Whole slide imaging (WSI is a useful tool for multi-modal imaging, and in our work, we have often combined WSI with darkfield microscopy. However, traditional darkfield microscopy cannot use a single condenser to support high- and low-numerical-aperture objectives, which limits the modality of WSI. To overcome this limitation, we previously developed a darkfield internal reflection illumination (DIRI microscope using white light-emitting diodes (LEDs. Although the developed DIRI is useful for biological applications, substantial problems remain to be resolved. In this study, we propose a novel illumination technique called color DIRI. The use of three-color LEDs dramatically improves the capability of the system, such that color DIRI (1 enables optimization of the illumination color; (2 can be combined with an oil objective lens; (3 can produce fluorescence excitation illumination; (4 can adjust the wavelength of light to avoid cell damage or reactions; and (5 can be used as a photostimulator. These results clearly illustrate that the proposed color DIRI can significantly extend WSI modalities for biological applications.

  15. Standardization of UV LED measurements

    Science.gov (United States)

    Eppeldauer, G. P.; Larason, T. C.; Yoon, H. W.

    2015-09-01

    Traditionally used source spectral-distribution or detector spectral-response based standards cannot be applied for accurate UV LED measurements. Since the CIE standardized rectangular-shape spectral response function for UV measurements cannot be realized with small spectral mismatch when using filtered detectors, the UV measurement errors can be several times ten percent or larger. The UV LEDs produce broadband radiation and both their peaks or spectral bandwidths can change significantly. The detectors used for the measurement of these LEDs also have different spectral bandwidths. In the discussed example, where LEDs with 365 nm peak are applied for fluorescent crack-recognition using liquid penetrant (non-destructive) inspection, the broadband radiometric LED (signal) measurement procedure is standardized. A UV LED irradiance-source was calibrated against an FEL lamp standard to determine its spectral irradiance. The spectral irradiance responsivity of a reference UV meter was also calibrated. The output signal of the reference UV meter was calculated from the spectral irradiance of the UV source and the spectral irradiance responsivity of the reference UV meter. From the output signal, both the integrated irradiance (in the reference plane of the reference meter) and the integrated responsivity of the reference meter were determined. Test UV meters calibrated for integrated responsivity against the reference UV meter, can be used to determine the integrated irradiance from a field UV source. The obtained 5 % (k=2) measurement uncertainty can be decreased when meters with spectral response close to a constant value are selected.

  16. Videolaryngoscopes differ substantially in illumination of the oral cavity: A manikin study

    Directory of Open Access Journals (Sweden)

    Barbe MA Pieters

    2016-01-01

    Full Text Available Background and Aims: Insufficient illumination of the oral cavity during endotracheal intubation may result in suboptimal conditions. Consequently, suboptimal illumination and laryngoscopy may lead to potential unwanted trauma to soft tissues of the pharyngeal mucosa. We investigated illumination of the oral cavity by different videolaryngoscopes (VLS in a manikin model. Methods: We measured light intensity from the mouth opening of a Laerdal intubation trainer comparing different direct and indirect VLS at three occasions, resembling optimal to less-than-optimal intubation conditions; at the photographer′s dark room, in an operating theatre and outdoors in bright sunlight. Results: Substantial differences in luminance were detected between VLS. The use of LED light significantly improved light production. All VLS produced substantial higher luminance values in a well-luminated environment compared to the dark photographer′s room. The experiments outside-in bright sunlight-were interfered with by direct sunlight penetration through the synthetic material of the manikin, making correct measurement of luminance in the oropharynx invalid. Conclusion: Illumination of the oral cavity differs widely among direct and indirect VLS. The clinician should be aware of the possibility of suboptimal illumination of the oral cavity and the potential risk this poses for the patient.

  17. Improving the Effectiveness of a Nutrient Removal System Composed of Microalgae and Daphnia by an Artificial Illumination

    Directory of Open Access Journals (Sweden)

    In-Ho Chang

    2014-03-01

    Full Text Available For determining the effect of illumination on nutrient removal in an artificial food web (AFW system, we launched a pilot continuous-flow system. The system consisted of a storage basin, a phytoplankton growth chamber, and a zooplankton growth chamber. A 25,000 Lux AFW-light emitting diode (LED on system and an AFW-LED off system were separately operated for 10 days. In the AFW-LED on system, the maximum chlorophyll-a concentration of the phytoplankton chamber was four times higher than that of the AFW-LED off system. With artificial nighttime illumination, the microalgae became both smaller and more nutritious; the microalgae became high quality food for the zooplankton, Daphnia magna. Consequently, this zooplankton became more efficient at extracting nutrients and grew more densely than in the AFW-LED off system condition. In the LED-on condition, the amounts of total nitrogen (TN and total phosphorus (TP flowing into the system for 10 days were 84.7 g and 20.4 g, and the amounts flowing out were 19.5 g (23% and 4.0 g (20%, respectively. In contrast, in the LED-off condition, 83.8 g and 20.6 g of TN and TP flowed into the system while 38.8 g (46% and 6.8 g (33% flowed out, respectively. Artificial illumination significantly improves the removal rate of nutrients in an AFW system.

  18. MOSFET Loss Evaluation for a Low-Power Stand-Alone Photovoltaic-LED System

    DEFF Research Database (Denmark)

    Mira Albert, Maria del Carmen; Knott, Arnold; Andersen, Michael A. E.

    2015-01-01

    This paper presents a performance evaluation and comparison of state-of-the-art low voltage Si MOSFETs for a stand-alone photovoltaic-LED Light to Light (LtL) system. The complete system is formed by two cascaded converters that will be optimized for a determined solar irradiation and LED...... illumination profiles. The comparison is performed based on dynamic characterization and evaluation of the devices energy loss at different current levels....

  19. Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting in Leavenworth, KS

    Energy Technology Data Exchange (ETDEWEB)

    Myer, Michael; Kinzey, Bruce R.; Curry, Ku' uipo

    2011-05-06

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a commercial parking lot lighting application, under the U.S. Department of Energy (DOE) Solid-State Lighting Technology GATEWAY Demonstration Program. The parking lot is for customers and employees of a Walmart Supercenter in Leavenworth, Kansas and this installation represents the first use of the LED Parking Lot Performance Specification developed by the DOE’s Commercial Building Energy Alliance. The application is a parking lot covering more than a half million square feet, lighted primarily by light-emitting diodes (LEDs). Metal halide wall packs were installed along the building facade. This site is new construction, so the installed baseline(s) were hypothetical designs. It was acknowledged early on that deviating from Walmart’s typical design would reduce the illuminance on the site. Walmart primarily uses 1000W pulse-start metal halide (PMH) lamps. In order to provide a comparison between both typical design and a design using conventional luminaires providing a lower illuminance, a 400W PMH design was also considered. As mentioned already, the illuminance would be reduced by shifting from the PMH system to the LED system. The Illuminating Engineering Society of North America (IES) provides recommended minimum illuminance values for parking lots. All designs exceeded the recommended illuminance values in IES RP-20, some by a wider margin than others. Energy savings from installing the LED system compared to the different PMH systems varied. Compared to the 1000W PMH system, the LED system would save 63 percent of the energy. However, this corresponds to a 68 percent reduction in illuminance as well. In comparison to the 400W PMH system, the LED system would save 44 percent of the energy and provide similar minimum illuminance values at the time of relamping. The LED system cost more than either of the PMH systems when comparing initial costs

  20. The Development of LED-Based Dental Light Using a Multiplanar Reflector Design

    Directory of Open Access Journals (Sweden)

    Chi-Chang Hsieh

    2014-01-01

    Full Text Available A multiplanar reflector was designed to enhance the application efficiency of light-emitting diode (LED light sources that can be employed as LED-based dental lights. This study used a high-power LED developed by Nichia, that is, a single LED capable of providing a total luminous flux of 120 lm, as the primarily light source to design and develop an LED-based dental light. This LED complies with the international standards and regulations stipulated in ISO 9680:2007. The light spots produced by the prototype were rectangular, with a length of 200 mm and a width of 100 mm. These light spots achieved maximum illumination of 12,000 lux. The use of LEDs can reduce energy consumption from 50 W to 3 W, providing an energy saving of more than 90%.

  1. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array.

    Science.gov (United States)

    Navruz, Isa; Coskun, Ahmet F; Wong, Justin; Mohammad, Saqib; Tseng, Derek; Nagi, Richie; Phillips, Stephen; Ozcan, Aydogan

    2013-10-21

    We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ~9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ~3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also removes spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears.

  2. Development of constant-power driving control for light-emitting-diode (LED) luminaire

    KAUST Repository

    Huang, Bin-Juine; Chen, Chun-Wei; Ong, Chin-Dian; Du, Bo-Han; Hsu, Po-Chien

    2013-01-01

    changes from 0 to 40 °C, the LED illumination varies slightly (-1.7%) for constant-power driving, as compared to that of constant-current driving (-12%) and constant-voltage driving (+50%). The constant-power driving has revealed advantage in stabilizing

  3. Rectenna array measurement results. [Satellite power transmission and reception

    Science.gov (United States)

    Dickinson, R. M.

    1980-01-01

    The measured performance characteristics of a rectenna array are reviewed and compared to the performance of a single element. It is shown that the performance may be extrapolated from the individual element to that of the collection of elements. Techniques for current and voltage combining are demonstrated. The array performance as a function of various operating parameters is characterized and techniques for overvoltage protection and automatic fault clearing in the array are demonstrated. A method for detecting failed elements also exists. Instrumentation for deriving performance effectiveness is described. Measured harmonic radiation patterns and fundamental frequency scattered patterns for a low level illumination rectenna array are presented.

  4. Mirror Illumination and Spillover Measurements of the Atacama Cosmology Telescope

    Science.gov (United States)

    Gallardo, Patricio; Dunner, Rolando; Wollack, Ed; Jerez-Hanckes, Carlos

    2012-01-01

    The Atacama Cosmology Telescope (ACT) is a 6 m telescope designed to map the Cosmic Microwave Background (CMB) simultaneously at 145 GHz, 220GHz and 280GHz, The receiver in ACT, the Millimeter Bolometer Array Camera, features 1000 TES bolometers in each band, The detector performance depends critically on the total optical loading, requiring the spmover contributions from the optics to be minimal. This inspired the use of a cold Lyot stop to limit the illumination of the primary and the use of guard rings surrounding the primary and secondary reflectors. Here, we present a direct measurement of the illumination aperture for both reflectors and of the attenuation level outside the main optical path. We used a 145 GHz, 1 m W source and a chopper wheel to produce a time-varying signal with a broad heam proflle, We sampled the response of the camera for different locations of the source, placed in front and beside the primary and secondary mirrors. The aperture of the primary was measured to be 5,72 plus or minus 0,17m in diameter (95 plus or minus 3% of its geometrical size), while the aperture of the secondary yielded 2 plus or minus 0.12m in diameter. Both apertures are consistent with the optical design. Comparing to previous measurements of the beam solid angle from planet observations, we estimate an optical efficiency of 72.3 plus or minus 4,8%. We found that the attenuation outside the primary aperture was -16 plus or minus 2dB, which is below the theoretical expectations, and -22 plus or minus 1 dB outside the secondary aperture, which is consistent with simulations. These results motivated the extension of the baffles surrounding the secondary mirror, with the following reduction in detector optical loading from 2,24 pW to 188pW.

  5. Illumination normalization of face image based on illuminant direction estimation and improved Retinex.

    Science.gov (United States)

    Yi, Jizheng; Mao, Xia; Chen, Lijiang; Xue, Yuli; Rovetta, Alberto; Caleanu, Catalin-Daniel

    2015-01-01

    Illumination normalization of face image for face recognition and facial expression recognition is one of the most frequent and difficult problems in image processing. In order to obtain a face image with normal illumination, our method firstly divides the input face image into sixteen local regions and calculates the edge level percentage in each of them. Secondly, three local regions, which meet the requirements of lower complexity and larger average gray value, are selected to calculate the final illuminant direction according to the error function between the measured intensity and the calculated intensity, and the constraint function for an infinite light source model. After knowing the final illuminant direction of the input face image, the Retinex algorithm is improved from two aspects: (1) we optimize the surround function; (2) we intercept the values in both ends of histogram of face image, determine the range of gray levels, and stretch the range of gray levels into the dynamic range of display device. Finally, we achieve illumination normalization and get the final face image. Unlike previous illumination normalization approaches, the method proposed in this paper does not require any training step or any knowledge of 3D face and reflective surface model. The experimental results using extended Yale face database B and CMU-PIE show that our method achieves better normalization effect comparing with the existing techniques.

  6. Illumination normalization of face image based on illuminant direction estimation and improved Retinex.

    Directory of Open Access Journals (Sweden)

    Jizheng Yi

    Full Text Available Illumination normalization of face image for face recognition and facial expression recognition is one of the most frequent and difficult problems in image processing. In order to obtain a face image with normal illumination, our method firstly divides the input face image into sixteen local regions and calculates the edge level percentage in each of them. Secondly, three local regions, which meet the requirements of lower complexity and larger average gray value, are selected to calculate the final illuminant direction according to the error function between the measured intensity and the calculated intensity, and the constraint function for an infinite light source model. After knowing the final illuminant direction of the input face image, the Retinex algorithm is improved from two aspects: (1 we optimize the surround function; (2 we intercept the values in both ends of histogram of face image, determine the range of gray levels, and stretch the range of gray levels into the dynamic range of display device. Finally, we achieve illumination normalization and get the final face image. Unlike previous illumination normalization approaches, the method proposed in this paper does not require any training step or any knowledge of 3D face and reflective surface model. The experimental results using extended Yale face database B and CMU-PIE show that our method achieves better normalization effect comparing with the existing techniques.

  7. LED-pumped Alexandrite laser oscillator and amplifier

    Science.gov (United States)

    Pichon, Pierre; Blanchot, Jean-Philippe; Balembois, François; Druon, Frédéric; Georges, Patrick

    2018-02-01

    In this paper, we report the first LED-pumped transition-metal-doped laser oscillator and amplifier based on an alexandrite crystal (Cr3+:BeAl2O4). A Ce:YAG luminescent concentrator illuminated by blue LEDs is used to reach higher pump powers than with LEDs alone. The luminescent 200-mm-long-composit luminescent concentrator involving 2240 LEDs can delivers up to 268 mJ for a peak irradiance of 8.5 kW/cm2. In oscillator configuration, an LED-pumped alexandrite laser delivering an energy of 2.9 mJ at 748 nm in free running operation is demonstrated. In the cavity, we measured a double pass small signal gain of 1.28, in good agreement with numerical simulations. As amplifier, the system demonstrated to boost a CW Ti:sapphire laser by a factor of 4 at 750 nm in 8 passes with a large tuning range from 710 nm to 800 nm.

  8. Bridgeless SEPIC PFC Converter for Multistring LED Driver

    Science.gov (United States)

    Jha, Aman; Singh, Bhim

    2018-05-01

    This paper deals with Power Factor Correction (PFC) in Low Voltage High Current (LVHC) multi-string light emitting diode (LED) using a bridgeless (BL) single ended primary inductance converter (SEPIC). This application is designed for large area LED lighting with illumination control. A multi-mode LED dimming technique is used for the lighting control. The BL-SEPIC PFC converter is used as a load emulator for high power factor. The regulated low voltage from flyback converter is a source power to the synchronous buck converters for multi-string LED driver and forced cooling system for LED junction. The BL-SEPIC PFC converter inductor design is based on Discontinuous Inductor Current Modes (DICM) which provides good PFC at low cost. Test results are found quite satisfactory for universal input AC (90-265 V). There is significant improvement in the power factor and input current Total Harmonic Distortion (THD) with good margin of harmonic limits for lighting IEC 61000-3-2 Class C.

  9. Solar array experiments on the Sphinx satellite

    Science.gov (United States)

    Stevens, N. J.

    1973-01-01

    The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations; the edge illuminated-multijunction cells, the Teflon encased cells and the violet cells.

  10. Structured illumination microscopy and its new developments

    Directory of Open Access Journals (Sweden)

    Jianling Chen

    2016-05-01

    Full Text Available Optical microscopy allows us to observe the biological structures and processes within living cells. However, the spatial resolution of the optical microscopy is limited to about half of the wavelength by the light diffraction. Structured illumination microscopy (SIM, a type of new emerging super-resolution microscopy, doubles the spatial resolution by illuminating the specimen with a patterned light, and the sample and light source requirements of SIM are not as strict as the other super-resolution microscopy. In addition, SIM is easier to combine with the other imaging techniques to improve their imaging resolution, leading to the developments of diverse types of SIM. SIM has great potential to meet the various requirements of living cells imaging. Here, we review the recent developments of SIM and its combination with other imaging techniques.

  11. Fast linear method of illumination classification

    Science.gov (United States)

    Cooper, Ted J.; Baqai, Farhan A.

    2003-01-01

    We present a simple method for estimating the scene illuminant for images obtained by a Digital Still Camera (DSC). The proposed method utilizes basis vectors obtained from known memory color reflectance to identify the memory color objects in the image. Once the memory color pixels are identified, we use the ratios of the red/green and blue/green to determine the most likely illuminant in the image. The critical part of the method is to estimate the smallest set of basis vectors that closely represent the memory color reflectances. Basis vectors obtained from both Principal Component Analysis (PCA) and Independent Component Analysis (ICA) are used. We will show that only two ICA basis vectors are needed to get an acceptable estimate.

  12. Pulsed laser illumination of photovoltaic cells

    Science.gov (United States)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.

  13. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    The configuration of a tomographic array in which the object can rotate about its axis is described. The X-ray detector is a cylindrical screen perpendicular to the axis of rotation. The X-ray source has a line-shaped focus coinciding with the axis of rotation. The beam is fan-shaped with one side of this fan lying along the axis of rotation. The detector screen is placed inside an X-ray image multiplier tube

  14. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    A tomographic array with the following characteristics is described. An X-ray screen serving as detector is placed before a photomultiplier tube which itself is placed in front of a television camera connected to a set of image processors. The detector is concave towards the source and is replacable. Different images of the object are obtained simultaneously. Optical fibers and lenses are used for transmission within the system

  15. Alternative Packaging for Back-Illuminated Imagers

    Science.gov (United States)

    Pain, Bedabrata

    2009-01-01

    An alternative scheme has been conceived for packaging of silicon-based back-illuminated, back-side-thinned complementary metal oxide/semiconductor (CMOS) and charge-coupled-device image-detector integrated circuits, including an associated fabrication process. This scheme and process are complementary to those described in "Making a Back-Illuminated Imager With Back-Side Connections" (NPO-42839), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 38. To avoid misunderstanding, it should be noted that in the terminology of imaging integrated circuits, "front side" or "back side" does not necessarily refer to the side that, during operation, faces toward or away from a source of light or other object to be imaged. Instead, "front side" signifies that side of a semiconductor substrate upon which the pixel pattern and the associated semiconductor devices and metal conductor lines are initially formed during fabrication, and "back side" signifies the opposite side. If the imager is of the type called "back-illuminated," then the back side is the one that faces an object to be imaged. Initially, a back-illuminated, back-side-thinned image-detector is fabricated with its back side bonded to a silicon handle wafer. At a subsequent stage of fabrication, the front side is bonded to a glass wafer (for mechanical support) and the silicon handle wafer is etched away to expose the back side. The frontside integrated circuitry includes metal input/output contact pads, which are rendered inaccessible by the bonding of the front side to the glass wafer. Hence, one of the main problems is to make the input/output contact pads accessible from the back side, which is ultimately to be the side accessible to the external world. The present combination of an alternative packaging scheme and associated fabrication process constitute a solution of the problem.

  16. Downhole interferometric illumination diagnosis and balancing

    OpenAIRE

    Van der Neut, J.

    2012-01-01

    With seismic interferometry or the virtual source method, controlled sources can be redatumed from the Earth’s surface to generate so-called virtual sources at downhole receiver locations. Generally this is done by crosscorrelation of the recorded down-hole data and stacking over source locations. By studying the retrieved data at zero time lag, downhole illumination conditions that determine the virtual source radi- ation pattern can be analyzed without a velocity model. This can be benefici...

  17. Semiconductor lasers and herterojunction leds

    CERN Document Server

    Kressel, Henry

    2012-01-01

    Semiconductor Lasers and Heterojunction LEDs presents an introduction to the subject of semiconductor lasers and heterojunction LEDs. The book reviews relevant basic solid-state and electromagnetic principles; the relevant concepts in solid state physics; and the p-n junctions and heterojunctions. The text also describes stimulated emission and gain; the relevant concepts in electromagnetic field theory; and the modes in laser structures. The relation between electrical and optical properties of laser diodes; epitaxial technology; binary III-V compounds; and diode fabrication are also consider

  18. Universal fixture design for body mounted LED lights

    Science.gov (United States)

    Hajra, Debdyut

    2017-09-01

    Today LED headlamps, armbands and ankle-bands, shoe-lights etc. have become very popular. These find extensive use in search and rescue operations, mining, carving, etc. and are also used by individuals during hiking, trekking, running, etc. during dark hours. They serve two main purposes: they provide sufficient illumination in low light conditions and they are used to indicate the presence of a person after dark. These have the same basic requirements. They must produce sufficient light, have high durability, long battery life, must be light weight and energy efficient. This paper discusses possibilities of designing a universal LED fixture can be designed so that it meets the respective needs of everyone irrespective of their background and industry. It discusses the materials to be used for its different body parts, innovative clip design for attachment with support structures like head and armbands, helmets, shoes, etc.

  19. Bessel light sheet structured illumination microscopy

    Science.gov (United States)

    Noshirvani Allahabadi, Golchehr

    Biomedical study researchers using animals to model disease and treatment need fast, deep, noninvasive, and inexpensive multi-channel imaging methods. Traditional fluorescence microscopy meets those criteria to an extent. Specifically, two-photon and confocal microscopy, the two most commonly used methods, are limited in penetration depth, cost, resolution, and field of view. In addition, two-photon microscopy has limited ability in multi-channel imaging. Light sheet microscopy, a fast developing 3D fluorescence imaging method, offers attractive advantages over traditional two-photon and confocal microscopy. Light sheet microscopy is much more applicable for in vivo 3D time-lapsed imaging, owing to its selective illumination of tissue layer, superior speed, low light exposure, high penetration depth, and low levels of photobleaching. However, standard light sheet microscopy using Gaussian beam excitation has two main disadvantages: 1) the field of view (FOV) of light sheet microscopy is limited by the depth of focus of the Gaussian beam. 2) Light-sheet images can be degraded by scattering, which limits the penetration of the excitation beam and blurs emission images in deep tissue layers. While two-sided sheet illumination, which doubles the field of view by illuminating the sample from opposite sides, offers a potential solution, the technique adds complexity and cost to the imaging system. We investigate a new technique to address these limitations: Bessel light sheet microscopy in combination with incoherent nonlinear Structured Illumination Microscopy (SIM). Results demonstrate that, at visible wavelengths, Bessel excitation penetrates up to 250 microns deep in the scattering media with single-side illumination. Bessel light sheet microscope achieves confocal level resolution at a lateral resolution of 0.3 micron and an axial resolution of 1 micron. Incoherent nonlinear SIM further reduces the diffused background in Bessel light sheet images, resulting in

  20. White LED motorcycle headlamp design

    Science.gov (United States)

    Sun, Wen-Shing

    2015-09-01

    The motorcycle headlamp is composed of a white LED module, an elliptical reflector, a parabolic reflector and a toric lens. We use non-sequential ray to improve the optical efficiency of the compound reflectors. Using the toric lens can meet ECE_113 regulation and obtain a good uniformity.

  1. Architecture-Led Safety Process

    Science.gov (United States)

    2016-12-01

    Contents Acknowledgments iv Abstract v 1 Introduction 1 2 Architecture -Led Processes and ALSA 2 3 ALSA Practices 5 3.1 Example System 8 4 Identify... Architecture Models 13 5 Identify Operational Hazards and Hazard Contributors 15 5.1 System Partitioning 15 5.2 Operational Context as a Control

  2. LED licht van de toekomst

    NARCIS (Netherlands)

    Zeiler, W.

    2009-01-01

    De gloeilamp is verleden tijd, na ongeveer 125 jaar na de ontdekking door Thomas Edison valt langzaam maar zeker binnen een decennium het doek. Australië heeft de klassieke gloeilamp al in de ban gedaan en vele landen volgen deze trend. De rol van de klassieke gloeilamp wordt overgenomen door LED.

  3. Solution of multi-element LED light sources development automation problem

    Science.gov (United States)

    Chertov, Aleksandr N.; Gorbunova, Elena V.; Korotaev, Valery V.; Peretyagin, Vladimir S.

    2014-09-01

    The intensive development of LED technologies resulted in the creation of multicomponent light sources in the form of controlled illumination devices based on usage of mentioned LED technologies. These light sources are used in different areas of production (for example, in the food industry for sorting products or in the textile industry for quality control, etc.). The use of LED lighting products in the devices used in specialized lighting, became possible due to wide range of colors of light, LED structures (which determines the direction of radiation, the spatial distribution and intensity of the radiation, electrical, heat, power and other characteristics), and of course, the possibility of obtaining any shade in a wide dynamic range of brightness values. LED-based lighting devices are notable for the diversity of parameters and characteristics, such as color radiation, location and number of emitters, etc. Although LED technologies have several advantages, however, they require more attention if you need to ensure a certain character of illumination distribution and/or distribution of the color picture at a predetermined distance (for example, at flat surface, work zone, area of analysis or observation). This paper presents software designed for the development of the multicomponent LED light sources. The possibility of obtaining the desired color and energy distribution at the zone of analysis by specifying the spatial parameters of the created multicomponent light source and using of real power, spectral and color parameters and characteristics of the LEDs is shown as well.

  4. Photoconductivity of Germanium Nanowire Arrays Incorporated in Anodic Aluminum Oxide

    International Nuclear Information System (INIS)

    Polyakov, B; Prikulis, J; Grigorjeva, L; Millers, D; Daly, B; Holmes, J D; Erts, D

    2007-01-01

    Photoconductivity of germanium nanowire arrays of 50 and 100 nm diameter incorporated into Anodic Aluminum Oxide (AAO) membranes illuminated with visible light is investigated. Photocurrent response to excitation radiation with time constants faster than 10 -4 s were governed by absorption of incident light by nanowires, while photokinetics with time constants of the order of 10 -3 s originates from the photoluminescence of the AAO matrix. Possible applications of nanowire arrays inside AAO as photoresistors are discussed

  5. LED lamp color control system and method

    Science.gov (United States)

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A.M.

    2013-02-05

    An LED lamp color control system and method including an LED lamp having an LED controller 58; and a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 determines whether the LED source 80 is in a feedback controllable range, stores measured optical flux for the LED source 80 when the LED source 80 is in the feedback controllable range, and bypasses storing the measured optical flux when the LED source 80 is not in the feedback controllable range.

  6. LED lamp power management system and method

    Science.gov (United States)

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A. M.

    2013-03-19

    An LED lamp power management system and method including an LED lamp having an LED controller 58; a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 reduces power loss in one of the channel switch 62 and the shunt switch 68 when LED lamp electronics power loss (P.sub.loss) exceeds an LED lamp electronics power loss limit (P.sub.lim); and each of the channel switches 62 receives a channel switch control signal 63 from the LED controller 58 and each of the shunt switches 68 receives a shunt switch control signal 69 from the LED controller 58.

  7. Qualification, monitoring, and integration into a production environment of the world's first fully programmable illuminator

    Science.gov (United States)

    McIntyre, Gregory; Corliss, Daniel; Groenendijk, Remco; Carpaij, Rene; van Niftrik, Ton; Landie, Guillaume; Tamura, Takao; Pepin, Thomas; Waddell, James; Woods, Jerry; Robinson, Chris; Tian, Kehan; Johnson, Richard; Halle, Scott; Kim, Ryoung-Han; Mclellan, Erin; Kato, Hirokazu; Scaduto, Anthony; Maier, Carl; Colburn, Matt

    2011-04-01

    This paper will describe the development, qualification, monitoring, and integration into a production environment of the world's first fully programmable illuminator for optical lithography. FlexRay TM, a programmable illuminator based on a MEMs multi-mirror array that was developed for TWINSCAN XT:19x0i and TWINSCAN NXT series ASML immersion scanners, was first installed in January 2010 at Albany Nanotech, with subsequent tools installed in IBM's East Fishkill Manufacturing facility. After a brief overview of the concept and benefits of FlexRay, this paper will provide a comprehensive assessment of its reliability and imaging performance. A CD-based pupil qualification (CDPQ) procedure will be introduced and shown to be an efficient and effective way to monitor pupil performance. Various CDPQ and in-resist measurement results will be described, offering convincing evidence that FlexRay reliably generates high-quality pupils and is well suited for high volume manufacturing at lithography's leading edge.

  8. Ultra Deep Wave Equation Imaging and Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Alexander M. Popovici; Sergey Fomel; Paul Sava; Sean Crawley; Yining Li; Cristian Lupascu

    2006-09-30

    In this project we developed and tested a novel technology, designed to enhance seismic resolution and imaging of ultra-deep complex geologic structures by using state-of-the-art wave-equation depth migration and wave-equation velocity model building technology for deeper data penetration and recovery, steeper dip and ultra-deep structure imaging, accurate velocity estimation for imaging and pore pressure prediction and accurate illumination and amplitude processing for extending the AVO prediction window. Ultra-deep wave-equation imaging provides greater resolution and accuracy under complex geologic structures where energy multipathing occurs, than what can be accomplished today with standard imaging technology. The objective of the research effort was to examine the feasibility of imaging ultra-deep structures onshore and offshore, by using (1) wave-equation migration, (2) angle-gathers velocity model building, and (3) wave-equation illumination and amplitude compensation. The effort consisted of answering critical technical questions that determine the feasibility of the proposed methodology, testing the theory on synthetic data, and finally applying the technology for imaging ultra-deep real data. Some of the questions answered by this research addressed: (1) the handling of true amplitudes in the downward continuation and imaging algorithm and the preservation of the amplitude with offset or amplitude with angle information required for AVO studies, (2) the effect of several imaging conditions on amplitudes, (3) non-elastic attenuation and approaches for recovering the amplitude and frequency, (4) the effect of aperture and illumination on imaging steep dips and on discriminating the velocities in the ultra-deep structures. All these effects were incorporated in the final imaging step of a real data set acquired specifically to address ultra-deep imaging issues, with large offsets (12,500 m) and long recording time (20 s).

  9. Celebrity-led development organisations

    DEFF Research Database (Denmark)

    Budabin, Alexandra Cosima; Rasmussen, Louise Mubanda; Richey, Lisa Ann

    2017-01-01

    The past decade has seen a frontier open up in international development engagement with the entrance of new actors such as celebrity-led organisations. We explore how such organisations earn legitimacy with a focus on Madonna’s Raising Malawi and Ben Affleck’s Eastern Congo Initiative. The study...... for funding, endorsements, and expertise. We argue that the ways in which celebrity-led organisations establish themselves as legitimate development actors illustrate broader dynamics of the machinery of development.......The past decade has seen a frontier open up in international development engagement with the entrance of new actors such as celebrity-led organisations. We explore how such organisations earn legitimacy with a focus on Madonna’s Raising Malawi and Ben Affleck’s Eastern Congo Initiative. The study...... draws from organisational materials, interviews, mainstream news coverage, and the texts of the celebrities themselves to investigate the construction of authenticity, credibility, and accountability. We find these organisations earn legitimacy and flourish rapidly amid supportive elite networks...

  10. Low light illumination study on commercially available homojunction photovoltaic cells

    International Nuclear Information System (INIS)

    Russo, Johnny; Ray, William; Litz, Marc S.

    2017-01-01

    Highlights: • COTS PV cells are tested under indoor and narrow light spectra. • InGaP is the most efficient under low light conditions (0.5–100 μW_o_p_t/cm"2). • InGaP is selected for isotope battery. • Optimal incident wavelength (614 nm) for InGaP is identified in model. - Abstract: Low illumination (10"−"4 suns) and indoor light energy harvesting is needed to meet the demands of zero net energy (ZNE) building, Internet of Things (IoT), and beta-photovoltaic energy harvesting systems to power remote sensors. Photovoltaic (PV) solar cells under low intensity and narrow (±40 nm) light spectrum conditions are not well characterized nor developed, especially for commercially available devices and scalable systems. PV operating characteristics under 1 sun illumination decrease at lower light intensity and narrow spectrum conditions (efficiency drops from ∼25% at 100 mW_o_p_t/cm"2 to 2% at 1 μW_o_p_t/cm"2). By choosing a PV with a bandgap that matches the light source operating wavelength, the total system efficiency can be improved. By quantifying losses on homojunction photovoltaics (thermalization and leakage current), we have determined the theoretical optimized efficiency for a set of PV material and a selected set of light sources. We measure single-junction solar cells’ parameters under three different light sources (indoor light and narrow spectrum LED sources) with light intensities ranging from 0.5 to 100 μW_o_p_t/cm"2. Measurements show that indium gallium phosphide (InGaP) PV has the highest surface power density and conversion efficiency (29% under ≈1 μW_o_p_t/cm"2 from a 523 nm central peak LED). A beta-photovoltaic experimental study identifies InGaP to be optimized for use with the ZnS:Cu, Al and tritium at STP. The results have guided the selection of PV material for scalable isotope batteries and other low-light energy harvesting systems.

  11. Hybrid illumination systems for a brigth future

    DEFF Research Database (Denmark)

    Bjarklev, Araceli

    Problem to be adressed: Even with the implementation of the Eco-design directive (2005/32/EC) it is projected that the 20% energy reduction goal will not be reached in 2020. as a matter of fact, the electricity consumption in the illumination sector will not be changed from the levels of cosnsump...... of an interdisciplinary group, we aim to make a prototype of a test system. for this we will merge Solid State and Fiber optic technologies. The overall project will be assessed under  the viewpoints of environmental, socio-economic and esthetical parameters...

  12. Light engine for an illumination device

    DEFF Research Database (Denmark)

    2015-01-01

    Disclosed herein are embodiments of a light engine for an illumination device, the light engine defining an output gate and being configured to output light from said output gate; wherein the light engine comprises: one or more light sources defining a light-emitting area; a concave reflector con...... configured to receive light from the light-emitting area and to direct light from respective portions of the light-emitting area to form a converging beam that converges towards a beam spot at the output gate....

  13. Nonimaging reflectors for efficient uniform illumination.

    Science.gov (United States)

    Gordon, J M; Kashin, P; Rabl, A

    1992-10-01

    Nonimaging reflectors that are an extension of the design principle that was developed for compound parabolic concentrator type devices are proposed for illumination applications. The optical designs presented offer maximal lighting efficiency while they retain sharp angular control of the radiation and highly uniform flux densities on distant target planes. Our results are presented for symmetrical configurations in two dimensions (troughlike reflectors) for flat and for tubular sources. For fields of view of practical interest (half-angle in the 30-60 degrees range), these devices can achieve minimum-tomaximum intensity ratios of 0.7, while they remain compact and incur low reflective losses.

  14. How to make illuminating type poster

    International Nuclear Information System (INIS)

    Kim, Yong Sun; Kang, Duk Sik

    1986-01-01

    Illuminating type poster looks very impressive and one may feel as if it were on the view box in his reading room. Some difficulties and nuisances really exist in making them and a few of demerits can also be encountered that of contrast enhancement and of rough graininess. Contact print renders the best quality, though, Kodak Technical-Pan film with HC-100 (Dil. F) developer, llford XP 1-400 with Kodak C-41 color developer and Kodak Plus-X with Microdiol-X developer combinations also work in minimizing the deterioration of resolution and grains which can almost always occur in enlargement prints.

  15. Nano-scale measurement of sub-micrometer MEMS in-plane dynamics using synchronized illumination

    International Nuclear Information System (INIS)

    Warnat, S; Forbrigger, C; Kujath, M; Hubbard, T

    2015-01-01

    A method for measuring the sub-micrometer in-plane dynamics of MEMS devices with nano-scale precision using a CCD camera and synchronized pulsating illumination is presented. Typical MEMS actuators have fast responses (generally in the 1–200 kHz range), much faster than typical cameras which record a time averaged motion. Under constant illumination the average displacement is steady state and independent of dynamic amplitude or phase. Methods such as strobe illumination use short light pulses to freeze the motion. This paper develops the use of longer pulses of illumination that do not freeze the image, but make the average displacement depend on dynamic amplitude and phase; thus allowing both properties to be extracted. The expected signal is derived as a function of light pulse width and delay, and short versus longer pulses are compared. Measurements using a conventional microscope with replacement of the lamp with LEDs confirmed the derived equations. The system was used to measure sub-micrometer motion of MEMS actuators with ∼5 nm precision. The time constant of a thermal actuator was measured and found to be 48 µs. A resonant peak of a MEMS device was measured at 123.30 kHz with an amplitude of 238 nm. (paper)

  16. LED-based UV source for monitoring spectroradiometer properties

    Science.gov (United States)

    Sildoja, Meelis-Mait; Nevas, Saulius; Kouremeti, Natalia; Gröbner, Julian; Pape, Sven; Pendsa, Stefan; Sperfeld, Peter; Kemus, Fabian

    2018-06-01

    A compact and stable UV monitoring source based on state-of-the-art commercially available ultraviolet light emitting diodes (UV-LEDs) has been developed. It is designed to trace the radiometric stability—both responsivity and wavelength scale—of array spectroradiometers measuring direct solar irradiance in the wavelength range between 300 nm and 400 nm. The spectral irradiance stability of the UV-LED-based light source observed in the laboratory after seasoning (burning-in) the individual LEDs was better than 0.3% over a 12 h period of continuous operation. The integral irradiance measurements of the source over a period of several months, where the UV-LED source was not operated continuously between the measurements, showed stability within 0.3%. In-field measurements of the source with an array spectroradiometer indicated the stability of the source to be within the standard uncertainty of the spectroradiometer calibration, which was within 1% to 2%.

  17. Illumination estimation via thin-plate spline interpolation.

    Science.gov (United States)

    Shi, Lilong; Xiong, Weihua; Funt, Brian

    2011-05-01

    Thin-plate spline interpolation is used to interpolate the chromaticity of the color of the incident scene illumination across a training set of images. Given the image of a scene under unknown illumination, the chromaticity of the scene illumination can be found from the interpolated function. The resulting illumination-estimation method can be used to provide color constancy under changing illumination conditions and automatic white balancing for digital cameras. A thin-plate spline interpolates over a nonuniformly sampled input space, which in this case is a training set of image thumbnails and associated illumination chromaticities. To reduce the size of the training set, incremental k medians are applied. Tests on real images demonstrate that the thin-plate spline method can estimate the color of the incident illumination quite accurately, and the proposed training set pruning significantly decreases the computation.

  18. Active illumination and appearance model for face alignment

    DEFF Research Database (Denmark)

    Kahraman, Fatih; Gokmen, M.; Darkner, Sune

    2010-01-01

    Illumination conditions have an explicit effect on the performance of face recognition systems. In particular, varying the illumination upon the face imposes such, complex effects that the identification often fails to provide a stable performance level. In this paper, we propose an approach......, integrating face identity and illumination models in order to reach acceptable and stable face recognition rates. For this purpose, Active Appearance Model (A AM) and illumination model of faces are combined in order to obtain an illumination invariant face localization. The proposed method is an integrated......, is sufficient. There is no need to build complex models for illumination. As a result, this paper has presented a simple and efficient method for face modeling and face alignment in order to increase the performance of face localization by means of the proposed illumination invariant AIA method for face...

  19. Plasmonic Nanocone Arrays as Photoconductive and Photovoltaic Metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Babicheva, Viktoriia; Evlyuknin, Andrey B.

    2014-01-01

    Photoconductive and photovolta ic properties of metamaterials comprising plasmonic nanocone arrays embedded in a semiconductor matrix are studied. Under uniform plane-wave illumination, directed photocurrent and electromotive force arise ne ar asymmetrically shaped nanocones. The resulting giant...... photogalvanic effect is a plasmonic analogue of the bulk photovoltaic effect in ferroelectrics....

  20. Testing a high-power LED based light source for hyperspectral imaging microscopy

    Science.gov (United States)

    Klomkaew, Phiwat; Mayes, Sam A.; Rich, Thomas C.; Leavesley, Silas J.

    2017-02-01

    Our lab has worked to develop high-speed hyperspectral imaging systems that scan the fluorescence excitation spectrum for biomedical imaging applications. Hyperspectral imaging can be used in remote sensing, medical imaging, reaction analysis, and other applications. Here, we describe the development of a hyperspectral imaging system that comprised an inverted Nikon Eclipse microscope, sCMOS camera, and a custom light source that utilized a series of high-power LEDs. LED selection was performed to achieve wavelengths of 350-590 nm. To reduce scattering, LEDs with low viewing angles were selected. LEDs were surface-mount soldered and powered by an RCD. We utilized 3D printed mounting brackets to assemble all circuit components. Spectraradiometric calibration was performed using a spectrometer (QE65000, Ocean Optics) and integrating sphere (FOIS-1, Ocean Optics). Optical output and LED driving current were measured over a range of illumination intensities. A normalization algorithm was used to calibrate and optimize the intensity of the light source. The highest illumination power was at 375 nm (3300 mW/cm2), while the lowest illumination power was at 515, 525, and 590 nm (5200 mW/cm2). Comparing the intensities supplied by each LED to the intensities measured at the microscope stage, we found there was a great loss in power output. Future work will focus on using two of the same LEDs to double the power and finding more LED and/or laser diodes and chips around the range. This custom hyperspectral imaging system could be used for the detection of cancer and the identification of biomolecules.

  1. THE PHOTODYNAMIC EFFECT OF LED-MAGNETIC EXPOSURE TO PHOTOINACTIVATION OF AEROBIC PHOTOSYNTETIC BACTERIA

    Directory of Open Access Journals (Sweden)

    Suryani Dyah Astuti

    2014-01-01

    Full Text Available All photosynthetic bacteria have a major pigment of bacteriochlorophyl and accessor pigment e.g. the carotenoids, which both have an important role in photosynthesis process. This study aim to explore the exogenous organic photosensitizer from photosyntetic bacteria for photodynamic therapy application. This study is an experimental research aiming to test the potential illumination ofLED with wavelength 409, 430, 528 and 629 nm, and power optimization and time exposure LED-magnetic for optimum photo activation Rhodococcus growth. The reseach design use a factorial completely randomized design with factor ofpower and exposure time. The number ofbacterial colonies grown measure using ofTotal Plate Count (TPC methods. The result ofanova test shows that irradiation treatment with LED 409 nm, 430 nm, 528 nm and 629 nm significantly affects on bacterial colony growth. LED 409 nm exposure has the greatest potential to boost the growth ofbacterial colonies by 77%. LED exposure and the addition of1.8 mT magnetic field increases bacterial colony growth by 98%. Results of optimization of LED and magnetic fields show power 46 mW and a 40 minute (energy dose 110 J/cm2 optimum growth ofbacterial colonies increase by 184%. So LED and magnetic illumination has potentially increased the viability ofan aerob photosyntetic bacteria colonies.

  2. Metabolism of tRNAs in growing cells of Escherichia coli illuminated with near-ultraviolet light

    International Nuclear Information System (INIS)

    Hajnsdorf, E.; Favre, A.

    1986-01-01

    The tRNA metabolism which accompanies illumination of growing E. coli cells has been examined in conditions that led to growth delay. The in vivo formation of the 8-13 link was followed by a fluorimetric procedure and revealed pseudo-first order kinetics very close to those obtained in vitro under the same illumination conditions. Comparison of these kinetics with published radiochromatographic data suggests the transient formation during illumination of a new RNase-T 2 -resistant dinucleotide in tRNA distinct from the 8-13 link. Under illumination some tRNA molecules lack one or more bases in a specific position in the sequence. During the growth lag, uracil incorporation into nucleic acids occurs at between 4-8% of the rate normally observed during exponential growth. However, the pyrimidine ribonucleoside triphosphate pools are strongly perturbed after illumination. Comparison of exogenous [ 3 H]uracil incorporation into two strains proficient or deficient in uracil biosynthesis suggests a derepression of the endogenous path after light treatment. In addition, the UTP-to-CTP conversion is inhibited. In spite of preferential incorporation of exogenously labelled uracil in tRNA after illumination, a possible pyrimidine base turnover cannot be proved. (author)

  3. InGaN/GaN Nanowire LEDs and Lasers

    KAUST Repository

    Zhao, Chao

    2016-01-01

    The large specific surface, and the associated high density of surface states was found to limit the light output power and quantum efficiency of nanowire-array devices, despite their potential for addressing the “green-gap” and efficiency-droop issues. The phonon and carrier confinement in nanowires also led to junction heating, and reduced heat dissipation. In this paper, we will present our studies on effective surface states passivation in InGaN/GaN quantum-disks (Qdisks)-in-nanowire light-emitting diodes (LEDs) and lasers grown on silicon (Si), as well as our recent work on nanowires LEDs grown on bulk-metal, a non-conventional substrate.

  4. Gaussian Hypothesis Testing and Quantum Illumination.

    Science.gov (United States)

    Wilde, Mark M; Tomamichel, Marco; Lloyd, Seth; Berta, Mario

    2017-09-22

    Quantum hypothesis testing is one of the most basic tasks in quantum information theory and has fundamental links with quantum communication and estimation theory. In this paper, we establish a formula that characterizes the decay rate of the minimal type-II error probability in a quantum hypothesis test of two Gaussian states given a fixed constraint on the type-I error probability. This formula is a direct function of the mean vectors and covariance matrices of the quantum Gaussian states in question. We give an application to quantum illumination, which is the task of determining whether there is a low-reflectivity object embedded in a target region with a bright thermal-noise bath. For the asymmetric-error setting, we find that a quantum illumination transmitter can achieve an error probability exponent stronger than a coherent-state transmitter of the same mean photon number, and furthermore, that it requires far fewer trials to do so. This occurs when the background thermal noise is either low or bright, which means that a quantum advantage is even easier to witness than in the symmetric-error setting because it occurs for a larger range of parameters. Going forward from here, we expect our formula to have applications in settings well beyond those considered in this paper, especially to quantum communication tasks involving quantum Gaussian channels.

  5. Multiscale Pigment Analysis of Medieval Illuminated Manuscripts

    Science.gov (United States)

    Sestak, Erica; Manukyan, Khachatur; Wiescher, Michael; Gura, David

    2017-09-01

    Three medieval illuminated manuscripts (codd. Lat. b. 1; Lat. b. 2; Lat. e. 4), housed at the University of Notre Dame's Hesburgh Library, vary in style, pigments, scribes, and regions, despite all three being Psalters used in the Late Middle Ages. XRF and Raman spectroscopy, which provided the elemental and molecular composition of the pigments, respectively, were used to analyze the pigments' compositions in an attempt to narrow further the manuscripts' possible origins. This experimental investigation emphasizes the importance of understanding the history of the manuscript through their pigments. Codd. Lat. b. 1 and Lat. b. 2 are Latinate German Psalters from the fifteenth century likely used in Katharinenkloster in Nuremberg. While there are visible differences in style within each Psalter, the variations in some of the pigment compositions, such as the inconstant presence of zinc, suggest different admixtures. Cod. Lat. e. 4 is a Latinate English Psalter from the fourteenth century, and it was written by two scribes and illuminated by two distinct painters. It is currently being tested to determine whether there are any correlations between the scribes and painters. These physical analyses will clarify the origins and provenances of the manuscripts.

  6. Effects of nocturnal illumination on life-history decisions and fitness in two wild songbird species.

    Science.gov (United States)

    de Jong, Maaike; Ouyang, Jenny Q; Da Silva, Arnaud; van Grunsven, Roy H A; Kempenaers, Bart; Visser, Marcel E; Spoelstra, Kamiel

    2015-05-05

    The effects of artificial night lighting on animal behaviour and fitness are largely unknown. Most studies report short-term consequences in locations that are also exposed to other anthropogenic disturbance. We know little about how the effects of nocturnal illumination vary with different light colour compositions. This is increasingly relevant as the use of LED lights becomes more common, and LED light colour composition can be easily adjusted. We experimentally illuminated previously dark natural habitat with white, green and red light, and measured the effects on life-history decisions and fitness in two free-living songbird species, the great tit (Parus major) and pied flycatcher (Ficedula hypoleuca) in two consecutive years. In 2013, but not in 2014, we found an effect of light treatment on lay date, and of the interaction of treatment and distance to the nearest lamp post on chick mass in great tits but not in pied flycatchers. We did not find an effect in either species of light treatment on breeding densities, clutch size, probability of brood failure, number of fledglings and adult survival. The finding that light colour may have differential effects opens up the possibility to mitigate negative ecological effects of nocturnal illumination by using different light spectra. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Illuminating Chaucer through Poetry, Manuscript Illuminations, and a Critical Rap Album

    Science.gov (United States)

    Lynch, Tom Liam

    2007-01-01

    Drawing connections between Chaucer, Eminem, and social issues, New York City high school teacher Tom Liam Lynch helped students become familiar with "The Canterbury Tales." Students wrote poems of rhymed couplets about today's social and political issues, created illuminated manuscripts, and recorded a rap CD. A book and album were…

  8. Optical performance of prototype horn-coupled TES bolometer arrays for SAFARI

    Science.gov (United States)

    Audley, Michael D.; de Lange, Gert; Gao, Jian-Rong; Khosropanah, Pourya; Hijmering, Richard; Ridder, Marcel L.

    2016-07-01

    The SAFARI Detector Test Facility is an ultra-low background optical testbed for characterizing ultra-sensitive prototype horn-coupled TES bolmeters for SAFARI, the grating spectrometer on board the proposed SPICA satellite. The testbed contains internal cold and hot black-body illuminators and a light-pipe for illumination with an external source. We have added reimaging optics to facilitate array optical measurements. The system is now being used for optical testing of prototype detector arrays read out with frequency-domain multiplexing. We present our latest optical measurements of prototype arrays and discuss these in terms of the instrument performance.

  9. High-efficiency perovskite solar cells based on anatase TiO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yan, E-mail: huangyan@ecust.edu.cn [School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237 (China); Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Wu, Jiamin; Gao, Di [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2016-01-01

    Perovskite solar cells (PSCs) based on one-dimensional anatase TiO{sub 2} nanotube arrays were prepared by using a two-step deposition method to fill the arrays of TiO{sub 2} nanotubes in different lengths with perovskite. The photovoltaic performance of PSCs was found to be significantly dependent on the length of the TiO{sub 2} nanotubes, and the power conversion efficiency decreased as the length of the TiO{sub 2} nanotubes increased from ~ 0.40 μm to ~ 0.65 and then to ~ 0.93 μm. The PSC fabricated with ~ 0.40 μm-long anatase TiO{sub 2} nanotube arrays yielded a power conversion efficiency of 11.3% and a fill factor of 0.68 under illumination of 100 mW/cm{sup 2} AM 1.5G simulated sunlight, which is significantly higher than previously reported solar cells based on 1-D TiO{sub 2} nanostructures. Incident photon-to-current efficiency and electrochemical impedance spectroscopy measurements indicated that longer TiO{sub 2} nanotubes led to higher recombination losses of charge carriers, possibly due to poor filling of the nanotube arrays with perovskite. - Highlights: • 1D anatase TiO{sub 2} nanotubes were used to fabricate perovskite solar cells. • The best efficiency of 11.3% was achieved with ~ 0.40 μm-long TiO{sub 2} nanotubes. • The efficiency of the devices decreased with increasing TiO{sub 2} nanotube lengths.

  10. A transmitting antenna with hexagon illumination shape for four-color VLC

    Science.gov (United States)

    Liu, Kexin; Zhang, Lijun; Hu, Shanshan; Xing, Jichuan; Li, Ping'an

    2018-01-01

    This paper demonstrated a compact white light transmitting antenna based on four-color VLC system, which included an integrating rod and a Fresnel lens system. This paper mainly analyzed the homogenizer: the hexagon integrating rod. After simulation and optimizing, the size of this rod is designed as 60mm (length) x 4.35mm (D). As a result of experiments, this antenna which mixes RGBY-LEDs' beam into white light with high uniformity (67.18%), and illuminate the area of 0.75m x 0.75m at 1.77m transmission distance. The color temperature of the detection surface is 5583K, the chromatic aberration is 0.0021, compared with light source E of standard illumination, less than eye solution (0.005). Also, we verified that this antenna could ensure a stable SNR in mobile communication.

  11. Implementation and Test of a LED-Based Lamp for a Lighthouse

    Directory of Open Access Journals (Sweden)

    Luca Mercatelli

    2014-01-01

    Full Text Available A novel sustainable source was developed for an existing Italian lighthouse, exploiting the light emitting diode (LED technology and the norms evolution. The research work started with the optical design of the device, while this work concerns the realization, installation, and test of the new LED lamp. The lamp recombines multiple separated LEDs, realizing a quasipunctual localized source. After installation in the lighthouse, specific photometric tests verified that the proposed power-saving source satisfied the illumination requirements of the marine signaling norms. The advantages of the LED-based lamp are reduced energy consumption, enhanced efficiency, longer life, decreased faults, slower aging, and lower maintenance costs. The obtained LED signalling device is more durable and reliable. In the future the application of these power-saving long-life sources could be extended to other maritime signaling devices or to other traffic signs.

  12. Crossed BiOI flake array solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kewei; Jia, Falong; Zhang, Lizhi [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan (China); Zheng, Zhi [Institute of Surface Micro and Nano Materials, Xuchang University (China)

    2010-12-15

    We report a new kind of solar cell based on crossed flake-like BiOI arrays for the first time. The BiOI flake arrays were fabricated on an FTO glass with a TiO{sub 2} block layer at room temperature by successive ionic layer adsorption and reaction (SILAR) method. The resulting BiOI flake array solar cell exhibited enhanced photovoltaic performance under solar illumination. This work provides an attractive and new solar cell system and a facile route to fabricate low cost and non-toxic solar cell. (author)

  13. Carrier illumination measurement of dopant lateral diffusion

    International Nuclear Information System (INIS)

    Budiarto, E.; Segovia, M.; Borden, P.; Felch, S.

    2005-01-01

    This paper describes the application of the carrier illumination technique to non-destructively measure the lateral diffusion of implanted dopants after annealing. Experiments to validate the feasibility of this method employed test structures with a constant line width of 300 nm and varying undoped spaces of 100-5000 nm. The test patterns were implanted with a p-type dopant and annealed in a 3 x 3 matrix. For each implant condition, the measured lateral diffusion was found to increase with annealing temperature, as expected. More interestingly, the lateral diffusion was not observed to relate to the vertical diffusion by a fixed proportionality factor, as is usually assumed. The ratio of lateral to vertical diffusion varies with annealing temperature, with a trend that depends on the implant condition

  14. Illuminating magma shearing processes via synchrotron imaging

    Science.gov (United States)

    Lavallée, Yan; Cai, Biao; Coats, Rebecca; Kendrick, Jackie E.; von Aulock, Felix W.; Wallace, Paul A.; Le Gall, Nolwenn; Godinho, Jose; Dobson, Katherine; Atwood, Robert; Holness, Marian; Lee, Peter D.

    2017-04-01

    Our understanding of geomaterial behaviour and processes has long fallen short due to inaccessibility into material as "something" happens. In volcanology, research strategies have increasingly sought to illuminate the subsurface of materials at all scales, from the use of muon tomography to image the inside of volcanoes to the use of seismic tomography to image magmatic bodies in the crust, and most recently, we have added synchrotron-based x-ray tomography to image the inside of material as we test it under controlled conditions. Here, we will explore some of the novel findings made on the evolution of magma during shearing. These will include observations and discussions of magma flow and failure as well as petrological reaction kinetics.

  15. Multiple Illuminant Colour Estimation via Statistical Inference on Factor Graphs.

    Science.gov (United States)

    Mutimbu, Lawrence; Robles-Kelly, Antonio

    2016-08-31

    This paper presents a method to recover a spatially varying illuminant colour estimate from scenes lit by multiple light sources. Starting with the image formation process, we formulate the illuminant recovery problem in a statistically datadriven setting. To do this, we use a factor graph defined across the scale space of the input image. In the graph, we utilise a set of illuminant prototypes computed using a data driven approach. As a result, our method delivers a pixelwise illuminant colour estimate being devoid of libraries or user input. The use of a factor graph also allows for the illuminant estimates to be recovered making use of a maximum a posteriori (MAP) inference process. Moreover, we compute the probability marginals by performing a Delaunay triangulation on our factor graph. We illustrate the utility of our method for pixelwise illuminant colour recovery on widely available datasets and compare against a number of alternatives. We also show sample colour correction results on real-world images.

  16. Estimation of crosstalk in LED fNIRS by photon propagation Monte Carlo simulation

    Science.gov (United States)

    Iwano, Takayuki; Umeyama, Shinji

    2015-12-01

    fNIRS (functional near-Infrared spectroscopy) can measure brain activity non-invasively and has advantages such as low cost and portability. While the conventional fNIRS has used laser light, LED light fNIRS is recently becoming common in use. Using LED for fNIRS, equipment can be more inexpensive and more portable. LED light, however, has a wider illumination spectrum than laser light, which may change crosstalk between the calculated concentration change of oxygenated and deoxygenated hemoglobins. The crosstalk is caused by difference in light path length in the head tissues depending on wavelengths used. We conducted Monte Carlo simulations of photon propagation in the tissue layers of head (scalp, skull, CSF, gray matter, and white matter) to estimate the light path length in each layers. Based on the estimated path lengths, the crosstalk in fNIRS using LED light was calculated. Our results showed that LED light more increases the crosstalk than laser light does when certain combinations of wavelengths were adopted. Even in such cases, the crosstalk increased by using LED light can be effectively suppressed by replacing the value of extinction coefficients used in the hemoglobin calculation to their weighted average over illumination spectrum.

  17. LED-Based High-Voltage Lines Warning System

    Directory of Open Access Journals (Sweden)

    Eldar MUSA

    2013-04-01

    Full Text Available LED-based system, running with the current of high-voltage lines and converting the current flowing through the line into the light by using a toroid transformer, has been developed. The transformer’s primary winding is constituted by the high voltage power line. Toroidal core consists of two equal parts and the secondary windings are evenly placed on these two parts. The system is mounted on the high-voltage lines as a clamp. The secondary winding ends are connected in series by the connector on the clamp. LEDs are supplied by the voltage at the ends of secondary. Current flowing through highvoltage transmission lines is converted to voltage by the toroidal transformer and the light emitting LEDs are supplied with this voltage. The theory of the conversion of the current flowing through the line into the light is given. The system, running with the current of the line and converting the current into the light, has been developed. System has many application areas such as warning high voltage lines (warning winches to not hinder the high-voltage lines when working under the lines, warning planes to not touch the high-voltage lines, remote measurement of high-voltage line currents, and local illumination of the line area

  18. Regression analysis for LED color detection of visual-MIMO system

    Science.gov (United States)

    Banik, Partha Pratim; Saha, Rappy; Kim, Ki-Doo

    2018-04-01

    Color detection from a light emitting diode (LED) array using a smartphone camera is very difficult in a visual multiple-input multiple-output (visual-MIMO) system. In this paper, we propose a method to determine the LED color using a smartphone camera by applying regression analysis. We employ a multivariate regression model to identify the LED color. After taking a picture of an LED array, we select the LED array region, and detect the LED using an image processing algorithm. We then apply the k-means clustering algorithm to determine the number of potential colors for feature extraction of each LED. Finally, we apply the multivariate regression model to predict the color of the transmitted LEDs. In this paper, we show our results for three types of environmental light condition: room environmental light, low environmental light (560 lux), and strong environmental light (2450 lux). We compare the results of our proposed algorithm from the analysis of training and test R-Square (%) values, percentage of closeness of transmitted and predicted colors, and we also mention about the number of distorted test data points from the analysis of distortion bar graph in CIE1931 color space.

  19. Low level light therapy on stroke with a portable and illumination-parameter adjustable LED helmet: a review

    Science.gov (United States)

    Wang, Pengbo; Sun, Jiajing; Li, Zebin; Li, Ting

    2018-02-01

    Stroke is an obstinate and dreaded disease, which present characteristics of high incidence rates, high relapse rates, high mortality rates and high disability rates. Recent World Health Organization data suggest that a stroke victim is identified every 6 seconds around the world. There are not effective therapies for stroke except surgery that caused stroke victims enormous physical and psychological trauma. Transcranial low-level light/laser therapy (LLLT) of neurological diseases and brain trauma has gained momentum due to the character of high-efficiency, safe and non-invasive in the past decade. In this study, we found three conclusions through previous studies. 1). In simulation, 810nm light/laser makes the maximum light penetration (>5cm), which allow light to cross through gray matter into white matter. Gaussian beam with the same size of lesion area achieves better therapeutic. What's more, multi-light/laser- source has potential effect on stroke treatment. 2). In animal tests, LLLT has a positive therapeutic effect and PW mode LLLT has a better effect than XW mode LLLT on stroke treatment. 3). In clinical, large scale human experiment results are not so ideal due to the lower energy density of LLLT. In summary, it is no deny that those research results highlighted the great potential of transcranial LLLT as a novel, effective, and non-invasive therapy for stroke treatment.

  20. Photoelectrochemical kinetics of Eosin Y-sensitized zinc oxide films investigated by scanning electrochemical microscopy under illumination with different LED

    International Nuclear Information System (INIS)

    Shen Yan; Tefashe, Ushula Mengesha; Nonomura, Kazuteru; Loewenstein, Thomas; Schlettwein, Derck; Wittstock, Gunther

    2009-01-01

    The overall efficiency of the light-induced charge separation in dye-sensitized solar cells depends on the kinetic competition between back electron transfer and dye regeneration processes by a redox electrolyte. In a previous study, the reduction of the intermittently formed photo-oxidized dye molecules by iodide ions in the electrolyte phase was investigated using the feedback mode of a scanning electrochemical microscope (SECM) and a quantitative model had been derived. Here we provide a more thorough experimental verification of this model by variation of the excitation wavelength, light intensities and mediator concentrations. Nanoporous ZnO/Eosin Y films prepared by self-assembly were used as model electrodes and were used with an iodide/triiodide electrolyte. The experimentally found effective rate constants could be related to the rate constant for the reaction of the dissolved donor with photo-oxidized Eosin Y bound to ZnO and the absorption spectrum of the dye and confirmed the assumption made in the derivation of the model. For the regeneration process of Eosin Y, a rate constant of k ox with different light emitting diodes and light intensities is determined.

  1. Photoelectrochemical kinetics of Eosin Y-sensitized zinc oxide films investigated by scanning electrochemical microscopy under illumination with different LED

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yan; Tefashe, Ushula Mengesha [Department of Pure and Applied Chemistry, Faculty of Mathematics and Natural Sciences, Carl von Ossietzky University of Oldenburg, D-26111 Oldenburg (Germany); Nonomura, Kazuteru; Loewenstein, Thomas; Schlettwein, Derck [Institute of Applied Physics, Justus Liebig University of Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Wittstock, Gunther, E-mail: gunther.wittstock@uni-oldenburg.d [Department of Pure and Applied Chemistry, Faculty of Mathematics and Natural Sciences, Carl von Ossietzky University of Oldenburg, D-26111 Oldenburg (Germany)

    2009-12-30

    The overall efficiency of the light-induced charge separation in dye-sensitized solar cells depends on the kinetic competition between back electron transfer and dye regeneration processes by a redox electrolyte. In a previous study, the reduction of the intermittently formed photo-oxidized dye molecules by iodide ions in the electrolyte phase was investigated using the feedback mode of a scanning electrochemical microscope (SECM) and a quantitative model had been derived. Here we provide a more thorough experimental verification of this model by variation of the excitation wavelength, light intensities and mediator concentrations. Nanoporous ZnO/Eosin Y films prepared by self-assembly were used as model electrodes and were used with an iodide/triiodide electrolyte. The experimentally found effective rate constants could be related to the rate constant for the reaction of the dissolved donor with photo-oxidized Eosin Y bound to ZnO and the absorption spectrum of the dye and confirmed the assumption made in the derivation of the model. For the regeneration process of Eosin Y, a rate constant of k{sub ox} with different light emitting diodes and light intensities is determined.

  2. Arraying proteins by cell-free synthesis.

    Science.gov (United States)

    He, Mingyue; Wang, Ming-Wei

    2007-10-01

    Recent advances in life science have led to great motivation for the development of protein arrays to study functions of genome-encoded proteins. While traditional cell-based methods have been commonly used for generating protein arrays, they are usually a time-consuming process with a number of technical challenges. Cell-free protein synthesis offers an attractive system for making protein arrays, not only does it rapidly converts the genetic information into functional proteins without the need for DNA cloning, but also presents a flexible environment amenable to production of folded proteins or proteins with defined modifications. Recent advancements have made it possible to rapidly generate protein arrays from PCR DNA templates through parallel on-chip protein synthesis. This article reviews current cell-free protein array technologies and their proteomic applications.

  3. [Hygienic and environmental problems of energy-saving illumination in urbanization of Crimea].

    Science.gov (United States)

    Deynego, V N; Elizarov, V B; Kaptsov, V A

    The article considers the problems offloodlights pollution in the territory of Crimea due to the work of illumination led equipment of the key elements of the international transport artery "China-Europe". There was performed a qualitative assessment of characteristics of led floodlights pollution on the example of the sea surface of the transport crossing through the Kerch Strait. Ichthyologists and oceanographers were shown to estimate the amount of phytoplankton biomass based on sunlight illumination. The excess dose of blue light in the spectrum of led lighting was established to have an impact on phytoplankton greater than solar and lunar light, creating preconditions for the increase of biological mass of phytoplankton and consequently to the formation of the "stern stock". Arising from additional phytoplankton biomass can significantly influence on the schedule offish migration in waters of the Kerch Strait, the biomass of mosquitoes and midges, which are prey for amphibians and birds. The decline of the both light pollution and its negative impact on fauna andflora requires the development of semiconductor sources of white light with a biologically adequate spectrum in the framework of the "Lighting of the lighting equipment of Crimea".

  4. A Scalable and Modular Dome Illumination System for Scientific Microphotography on a Budget.

    Directory of Open Access Journals (Sweden)

    Ricardo Kawada

    Full Text Available A scalable and modular LED illumination dome for microscopic scientific photography is described and illustrated, and methods for constructing such a dome are detailed. Dome illumination for insect specimens has become standard practice across the field of insect systematics, but many dome designs remain expensive and inflexible with respect to new LED technology. Further, a one-size-fits-all dome cannot accommodate the large breadth of insect size encountered in nature, forcing the photographer to adapt, in some cases, to a less than ideal dome design. The dome described here is scalable, as it is based on a isodecahedron, and the template for the dome is available as a downloaded file from the internet that can be printed on any printer, on the photographer's choice of media. As a result, a photographer can afford, using this design, to produce a series of domes of various sizes and materials, and LED ring lights of various sizes and color temperatures, depending on the need.

  5. An Active Illumination and Appearance (AIA) Model for Face Alignment

    DEFF Research Database (Denmark)

    Kahraman, Fatih; Gokmen, Muhittin; Darkner, Sune

    2007-01-01

    Face recognition systems are typically required to work under highly varying illumination conditions. This leads to complex effects imposed on the acquired face image that pertains little to the actual identity. Consequently, illumination normalization is required to reach acceptable recognition...... rates in face recognition systems. In this paper, we propose an approach that integrates the face identity and illumination models under the widely used Active Appearance Model framework as an extension to the texture model in order to obtain illumination-invariant face localization...

  6. A summary of LED lighting impacts on health

    Directory of Open Access Journals (Sweden)

    Cosmin Ticleanu

    2017-06-01

    Full Text Available Lighting can affect the health of people in buildings. This goes beyond the safety aspects of providing enough illumination to see by; lighting affects mood and human circadian rhythms, while poor lighting can cause glare, headaches, eyestrain, aches and pains associated with poor body posture or, in extreme cases, skin conditions and various types of sight loss. These aspects ought to be considered by designers and building owners and occupiers in order to improve the lit environment and use adequate lighting and lighting controls that meet the recommendations of codes and standards. Various types of lighting can have different impacts depending on their spectral, optical and electrical characteristics. This paper discusses potential impacts of LED lighting on human health, and is based on a recent BRE review of research investigating the most typical effects of lighting on human health.

  7. Two-step design method for highly compact three-dimensional freeform optical system for LED surface light source.

    Science.gov (United States)

    Mao, Xianglong; Li, Hongtao; Han, Yanjun; Luo, Yi

    2014-10-20

    Designing an illumination system for a surface light source with a strict compactness requirement is quite challenging, especially for the general three-dimensional (3D) case. In accordance with the two key features of an expected illumination distribution, i.e., a well-controlled boundary and a precise illumination pattern, a two-step design method is proposed in this paper for highly compact 3D freeform illumination systems. In the first step, a target shape scaling strategy is combined with an iterative feedback modification algorithm to generate an optimized freeform optical system with a well-controlled boundary of the target distribution. In the second step, a set of selected radii of the system obtained in the first step are optimized to further improve the illuminating quality within the target region. The method is quite flexible and effective to design highly compact optical systems with almost no restriction on the shape of the desired target field. As examples, three highly compact freeform lenses with ratio of center height h of the lens and the maximum dimension D of the source ≤ 2.5:1 are designed for LED surface light sources to form a uniform illumination distribution on a rectangular, a cross-shaped and a complex cross pierced target plane respectively. High light control efficiency of η > 0.7 as well as low relative standard illumination deviation of RSD < 0.07 is obtained simultaneously for all the three design examples.

  8. Coupling in reflector arrays

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1968-01-01

    In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present communic......In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present...

  9. High Efficiency, Illumination Quality OLEDs for Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown

  10. Spectral effects of LEDs on chlorophyll fluorescence and pigmentation in Phalaenopsis ‘Vivien’ and ‘Purple Star’

    DEFF Research Database (Denmark)

    Ouzounis, Theoharis; Fretté, Xavier; Ottosen, Carl-Otto

    2015-01-01

    We examined the effect of light emitting diode (LED) lighting in greenhouse facilities on growth, chlorophyll fluorescence and pigmentation in Phalaenopsis 'Vivien' and 'Purple Star' under purpose-built LED arrays yielding c. 200μmolm-2s-1 at plant height for 14h per day and 24/18°Cday/night temp......We examined the effect of light emitting diode (LED) lighting in greenhouse facilities on growth, chlorophyll fluorescence and pigmentation in Phalaenopsis 'Vivien' and 'Purple Star' under purpose-built LED arrays yielding c. 200μmolm-2s-1 at plant height for 14h per day and 24/18°Cday...

  11. Multispectral imaging of the ocular fundus using light emitting diode illumination.

    Science.gov (United States)

    Everdell, N L; Styles, I B; Calcagni, A; Gibson, J; Hebden, J; Claridge, E

    2010-09-01

    We present an imaging system based on light emitting diode (LED) illumination that produces multispectral optical images of the human ocular fundus. It uses a conventional fundus camera equipped with a high power LED light source and a highly sensitive electron-multiplying charge coupled device camera. It is able to take pictures at a series of wavelengths in rapid succession at short exposure times, thereby eliminating the image shift introduced by natural eye movements (saccades). In contrast with snapshot systems the images retain full spatial resolution. The system is not suitable for applications where the full spectral resolution is required as it uses discrete wavebands for illumination. This is not a problem in retinal imaging where the use of selected wavelengths is common. The modular nature of the light source allows new wavelengths to be introduced easily and at low cost. The use of wavelength-specific LEDs as a source is preferable to white light illumination and subsequent filtering of the remitted light as it minimizes the total light exposure of the subject. The system is controlled via a graphical user interface that enables flexible control of intensity, duration, and sequencing of sources in synchrony with the camera. Our initial experiments indicate that the system can acquire multispectral image sequences of the human retina at exposure times of 0.05 s in the range of 500-620 nm with mean signal to noise ratio of 17 dB (min 11, std 4.5), making it suitable for quantitative analysis with application to the diagnosis and screening of eye diseases such as diabetic retinopathy and age-related macular degeneration.

  12. LEDs light up the world

    Energy Technology Data Exchange (ETDEWEB)

    Mather, N.

    2004-06-30

    A lighting system using light-emitting diodes, and privately financed by a Canadian engineering professor at the University of Calgary, has been set up in a village in Nepal in 2000. Since then, through the efforts of the 'Light Up The World' Foundation, established by Dr. Irvine-Halliday, projects have lit up thousands of homes in the Philippines, India, Afghanistan, the Galapagos Islands, Mexico, Sri Lanka, and Angola. Although the goal of the project is primarily to provide lighting for reading and writing for school-children, the project has been the source of many other advantages; creation of enterprise, increased employment, enhanced income, gender equality, and improvements in health and safety among them. Since LED lamps in most cases replace kerosene lamps, the system also has significant environmental benefits. The system as originally envisioned creates electricity by pedal-powered generator, or by solar panels connected to a battery, depending on what is available at each home. Each home is connected to the power supply and supplied with low-energy diode lamps. The lights are extremely efficient and many homes can be equipped with them using less energy than it takes to power a single 100-watt light bulb. 5 photos.

  13. "Enlivening and - Dividing": An Aporia of Illumination

    Directory of Open Access Journals (Sweden)

    Hans Christian Hönes

    2015-08-01

    Full Text Available Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:Verdana;} In 1798, Karl August Böttiger paid a nocturnal visit to the Gallery of Antiques in Dresden, illuminating the statues with a torch. At first glance, this seems to be yet another example of a popular practice for visiting galleries c.1800. Illuminating the sculptures by torchlight was a popular means of enlivening the objects, set in motion by the light flickering on their surfaces. The collections were thus meant to become a place where cold, white stone comes to life, and where the beholder becomes part of a revived antiquity.This was precisely what Böttiger intended, too. But to him, the effect of the torchlight appeared to be, as he wrote, “enlivening and – dividing!” The torchlight highlighted not only the beauty of the sculptures but also their modern restorations. Böttiger apparently failed to experience the living presence of the antique celebrated by many of his contemporaries (e.g. Goethe, Moritz.This essay focuses on the consequence of such a perception of sculptures as historically multi-layered objects. Böttiger’s experience resulted in a problematic situation. In trying to view the sculptures as contemporaries, he hoped to become ancient himself. But this operation failed in the moment when the sculptures themselves appeared to be anachronistic, impure palimpsests. In consequence, galleries may not only be the place were art history as chronological Stilgeschichte was born. They may also be the site where this perception changed into the experience of a more chaotic shape of time.

  14. The Photodynamic Effect of LED-Magnetic Exposure to Photoinactivation of Aerobic Photosyntetic Bacteria

    OpenAIRE

    Astuti, Suryani Dyah

    2015-01-01

    All photosynthetic bacteria have a major pigment of bacteriochlorophyl and accessor pigment e.g. the carotenoids, which both have an important role in photosynthesis process. This study aim to explore the exogenous organic photosensitizer from photosyntetic bacteria for photodynamic therapy application. This study is an experimental research aiming to test the potential illumination of LED with wavelength 409, 430, 528 and 629 nm, and power optimization and time exposure LED-magnetic for opti...

  15. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    Energy Technology Data Exchange (ETDEWEB)

    Penning, Julie [Navigant Consulting Inc., Washington, DC (United States); Stober, Kelsey [Navigant Consulting Inc., Washington, DC (United States); Taylor, Victor [Navigant Consulting Inc., Washington, DC (United States); Yamada, Mary [Navigant Consulting Inc., Washington, DC (United States)

    2016-09-01

    The DOE report, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications, is a biannual report which models the adoption of LEDs in the U.S. general-lighting market, along with associated energy savings, based on the full potential DOE has determined to be technically feasible over time. This version of the report uses an updated 2016 U.S. lighting-market model that is more finely calibrated and granular than previous models, and extends the forecast period to 2035 from the 2030 limit that was used in previous editions.

  16. Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging

    Science.gov (United States)

    In this study, we develop a viability evaluation method for pepper (Capsicum annuum L.) seed based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400–700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumin...

  17. Solar Illumination Control of the Polar Wind

    Science.gov (United States)

    Maes, L.; Maggiolo, R.; De Keyser, J.; André, M.; Eriksson, A. I.; Haaland, S.; Li, K.; Poedts, S.

    2017-11-01

    Polar wind outflow is an important process through which the ionosphere supplies plasma to the magnetosphere. The main source of energy driving the polar wind is solar illumination of the ionosphere. As a result, many studies have found a relation between polar wind flux densities and solar EUV intensity, but less is known about their relation to the solar zenith angle at the ionospheric origin, certainly at higher altitudes. The low energy of the outflowing particles and spacecraft charging means it is very difficult to measure the polar wind at high altitudes. We take advantage of an alternative method that allows estimations of the polar wind flux densities far in the lobes. We analyze measurements made by the Cluster spacecraft at altitudes from 4 up to 20 RE. We observe a strong dependence on the solar zenith angle in the ion flux density and see that both the ion velocity and density exhibit a solar zenith angle dependence as well. We also find a seasonal variation of the flux density.

  18. Junction depth measurement using carrier illumination

    International Nuclear Information System (INIS)

    Borden, Peter

    2001-01-01

    Carrier Illumination [trade mark] (CI) is a new method recently developed to meet the need for a non-destructive, high throughput junction depth measurement on patterned wafers. A laser beam creates a quasi-static excess carrier profile in the semiconductor underlying the activated junction. The excess carrier profile is fairly constant below the junction, and drops rapidly in the junction, creating a steep index of refraction gradient at the junction edge. Interference with light reflected from this index gradient provides a signal that is analyzed to determine the junction depth. The paper summarizes evaluation of performance in full NMOS and PMOS process flows, on both bare and patterned wafers. The aims have been to validate (1) performance in the presence of underlying layers typically found at the source/drain (S/D) process steps and (2) measurement on patterned wafers. Correlation of CI measurements to SIMS and transistor drive current are shown. The data were obtained from NMOS structures using As S/D and LDD implants. Correlations to SRP, SIMS and sheet resistance are shown for PMOS structures using B 11 LDD implants. Gage capability measurements are also presented

  19. Illuminating the chirality of Weyl fermions

    Science.gov (United States)

    Ma, Qiong; Xu, Su-Yang; Chan, Ching-Kit; Zhang, Cheng-Long; Chang, Guoqing; Lin, Hsin; Jia, Shuang; Lee, Patrick; Gedik, Nuh; Jarillo-Herrero, Pablo

    In particle physics, Weyl fermions (WF) are elementary particles that travel at the speed of light and have a definite chirality. In condensed matter, it has been recently realized that WFs can arise as magnetic monopoles in the momentum space of a novel topological metal, the Weyl semimetal (WSM). Their chirality, given by the sign of the monopole charge, is the defining property of a WSM, since it directly serves as the topological number and gives rise to exotic properties such as Fermi arcs and the chiral anomaly. Moreover, the two chiralities, analogous to the two valleys in 2D materials, lead to a new degree of freedom in a 3D crystal, suggesting novel pathways to store and carry information. By shining circularly polarized light on the WSM TaAs, we illuminate the chirality of the WFs and achieve an electrical current that is highly controllable based on the WFs' chirality. Our results open up a wide range of new possibilities for experimentally studying and controlling the WFs and their associated quantum anomalies by optical and electrical means, which suggest the exciting prospect of ``Weyltronics''.

  20. Morphology Evolution and Degradation of CsPbBr3 Nanocrystals under Blue Light-Emitting Diode Illumination.

    Science.gov (United States)

    Huang, Shouqiang; Li, Zhichun; Wang, Bo; Zhu, Nanwen; Zhang, Congyang; Kong, Long; Zhang, Qi; Shan, Aidang; Li, Liang

    2017-03-01

    Under illumination of light-emitting diode (LED) or sunlight, the green color of all-inorganic CsPbBr 3 perovskite nanocrystals (CPB-NCs) often quickly changes to yellow, followed by large photoluminescence (PL) loss. To figure out what is happening on CPB-NCs during the color change process, the morphology, structure, and PL evolutions are systematically investigated by varying the influence factors of illumination, moisture, oxygen, and temperature. We find that the yellow color is mainly originated from the large CPB crystals formed in the illumination process. With maximized isolation of oxygen for the sandwiched film or the uncovered film stored in nitrogen, the color change can be dramatically slowed down whether there is water vapor or not. Under dark condition, the PL emissions are not significantly influenced by the varied relative humidity (RH) levels and temperatures up to 60 °C. Under the precondition of oxygen or air, color change and PL loss become more obvious when increasing the illumination power or RH level, and the large-sized cubic CPB crystals are further evolved into the oval-shaped crystals. We confirm that oxygen is the crucial factor to drive the color change, which has the strong synergistic effect with the illumination and moisture for the degradation of the CPB film. Meanwhile, the surface decomposition and the increased charge trap states occurred in the formed large CPB crystals play important roles for the PL loss.

  1. Laser pulse number dependent nanostructure evolution by illuminating self-assembled microsphere array

    Science.gov (United States)

    Feng, Dong; Weng, Ding; Wang, Bao; Wang, Jiadao

    2017-12-01

    Pulse number dependent evolution from nanodents to nanobumps has been studied on a bearing steel substrate, which was coated with a self-assembled monolayer of silica microspheres and repeatedly irradiated by an 800 nm femtosecond laser. Scanning electron microscope and atomic force microscope were employed to characterize nanopatterns, the dimensions of which were related to the laser pulse number and pulse fluences. The transformation depending on the number of laser pulses could be attributed to the changes of electric field distribution and material property after the impacts of multiple laser pulses, the process of which could be divided into three steps. First, the bottoms of silica microspheres were ablated because of the incubation effects from repeated irradiation. Second, strong plasmonic localization at the edges of the deep nanodents resulted in plasma-chemical reactions between ablated materials, which was confirmed by electromagnetic simulations. Third, recrystallized solid matter from ablated materials deposited in nanodents and then formed nanobumps, which was confirmed by transmission electron microscope and energy dispersive X-ray spectrometer analyses on their longitudinal sections.

  2. Combining Illumination Normalization Methods for Better Face Recognition

    NARCIS (Netherlands)

    Boom, B.J.; Tao, Q.; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.

    2009-01-01

    Face Recognition under uncontrolled illumination conditions is partly an unsolved problem. There are two categories of illumination normalization methods. The first category performs a local preprocessing, where they correct a pixel value based on a local neighborhood in the images. The second

  3. Adaptive Ambient Illumination Based on Color Harmony Model

    Science.gov (United States)

    Kikuchi, Ayano; Hirai, Keita; Nakaguchi, Toshiya; Tsumura, Norimichi; Miyake, Yoichi

    We investigated the relationship between ambient illumination and psychological effect by applying a modified color harmony model. We verified the proposed model by analyzing correlation between psychological value and modified color harmony score. Experimental results showed the possibility to obtain the best color for illumination using this model.

  4. Transfer between Pose and Illumination Training in Face Recognition

    Science.gov (United States)

    Liu, Chang Hong; Bhuiyan, Md. Al-Amin; Ward, James; Sui, Jie

    2009-01-01

    The relationship between pose and illumination learning in face recognition was examined in a yes-no recognition paradigm. The authors assessed whether pose training can transfer to a new illumination or vice versa. Results show that an extensive level of pose training through a face-name association task was able to generalize to a new…

  5. Design of LED projector based on gradient-index lens

    Science.gov (United States)

    Qian, Liyong; Zhu, Xiangbing; Cui, Haitian; Wang, Yuanhang

    2018-01-01

    In this study, a new type of projector light path is designed to eliminate the deficits of existing projection systems, such as complex structure and low collection efficiency. Using a three-color LED array as the lighting source, by means of the special optical properties of a gradient-index lens, the complex structure of the traditional projector is simplified. Traditional components, such as the color wheel, relay lens, and mirror, become unnecessary. In this way, traditional problems, such as low utilization of light energy and loss of light energy, are solved. With the help of Zemax software, the projection lens is optimized. The optimized projection lens, LED, gradient-index lens, and digital micromirror device are imported into Tracepro. The ray tracing results show that both the utilization of light energy and the uniformity are improved significantly.

  6. LED surgical lighting system with multiple free-form surfaces for highly sterile operating theater application.

    Science.gov (United States)

    Liu, Peng; Zhang, Yaqin; Zheng, Zhenrong; Li, Haifeng; Liu, Xu

    2014-06-01

    Although the ventilation system is widely employed in the operating theater, a strictly sterile surgical environment still cannot be ensured because of laminar disturbance, which is mainly caused by the surgical lighting system. Abandoning traditional products, we propose an LED surgical lighting system, which can alleviate the laminar disturbance and provide an appropriate lighting condition for surgery. It contains a certain amount of LED lens units, which are embedded in the ceiling and arranged around the air supply smallpox. The LED lens unit integrated with an LED light source and a free-form lens is required to produce a uniform circular illumination with a large tolerance to the change of lighting distance. To achieve such a dedicated lens, two free-form refractive surfaces, which are converted into two ordinary differential equations by the design method presented in this paper, are used to deflect the rays. The results show that the LED surgical lighting system can provide an excellent illumination environment for surgery, and, apparently, the laminar disturbance also can be relieved.

  7. Analyzing Thermal Module Developments and Trends in High-Power LED

    Directory of Open Access Journals (Sweden)

    Jung-Chang Wang

    2014-01-01

    Full Text Available The solid-state light emitting diode (SSLED has been verified as consumer-electronic products and attracts attention to indoor and outdoor lighting lamp, which has a great benefit in saving energy and environmental protection. However, LED junction temperature will influence the luminous efficiency, spectral color, life cycle, and stability. This study utilizes thermal performance experiments with the illumination-analysis method and window program (vapour chamber thermal module, VCTM V1.0 to investigate and analyze the high-power LED (Hi-LED lighting thermal module, in order to achieve the best solution of the fin parameters under the natural convection. The computing core of the VCTM program employs the theoretical thermal resistance analytical approach with iterative convergence stated in this study to obtain a numerical solution. Results showed that the best geometry of thermal module is 4.4 mm fin thickness, 9.4 mm fin pitch, and 37 mm fin height with the LED junction temperature of 58.8°C. And the experimental thermal resistances are in good agreement with the theoretical thermal resistances; calculating error between measured data and simulation results is no more than ±7%. Thus, the Hi-LED illumination lamp has high life cycle and reliability.

  8. Optical CAD Utilization for the Design and Testing of a LED Streetlamp.

    Science.gov (United States)

    Jafrancesco, David; Mercatelli, Luca; Fontani, Daniela; Sansoni, Paola

    2017-08-24

    The design and testing of LED lamps are vital steps toward broader use of LED lighting for outdoor illumination and traffic signalling. The characteristics of LED sources, in combination with the need to limit light pollution and power consumption, require a precise optical design. In particular, in every step of the process, it is important to closely compare theoretical or simulated results with measured data (obtained from a prototype). This work examines the various possibilities for using an optical CAD (Lambda Research TracePro ) to design and check a LED lamp for outdoor use. This analysis includes the simulations and testing on a prototype as an example; data acquired by measurement are inserted into the same simulation software, making it easy to compare theoretical and actual results.

  9. Highly sensitive time resolved singlet oxygen luminescence detection using LEDs as the excitation source

    International Nuclear Information System (INIS)

    Hackbarth, S; Schlothauer, J; Preuss, A; Röder, B

    2013-01-01

    For the first time singlet oxygen luminescence kinetics in living cells were detected at high precision using LED light for excitation. As LED technology evolves, the light intensity emitted by standard LEDs allows photosensitized singlet oxygen luminescence detection in solution and cell suspensions. We present measurements superior to those of most actual laser powered setups regarding precision of singlet oxygen kinetics in solutions and cell suspensions. Data presented here show that LED based setups allow the determination of the photosensitizer triplet and singlet oxygen decay times in vitro with an accuracy of 0.1 μs. This enables monitoring of the photosensitizer efficiency and interaction with the cellular components using illumination doses small enough not to cause cell death. (letter)

  10. Optical CAD Utilization for the Design and Testing of a LED Streetlamp

    Directory of Open Access Journals (Sweden)

    David Jafrancesco

    2017-08-01

    Full Text Available The design and testing of LED lamps are vital steps toward broader use of LED lighting for outdoor illumination and traffic signalling. The characteristics of LED sources, in combination with the need to limit light pollution and power consumption, require a precise optical design. In particular, in every step of the process, it is important to closely compare theoretical or simulated results with measured data (obtained from a prototype. This work examines the various possibilities for using an optical CAD (Lambda Research TracePro to design and check a LED lamp for outdoor use. This analysis includes the simulations and testing on a prototype as an example; data acquired by measurement are inserted into the same simulation software, making it easy to compare theoretical and actual results.

  11. Investigation of interface property in Al/SiO2/ n-SiC structure with thin gate oxide by illumination

    Science.gov (United States)

    Chang, P. K.; Hwu, J. G.

    2017-04-01

    The reverse tunneling current of Al/SiO2/ n-SiC structure employing thin gate oxide is introduced to examine the interface property by illumination. The gate current at negative bias decreases under blue LED illumination, yet increases under UV lamp illumination. Light-induced electrons captured by interface states may be emitted after the light sources are off, leading to the recovery of gate currents. Based on transient characteristics of gate current, the extracted trap level is close to the light energy for blue LED, indicating that electron capture induced by lighting may result in the reduction of gate current. Furthermore, bidirectional C- V measurements exhibit a positive voltage shift caused by electron trapping under blue LED illumination, while a negative voltage shift is observed under UV lamp illumination. Distinct trapping and detrapping behaviors can be observed from variations in I- V and C- V curves utilizing different light sources for 4H-SiC MOS capacitors with thin insulators.

  12. An interpretive phenomenological method for illuminating the meaning of caring relationship.

    Science.gov (United States)

    Berg, Linda; Skott, Carola; Danielson, Ella

    2006-03-01

    This study is a part of a larger project in which the aim is to illuminate the meaning of the caring relationship between patients and nurses in daily nursing practice. Empirical studies in this area inspired from the interpretive phenomenological method are not commonly used. The aim of this paper is to describe how an interpretive phenomenological method was used to illuminate the meaning of the phenomenon caring relationship in daily nursing practice. Data were collected during 16 nursing care proceedings using participant observation with field notes, and in addition to that two interviews, one patient and one nurse. The interpretation moved back and forth between the whole and the parts in a dialectic process. Initial interpretive understanding of interviews and field notes, meaning units and comprehensive understanding were presented. Themes from the patient's interviews were competence, lack of continuity, strain and vulnerability. Themes from the nurse's interviews were competence and striving. Themes from the field notes were interactions towards a goal. The use of interpretive phenomenology offered an opportunity for learning to understand the meaning of the phenomenon caring relationship in daily nursing practice with both strengths and limitations. This study gave an understanding of the phenomenon through the illumination of the patient's and the nurse's thoughts, feelings and actions in the nursing care proceedings that led to a more profound knowledge about how they together create an encounter through their unique competence.

  13. Analysis of image plane's Illumination in Image-forming System

    International Nuclear Information System (INIS)

    Duan Lihua; Zeng Yan'an; Zhang Nanyangsheng; Wang Zhiguo; Yin Shiliang

    2011-01-01

    In the detection of optical radiation, the detecting accuracy is affected by optic power distribution of the detector's surface to a large extent. In addition, in the image-forming system, the quality of the image is greatly determined by the uniformity of the image's illumination distribution. However, in the practical optical system, affected by the factors such as field of view, false light and off axis and so on, the distribution of the image's illumination tends to be non uniform, so it is necessary to discuss the image plane's illumination in image-forming systems. In order to analyze the characteristics of the image-forming system at a full range, on the basis of photometry, the formulas to calculate the illumination of the imaging plane have been summarized by the numbers. Moreover, the relationship between the horizontal offset of the light source and the illumination of the image has been discussed in detail. After that, the influence of some key factors such as aperture angle, off-axis distance and horizontal offset on illumination of the image has been brought forward. Through numerical simulation, various theoretical curves of those key factors have been given. The results of the numerical simulation show that it is recommended to aggrandize the diameter of the exit pupil to increase the illumination of the image. The angle of view plays a negative role in the illumination distribution of the image, that is, the uniformity of the illumination distribution can be enhanced by compressing the angle of view. Lastly, it is proved that telecentric optical design is an effective way to advance the uniformity of the illumination distribution.

  14. Fokusgruppeinterview som led i en evalueringsproces

    DEFF Research Database (Denmark)

    Andersen-Mølgaard, Hanna; Harrit, Ole

    2006-01-01

    Teoretiske begrundelser og perspektiver, responsiv-konstruktivistisk evaluering, fokusgruppeinterview som led i BIKVAmodellen, eksempler, vurdering og perspektivering......Teoretiske begrundelser og perspektiver, responsiv-konstruktivistisk evaluering, fokusgruppeinterview som led i BIKVAmodellen, eksempler, vurdering og perspektivering...

  15. Goniometric characterization of LED based greenhouse lighting

    DEFF Research Database (Denmark)

    Thorseth, Anders; Lindén, Johannes; Corell, Dennis Dan

    2015-01-01

    This paper describes a demonstration of goniospectroradiometry for characterizations of new light emitting diode (LED) based luminaries for enhanced photosynthesis in greenhouses. It highlights the differences between measurement of the traditional high pressure sodium (HPS) luminaries and the LED...

  16. Measurement of the photometric characteristics of LEDs

    International Nuclear Information System (INIS)

    Nazarenko, L.A.; Zubkov, D.P.

    2015-01-01

    Proposed and implemented a method for measuring LEDs, which is based on self-calibration of the LED goniophotometer facility by using a trap-detector. Designed and manufactured automated goniophotometer, which provides a measurement of high power LEDs at a specified junction temperature. Designed and experimentally researched the photometer with a photometric sphere based diffuser, which meets all requirements of CIE for photometric measurements of LEDs

  17. Null bactericidal effect of ultraviolet radiation emitted by LEDs.

    Directory of Open Access Journals (Sweden)

    Francisco Alcántara Muñoz

    2016-11-01

    Full Text Available This research has aimed to assess the bactericidal effect of ultraviolet light emitted by LEDS on the growth on Petri dishes of microorganisms whose legal limits in foods have been established. An electrically fed apparatus has been designed with precise timing and a camera to prevent light spillage, in which two ultraviolet radiation emission devices were connected by LED technology at different wavelengths: through an array of LEDS emitting at around 350nm, and a single specific emission LED at 280nm. 1000 cfu of E. Coli and S. aureus sown on PCA were used as prototypes of gram negative and positive bacteria, respectively, onto which ultraviolet light was radiated at different time intervals, by means of both devices, with the whole experiment being carried out in triplicate . In none of the three series of treatments at the two wavelengths were reductions in microbial growth observed. The series of sowings on PCA were done on unseeded plates in order to be able to discard the likelihood of subsequent recontamination.

  18. Light-Regulated Electrochemical Sensor Array for Efficiently Discriminating Hazardous Gases.

    Science.gov (United States)

    Liang, Hongqiu; Zhang, Xin; Sun, Huihui; Jin, Han; Zhang, Xiaowei; Jin, Qinghui; Zou, Jie; Haick, Hossam; Jian, Jiawen

    2017-10-27

    Inadequate detection limit and unsatisfactory discrimination features remain the challenging issues for the widely applied electrochemical gas sensors. Quite recently, we confirmed that light-regulated electrochemical reaction significantly enhanced the electrocatalytic activity, and thereby can potentially extend the detection limit to the parts per billion (ppb) level. Nevertheless, impact of the light-regulated electrochemical reaction on response selectivity has been discussed less. Herein, we systematically report on the effect of illumination on discrimination features via design and fabrication of a light-regulated electrochemical sensor array. Upon illumination (light on), response signal to the examined gases (C 3 H 6 , NO, and CO) is selectively enhanced, resulting in the sensor array demonstrating disparate response patterns when compared with that of the sensor array operated at light off. Through processing all the response patterns derived from both light on and light off with a pattern recognition algorithm, a satisfactory discrimination feature is observed. In contrast, apparent mutual interference between NO and CO is found when the sensor array is solely operated without illumination. The impact mechanism of the illumination is studied and it is deduced that the effect of the illumination on the discriminating features can be mainly attributed to the competition of electrocatalytic activity and gas-phase reactivity. If the enhanced electrocatalytic activity (to specific gas) dominates the whole sensing progress, enhancements in the corresponding response signal would be observed upon illumination. Otherwise, illumination gives a negligible impact. Hence, the response signal to part of the examined gases is selectively enhanced by illumination. Conclusively, light-regulated electrochemical reaction would provide an efficient approach to designing future smart sensing devices.

  19. Illuminate Knowledge Elements in Geoscience Literature

    Science.gov (United States)

    Ma, X.; Zheng, J. G.; Wang, H.; Fox, P. A.

    2015-12-01

    There are numerous dark data hidden in geoscience literature. Efficient retrieval and reuse of those data will greatly benefit geoscience researches of nowadays. Among the works of data rescue, a topic of interest is illuminating the knowledge framework, i.e. entities and relationships, embedded in documents. Entity recognition and linking have received extensive attention in news and social media analysis, as well as in bioinformatics. In the domain of geoscience, however, such works are limited. We will present our work on how to use knowledge bases on the Web, such as ontologies and vocabularies, to facilitate entity recognition and linking in geoscience literature. The work deploys an un-supervised collective inference approach [1] to link entity mentions in unstructured texts to a knowledge base, which leverages the meaningful information and structures in ontologies and vocabularies for similarity computation and entity ranking. Our work is still in the initial stage towards the detection of knowledge frameworks in literature, and we have been collecting geoscience ontologies and vocabularies in order to build a comprehensive geoscience knowledge base [2]. We hope the work will initiate new ideas and collaborations on dark data rescue, as well as on the synthesis of data and knowledge from geoscience literature. References: 1. Zheng, J., Howsmon, D., Zhang, B., Hahn, J., McGuinness, D.L., Hendler, J., and Ji, H. 2014. Entity linking for biomedical literature. In Proceedings of ACM 8th International Workshop on Data and Text Mining in Bioinformatics, Shanghai, China. 2. Ma, X. Zheng, J., 2015. Linking geoscience entity mentions to the Web of Data. ESIP 2015 Summer Meeting, Pacific Grove, CA.

  20. Image illumination enhancement with an objective no-reference measure of illumination assessment based on Gaussian distribution mapping

    Directory of Open Access Journals (Sweden)

    Gholamreza Anbarjafari

    2015-12-01

    Full Text Available Illumination problems have been an important concern in many image processing applications. The pattern of the histogram on an image introduces meaningful features; hence within the process of illumination enhancement, it is important not to destroy such information. In this paper we propose a method to enhance image illumination using Gaussian distribution mapping which also keeps the information laid on the pattern of the histogram on the original image. First a Gaussian distribution based on the mean and standard deviation of the input image will be calculated. Simultaneously a Gaussian distribution with the desired mean and standard deviation will be calculated. Then a cumulative distribution function of each of the Gaussian distributions will be calculated and used in order to map the old pixel value onto the new pixel value. Another important issue in the field of illumination enhancement is absence of a quantitative measure for the assessment of the illumination of an image. In this research work, a quantitative measure indicating the illumination state, i.e. contrast level and brightness of an image, is also proposed. The measure utilizes the estimated Gaussian distribution of the input image and the Kullback-Leibler Divergence (KLD between the estimated Gaussian and the desired Gaussian distributions to calculate the quantitative measure. The experimental results show the effectiveness and the reliability of the proposed illumination enhancement technique, as well as the proposed illumination assessment measure over conventional and state-of-the-art techniques.

  1. Application of blue-green and ultraviolet micro-LEDs to biological imaging and detection

    International Nuclear Information System (INIS)

    Xu, H; Zhang, J; Nurmikko, A V; Davitt, K M; Song, Y-K

    2008-01-01

    This paper reviews authors' laboratory's work on the development of nitride-based blue-green and ultraviolet microscale LED devices with particular classes of imaging and spectroscopic applications in cellular level biology. Starting from neuroscience, we illustrate the utility of blue-green micro-LEDs for voltage-sensitive dye imaging of individual neural cells, as well as their ultraviolet counterparts for photostimulation of neurons. Arrays of micro-LEDs are also shown to be useful in projecting spatiotemporal patterns of photoexcitation to study the visual system development in living animals. As another illustration of the utility of the emerging nitride microdevice technology, we demonstrate the application of UV micro-LED arrays in bio-sensing technology as the core of a real-time fluorescence spectroscopy biowarning system. (invited paper)

  2. Automated system for the determination of patterns of high-intensity LEDs

    International Nuclear Information System (INIS)

    Baly, L.; Bolaño, L.; Arteche, R.; Broco, Y.; Quesada, I.; Rodríguez, E.

    2008-01-01

    Determination of high-intensity LEDs lighting patterns is an important step for the simulation and planning of arrays of these devices configurations. Currently there are systems based on CCD cameras able to efficiently solve this problem, however the high cost of these is a limiting factor for use. Another limitation of CCD cameras, is that they are designed for light levels much lower than those produced by a high-intensity LED. In this paper we present an automated system for the determination of the intensity of LEDs based on the scan point to point patterns. The results of the analysis of a type of LED based on arrays of bars with built-in optical system is presented.

  3. Study of LED layout in indoor visible light communication and performance analysis

    Science.gov (United States)

    Wang, Jiaan; Che, Ying; Wang, Xinlan; Guo, Linyang; Li, Jing

    2017-10-01

    Light emitting diodes(LED) could provide both illumination and data communication in indoor visible light communication(VLC) that owns the modulation bandwith from several from several MHz to seneral hundreds of MHz. The layout of LED plays an important role in maintaining a steady optical power distribution over the receiving plane. The existing rectangular LED layout does not provide a full coverage on the receiving plane leaving receiving optical power outage area, which in turn affects the best performance of the VLC system. This paper design a circular layout scheme of LED in 5mX5mX3m room based on the criterion of the illumination minimum mean square deviation. The influence of the distribution of the intensity of illumination with the radius of 1m and 1.5m,for including the wall reflection and not including the wall reflection, and make a comparison with rectangular LED layout of illumination distribution, when the number of LEDs with rectangular layout as same as circular layout. Including the number of LEDs are 4 and 16.For a specific simulation parameters as following:height of receiving plane is 0.85m,a single LEDs is composed of 60X60 LED chips, the parameters of a single chip is that transmitting power is 20mW,center luminous intensity is 0.73cd.semiangle at half power is 70deg.The parameters of concentrator is that photodiode area is 1cm2,photodiode responsivity is 0.4,field of view at the receiver is 85deg.Other parameters are that reflective index of concentrator is 1.5,reflectivity of wall is 0.8.Circular layout and rectangular layout are analyzed through simulation of the received optical power distribution, signal noise ratio distribution in non line of sight(including the wall reflection) and line of sight(not including the wall reflection),when the number of the LED is different. It is clear from the results that the received optical power distribution of non line of sight is better than line of sight, when the number of the LED are same, but

  4. Investigating the Use of an Adjustment Task to Set Preferred Colour of Ambient Illumination

    DEFF Research Database (Denmark)

    Logadóttir, Ásta; Fotios, Steve A.; Christoffersen, Jens

    2013-01-01

    An experiment was carried out to examine the method of adjustment when determining user preferences for the colour appearance of ambient lighting. A booth was lit using luminaires containing an array of white and coloured light emitting diodes (LEDs), allowing continuous variation of correlated...... different CCT stimulus ranges within the available range. All three ranges led to significantly different results for preferred CCT: 3288, 3490 and 3671 K. The experimental results confirmed that stimulus range, anchor and adaptation time have significant effect on the preferred CCT determined using...

  5. Effect of LED irradiation on the ripening and nutritional quality of postharvest banana fruit.

    Science.gov (United States)

    Huang, Jen-Yi; Xu, Fengying; Zhou, Weibiao

    2018-04-24

    With the ability to tailor wavelengths necessary to the photosynthetically active radiation spectrum of plant pigments, light-emitting diodes (LEDs) offer vast possibilities in horticultural lighting. The influence of LED light irradiation on major postharvest features of banana was investigated. Mature green bananas were treated daily with selected blue (464-474 nm), green (515-525 nm) and red (617-627 nm) LED lights for 8 days, and compared with non-illuminated control. The positive effect of LED lighting on the acceleration of ripening in bananas was greatest for blue, followed by red and green. Under the irradiation of LED lights, faster peel de-greening and flesh softening, and increased ethylene production and respiration rate in bananas were observed during storage. Furthermore, the accumulations of ascorbic acid, total phenols, and total sugars in banana fruit were enhanced by LED light exposure. LED light treatment can induce the ripening of bananas and improve their quality and nutrition potential. These findings might provide new chemical-free strategies to shorten the time to ripen banana after harvest by using LED light source. This article is protected by copyright. All rights reserved.

  6. Thermal wave interference with high-power VCSEL arrays for locating vertically oriented subsurface defects

    Science.gov (United States)

    Thiel, Erik; Kreutzbruck, Marc; Studemund, Taarna; Ziegler, Mathias

    2018-04-01

    Among the photothermal methods, full-field thermal imaging is used to characterize materials, to determine thicknesses of layers, or to find inhomogeneities such as voids or cracks. The use of classical light sources such as flash lamps (impulse heating) or halogen lamps (modulated heating) led to a variety of nondestructive testing methods, in particular, lock-in and flash-thermography. In vertical-cavity surface-emitting lasers (VCSELs), laser light is emitted perpendicularly to the surface with a symmetrical beam profile. Due to the vertical structure, they can be arranged in large arrays of many thousands of individual lasers, which allows power scaling into the kilowatt range. Recently, a high-power yet very compact version of such a VCSEL-array became available that offers both the fast timing behavior of a laser as well as the large illumination area of a lamp. Moreover, it allows a spatial and temporal control of the heating because individual parts of the array can be controlled arbitrarily in frequency, amplitude, and phase. In conjunction with a fast infrared camera, such structured heating opens up a field of novel thermal imaging and testing methods. As a first demonstration of this approach, we chose a testing problem very challenging to conventional thermal infrared testing: The detection of very thin subsurface defects perpendicularly oriented to the surface of metallic samples. First, we generate destructively interfering thermal wave fields, which are then affected by the presence of defects within their reach. It turned out that this technique allows highly sensitive detection of subsurface defects down to depths in excess of the usual thermographic rule of thumb, with no need for a reference or surface preparation.

  7. Performance of GaN-Based LEDs with Nanopatterned Indium Tin Oxide Electrode

    Directory of Open Access Journals (Sweden)

    Zhanxu Chen

    2016-01-01

    Full Text Available The indium tin oxide (ITO has been widely applied in light emitting diodes (LEDs as the transparent current spreading layer. In this work, the performance of GaN-based blue light LEDs with nanopatterned ITO electrode is investigated. Periodic nanopillar ITO arrays are fabricated by inductive coupled plasma etching with the mask of polystyrene nanosphere. The light extraction efficiency (LEE of LEDs can be improved by nanopatterned ITO ohmic contacts. The light output intensity of the fabricated LEDs with nanopatterned ITO electrode is 17% higher than that of the conventional LEDs at an injection current of 100 mA. Three-dimensional finite difference time domain simulation matches well with the experimental result. This method may serve as a practical approach to improving the LEE of the LEDs.

  8. Predicting daylight illuminance on inclined surfaces using sky luminance data

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.H.W.; Lau, C.C.S.; Lam, J.C. [City University of Hong Kong, Kowloon (China). Dept. of Building and Construction

    2005-07-01

    Daylight illuminance, particularly on vertical surfaces, plays a major role in determining and evaluating the daylighting performance of a building. In many parts of the world, however, the basic daylight illuminance data for various vertical planes are not always readily available. The usual method to obtain diffuse illuminance on tilted planes would be based on inclined surface models using data from the horizontal measurements. Alternatively, the diffuse illuminance on a sloping plane can be computed by integrating the luminance distribution of the sky 'seen' by the plane. This paper presents an approach to estimate the vertical outdoor illuminance from sky luminance data and solar geometry. Sky luminance data recorded from January 1999 to December 2001 in Hong Kong and generated by two well-known sky luminance models (Kittler and Perez) were used to compute the outdoor illuminance for the four principal vertical planes (N, E, S and W). The performance of this approach was evaluated against data measured in the same period. Statistical analysis indicated that using sky luminance distributions to predict outdoor illuminance can give reasonably good agreement with measured data for all vertical surfaces. The findings provide an accurate alternative to determine the amount of daylight on vertical as well as other inclined surfaces when sky luminance data are available. (author)

  9. Design and simulation of double annular illumination mode for microlithography

    Science.gov (United States)

    Song, Qiang; Zhu, Jing; Yang, Baoxi; Liu, Lei; Wang, Jun; Huang, Huijie

    2013-08-01

    Methods of generating various illumination patterns remain as an attractive and important micro-optics research area for the development of resolution enhancement in advanced lithography system. In the current illumination system of lithography machine, off-axis illumination is widely used as an effective approach to enhance the resolution and increase the depth of focus (DOF). This paper proposes a novel illumination mode generation unit, which transform conventional mode to double annular shaped radial polarized (DARP) mode for improving the resolution of micro-lithography. Through LightToolsTM software simulation, double annular shaped mode is obtained from the proposed generation unit. The mathematical expressions of the radius variation of inner and outer rings are deduced. The impacts of conventional and dual concentric annular illumination pattern on critical dimension uniformity were simulated on an isolated line, square hole and corner. Lithography performance was compared between DARP illumination mode and corresponding single annular modes under critical dimension of 45nm. As a result, DARP illumination mode can improve the uniformity of aerial image at 45nm node through pitch varied in 300-500 nm to a certain extent.

  10. Real-time global illumination on mobile device

    Science.gov (United States)

    Ahn, Minsu; Ha, Inwoo; Lee, Hyong-Euk; Kim, James D. K.

    2014-02-01

    We propose a novel method for real-time global illumination on mobile devices. Our approach is based on instant radiosity, which uses a sequence of virtual point lights in order to represent the e ect of indirect illumination. Our rendering process consists of three stages. With the primary light, the rst stage generates a local illumination with the shadow map on GPU The second stage of the global illumination uses the re ective shadow map on GPU and generates the sequence of virtual point lights on CPU. Finally, we use the splatting method of Dachsbacher et al 1 and add the indirect illumination to the local illumination on GPU. With the limited computing resources in mobile devices, a small number of virtual point lights are allowed for real-time rendering. Our approach uses the multi-resolution sampling method with 3D geometry and attributes simultaneously and reduce the total number of virtual point lights. We also use the hybrid strategy, which collaboratively combines the CPUs and GPUs available in a mobile SoC due to the limited computing resources in mobile devices. Experimental results demonstrate the global illumination performance of the proposed method.

  11. Nonuniformity mitigation of beam illumination in heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Kawata, S; Noguchi, K; Suzuki, T; Kurosaki, T; Barada, D; Ogoyski, A I; Zhang, W; Xie, J; Zhang, H; Dai, D

    2014-01-01

    In inertial fusion, a target DT fuel should be compressed to typically 1000 times the solid density. The target implosion nonuniformity is introduced by a driver beam’s illumination nonuniformity, for example. The target implosion should be robust against the implosion nonuniformities. In this paper, the requirement for implosion uniformity is first discussed. The implosion non-uniformity should be less than a few percent. The implosion dynamics is also briefly reviewed in heavy ion inertial fusion (HIF). Heavy ions deposit their energy inside the target energy absorber, and the energy deposition layer is rather thick, depending on the ion particle energy. Then nonuniformity mitigation mechanisms of the heavy ion beam (HIB) illumination in HIF are discussed. A density valley appears in the energy absorber, and the large-scale density valley also works as a radiation energy confinement layer, which contributes to a radiation energy smoothing. In HIF, wobbling heavy ion beam illumination was also introduced to realize a uniform implosion. The wobbling HIB axis oscillation is precisely controlled. In the wobbling HIBs’ illumination, the illumination nonuniformity oscillates in time and space on an HIF target. The oscillating-HIB energy deposition may contribute to the reduction of the HIBs’ illumination nonuniformity by its smoothing effect on the HIB illumination nonuniformity and also by a growth mitigation effect on the Rayleigh–Taylor instability. (invited comment)

  12. Characterization of memory and measurement history in photoconductivity of nanocrystal arrays

    Science.gov (United States)

    Fairfield, Jessamyn A.; Dadosh, Tali; Drndic, Marija

    2010-10-01

    Photoconductivity in nanocrystal films has been previously characterized, but memory effects have received little attention despite their importance for device applications. We show that the magnitude and temperature dependence of the photocurrent in CdSe/ZnS core-shell nanocrystal arrays depends on the illumination and electric field history. Changes in photoconductivity occur on a few-hour timescale, and subband gap illumination of nanocrystals prior to measurements modifies the photocurrent more than band gap illumination. The observed effects can be explained by charge traps within the band gap that are filled or emptied, which may alter nonradiative recombination processes and affect photocurrent.

  13. Plant growth with Led lighting systems

    International Nuclear Information System (INIS)

    Campiotti, C.A.; Bernardini, A.; Di Carlo, F.; Scoccianti, M.; Alonzo, G.; Carlino, M.; Dondi, F.; Bibbiani, C.

    2009-01-01

    Leds lighting is highly relevant for the horticultural industry. Compared to other light sources used for plant production, leds have several properties which are potentially useful in relation to horticulture. However, although LEDs technology has raised strong interest in research for extraterrestrial agriculture, current LEDs panel costs are still too high for commercial adoption in greenhouse sector, and their electrical efficacies do not compete with those of high-pressure sodium lamps, but several manufactures are working to address these issues. When LEDs become practical, their ability to based light sources specifically suitable for photosynthesis and other horticulturally relevant plant properties (i.e. low radiated heat; lighting from within the canopy) will render the narrow band spectrum of LEDs of particular interest for providing light to greenhouse horticulture. A general description of LEDs application and their technical characteristics is briefly reported. [it

  14. Effects of chromatic image statistics on illumination induced color differences.

    Science.gov (United States)

    Lucassen, Marcel P; Gevers, Theo; Gijsenij, Arjan; Dekker, Niels

    2013-09-01

    We measure the color fidelity of visual scenes that are rendered under different (simulated) illuminants and shown on a calibrated LCD display. Observers make triad illuminant comparisons involving the renderings from two chromatic test illuminants and one achromatic reference illuminant shown simultaneously. Four chromatic test illuminants are used: two along the daylight locus (yellow and blue), and two perpendicular to it (red and green). The observers select the rendering having the best color fidelity, thereby indirectly judging which of the two test illuminants induces the smallest color differences compared to the reference. Both multicolor test scenes and natural scenes are studied. The multicolor scenes are synthesized and represent ellipsoidal distributions in CIELAB chromaticity space having the same mean chromaticity but different chromatic orientations. We show that, for those distributions, color fidelity is best when the vector of the illuminant change (pointing from neutral to chromatic) is parallel to the major axis of the scene's chromatic distribution. For our selection of natural scenes, which generally have much broader chromatic distributions, we measure a higher color fidelity for the yellow and blue illuminants than for red and green. Scrambled versions of the natural images are also studied to exclude possible semantic effects. We quantitatively predict the average observer response (i.e., the illuminant probability) with four types of models, differing in the extent to which they incorporate information processing by the visual system. Results show different levels of performance for the models, and different levels for the multicolor scenes and the natural scenes. Overall, models based on the scene averaged color difference have the best performance. We discuss how color constancy algorithms may be improved by exploiting knowledge of the chromatic distribution of the visual scene.

  15. Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC.

    Science.gov (United States)

    Yeh, Chien-Hung; Chen, Hsing-Yu; Chow, Chi-Wai; Liu, Yen-Liang

    2015-01-26

    To increase the traffic rate in phosphor-LED visible light communication (VLC), a multi-band orthogonal frequency division multiplexed (OFDM) modulation is first proposed and demonstrated. In the measurement, we do not utilize optical blue filter to increase modulation bandwidth of phosphor-LED in the VLC system. In this proposed scheme, different bands of OFDM signals are applied to different LED chips in a LED lamp, this can avoid the power fading and nonlinearity issue by applying the same OFDM signal to all the LED chips in a LED lamp. Here, the maximum increase percentages of traffic rates are 41.1%, 17.8% and 17.8% under received illuminations of 200, 500 and 1000 Lux, respectively, when the proposed three-band OFDM modulation is used in the VLC system. In addition, the analysis and verification by experiments are also performed.

  16. Newly patented process enables low-cost solution for increasing white light spectrum of LEDs

    Science.gov (United States)

    Spanard, Jan-Marie

    2017-10-01

    A newly patented process for completing the spectral light array emitted by LED bulbs provides a low-cost method for producing better human centered lighting (HCL). This process uses non-luminescent colorant filters, filling out the jagged LED spectral emission into a full, white light array. While LED bulbs have the distinct economic advantages of using less energy, producing less heat and lasting years longer than traditional incandescent bulbs, the persistent metameric failure of LED bulbs has resulted in slower, and sometimes reluctant, adoption of LED lighting by the residential, retail and architectural markets. Adding missing wavelengths to LED generated bulbs via colorant filters increases the aesthetic appeal of the light by decreasing current levels of metameric failure, reducing the `flatness', `harshness', and `dullness' of LED generated light reported by consumers. LED phosphor-converted light can be successfully tuned to "whiter" white light with selective color filtering using permanent, durable transparent pigments. These transparent pigments are selectively applied in combination with existing manufacturing technologies and utilized as a final color-tuning step in bulb design. The quantity of emitted light chosen for color filtering can be adjusted from 1% to 100% of emitted light, creating a custom balance of light quantity with light quality. This invention recognizes that "better light" is frequently chosen over "more light" in the consumer marketplace.

  17. Non-Destructive Quality Evaluation of Pepper (Capsicum annuum L. Seeds Using LED-Induced Hyperspectral Reflectance Imaging

    Directory of Open Access Journals (Sweden)

    Changyeun Mo

    2014-04-01

    Full Text Available In this study, we developed a viability evaluation method for pepper (Capsicum annuum L. seeds based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400–700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares–discriminant analysis (PLS-DA model is developed to classify viable and non-viable seeds. Four spectral ranges generated with four types of LEDs (blue, green, red, and RGB, which were pretreated using various methods, are investigated to develop the classification models. The optimal PLS-DA model based on the standard normal variate for RGB LED illumination (400–700 nm yields discrimination accuracies of 96.7% and 99.4% for viable seeds and nonviable seeds, respectively. The use of images based on the PLS-DA model with the first-order derivative of a 31.5-nm gap for red LED illumination (600–700 nm yields 100% discrimination accuracy for both viable and nonviable seeds. The results indicate that a hyperspectral imaging technique based on LED light can be potentially applied to high-quality pepper seed sorting.

  18. Generation of solar spectrum by using LEDs

    Science.gov (United States)

    Lu, Pengzhi; Yang, Hua; Pei, Yanrong; Li, Jing; Xue, Bin; Wang, Junxi; Li, Jinmin

    2016-09-01

    Light emitting diode (LED) has been recognized as an applicable light source for indoor and outdoor lighting, city beautifying, landscape facilities, and municipal engineering etc. Conventional LED has superior characteristics such as long life time, low power consumption, high contrast, and wide viewing angle. Recently, LED with high color-rendering index and special spectral characteristics has received more and more attention. This paper is intended to report a solar spectrum simulated by multichip LED light source. The typical solar spectrum of 5500k released by CIE was simulated as a reference. Four types of LEDs with different spectral power distributions would be used in the LED light source, which included a 430nm LED, a 480nm LED, a 500nm LED and a white LED. In order to obtain better simulation results, the white LED was achieved by a 450nm LED chip with the mixture of phosphor. The phosphor combination was prepared by mixing green phosphor, yellow phosphor and red phosphor in a certain proportion. The multichip LED light source could provide a high fidelity spectral match with the typical solar spectrum of 5500k by adjusting injection current to each device. The luminous flux, CIE chromaticity coordinate x, y, CCT, and Ra were 104.7 lm, 0.3337, 0.3681, 5460K, and 88.6, respectively. Because of high color-rendering index and highly match to the solar spectrum, the multichip LED light source is a competitive candidate for applications where special spectral is required, such as colorimetric measurements, visual inspection, gemstone identification and agriculture.

  19. IODC 2014 Illumination design problem: the Cinderella Lamp

    Science.gov (United States)

    Cassarly, William J.

    2014-12-01

    For the 3rd time, the International Optical Design Conference (IODC) included an Illumination Design contest. This year, the contest involved designing the illuminator to project the 1950 Walt Disney "Cinderella" movie using a box of optical knick-knacks. The goal of the problem was to provide the highest screen lumens with greater than 30% uniformity. There were 12 entries from 3 different countries. Three different commercial optical/illumination design packages were used. The winning solution, provided by Alois Herkommer, provided 371 screen lumens.

  20. Effect of ultraviolet illumination on metal oxide resistive memory

    KAUST Repository

    Duran Retamal, Jose Ramon

    2014-12-22

    We investigate the photoelectrical and resistive switching properties of Pt/ZnO/Pt capacitor operated in unipolar mode under ultraviolet (UV) illumination. The oxygen photodesorption under UV illumination explains the photoconduction observed in initial and high resistance states. Meanwhile, oxygen readsorption at surface-related defects justifies the different photoresponses dynamics in both states. Finally, UV illumination significantly reduces the variations of resistance in high resistance state, set voltage and reset voltage by 58%, 33%, and 25%, respectively, stabilizing Pt/ZnO/Pt capacitor. Our findings in improved switching uniformity via UV light give physical insight into designing resistive memory devices.

  1. Interactive Dynamic Volume Illumination with Refraction and Caustics.

    Science.gov (United States)

    Magnus, Jens G; Bruckner, Stefan

    2018-01-01

    In recent years, significant progress has been made in developing high-quality interactive methods for realistic volume illumination. However, refraction - despite being an important aspect of light propagation in participating media - has so far only received little attention. In this paper, we present a novel approach for refractive volume illumination including caustics capable of interactive frame rates. By interleaving light and viewing ray propagation, our technique avoids memory-intensive storage of illumination information and does not require any precomputation. It is fully dynamic and all parameters such as light position and transfer function can be modified interactively without a performance penalty.

  2. Effect of ultraviolet illumination on metal oxide resistive memory

    KAUST Repository

    Duran Retamal, Jose Ramon; Kang, Chen-Fang; Ho, Chih-Hsiang; Ke, Jr-Jian; Chang, Wen-Yuan; He, Jr-Hau

    2014-01-01

    We investigate the photoelectrical and resistive switching properties of Pt/ZnO/Pt capacitor operated in unipolar mode under ultraviolet (UV) illumination. The oxygen photodesorption under UV illumination explains the photoconduction observed in initial and high resistance states. Meanwhile, oxygen readsorption at surface-related defects justifies the different photoresponses dynamics in both states. Finally, UV illumination significantly reduces the variations of resistance in high resistance state, set voltage and reset voltage by 58%, 33%, and 25%, respectively, stabilizing Pt/ZnO/Pt capacitor. Our findings in improved switching uniformity via UV light give physical insight into designing resistive memory devices.

  3. Development of passive and active microprism arrays to change the radiation pattern of solid-state lighting

    International Nuclear Information System (INIS)

    Lee, Chih-Chun; Ting, Yi-Shuo; Fang, Weileun

    2012-01-01

    This study implements a compact solid-state lighting chip with changeable illumination map as well as radiation pattern. The lighting chip consists of a microprism array, light-emitting diode (LED) chip and Si carrier. The polydimethylsiloxane (PDMS) and polymer-dispersed liquid crystal (PDLC) layers are respectively employed to implement the passive and active microprism arrays. The specific radiation pattern can be defined by the shape of the passive PDMS-microprism. Moreover, by using the scattering and transmitting modes of the PDLC layer, the PDLC-microprism enables the changing of light shaping by applying voltage. Thus, the radiation pattern can be changed by the driving voltage on the PDLC layer, and the deformable and movable micro optical components are not required. This study has established the low-temperature fabrication and packaging processes to realize the lighting chip, and the damage of the PDMS and PDLC material is prevented. Typical dimensions of the PDMS lighting chip are 5 mm wide, 6 mm long and 1 mm thick, and The PDLC lighting chip is 550 µm thick. The measurement results show that the PDMS-microprism array can change the radiation pattern from a 70° half-maximum viewing angle to 52° and 40° half-maximum viewing angles on two orthogonal axes. In addition, the PDLC-microprism array can change the radiation pattern from 51° and 43° half-maximum viewing angles at 0 V (i.e. scattering mode) to 48° and 33° half-maximum viewing angles at 100 V (i.e. transmitting mode). (paper)

  4. Fiber Laser Array

    National Research Council Canada - National Science Library

    Simpson, Thomas

    2002-01-01

    ...., field-dependent, loss within the coupled laser array. During this program, Jaycor focused on the construction and use of an experimental apparatus that can be used to investigate the coherent combination of an array of fiber lasers...

  5. Local Relation Map: A Novel Illumination Invariant Face Recognition Approach

    Directory of Open Access Journals (Sweden)

    Lian Zhichao

    2012-10-01

    Full Text Available In this paper, a novel illumination invariant face recognition approach is proposed. Different from most existing methods, an additive term as noise is considered in the face model under varying illuminations in addition to a multiplicative illumination term. High frequency coefficients of Discrete Cosine Transform (DCT are discarded to eliminate the effect caused by noise. Based on the local characteristics of the human face, a simple but effective illumination invariant feature local relation map is proposed. Experimental results on the Yale B, Extended Yale B and CMU PIE demonstrate the outperformance and lower computational burden of the proposed method compared to other existing methods. The results also demonstrate the validity of the proposed face model and the assumption on noise.

  6. Improving Shadow Suppression for Illumination Robust Face Recognition

    KAUST Repository

    Zhang, Wuming; Zhao, Xi; Morvan, Jean-Marie; Chen, Liming

    2017-01-01

    surface, lighting source and camera sensor, and elaborates the formation of face color appearance. Specifically, the proposed illumination processing pipeline enables the generation of Chromaticity Intrinsic Image (CII) in a log chromaticity space which

  7. Optics, illumination, and image sensing for machine vision II

    International Nuclear Information System (INIS)

    Svetkoff, D.J.

    1987-01-01

    These proceedings collect papers on the general subject of machine vision. Topics include illumination and viewing systems, x-ray imaging, automatic SMT inspection with x-ray vision, and 3-D sensing for machine vision

  8. Circular, explosion-proof lamp provides uniform illumination

    Science.gov (United States)

    1966-01-01

    Circular explosion-proof fluorescent lamp is fitted around a TV camera lens to provide shadowless illumination with a low radiant heat flux. The lamp is mounted in a transparent acrylic housing sealed with clear silicone rubber.

  9. Advanced split-illumination electron holography without Fresnel fringes

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Toshiaki, E-mail: tanigaki-toshiaki@riken.jp [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Aizawa, Shinji; Park, Hyun Soon [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Harada, Ken [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Shindo, Daisuke [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan)

    2014-02-01

    Advanced split-illumination electron holography was developed by employing two biprisms in the illuminating system to split an electron wave into two coherent waves and two biprisms in the imaging system to overlap them. A focused image of an upper condenser-biprism filament was formed on the sample plane, and all other filaments were placed in its shadow. This developed system makes it possible to obtain precise reconstructed object waves without modulations due to Fresnel fringes, in addition to holograms of distant objects from reference waves. - Highlights: • Advanced split-illumination electron holography without Fresnel fringes is developed. • Two biprisms are installed in illuminating system of microscope. • High-precision holographic observations of an area locating far from the sample edge become possible.

  10. Advanced split-illumination electron holography without Fresnel fringes

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Park, Hyun Soon; Matsuda, Tsuyoshi; Harada, Ken; Shindo, Daisuke

    2014-01-01

    Advanced split-illumination electron holography was developed by employing two biprisms in the illuminating system to split an electron wave into two coherent waves and two biprisms in the imaging system to overlap them. A focused image of an upper condenser-biprism filament was formed on the sample plane, and all other filaments were placed in its shadow. This developed system makes it possible to obtain precise reconstructed object waves without modulations due to Fresnel fringes, in addition to holograms of distant objects from reference waves. - Highlights: • Advanced split-illumination electron holography without Fresnel fringes is developed. • Two biprisms are installed in illuminating system of microscope. • High-precision holographic observations of an area locating far from the sample edge become possible

  11. White LED visible light communication technology research

    Science.gov (United States)

    Yang, Chao

    2017-03-01

    Visible light communication is a new type of wireless optical communication technology. White LED to the success of development, the LED lighting technology is facing a new revolution. Because the LED has high sensitivity, modulation, the advantages of good performance, large transmission power, can make it in light transmission light signal at the same time. Use white LED light-emitting characteristics, on the modulation signals to the visible light transmission, can constitute a LED visible light communication system. We built a small visible optical communication system. The system composition and structure has certain value in the field of practical application, and we also research the key technology of transmitters and receivers, the key problem has been resolved. By studying on the optical and LED the characteristics of a high speed modulation driving circuit and a high sensitive receiving circuit was designed. And information transmission through the single chip microcomputer test, a preliminary verification has realized the data transmission function.

  12. A method of LED free-form tilted lens rapid modeling based on scheme language

    Science.gov (United States)

    Dai, Yidan

    2017-10-01

    According to nonimaging optical principle and traditional LED free-form surface lens, a new kind of LED free-form tilted lens was designed. And a method of rapid modeling based on Scheme language was proposed. The mesh division method was applied to obtain the corresponding surface configuration according to the character of the light source and the desired energy distribution on the illumination plane. Then 3D modeling software and the Scheme language programming are used to generate lens model respectively. With the help of optical simulation software, a light source with the size of 1mm*1mm*1mm in volume is used in experiment, and the lateral migration distance of illumination area is 0.5m, in which total one million rays are computed. We could acquire the simulated results of both models. The simulated output result shows that the Scheme language can prevent the model deformation problems caused by the process of the model transfer, and the degree of illumination uniformity is reached to 82%, and the offset angle is 26°. Also, the efficiency of modeling process is greatly increased by using Scheme language.

  13. Geometry of illumination, luminance contrast, and gloss perception

    OpenAIRE

    Leloup, Frédéric; Pointer, Michael R.; Dutré, Philip; Hanselaer, Peter

    2010-01-01

    The influence of both the geometry of illumination and luminance contrast on gloss perception has been examined using the method of paired comparison. Six achromatic glass samples having different lightness were illuminated by two light sources. Only one of these light sources was visible in reflection by the observer. By separate adjustment of the intensity of both light sources, the luminance of both the reflected image and the adjacent off-specular surroundings could be individually varied...

  14. Visible diffraction from quasi-crystalline arrays of carbon nanotubes

    Science.gov (United States)

    Butler, Timothy P.; Butt, Haider; Wilkinson, Timothy D.; Amaratunga, Gehan A. J.

    2015-08-01

    Large area arrays of vertically-aligned carbon nanotubes (VACNTs) are patterned in a quasi-crystalline Penrose tile arrangement through electron beam lithography definition of Ni catalyst dots and subsequent nanotube growth by plasma-enhanced chemical vapour deposition. When illuminated with a 532 nm laser beam high-quality and remarkable diffraction patterns are seen. The diffraction is well matched to theoretical calculations which assume apertures to be present at the location of the VACNTs for transmitted light. The results show that VACNTs act as diffractive elements in reflection and can be used as spatially phased arrays for producing tailored diffraction patterns.

  15. Illumination normalization based on simplified local binary patterns for a face verification system

    NARCIS (Netherlands)

    Tao, Q.; Veldhuis, Raymond N.J.

    2007-01-01

    Illumination normalization is a very important step in face recognition. In this paper we propose a simple implementation of Local Binary Patterns, which effectively reduces the variability caused by illumination changes. In combination with a likelihood ratio classifier, this illumination

  16. System Reliability for LED-Based Products

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J Lynn; Mills, Karmann; Lamvik, Michael; Yaga, Robert; Shepherd, Sarah D; Bittle, James; Baldasaro, Nick; Solano, Eric; Bobashev, Georgiy; Johnson, Cortina; Evans, Amy

    2014-04-07

    Results from accelerated life tests (ALT) on mass-produced commercially available 6” downlights are reported along with results from commercial LEDs. The luminaires capture many of the design features found in modern luminaires. In general, a systems perspective is required to understand the reliability of these devices since LED failure is rare. In contrast, components such as drivers, lenses, and reflector are more likely to impact luminaire reliability than LEDs.

  17. Permanent transparent color-warming glazes for dimmable and non-dimmable LED bulbs

    Science.gov (United States)

    Spanard, Jan-Marie A.

    2014-02-01

    Illuminant metameric failure is frequently experienced when viewing material samples under LED generated light vs. traditional incandescent light. LED light temperatures can be improved with phosphor coatings, but long-wave red light is still generally absent in LED "warm-white" light, resulting in metameric failure of orange-to-red objects. Drawing on techniques developed for the architectural restoration of stained glass, we find that transparent, heat-resistant, permanent, pigmented coatings can be applied to any glass, aluminum or plastic surface of an LED bulb, including the phosphor plate, dome or envelope, to produce warmer visible light than in current warm-light LED bulbs. These glazes can be applied in combination with existing technologies to better tune the LED emitted light or they may be used alone. These pigmented coatings include, but are not limited to, those made by suspending inorganic materials in potassium silicates or durable transparent pigmented resins. The pigmented resin glazes may be produced in either a clear gloss vehicle or an iridescent, light diffusing transparent base. Further, a graduated density of the tinted glazes on dimmable bulbs allow the light to change color as wattage is diminished. The glazes may be applied in the manufacturing of the bulb or marketed to current bulb owners as an after-market product to better tune the thousands of LED light bulbs currently in use.

  18. Feasibility of LED-Assisted CMOS Camera: Contrast Estimation for Laser Tattoo Treatment

    Directory of Open Access Journals (Sweden)

    Ngot Thi Pham

    2018-04-01

    Full Text Available Understanding the residual tattoo ink in skin after laser treatment is often critical for achieving good clinical outcomes. The current study aims to investigate the feasibility of a light-emitting diode (LED-assisted CMOS camera to estimate the relative variations in tattoo contrast after the laser treatment. Asian mice were tattooed using two color inks (black and red. The LED illumination was a separate process from the laser tattoo treatment. Images of the ink tattoos in skin were acquired under the irradiation of three different LED colors (red, green, and blue for pre- and post-treatment. The degree of contrast variation due to the treatment was calculated and compared with the residual tattoo distribution in the skin. The black tattoo demonstrated that the contrast consistently decreased after the laser treatment for all LED colors. However, the red tattoo showed that the red LED yielded an insignificant contrast whereas the green and blue LEDs induced a 30% (p < 0.001 and 26% (p < 0.01 contrast reduction between the treatment conditions, respectively. The proposed LED-assisted CMOS camera can estimate the relative variations in the image contrast before and after the laser tattoo treatment.

  19. Projecting LED product life based on application

    Science.gov (United States)

    Narendran, Nadarajah; Liu, Yi-wei; Mou, Xi; Thotagamuwa, Dinusha R.; Eshwarage, Oshadhi V. Madihe

    2016-09-01

    LED products have started to displace traditional light sources in many lighting applications. One of the commonly claimed benefits for LED lighting products is their long useful lifetime in applications. Today there are many replacement lamp products using LEDs in the marketplace. Typically, lifetime claims of these replacement lamps are in the 25,000-hour range. According to current industry practice, the time for the LED light output to reach the 70% value is estimated according to IESNA LM-80 and TM-21 procedures and the resulting value is reported as the whole system life. LED products generally experience different thermal environments and switching (on-off cycling) patterns when used in applications. Current industry test methods often do not produce accurate lifetime estimates for LED systems because only one component of the system, namely the LED, is tested under a continuous-on burning condition without switching on and off, and because they estimate for only one failure type, lumen depreciation. The objective of the study presented in this manuscript was to develop a test method that could help predict LED system life in any application by testing the whole LED system, including on-off power cycling with sufficient dwell time, and considering both failure types, catastrophic and parametric. The study results showed for the LED A-lamps tested in this study, both failure types, catastrophic and parametric, exist. The on-off cycling encourages catastrophic failure, and maximum operating temperature influences the lumen depreciation rate and parametric failure time. It was also clear that LED system life is negatively affected by on-off switching, contrary to commonly held belief. In addition, the study results showed that most of the LED systems failed catastrophically much ahead of the LED light output reaching the 70% value. This emphasizes the fact that life testing of LED systems must consider catastrophic failure in addition to lumen depreciation, and

  20. Inhibition of enteric pathogens using integrated high intensity 405 nm LED on the surface of almonds

    Science.gov (United States)

    The disinfecting properties of 405 nm light were investigated against Escherichia coli O157:H7, Salmonella, and their non-pathogenic surrogates inoculated onto the surface of almonds. High intensity monochromatic light was generated from an array of narrow-band 405 nm light emitting diodes (LED). Al...

  1. Spiral wobbling beam illumination uniformity in HIF fuel target implosion

    Directory of Open Access Journals (Sweden)

    Kawata S.

    2013-11-01

    Full Text Available A few % wobbling-beam illumination nonuniformity is realized in heavy ion inertial confinement fusion (HIF throughout the heavy ion beam (HIB driver pulse by a newly introduced spiraling beam axis motion in the first two rotations. The wobbling HIB illumination was proposed to realize a uniform implosion in HIF. However, the initial imprint of the wobbling HIBs was a serious problem and introduces a large unacceptable energy deposition nonuniformity. In the wobbling HIBs illumination, the illumination nonuniformity oscillates in time and space. The oscillating-HIB energy deposition may produce a time-dependent implosion acceleration, which reduces the Rayleigh-Taylor (R-T growth [Laser Part. Beams 11, 757 (1993, Nuclear Inst. Methods in Phys. Res. A 606, 152 (2009, Phys. Plasmas 19, 024503 (2012] and the implosion nonuniformity. The wobbling HIBs can be generated in HIB accelerators and the oscillating frequency may be several 100 MHz ∼ 1 GHz [Phys. Rev. Lett. 104, 254801 (2010]. Three-dimensional HIBs illumination computations present that the few % wobbling HIBs illumination nonuniformity oscillates with the same wobbling HIBs frequency.

  2. Real-time Global Illumination by Simulating Photon Mapping

    DEFF Research Database (Denmark)

    Larsen, Bent Dalgaard

    2004-01-01

    This thesis introduces a new method for simulating photon mapping in realtime. The method uses a variety of both CPU and GPU based algorithms for speeding up the different elements in global illumination. The idea behind the method is to calculate each illumination element individually in a progr......This thesis introduces a new method for simulating photon mapping in realtime. The method uses a variety of both CPU and GPU based algorithms for speeding up the different elements in global illumination. The idea behind the method is to calculate each illumination element individually...... in a progressive and efficient manner. This has been done by analyzing the photon mapping method and by selecting efficient methods, either CPU based or GPU based, which replaces the original photon mapping algorithms. We have chosen to focus on the indirect illumination and the caustics. In our method we first...... divide the photon map into several photon maps in order to make local updates possible. Then indirect illumination is added using light maps that are selectively updated by using selective photon tracing on the CPU. The final gathering step is calculated by using fragment programs and GPU based...

  3. Lunar South Pole Illumination: Review, Reassessment, and Power System Implications

    Science.gov (United States)

    Fincannon, James

    2007-01-01

    This paper reviews past analyses and research related to lunar south pole illumination and presents results of independent illumination analyses using an analytical tool and a radar digital elevation model. The analysis tool enables assessment at most locations near the lunar poles for any time and any year. Average illumination fraction, energy storage duration, solar/horizon terrain elevation profiles and illumination fraction profiles are presented for various highly illuminated sites which have been identified for manned or unmanned operations. The format of the data can be used by power system designers to develop mass optimized solar and energy storage systems. Data are presented for the worse case lunar day (a critical power planning bottleneck) as well as three lunar days during lunar south pole winter. The main site under consideration by present lunar mission planners (on the Crater Shackleton rim) is shown to have, for the worse case lunar day, a 0.71 average illumination fraction and 73 to 117 hours required for energy storage (depending on power system type). Linking other sites and including towers at either site are shown to not completely eliminate the need for energy storage.

  4. CFD modeling of a UV-LED photocatalytic odor abatement process in a continuous reactor

    International Nuclear Information System (INIS)

    Wang, Zimeng; Liu, Jing; Dai, Yuancan; Dong, Weiyang; Zhang, Shicheng; Chen, Jianmin

    2012-01-01

    Highlights: ► A CFD model is developed for a UV-LED based photocatalytic deodorization reactor. ► Radiation field model and Langmuir–Hinshelwood kinetics are integrated in the model. ► The model can predict the pollutant concentration profile and the reactor performance. ► LED distance is predicted to be a critical parameter in photocatalytic reactor design. - Abstract: This paper presents a model study of a UV light-emitting-diode (UV-LED) based photocatalytic odor abatement process. It integrated computational fluid dynamics (CFD) modeling of the gas flow in the reactor with LED-array radiation field calculation and Langmuir–Hinshelwood reaction kinetics. It was applied to simulate the photocatalytic degradation of dimethyl sulfide (DMS) in a UV-LED reactor based on experimentally determined chemical kinetic parameters. A non-linear power law relating reaction rate to irradiation intensity was adopted. The model could predict the steady state DMS concentration profiles by calculating the advection, diffusion and Langmuir–Hinshelwood reaction kinetics. By affecting the radiation intensity and uniformity, the position of the LED array relative to the catalyst appeared to be a critical parameter determining DMS removal efficiency. Too small distances might yield low quantum efficiency and consequently poor abatement performance. This study provided an example of LED-based photocatalytic process modeling and gave insights into the optimization of light source design for photocatalytic applications.

  5. Yuma Border Patrol Lighting Retrofit: Final LED System Performance Assessment of Trial and Full Installation

    Energy Technology Data Exchange (ETDEWEB)

    Andrea Wilkerson, Gregory P Sullivan, Robert G Davis, Sarah Safranek

    2018-04-30

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial evaluation in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations, and illuminance measurements were recorded initially and at 2500 hours, 5000 hours, 7000, and 11,000 hours of operation. Additionally, four second-generation LED luminaires installed as part of the full installation were evaluated initially and again after 4,000 hours of operation. While the initial energy, lighting quality, and maintenance benefits relative to the incumbent high-pressure sodium system were very satisfactory, the study raises important questions regarding the long-term performance of LED lighting systems in high-temperature environments.

  6. University of Maryland Wall Washer Retrofit - LED Modules Replace Halogen Lamps in a Performing Arts Center

    Energy Technology Data Exchange (ETDEWEB)

    Wilkerson, Andrea M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abell, Thomas C. [Univ. of Maryland, College Park, MD (United States); Perrin, Tess E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-03

    The University of Maryland (UMD) began retrofitting halogen wall washers in the Clarice Smith Performing Arts Center (CSPAC) in April 2014. The U.S. Department of Energy (DOE) Solid-State Lighting (SSL) GATEWAY program documented this process through the final installation in March 2015, summarized in this report. The wall washers illuminate hallways lining the atrium, providing task illuminance for transitioning between spaces and visual interest to the atrium boundaries. The main goals of the retrofit were to maintain the visual appearance of the space while reducing maintenance costs – energy savings was considered an additional benefit by UMD Facilities Management. UMD Facilities Management is pleased with the results of this retrofit, and continues to initiate LED retrofit projects across the UMD campus.

  7. Surface plasmon enhanced quantum transport in a hybrid metal nanoparticle array

    International Nuclear Information System (INIS)

    Sun, Lin; Nan, Yali; Xu, Shang; Zhang, Sishi; Han, Min

    2014-01-01

    Hybrid Pd–Ag nanoparticle arrays composed of randomly distributed Pd nanoparticles in dense packing and a small number of dispersed Ag nanoparticles were fabricated with controlled coverage. Photo-enhanced conductance was observed in the nanoparticle arrays. Largest enhancement, which can be higher than 20 folds, was obtained with 450 nm light illumination. This wavelength was found to correlate with the surface plasmon resonance of the Ag nanoparticles. Electron transport measurements showed there were significant Coulomb blockade in the nanoparticle arrays and the blockade could be overcome with the surface plasmon enhanced local field of Ag nanoparticles induced by light illumination. - Highlights: • We study photo-enhanced electron conductance of a hybrid Pd–Ag nanoparticle array. • The light-induced conductance enhancement is as high as 20 folds at 10 K. • The enhancement is correlate with the surface plasmon resonance of Ag nanoparticles. • Coulomb blockades is overcome with the surface plasmon enhanced local field

  8. Led Zeppelin reklaamib Narvat / Anti Ronk

    Index Scriptorium Estoniae

    Ronk, Anti

    2007-01-01

    Ilmus Narva-teemaline kahest CD-st koosnev album, kus ühel plaadil on 60 minutit videot linna vaatamisväärsuste ja informatsiooniga, teisel - briti rockansambli Led Zeppelini teosed Narva sümfooniaorkestri ja rockansambli Led R esituses

  9. Evaluation of current and temperature effects on optical performance of InGaAlP thin-film SMD LED mounted on different substrate packages

    International Nuclear Information System (INIS)

    Raypah, Muna E.; Devarajan, Mutharasu; Sulaiman, Fauziah

    2017-01-01

    The relationship between the photometric, electric, and thermal parameters of light-emitting diodes (LEDs) is important for optimizing the LED illumination design. Indium gallium aluminium phosphide (InGaAlP)-based thin-film surface-mounted device (SMD) LEDs have attracted wide attention in research and development due to their portability and miniaturization. We report the optical characterization of InGaAlP thin-film SMD LED mounted on FR4, 2 W, and 5 W aluminum (Al) packages. The optical and thermal parameters of LED are determined at different injection currents and ambient temperatures by combining the T3ster (thermal transient tester) and TeraLED (thermal and radiometric characterization of power LEDs) systems. Analysis shows that LED on a 5 W Al substrate package obtains the highest luminous and optical efficiency. (paper)

  10. Harmonics Monitoring Survey on LED Lamps

    Directory of Open Access Journals (Sweden)

    Abdelrahman Ahmed Akila

    2017-03-01

    Full Text Available Light Emitting Diode (LED lamps are being increasingly used in many applications. These LED lamps operate using a driver, which is a switching device. Hence, LED lamps will be a source of harmonics in the power system. These harmonics if not well treated, may cause severe performance and operational problems. In this paper, harmonics (amplitude and phase angles generated by both LED lamps and conventional fluorescent lamps will be studied practically. Then they will be analyzed and evaluated. Compared to each other harmonics generated by both LED and conventional florescent lamps, self mitigation may occur based on the phase angle of these harmonics. All data will be measured using power analyzer and will be done on a sample of actual lamps.

  11. White LEDs with limit luminous efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Lisitsyn, V. M.; Stepanov, S. A., E-mail: stepanovsa@tpu.ru; Yangyang, Ju [National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Lukash, V. S. [JSC Research Institute of Semiconductor Devices, 99a Krasnoarmeyskaja St., Tomsk, 634050 (Russian Federation)

    2016-01-15

    In most promising widespread gallium nitride based LEDs emission is generated in the blue spectral region with a maximum at about 450 nm which is converted to visible light with the desired spectrum by means of phosphor. The thermal energy in the conversion is determined by the difference in the energies of excitation and emission quanta and the phosphor quantum yield. Heat losses manifest themselves as decrease in the luminous efficacy. LED heating significantly reduces its efficiency and life. In addition, while heating, the emission generation output and the efficiency of the emission conversion decrease. Therefore, the reduction of the energy losses caused by heating is crucial for LED development. In this paper, heat losses in phosphor-converted LEDs (hereinafter chips) during spectrum conversion are estimated. The limit values of the luminous efficacy for white LEDs are evaluated.

  12. Application of 265-nm UVC LED Lighting to Sterilization of Typical Gram Negative and Positive Bacteria

    Science.gov (United States)

    Lee, Yong Wook; Yoon, Hyung Do; Park, Jae-Hyoun; Ryu, Uh-Chan

    2018-05-01

    UV LED lightings have been displacing conventional UV lamps due to their high efficiency, long lifetime, etc. A sterilizing lighting was prepared by assembling a UV LED module composed of 265-nm UVC LEDs and a silica lens array with a driver module comprised of a driver IC controlling pulse width modulation and constant current. The silica lens array was designed and fabricated to focus UV beam and simultaneously to give a uniform light distribution over specimens. Then pasteurizing effect of the lighting was analyzed for four kinds of bacteria and one yeast which are dangerous to people with low immunity. Sterilizing tests on these germs were carried out at the both exposure distances of 10 and 100 mm for various exposure durations up to 600 s.

  13. Illumination Conditions of the Lunar Polar Regions Using LOLA Topography

    Science.gov (United States)

    Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.; Torrence, M. H.

    2011-01-01

    We use high-resolution altimetry data obtained by the Lunar Orbiter Laser Altimeter instrument onboard the Lunar Reconnaissance Orbiter to characterize present illumination conditions in the polar regions of the Moon. Compared to previous studies, both the spatial and temporal extent of the simulations are increased significantly, as well as the coverage (fill ratio) of the topographic maps used, thanks to the 28 Hz firing rate of the five-beam instrument. We determine the horizon elevation in a number of directions based on 240 m-resolution polar digital elevation models reaching down to 75 latitude. The illumination of both polar regions extending to 80 can be calculated for any geometry from those horizon longitudinal profiles. We validated our modeling with recent Lunar Reconnaissance Orbiter Wide-Angle Camera images. We assessed the extent of permanently shadowed regions (PSRs, defined as areas that never receive direct solar illumination), and obtained total areas generally larger than previous studies (12,866 and 16,055 km2, in the north and south respectively). We extended our direct illumination model to account for singly-scattered light, and found that every PSR does receive some amount of scattered light during the year. We conducted simulations over long periods (several 18.6-years lunar precession cycles) with a high temporal resolution (6 h), and identified the most illuminated locations in the vicinity of both poles. Because of the importance of those sites for exploration and engineering considerations, we characterized their illumination more precisely over the near future. Every year, a location near the Shackleton crater rim in the south polar region is sunlit continuously for 240 days, and its longest continuous period in total darkness is about 1.5 days. For some locations small height gains ( 10 m) can dramatically improve their average illumination and reduce the night duration, rendering some of those particularly attractive energy-wise as

  14. Backside illuminated CMOS-TDI line scan sensor for space applications

    Science.gov (United States)

    Cohen, Omer; Ofer, Oren; Abramovich, Gil; Ben-Ari, Nimrod; Gershon, Gal; Brumer, Maya; Shay, Adi; Shamay, Yaron

    2018-05-01

    A multi-spectral backside illuminated Time Delayed Integration Radiation Hardened line scan sensor utilizing CMOS technology was designed for continuous scanning Low Earth Orbit small satellite applications. The sensor comprises a single silicon chip with 4 independent arrays of pixels where each array is arranged in 2600 columns with 64 TDI levels. A multispectral optical filter whose spectral responses per array are adjustable per system requirement is assembled at the package level. A custom 4T Pixel design provides the required readout speed, low-noise, very low dark current, and high conversion gains. A 2-phase internally controlled exposure mechanism improves the sensor's dynamic MTF. The sensor high level of integration includes on-chip 12 bit per pixel analog to digital converters, on-chip controller, and CMOS compatible voltage levels. Thus, the power consumption and the weight of the supporting electronics are reduced, and a simple electrical interface is provided. An adjustable gain provides a Full Well Capacity ranging from 150,000 electrons up to 500,000 electrons per column and an overall readout noise per column of less than 120 electrons. The imager supports line rates ranging from 50 to 10,000 lines/sec, with power consumption of less than 0.5W per array. Thus, the sensor is characterized by a high pixel rate, a high dynamic range and a very low power. To meet a Latch-up free requirement RadHard architecture and design rules were utilized. In this paper recent electrical and electro-optical measurements of the sensor's Flight Models will be presented for the first time.

  15. Evaluation of a LED-based flatbed document scanner for radiochromic film dosimetry in transmission mode.

    Science.gov (United States)

    Lárraga-Gutiérrez, José Manuel; García-Garduño, Olivia Amanda; Treviño-Palacios, Carlos; Herrera-González, José Alfredo

    2018-03-01

    Flatbed scanners are the most frequently used reading instrument for radiochromic film dosimetry because its low cost, high spatial resolution, among other advantages. These scanners use a fluorescent lamp and a CCD array as light source and detector, respectively. Recently, manufacturers of flatbed scanners replaced the fluorescent lamp by light emission diodes (LED) as a light source. The goal of this work is to evaluate the performance of a commercial flatbed scanner with LED based source light for radiochromic film dosimetry. Film read out consistency, response uniformity, film-scanner sensitivity, long term stability and total dose uncertainty was evaluated. In overall, the performance of the LED flatbed scanner is comparable to that of a cold cathode fluorescent lamp (CCFL). There are important spectral differences between LED and CCFL lamps that results in a higher sensitivity of the LED scanner in the green channel. Total dose uncertainty, film response reproducibility and long-term stability of LED scanner are slightly better than those of the CCFL. However, the LED based scanner has a strong non-uniform response, up to 9%, that must be adequately corrected for radiotherapy dosimetry QA. The differences in light emission spectra between LED and CCFL lamps and its potential impact on film-scanner sensitivity suggest that the design of a dedicated flat-bed scanner with LEDs may improve sensitivity and dose uncertainty in radiochromic film dosimetry. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. White LED with High Package Extraction Efficiency

    International Nuclear Information System (INIS)

    Yi Zheng; Stough, Matthew

    2008-01-01

    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W e using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat generated

  17. LED-driven backlights for automotive displays

    Science.gov (United States)

    Strauch, Frank

    2007-09-01

    As a light source the LED has some advantage over the traditionally used fluorescence tube such as longer life or lower space consumption. Consequently customers are asking for the LED lighting design in their products. We introduced in a company owned backlight the white LED technology. This step opens the possibility to have access to the components in the display market. Instead of having a finalized display product which needs to be integrated in the head unit of a car we assemble the backlight, the glass, own electronics and the housing. A major advantage of this concept is the better control of the heat flow generated by the LEDs to the outer side because only a common housing is used for all the components. Also the requirement for slim products can be fulfilled. As always a new technology doesn't come with advantages only. An LED represents a point source compared to the well-known tube thus requiring a mixing zone for the multiple point sources when they enter a light guide. This zone can't be used in displays because of the lack of homogeneity. It's a design goal to minimize this zone which can be helped by the right choice of the LED in terms of slimness. A step ahead is the implementation of RGB LEDs because of their higher color rendering abilities. This allows for the control of the chromaticity point under temperature change but as a drawback needs a larger mixing zone.

  18. High Power UV LED Industrial Curing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  19. Accommodating multiple illumination sources in an imaging colorimetry environment

    Science.gov (United States)

    Tobin, Kenneth W., Jr.; Goddard, James S., Jr.; Hunt, Martin A.; Hylton, Kathy W.; Karnowski, Thomas P.; Simpson, Marc L.; Richards, Roger K.; Treece, Dale A.

    2000-03-01

    Researchers at the Oak Ridge National Laboratory have been developing a method for measuring color quality in textile products using a tri-stimulus color camera system. Initial results of the Imaging Tristimulus Colorimeter (ITC) were reported during 1999. These results showed that the projection onto convex sets (POCS) approach to color estimation could be applied to complex printed patterns on textile products with high accuracy and repeatability. Image-based color sensors used for on-line measurement are not colorimetric by nature and require a non-linear transformation of the component colors based on the spectral properties of the incident illumination, imaging sensor, and the actual textile color. Our earlier work reports these results for a broad-band, smoothly varying D65 standard illuminant. To move the measurement to the on-line environment with continuously manufactured textile webs, the illumination source becomes problematic. The spectral content of these light sources varies substantially from the D65 standard illuminant and can greatly impact the measurement performance of the POCS system. Although absolute color measurements are difficult to make under different illumination, referential measurements to monitor color drift provide a useful indication of product quality. Modifications to the ITC system have been implemented to enable the study of different light sources. These results and the subsequent analysis of relative color measurements will be reported for textile products.

  20. Automatic residue removal for high-NA extreme illumination

    Science.gov (United States)

    Moon, James; Nam, Byong-Sub; Jeong, Joo-Hong; Kong, Dong-Ho; Nam, Byung-Ho; Yim, Dong Gyu

    2007-10-01

    An epidemic for smaller node has been that, as the device architecture shrinks, lithography process requires high Numerical Aperture (NA), and extreme illumination system. This, in turn, creates many lithography problems such as low lithography process margin (Depth of Focus, Exposure Latitude), unstable Critical Dimension (CD) uniformity and restricted guideline for device design rule and so on. Especially for high NA, extreme illumination such as immersion illumination systems, above all the related problems, restricted design rule due to forbidden pitch is critical and crucial issue. This forbidden pitch is composed of numerous optical effects but majority of these forbidden pitch compose of photo resist residue and these residue must be removed to relieve some room for already tight design rule. In this study, we propose automated algorithm to remove photo resist residue due to high NA and extreme illumination condition. This algorithm automatically self assembles assist patterns based on the original design layout, therefore insuring the safety and simplicity of the generated assist pattern to the original design and removes any resist residue created by extreme illumination condition. Also we tested our automated algorithm on full chip FLASH memory device and showed the residue removal effect by using commercial verification tools as well as on actual test wafer.

  1. Spectrally optimal illuminations for diabetic retinopathy detection in retinal imaging

    Science.gov (United States)

    Bartczak, Piotr; Fält, Pauli; Penttinen, Niko; Ylitepsa, Pasi; Laaksonen, Lauri; Lensu, Lasse; Hauta-Kasari, Markku; Uusitalo, Hannu

    2017-04-01

    Retinal photography is a standard method for recording retinal diseases for subsequent analysis and diagnosis. However, the currently used white light or red-free retinal imaging does not necessarily provide the best possible visibility of different types of retinal lesions, important when developing diagnostic tools for handheld devices, such as smartphones. Using specifically designed illumination, the visibility and contrast of retinal lesions could be improved. In this study, spectrally optimal illuminations for diabetic retinopathy lesion visualization are implemented using a spectrally tunable light source based on digital micromirror device. The applicability of this method was tested in vivo by taking retinal monochrome images from the eyes of five diabetic volunteers and two non-diabetic control subjects. For comparison to existing methods, we evaluated the contrast of retinal images taken with our method and red-free illumination. The preliminary results show that the use of optimal illuminations improved the contrast of diabetic lesions in retinal images by 30-70%, compared to the traditional red-free illumination imaging.

  2. Comparative analysis of face recognition techniques with illumination variation

    International Nuclear Information System (INIS)

    Jondhale, K C; Waghmare, L M

    2010-01-01

    Illumination variation is one of the major challenges in the face recognition. To deal with this problem, this paper presents comparative analysis of three different techniques. First, the DCT is employed to compensate for illumination variations in the logarithm domain. Since illumination variation lies mainly in the low frequency band, an appropriate number of DCT coefficients are truncated to reduce the variations under different lighting conditions. The nearest neighbor classifier based on Euclidean distance is employed for classification. Second, the performance of PCA is checked on normalized image. PCA is a technique used to reduce multidimensional data sets to a lower dimension for analysis. Third, LDA based methods gives a satisfactory result under controlled lighting condition. But its performance under large illumination variation is not satisfactory. So, the performance of LDA is checked on normalized image. Experimental results on the Yale B and ORL database show that the proposed approach of application of PCA and LDA on normalized dataset improves the performance significantly for the face images with large illumination variations.

  3. Assessment of LED Technology in Ornamental Post-Top Luminaires (Host Site: Sacramento, CA)

    Energy Technology Data Exchange (ETDEWEB)

    Tuenge, Jason R.

    2011-12-01

    The DOE Municipal Solid-State Street Lighting Consortium has evaluated four different LED replacements for existing ornamental post-top street lights in Sacramento, California. The project team was composed of the City and its consultant, PNNL (representing the Consortium), and the Sacramento Municipal Utility District. Product selection was finalized in March 2011, yielding one complete luminaire replacement and three lamp-ballast retrofit kits. Computer simulations, field measurements, and laboratory testing were performed to compare the performance and cost-effectiveness of the LED products relative to the existing luminaire with 100 W high-pressure sodium lamp. After it was confirmed the LED products were not equivalent to HPS in terms of initial photopic illumination, the following parameters were scaled proportionally to enable equitable (albeit hypothetical) comparisons: light output, input wattage, and pricing. Four replacement scenarios were considered for each LED product, incorporating new IES guidance for mesopic multipliers and lumen maintenance extrapolation, but life cycle analysis indicated cost effectiveness was also unacceptable. Although LED efficacy and pricing continue to improve, this project serves as a timely and objective notice that LED technology may not be quite ready yet for such applications.

  4. Array-based techniques for fingerprinting medicinal herbs

    Directory of Open Access Journals (Sweden)

    Xue Charlie

    2011-05-01

    Full Text Available Abstract Poor quality control of medicinal herbs has led to instances of toxicity, poisoning and even deaths. The fundamental step in quality control of herbal medicine is accurate identification of herbs. Array-based techniques have recently been adapted to authenticate or identify herbal plants. This article reviews the current array-based techniques, eg oligonucleotides microarrays, gene-based probe microarrays, Suppression Subtractive Hybridization (SSH-based arrays, Diversity Array Technology (DArT and Subtracted Diversity Array (SDA. We further compare these techniques according to important parameters such as markers, polymorphism rates, restriction enzymes and sample type. The applicability of the array-based methods for fingerprinting depends on the availability of genomics and genetics of the species to be fingerprinted. For the species with few genome sequence information but high polymorphism rates, SDA techniques are particularly recommended because they require less labour and lower material cost.

  5. Off-axis low coherence digital holographic interferometry for quantitative phase imaging with an LED

    Science.gov (United States)

    Guo, Rongli; Wang, Fan; Hu, Xiaoying; Yang, Wenqian

    2017-11-01

    Off-axis digital holographic interferometry with the light source of a light emitting diode (LED) is presented and its application for quantitative phase imaging in a large range with low noise is demonstrated. The scheme is implemented in a grating based Mach-Zehnder interferometer. To achieve off-axis interferometry, firstly, the collimated beam emitted from an LED is diffracted into multiple orders by a grating and they are split into two copies by a beam splitter; secondly, in the object arm the zero order of one copy is filtered in the Fourier plane and is reshaped to illuminate the sample, while in the reference arm one of its first order of another copy is selected to serve as the reference beam, and then an off-axis hologram can be obtained at the image plane. The main advantage stemming from an LED illumination is its high spatial phase resolution, due to the subdued speckle effect. The off-axis geometry enables one-shot recording of the hologram in the millisecond scale. The utility of the proposed setup is illustrated with measurements of a resolution target and part of a wing of green-lacewing, and dynamic evaporation process of an ethanol film.

  6. LED-induced fluorescence diagnostics for turbine and combustion engine thermometry

    International Nuclear Information System (INIS)

    Allison, S.W.

    2001-01-01

    Fluorescence from phosphor coatings is the basis of an established technique for measuring temperature in a wide variety of turbine and combustion engine applications. Example surfaces include blades, vanes, combustors, intake valves, pistons, and rotors. Many situations that are remote and noncontact require the high intensity of a laser to illuminate the phosphor, especially if the surface is moving. Thermometric resolutions of 0.1 C are obtainable, and some laboratory versions of these systems have been calibrated against NIST standards to even higher precision. To improve the measurement signal-to-noise ratio, synchronous detection timing has been used to repeatedly interrogate the same blade in a high speed rotating turbine. High spatial resolution can be obtained by tightly focusing the interrogation beam in measurements of static surfaces, and by precise differential timing of the laser pulses on rotating surfaces. We report here the use of blue light emitting diodes (LEDs) as a n illumination source for producing useable fluorescence from phosphors for temperature measurements. An LED can excite most of the same phosphors used to cover the temperature range from 8 to 1400 C. The advantages of using LEDs are obvious in terms of size, power requirements, space requirements and cost. There can also be advantages associated with very long operating lifetimes, wide range of available colors, and their broader emission bandwidths as compared to laser diodes. Temperature may be inferred either from phase or time-decay determinations

  7. Preliminary investigations of piezoelectric based LED luminary

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Andersen, Michael A. E.; Meyer, Kaspar Sinding

    2011-01-01

    , modulation schemes, LEDs and LED driving conditions are analyzed. A prototype radial mode PT optimized for ZVS (Zero Voltage Switching) is designed. FEM (Final Element Method) and measurements validates the PT design. A prototype PT based AC/DC converter operating from european mains is proposed......This paper presents a preliminary study of PT (Piezoelectric Transformer) based SMPS’s (Switch Mode Power Supplies) for LED luminary. The unique properties of PTs (efficiency, power density and EMI) make them highly suitable for this application. Power stage topologies, rectifiers circuits...

  8. Power Enhancement of Partial Shaded PV Array by Optimizing the Electrical Connection of Module

    Directory of Open Access Journals (Sweden)

    Wang Mengyao

    2015-01-01

    Full Text Available The maximum output power (Pmax generated from photovoltaic (PV array will be apparently reduced if the array is partially shaded. In order to enhance Pmax generated from partial shaded PV array, several interconnection schemes of array are proposed. Among these schemes, the totally cross tied (TCT scheme and the recently proposed static scheme are widely discussed. It was reported that Pmax produced with static scheme is equal to the TCT scheme even under worst conditions. However, in these simulations the illumination of every single module is assumed to be uniform, but in urban environments the illumination of modules on the edge of shadow is more likely to be non-uniform. In this paper, first, a comprehensive circuit-level simulation, which is implemented in PSpice, has been done to investigate performance of PV array with both TCT scheme and static scheme under different partial shading conditions. And the results show that Pmax generated from static scheme is higher than that form TCT scheme if the illumination of every single module is uniform, however if some modules are partially shaded, the Pmax with static scheme is more likely less than that with TCT scheme. Then, the electrical connection of a module is improved for the purpose of enhancing Pmax under partial shading conditions in which some modules in the array are partially shaded. And the simulation results show that Pmax is apparently increased by employing the improved modules.

  9. High Resolution Eddy-Current Wire Testing Based on a Gmr Sensor-Array

    Science.gov (United States)

    Kreutzbruck, Marc; Allweins, Kai; Strackbein, Chris; Bernau, Hendrick

    2009-03-01

    Increasing demands in materials quality and cost effectiveness have led to advanced standards in manufacturing technology. Especially when dealing with high quality standards in conjunction with high throughput quantitative NDE techniques are vital to provide reliable and fast quality control systems. In this work we illuminate a modern electromagnetic NDE approach using a small GMR sensor array for testing superconducting wires. Four GMR sensors are positioned around the wire. Each GMR sensor provides a field sensitivity of 200 pT/√Hz and a spatial resolution of about 100 μm. This enables us to detect under surface defects of 100 μm in size in a depth of 200 μm with a signal-to-noise ratio of better than 400. Surface defects could be detected with a SNR of up to 10,000. Besides this remarkably SNR the small extent of GMR sensors results in a spatial resolution which offers new visualisation techniques for defect localisation, defect characterization and tomography-like mapping techniques. We also report on inverse algorithms based on either a Finite Element Method or an analytical approach. These allow for accurate defect localization on the urn scale and an estimation of the defect size.

  10. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  11. Achieving uniform efficient illumination with multiple asymmetric compound parabolic luminaires

    Science.gov (United States)

    Gordon, Jeffrey M.; Kashin, Peter

    1994-01-01

    Luminaire designs based on multiple asymmetric nonimaging compound parabolic reflectors are proposed for 2-D illumination applications that require highly uniform far-field illuminance, while ensuring maximal lighting efficiency and sharp angular cutoffs. The new designs derive from recent advances in nonimaging secondary concentrators for line-focus solar collectors. The light source is not treated as a single entity, but rather is divided into two or more separate adjoining sources. An asymmetric compound parabolic luminaire is then designed around each half-source. Attaining sharp cutoffs requires relatively large reflectors. However, severe truncation of the reflectors renders these devices as compact as many conventional luminaires, at the penalty of a small fraction of the radiation being emitted outside the nominal cutoff. The configurations that maximize the uniformity of far-field illuminance offer significant improvements in flux homogeneity relative to alternative designs to date.

  12. Video repairing under variable illumination using cyclic motions.

    Science.gov (United States)

    Jia, Jiaya; Tai, Yu-Wing; Wu, Tai-Pang; Tang, Chi-Keung

    2006-05-01

    This paper presents a complete system capable of synthesizing a large number of pixels that are missing due to occlusion or damage in an uncalibrated input video. These missing pixels may correspond to the static background or cyclic motions of the captured scene. Our system employs user-assisted video layer segmentation, while the main processing in video repair is fully automatic. The input video is first decomposed into the color and illumination videos. The necessary temporal consistency is maintained by tensor voting in the spatio-temporal domain. Missing colors and illumination of the background are synthesized by applying image repairing. Finally, the occluded motions are inferred by spatio-temporal alignment of collected samples at multiple scales. We experimented on our system with some difficult examples with variable illumination, where the capturing camera can be stationary or in motion.

  13. Separate effects of background and illumination on lightness

    Directory of Open Access Journals (Sweden)

    Zdravković Sunčica

    2007-01-01

    Full Text Available Four experiments attempted to establish an effect of context on lightness. Lightness is one of the dimensions of color and it varies from black to white. Most of our stimuli were inspired by simultaneous lightness contrast illusion. First two experiments contrast the size of an effect produced by the change of background color vs. the change in illumination. The third experiment deals with different type of illusions, where the effect is obtained through the appearance of multiple illumination levels. The last experiment takes into account the ratio of the target and the background. The results reveal the size of effects produced separately by the background color and illumination level and suggest the prime importance of background. Also there are other factors such as reflectance range in the scene, incremental and decremental targets, and 2D vs. 3D representation.

  14. A back-illuminated megapixel CMOS image sensor

    Science.gov (United States)

    Pain, Bedabrata; Cunningham, Thomas; Nikzad, Shouleh; Hoenk, Michael; Jones, Todd; Wrigley, Chris; Hancock, Bruce

    2005-01-01

    In this paper, we present the test and characterization results for a back-illuminated megapixel CMOS imager. The imager pixel consists of a standard junction photodiode coupled to a three transistor-per-pixel switched source-follower readout [1]. The imager also consists of integrated timing and control and bias generation circuits, and provides analog output. The analog column-scan circuits were implemented in such a way that the imager could be configured to run in off-chip correlated double-sampling (CDS) mode. The imager was originally designed for normal front-illuminated operation, and was fabricated in a commercially available 0.5 pn triple-metal CMOS-imager compatible process. For backside illumination, the imager was thinned by etching away the substrate was etched away in a post-fabrication processing step.

  15. Local and Global Illumination in the Volume Rendering Integral

    Energy Technology Data Exchange (ETDEWEB)

    Max, N; Chen, M

    2005-10-21

    This article is intended as an update of the major survey by Max [1] on optical models for direct volume rendering. It provides a brief overview of the subject scope covered by [1], and brings recent developments, such as new shadow algorithms and refraction rendering, into the perspective. In particular, we examine three fundamentals aspects of direct volume rendering, namely the volume rendering integral, local illumination models and global illumination models, in a wavelength-independent manner. We review the developments on spectral volume rendering, in which visible light are considered as a form of electromagnetic radiation, optical models are implemented in conjunction with representations of spectral power distribution. This survey can provide a basis for, and encourage, new efforts for developing and using complex illumination models to achieve better realism and perception through optical correctness.

  16. Geometry of illumination, luminance contrast, and gloss perception.

    Science.gov (United States)

    Leloup, Frédéric B; Pointer, Michael R; Dutré, Philip; Hanselaer, Peter

    2010-09-01

    The influence of both the geometry of illumination and luminance contrast on gloss perception has been examined using the method of paired comparison. Six achromatic glass samples having different lightness were illuminated by two light sources. Only one of these light sources was visible in reflection by the observer. By separate adjustment of the intensity of both light sources, the luminance of both the reflected image and the adjacent off-specular surroundings could be individually varied. It was found that visual gloss appraisal did not correlate with instrumentally measured specular gloss; however, psychometric contrast seemed to be a much better correlate. It has become clear that not only the sample surface characteristics determine gloss perception: the illumination geometry could be an even more important factor.

  17. Josephson junction arrays

    International Nuclear Information System (INIS)

    Bindslev Hansen, J.; Lindelof, P.E.

    1985-01-01

    In this review we intend to cover recent work involving arrays of Josephson junctions. The work on such arrays falls naturally into three main areas of interest: 1. Technical applications of Josephson junction arrays for high-frequency devices. 2. Experimental studies of 2-D model systems (Kosterlitz-Thouless phase transition, commensurate-incommensurate transition in frustrated (flux) lattices). 3. Investigations of phenomena associated with non-equilibrium superconductivity in and around Josephson junctions (with high current density). (orig./BUD)

  18. Phased-array radars

    Science.gov (United States)

    Brookner, E.

    1985-02-01

    The operating principles, technology, and applications of phased-array radars are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid radars combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US military systems COBRA DANE and PAVE PAWS as examples.

  19. Efficient conceptual design for LED-based pixel light vehicle headlamps

    Science.gov (United States)

    Held, Marcel Philipp; Lachmayer, Roland

    2017-12-01

    High-resolution vehicle headlamps represent a future-oriented technology that can be used to increase traffic safety and driving comfort. As a further development to the current Matrix Beam headlamps, LED-based pixel light systems enable ideal lighting functions (e.g. projection of navigation information onto the road) to be activated in any given driving scenario. Moreover, compared to other light-modulating elements such as DMDs and LCDs, instantaneous LED on-off toggling provides a decisive advantage in efficiency. To generate highly individualized light distributions for automotive applications, a number of approaches using an LED array may be pursued. One approach is to vary the LED density in the array so as to output the desired light distribution. Another notable approach makes use of an equidistant arrangement of the individual LEDs together with distortion optics to formulate the desired light distribution. The optical system adjusts the light distribution in a manner that improves resolution and increases luminous intensity of the desired area. An efficient setup for pixel generation calls for one lens per LED. Taking into consideration the limited space requirements of the system, this implies that the luminous flux, efficiency and resolution image parameters are primarily controlled by the lens dimensions. In this paper a concept for an equidistant LED array arrangement utilizing distortion optics is presented. The paper is divided into two parts. The first part discusses the influence of lens geometry on the system efficiency whereas the second part investigates the correlation between resolution and luminous flux based on the lens dimensions.

  20. Difference in opalescence of restorative materials by the illuminant.

    Science.gov (United States)

    Yu, Bin; Lee, Yong-Keun

    2009-08-01

    To determine the differences in the opalescence parameter (OP) of indirect and direct resin composites, veneer ceramics and bovine enamel relative to the CIE standard illuminants D65, A and F2. BelleGlass NG (indirect resin; 10 shades) and Estelite Sigma (direct resin; 12 shades), and 4 shades of veneer ceramics were investigated. Bovine enamel was used as a reference. Reflected and transmitted colors of specimens were measured relative to the illuminants D65, A and F2 with a reflection spectrophotometer. OP values relative to the three illuminants [OP(D65), OP(A) and OP(F2)], difference in OP (DeltaOP) and OP difference ratio relative to OP(D65) [DeltaOP/OP(D65)] by the change of illuminants were calculated. Within each restorative material, DeltaOP and DeltaOP/OP(D65) values were analyzed with two-way analysis of variance (ANOVA), with the fixed factors of the shade designation and the combination of illuminants (alpha=0.05). DeltaOP and DeltaOP/OP(D65) values were influenced by the two factors within each restorative material based on two-way ANOVA. High opalescent materials showed higher DeltaOP values. OP(D65) was lower than OP(F2) and OP(A) values. Restorative materials showed lower DeltaOP/OP(D65) values than bovine enamel. Correlation coefficients between OP values relative to different illuminants were higher than 0.961 (Popalescence properties as compared with natural tooth enamel.