WorldWideScience

Sample records for lecture-based introductory courses

  1. A comparative study of traditional lecture methods and interactive lecture methods in introductory geology courses for non-science majors at the college level

    Science.gov (United States)

    Hundley, Stacey A.

    In recent years there has been a national call for reform in undergraduate science education. The goal of this reform movement in science education is to develop ways to improve undergraduate student learning with an emphasis on developing more effective teaching practices. Introductory science courses at the college level are generally taught using a traditional lecture format. Recent studies have shown incorporating active learning strategies within the traditional lecture classroom has positive effects on student outcomes. This study focuses on incorporating interactive teaching methods into the traditional lecture classroom to enhance student learning for non-science majors enrolled in introductory geology courses at a private university. Students' experience and instructional preferences regarding introductory geology courses were identified from survey data analysis. The information gained from responses to the questionnaire was utilized to develop an interactive lecture introductory geology course for non-science majors. Student outcomes were examined in introductory geology courses based on two teaching methods: interactive lecture and traditional lecture. There were no significant statistical differences between the groups based on the student outcomes and teaching methods. Incorporating interactive lecture methods did not statistically improve student outcomes when compared to traditional lecture teaching methods. However, the responses to the survey revealed students have a preference for introductory geology courses taught with lecture and instructor-led discussions and students prefer to work independently or in small groups. The results of this study are useful to individuals who teach introductory geology courses and individuals who teach introductory science courses for non-science majors at the college level.

  2. Factors associated with the success of first-time African American freshmen taking introductory science lecture courses at a private HBCU

    Science.gov (United States)

    Smith, Kendra Leigh

    This study had four purposes: (1) to investigate the relationship between performance in introductory biology or introductory chemistry lecture courses and their accompanying laboratory courses, (2) to investigate the relationship between performance in introductory biology or introductory chemistry lecture courses and a student's gender, (3) to investigate the relationship between performance in introductory biology or introductory chemistry lecture courses and a student's major, and (4) to investigate the relationship between performance in introductory biology or introductory chemistry lecture courses and a student's ACT scores. The sample consisted of 195 first--time freshmen who enrolled in and completed an introductory biology or an introductory chemistry lecture and laboratory courses during the fall semesters of 2007-2012. Of the 195 students, 61 were enrolled in introductory chemistry and 134 were enrolled in introductory biology courses. Logistic regression, via the Statistical Package for the Social Sciences (SPSS), was utilized to analyze several variables as they related to success in the lecture courses. Data were extracted from the university's student information system (BANNER), and analyses were conducted on biology and chemistry separately. The dependent variable for this study was a dichotomous variable for success and nonsuccess in introductory biology or introductory chemistry lecture course. The independent variables analyzed were student's gender, major, final grade in an accompanying biology or chemistry laboratory course, and ACT test scores (composite, mathematics, and science). Results indicate that concurrent enrollment in a biology laboratory course increased the likelihood of success by 15.64 times in the lecture course. Gender was found to not be a significant predictor of success for either introductory biology or introductory chemistry lecture courses. STEM majors were 9.6 times more likely to be successful than non-STEM majors in

  3. Effect of Using Separate Laboratory and Lecture Courses for Introductory Crop Science on Student Performance.

    Science.gov (United States)

    Wiebold, W. J.; Slaughter, Leon

    1986-01-01

    Reviews a study that examined the effects of laboratories on the grade performance of undergraduates in an introductory crop science course. Results indicated that students enrolled in lecture and laboratory concurrently did not receive higher lecture grades than students enrolled solely in lecture, but did have higher laboratory grades. (ML)

  4. Lecture notes of the Introductory course to the European Conference on Neutron Scattering, ECNS'99

    International Nuclear Information System (INIS)

    Kadar, G.; Rosta, L.

    1999-01-01

    The aim of this volume of Lecture Notes is to form and confirm a tradition of Introductory Courses in relation to the European Conferences on Neutron Scattering. The structure of the Lecture Notes is as follows: a general block of introduction of mainly experimental character is presented, then traditional diffraction methods are discussed. Some aspects of small angle neutron scattering and reflectometry are discussed, and in a final block the well-known techniques of inelastic neutron scattering is outlined. 12 items are indexed separately for the INIS database. (K.A.)

  5. Web-Based Learning Enhancements: Video Lectures through Voice-Over PowerPoint in a Majors-Level Biology Course

    Science.gov (United States)

    Lents, Nathan H.; Cifuentes, Oscar E.

    2009-01-01

    This study is an experimental introduction of web-based lecture delivery into a majors-level introductory biology course. Web-based delivery, achieved through the use of prerecorded Voice-Over PowerPoint video lectures, was introduced on a limited basis to an experimental section while a control group, with the same instructor, received standard…

  6. CAS Introductory Course in Italy

    CERN Multimedia

    2008-01-01

    The CERN Accelerator School’s introductory course is a great success. This year the CERN Accelerator School held its "Introduction to Accelerator Physics" course in Frascati, Italy, from 2-14 November in collaboration with the University of Rome "La Sapienza" and the INFN Frascati National Laboratory. The Introductory level course is particularly important since, for the majority of participants, it is the first opportunity to discover the various aspects of accelerator physics. For this school the programme had been significantly revised in order to take into account the new trends currently being developed in the field, thus putting more emphasis on linacs, synchrotron light sources and free-electron lasers. The school was a resounding success with 115 participants of more than 23 nationalities. Feedback from the students praised the expertise of the lecturers, the high standard of the lectures as well as the excellent organizati...

  7. Documenting Instructional Practices in Large Introductory STEM Lecture Courses

    Science.gov (United States)

    Vu, Viet Quoc

    STEM education reform in higher education is framed around the need to improve student learning outcomes, increase student retention, and increase the number of underrepresented minorities and female students in STEM fields, all of which would ultimately contribute to America's competitiveness and prosperity. To achieve these goals, education reformers call for an increase in the adoption of research-based "promising practices" in classrooms. Despite efforts to increase the adoption of more promising practices in classrooms, postsecondary instructors are still likely to lecture and use traditional teaching approaches. To shed light on this adoption dilemma, a mix-methods study was conducted. First, instructional practices in large introductory STEM courses were identified, followed by an analysis of factors that inhibit or contribute to the use of promising practices. Data were obtained from classroom observations (N = 259) of large gateway courses across STEM departments and from instructor interviews (N = 67). Results show that instructors are already aware of promising practices and that change strategies could move from focusing on the development and dissemination of promising practices to focusing on improving adoption rates. Teaching-track instructors such as lecturers with potential for security of employment (LPSOE) and lecturers with security of employment (LSOE) have adopted promising practices more than other instructors. Interview data show that LPSOEs are also effective at disseminating promising practices to their peers, but opinion leaders (influential faculty in a department) are necessary to promote adoption of promising practices by higher ranking instructors. However, hiring more LPSOEs or opinion leaders will not be enough to shift instructional practices. Variations in the adoption of promising practices by instructors and across departments show that any reform strategy needs to be systematic and take into consideration how information is

  8. Blended Learning Versus Traditional Lecture in Introductory Nursing Pathophysiology Courses.

    Science.gov (United States)

    Blissitt, Andrea Marie

    2016-04-01

    Currently, many undergraduate nursing courses use blended-learning course formats with success; however, little evidence exists that supports the use of blended formats in introductory pathophysiology courses. The purpose of this study was to compare the scores on pre- and posttests and course satisfaction between traditional and blended course formats in an introductory nursing pathophysiology course. This study used a quantitative, quasi-experimental, nonrandomized control group, pretest-posttest design. Analysis of covariance compared pre- and posttest scores, and a t test for independent samples compared students' reported course satisfaction of the traditional and blended course formats. Results indicated that the differences in posttest scores were not statistically significant between groups. Students in the traditional group reported statistically significantly higher satisfaction ratings than students in the blended group. The results of this study support the need for further research of using blended learning in introductory pathophysiology courses in undergraduate baccalaureate nursing programs. Further investigation into how satisfaction is affected by course formats is needed. Copyright 2016, SLACK Incorporated.

  9. Course Format Effects on Learning Outcomes in an Introductory Statistics Course

    Science.gov (United States)

    Sami, Fary

    2011-01-01

    The purpose of this study was to determine if course format significantly impacted student learning and course completion rates in an introductory statistics course taught at Harford Community College. In addition to the traditional lecture format, the College offers an online, and a hybrid (blend of traditional and online) version of this class.…

  10. TA Mentorship in Lecture significantly enhances students' learning in mechanics in large introductory physics classes

    Science.gov (United States)

    Cheng, K.; Caglar, Mehmet

    2011-10-01

    Lab is an important component of students' learning in a traditional lecture-lab setting of introductory physics courses. Using standard mechanics concepts and baseline surveys as well as independent classroom observations, the effects of TA mentorship in Lecture on students' learning of physics concepts and problem-solving skills among different student subgroups taught by other TAs and lecturers using different level of student interactive engagement in classes have been analyzed. Our data indicate that in lecture training of TA promotes lecture/lab synergism in improvement students' learning of mechanics in large introductory physics classes.

  11. Incorporating a Watershed-Based Summary Field Exercise into an Introductory Hydrogeology Course

    Science.gov (United States)

    Fryar, Alan E.; Thompson, Karen E.; Hendricks, Susan P.; White, David S.

    2010-01-01

    We have developed and implemented a summary field exercise for an introductory hydrogeology course without a laboratory section. This exercise builds on lectures and problem sets that use pre-existing field data. During one day in April, students measure hydraulic heads, stream and spring flow, and stream-bed seepage within the rural watershed of…

  12. Interactive Lecture Experiments in Large Introductory Physics Classes

    Science.gov (United States)

    Milner-Bolotin, Marina M.; Kotlicki, A.; Rieger, G.; Bates, F.; Moll, R.; McPhee, K.; Nashon, S.

    2006-12-01

    We describe Interactive Lecture Experiments (ILE), which build on Interactive Lecture Demonstrations proposed by Sokoloff and Thornton (2004) and extends it by providing students with the opportunity to analyze experiments demonstrated in the lecture outside of the classroom. Real time experimental data is collected, using Logger Pro combined with the digital video technology. This data is uploaded to the Internet and made available to the students for further analysis. Student learning is assessed in the following lecture using conceptual questions (clickers). The goal of this project is to use ILE to make large lectures more interactive and promote student interest in science, critical thinking and data analysis skills. We report on the systematic study conducted using the Colorado Learning Attitudes about Science Survey, Force Concept Inventory, open-ended physics problems and focus group interviews to determine the impact of ILE on student academic achievement, motivation and attitudes towards physics. Three sections of students (750 students) experienced four ILE experiments. The surveys were administered twice and academic results for students who experienced the ILE for a particular topic were compared to the students, from a different section, who did not complete the ILE for that topic. Additional qualitative data on students’ attitudes was collected using open ended survey questions and interviews. We will present preliminary conclusions about the role of ILEs as an effective pedagogy in large introductory physics courses. Sokoloff, D.R. and R.K. Thornton (2004). Interactive Lecture Demonstrations: Active Learning in Introductory Physics, J.Wiley & Sons, INC. Interactive Lecture Experiments: http://www.physics.ubc.ca/ year1lab/p100/LectureLabs/lectureLabs.html

  13. First-Day Strategies for Millennial Students in Introductory Accounting Courses: It's All Fun and Games until Something Gets Learned

    Science.gov (United States)

    Mastilak, Christian

    2012-01-01

    Millennial students often possess characteristics at odds with typical lecture-based approaches to introductory accounting courses. The author introduces an approach for reaching millennial students early in introductory accounting courses in ways that fit millennials' characteristics. This article describes the use of the board game Monopoly[R]…

  14. Lecturers' Perspectives on How Introductory Economic Courses Address Sustainability

    Science.gov (United States)

    Green, Tom L.

    2015-01-01

    Purpose: The purpose of this article is to explore sustainability commitments' potential implications for the curriculum of introductory economics courses. Universities have signed the Talloires Declaration, committing themselves to promoting students' environmental literacy and ecological citizenship, thereby creating pressure to integrate…

  15. A Hybrid and Flipped Version of an Introductory Mathematics Course for Higher Education

    Science.gov (United States)

    Salinas Martínez, N. Patricia; Quintero Rodríguez, Eliud

    2018-01-01

    This in practice paper describes the experience of seven lecturers in a hybrid and flipped version of an introductory mathematics course for higher education. In a Mexican university, lecturers adapted to this innovation supported by an adjusted Massive Open Online Course. The experience revealed the relevance of leaving conventional assessment…

  16. Do evidence-based active-engagement courses reduce the gender gap in introductory physics?

    Science.gov (United States)

    Karim, Nafis I.; Maries, Alexandru; Singh, Chandralekha

    2018-03-01

    Prior research suggests that using evidence-based pedagogies can not only improve learning for all students, it can also reduce the gender gap. We describe the impact of physics education research-based pedagogical techniques in flipped and active-engagement non-flipped courses on the gender gap observed with validated conceptual surveys. We compare male and female students’ performance in courses which make significant use of evidence-based active-engagement (EBAE) strategies with courses that primarily use lecture-based (LB) instruction. All courses had large enrolment and often had more than 100 students. The analysis of data for validated conceptual surveys presented here includes data from two-semester sequences of algebra-based and calculus-based introductory physics courses. The conceptual surveys used to assess student learning in the first and second semester courses were the force concept inventory and the conceptual survey of electricity and magnetism, respectively. In the research discussed here, the performance of male and female students in EBAE courses at a particular level is compared with LB courses in two situations: (I) the same instructor taught two courses, one of which was an EBAE course and the other an LB course, while the homework, recitations and final exams were kept the same; (II) student performance in all of the EBAE courses taught by different instructors was averaged and compared with LB courses of the same type also averaged over different instructors. In all cases, on conceptual surveys we find that students in courses which make significant use of active-engagement strategies, on average, outperformed students in courses of the same type using primarily lecture-based instruction even though there was no statistically significant difference on the pre-test before instruction. However, the gender gap persisted even in courses using EBAE methods. We also discuss correlations between the performance of male and female students on

  17. The Effects of Pre-Lecture Quizzes on Test Anxiety and Performance in a Statistics Course

    Science.gov (United States)

    Brown, Michael J.; Tallon, Jennifer

    2015-01-01

    The purpose of our study was to examine the effects of pre-lecture quizzes in a statistics course. Students (N = 70) from 2 sections of an introductory statistics course served as participants in this study. One section completed pre-lecture quizzes whereas the other section did not. Completing pre-lecture quizzes was associated with improved exam…

  18. Transversality of Electromagnetic Waves in the Calculus--Based Introductory Physics Course

    Science.gov (United States)

    Burko, Lior M.

    2009-05-01

    Introductory calculus--based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation), and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes. We have successfully integrated this approach in the calculus--based introductory physics course at the University of Alabama in Huntsville.

  19. A Survey of Introductory Statistics Courses at University Faculties of Pharmaceutical Sciences in Japan.

    Science.gov (United States)

    Matsumura, Mina; Nakayama, Takuto; Sozu, Takashi

    2016-01-01

    A survey of introductory statistics courses at Japanese medical schools was published as a report in 2014. To obtain a complete understanding of the way in which statistics is taught at the university level in Japan, it is important to extend this survey to related fields, including pharmacy, dentistry, and nursing. The current study investigates the introductory statistics courses offered by faculties of pharmaceutical sciences (six-year programs) at Japanese universities, comparing the features of these courses with those studied in the survey of medical schools. We collected relevant data from the online syllabi of statistics courses published on the websites of 71 universities. The survey items included basic course information (for example, the course names, the targeted student grades, the number of credits, and course classification), textbooks, handouts, the doctoral subject and employment status of each lecturer, and course contents. The period surveyed was July-September 2015. We found that these 71 universities offered a total of 128 statistics courses. There were 67 course names, the most common of which was "biostatistics (iryou toukeigaku)." About half of the courses were designed for first- or second-year students. Students earned fewer than two credits. There were 62 different types of textbooks. The lecturers held doctoral degrees in 18 different subjects, the most common being a doctorate in pharmacy or science. Some course content differed, reflecting the lecturers' academic specialties. The content of introductory statistics courses taught in pharmaceutical science programs also differed slightly from the equivalent content taught in medical schools.

  20. Introductory lecture series for first-year radiology residents: implementation, investment and assessment.

    Science.gov (United States)

    Chapman, Teresa; Chew, Felix S

    2013-03-01

    A lecture series aimed at providing new radiology residents a rapid course on the fundamental concepts of professionalism, safety, and interpretation of diagnostic imaging was established. Evaluation of the course's educational value was attempted through surveys. Twenty-six live 45-minute lectures presented by 16 or 17 faculty members were organized exclusively for the first class of radiology residents, held over a 2-month period at the beginning of certain weekdays. Online surveys were conducted after the course to gather feedback from residents. Average resident rotation evaluation scores were measured over the first semester for the two classes before and after this new course implementation. The lecture series was successfully organized and implemented. A total of 33 residents sat through the course over three summers. Faculty reported a reasonable number of preparation hours, and 100% of residents indicated they valued the course. Comparison of class average evaluation scores before and after the existence of this 2-month course did not significantly change. This collection of introductory lectures on professionalism, safety, and diagnostic imaging, delivered early in the first year of the radiology residency, requires a reasonable number of invested preparation hours by the faculty but results in a universal increase in resident confidence. However, we were unable to demonstrate an objective improvement in resident performance on clinical rotations. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  1. Pedagogic discourse in introductory classes: Multi-dimensional analysis of textbooks and lectures in biology and macroeconomics

    Science.gov (United States)

    Carkin, Susan

    The broad goal of this study is to represent the linguistic variation of textbooks and lectures, the primary input for student learning---and sometimes the sole input in the large introductory classes which characterize General Education at many state universities. Computer techniques are used to analyze a corpus of textbooks and lectures from first-year university classes in macroeconomics and biology. These spoken and written variants are compared to each other as well as to benchmark texts from other multi-dimensional studies in order to examine their patterns, relations, and functions. A corpus consisting of 147,000 words was created from macroeconomics and biology lectures at a medium-large state university and from a set of nationally "best-selling" textbooks used in these same introductory survey courses. The corpus was analyzed using multi-dimensional methodology (Biber, 1988). The analysis consists of both empirical and qualitative phases. Quantitative analyses are undertaken on the linguistic features, their patterns of co-occurrence, and on the contextual elements of classrooms and textbooks. The contextual analysis is used to functionally interpret the statistical patterns of co-occurrence along five dimensions of textual variation, demonstrating patterns of difference and similarity with reference to text excerpts. Results of the analysis suggest that academic discourse is far from monolithic. Pedagogic discourse in introductory classes varies by modality and discipline, but not always in the directions expected. In the present study the most abstract texts were biology lectures---more abstract than written genres of academic prose and more abstract than introductory textbooks. Academic lectures in both disciplines, monologues which carry a heavy informational load, were extremely interactive, more like conversation than academic prose. A third finding suggests that introductory survey textbooks differ from those used in upper division classes by being

  2. Development and evaluation of clicker methodology for introductory physics courses

    Science.gov (United States)

    Lee, Albert H.

    Many educators understand that lectures are cost effective but not learning efficient, so continue to search for ways to increase active student participation in this traditionally passive learning environment. In-class polling systems, or "clickers", are inexpensive and reliable tools allowing students to actively participate in lectures by answering multiple-choice questions. Students assess their learning in real time by observing instant polling summaries displayed in front of them. This in turn motivates additional discussions which increase the opportunity for active learning. We wanted to develop a comprehensive clicker methodology that creates an active lecture environment for a broad spectrum of students taking introductory physics courses. We wanted our methodology to incorporate many findings of contemporary learning science. It is recognized that learning requires active construction; students need to be actively involved in their own learning process. Learning also depends on preexisting knowledge; students construct new knowledge and understandings based on what they already know and believe. Learning is context dependent; students who have learned to apply a concept in one context may not be able to recognize and apply the same concept in a different context, even when both contexts are considered to be isomorphic by experts. On this basis, we developed question sequences, each involving the same concept but having different contexts. Answer choices are designed to address students preexisting knowledge. These sequences are used with the clickers to promote active discussions and multiple assessments. We have created, validated, and evaluated sequences sufficient in number to populate all of introductory physics courses. Our research has found that using clickers with our question sequences significantly improved student conceptual understanding. Our research has also found how to best measure student conceptual gain using research-based instruments

  3. A Lab-Based, Lecture-Free General Physics Course

    Science.gov (United States)

    Schneider, Mark B.

    1997-04-01

    The past four years have seen the development of a discovery style, lecture-free, lab-based General Physics course at Grinnell College. Similar in spirit to Priscilla Laws' Workshop Physics (P. Laws, Physics Today, Dec. 1991, p. 24.), this course is a calculus- based, two-semester sequence, which is offered in parallel with more conventional lecture sections, allowing students choice of pedagogical styles. This new course is taught without a text, allowing a somewhat atypical ordering of topics and the early inclusion of a modern introduction to quantum and statistical mechanics. A complete set of laboratory materials was developed at Grinnell for this course, with activities considerably different in most cases than Laws' activities. A quick overview of the pedagogical style and topics covered will be given, and then several specific activities will be described in greater detail. The course has been shown to be a popular and viable alternative to the more conventional sections for majors and non-majors; ongoing efforts to assess the course will be described, especially those that make comparisons between this course and more conventional sections.

  4. The Socratic Method in the Introductory PR Course: An Alternative Pedagogy.

    Science.gov (United States)

    Parkinson, Michael G.; Ekachai, Daradirek

    2002-01-01

    Presents the results of a study comparing student reactions to and perceptions of learning in introductory public relations courses using a traditional lecture format and a Socratic approach. Finds significant differences in the two groups showing that students who received the Socratic instruction reported more opportunities in practicing their…

  5. Evolving Roles For Teaching Assistants In Introductory Courses

    Science.gov (United States)

    Dunbar, R. W.; Egger, A. E.; Schwartz, J. K.

    2008-12-01

    As we bring new research-based learning approaches, curricular innovations, and student engagement practices into the introductory science classroom, expectations of teaching assistants (TAs) should have, and have, changed. Similarly, the 21st century teaching assistant has different expectations of us. Maintaining relevance in this context means bringing TAs into an integrated teaching team that supports effective learning for students and provides structured professional development opportunities for TAs. A number of support efforts on our campus, with counterparts at many other universities, seek to optimize the instructional impact of faculty and teaching assistants, thus opening the door to enhanced student engagement (e.g. the quality of effort students put forth, their persistence in science and/or engineering courses, and their perception of scientific relevance in everyday life). Among these efforts, School of Earth Sciences course development TAs work 1:1 in advance of the term with introductory course faculty to design exercises and course materials that meet clearly articulated student learning goals or pedagogical challenges. Throughout the process, TAs are mentored by the faculty as well as science pedagogy experts. Initially funded by a major teaching award, the School is now moving to institutionalize this successful program which has broadened the definition of the TA role. Another area of optimization, reflecting Shulman's concept of pedagogical content knowledge, is our campus mandate that TA development take place within a departmental, as well as general, context. Both Chemistry and Physics expect introductory course TAs to lead interactive, guided-inquiry or tutorial-style sections. Integrating these sections with lecture and positively reinforcing course goals requires TA buy-in and a set of pedagogical facilitation skills cultivated through course-specific training and active mentoring while teaching. To better support the mentoring process

  6. Transversality of electromagnetic waves in the calculus-based introductory physics course

    International Nuclear Information System (INIS)

    Burko, Lior M

    2008-01-01

    Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation) and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes

  7. Transversality of electromagnetic waves in the calculus-based introductory physics course

    Science.gov (United States)

    Burko, Lior M.

    2008-11-01

    Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation) and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes.

  8. Flipped Statistics Class Results: Better Performance than Lecture over One Year Later

    Science.gov (United States)

    Winquist, Jennifer R.; Carlson, Keith A.

    2014-01-01

    In this paper, we compare an introductory statistics course taught using a flipped classroom approach to the same course taught using a traditional lecture based approach. In the lecture course, students listened to lecture, took notes, and completed homework assignments. In the flipped course, students read relatively simple chapters and answered…

  9. Incorporating Code-Based Software in an Introductory Statistics Course

    Science.gov (United States)

    Doehler, Kirsten; Taylor, Laura

    2015-01-01

    This article is based on the experiences of two statistics professors who have taught students to write and effectively utilize code-based software in a college-level introductory statistics course. Advantages of using software and code-based software in this context are discussed. Suggestions are made on how to ease students into using code with…

  10. Introduction to neutron scattering. Lecture notes of the introductory course

    International Nuclear Information System (INIS)

    Furrer, A.

    1996-01-01

    These proceedings enclose ten papers presented at the 1. European Conference on Neutron scattering (ECNS '96). The aim of the Introductory Course was fourfold: - to learn the basic principles of neutron scattering, - to get introduced into the most important classes of neutron scattering instruments, -to learn concepts and their transformation into neutron scattering experiments in various fields of condensed matter research, - to recognize the limitations of the neutron scattering technique as well as to the complementarity of other methods. figs., tabs., refs

  11. The effect of the flipped model on achievement in an introductory college physics course

    Science.gov (United States)

    Winter, Joshua Brian

    The flipped or inverted classroom model is one in which the time and place for traditional lecture and homework are reversed. Traditional lecture is replaced by online videos assigned as homework. This frees up time in class to be spent with more student centered activities such as discussion based concept questions and group problem solving. While growing in popularity, research on the effectiveness of this format is sparse. In this quasi-experimental study, two sections of an introductory algebra-based college physics course were examined over a five week period. Each section was taught with either the traditional or flipped model and physics knowledge achieved was compared using independent samples t-tests on both the instructor's unit exam and the Mechanics Baseline Test pre/posttest normalized gain. Results indicated that there was no statistically significant difference between the flipped model and the traditional lecture format. Avenues for further research are discussed.

  12. The Relationship Between Method of Viewing Lectures, Course Ratings, and Course Timing.

    Science.gov (United States)

    Burton, William B; Ma, Terence P; Grayson, Martha S

    2017-01-01

    In recent years, medical schools have provided students access to video recordings of course lectures, but few studies have investigated the impact of this on ratings of courses and teachers. This study investigated whether the method of viewing lectures was related to student ratings of the course and its components and whether the method used changed over time. Preclinical medical students indicated whether ratings of course lectures were based primarily on lecture attendance, video capture, or both. Students were categorized into Lecture, Video, or Both groups based on their responses to this question. The data consisted of 7584 student evaluations collected over 2 years. Students who attended live lectures rated the course and its components higher than students who only viewed the video or used both methods, although these differences were very small. Students increasingly watched lectures exclusively by video over time: in comparison with first-year students, second-year students were more likely to watch lectures exclusively by video; in comparison with students in the first half of the academic year, students in the second half of the academic year were more likely to watch lectures exclusively by video. With the increase in use of lecture video recordings across medical schools, attention must be paid to student attitudes regarding these methods.

  13. Four-Year Turfgrass Management Programs in the United States: II. Organization and Content of Introductory Turfgrass Management Courses.

    Science.gov (United States)

    Karnok, Keith J.; And Others

    1993-01-01

    A survey of 32 land-grant institutions was conducted to determine format, topical content, and teaching methods of introductory turfgrass management courses of 4-year turfgrass management programs in the United States. Required courses included a basic soils class and a course in biology or botany, usually transmitted by the lecture method. (MDH)

  14. Measuring Student Engagement, Knowledge, and Perceptions of Climate Change in an Introductory Environmental Geology Course

    Science.gov (United States)

    McNeal, Karen S.; Spry, Jacob M.; Mitra, Ritayan; Tipton, Jamie L.

    2014-01-01

    This research examines a semester-long introductory environmental geology course, which emphasized climate science using an Earth systems approach and employed a multipronged teaching strategy comprising lecture, movie viewing, class dialogues, and journaling. Evidence of student engagement during various pedagogical approaches (e.g., movie…

  15. Integration of Information Literacy Components into a Large First-Year Lecture-Based Chemistry Course

    Science.gov (United States)

    Locknar, Angela; Mitchell, Rudolph; Rankin, Janet; Sadoway, Donald R.

    2012-01-01

    A first-year chemistry course is ideal for introducing students to finding and using scholarly information early in their academic careers. A four-pronged approach (lectures, homework problems, videos, and model solutions) was used to incorporate library research skills into a large lecture-based course. Pre- and post-course surveying demonstrated…

  16. Instructional Practices in Introductory Geoscience Courses: Results of a National Faculty Survey

    Science.gov (United States)

    MacDonald, R.; Manduca, C. A.; Mogk, D. W.; Tewksbury, B. J.

    2004-12-01

    The NAGT professional development program "On the Cutting Edge" recently surveyed 7000 geoscience faculty in the United States to develop a snapshot of current instructional practices in undergraduate geoscience courses, faculty strategies for learning new content and new teaching approaches, and faculty involvement in the geoscience education community. Over 2200 faculty responded to the survey which was conducted by the American Institute of Physics. Results for introductory courses (814 responses) indicate that lecture is the most common teaching strategy used in courses of all sizes. Many faculty incorporate some interactive activities in their courses. Most commonly, they use questioning, demonstrations, discussions, and in-class exercises. Less common, but not rare, are small group discussion or think-pair-share and classroom debates or role-playing. Activities involving problem solving, using quantitative skills, working with data and primarily literature, and structured collaboration are incorporated by many faculty in introductory courses, suggesting efforts to teach the process of science. Activities in which students address a problem of national or local interest, analyze their own data, or address problems of their own design are less common but not rare. Field experiences are common but not ubiquitous for students in introductory courses. A wide variety of assessment strategies are used in introductory courses of all sizes, including exams, quizzes, problem sets, papers, oral presentations, and portfolios. While papers are used for assessment more extensively in small classes, a significant number of faculty use papers in large classes (greater than 81 students). A majority of faculty use rubrics in grading. Faculty report that in the past two years, approximately one-third have made changes in the content of their introductory courses while just under half have changed the teaching methods they use. While faculty learn about both new content and

  17. A Project-Based Cornerstone Course in Civil Engineering: Student Perceptions and Identity Development

    Science.gov (United States)

    Marshall, Jill; Bhasin, Amit; Boyles, Stephen; David, Bernard; James, Rachel; Patrick, Anita

    2018-01-01

    Our study used a natural experiment to compare a project-based cornerstone course with the traditionally-taught introductory course in civil engineering. During the study, two sections of the course were organized around an overarching project, the design of an event center, and the remaining sections used guest lectures, a textbook, and…

  18. A Theory Based Introductory Programming Course

    DEFF Research Database (Denmark)

    Hansen, Michael Reichhardt; Kristensen, Jens Thyge; Rischel, Hans

    1999-01-01

    This paper presents an introductory programming course designed to teach programming as an intellectual activity. The course emphasizes understandable concepts which can be useful in designing programs, while the oddities of today's technology are considered of secondary importance. An important...... goal is to fight the trial-and-error approach to programming which is a result of the students battles with horribly designed and documented systems and languages prior to their studies at university. Instead, the authors strive for giving the students a good experience of programming as a systematic......, intellectual activity where the solution of a programming problem can be described in an understandable way. The approach is illustrated by an example which is a commented solution of a problem posed to the students in the course....

  19. Transversality of Electromagnetic Waves in the Calculus-Based Introductory Physics Course

    Science.gov (United States)

    Burko, Lior M.

    2008-01-01

    Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by…

  20. Introductory Graduate Research Courses: An Examination of the Knowledge Base.

    Science.gov (United States)

    Mundfrom, Daniel J.; Shaw, Dale G.; Thomas, Ann; Young, Suzanne; Moore, Alan D.

    This study addresses the question, "What should graduate students know about research and statistics after completing an initial course?" Individuals who teach such courses at various Carnegie classifications of institutions were surveyed about the specific characteristics of an introductory graduate research course at their own institutions to…

  1. Incorporation of Blended Learning in Introductory Courses: A Research-Based Approach to Evaluation

    Science.gov (United States)

    Strey, S. T.; Charlevoix, D. J.; Guarente, B. A.; Snodgrass, E. R.

    2008-12-01

    We evaluate the learning outcomes of students in large enrollment classes comparing a blended learning course format and a traditional lecture section. Blended learning, here, describes instruction that is a combination of face-to-face meeting with asynchronous online learning, resulting in reduced class time. The course, Severe and Hazardous Weather, relies heavily on graphics and animations of weather events available online, both current and archived, and thereby lends itself well to a blended format. Severe and Hazardous Weather is a popular general education requirement course at the University of Illinois with consistently high enrollments (greater than 200 students per section) and classes at capacity. Unlike many past studies, this blended learning format is applied to a large-enrollment course of approximately 100 students. Curriculum was redesigned during fall 2007 from typical lecture to the blended format. The redesign process followed best practices grounded in peer-reviewed literature on blended and online learning. We will provide a brief overview of the course structure, but focus on the evaluation of both the curriculum design and student outcomes as compared to the traditional lecture-based course. Evaluation is based on course objectives stated in the course syllabus and is conducted following best practices; the research project received University Institutional Review Board approval prior to the start of the study.

  2. Creation and Assessment of an Active E-Learning Introductory Geoscience Course

    Science.gov (United States)

    Sit, S. M.; Brudzinski, M. R.

    2014-12-01

    The recent emphasis in higher education on both student engagement and online learning has encouraged us to work on the development of an active e-learning environment for our ~90 student undergraduate introductory geohazards course. To begin designing our course, we established a set of student learning outcomes (SLOs) focused on key scientific investigation skills, like analyzing data, evaluating hypotheses, and conveying information to peers. We designed these outcomes to provide students with powerful reasoning and critical thinking skills. Along with this new framework and increased student expectations, we found it beneficial to additionally establish student development outcomes (SDOs). Specifically, SDOs were constructed to address self-evaluation, student responsibility for learning, and valuing group work. Based on these new SLOs and SDOs, we developed a set of course components that engaged students in content, authentic scientific investigations, and group discussions, all within an online environment. The course includes common online learning features like video lectures and comprehension quizzes, but also uses 50% of class periods for student investigation assignments that are conducted using Google Earth and Microsoft Excel. For those assignments, students commonly utilize a short video tutorial demonstrating a new software skill and then apply that knowledge towards investigating topics such as predicting population growth in India or identifying types of volcanoes observed in Hawaii. Results from multiple semesters of teaching both a hybrid and completely online course show significant gains in the geoscience concept inventory over traditional and redesigned face-to-face courses. Additionally, student survey and evaluation data show that our online course improves on SLOs and SDOs when compared to a traditional lecture based course and achieve similar results to a redesigned face-to-face course focused on engagement. In particular, at the end of

  3. A Tale of Two Sections: An Experiment to Compare the Effectiveness of a Hybrid versus a Traditional Lecture Format in Introductory Microbiology

    OpenAIRE

    Adams, Alison E. M.; Randall, Shelby; Traustad?ttir, Tinna

    2015-01-01

    Two sections of an introductory microbiology course were taught by one instructor. One was taught through a hybrid format and the other through a traditional format. Students were randomly assigned to the two sections. Both sections were provided with identical lecture materials, in-class worksheets, in-class assessments, and extra credit opportunities; the main difference was in the way the lecture material was delivered?online for the hybrid section and in person for the traditional section...

  4. A Tale of Two Sections: An Experiment to Compare the Effectiveness of a Hybrid versus a Traditional Lecture Format in Introductory Microbiology

    Science.gov (United States)

    Adams, Alison E. M.; Randall, Shelby; Traustadóttir, Tinna

    2015-01-01

    Two sections of an introductory microbiology course were taught by one instructor. One was taught through a hybrid format and the other through a traditional format. Students were randomly assigned to the two sections. Both sections were provided with identical lecture materials, in-class worksheets, in-class assessments, and extra credit…

  5. Creation and Assessment of an Active e-Learning Introductory Geology Course

    Science.gov (United States)

    Sit, Stefany M.; Brudzinski, Michael R.

    2017-12-01

    The recent emphasis in higher education on both student engagement and online learning encouraged the authors to develop an active e-learning environment for an introductory geohazards course, which enrolls 70+ undergraduate students per semester. Instructors focused on replicating the achievements and addressing the challenges within an already established face-to-face student-centered class (Brudzinski and Sikorski 2010; Sit 2013). Through the use of a learning management system (LMS) and other available technologies, a wide range of course components were developed including online homework assignments with automatic grading and tailored feedback, video tutorials of software programs like Google Earth and Microsoft Excel, and more realistic scientific investigations using authentic and freely available data downloaded from the internet. The different course components designed to engage students and improve overall student learning and development were evaluated using student surveys and instructor reflection. Each component can be used independently and intertwined into a face-to-face course. Results suggest that significant opportunities are available in an online environment including the potential for improved student performance and new datasets for educational research. Specifically, results from pre and post-semester Geoscience Concept Inventory (GCI) testing in an active e-learning course show enhanced student learning gains compared to face-to-face lecture-based and student-centered courses.

  6. Developing and validating a conceptual survey to assess introductory physics students’ understanding of magnetism

    Science.gov (United States)

    Li, Jing; Singh, Chandralekha

    2017-03-01

    Development of validated physics surveys on various topics is important for investigating the extent to which students master those concepts after traditional instruction and for assessing innovative curricula and pedagogies that can improve student understanding significantly. Here, we discuss the development and validation of a conceptual multiple-choice survey related to magnetism suitable for introductory physics courses. The survey was developed taking into account common students’ difficulties with magnetism concepts covered in introductory physics courses found in our investigation and the incorrect choices to the multiple-choice questions were designed based upon those common student difficulties. After the development and validation of the survey, it was administered to introductory physics students in various classes in paper-pencil format before and after traditional lecture-based instruction in relevant concepts. We compared the performance of students on the survey in the algebra-based and calculus-based introductory physics courses before and after traditional lecture-based instruction in relevant magnetism concepts. We discuss the common difficulties of introductory physics students with magnetism concepts we found via the survey. We also administered the survey to upper-level undergraduates majoring in physics and PhD students to benchmark the survey and compared their performance with those of traditionally taught introductory physics students for whom the survey is intended. A comparison with the base line data on the validated magnetism survey from traditionally taught introductory physics courses and upper-level undergraduate and PhD students discussed in this paper can help instructors assess the effectiveness of curricula and pedagogies which is especially designed to help students integrate conceptual and quantitative understanding and develop a good grasp of the concepts. In particular, if introductory physics students’ average

  7. Developing and validating a conceptual survey to assess introductory physics students’ understanding of magnetism

    International Nuclear Information System (INIS)

    Li, Jing; Singh, Chandralekha

    2017-01-01

    Development of validated physics surveys on various topics is important for investigating the extent to which students master those concepts after traditional instruction and for assessing innovative curricula and pedagogies that can improve student understanding significantly. Here, we discuss the development and validation of a conceptual multiple-choice survey related to magnetism suitable for introductory physics courses. The survey was developed taking into account common students’ difficulties with magnetism concepts covered in introductory physics courses found in our investigation and the incorrect choices to the multiple-choice questions were designed based upon those common student difficulties. After the development and validation of the survey, it was administered to introductory physics students in various classes in paper–pencil format before and after traditional lecture-based instruction in relevant concepts. We compared the performance of students on the survey in the algebra-based and calculus-based introductory physics courses before and after traditional lecture-based instruction in relevant magnetism concepts. We discuss the common difficulties of introductory physics students with magnetism concepts we found via the survey. We also administered the survey to upper-level undergraduates majoring in physics and PhD students to benchmark the survey and compared their performance with those of traditionally taught introductory physics students for whom the survey is intended. A comparison with the base line data on the validated magnetism survey from traditionally taught introductory physics courses and upper-level undergraduate and PhD students discussed in this paper can help instructors assess the effectiveness of curricula and pedagogies which is especially designed to help students integrate conceptual and quantitative understanding and develop a good grasp of the concepts. In particular, if introductory physics students’ average

  8. Inference and the Introductory Statistics Course

    Science.gov (United States)

    Pfannkuch, Maxine; Regan, Matt; Wild, Chris; Budgett, Stephanie; Forbes, Sharleen; Harraway, John; Parsonage, Ross

    2011-01-01

    This article sets out some of the rationale and arguments for making major changes to the teaching and learning of statistical inference in introductory courses at our universities by changing from a norm-based, mathematical approach to more conceptually accessible computer-based approaches. The core problem of the inferential argument with its…

  9. Investigating and improving introductory physics students’ understanding of symmetry and Gauss’s law

    Science.gov (United States)

    Li, Jing; Singh, Chandralekha

    2018-01-01

    We discuss an investigation of student difficulties with symmetry and Gauss’s law and how the research on students’ difficulties was used as a guide to develop a tutorial related to these topics to help students in the calculus-based introductory physics courses learn these concepts. During the development of the tutorial, we interviewed students individually at various stages of development and administered written tests in the free-response and multiple-choice formats on these concepts to learn about common student difficulties. We also obtained feedback from physics instructors who teach introductory physics courses regularly in which these concepts were covered. The students in several ‘equivalent’ sections worked on the tutorial after traditional lecture-based instruction. We discuss the performance of students on the written pre-test (administered after lecture-based instruction in relevant concepts) and post-test given after students worked on the tutorial. We find that on the pre-test, all sections of the course performed comparably regardless of the instructor. Also, on average, student performance on the post-test after working on the tutorial is significantly better than on the pre-test after lecture-based instruction. We also compare the post-test performance of introductory students in sections of the course in which the tutorial was used versus not used and find that sections in which students engaged with the tutorial outperformed those in which students did not engage with it.

  10. The Effectiveness of the Problem-Based Learning Teaching Model for Use in Introductory Chinese Undergraduate Medical Courses: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Zhang, Yanqi; Zhou, Liang; Liu, Xiaoyu; Liu, Ling; Wu, Yazhou; Zhao, Zengwei; Yi, Dali; Yi, Dong

    2015-01-01

    Background Although the problem-based learning (PBL) emerged in 1969 and was soon widely applied internationally, the rapid development in China only occurred in the last 10 years. This study aims to compare the effect of PBL and lecture-based learning (LBL) on student course examination results for introductory Chinese undergraduate medical courses. Methods Randomized and nonrandomized controlled trial studies on PBL use in Chinese undergraduate medical education were retrieved through PubMed, the Excerpta Medica Database (EMBASE), Chinese National Knowledge Infrastructure (CNKI) and VIP China Science and Technology Journal Database (VIP-CSTJ) with publication dates from 1st January 1966 till 31 August 2014. The pass rate, excellence rate and examination scores of course examination were collected. Methodological quality was evaluated based on the modified Jadad scale. The I-square statistic and Chi-square test of heterogeneity were used to assess the statistical heterogeneity. Overall RRs or SMDs with their 95% CIs were calculated in meta-analysis. Meta-regression and subgroup meta-analyses were also performed based on comparators and other confounding factors. Funnel plots and Egger’s tests were performed to assess degrees of publication bias. Results The meta-analysis included 31studies and 4,699 subjects. Fourteen studies were of high quality with modified Jadad scores of 4 to 6, and 17 studies were of low quality with scores of 1 to 3. Relative to the LBL model, the PBL model yielded higher course examination pass rates [RR = 1.09, 95%CI (1.03, 1.17)], excellence rates [RR = 1.66, 95%CI (1.33, 2.06)] and examination scores [SMD = 0.82, 95%CI (0.63, 1.01)]. The meta-regression results show that course type was the significant confounding factor that caused heterogeneity in the examination-score meta-analysis (t = 0.410, Pteaching model application in introductory undergraduate medical courses can increase course examination excellence rates and scores in

  11. Effectiveness of Workshop Style Teaching in Students' Learning of Introductory Electricity and Magnetism

    Science.gov (United States)

    Mehta, Nirav; Cheng, Kelvin

    2012-10-01

    We have developed an interactive workshop-style course for our introductory calculus-based physics sequence at Trinity University. Lecture is limited to approximately 15 min. at the beginning of class, and the remainder of the 50-min. class is devoted to inquiry-based activities and problem solving. So far, lab is done separately and we have not incorporated the lab component into the workshop model. We use the Brief Electricity and Magnetism Assessment (BEMA) to compare learning gains between the workshop and traditional lecture-based course for the Spring 2012 semester. Both the workshop and lecture courses shared the same inquiry-based lab component that involved pre-labs, prediction-observation and post-lab activities. Our BEMA results indicate statistically significant improvement in overall learning gains compared to the traditional course. We compare our workshop BEMA scores both to traditional lecture scores here at Trinity and to those from other institutions.

  12. Do Active Learning Approaches in Recitation Sections Improve Student Performance? A Case Study from an Introductory Mechanics Course

    Science.gov (United States)

    Tobin, R. G.

    2018-01-01

    Abundant research leaves little question that pedagogical approaches involving active student engagement with the material, and opportunities for student-to-student discussions, lead to much better learning outcomes than traditional instructor-led, expository instructional formats, in physics and in many other fields. In introductory college physics classes, some departments have departed radically from conventional lecture-recitation-laboratory course structures, but many, including my own, retain the basic format of large-group classroom sessions (lectures) supplemented by smaller-group meetings focused on problem solving (recitations) and separate laboratory meetings. Active student engagement in the lectures is encouraged through approaches such as Peer Instruction and Interactive Lecture Demonstrations, and these approaches have been demonstrably successful.

  13. Learners Programming Language a Helping System for Introductory Programming Courses

    Directory of Open Access Journals (Sweden)

    MUHAMMAD SHUMAIL NAVEED

    2016-07-01

    Full Text Available Programming is the core of computer science and due to this momentousness a special care is taken in designing the curriculum of programming courses. A substantial work has been conducted on the definition of programming courses, yet the introductory programming courses are still facing high attrition, low retention and lack of motivation. This paper introduced a tiny pre-programming language called LPL (Learners Programming Language as a ZPL (Zeroth Programming Language to illuminate novice students about elementary concepts of introductory programming before introducing the first imperative programming course. The overall objective and design philosophy of LPL is based on a hypothesis that the soft introduction of a simple and paradigm specific textual programming can increase the motivation level of novice students and reduce the congenital complexities and hardness of the first programming course and eventually improve the retention rate and may be fruitful in reducing the dropout/failure level. LPL also generates the equivalent high level programs from user source program and eventually very fruitful in understanding the syntax of introductory programming languages. To overcome the inherent complexities of unusual and rigid syntax of introductory programming languages, the LPL provide elementary programming concepts in the form of algorithmic and plain natural language based computational statements. The initial results obtained after the introduction of LPL are very encouraging in motivating novice students and improving the retention rate.

  14. Social network analysis of a project-based introductory physics course

    Science.gov (United States)

    Oakley, Christopher

    2016-03-01

    Research suggests that students benefit from peer interaction and active engagement in the classroom. The quality, nature, effect of these interactions is currently being explored by Physics Education Researchers. Spelman College offers an introductory physics sequence that addresses content and research skills by engaging students in open-ended research projects, a form of Project-Based Learning. Students have been surveyed at regular intervals during the second semester of trigonometry-based course to determine the frequency of interactions in and out of class. These interactions can be with current or past students, tutors, and instructors. This line of inquiry focuses on metrics of Social Network analysis, such as centrality of participants as well as segmentation of groups. Further research will refine and highlight deeper questions regarding student performance in this pedagogy and course sequence.

  15. The ongoing Digitalization of an Introductory Programming Course

    DEFF Research Database (Denmark)

    Nørmark, Kurt

    2016-01-01

    a traditional course setup) to a flipped course based on video lecturing and active learning. The results in this paper are, in part, based on the student's reflections about the course held in the fall of 2015. It is concluded that the time is now ripe to flip the classroom, with an implied strengthening...

  16. A MOOC for Introductory Physics

    Science.gov (United States)

    Schatz, Michael

    2014-03-01

    We describe an effort to develop and to implement a college-level introductory physics (mechanics) MOOC that offers bona fide laboratory experiences. We also discuss efforts to use MOOC curricular materials to ``flip'' the classroom in a large lecture introductory physics course offered on-campus at Georgia Tech. Preliminary results of assessments and surveys from both MOOC and on-campus students will be presented.

  17. A Phytase Enzyme-Based Biochemistry Practical Particularly Suited to Students Undertaking Courses in Biotechnology and Environmental Science

    Science.gov (United States)

    Boyce, Angela; Casey, Anne; Walsh, Gary

    2004-01-01

    Courses in introductory biochemistry invariably encompass basic principles of enzymology, with reinforcement of lecture-based material in appropriate laboratory practicals. Students undertaking practical classes are more enthusiastic, and generally display improved performance, when the specific experiments undertaken show direct relevance to…

  18. Transforming an Introductory Programming Course: From Lectures to Active Learning via Wireless Laptops

    Science.gov (United States)

    Barak, Miri; Harward, Judson; Kocur, George; Lerman, Steven

    2007-08-01

    Within the framework of MIT's course 1.00: Introduction to Computers and Engineering Problem Solving, this paper describes an innovative project entitled: Studio 1.00 that integrates lectures with in-class demonstrations, active learning sessions, and on-task feedback, through the use of wireless laptop computers. This paper also describes a related evaluation study that investigated the effectiveness of different instructional strategies, comparing traditional teaching with two models of the studio format. Students' learning outcomes, specifically, their final grades and conceptual understanding of computational methods and programming, were examined. Findings indicated that Studio-1.00, in both its extensive- and partial-active learning modes, enhanced students' learning outcomes in Java programming. Comparing to the traditional courses, more students in the studio courses received "A" as their final grade and less failed. Moreover, students who regularly attended the active learning sessions were able to conceptualize programming principles better than their peers. We have also found two weaknesses in the teaching format of Studio-1.00 that can guide future versions of the course.

  19. Quantifying the Level of Inquiry in a Reformed Introductory Geology Lab Course

    Science.gov (United States)

    Moss, Elizabeth; Cervato, Cinzia

    2016-01-01

    As part of a campus-wide effort to transform introductory science courses to be more engaging and more accurately convey the excitement of discovery in science, the curriculum of an introductory physical geology lab course was redesigned. What had been a series of ''cookbook'' lab activities was transformed into a sequence of activities based on…

  20. Reforming a large lecture modern physics course for engineering majors using a PER-based design

    Science.gov (United States)

    McKagan, S. B.; Perkins, K. K.; Wieman, C. E.

    2007-01-01

    We have reformed a large lecture modern physics course for engineering majors by radically changing both the content and the learning techniques implemented in lecture and homework. Traditionally this course has been taught in a manner similar to the equivalent course for physics majors, focusing on mathematical solutions of abstract problems. Based on interviews with physics and engineering professors, we developed a syllabus and learning goals focused on content that was more useful to our actual student population: engineering majors. The content of this course emphasized reasoning development, model building, and connections to real world applications. In addition we implemented a variety of PER-based learning techniques, including peer instruction, collaborative homework sessions, and interactive simulations. We have assessed the effectiveness of reforms in this course using pre/post surveys on both content and beliefs. We have found significant improvements in both content knowledge and beliefs compared with the same course before implementing these reforms and a corresponding course for physics majors.

  1. Improved Student Learning through a Faculty Learning Community: How Faculty Collaboration Transformed a Large-Enrollment Course from Lecture to Student Centered

    Science.gov (United States)

    Elliott, Emily R.; Reason, Robert D.; Coffman, Clark R.; Gangloff, Eric J.; Raker, Jeffrey R.; Powell-Coffman, Jo Anne; Ogilvie, Craig A.

    2016-01-01

    Undergraduate introductory biology courses are changing based on our growing understanding of how students learn and rapid scientific advancement in the biological sciences. At Iowa State University, faculty instructors are transforming a second-semester large-enrollment introductory biology course to include active learning within the lecture setting. To support this change, we set up a faculty learning community (FLC) in which instructors develop new pedagogies, adapt active-learning strategies to large courses, discuss challenges and progress, critique and revise classroom interventions, and share materials. We present data on how the collaborative work of the FLC led to increased implementation of active-learning strategies and a concurrent improvement in student learning. Interestingly, student learning gains correlate with the percentage of classroom time spent in active-learning modes. Furthermore, student attitudes toward learning biology are weakly positively correlated with these learning gains. At our institution, the FLC framework serves as an agent of iterative emergent change, resulting in the creation of a more student-centered course that better supports learning. PMID:27252298

  2. Video-based problems in introductory mechanics physics courses

    International Nuclear Information System (INIS)

    Gröber, Sebastian; Klein, Pascal; Kuhn, Jochen

    2014-01-01

    Introductory mechanics physics courses at the transition from school to university are a challenge for students. They are faced with an abrupt and necessary increase of theoretical content and requirements on their conceptual understanding of phyiscs. In order to support this transition we replaced part of the mandatory weekly theory-based paper-and-pencil problems with video analysis problems of equal content and level of difficulty. Video-based problems (VBP) are a new problem format for teaching physics from a linked sequence of theoretical and video-based experimental tasks. Experimental tasks are related to the well-known concept of video motion analysis. This introduction of an experimental part in recitations allows the establishment of theory–experiment interplay as well as connections between physical content and context fields such as nature, technique, everyday life and applied physics by conducting model-and context-related experiments. Furthermore, laws and formulas as predominantly representative forms are extended by the use of diagrams and vectors. In this paper we give general reasons for this approach, describe the structure and added values of VBP, and show that they cover a relevant part of mechanics courses at university. Emphasis is put on theory–experiment interplay as a structural added value of VBP to promote students' construction of knowledge and conceptual understanding. (paper)

  3. The Robotic Decathlon: Project-Based Learning Labs and Curriculum Design for an Introductory Robotics Course

    Science.gov (United States)

    Cappelleri, D. J.; Vitoroulis, N.

    2013-01-01

    This paper presents a series of novel project-based learning labs for an introductory robotics course that are developed into a semester-long Robotic Decathlon. The last three events of the Robotic Decathlon are used as three final one-week-long project tasks; these replace a previous course project that was a semester-long robotics competition.…

  4. Integrated lecturing within clerkship course, a new learning method in nurse-anesthesia teaching

    Directory of Open Access Journals (Sweden)

    Mahmood Akhlaghi

    2015-06-01

    Full Text Available Background and purpose: Traditional lecture-based teaching has been long used to transit theoretical knowledge to the participants. Due to some problems of this didactic approach, some believe that integration within an active method is more valuable in nursing education. In this study, we hypothesized that integrating lecture-based teaching within clerkship course would enhance nurse-anesthesia students’ knowledge.Methods: A prospective randomized study was conducted. Twenty four students of two-year nurse-anesthesia participated in the study. All of the students received either didactic lectures or integrated lectures within clerkship course during a four-month semester of their educational curriculum. Their knowledge of anesthesia course was assessed at the end of the course using Wilcoxon Rank test.Results: The integrated method improved students’ final scores at the end of the semester (p=0.004. Moreover, their scores was much better when taxonomy-2 questions were compared (p=0.001.Conclusion: Incorporating didactic lecture within anesthesia clerkship course improves participants’ knowledge of anesthesia course.Keywords:  Anesthesia, Lecture, Knowledge, Anesthesia course, Clerkship course

  5. Gender-based performance differences in an introductory physics course

    Science.gov (United States)

    McKinnon, Mark Lee

    Cognitive research has indicated that the difference between males and females is negligible. Paradoxically, in traditionally-taught college level introductory physics courses, males have outperformed females. UC Davis' Physics 7A (the first class of a three-quarter Introduction to Physics sequence for Life-Science students), however, counters this trend since females perform similarly to males. The gender-based performance difference within the other two quarters (Physics 7B & 7C) of the radically restructured, active-learning physics sequence still echo the traditionally-taught courses. In one experiment, I modified the laboratory activity instructions of the Physics 7C course to encourage further group interaction. These modifications did not affect the gender-based performance difference. In a later experiment, I compared students' performance on different forms of assessment for certain physics concepts during the Physics 7C course. Over 500 students took weekly quizzes at different times. The students were given different quiz questions on the same topics. Several quiz questions seemed to favor males while others were more gender equitable. I highlighted comparisons between a few pairs of questions that assessed students' understanding of the same physical concept. Males tended to perform better in responding to questions that seemed to require spatial visualization. Questions that required greater understanding of the physical concept or scientific model were more gender neutral.

  6. Improving student performance in an introductory biology majors course: A social action project in the scholarship of teaching

    Science.gov (United States)

    Chambers, Sara Lang Ketchum

    in student performance continued. The literature supports the conclusion that the use of an inquiry-based learning model is superior to the traditional lecture-laboratory format for teaching science courses at the introductory undergraduate level.

  7. Enhancing Lecture Presentations in Introductory Biology with Computer-Based Multimedia.

    Science.gov (United States)

    Fifield, Steve; Peifer, Rick

    1994-01-01

    Uses illustrations and text to discuss convenient ways to organize and present computer-based multimedia to students in lecture classes. Includes the following topics: (1) Effects of illustrations on learning; (2) Using computer-based illustrations in lecture; (3) MacPresents-Multimedia Presentation Software; (4) Advantages of computer-based…

  8. Just the Facts? Introductory Undergraduate Biology Courses Focus on Low-Level Cognitive Skills

    Science.gov (United States)

    Momsen, Jennifer L.; Long, Tammy M.; Wyse, Sara A.; Ebert-May, Diane

    2010-01-01

    Introductory biology courses are widely criticized for overemphasizing details and rote memorization of facts. Data to support such claims, however, are surprisingly scarce. We sought to determine whether this claim was evidence-based. To do so we quantified the cognitive level of learning targeted by faculty in introductory-level biology courses.…

  9. Research and Teaching: From Gatekeeper to Gateway: Improving Student Success in an Introductory Biology Course

    Science.gov (United States)

    Scott, Amy N.; McNair, Delores E.; Lucas, Jonathan C.; Land, Kirkwood M.

    2017-01-01

    Introductory science, math, and engineering courses often have problems related to student engagement, achievement, and course completion. To begin examining these issues in greater depth, this pilot study compared student engagement, achievement, and course completion in a small and large section of an introductory biology class. Results based on…

  10. Sensors an introductory course

    CERN Document Server

    Kalantar-zadeh, Kourosh

    2013-01-01

    Sensors: An Introductory Course provides an essential reference on the fundamentals of sensors. The book is designed to help readers in developing skills and the understanding required in order to implement a wide range of sensors that are commonly used in our daily lives. This book covers the basic concepts in the sensors field, including definitions and terminologies. The physical sensing effects are described, and devices which utilize these effects are presented. The most frequently used organic and inorganic sensors are introduced and the techniques for implementing them are discussed. This book: Provides a comprehensive representation of the most common sensors and can be used as a reference in relevant fields Presents learning materials in a concise and easy to understand manner Includes examples of how sensors are incorporated in real life measurements Contains detailed figures and schematics to assist in understanding the sensor performance Sensors: An Introductory Course is ideal for university stu...

  11. The Development of Curricular Guidelines for Introductory Microbiology that Focus on Understanding

    Directory of Open Access Journals (Sweden)

    Susan Merkel

    2012-02-01

    Full Text Available The number of students who leave majors in science, technology, engineering, and mathematics (STEM due to a perception that courses are poorly taught is evidence that education reform in STEM is overdue. Despite decades of research that argues for student-centered teaching approaches, most introductory STEM courses are still taught in the large lecture format, focusing on rote memorization. While individual efforts in STEM educational reform are important, solutions will most certainly need to include institutional and cultural change. In biology, numerous national reports have called for educational reform to better prepare future scientists. We describe here a new, concept-based curriculum for Introductory Microbiology courses, designed to promote deep understanding of core concepts. Supported by the American Society for Microbiology (ASM and based on the overarching concepts and competencies presented in the AAAS/NSF report Vision and Change in Undergraduate Biology Education: A Call to Action, we hope it will empower instructors to adapt student-centered approaches so that students in Introductory Microbiology courses can leave the course with a core set of enduring understandings of microbiology.

  12. The Development of Curricular Guidelines for Introductory Microbiology that Focus on Understanding.

    Science.gov (United States)

    Merkel, Susan

    2012-01-01

    The number of students who leave majors in science, technology, engineering, and mathematics (STEM) due to a perception that courses are poorly taught is evidence that education reform in STEM is overdue. Despite decades of research that argues for student-centered teaching approaches, most introductory STEM courses are still taught in the large lecture format, focusing on rote memorization. While individual efforts in STEM educational reform are important, solutions will most certainly need to include institutional and cultural change. In biology, numerous national reports have called for educational reform to better prepare future scientists. We describe here a new, concept-based curriculum for Introductory Microbiology courses, designed to promote deep understanding of core concepts. Supported by the American Society for Microbiology (ASM) and based on the overarching concepts and competencies presented in the AAAS/NSF report Vision and Change in Undergraduate Biology Education: A Call to Action, we hope it will empower instructors to adapt student-centered approaches so that students in Introductory Microbiology courses can leave the course with a core set of enduring understandings of microbiology.

  13. Developing Web-oriented Homework System to Assess Students’ Introductory Physics Course Performance and Compare to Paper-based Peer Homework

    Directory of Open Access Journals (Sweden)

    Neset DEMIRCI

    2006-07-01

    Full Text Available The World Wide Web influences education and our lives in many ways. Nowadays, Web-based homework has been becoming widespread practice in physics courses and some other courses as well. Although are some disputes whether this is an encouraging or risky development for student learning, there is limited research assessing the pedagogical effect of changing the medium from written, hand-graded homework to online oriented, computer-graded homework. In this study, web-oriented homework system is developed to assess students’ introductory physics course performance. Later on, these results are compared with paper-based (peer homework performance for mid enrollment physics courses. One of two identical sections of introductory physics course students received paper-based, hand graded group homework while the other received the individual web-based homework. Then two groups’ on conceptual and problem-solving performance measures are compared. No significant differences were found in students’ Force Concept Inventory (FCI test scores; however, average homework performance scores were significant that could be attributed to the homework method used in favor of paper-based peer homework group.

  14. Using Short Videos in an Introductory Programming Course

    DEFF Research Database (Denmark)

    Nørmark, Kurt

    2014-01-01

    Video resources are gradually being introduced in a first year programming course. The course is about imperative programming in C. After each of the first two years with video lectures the students have been asked about their assessments and opinions. The main parts of the paper are based on evi...... experience we also carry out a discussion of future plans for using video resources in the course....

  15. Just the facts? Introductory undergraduate biology courses focus on low-level cognitive skills.

    Science.gov (United States)

    Momsen, Jennifer L; Long, Tammy M; Wyse, Sara A; Ebert-May, Diane

    2010-01-01

    Introductory biology courses are widely criticized for overemphasizing details and rote memorization of facts. Data to support such claims, however, are surprisingly scarce. We sought to determine whether this claim was evidence-based. To do so we quantified the cognitive level of learning targeted by faculty in introductory-level biology courses. We used Bloom's Taxonomy of Educational Objectives to assign cognitive learning levels to course goals as articulated on syllabi and individual items on high-stakes assessments (i.e., exams and quizzes). Our investigation revealed the following: 1) assessment items overwhelmingly targeted lower cognitive levels, 2) the cognitive level of articulated course goals was not predictive of the cognitive level of assessment items, and 3) there was no influence of course size or institution type on the cognitive levels of assessments. These results support the claim that introductory biology courses emphasize facts more than higher-order thinking.

  16. Developing Guided Inquiry-Based Student Lab Worksheet for Laboratory Knowledge Course

    Science.gov (United States)

    Rahmi, Y. L.; Novriyanti, E.; Ardi, A.; Rifandi, R.

    2018-04-01

    The course of laboratory knowledge is an introductory course for biology students to follow various lectures practicing in the biology laboratory. Learning activities of laboratory knowledge course at this time in the Biology Department, Universitas Negeri Padang has not been completed by supporting learning media such as student lab worksheet. Guided inquiry learning model is one of the learning models that can be integrated into laboratory activity. The study aimed to produce student lab worksheet based on guided inquiry for laboratory knowledge course and to determine the validity of lab worksheet. The research was conducted using research and developmet (R&D) model. The instruments used in data collection in this research were questionnaire for student needed analysis and questionnaire to measure the student lab worksheet validity. The data obtained was quantitative from several validators. The validators consist of three lecturers. The percentage of a student lab worksheet validity was 94.18 which can be categorized was very good.

  17. Socratic dialogs and clicker use in an upper-division mechanics course

    Science.gov (United States)

    Kuo, H. Vincent; Kohl, Patrick B.; Carr, Lincoln D.

    2012-02-01

    The general problem of effectively using interactive engagement in non-introductory physics courses remains open. We present a three-year study comparing different approaches to lecturing in an intermediate mechanics course at the Colorado School of Mines. In the first year, the lectures were fairly traditional. In the second year the lectures were modified to include Socratic dialogs between the instructor and students. In the third year, the instructor used a personal response system and Peer Instruction-like pedagogy. All other course materials were nearly identical to an established traditional lecture course. We present results from a new instructor-constructed conceptual survey, exams, and course evaluations. We observe little change in student exam performance as lecture techniques varied, though students consistently stated clickers were "the best part of the course" from which they "learned the most." Indeed, when using clickers in this course, students were considerably more likely to become engaged than students in CSM introductory courses using the same methods.

  18. Interactive problem-solving sessions in an introductory bioscience course engaged students and gave them feedback, but did not increase their exam scores.

    Science.gov (United States)

    McEvoy, James P

    2017-10-02

    Active learning, including the promotion of student interactivity in lectures, has been found to improve student engagement and performance in university science classes. This letter describes the use of Pearson's Learning Catalytics to run regular, formatively assessed problem-solving sessions as part of the semiflipped redesign of an introductory level university bioscience course. Students found the problem-solving sessions more engaging than a traditional lecture, and felt that they were receiving better feedback on their progress in the course. Their participation in the problem-solving sessions was strongly associated with their performance in the course's summative assessments, making it possible to identify and assist probable poor performers early in the course. Other measures of student engagement with the course were not improved, and neither were their average exam grades when compared with their grades in a course which had not been redesigned. Possible reasons for this are discussed. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Activating Theory in the Introductory Classroom: Erving Goffman Visits Wisteria Lane

    Science.gov (United States)

    Melander, Lisa A.; Wortmann, Susan L.

    2011-01-01

    Instructors of large, general education lecture courses face a number of student engagement and learning challenges. In this article, we develop and assess an interactive lecture that introduces a theoretical perspective and three related concepts to two introductory sociology general education classrooms (n = 433). This interactive lecture…

  20. Starting Point: Linking Methods and Materials for Introductory Geoscience Courses

    Science.gov (United States)

    Manduca, C. A.; MacDonald, R. H.; Merritts, D.; Savina, M.

    2004-12-01

    Introductory courses are one of the most challenging teaching environments for geoscience faculty. Courses are often large, students have a wide variety of background and skills, and student motivation can include completing a geoscience major, preparing for a career as teacher, fulfilling a distribution requirement, and general interest. The Starting Point site (http://serc.carleton.edu/introgeo/index.html) provides help for faculty teaching introductory courses by linking together examples of different teaching methods that have been used in entry-level courses with information about how to use the methods and relevant references from the geoscience and education literature. Examples span the content of geoscience courses including the atmosphere, biosphere, climate, Earth surface, energy/material cycles, human dimensions/resources, hydrosphere/cryosphere, ocean, solar system, solid earth and geologic time/earth history. Methods include interactive lecture (e.g think-pair-share, concepTests, and in-class activities and problems), investigative cases, peer review, role playing, Socratic questioning, games, and field labs. A special section of the site devoted to using an Earth System approach provides resources with content information about the various aspects of the Earth system linked to examples of teaching this content. Examples of courses incorporating Earth systems content, and strategies for designing an Earth system course are also included. A similar section on Teaching with an Earth History approach explores geologic history as a vehicle for teaching geoscience concepts and as a framework for course design. The Starting Point site has been authored and reviewed by faculty around the country. Evaluation indicates that faculty find the examples particularly helpful both for direct implementation in their classes and for sparking ideas. The help provided for using different teaching methods makes the examples particularly useful. Examples are chosen from

  1. Strengthening introductory psychology: A new model for teaching the introductory course.

    Science.gov (United States)

    Gurung, Regan A R; Hackathorn, Jana; Enns, Carolyn; Frantz, Susan; Cacioppo, John T; Loop, Trudy; Freeman, James E

    2016-01-01

    Introductory psychology (Intro Psych) is one of the most popular and frequently taught courses on college campuses, yet educators in psychology have limited knowledge about what is covered in classes around the nation or the extent to which class content reflects the current scope of the discipline. There is no explicit model to guide course content selection for the intro course, which poses substantial challenges for instructors. This article proposes a new model for teaching the intro course that integrates (a) scientific foundations, (b) 5 major domains or pillars of knowledge (biological, cognitive, developmental, social and personality, and mental and physical health), and (c) cross-cutting themes relevant to all domains (cultural and social diversity, ethics, variations in human functioning, and applications; American Psychological Association, 2014). We advocate for national assessment of the course, a similar introductory course for majors and nonmajors, the inclusion of experiential or laboratory components, and additional training resources for instructors of the intro course. Given the exponential growth of psychological knowledge and applications during the past decades, we caution against attempting to provide exhaustive coverage of all topic areas of psychology in a one-semester course. We conclude by discussing the challenges that lie ahead for the discipline of psychology as it launches this new model for Intro Psych. (c) 2016 APA, all rights reserved).

  2. Exploring physics students' engagement with online instructional videos in an introductory mechanics course

    Science.gov (United States)

    Lin, Shih-Yin; Aiken, John M.; Seaton, Daniel T.; Douglas, Scott S.; Greco, Edwin F.; Thoms, Brian D.; Schatz, Michael F.

    2017-12-01

    The advent of new educational technologies has stimulated interest in using online videos to deliver content in university courses. We examined student engagement with 78 online videos that we created and were incorporated into a one-semester flipped introductory mechanics course at the Georgia Institute of Technology. We found that students were more engaged with videos that supported laboratory activities than with videos that presented lecture content. In particular, the percentage of students accessing laboratory videos was consistently greater than 80% throughout the semester. On the other hand, the percentage of students accessing lecture videos dropped to less than 40% by the end of the term. Moreover, the fraction of students accessing the entirety of a video decreases when videos become longer in length, and this trend is more prominent for the lecture videos than the laboratory videos. The results suggest that students may access videos based on perceived value: students appear to consider the laboratory videos as essential for successfully completing the laboratories while they appear to consider the lecture videos as something more akin to supplemental material. In this study, we also found that there was little correlation between student engagement with the videos and their incoming background. There was also little correlation found between student engagement with the videos and their performance in the course. An examination of the in-video content suggests that students engaged more with concrete information that is explicitly required for assignment completion (e.g., actions required to complete laboratory work, or formulas or mathematical expressions needed to solve particular problems) and less with content that is considered more conceptual in nature. It was also found that students' in-video accesses usually increased toward the embedded interaction points. However, students did not necessarily access the follow-up discussion of these

  3. Using Research-Based Interactive Video Vignettes to Enhance Out-of-Class Learning in Introductory Physics

    Science.gov (United States)

    Laws, Priscilla W.; Willis, Maxine C.; Jackson, David P.; Koenig, Kathleen; Teese, Robert

    2015-02-01

    Ever since the first generalized computer-assisted instruction system (PLATO1) was introduced over 50 years ago, educators have been adding computer-based materials to their classes. Today many textbooks have complete online versions that include video lectures and other supplements. In the past 25 years the web has fueled an explosion of online homework and course management systems, both as blended learning and online courses. Meanwhile, introductory physics instructors have been implementing new approaches to teaching based on the outcomes of Physics Education Research (PER). A common theme of PER-based instruction has been the use of active-learning strategies designed to help students overcome alternative conceptions that they often bring to the study of physics.2 Unfortunately, while classrooms have become more active, online learning typically relies on passive lecture videos or Kahn-style3 tablet drawings. To bring active learning online, the LivePhoto Physics Group has been developing Interactive Video Vignettes (IVVs) that add interactivity and PER-based elements to short presentations. These vignettes incorporate web-based video activities that contain interactive elements and typically require students to make predictions and analyze real-world phenomena.

  4. A Comparison of the Learning Outcomes of Traditional Lecturing with that of Computer-Based Learning in two Optometry Courses

    Directory of Open Access Journals (Sweden)

    H Kangari

    2009-07-01

    Full Text Available Background and purpose: The literature on distance education has provided different reports about the effectiveness of traditional lecture based settings versus computer based study settings. This studyis an attempt to compare the learning outcomes of the traditional lecture based teaching with that of the computer based learning in the optometry curriculum.Methods: Two courses in the optometry curriculum, Optometry I, with 24 students and Optometry II, with 27 students were used in this study. In each course, the students were randomly divided into two groups. In each scheduled class session, one group randomly attended the lecture, while the other studied in the computer stations. The same content was presented to both groups and at end of each session the same quiz was given to both. In the next session, the groups switched place. This processcontinued for four weeks. The quizzes were scored and a paired t-test was used to examine any difference. The data was analyzed by SPSS 15 software.Results: The mean score for Optometry I, lecture settings was 3.36 +0.59, for Optometry I computer based study was 3.27+0.63 , for Optometry II, in lecture setting was 3.22+0.57 and for Optometry II, computer based setting was 2.85+0.69. The paired sample t-test was performed on the scores, revealing no statistical significant difference between the two settings. However, the mean score for lecture sessions was slightly higher in lecture settings.Conclusion: Since this study reveals that the learning outcomes in traditional lecture based settings and computer based study are not significantly different, the lecture sessions can be safely replacedby the computer based study session. Further practice in the computer based setting might reveal better outcomes in computer study settings.Key words: LECTURING, COMPUTER BASED LEARNING, DISTANCE EDUCATION

  5. Introductory lectures on conformal field theory and strings

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1990-01-01

    The aim of these lectures is to provide an introduction to a first quantized formulation of string theory. This amounts to developing a consistent set of prescriptions for the perturbative computation of on-shell string amplitudes. The principal tool in this development is 2-dimensional conformal field theory on oriented manifolds of finite genus without boundaries (we treat only closed strings). This class of theory is much simpler than 4-dimensional quantum gravity with which it has many similarities. The geometry is not dynamical in this case, and the matter fields are not sensitive to local features of the geometry but only to global properties which can be characterized by a finite set of parameters (moduli). This can be formulated as field theory on a Riemann surface. We specialize mainly to free field theories for which the quantization problem can be completely solved by elementary means. An introduction to the general case will be given in Lectures II and III where the algebraic approach is discussed. The mathematics of Riemann surfaces is a well developed subject whose formalism is reviewed along with some of the principal theorems in Lecture IV. Physical string states are realized in the Hilbert space of a conformal field theory by the action of so-called ''vertex operators'' on the field theory vacuum state. Correlation functions of these vertex operators serve as ingredients for the computation of string amplitudes. They are to be integrated so as to include the contributions of all conformally inequivalent geometries, and a further manipulation (the GSO projection) is to be performed. These steps are to be regarded as part of the string prescription. The are introduced ad hoc to meet invariance and unitarity requirements. However, in these introductory lectures we give a description only of the integration over geometries (Lecture VII). The GSO projection, and related questions of modular invariance and unitarity are beyond the scope of these lectures

  6. Introductory lectures on Conformal Field Theory and Strings

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1990-01-01

    The aim of these lectures is to provide an introduction to a first quantized formulation of string theory. This amounts to developing a consistent set of prescriptions for the perturbative computation of on-shell string amplitudes. The principal tool in this development is 2-dimensional conformal field theory on oriented manifolds of finite genus without boundaries (we treat only closed strings). This class of theory is much simpler than 4-dimensional quantum gravity with which it has many similarities. The geometry is not dynamical in this case, and the matter fields are not sensitive to local features of the geometry but only to global properties which can be characterized by a finite set of parameters (moduli). This can be formulated as field theory on a Riemann surface. We specialize mainly to free field theories for which the quantization problem can be completely solved by elementary means. An introduction to the general case will be given in Lectures II and III where the algebraic approach is discussed. The mathematics of Riemann surfaces is a well developed subject whose formalism is reviewed along with some of the principal theorems in Lecture IV. Physical string states are realized in the Hilbert space of a conformal field theory by the action of so-called ''vertex operators'' on the field theory vacuum state. Correlation functions of these vertex operators serve as ingredients for the computation of string amplitudes. They are to be integrated so as to include the contributions of all conformally inequivalent geometries, and a further manipulation (the GSO projection) is to be performed. These steps are to be regarded as part of the string prescription. They are introduced ad hoc to meet invariance and unitarity requirements. However, in these introductory lectures we give a description only of the integration over geometries (Lecture VII). The GSO projection, and related questions of modular invariance and unitarity are beyond the scope of these

  7. The Case for Infusing Quantitative Literacy into Introductory Geoscience Courses

    Directory of Open Access Journals (Sweden)

    Jennifer M. Wenner

    2009-01-01

    Full Text Available We present the case for introductory geoscience courses as model venues for increasing the quantitative literacy (QL of large numbers of the college-educated population. The geosciences provide meaningful context for a number of fundamental mathematical concepts that are revisited several times in a single course. Using some best practices from the mathematics education community surrounding problem solving, calculus reform, pre-college mathematics and five geoscience/math workshops, geoscience and mathematics faculty have identified five pedagogical ideas to increase the QL of the students who populate introductory geoscience courses. These five ideas include techniques such as: place mathematical concepts in context, use multiple representations, use technology appropriately, work in groups, and do multiple-day, in-depth problems that place quantitative skills in multiple contexts. We discuss the pedagogical underpinnings of these five ideas and illustrate some ways that the geosciences represent ideal places to use these techniques. However, the inclusion of QL in introductory courses is often met with resistance at all levels. Faculty who wish to include quantitative content must use creative means to break down barriers of public perception of geoscience as qualitative, administrative worry that enrollments will drop and faculty resistance to change. Novel ways to infuse QL into geoscience classrooms include use of web-based resources, shadow courses, setting clear expectations, and promoting quantitative geoscience to the general public. In order to help faculty increase the QL of geoscience students, a community-built faculty-centered web resource (Teaching Quantitative Skills in the Geosciences houses multiple examples that implement the five best practices of QL throughout the geoscience curriculum. We direct faculty to three portions of the web resource: Teaching Quantitative Literacy, QL activities, and the 2006 workshop website

  8. Lecture Videos in Online Courses: A Follow-Up

    Science.gov (United States)

    Evans, Heather K.; Cordova, Victoria

    2015-01-01

    In a recent study regarding online lecture videos, Evans (2014) shows that lecture videos are not superior to still slides. Using two Introduction to American Government courses, taught in a 4-week summer session, she shows that students in a non-video course had higher satisfaction with the course and instructor and performed better on exams than…

  9. Student Performance in an Introductory Business Statistics Course: Does Delivery Mode Matter?

    Science.gov (United States)

    Haughton, Jonathan; Kelly, Alison

    2015-01-01

    Approximately 600 undergraduates completed an introductory business statistics course in 2013 in one of two learning environments at Suffolk University, a mid-sized private university in Boston, Massachusetts. The comparison group completed the course in a traditional classroom-based environment, whereas the treatment group completed the course in…

  10. Taking "The Math You Need When You Need It" Modules Beyond Introductory Geology Courses

    Science.gov (United States)

    Baer, E. M.; Wenner, J. M.; Burn, H. E.

    2012-12-01

    classroom (either in lab exercises or a lecture period). Almost all instructors employed pre- and posttests to gauge learning. More than ¾ of survey respondents introduced the modules within the first week of class. In all but one instance, students were instructed to complete an online quiz immediately after working through the online modules and most (77%) designed these post-module quizzes as formative assessments allowing at least 3 attempts. The grades on these modules contributed to students' grades but were relatively low stakes with 88% reporting that the modules contributed to less than 10% of a student's course grade. Given the use beyond the introductory geology classroom and the similarity of the use of these modules in a wide variety of courses, it appears that the design of the modules is sound. However, previous studies have indicated that mathematical skills are not easily transferred (e.g. Bassok. and Holyoak, 1989) suggesting the adaptation of the modules for use outside the geosciences.

  11. Characterizing Teaching in Introductory Geology Courses: Measuring Classroom Practices

    Science.gov (United States)

    Budd, D. A.; van der Hoeven Kraft, K. J.; McConnell, D. A.; Vislova, T.

    2013-01-01

    Most research about reformed teaching practices in the college science classroom is based on instructor self-report. This research describes what is happening in some introductory geology courses at multiple institutions across the country using external observers. These observations are quantified using the Reformed Teaching Observation Protocol…

  12. Teaching abstraction in introductory courses

    NARCIS (Netherlands)

    Koppelman, Herman; van Dijk, Betsy

    Abstraction is viewed as a key concept in computer science. It is not only an important concept but also one that is difficult to master. This paper focuses on the problems that novices experience when they first encounter this concept. Three assignments from introductory courses are analyzed, to

  13. PDF Lecture Materials for Online and ``Flipped'' Format Astronomy Courses

    Science.gov (United States)

    Kary, D. M.; Eisberg, J.

    2013-04-01

    Online astronomy courses typically rely on students reading the textbook and/or a set of text-based lecture notes to replace the “lecture” material. However, many of our students report that this is much less engaging than in-person lectures, especially given the amount of interactive work such as “think-pair-share” problems done in many astronomy classes. Students have similarly criticized direct lecture-capture. To address this, we have developed a set of PowerPoint-style presentations with embedded lecture audio combined with prompts for student interaction including think-pair-share questions. These are formatted PDF packages that can be used on a range of different computers using free software. The presentations are first developed using Microsoft PowerPoint software. Audio recordings of scripted lectures are then synchronized with the presentations and the entire package is converted to PDF using Adobe Presenter. This approach combines the ease of editing that PowerPoint provides along with the platform-independence of PDF. It's easy to add, remove, or edit individual slides as needed, and PowerPoint supports internal links so that think-pair-share questions can be inserted with links to feedback based on the answers selected. Modern PDF files support animated visuals with synchronized audio and they can be read using widely available free software. Using these files students in an online course can get many of the benefits of seeing and hearing the course material presented in an in-person lecture format. Students needing extra help in traditional lecture classes can use these presentations to help review the materials covered in lecture. Finally, the presentations can be used in a “flipped” format in which students work through the presentations outside of class time while spending the “lecture” time on in-class interaction.

  14. Macromod: Computer Simulation For Introductory Economics

    Science.gov (United States)

    Ross, Thomas

    1977-01-01

    The Macroeconomic model (Macromod) is a computer assisted instruction simulation model designed for introductory economics courses. An evaluation of its utilization at a community college indicates that it yielded a 10 percent to 13 percent greater economic comprehension than lecture classes and that it met with high student approval. (DC)

  15. The role of applied physics in American introductory physics courses

    Science.gov (United States)

    Poduska, Ervin L.; Lunetta, Vincent N.

    1984-09-01

    To what extent should technology and applied physics be included in introductory physics courses? What is the proper balance between pure and applied physics? Should physics teachers devote precious time to socially relevant issues like nuclear power and alternative sources of energy? How much time should be spent, if any, on applications that are more relevant to the student's world like cars, music, television and refrigeration? Does including applications reduce or enhance student understanding of important classical topics? A response to these questions must be based on goals for physics teaching, on knowledge of how students learn and on the nature of the physics discipline. Since there is not enough time to teach everything in an introductory course, priorities must be determined.

  16. Introductory course on differential equations

    CERN Document Server

    Gorain, Ganesh C

    2014-01-01

    Introductory Course on DIFFERENTIAL EQUATIONS provides an excellent exposition of the fundamentals of ordinary and partial differential equations and is ideally suited for a first course of undergraduate students of mathematics, physics and engineering. The aim of this book is to present the elementary theories of differential equations in the forms suitable for use of those students whose main interest in the subject are based on simple mathematical ideas. KEY FEATURES: Discusses the subject in a systematic manner without sacrificing mathematical rigour. A variety of exercises drill the students in problem solving in view of the mathematical theories explained in the book. Worked out examples illustrated according to the theories developed in the book with possible alternatives. Exhaustive collection of problems and the simplicity of presentation differentiate this book from several others. Material contained will help teachers as well as aspiring students of different competitive examinations.

  17. Research and Teaching: Reenvisioning the Introductory Science Course as a Cognitive Apprenticeship

    Science.gov (United States)

    Thompson, Meredith M.; Pastorino, Lucia; Lee, Star; Lipton, Paul

    2016-01-01

    Introductory science courses play a critical role in the recruitment and retention of undergraduate science majors. In particular, first-year courses are opportunities to engage students in scientific practices and motivate them to consider scientific careers. We developed an introductory course using a semester-long series of established…

  18. Catholic/Jesuit Values in an Introductory Religious Studies Course

    Science.gov (United States)

    Lynch, Patrick; S. J.; Mizak, Pat

    2012-01-01

    A growing interest in the communication to students of the mission and identity of a higher education institution prompted this study about the presence of Catholic, Jesuit values in the introductory religious studies course at a faith-based university. To conduct this study a survey instrument was developed, piloted, further refined, and then…

  19. Using a Research-based Approach to Transform Upper-division Courses in Classical and Quantum Mechanics and E&M

    Science.gov (United States)

    Pollock, Steven

    2013-04-01

    At most universities, including the University of Colorado, upper-division physics courses are taught using a traditional lecture approach that does not make use of many of the instructional techniques that have been found to improve student learning at the introductory level. We are transforming several upper-division courses using principles of active engagement and learning theory, guided by the results of observations, interviews, and analysis of student work at CU and elsewhere. In this talk I outline these transformations, including the development of faculty consensus learning goals, clicker questions, tutorials, modified homeworks, and more. We present evidence of the effectiveness of these transformations relative to traditional courses, based on student grades, interviews, and through research-based assessments of student conceptual mastery and student attitudes. Our results suggest that many of the tools that have been effective in introductory courses are effective for our majors, and that further research is warranted in the upper-division environment. (See www.colorado.edu/sei/departments/physics.htm for materials)

  20. Lecturers' Experience of Using Social Media in Higher Education Courses

    Science.gov (United States)

    Seechaliao, Thapanee

    2015-01-01

    This research paper presents lecturers' experience of using social media in higher education courses. The research methodology used a survey approach. The research instrument was a questionnaire about lecturers' experience of using social media in higher education courses. Thirty-one lecturers completed the questionnaire. The data were scored by…

  1. Is Active Learning Like Broccoli? Student Perceptions of Active Learning in Large Lecture Classes

    Science.gov (United States)

    Smith, C. Veronica; Cardaciotto, LeeAnn

    2011-01-01

    Although research suggests that active learning is associated with positive outcomes (e.g., memory, test performance), use of such techniques can be difficult to implement in large lecture-based classes. In the current study, 1,091 students completed out-of-class group exercises to complement course material in an Introductory Psychology class.…

  2. A Comparison of Online and Traditional Chemistry Lecture and Lab

    Science.gov (United States)

    Faulconer, E. K.; Griffith, J. C.; Wood, B. L.; Acharyya, S.; Roberts, D. L.

    2018-01-01

    While the equivalence between online and traditional classrooms has been well researched, very little effort has been expended to do such comparisons for college level introductory chemistry. The existing literature has only one study that investigated chemistry lectures at an entire course level as opposed to particular course components such as…

  3. Evaluation of a flipped classroom approach to learning introductory epidemiology.

    Science.gov (United States)

    Shiau, Stephanie; Kahn, Linda G; Platt, Jonathan; Li, Chihua; Guzman, Jason T; Kornhauser, Zachary G; Keyes, Katherine M; Martins, Silvia S

    2018-04-02

    Although the flipped classroom model has been widely adopted in medical education, reports on its use in graduate-level public health programs are limited. This study describes the design, implementation, and evaluation of a flipped classroom redesign of an introductory epidemiology course and compares it to a traditional model. One hundred fifty Masters-level students enrolled in an introductory epidemiology course with a traditional format (in-person lecture and discussion section, at-home assignment; 2015, N = 72) and a flipped classroom format (at-home lecture, in-person discussion section and assignment; 2016, N = 78). Using mixed methods, we compared student characteristics, examination scores, and end-of-course evaluations of the 2016 flipped classroom format and the 2015 traditional format. Data on the flipped classroom format, including pre- and post-course surveys, open-ended questions, self-reports of section leader teaching practices, and classroom observations, were evaluated. There were no statistically significant differences in examination scores or students' assessment of the course between 2015 (traditional) and 2016 (flipped). In 2016, 57.1% (36) of respondents to the end-of-course evaluation found watching video lectures at home to have a positive impact on their time management. Open-ended survey responses indicated a number of strengths of the flipped classroom approach, including the freedom to watch pre-recorded lectures at any time and the ability of section leaders to clarify targeted concepts. Suggestions for improvement focused on ways to increase regular interaction with lecturers. There was no significant difference in students' performance on quantitative assessments comparing the traditional format to the flipped classroom format. The flipped format did allow for greater flexibility and applied learning opportunities at home and during discussion sections.

  4. The Development of a Set of Core Communication Competencies for Introductory Communication Courses

    Science.gov (United States)

    Engleberg, Isa N.; Ward, Susan M.; Disbrow, Lynn M.; Katt, James A.; Myers, Scott A.; O'Keefe, Patricia

    2017-01-01

    In most academic disciplines, there is "one" introductory course that presents an overview of the discipline and introduces fundamental, discipline-specific principles and competencies. However, in Communication Studies, the discipline recognizes and offers multiple course options that may serve as the introductory course. This project…

  5. Establishment of nuclear knowledge-information base; development of courseware on introductory nuclear engineering and establishment of digital education platform

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jong Soon; Na, Mang Yun; Lee, Goung Jin; Yang, Won Sik [Chosun University, Gwangju (Korea)

    2002-01-01

    In this research, there are two major tasks. The first one is a development of digital course-ware program for introductory nuclear engineering. For this task, a development of lecture note is followed by lecture Slide files in html file format, which is based on web. For this purpose, following activities were performed; collection of related materials. planning of overall courseware, writing of lecture note and exercise plan, and securing the computer programs and codes needed. The second task of this research is to plan and install several hardwares in a multimedia class room as a digital education platform. The platform includes smart board with touch screen functionality, network server and personal computers. The digital education platform was established as a multimedia class room in the 2nd College of Engineering building, room 16210 by using the Server-Client environment and smart board, personal computer, and internet was connected by a TCP/IP way. For the courseware, hypertext was supported to be web-based, and photo, picture, data and related web links including text were developed in a close relation, it is possible for students to study big amounts of information in a systemized way and to maximize the learning efficiency. The whole range of introductory nuclear engineering course was divided into nuclear fuel cycle, reactor theory, heat transport, and reactor control, and digital contents were developed by each experts, but the final format of the courseware was maintained consistently for easy understanding . Also, the reactor experiment courseware developed by Kyunghee University can be utilized on this platform. 5 refs., 36 figs., 4 tabs. (Author)

  6. Impact of online lecture-capture on student outcomes in a therapeutics course.

    Science.gov (United States)

    Bollmeier, Suzanne G; Wenger, Philip J; Forinash, Alicia B

    2010-09-10

    To examine the correlation between students accessing recorded lecture files (audio and slides) online and course grades and class attendance. Second professional year (of 6-year program) students in a therapeutics course had access to recorded online lectures for 72 hours following live lectures. The number and duration of lecture accessions were compared to final course grades and class attendance. Course grades were compared to those of a historical control group. At the end of the semester, students completed a brief survey instrument regarding their use and perceptions of online lectures. No correlation was found between final course grades and the number of lecture accessions (r = 0.0014) or total number of minutes lectures were viewed (r = 0.033), nor between class attendance and minutes viewed (r = 0.2158). Students with access to recorded lectures outperformed the historical control group on the final examination (p students reported no influence of online files on class attendance. Posting lectures online did not affect student outcomes, but students did score higher on the final examination.

  7. Introductory Life Science Mathematics and Quantitative Neuroscience Courses

    Science.gov (United States)

    Duffus, Dwight; Olifer, Andrei

    2010-01-01

    We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an…

  8. The Nature of Introductory Economics Courses

    Science.gov (United States)

    Koscielniak, James

    1975-01-01

    A questionnaire was developed to determine the content, mode of instruction, approach, and textbook selection of instructors of introductory economics courses. The survey was distributed in 1974 to 143 economics instructors at two- and four-year colleges in Illinois. Results are presented here, and recommendations are made. (Author/NHM)

  9. Twenty-one lectures on complex analysis a first course

    CERN Document Server

    Isaev, Alexander

    2017-01-01

    At its core, this concise textbook presents standard material for a first course in complex analysis at the advanced undergraduate level. This distinctive text will prove most rewarding for students who have a genuine passion for mathematics as well as certain mathematical maturity. Primarily aimed at undergraduates with working knowledge of real analysis and metric spaces, this book can also be used to instruct a graduate course. The text uses a conversational style with topics purposefully apportioned into 21 lectures, providing a suitable format for either independent study or lecture-based teaching. Instructors are invited to rearrange the order of topics according to their own vision. A clear and rigorous exposition is supported by engaging examples and exercises unique to each lecture; a large number of exercises contain useful calculation problems. Hints are given for a selection of the more difficult exercises. This text furnishes the reader with a means of learning complex analysis as well as a subtl...

  10. Assessing the flexibility of research-based instructional strategies: Implementing tutorials in introductory physics in the lecture environment

    Science.gov (United States)

    Kryjevskaia, Mila; Boudreaux, Andrew; Heins, Dustin

    2014-03-01

    Materials from Tutorials in Introductory Physics, originally designed and implemented by the Physics Education Group at the University of Washington, were used in modified form as interactive lectures under conditions significantly different from those suggested by the curriculum developers. Student learning was assessed using tasks drawn from the physics education research literature. Use of tutorials in the interactive lecture format yielded gains in student understanding comparable to those obtained through the canonical tutorial implementation at the University of Washington, suggesting that student engagement with the intellectual steps laid out in the tutorials, rather than the specific strategies used in facilitating such engagement, plays the central role in promoting student learning. We describe the implementation details and assessment of student learning for two different tutorials: one focused on mechanical waves, used at North Dakota State University, and one on Galilean relativity, used at Western Washington University. Also discussed are factors that may limit the generalizability of the results.

  11. Introductory life science mathematics and quantitative neuroscience courses.

    Science.gov (United States)

    Duffus, Dwight; Olifer, Andrei

    2010-01-01

    We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an upper-division course in computational neuroscience. We provide a description of each course, detailed syllabi, examples of content, and a brief discussion of the main issues encountered in developing and offering the courses.

  12. A Critical Understanding and Transformation of an Introductory Statistics Course

    Science.gov (United States)

    Magalhães, Marcos Nascimento; Magalhães, Maria Cecilia Camargo

    2014-01-01

    In this paper, we report on the impact of four activities and two interviews on the organization of an introductory statistics course attended by future mathematics teachers at the University of Sao Paulo, Brazil. The activities were designed to enhance students' learning and collaborative knowledge construction, based on Vygotsky's…

  13. The Use of Stuffed Microbes in an Undergraduate Microbiology Course Increases Engagement and Student Learning

    Directory of Open Access Journals (Sweden)

    Ginny Webb

    2015-08-01

    Full Text Available Student engagement, attention, and attendance during a microbiology lecture are crucial for student learning.  In addition, it is challenging to cover a large number of infectious diseases during a one-semester introductory microbiology course.  The use of visual aids helps students retain the information presented during a lecture.  Here, I discuss the use of stuffed, plush microbes as visual aids during an introductory microbiology course.  The incorporation of these stuffed microbes during a microbiology lecture results in an increase in engagement, interest, attendance, and retention of material.

  14. Replacing Lecture with Peer-led Workshops Improves Student Learning

    OpenAIRE

    Preszler, Ralph W.

    2009-01-01

    Peer-facilitated workshops enhanced interactivity in our introductory biology course, which led to increased student engagement and learning. A majority of students preferred attending two lectures and a workshop each week over attending three weekly lectures. In the workshops, students worked in small cooperative groups as they solved challenging problems, evaluated case studies, and participated in activities designed to improve their general learning skills. Students in the workshop versio...

  15. Personality types and student performance in an introductory physics course

    Science.gov (United States)

    Harlow, Jason J. B.; Harrison, David M.; Justason, Michael; Meyertholen, Andrew; Wilson, Brian

    2017-12-01

    We measured the personality type of the students in a large introductory physics course of mostly life science students using the True Colors instrument. We found large correlations of personality type with performance on the precourse Force Concept Inventory (FCI), both term tests, the postcourse FCI, and the final examination. We also saw correlations with the normalized gain on the FCI. The personality profile of the students in this course is very different from the profile of the physics faculty and graduate students, and also very different from the profile of students taking the introductory physics course intended for physics majors and specialists.

  16. Themes of nanoscience for the introductory physics course

    International Nuclear Information System (INIS)

    Planinsic, Gorazd; Lindell, Anssi; Remskar, Maja

    2009-01-01

    We present three experimental themes and one discussion theme that proved to be suitable for introducing nanoscience through topics that can be integrated into the existing introductory physics or teacher training courses. The experimental themes include two teaching models of an atomic force microscope (AFM) and an experiment with an elastic optical grating. They are all based on simple experiments that give also quantitative results and can be explained using basic physics theory.

  17. Themes of nanoscience for the introductory physics course

    Energy Technology Data Exchange (ETDEWEB)

    Planinsic, Gorazd [Faculty for Mathematics and Physics, University of Ljubljana (Slovenia); Lindell, Anssi [Department of Teacher Education, University of Jyvaskyla (Finland); Remskar, Maja [Josef Stefan Institute, Ljubljana (Slovenia)

    2009-07-15

    We present three experimental themes and one discussion theme that proved to be suitable for introducing nanoscience through topics that can be integrated into the existing introductory physics or teacher training courses. The experimental themes include two teaching models of an atomic force microscope (AFM) and an experiment with an elastic optical grating. They are all based on simple experiments that give also quantitative results and can be explained using basic physics theory.

  18. Redesigning a Large Introductory Course to Incorporate the GAISE Guidelines

    Science.gov (United States)

    Woodard, Roger; McGowan, Herle

    2012-01-01

    In 2005, the "Guidelines for Assessment and Instruction in Statistics Education" (GAISE) college report described several recommendations for teaching introductory statistics. This paper discusses how a large multi-section introductory course was redesigned in order to implement these recommendations. The experience described discusses…

  19. Incorporating Geoethics in Introductory Earth System Science Courses

    Science.gov (United States)

    Schmitt, J.

    2014-12-01

    The integrative nature of Earth System Science courses provides extensive opportunities to introduce students to geoethical inquiry focused on globally significant societal issues. Geoscience education has traditionally lagged in its efforts to increase student awareness of the significance of geologic knowledge to understanding and responsibly confronting causes and possible solutions for emergent, newly emerging, and future problems of anthropogenic cause and consequence. Developing an understanding of the human impact on the earth system requires early (lower division) and for geoscience majors, repeated (upper division) curricular emphasis on the interactions of the lithosphere, hydrosphere, atmosphere, biosphere, and pedosphere across space and through time. Capturing the interest of university students in globally relevant earth system issues and their ethical dimensions while first learning about the earth system is an important initial step in bringing geoethical deliberation and awareness to the next generation of geoscientists. Development of a new introductory Earth System Science course replacing a traditional introductory Physical Geology course at Montana State University has involved abandonment of concept-based content organization in favor of a place-based approach incorporating examination of the complex interactions of earth system components and emergent issues and dilemmas deriving from the unique component interactions that characterize each locale. Thirteen different place-based week-long modules (using web- and classroom-based instruction) were developed to ensure cumulative broad coverage across the earth geographically and earth system components conceptually. Each place-based instructional module contains content of societal relevance requiring synthesis, critical evaluation, and reflection by students. Examples include making linkages between deforestation driven by economics and increased seismicity in Haiti, agriculture and development

  20. Introductory Astronomy Course at the University of Cape Town: Probing Student Perspectives

    Science.gov (United States)

    Rajpaul, Vinesh; Allie, Saalih; Blyth, Sarah-Louise

    2014-01-01

    We report on research carried out to improve teaching and student engagement in the introductory astronomy course at the University of Cape Town. This course is taken by a diverse range of students, including many from educationally disadvantaged backgrounds. We describe the development of an instrument, the Introductory Astronomy Questionnaire…

  1. The Client-Centered Approach as a Foundation for Teaching the Introductory Course in Public Relations.

    Science.gov (United States)

    Najor, Michele A.; Motschall, Melissa

    2001-01-01

    Describes how the authors use a broad-based, client-centered model to teach an introductory course in public relations, integrating writing assignments for "clients" into course topics, which include history, ethics, theory, research, program planning, publicity, crisis management, and evaluation methods. Discusses course objectives, and notes…

  2. Using Online Lectures to Make Time for Active Learning

    Science.gov (United States)

    Prunuske, Amy J.; Batzli, Janet; Howell, Evelyn; Miller, Sarah

    2012-01-01

    To make time in class for group activities devoted to critical thinking, we integrated a series of short online lectures into the homework assignments of a large, introductory biology course at a research university. The majority of students viewed the online lectures before coming to class and reported that the online lectures helped them to complete the in-class activity and did not increase the amount of time they devoted to the course. In addition, students who viewed the online lecture performed better on clicker questions designed to test lower-order cognitive skills. The in-class activities then gave the students practice analyzing the information in groups and provided the instructor with feedback about the students’ understanding of the material. On the basis of the results of this study, we support creating hybrid course models that allow students to learn the fundamental information outside of class time, thereby creating time during the class period to be dedicated toward the conceptual understanding of the material. PMID:22714412

  3. Teaching an Introductory Programming Language in a General Education Course

    Science.gov (United States)

    Ali, Azad; Smith, David

    2014-01-01

    A department of computer science (CS) has faced a peculiar situation regarding their selection of introductory programming course. This course is a required course for the students enrolled in the CS program and is a prerequisite to their other advanced programming courses. At the same time, the course can be considered a general education course…

  4. Coverage of the Stanford Prison Experiment in Introductory Psychology Courses

    Science.gov (United States)

    Bartels, Jared M.; Milovich, Marilyn M.; Moussier, Sabrina

    2016-01-01

    The present study examined the coverage of Stanford prison experiment (SPE), including criticisms of the study, in introductory psychology courses through an online survey of introductory psychology instructors (N = 117). Results largely paralleled those of the recently published textbook analyses with ethical issues garnering the most coverage,…

  5. Supporting Interactive Teaching Methods at the New Faculty Workshop with Astronomy Lecture-Tutorials

    Science.gov (United States)

    Slater, T. F.; Brissenden, G.; Duestua, S.; Prather, E. E.

    2004-05-01

    Ongoing research by the Conceptual Astronomy and Physics Education Research (CAPER) Team at the University of Arizona Steward Observatory suggests that, although faculty realize that lecture-based instruction is ineffective for many students, they are not aware of what interactive teaching strategies are available, particularly for large enrollment courses. A major emphasis of the AAPT/AAS New Faculty Workshop was to introduce faculty to effective active-learning strategies based on an understanding of how people learn. Faculty were introduced to think-pair-share methods where students work together to explain difficult concepts to each other. Faculty were also introduced to authentic assessment strategies that go beyond using traditional multiple-choice tests. In particular, faculty were introduced to Lecture-Tutorials for Introductory Astronomy. The Lecture-Tutorials are instructional materials intended for use with collaborative student learning groups and are designed specifically to be easily integrated into existing courses centered on conventional lectures and do not require any outside equipment or a drastic course revision for implementation. The materials are based on research into student beliefs and reasoning difficulties and use effective instructional strategies that center on student learning. Each workshop presentation was complimented by a follow-up small group discussion session.

  6. Activity Development for Intersection Operations The National Transportation Curriculum Project : Developing Activity-Based Learning Modules for the Introductory Transportation Engineering Course

    Science.gov (United States)

    2012-05-01

    The goal of this work was to develop activity-based learning materials for the introductory transportation engineering course : with the purpose of increasing student understanding and concept retention. These materials were to cover intersection : o...

  7. The Drift Chambers Handbook, introductory laboratory course (based on, and adapted from, A H Walenta's course notes)

    International Nuclear Information System (INIS)

    Ferreira, Ix-B GarcIa; Herrera, J GarcIa; Villasenor, L

    2005-01-01

    This handbook was written for the Drift Chambers introductory laboratory course to be held at 11th Mexican School of Particles and Fields that will be held at the Universidad Veracruzana on the campus of the University at Xalapa, Veracruz, Mexico. This course intends to introduce drift chambers, which play an important role in particle physics experiments as tracking detectors. We start such laboratory course with a brief review of the physics theoretical background. The experimental setup consists of a single-sided, single-cell drift chamber, a plastic scintillator detector, the standard P-10 gas mixture (90% Ar, 10% CH 4 ) and a collimated 90 Sr source. The measurements on the drift velocity of electrons, its change as a function of a drift field, gas gain and diffusion are performed at this laboratory course

  8. Introductory Geology From the Liberal Arts Approach: A Geology-Sociology Linked Course

    Science.gov (United States)

    Walsh, E. O.; Davis, E.

    2008-12-01

    Geology can be a hard sell to college students, especially to college students attending small, liberal arts institutions in localities that lack exaggerated topography. At these schools, Geology departments that wish to grow must work diligently to attract students to the major; professors must be able to convince a wider audience of students that geology is relevant to their everyday lives. Toward this end, a Physical Geology course was linked with an introductory Sociology course through the common theme of Consumption. The same students took the two courses in sequence, beginning with the Sociology course and ending with Physical Geology; thus, students began by discussing the role of consumption in society and ended by learning about the geological processes and implications of consumption. Students were able to ascertain the importance of geology in their daily lives by connecting Earth processes to specific products they consume, such as cell phones and bottled water. Students were also able to see the connection between seemingly disparate fields of study, which is a major goal of the liberal arts. As a theme, Consumption worked well to grab the attention of students interested in diverse issues, such as environmental science or social justice. A one-hour lecture illustrating the link between sociology and geology was developed for presentation to incoming freshmen and their parents to advertise the course. Initial response has been positive, showing an increase in awareness of geological processes among students with a wide range of interests.

  9. Qualitative Analysis of Collaborative Learning Groups in Large Enrollment Introductory Astronomy

    Science.gov (United States)

    Skala, Chija; Slater, Timothy F.; Adams, Jeffrey P.

    2000-08-01

    Large-lecture introductory astronomy courses for undergraduate, non-science majors present numerous problems for faculty. As part of a systematic effort to improve the course learning environment, a series of small-group, collaborative learning activities were implemented in an otherwise conventional lecture astronomy survey course. These activities were used once each week during the regularly scheduled lecture period. After eight weeks, ten focus group interviews were conducted to qualitatively assess the impact and dynamics of these small group learning activities. Overall, the data strongly suggest that students enjoy participating in the in-class learning activities in learning teams of three to four students. These students firmly believe that they are learning more than they would from lectures alone. Inductive analysis of the transcripts revealed five major themes prevalent among the students' perspectives: (1) self-formed, cooperative group composition and formation should be more regulated by the instructor; (2) team members' assigned rolls should be less formally structured by the instructors; (3) cooperative groups helped in learning the course content; (4) time constraints on lectures and activities need to be more carefully aligned; and (5) gender issues can exist within the groups. These themes serve as a guide for instructors who are developing instructional interventions for large lecture courses.

  10. Using 'How People Learn' as a Blueprint for Developing Teaching Strategies in an Introductory Geology Course

    Science.gov (United States)

    Debari, S. M.; Bachmann, J.; Dougan, B.; Fackler-Adams, B.; Kratz, R.; Linneman, S.; Plake, T.; Smith, B.

    2008-12-01

    sequence is taught at a 4-year university as well as at four regional feeder community colleges. These courses model an inquiry-based teaching methodology that our pre-service teachers will use to teach science to their future students. Both quantitative and qualitative assessment data collected from our students show impressive gains both in attitudes about science and science content, especially compared to larger lecture-based introductory courses.

  11. Culturally responsive engineering education: A case study of a pre-college introductory engineering course at Tibetan Children's Village School of Selakui

    Science.gov (United States)

    Santiago, Marisol Mercado

    Culturally responsive teaching has been argued to be effective in the education of Indigenous youth. This approach emphasizes the legitimacy of a group's cultural heritage, helps to associate abstract academic knowledge with the group's sociocultural context, seeks to incorporate a variety of strategies to engage students who have different learning styles, and strives to integrate multicultural information in the educational contents, among other considerations. In this work, I explore the outcomes of a culturally responsive introductory engineering short course that I developed and taught to Tibetan students at Tibetan Children's Village of Selakui (in Uttarakhand, India). Based on my ethnographic research in Tibetan communities in northern India, I examine two research questions: (a) What are the processes to develop and implement a pre-college culturally responsive introductory engineering course? and (b) How do Tibetan culture and Buddhism influence the engineering design and teamwork of the pre-college Tibetan students who took the course? I designed then taught the course that featured elementary lectures on sustainability, introductory engineering design, energy alternatives, and manufacturing engineering. The course also included a pre-college engineering design project through which Tibetan high school students investigated a problem at the school and designed a possible solution to it. Drawing from postcolonial studies, engineering studies, engineering and social justice, Buddhist studies, and Tibetan studies, I provide an analysis of my findings. Based on my findings, I conclude that my culturally responsive approach of teaching was an effective method to help students feel that their cultural background was respected and included in a pre-college engineering course; however, some students felt resistance toward the teaching approach. In addition, the culturally relevant content that connected with their ways of living in their school, Tibetan

  12. Characterizing interactive engagement activities in a flipped introductory physics class

    Directory of Open Access Journals (Sweden)

    Anna K. Wood

    2016-06-01

    Full Text Available Interactive engagement activities are increasingly common in undergraduate physics teaching. As research efforts move beyond simply showing that interactive engagement pedagogies work towards developing an understanding of how they lead to improved learning outcomes, a detailed analysis of the way in which these activities are used in practice is needed. Our aim in this paper is to present a characterization of the type and duration of interactions, as experienced by students, that took place during two introductory physics courses (1A and 1B at a university in the United Kingdom. Through this work, a simple framework for analyzing lectures—the framework for interactive learning in lectures (FILL, which focuses on student interactions (with the lecturer, with each other, and with the material is proposed. The pedagogical approach is based on Peer Instruction (PI and both courses are taught by the same lecturer. We find lecture activities can be categorized into three types: interactive (25%, vicarious interactive (20% (involving questions to and from the lecturer, and noninteractive (55%. As expected, the majority of both interactive and vicarious interactive activities took place during PI. However, the way that interactive activities were used during non-PI sections of the lecture varied significantly between the two courses. Differences were also found in the average time spent on lecturer-student interactions (28% for 1A and 12% for 1B, although not on student-student interactions (12% and 12% or on individual learning (10% and 7%. These results are explored in detail and the implications for future research are discussed.

  13. Measuring the Impact of App Inventor for Android and Studio-Based Learning in an Introductory Computer Science Course for Non-Majors

    Science.gov (United States)

    Ahmad, Khuloud Nasser

    2012-01-01

    A reexamination of the traditional instruction of introductory computer science (CS) courses is becoming a necessity. Introductory CS courses tend to have high attrition rates and low success rates. In many universities, the CS department suffered from low enrollment for several years compared to other majors. Multiple studies have linked these…

  14. The Write Stuff: Teaching the Introductory Public Relations Writing Course.

    Science.gov (United States)

    King, Cynthia M.

    2001-01-01

    Outlines an introductory public relations writing course. Presents course topics and objectives, and assignments designed to meet them. Provides a sample grading rubric and evaluates major public relations writing textbooks. Discusses learning and assessment strategies. (SR)

  15. Incorporating online teaching in an introductory pharmaceutical practice course: a study of student perceptions within an Australian University.

    Science.gov (United States)

    Benino, Diana; Girardi, Antonia; Czarniak, Petra

    2011-10-01

    To examine student perceptions regarding online lectures and quizzes undertaken during a pharmaceutical practice course for first year undergraduate students enrolled in the Bachelor of Pharmacy course at an Australian University. The University uses a standard instrument to collect feedback from students regarding unit satisfaction. Data were collected for three different teaching modalities: traditional face-to-face, online and partially online. Descriptive statistics support that, from a student's perspective, partial online delivery is the preferred teaching methodology for an introductory pharmaceutical practice unit. This study has served to highlight that while there are a few points of significant difference between traditional and online teaching and learning, a combination of the two provides a reasonable avenue for teaching exploration. This result has implications for teaching practice generally, and within the pharmacy discipline, specifically.

  16. Evaluating Student Motivation in Organic Chemistry Courses: Moving from a Lecture-Based to a Flipped Approach with Peer-Led Team Learning

    Science.gov (United States)

    Liu, Yujuan; Raker, Jeffrey R.; Lewis, Jennifer E.

    2018-01-01

    Academic Motivation Scale-Chemistry (AMS-Chemistry), an instrument based on the self-determination theory, was used to evaluate students' motivation in two organic chemistry courses, where one course was primarily lecture-based and the other implemented flipped classroom and peer-led team learning (Flip-PLTL) pedagogies. Descriptive statistics…

  17. The Lasting Effects of Introductory Economics Courses.

    Science.gov (United States)

    Sanders, Philip

    1980-01-01

    Reports research which tests the Stigler Hypothesis. The hypothesis suggests that students who have taken introductory economics courses and those who have not show little difference in test performance five years after completing college. Results of the author's research illustrate that economics students do retain some knowledge of economics…

  18. CERN accelerator school: Introductory course in Poland

    CERN Document Server

    2006-01-01

    For the first time since the CERN Accelerator School (CAS) was set up, the 'Introduction to Accelerator Physics' course was held in Zakopane, Poland. This course was organised together with the National Atomic Energy Agency, Warsaw, and the AGH University of Science and Technology, Cracow, and was held from 1-13 October 2006 at the foot of the Tatra Mountains. The course was very well attended with 113 participants representing 26 different nationalities. Although most of the participants originated from Europe, some students came from countries as far away as Canada, China, India and North America. The intensive programme comprised 35 lectures, 3 seminars given by local Polish lecturers, 5 tutorials where the students were split into four groups, a poster session where students could present their own work and 7 hours of guided and private study. The participants appreciated these study periods, which encouraged collaboration and knowledge-sharing in solving problems and gave them the opportunity to get t...

  19. An introductory course in philosophy of medicine.

    Science.gov (United States)

    Rudnick, A

    2004-06-01

    Philosophy of medicine, narrowly defined as ontology and epistemology of medicine, is a well developed research field, yet education in this field is less well developed. The aim of this paper is to present an educational development in philosophy of medicine-an introductory course in philosophy of medicine. Central features of the course are described. Participants (medical undergraduate students) scored high on average. The conclusion is that further such educational ventures in philosophy of medicine should be developed and implemented.

  20. A Reactive Blended Learning Proposal for an Introductory Control Engineering Course

    Science.gov (United States)

    Mendez, Juan A.; Gonzalez, Evelio J.

    2010-01-01

    As it happens in other fields of engineering, blended learning is widely used to teach process control topics. In this paper, the inclusion of a reactive element--a Fuzzy Logic based controller--is proposed for a blended learning approach in an introductory control engineering course. This controller has been designed in order to regulate the…

  1. Costs of success: Financial implications of implementation of active learning in introductory physics courses for students and administrators

    Science.gov (United States)

    Brewe, Eric; Dou, Remy; Shand, Robert

    2018-02-01

    Although active learning is supported by strong evidence of efficacy in undergraduate science instruction, institutions of higher education have yet to embrace comprehensive change. Costs of transforming instruction are regularly cited as a key factor in not adopting active-learning instructional practices. Some cite that alternative methods to stadium-style, lecture-based education are not financially viable to an academic department. This paper examines that argument by presenting an ingredients approach to estimating costs of two instructional methods used in introductory university physics courses at a large public U.S. university. We use a metric common in educational economics, cost effectiveness (CE), which is the total cost per student passing the class. We then compare the CE of traditional, passive-learning lecture courses to those of a well-studied, active-learning curriculum (Modeling Instruction) as a way of evaluating the claim that active learning is cost prohibitive. Our findings are that the Modeling Instruction approach has a higher cost per passing student (MI = 1 ,030 /passing student vs Trad = 790 /passing student). These results are discussed from perspectives of university administrators, students, and taxpayers. We consider how MI would need to adapt in order to make the benefits of active learning (particularly higher pass rates and gains on multiple measured student outcomes) available in a cost-neutral setting. This approach aims to provide a methodology to better inform decision makers balancing financial, personnel, and curricular considerations.

  2. Costs of success: Financial implications of implementation of active learning in introductory physics courses for students and administrators

    Directory of Open Access Journals (Sweden)

    Eric Brewe

    2018-02-01

    Full Text Available Although active learning is supported by strong evidence of efficacy in undergraduate science instruction, institutions of higher education have yet to embrace comprehensive change. Costs of transforming instruction are regularly cited as a key factor in not adopting active-learning instructional practices. Some cite that alternative methods to stadium-style, lecture-based education are not financially viable to an academic department. This paper examines that argument by presenting an ingredients approach to estimating costs of two instructional methods used in introductory university physics courses at a large public U.S. university. We use a metric common in educational economics, cost effectiveness (CE, which is the total cost per student passing the class. We then compare the CE of traditional, passive-learning lecture courses to those of a well-studied, active-learning curriculum (Modeling Instruction as a way of evaluating the claim that active learning is cost prohibitive. Our findings are that the Modeling Instruction approach has a higher cost per passing student (MI=$1,030/passing student vs Trad=$790/passing student. These results are discussed from perspectives of university administrators, students, and taxpayers. We consider how MI would need to adapt in order to make the benefits of active learning (particularly higher pass rates and gains on multiple measured student outcomes available in a cost-neutral setting. This approach aims to provide a methodology to better inform decision makers balancing financial, personnel, and curricular considerations.

  3. Implementation of a Project-Based Molecular Biology Laboratory Emphasizing Protein Structure-Function Relationships in a Large Introductory Biology Laboratory Course

    Science.gov (United States)

    Treacy, Daniel J.; Sankaran, Saumya M.; Gordon-Messer, Susannah; Saly, Danielle; Miller, Rebecca; Isaac, R. Stefan; Kosinski-Collins, Melissa S.

    2011-01-01

    In introductory laboratory courses, many universities are turning from traditional laboratories with predictable outcomes to inquiry-inspired, project-based laboratory curricula. In these labs, students are allowed to design at least some portion of their own experiment and interpret new, undiscovered data. We have redesigned the introductory…

  4. The Introductory College Business Course: A New Dimension

    Science.gov (United States)

    Podell, Joel; And Others

    1977-01-01

    Describes various methodologies used at the Queensboro Community College, New York, to enrich some of the topics traditionally included in the introductory course such as union management relations, social responsibility and business ethics, internal organization structure, and small business management. (TA)

  5. Computer Self-Efficacy: A Practical Indicator of Student Computer Competency in Introductory IS Courses

    Directory of Open Access Journals (Sweden)

    Rex Karsten

    1998-01-01

    Full Text Available Students often receive their first college-level computer training in introductory information systems courses. Students and faculty frequently expect this training to develop a level of student computer competence that will support computer use in future courses. In this study, we applied measures of computer self-efficacy to students in a typical introductory IS course. The measures provided useful evidence that student perceptions of their ability to use computers effectively in the future significantly improved as a result of their training experience. The computer self-efficacy measures also provided enhanced insight into course-related factors of practical concern to IS educators. Study results also suggest computer self-efficacy measures may be a practical and informative means of assessing computer-training outcomes in the introductory IS course context

  6. The Importance of a Laboratory Section on Student Learning Outcomes in a University Introductory Earth Science Course

    Science.gov (United States)

    Forcino, Frank L.

    2013-01-01

    Laboratory sections of university Earth science courses provide hands-on, inquiry-based activities for students in support of lecture and discussion. Here, I compare student conceptual knowledge outcomes of laboratory sections by administering an independent concept inventory at the beginning and end of two courses: one that had a lecture and a…

  7. Generating a Gender Balance: making introductory information systems courses a positive experience

    Directory of Open Access Journals (Sweden)

    Rosemary Stockdale

    2007-12-01

    Full Text Available There is a growing shortfall of graduates entering the IT profession. The situation is exacerbated by the continuing decline in the number of women undertaking IT related degrees. However, there are an increasing number of students taking business degrees that have a small information systems component, although few students choose to major in IS. Using a qualitative reflective approach we identify the perceptions and experiences of female undergraduates taking introductory IS courses in two universities, one in Australia and one in New Zealand. We discuss ways of improving the delivery of introductory IS courses in order to make information systems more interesting to women undergraduates, thus enhancing their learning experiences and encouraging further uptake of IS majors. The paper concludes with some reflections on other influences that impact on the ability of IS departments to deliver appropriate introductory courses.

  8. Delivery of a urology online course using Moodle versus didactic lectures methods.

    Science.gov (United States)

    Reis, Leonardo Oliveira; Ikari, Osamu; Taha-Neto, Khaled A; Gugliotta, Antonio; Denardi, Fernandes

    2015-02-01

    To subjectively and objectively compare an accessible interactive electronic library using Moodle with lectures for urology teaching of medical students. Forty consecutive fourth-year medical students and one urology teacher were exposed to two teaching methods (4 weeks each) in the form of problem-based learning: - lectures and - student-centered group discussion based on Moodle (modular object-oriented dynamic learning environment) full time online delivered (24/7) with video surgeries, electronic urology cases and additional basic principles of the disease process. All 40 students completed the study. While 30% were moderately dissatisfied with their current knowledge base, online learning course delivery using Moodle was considered superior to the lectures by 86% of the students. The study found the following observations: (1) the increment in learning grades ranged from 7.0 to 9.7 for students in the online Moodle course compared to 4.0-9.6 to didactic lectures; (2) the self-reported student involvement in the online course was characterized as large by over 60%; (3) the teacher-student interaction was described as very frequent (50%) and moderately frequent (50%); and (4) more inquiries and requisitions by students as well as peer assisting were observed from the students using the Moodle platform. The Moodle platform is feasible and effective, enthusing medical students to learn, improving immersion in the urology clinical rotation and encouraging the spontaneous peer assisted learning. Future studies should expand objective evaluations of knowledge acquisition and retention. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Incorporating online teaching in an introductory pharmaceutical practice course: a study of student perceptions within an Australian University

    Directory of Open Access Journals (Sweden)

    Benino D

    2011-12-01

    Full Text Available Objectives: To examine student perceptions regarding online lectures and quizzes undertaken during a pharmaceutical practice course for first year undergraduate students enrolled in the Bachelor of Pharmacy course at an Australian University.Methods: The University uses a standard instrument to collect feedback from students regarding unit satisfaction. Data were collected for three different teaching modalities: traditional face-to-face, online and partially online. Results: Descriptive statistics support that, from a student's perspective, partial online delivery is the preferred teaching methodology for an introductory pharmaceutical practice unit. Conclusion: This study has served to highlight that while there are a few points of significant difference between traditional and online teaching and learning, a combination of the two provides a reasonable avenue for teaching exploration. This result has implications for teaching practice generally, and within the pharmacy discipline, specifically.

  10. Implementation of InTeGrate Modules into Introductory Courses in the El Paso Higher Education Community

    Science.gov (United States)

    Doser, D. I.; Villalobos, J. I.; Henry, I. E.

    2014-12-01

    InTeGrate (Interdisciplinary Teaching about Earth for a Sustainable Future) has developed teaching modules that focus on Earth sustainability and Earth-centered societal issues. We have begun to implement modules on climate change, earth materials and freshwater into introductory geology and environmental science courses taught at the University of Texas at El Paso (UTEP), El Paso Community College (EPCC) and local early college high schools (ECHS) for classes of 20 to 220 students. Our eventual goal is to insure students taking introductory classes at any institution will be exposed to comparable content and be similarly prepared for advanced courses. Our initial results suggest that the modules' use of case studies and analysis of authentic data sets are very appealing to our student body (over 70% Hispanic). Since many students do not speak English at home, they were challenged by vocabulary presented in some modules. Modules containing glossaries and extensive background material (such as concept maps and annotated figures) proved very helpful to these students. The use of pre-activity quizzes insured that the students had mastered basic concepts needed for in-class activities. Modifications required to teach these modules in larger classes included condensing materials and reducing the amount of color figures to save paper and printer costs, streamlining dissemination/collection of in-class group assignments, and adapting assignments such as jigsaws and gallery walks to the confines of a large lecture hall with fixed seating. Student reflections indicated students were able to make connections to societal issues and retain these ideas through the end of the courses.

  11. Black Holes and Pulsars in the Introductory Physics Course

    Science.gov (United States)

    Orear, Jay; Salpeter, E. E.

    1973-01-01

    Discusses the phenomenon of formation of white dwarfs, neutron stars, and black holes from dying stars for the purpose of providing college teachers with materials usable in the introductory physics course. (CC)

  12. Benefits of Case-Based versus Traditional Lecture-Based Instruction in a Preclinical Removable Prosthodontics Course.

    Science.gov (United States)

    Samuelson, David B; Divaris, Kimon; De Kok, Ingeborg J

    2017-04-01

    This study compared the acceptability and relative effectiveness of case-based learning (CBL) versus traditional lecture-based (LB) instruction in a preclinical removable prosthodontics course in the University of North Carolina at Chapel Hill School of Dentistry DDS curriculum. The entire second-year class (N=82) comprised this crossover study's sample. Assessments of baseline comprehension and confidence in removable partial denture (RPD) treatment planning were conducted at the beginning of the course. Near the end of the course, half of the class received CBL and LB instruction in an RPD module in alternating sequence, with students serving as their own control group. Assessments of perceived RPD treatment planning efficacy, comprehension, and instruction method preference were administered directly after students completed the RPD module and six months later. Analyses of variance accounting for period, carryover, and sequence effects were used to determine the relative effects of each approach using a peffects, CBL was also associated with higher gains in RPD treatment planning comprehension (p=0.04) and perceived efficacy (p=0.01) compared to LB instruction. These gains diminished six months after the course-a finding based on a 49% follow-up response rate. Overall, the students overwhelmingly preferred CBL to LB instruction, and the findings suggest small albeit measurable educational benefits associated with CBL. This study's findings support the introduction and further testing of CBL in the preclinical dental curriculum, in anticipation of possible future benefits evident during clinical training.

  13. Lecture Notes for the Course in Water Wave Mechanics

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    knowledge. The course is at the same time an introduction to the course in coastal hydraulics on the 8th semester. The notes cover the following five lectures: 1. Definitions. Governing equations and boundary conditions. Derivation of velocity potential for linear waves. Dispersion relationship. 2. Particle...... paths, velocities, accelerations, pressure variation, deep and shallow water waves, wave energy and group velocity. 3. Shoaling, refraction, diffraction and wave breaking. 4. Irregular waves. Time domain analysis of waves. 5. Wave spectra. Frequency domain analysis of waves. The present notes are based...

  14. Access Patterns of Online Materials in a Blended Course

    Science.gov (United States)

    Asarta, Carlos J.; Schmidt, James R.

    2013-01-01

    Patterns in student accesses of online materials and their effects upon student performance in a blended course are examined. Our blended course is an introductory business and economic statistics course where lectures are only available online while the traditional class period is used for complementary learning activities. Timing, volumes,…

  15. The Importance of Attendance in an Introductory Textile Science Course

    Science.gov (United States)

    Marcketti, Sara B.; Wang, Xinxin; Greder, Kate

    2013-01-01

    At Iowa State University, the introductory textile science course is a required 4-credit class for all undergraduate students enrolled in the Apparel, Merchandising, and Design Program. Frustrated by a perceived gap between students who easily comprehended course material and those who complained and struggled, the instructor implemented an…

  16. Perceived Relevance of an Introductory Information Systems Course to Prospective Business Students

    Directory of Open Access Journals (Sweden)

    Irene Govender

    2013-12-01

    Full Text Available The study is designed to examine students’ perceptions of the introductory Information Systems (IS course. It was an exploratory study in which 67 students participated. A quantitative approach was followed making use of questionnaires for the collection of data. Using the theory of reasoned action as a framework, the study explores the factors that influence non-IS major students’ perceived relevance of the IS introductory course. The analysis of collected data included descriptive and inferential statistics. Using multiple regression analysis, the results suggest that overall, the independent variables, relevance of the content, previous IT knowledge, relevance for professional practice, IT preference in courses and peers’ influence may account for 72% of the explanatory power for the dependent variable, perceived relevance of the IS course. In addition, the results have shown some strong predictors (IT preference and peers’ influence that influence students’ perceived relevance of the IS course. Practical work was found to be a strong mediating variable toward positive perceptions of IS. The results of this study suggest that students do indeed perceive the introductory IS course to be relevant and match their professional needs, but more practical work would enhance their learning. Implications for theory and practice are discussed as a result of the behavioural intention to perceive the IS course to be relevant and eventually to recruit more IS students.

  17. Using Online Video Lectures to Enrich Traditional Face-to-Face Courses

    Directory of Open Access Journals (Sweden)

    Suzanne C. Makarem

    2015-07-01

    Full Text Available University educators need to meet changing needs of the digital generation by integrating technology through online content delivery. Despite the many advantages of online education, a large number of university professors are reluctant to make the transition from traditional-face-to-face lectures to online delivery, mainly due to the time, cost, and technical competence requirements to make this transition, in addition to the lack of beliefs in the legitimacy of online education. This article demonstrates the use of online video lectures to adapt traditional university courses to a blended format. The study is implemented for a School of Business Marketing course. We illustrate a cost-effective and timeefficient way for faculty members to record and share online video lectures with limited training and technical support. Using a student sample from two sections of the same marketing course, the study findings support the use of online video lectures as an effective way to free class time for learner-centred activities, without sacrificing student performance outcomes or course satisfaction.

  18. "ASTRO 101" Course Materials 2.0: Next Generation Lecture Tutorials and Beyond

    Science.gov (United States)

    Slater, Stephanie; Grazier, Kevin

    2015-01-01

    Early efforts to create course materials were often local in scale and were based on "gut instinct," and classroom experience and observation. While subsequent efforts were often based on those same instincts and observations of classrooms, they also incorporated the results of many years of education research. These "second generation" course materials, such as lecture tutorials, relied heavily on research indicating that instructors need to actively engage students in the learning process. While imperfect, these curricular innovations, have provided evidence that research-based materials can be constructed, can easily be disseminated to a broad audience, and can provide measureable improvement in student learning across many settings. In order to improve upon this prior work, next generation materials must build upon the strengths of these innovations while engineering in findings from education research, cognitive science, and instructor feedback. A next wave of materials, including a set of next generation lecture tutorials, have been constructed with attention to the body of research on student motivation, and cognitive load; and they are responsive to our body of knowledge on learning difficulties related to specific content in the domain. From instructor feedback, these materials have been constructed to have broader coverage of the materials typically taught in an ASTRO 101 course, to take less class time, and to be more affordable for students. This next generation of lecture tutorials may serve as a template of the ways in which course materials can be reengineered to respond to current instructor and student needs.

  19. A Simulation Game for an Introductory Course in International Business

    Science.gov (United States)

    McGuinness, Michael J.

    2004-01-01

    An international business simulation game designed for an introductory International Business course. The simulation game allows for student decision making and allows for the ready introduction of many topics which are covered in an International Business course. The simulation game has continued to be improved with student suggestions and has…

  20. SIGKit: a New Data-based Software for Learning Introductory Geophysics

    Science.gov (United States)

    Zhang, Y.; Kruse, S.; George, O.; Esmaeili, S.; Papadimitrios, K. S.; Bank, C. G.; Cadmus, A.; Kenneally, N.; Patton, K.; Brusher, J.

    2016-12-01

    Students of diverse academic backgrounds take introductory geophysics courses to learn the theory of a variety of measurement and analysis methods with the expectation to be able to apply their basic knowledge to real data. Ideally, such data is collected in field courses and also used in lecture-based courses because they provide a critical context for better learning and understanding of geophysical methods. Each method requires a separate software package for the data processing steps, and the complexity and variety of professional software makes the path through data processing to data interpretation a strenuous learning process for students and a challenging teaching task for instructors. SIGKit (Student Investigation of Geophysics Toolkit) being developed as a collaboration between the University of South Florida, the University of Toronto, and MathWorks intends to address these shortcomings by showing the most essential processing steps and allowing students to visualize the underlying physics of the various methods. It is based on MATLAB software and offered as an easy-to-use graphical user interface and packaged so it can run as an executable in the classroom and the field even on computers without MATLAB licenses. An evaluation of the software based on student feedback from focus-group interviews and think-aloud observations helps drive its development and refinement. The toolkit provides a logical gateway into the more sophisticated and costly software students will encounter later in their training and careers by combining essential visualization, modeling, processing, and analysis steps for seismic, GPR, magnetics, gravity, resistivity, and electromagnetic data.

  1. Improving student learning and views of physics in a large enrollment introductory physics class

    Science.gov (United States)

    Salehzadeh Einabad, Omid

    Introductory physics courses often serve as gatekeepers for many scientific and engineering programs and, increasingly, colleges are relying on large, lecture formats for these courses. Many students, however, leave having learned very little physics and with poor views of the subject. In interactive engagement (IE), classroom activities encourage students to engage with each other and with physics concepts and to be actively involved in their own learning. These methods have been shown to be effective in introductory physics classes with small group recitations. This study examined student learning and views of physics in a large enrollment course that included IE methods with no separate, small-group recitations. In this study, a large, lecture-based course included activities that had students explaining their reasoning both verbally and in writing, revise their ideas about physics concepts, and apply their reasoning to various problems. The questions addressed were: (a) What do students learn about physics concepts and how does student learning in this course compare to that reported in the literature for students in a traditional course?, (b) Do students' views of physics change and how do students' views of physics compare to that reported in the literature for students in a traditional course?, and (c) Which of the instructional strategies contribute to student learning in this course? Data included: pre-post administration of the Force Concept Inventory (FCI), classroom exams during the term, pre-post administration of the Colorado Learning Attitudes About Science Survey (CLASS), and student work, interviews, and open-ended surveys. The average normalized gain (=0.32) on the FCI falls within the medium-gain range as reported in the physics education literature, even though the average pre-test score was very low (30%) and this was the instructor's first implementation of IE methods. Students' views of physics remained relatively unchanged by instruction

  2. Do Introductory Statistics Courses in the United States Improve Students' Attitudes?

    Science.gov (United States)

    Schau, Candace; Emmioglu, Esma

    2012-01-01

    We examined the attitudes of about 2200 students enrolled in 101 sections of post-secondary introductory statistics service courses located across the United States. Using the "Survey of Attitudes Toward Statistics-36," we assessed students' attitudes when they entered and left their courses, as well as changes in attitudes across their courses.…

  3. The Effect of "Clickers" on Attendance in an Introductory Statistics Course: An Action Research Study

    Science.gov (United States)

    Amstelveen, Raoul H.

    2013-01-01

    The purpose of this study was to design and implement a Classroom Response System, also known as a "clicker," to increase attendance in introductory statistics courses at an undergraduate university. Since 2010, non-attendance had been prevalent in introductory statistics courses. Moreover, non-attendance created undesirable classrooms…

  4. Illustrating Geology With Customized Video in Introductory Geoscience Courses

    Science.gov (United States)

    Magloughlin, J. F.

    2008-12-01

    For the past several years, I have been creating short videos for use in large-enrollment introductory physical geology classes. The motivation for this project included 1) lack of appropriate depth in existing videos, 2) engagement of non-science students, 3) student indifference to traditional textbooks, 4) a desire to share the visual splendor of geology through virtual field trips, and 5) a desire to meld photography, animation, narration, and videography in self-contained experiences. These (HD) videos are information-intensive but short, allowing a focus on relatively narrow topics from numerous subdisciplines, incorporation into lectures to help create variety while minimally interrupting flow and holding students' attention, and manageable file sizes. Nearly all involve one or more field locations, including sites throughout the western and central continental U.S., as well as Hawaii, Italy, New Zealand, and Scotland. The limited scope of the project and motivations mentioned preclude a comprehensive treatment of geology. Instead, videos address geologic processes, locations, features, and interactions with humans. The videos have been made available via DVD and on-line streaming. Such a project requires an array of video and audio equipment and software, a broad knowledge of geology, very good computing power, adequate time, creativity, a substantial travel budget, liability insurance, elucidation of the separation (or non-separation) between such a project and other responsibilities, and, preferably but not essentially, the support of one's supervisor or academic unit. Involving students in such projects entails risks, but involving necessary technical expertise is virtually unavoidable. In my own courses, some videos are used in class and/or made available on-line as simply another aspect of the educational experience. Student response has been overwhelmingly positive, particularly when expectations of students regarding the content of the videos is made

  5. Implementing Motivational Features in Reactive Blended Learning: Application to an Introductory Control Engineering Course

    Science.gov (United States)

    Mendez, J. A.; Gonzalez, E. J.

    2011-01-01

    This paper presents a significant advance in a reactive blended learning methodology applied to an introductory control engineering course. This proposal was based on the inclusion of a reactive element (a fuzzy-logic-based controller) designed to regulate the workload for each student according to his/her activity and performance. The…

  6. Lectures in relativistic quantum mechanics an introductory course for postgraduates in particle physics

    CERN Document Server

    Azfar, Farrukh

    2017-01-01

    This book is based on a series of lectures taught by the author to all incoming first year Oxford University postgraduates in experimental particle physics. It begins by deriving the Dirac equation and incorporating the electro-magnetic interaction and calculating several bread and butter processes at tree level using the Feynman Stueckelberg approach: Mott scattering, electron-electron scattering, electron-positron scattering, Compton scattering, Bremsstrahlung and electron-positron to muon-anti-muon. The intention is for the student to become fluent in detail with all the steps leading to the calculation of these processes. Every step is motivated using the most basic arguments.

  7. The Use of Group Activities in Introductory Biology Supports Learning Gains and Uniquely Benefits High-Achieving Students

    Directory of Open Access Journals (Sweden)

    Gili Marbach-Ad

    2016-12-01

    Full Text Available This study describes the implementation and effectiveness of small-group active engagement (GAE exercises in an introductory biology course (BSCI207 taught in a large auditorium setting. BSCI207 (Principles of Biology III—Organismal Biology is the third introductory core course for Biological Sciences majors. In fall 2014, the instructors redesigned one section to include GAE activities to supplement lecture content. One section (n = 198 employed three lectures per week. The other section (n = 136 replaced one lecture per week with a GAE class. We explored the benefits and challenges associated with implementing GAE exercises and their relative effectiveness for unique student groups (e.g., minority students, high- and low-grade point average [GPA] students. Our findings show that undergraduates in the GAE class exhibited greater improvement in learning outcomes than undergraduates in the traditional class. Findings also indicate that high-achieving students experienced the greatest benefit from GAE activities. Some at-risk student groups (e.g., two-year transfer students showed comparably low learning gains in the course, despite the additional support that may have been afforded by active learning. Collectively, these findings provide valuable feedback that may assist other instructors who wish to revise their courses and recommendations for institutions regarding prerequisite coursework approval policies.

  8. A collaborative learning approach for service-oriented introductory physics

    Science.gov (United States)

    Smith, Michael R.

    1997-03-01

    I have taught algebra-based introductory physics for six years to liberal arts students. It was primarily a service course for students majoring in Athletic Training, Physical Therapy, Geology, Biology, and Pre-Med. The typical student was characterized by having a minimal math and problem-solving proficiency. There also was a pattern of students being predisposed to memorizing facts and formulas, and attempting to solve problems by finding the correct formula and "plugging in" numbers to get an answer. The students seemed to have a minimal ability in deductive reasoning and problem solving, starting from basic principles. It is no wonder that they entered the introductory physics service course with extreme trepidation, based upon a strongly perceived physics phobia. A standard lecture format was used for the class size of approximately 25-30 students; and an attempt was always made to engage the students through the Socratic approach, by asking leading questions during the course of the lecture. The students were relatively unprepared and couldn't participate in the class, and often responded antagonistically. They indicated they didn't want to be asked to think about an issue, but would rather just be told the facts so they could take specific notes for subsequent memorization. It was clear from the results of the open book exams given during the semester that the majority of students could not approach problem solving using deductive reasoning based on basic principles, but relied on attempting to force-fit the problem into a worked example in the text (often out of context, with illogical results). The absentee rate in the classroom was usually around 30-40%. The academic administration of my liberal arts university has the policy of formal course evaluations by the students at the end of each semester. The evaluation questionnaire appears to be primarily a measurement of the stress level of the student during the course, and the evaluation score I received

  9. Rationale for the Design of a Web-based Programming Course for Adults

    DEFF Research Database (Denmark)

    Bennedsen, Jens; Caspersen, Michael Edelgaard

    2003-01-01

    Web-based distance education is becoming more and more popular in particular for part-time educations primarily because it flexibly adapts to a busy life where family and work has first priority. Students can follow the course without wasting precious time traveling to and from campus several...... evenings a week, and participation can take place also in situations where it would otherwise be impossible (e.g. a sick child or a business trip). However, these advantages don't come for free: the students lose the social relations following from face-to-face contact with the lecturer and teaching...... assistant as well as the other students. Another serious drawback is the reduced bandwidth in communication among the different actors. Precautions have to be taken in order to compensate for these and other drawbacks. We describe a web-based introductory programming course for adults and the rationale...

  10. The Web-Lecture - a viable alternative to the traditional lecture format?

    Science.gov (United States)

    Meibom, S.

    2004-12-01

    Educational research shows that students learn best in an environment with emphasis on teamwork, problem-solving, and hands-on experience. Still professors spend the majority of their time with students in the traditional lecture-hall setting where the combination of large classes and limited time prevents sufficient student-teacher interaction to foster an active learning environment. Can modern computer technology be used to provide "lecture-type" information to students via the World Wide Web? If so, will that help professors make better and/or different use of their scheduled time with the students? Answering these questions was the main motivation for the Extra-Solar Planet Project. The Extra-Solar Planet Project was designed to test the effectiveness of a lecture available to the student on the World Wide Web (Web-Lecture) and to engage the students in an active learning environment were their use the information presented in the Web-Lecture. The topic of the Web-Lecture was detection of extra-solar planets and the project was implemented into an introductory astronomy course at University of Wisconsin Madison in the spring of 2004. The Web-Lecture was designed to give an interactive presentation of synchronized video, audio and lecture notes. It was created using the eTEACH software developed at the University of Wisconsin Madison School of Engineering. In my talk, I will describe the project, show excerpts of the Web-Lecture, and present assessments of student learning and results of student evaluations of the web-lecture format.

  11. Conceptual Framework to Help Promote Retention and Transfer in the Introductory Chemical Engineering Course

    Science.gov (United States)

    Hanyak, Michael E., Jr.

    2015-01-01

    In an introductory chemical engineering course, the conceptual framework of a holistic problem-solving methodology in conjunction with a problem-based learning approach has been shown to create a learning environment that nurtures deep learning rather than surface learning. Based on exam scores, student grades are either the same or better than…

  12. Comparing the Attitudes of Pre-Health Professional and Engineering Students in Introductory Physics Courses

    Science.gov (United States)

    McKinney, Meghan

    2015-04-01

    This talk will discuss using the Colorado Learning Attitudes about Science Survey (CLASS) to compare student attitudes towards the study of physics of two different groups. Northern Illinois University has two levels of introductory mechanics courses, one geared towards biology majors and pre-health professionals, and one for engineering and physics majors. The course for pre-health professionals is an algebra based course, while the course for engineering and physics majors is a calculus based course. We've adapted the CLASS into a twenty question survey that measures student attitudes towards the practice of and conceptions about physics. The survey is administered as a pre and post assessment to look at student attitudes before and after their first course in physics.

  13. Introducing the Cloud in an Introductory IT Course

    Science.gov (United States)

    Woods, David M.

    2018-01-01

    Cloud computing is a rapidly emerging topic, but should it be included in an introductory IT course? The magnitude of cloud computing use, especially cloud infrastructure, along with students' limited knowledge of the topic support adding cloud content to the IT curriculum. There are several arguments that support including cloud computing in an…

  14. Agriscience Teachers' Implementation of Digital Game-based Learning in an Introductory Animal Science Course

    Science.gov (United States)

    Webb, Angela W.; Bunch, J. C.; Wallace, Maria F. G.

    2015-12-01

    In today's technological age, visions for technology integration in the classroom continue to be explored and examined. Digital game-based learning is one way to purposefully integrate technology while maintaining a focus on learning objectives. This case study sought to understand agriscience teachers' experiences implementing digital game-based learning in an introductory animal science course. From interviews with agriscience teachers on their experiences with the game, three themes emerged: (1) the constraints of inadequate and inappropriate technologies, and time to game implementation; (2) the shift in teacher and student roles necessitated by implementing the game; and (3) the inherent competitive nature of learning through the game. Based on these findings, we recommend that pre-service and in-service professional development opportunities be developed for teachers to learn how to implement digital game-based learning effectively. Additionally, with the potential for simulations that address cross-cutting concepts in the next generation science standards, digital game-based learning should be explored in various science teaching and learning contexts.

  15. Incentive Matters!--The Benefit of Reminding Students about Their Academic Standing in Introductory Economics Courses

    Science.gov (United States)

    Chen, Qihui; Okediji, Tade O.

    2014-01-01

    In this article, the authors illustrate how incentives can improve student performance in introductory economics courses. They implemented a policy experiment in a large introductory economics class in which they reminded students who scored below an announced cutoff score on the midterm exam about the risk of failing the course. The authors…

  16. Fundamentals of Aerospace Engineering: An introductory course to aeronautical engineering

    OpenAIRE

    Soler, Manuel

    2014-01-01

    Fundamentals of Aerospace Engineering is a text book that provides an introductory, thorough overview of aeronautical engineering, and it is aimed at serving as reference for an undergraduate course on aerospace engineering.

  17. Development and Assessment of a Preliminary Randomization-Based Introductory Statistics Curriculum

    Science.gov (United States)

    Tintle, Nathan; VanderStoep, Jill; Holmes, Vicki-Lynn; Quisenberry, Brooke; Swanson, Todd

    2011-01-01

    The algebra-based introductory statistics course is the most popular undergraduate course in statistics. While there is a general consensus for the content of the curriculum, the recent Guidelines for Assessment and Instruction in Statistics Education (GAISE) have challenged the pedagogy of this course. Additionally, some arguments have been made…

  18. Understanding Factors Leading to Participation in Supplemental Instruction Programs in Introductory Accounting Courses

    Science.gov (United States)

    Goldstein, James; Sauer, Paul; O'Donnell, Joseph

    2014-01-01

    Although studies have shown that supplemental instruction (SI) programs can have positive effects in introductory accounting courses, these programs experience low participation rates. Thus, our study is the first to examine the factors leading to student participation in SI programs. We do this through a survey instrument based on the Theory of…

  19. Accounting History in Undergraduate Introductory Financial Accounting Courses: An Exploratory Study.

    Science.gov (United States)

    Williams, Satina V.; Schwartz, Bill N.

    2002-01-01

    Accounting faculty surveyed (n=45) did not overwhelmingly support incorporating accounting history into introductory courses, despite Accounting Education Change Commission recommendations. They did not support a separate course or believe history would attract more students. Attitudes of those already including history did not differ greatly from…

  20. How We Teach Introductory Bible Courses: A Comparative and Historical Sampling

    Science.gov (United States)

    Cornell, Collin; LeMon, Joel M.

    2016-01-01

    This study identifies the dominant modes of biblical interpretation being taught in introductory Bible courses through a qualitative analysis of course syllabi from three institutional contexts: evangelical Christian colleges, private colleges, and public universities. Despite a proliferation of methods and scholarly approaches to the Bible, this…

  1. Toward equity through participation in Modeling Instruction in introductory university physics

    Science.gov (United States)

    Brewe, Eric; Sawtelle, Vashti; Kramer, Laird H.; O'Brien, George E.; Rodriguez, Idaykis; Pamelá, Priscilla

    2010-06-01

    We report the results of a five year evaluation of the reform of introductory calculus-based physics by implementation of Modeling Instruction (MI) at Florida International University (FIU), a Hispanic-serving institution. MI is described in the context of FIU’s overall effort to enhance student participation in physics and science broadly. Our analysis of MI from a “participationist” perspective on learning identifies aspects of MI including conceptually based instruction, culturally sensitive instruction, and cooperative group learning, which are consistent with research on supporting equitable learning and participation by students historically under-represented in physics (i.e., Black, Hispanic, women). This study uses markers of conceptual understanding as measured by the Force Concept Inventory (FCI) and odds of success as measured by the ratio of students completing introductory physics and earning a passing grade (i.e., C- or better) by students historically under-represented in physics to reflect equity and participation in introductory physics. FCI pre and post scores for students in MI are compared with lecture-format taught students. Modeling Instruction students outperform students taught in lecture-format classes on post instruction FCI (61.9% vs 47.9%, p<0.001 ), where these benefits are seen across both ethnic and gender comparisons. In addition, we report that the odds of success in MI are 6.73 times greater than in lecture instruction. Both odds of success and FCI scores within Modeling Instruction are further disaggregated by ethnicity and by gender to address the question of equity within the treatment. The results of this disaggregation indicate that although ethnically under-represented students enter with lower overall conceptual understanding scores, the gap is not widened during introductory physics but instead is maintained, and the odds of success for under-represented students is not different from majority students. Women

  2. Toward equity through participation in Modeling Instruction in introductory university physics

    Directory of Open Access Journals (Sweden)

    Eric Brewe

    2010-05-01

    Full Text Available We report the results of a five year evaluation of the reform of introductory calculus-based physics by implementation of Modeling Instruction (MI at Florida International University (FIU, a Hispanic-serving institution. MI is described in the context of FIU’s overall effort to enhance student participation in physics and science broadly. Our analysis of MI from a “participationist” perspective on learning identifies aspects of MI including conceptually based instruction, culturally sensitive instruction, and cooperative group learning, which are consistent with research on supporting equitable learning and participation by students historically under-represented in physics (i.e., Black, Hispanic, women. This study uses markers of conceptual understanding as measured by the Force Concept Inventory (FCI and odds of success as measured by the ratio of students completing introductory physics and earning a passing grade (i.e., C− or better by students historically under-represented in physics to reflect equity and participation in introductory physics. FCI pre and post scores for students in MI are compared with lecture-format taught students. Modeling Instruction students outperform students taught in lecture-format classes on post instruction FCI (61.9% vs 47.9%, p<0.001, where these benefits are seen across both ethnic and gender comparisons. In addition, we report that the odds of success in MI are 6.73 times greater than in lecture instruction. Both odds of success and FCI scores within Modeling Instruction are further disaggregated by ethnicity and by gender to address the question of equity within the treatment. The results of this disaggregation indicate that although ethnically under-represented students enter with lower overall conceptual understanding scores, the gap is not widened during introductory physics but instead is maintained, and the odds of success for under-represented students is not different from majority students

  3. Implementing New Reform Guidelines in Teaching Introductory College Statistics Courses

    Science.gov (United States)

    Everson, Michelle; Zieffler, Andrew; Garfield, Joan

    2008-01-01

    This article introduces the recently adopted Guidelines for the Assessment and Instruction in Statistics Education (GAISE) and provides two examples of introductory statistics courses that have been redesigned to better align with these guidelines.

  4. Influence of Course Delivery Method and Proctoring on Performance in Introductory Economics

    OpenAIRE

    Wachenheim, Cheryl J.

    2011-01-01

    This work was published in the Review of Agricultural Economics. See Wachenheim, C.J. 2009. Final Exam Scores in Introductory Economics Courses: Effect of Course Delivery Method and Proctoring. Review of Agricultural Economics 31(3), pp. 640-652.

  5. Finding the Right Fit: Assessing the Impact of Traditional v. Large Lecture/Small Lab Course Formats on a General Education Course

    Science.gov (United States)

    Wildermuth, Susan M.; French, Tammy; Fredrick, Edward

    2013-01-01

    This study explores alternative approaches for teaching general education courses burdened with serving extremely large enrollments. It compares the effectiveness of a self-contained course in which each course section is taught by one instructor to a large lecture/small lab format in which all course enrollees attend one large lecture section and…

  6. Student Logical Implications and Connections between Symbolic Representations of a Linear System within the Context of an Introductory Linear Algebra Course Employing Inquiry-Oriented Teaching and Traditional Lecture

    Science.gov (United States)

    Payton, Spencer D.

    2017-01-01

    This study aimed to explore how inquiry-oriented teaching could be implemented in an introductory linear algebra course that, due to various constraints, may not lend itself to inquiry-oriented teaching. In particular, the course in question has a traditionally large class size, limited amount of class time, and is often coordinated with other…

  7. Efficacy of Multimedia Learning Modules as Preparation for Lecture-Based Tutorials in Electromagnetism

    Directory of Open Access Journals (Sweden)

    James Christopher Moore

    2018-02-01

    Full Text Available We have investigated the efficacy of on-line, multimedia learning modules (MLMs as preparation for in-class, lecture-based tutorials in electromagnetism in a physics course for natural science majors (biology and marine science. Specifically, we report the results of a multiple-group pre/post-test research design comparing two groups receiving different treatments with respect to activities preceding participation in Tutorials in Introductory Physics. The different pre-tutorial activities were as follows: (1 students were assigned reading from a traditional textbook, followed by a traditional lecture; and (2 students completed on-line MLMs developed by the Physics Education Research Group at the University of Illinois at Urbana Champaign (UIUC, and commercially known as FlipItPhysics. The MLM treatment group earned significantly higher mid-term examination scores and larger gains in content knowledge as measured by the Conceptual Survey of Electricity and Magnetism (CSEM. Student attitudes towards “reformed” instruction in the form of active-engagement tutorials were also improved. Specifically, post-course surveys showed that MLM-group students believed class time was more effective and the instructor was more clear than reported by non-MLM students, even though there was no significant difference between groups with respect to in-class activities and the same instructor taught both groups. MLM activities can be a highly effective tool for some student populations, especially when student preparation and buy-in are important for realizing significant gains.

  8. Introductory astronomy course at the University of Cape Town: Probing student perspectives

    Directory of Open Access Journals (Sweden)

    Vinesh Rajpaul

    2014-11-01

    Full Text Available We report on research carried out to improve teaching and student engagement in the introductory astronomy course at the University of Cape Town. This course is taken by a diverse range of students, including many from educationally disadvantaged backgrounds. We describe the development of an instrument, the Introductory Astronomy Questionnaire (IAQ, which we administered as pre- and posttests to students enrolled in the course. The instrument comprised a small number of questions which probed three areas of interest: student motivation and expectations, astronomy content, and worldview. Amongst our findings were that learning gains were made in several conceptual areas, and that students appeared to develop a more nuanced view of the nature of astronomy. There was some evidence that the course had a positive impact on students’ worldviews, particularly their attitudes towards science. We also identified a promising predictor of course success that could in the future be used to identify students requiring special teaching intervention.

  9. Primarily Statistics: Developing an Introductory Statistics Course for Pre-Service Elementary Teachers

    Science.gov (United States)

    Green, Jennifer L.; Blankenship, Erin E.

    2013-01-01

    We developed an introductory statistics course for pre-service elementary teachers. In this paper, we describe the goals and structure of the course, as well as the assessments we implemented. Additionally, we use example course work to demonstrate pre-service teachers' progress both in learning statistics and as novice teachers. Overall, the…

  10. Holding Together a Multifunctional College Zoology Course.

    Science.gov (United States)

    Snyder, John A.; Teska, William R.

    1981-01-01

    Describes an introductory zoology course which includes: (1) lectures organized on the basis of taxonomic relationships; (2) out-of-class reading assignments from nontraditional sources such as magazines; (3) laboratories for microscope analysis and dissection; and (4) a separate self-paced laboratory. (DS)

  11. Using active learning strategies to investigate student learning and attitudes in a large enrollment, introductory geology course

    Science.gov (United States)

    Berry, Stacy Jane

    There has been an increased emphasis for college instruction to incorporate more active and collaborative involvement of students in the learning process. These views have been asserted by The Association of American Colleges (AAC), the National Science Foundation (NSF), and The National Research Counsel (NRC), which are advocating for the modification of traditional instructional techniques to allow students the opportunity to be more cooperative (Task Group on General Education, 1988). This has guided educators and facilitators into shifting teaching paradigms from a teacher centered to a more student-centered curriculum. The present study investigated achievement outcomes and attitudes of learners in a large enrollment (n ~ 200), introductory geology course using a student centered learning cycle format of instruction versus another similar section that used a traditional lecture format. Although the course is a recruiting class for majors, over 95% of the students that enroll are non-majors. Measurements of academic evaluation were through four unit exams, classroom communication systems, weekly web-based homework, in-class activities, and a thematic collaborative poster/paper project and presentation. The qualitative methods to investigate the effectiveness of the teaching design included: direct observation, self-reporting about learning, and open-ended interviews. By disaggregating emerging data, we tried to concentrate on patterns and causal relationships between achievement performance and attitudes regarding learning geology. Statistical analyses revealed positive relationships between student engagement in supplemental activities and achievement mean scores within and between the two sections. Completing weekly online homework had the most robust relationship with overall achievement performance. Contrary to expectations, a thematic group project only led to modest gains in achievement performance, although the social and professional gains could be

  12. Nontraditional teaching techniques and critical thinking in an introductory postsecondary environmental science course

    Science.gov (United States)

    Buerdsell, Sherri Lynn

    2009-12-01

    As an institution of higher education and as a Hispanic-serving institution, New Mexico State University has a responsibility to its students to provide the skills and experiences necessary for each and every student to become a responsible, reflective citizen, capable of making informed decisions. Postsecondary science has traditionally been taught through lectures. Traditional lecture classes simply do not meet the needs of diverse groups of students in the modern multicultural student body like New Mexico State University's. However, the implementation of nontraditional pedagogy without evaluation of the results is useless as a step to reform; it is necessary to evaluate the results of in situ nontraditional pedagogy to determine its worth. The purpose of this research is to analyze the development and change in students' critical thinking skills, and critical thinking dispositions in single semester in an introductory Environmental Science course. This study utilized a mixed methods approach. The California Critical Thinking Skills Test and the California Critical Thinking Disposition Inventory were administered in the beginning and at the end of the semester. The pretest was used to provide a baseline for each participant against which the posttest score was compared. In addition, student interviews, field notes, and a survey provided qualitative data, which generated themes regarding the development of student critical thinking in this course. The results indicated there were no significant differences in the critical thinking test scores. However, qualitative analysis indicated that students experienced significant changes in critical thinking. Three themes emerged from the qualitative analysis pertaining to the amount of influence on student learning. These themes are active thinking and learning, dialogue, and professor's influence. Due to the conflict between the quantitative and the qualitative results, it is suggested that the critical thinking tests

  13. Active Learning Outside the Classroom: Implementation and Outcomes of Peer-Led Team-Learning Workshops in Introductory Biology

    OpenAIRE

    Kudish, Philip; Shores, Robin; McClung, Alex; Smulyan, Lisa; Vallen, Elizabeth A.; Siwicki, Kathleen K.

    2016-01-01

    Study group meetings (SGMs) are voluntary-attendance peer-led team-learning workshops that supplement introductory biology lectures at a selective liberal arts college. While supporting all students? engagement with lecture material, specific aims are to improve the success of underrepresented minority (URM) students and those with weaker backgrounds in biology. Peer leaders with experience in biology courses and training in science pedagogy facilitate work on faculty-generated challenge prob...

  14. Evidence for anecdotes: Examining use of stories in introductory biology courses with a mixed-methods approach

    Science.gov (United States)

    Kreps, Jennifer Susan

    2005-11-01

    Instructional stories can be an effective way to teach science concepts. However, research has not examined the extent to which stories are being used, and how they are received. More research on the use of story in biology classes may lead to more conscious use of story by instructors, which may lead to a better understanding of biological concepts by students. The purpose of this study was to examine how instructors and students use stories in university introductory biology courses, and the degree to which these stories are perceived to be effective. To examine this phenomenon, a nationwide instructor survey, a university-wide student survey, and multiple case studies were used. Two case studies included observation of lectures, interviews with (36) students, and interviews with instructors (4) over two semesters of an organismal biology course. Instructor survey participants (N = 78) were gathered by posting email invitations, and student survey participants (N = 260) were volunteers from introductory biology courses at a middle-sized university. Several types of stories were observed, including personal experience stories, historical anecdotes, and "you" stories. Students reported increased affective learning when stories were told, and remembered mostly humorous stories. In the instructor survey, no significant differences emerged between genders, type of biology taught, or communicator style and instructional story frequency. However, reports of personal experience story frequency did increase significantly (p ethnicity, although non-science majors reported that their instructors used stories significantly more frequently (p perceived learning loss for non-science majors, but not for science majors. The researcher suggests that stories can be an effective tool to teach biology, particularly if the instructor is aware of her audience and uses stories primarily to help students understand how concepts are related to "real life."

  15. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-Health Students

    Science.gov (United States)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-01-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia…

  16. Hiding data selected topics : Rudolf Ahlswede’s lectures on information theory 3

    CERN Document Server

    Althöfer, Ingo; Deppe, Christian; Tamm, Ulrich

    2016-01-01

    Devoted to information security, this volume begins with a short course on cryptography, mainly based on lectures given by Rudolf Ahlswede at the University of Bielefeld in the mid 1990s. It was the second of his cycle of lectures on information theory which opened with an introductory course on basic coding theorems, as covered in Volume 1 of this series. In this third volume, Shannon’s historical work on secrecy systems is detailed, followed by an introduction to an information-theoretic model of wiretap channels, and such important concepts as homophonic coding and authentication. Once the theoretical arguments have been presented, comprehensive technical details of AES are given. Furthermore, a short introduction to the history of public-key cryptology, RSA and El Gamal cryptosystems is provided, followed by a look at the basic theory of elliptic curves, and algorithms for efficient addition in elliptic curves. Lastly, the important topic of “oblivious transfer” is discussed, which is strongly conne...

  17. Enhancing the Teaching of Introductory Economics with a Team-Based, Multi-Section Competition

    Science.gov (United States)

    Beaudin, Laura; Berdiev, Aziz N.; Kaminaga, Allison Shwachman; Mirmirani, Sam; Tebaldi, Edinaldo

    2017-01-01

    The authors describe a unique approach to enhancing student learning at the introductory economics level that utilizes a multi-section, team-based competition. The competition is structured to supplement learning throughout the entire introductory course. Student teams are presented with current economic issues, trends, or events, and use economic…

  18. Retention of Statistical Concepts in a Preliminary Randomization-Based Introductory Statistics Curriculum

    Science.gov (United States)

    Tintle, Nathan; Topliff, Kylie; VanderStoep, Jill; Holmes, Vicki-Lynn; Swanson, Todd

    2012-01-01

    Previous research suggests that a randomization-based introductory statistics course may improve student learning compared to the consensus curriculum. However, it is unclear whether these gains are retained by students post-course. We compared the conceptual understanding of a cohort of students who took a randomization-based curriculum (n = 76)…

  19. Polymerization Simulator for Introductory Polymer and Material Science Courses

    Science.gov (United States)

    Chirdon, William M.

    2010-01-01

    This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…

  20. Ecology Content in Introductory Biology Courses: A Comparative Analysis

    Science.gov (United States)

    Pool, Richard F.; Turner, Gregory D.; Böttger, S. Anne

    2013-01-01

    In recent years the need for ecological literacy and problem solving has increased, but there is no evidence that this need is reflected by increased ecology coverage at institutions of higher education (IHE) across the United States. Because introductory biology courses may serve to direct student interest toward particular biological categories…

  1. Students' Spirituality and "Big Questions" in Introductory Religion Courses

    Science.gov (United States)

    Walvoord, Barbara E.

    2008-01-01

    A study of sixty-six highly effective teachers of introductory theology and religion courses in various types of institutions reveals very complex challenges for instructors. The majority of students have as a goal their own religious and spiritual development. Faculty members' most frequent goal is critical thinking. Students much less frequently…

  2. Problem-based learning biotechnology courses in chemical engineering.

    Science.gov (United States)

    Glatz, Charles E; Gonzalez, Ramon; Huba, Mary E; Mallapragada, Surya K; Narasimhan, Balaji; Reilly, Peter J; Saunders, Kevin P; Shanks, Jacqueline V

    2006-01-01

    We have developed a series of upper undergraduate/graduate lecture and laboratory courses on biotechnological topics to supplement existing biochemical engineering, bioseparations, and biomedical engineering lecture courses. The laboratory courses are based on problem-based learning techniques, featuring two- and three-person teams, journaling, and performance rubrics for guidance and assessment. Participants initially have found them to be difficult, since they had little experience with problem-based learning. To increase enrollment, we are combining the laboratory courses into 2-credit groupings and allowing students to substitute one of them for the second of our 2-credit chemical engineering unit operations laboratory courses.

  3. A Modified Approach to the Introductory Economics Course in a School of Business

    Science.gov (United States)

    Crockett, G. V.

    1977-01-01

    Describes course format, materials development, and evaluation of an introductory economics course which stressed problem solving techniques and conceptual skills instead of rote memorization of factual content. For journal availability, see SO 506 029. (AV)

  4. The Structure of the Introductory Economics Course in United States Colleges.

    Science.gov (United States)

    Sweeney, M. Jane Barr; And Others

    1983-01-01

    This survey examined class size, teaching methods, and the one-semester/two-semester organization of the introductory economics course. Student satisfaction with respect to their institution was also studied. (Author/RM)

  5. Using a Movie as a Capstone Activity for the Introductory Course

    Science.gov (United States)

    Blessing, Stephen B.; Blessing, Jennifer S.

    2015-01-01

    A capstone experience serves as a culminating exercise for students to assimilate the information learned in a course and to realize how to use the material and skills in different contexts. Both majors and nonmajors benefit from having the material in the introductory course consolidated in such a way, for later study in the field and to more…

  6. Operation, analysis, and design of signalized intersections : a module for the introductory course in transportation engineering.

    Science.gov (United States)

    2014-02-01

    This report presents materials that can be used as the basis for a module on signalized intersections in the introductory : course in transportation engineering. The materials were developed based on studies of the work of students who took : this in...

  7. Effectiveness of a Low-Cost, Graduate Student-Led Intervention on Study Habits and Performance in Introductory Biology.

    Science.gov (United States)

    Hoskins, Tyler D; Gantz, J D; Chaffee, Blake R; Arlinghaus, Kel; Wiebler, James; Hughes, Michael; Fernandes, Joyce J

    2017-01-01

    Institutions have developed diverse approaches that vary in effectiveness and cost to improve student performance in introductory science, technology, engineering, and mathematics courses. We developed a low-cost, graduate student-led, metacognition-based study skills course taught in conjunction with the introductory biology series at Miami University. Our approach aimed to improve performance for underachieving students by combining an existing framework for the process of learning (the study cycle) with concrete tools (outlines and concept maps) that have been shown to encourage deep understanding. To assess the effectiveness of our efforts, we asked 1) how effective our voluntary recruitment model was at enrolling the target cohort, 2) how the course impacted performance on lecture exams, 3) how the course impacted study habits and techniques, and 4) whether there are particular study habits or techniques that are associated with large improvements on exam scores. Voluntary recruitment attracted only 11-17% of our target cohort. While focal students improved on lecture exams relative to their peers who did not enroll, gains were relatively modest, and not all students improved. Further, although students across both semesters of our study reported improved study habits (based on pre and post surveys) and on outlines and concept maps (based on retrospectively scored assignments), gains were more dramatic in the Fall semester. Multivariate models revealed that, while changes in study habits and in the quality of outlines and concept maps were weakly associated with change in performance on lecture exams, relationships were only significant in the Fall semester and were sometimes counterintuitive. Although benefits of the course were offset somewhat by the inefficiency of voluntary recruitment, we demonstrate the effectiveness our course, which is inexpensive to implement and has advantage of providing pedagogical experience to future educators. © 2017 T. D

  8. A Comparison of Traditional and Blended Learning in Introductory Principles of Accounting Course

    Science.gov (United States)

    Du, Chan

    2011-01-01

    This paper examines whether a blended course that introduces lower-level education online learned by students before they come into class and after class online assignments and online discussions enhances student performance for an introductory principles of accounting course over the period 2009-2010. The blended course design includes (1)…

  9. Special Relativity and Magnetism in an Introductory Physics Course

    Science.gov (United States)

    Piccioni, R. G.

    2007-01-01

    Too often, students in introductory courses are left with the impression that Einstein's special theory of relativity comes into play only when the relative speed of two objects is an appreciable fraction of the speed of light ("c"). In fact, relativistic length contraction, along with Coulomb's law, accounts quantitatively for the force on a…

  10. Engagement in Digital Lecture Halls: A Study of Student Course Engagement and Mobile Device use During Lecture

    Directory of Open Access Journals (Sweden)

    Gwendolyn Witecki

    2015-01-01

    Full Text Available Universities have experienced increases in technology ownership and usage amongst students entering undergraduate programs. Almost all students report owning a mobile phone and many students view laptops and tablets as educational tools, though they also report using them for non-academic activities during lectures. We explored the relationship between student course engagement and the use of smartphones, laptops, cell phones, and tablets during lecture. Undergraduate students responded to an online survey asking about both course engagement and mobile device habits. Results show that smartphone use was most strongly related to lowered course engagement and while laptop use was related to lowered engagement, it was to a lesser extent. In contrast, overall engagement of students using tablets or cell phones was not significantly different than those who did not.

  11. Engaging Non-Science Majors Through Citizen Science Projects In Inquiry-Based Introductory Geoscience Laboratory Courses

    Science.gov (United States)

    Humphreys, R. R.; Hall, C.; Colgan, M. W.; Rhodes, E.

    2010-12-01

    Although inquiry-based/problem-based methods have been successfully incorporated in undergraduate lecture classes, a survey of commonly used laboratory manuals indicates that few non-major geoscience laboratory classes use these strategies. The Department of Geology and Environmental Geosciences faculty members have developed a successful introductory Environmental Geology Laboratory course for undergraduate non-majors that challenges traditional teaching methodology as illustrated in most laboratory manuals. The Environmental Geology lab activities employ active learning methods to engage and challenge students. Crucial to establishing an open learning environment is capturing the attention of non-science majors from the moment they enter the classroom. We use catastrophic ‘gloom and doom’ current events to pique the imagination with images, news stories, and videos. Once our students are hooked, we can further the learning process with use of other teaching methods: an inquiry-based approach that requires students take control of their own learning, a cooperative learning approach that requires the participation of all team members in peer learning, and a problem/case study learning approach that primarily relies on activities distilled from current events. The final outcome is focused on creating innovative methods to communicate the findings to the general public. With the general public being the audience for their communiqué, students are less intimated, more focused, and more involved in solving the problem. During lab sessions, teams of students actively engage in mastering course content and develop essential communication skills while exploring real-world scenarios. These activities allow students to use scientific reasoning and concepts to develop solutions for scenarios such as volcanic eruptions, coastal erosion/sea level rise, flooding or landslide hazards, and then creatively communicate their solutions to the public. For example, during a two

  12. Assessing the impact of a tutorial intervention when teaching the ray model of light in introductory physics

    International Nuclear Information System (INIS)

    Kesonen, M H P; Asikainen, M A; Hirvonen, P E

    2013-01-01

    This paper presents a 90 min tutorial intervention which permits the use of the Tutorials in Introductory Physics curriculum in a conventional physics course. In addition, the paper describes the impact of the intervention on students' understanding of the ray model of light in the context of geometrical images. In 2011 and 2012 a total of 79 introductory students participated in the intervention, where they worked with the Light and Shadow tutorial after having received lecture-based instruction in a conventional physics course. The impact of the intervention on the students' learning was assessed by means of paper-and-pencil test questions at the beginning and end of the intervention. The results showed that the proportion of correct or nearly correct answers increased by 17 percentage points during the intervention. Thus, it can be claimed that the intervention was a useful supplement to a conventional physics course by helping students to improve their understanding of the ray model of light. In addition, the intervention may serve as an intermediate step towards adopting the tutorials, since it permits the curriculum of a conventional physics course to be tested without large changes being made to the course. This type of information is needed in support of institutional changes towards more research-based instructional practices. (paper)

  13. Student Perceptions of a Form-Based Approach to Reflective Journaling

    Science.gov (United States)

    Mabrouk, Patricia Ann

    2015-01-01

    The author describes the principal findings of a survey study looking at student perceptions of a new form-based approach to reflective journaling. A form-based journal assignment was developed for use in introductory lecture courses and tested over a two-year period in an Honors General Chemistry course for engineers with a total of 157…

  14. Computational Inquiry in Introductory Statistics

    Science.gov (United States)

    Toews, Carl

    2017-01-01

    Inquiry-based pedagogies have a strong presence in proof-based undergraduate mathematics courses, but can be difficult to implement in courses that are large, procedural, or highly computational. An introductory course in statistics would thus seem an unlikely candidate for an inquiry-based approach, as these courses typically steer well clear of…

  15. Introducing Contemporary Anthropology: A Team-Taught Course for Large Classes.

    Science.gov (United States)

    Plotnicov, Leonard

    1985-01-01

    Describes a method of teaching large sections of college introductory anthropology by members of the anthropology faculty giving their best lectures. Presents details of how such a course was initiated, operated, and evaluated at the University of Pittsburgh. (KH)

  16. Traditional Lecture Versus an Activity Approach for Teaching Statistics: A Comparison of Outcomes

    OpenAIRE

    Loveland, Jennifer L.

    2014-01-01

    Many educational researchers have proposed teaching statistics with less lecture and more active learning methods. However, there are only a few comparative studies that have taught one section of statistics with lectures and one section with activity-based methods; of those studies, the results are contradictory. To address the need for more research on the actual effectiveness of active learning methods in introductory statistics, this research study was undertaken. An introductory, univ...

  17. Comparing Student Success and Understanding in Introductory Statistics under Consensus and Simulation-Based Curricula

    Science.gov (United States)

    Hldreth, Laura A.; Robison-Cox, Jim; Schmidt, Jade

    2018-01-01

    This study examines the transferability of results from previous studies of simulation-based curriculum in introductory statistics using data from 3,500 students enrolled in an introductory statistics course at Montana State University from fall 2013 through spring 2016. During this time, four different curricula, a traditional curriculum and…

  18. Python Source Code Plagiarism Attacks on Introductory Programming Course Assignments

    Science.gov (United States)

    Karnalim, Oscar

    2017-01-01

    This paper empirically enlists Python plagiarism attacks that have been found on Introductory Programming course assignments for undergraduate students. According to our observation toward 400 plagiarism-suspected cases, there are 35 plagiarism attacks that have been conducted by students. It starts with comment & whitespace modification as…

  19. Geology in the Movies: Using Hollywood Films as a Teaching Tool in Introductory Geosciences Courses

    Science.gov (United States)

    Lawrence, K. T.; Malinconico, L. L.

    2008-12-01

    A common challenge in introductory Geoscience courses is engaging students who often do not have a long- standing interest in science. In recent years Hollywood has produced a number of geoscience-themed films (Dante's Peak, Deep Impact, Day After Tomorrow, Inconvenient Truth), most of which contain kernels of scientific truth as well as gross misrepresentations of scientific reality. In our introductory courses (Geological Disasters: Agents of Chaos and Earth's Climate: Past Present and Future) we have had great success using these films as a way of both engaging students and accomplishing many of our course goals. Even though most of the students in these courses will not become geoscience majors, it is important for them to realize that they can make informed judgments about concepts portrayed in the popular media. We have incorporated short written movie critiques into our suite of introductory course laboratory exercises. Through these movie-critique labs, students have an opportunity to apply their new geoscience expertise to examining the validity of the scientific concepts presented in the film. Along the way, students start to see the relevance of course materials to their everyday lives, think more critically about how science is portrayed by non-scientists, synthesize what they have learned by applying their knowledge to a new problem, and improve their ability to communicate what they have learned. Despite the fact that these movie-critique labs require significantly more out-of-lab effort that our other introductory lab assignments, in our course evaluations many students rate the movie critiques as not only one of the most interesting lab exercises of the semester, but also the lab exercise containing the most educational value.

  20. Lecture Notes for the Course in Water Wave Mechanics

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter; Burcharth, Hans F.

    knowledge. The course is at the same time an introduction to the course in coastal hydraulics on the 8th semester. The notes cover the first four lectures of the course: • Definitions. Governing equations and boundary conditions. • Derivation of velocity potential for linear waves. Dispersion relationship...... Particle velocities and accelerations. • Particle paths, pressure variation, deep and shallow water waves, wave energy and group velocity. • Shoaling, refraction, diffraction and wave breaking. The last part of the course is on analysis of irregular waves and was included in the first two editions...

  1. Laboratory Development and Lecture Renovation for a Science of Food and Cooking Course

    Science.gov (United States)

    Miles, Deon T.; Borchardt, Adrienne C.

    2014-01-01

    Several years ago, a new nonscience majors course, The Science of Food and Cooking, was developed at our institution. The course covered basic scientific concepts that would normally be discussed in a typical introductory chemistry course, in the context of food and food preparation. Recently, the course has been revamped in three major ways: (1)…

  2. PLACEMENT APPLICATIONS SCHEDULING LECTURE IN INTERNATIONAL PROGRAM UNIKOM BASED ANDROID

    Directory of Open Access Journals (Sweden)

    Andri Sahata Sitanggang

    2017-12-01

    Full Text Available One who determines life of a classroom namely mapping scheduling courses especially at college. The process scheduling has included time or schedule of a class of available, room available, lecture who is scheduled for, and schedule for lecturer going to teach. Hopefully with a scheduling it will facilitate the students and teachers in obtaining information lecture schedule. With the emergence of the android application ( is implanted in mobile phones , the public can now use the internet so fast that is based .So with that researchers give one a technology based solutions to build android application .This is because one of the technology has given the functions which may make it easier for students and university lecturers in terms of access to information. In building this application used method of the prototype consisting 2 access namely access user and admin , where module user consisting of modules register , login , scheduling module , while for admin given module login , register and arrangement information scheduling courses both the administration and lecturers .Application made will be integrated with internet so that this program is real-time application.

  3. Using Performance Tasks to Improve Quantitative Reasoning in an Introductory Mathematics Course

    Science.gov (United States)

    Kruse, Gerald; Drews, David

    2013-01-01

    A full-cycle assessment of our efforts to improve quantitative reasoning in an introductory math course is described. Our initial iteration substituted more open-ended performance tasks for the active learning projects than had been used. Using a quasi-experimental design, we compared multiple sections of the same course and found non-significant…

  4. Piaget and Organic Chemistry: Teaching Introductory Organic Chemistry through Learning Cycles

    Science.gov (United States)

    Libby, R. Daniel

    1995-07-01

    This paper describes the first application of the Piaget-based learning cycle technique (Atkin & Karplus, Sci. Teach. 1962, 29, 45-51) to an introductory organic chemistry course. It also presents the step-by-step process used to convert a lecture course into a discussion-based active learning course. The course is taught in a series of learning cycles. A learning cycle is a three phase process that provides opportunities for students to explore new material and work with an instructor to recognize logical patterns in data, and devise and test hypotheses. In this application, the first phase, exploration, involves out-of-class student evaluation of data in attempts to identify significant trends and develop hypotheses that might explain the trends in terms of fundamental scientific principles. In the second phase, concept invention, the students and instructor work together in-class to evaluate student hypotheses and find concepts that work best in explaining the data. The third phase, application, is an out-of-class application of the concept to new situations. The development of learning cycles from lecture notes is presented as an 8 step procedure. The process involves revaluation and restructuring of the course material to maintain a continuity of concept development according to the instructor's logic, dividing topics into individual concepts or techniques, and refocusing the presentation in terms of large numbers of examples that can serve as data for students in their exploration and application activities. A sample learning cycle and suggestions for ways of limited implementation of learning cycles into existing courses are also provided.

  5. Public Speaking versus Hybrid Introductory Communication Courses: Exploring Four Outcomes

    Science.gov (United States)

    Broeckelman-Post, Melissa A.; Pyle, Andrew S.

    2017-01-01

    The purpose of this study was to compare student growth in public speaking and hybrid introductory communication skills courses on four outcomes: public speaking anxiety, self-perceived communication competence, intercultural effectiveness, and connected classroom climate. This study also sought to find out whether there were differences in the…

  6. A Pilot Study Teaching Metrology in an Introductory Statistics Course

    Science.gov (United States)

    Casleton, Emily; Beyler, Amy; Genschel, Ulrike; Wilson, Alyson

    2014-01-01

    Undergraduate students who have just completed an introductory statistics course often lack deep understanding of variability and enthusiasm for the field of statistics. This paper argues that by introducing the commonly underemphasized concept of measurement error, students will have a better chance of attaining both. We further present lecture…

  7. A Model for Teaching an Introductory Programming Course Using ADRI

    Science.gov (United States)

    Malik, Sohail Iqbal; Coldwell-Neilson, Jo

    2017-01-01

    High failure and drop-out rates from introductory programming courses continue to be of significant concern to computer science disciplines despite extensive research attempting to address the issue. In this study, we include the three entities of the didactic triangle, instructors, students and curriculum, to explore the learning difficulties…

  8. Using Chinua Achebe's "Things Fall Apart" in Introductory Geography Courses.

    Science.gov (United States)

    Hathaway, James

    1993-01-01

    Describes use of Nigerian author, Chinua Achebe's novel, "Things Fall Apart," in an introductory geography course at the secondary school or college level. Provides a summary of the book's story, which deals with the impact of colonialism and Christianity on the culture of eastern Nigeria. Includes recommended instructional strategies…

  9. Context matters: volunteer bias, small sample size, and the value of comparison groups in the assessment of research-based undergraduate introductory biology lab courses.

    Science.gov (United States)

    Brownell, Sara E; Kloser, Matthew J; Fukami, Tadashi; Shavelson, Richard J

    2013-01-01

    The shift from cookbook to authentic research-based lab courses in undergraduate biology necessitates the need for evaluation and assessment of these novel courses. Although the biology education community has made progress in this area, it is important that we interpret the effectiveness of these courses with caution and remain mindful of inherent limitations to our study designs that may impact internal and external validity. The specific context of a research study can have a dramatic impact on the conclusions. We present a case study of our own three-year investigation of the impact of a research-based introductory lab course, highlighting how volunteer students, a lack of a comparison group, and small sample sizes can be limitations of a study design that can affect the interpretation of the effectiveness of a course.

  10. Impacts of curricular change: Implications from 8 years of data in introductory physics

    Science.gov (United States)

    Pollock, Steven J.; Finkelstein, Noah

    2013-01-01

    Introductory calculus-based physics classes at the University of Colorado Boulder were significantly transformed beginning in 2004. They now regularly include: interactive engagement using clickers in large lecture settings, Tutorials in Introductory Physics with use of undergraduate Learning Assistants in recitation sections, and a staffed help-room setting where students work on personalized CAPA homework. We compile and summarize conceptual (FMCE and BEMA) pre- and post-data from over 9,000 unique students after 16 semesters of both Physics 1 and 2. Within a single institution with stable pre-test scores, we reproduce results of Hake's 1998 study that demonstrate the positive impacts of interactive engagement on student performance. We link the degree of faculty's use of interactive engagement techniques and their experience levels on student outcomes, and argue for the role of such systematic data collection in sustained course and institutional transformations.

  11. Over two decades of blended and online physics courses at Michigan State University

    Directory of Open Access Journals (Sweden)

    Gerd Kortemeyer

    2014-12-01

    Full Text Available In Fall 1992, our first physics course offered online homework. Over two decades later, we have seven physics courses online, spanning the whole range of introductory course offerings, with a total of over 1600 students in 2014. We found that several of the the purely online courses had better learning success than traditional lecture courses, as measured by exam scores. Particularly successful were online materials with embedded assessment. This result can be interpreted in different ways, but may serve as an indicator that during in-class lectures, we are oftentimes not taking advantage of the fact that we have the students on-site.

  12. Lecture Capture Podcasts: Differential Student Use and Performance in a Large Introductory Course

    Science.gov (United States)

    Williams, Adrienne E.; Aguilar-Roca, Nancy M.; O'Dowd, Diane K.

    2016-01-01

    Video "podcast" recordings of lectures are popular with students, but are often associated with a decrease in attendance and little increase in performance. Assessment has generally focused on the class as a whole, potentially masking benefits to different subgroups. In this study, conducted in 2 sections of a large active-learning…

  13. Designing and Implementing Service Learning Projects in an Introductory Oceanography Course Using the ``8-Block Model''

    Science.gov (United States)

    Laine, E. P.; Field, C.

    2010-12-01

    The Campus Compact for New Hampshire (Gordon, 2003) introduced a practical model for designing service-learning exercises or components for new or existing courses. They divided the design and implementation process into eight concrete areas, the “8-Block Model”. Their goal was to demystify the design process of service learning courses by breaking it down into interconnected components. These components include: project design, community partner relations, the problem statement, building community in the classroom, building student capacity, project management, assessment of learning, and reflection and connections. The project design component of the “8-Block Model” asks that the service performed be consistent with the learning goals of the course. For science courses students carry out their work as a way of learning science and the process of science, not solely for the sake of service. Their work supports the goals of a community partner and the community partner poses research problems for the class in a letter on their letterhead. Linking student work to important problems in the community effectively engages students and encourages them to work at more sophisticated levels than usually seen in introductory science classes. Using team-building techniques, the classroom becomes a safe, secure learning environment that encourages sharing and experimentation. Targeted lectures, labs, and demonstrations build the capacity of students to do their research. Behind the scenes project management ensures student success. Learning is assessed using a variety of tools, including graded classroom presentations, poster sessions, and presentations and reports to community partners. Finally, students reflect upon their work and make connections between their research and its importance to the well being of the community. Over the past 10 years, we have used this approach to design and continually modify an introductory oceanography course for majors and non

  14. "Flipping" the introductory clerkship in radiology: impact on medical student performance and perceptions.

    Science.gov (United States)

    Belfi, Lily M; Bartolotta, Roger J; Giambrone, Ashley E; Davi, Caryn; Min, Robert J

    2015-06-01

    Among methods of "blended learning" (ie, combining online modules with in-class instruction), the "flipped classroom" involves student preclass review of material while reserving class time for interactive knowledge application. We integrated blended learning methodology in a "flipped" introductory clerkship in radiology, and assessed the impact of this approach on the student educational experience (performance and perception). In preparation for the "flipped clerkship," radiology faculty and residents created e-learning modules that were uploaded to an open-source website. The clerkship's 101 rising third-year medical students were exposed to different teaching methods during the course, such as blended learning, traditional lecture learning, and independent learning. Students completed precourse and postcourse knowledge assessments and surveys. Student knowledge improved overall as a result of taking the course. Blended learning achieved greater pretest to post-test improvement of high statistical significance (P value, .0060) compared to lecture learning alone. Blended learning also achieved greater pretest to post-test improvement of borderline statistical significance (P value, .0855) in comparison to independent learning alone. The difference in effectiveness of independent learning versus lecture learning was not statistically significant (P value, .2730). Student perceptions of the online modules used in blended learning portions of the course were very positive. They specifically enjoyed the self-paced interactivity and the ability to return to the modules in the future. Blended learning can be successfully applied to the introductory clerkship in radiology. This teaching method offers educators an innovative and efficient approach to medical student education in radiology. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  15. Class modality, student characteristics, and performance in a community college introductory STEM course

    Science.gov (United States)

    Fogle, Thomas Ty

    Research on introductory STEM course performance has indicated that student characteristics (age, ethnicity and gender) and Grade Point Average (G.P.A.) can be predictive of student performance, and by implication, a correlation among these factors can help determine course design interventions to help certain types of students perform well in introductory STEM courses. The basis of this study was a community college Visual Basic programming course taught in both online and hybrid format. Beginning students in this course represented a diverse population residing in a large, mid-western, city and surrounding communities. Many of these students were defined as "at-Risk" or "non-traditional, which generally means any combination of socio-economic, cultural, family and employment factors that indicate a student is non-traditional. Research has shown these students struggle academically in technologically dense STEM courses, and may require student services and support to achieve their individual performance goals. The overall number in the study range was 392 distance students and 287 blended course students. The main question of this research was to determine to what extent student characteristics in a community college context, and previous success, as measured in overall G.P.A., were related to course performance in an introductory Visual Basic programming (STEM) course; and, whether or not a combination of these factors and course modality was predictive of success. The study employed a quantitative, quasi-experimental design to assess whether students' course performance was linked to course modality, student characteristics and overall G.P.A. The results indicated that the only predictor of student performance was overall G.P.A. Despite the research analyzed in Chapter 2, there was no statistically significant relationship to modality, age, ethnicity, or gender to performance in the course. Cognitive load is significant in a computer programming course and it

  16. Scientific reasoning skills development in the introductory biology courses for undergraduates

    Science.gov (United States)

    Schen, Melissa S.

    Scientific reasoning is a skill of critical importance to those students who seek to become professional scientists. Yet, there is little research on the development of such reasoning in science majors. In addition, scientific reasoning is often investigated as two separate entities: hypothetico-deductive reasoning and argumentation, even though these skills may be linked. With regard to argumentation, most investigations look at its use in discussing socioscientific issues, not in analyzing scientific data. As scientists often use the same argumentation skills to develop and support conclusions, this avenue needs to be investigated. This study seeks to address these issues and establish a baseline of both hypothetico-deductive reasoning and argumentation of scientific data of biology majors through their engagement in introductory biology coursework. This descriptive study investigated the development of undergraduates' scientific reasoning skills by assessing them multiple times throughout a two-quarter introductory biology course sequence for majors. Participants were assessed at the beginning of the first quarter, end of the first quarter, and end of the second quarter. A split-half version of the revised Lawson Classroom Test of Scientific Reasoning (LCTSR) and a paper and pencil argumentation instrument developed for this study were utilized to assess student hypothetico-deductive reasoning and argumentation skills, respectively. To identify factors that may influence scientific reasoning development, demographic information regarding age, gender, science coursework completed, and future plans was collected. Evidence for course emphasis on scientific reasoning was found in lecture notes, assignments, and laboratory exercises. This study did not find any trends of improvement in the students' hypothetico-deductive reasoning or argumentation skills either during the first quarter or over both quarters. Specific difficulties in the control of variables and

  17. Class Size and Academic Achievement in Introductory Political Science Courses

    Science.gov (United States)

    Towner, Terri L.

    2016-01-01

    Research on the influence of class size on student academic achievement is important for university instructors, administrators, and students. The article examines the influence of class size--a small section versus a large section--in introductory political science courses on student grades in two comparable semesters. It is expected that…

  18. Chemical Structure and Properties: A Modified Atoms-First, One-Semester Introductory Chemistry Course

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.; Jakubowski, Henry V.; McKenna, Anna G.; McIntee, Edward J.; Jones, T. Nicholas; Fazal, M. A.; Peterson, Alicia A.

    2015-01-01

    A one-semester, introductory chemistry course is described that develops a primarily qualitative understanding of structure-property relationships. Starting from an atoms-first approach, the course examines the properties and three-dimensional structure of metallic and ionic solids before expanding into a thorough investigation of molecules. In…

  19. Mathematical Rigor in Introductory Physics

    Science.gov (United States)

    Vandyke, Michael; Bassichis, William

    2011-10-01

    Calculus-based introductory physics courses intended for future engineers and physicists are often designed and taught in the same fashion as those intended for students of other disciplines. A more mathematically rigorous curriculum should be more appropriate and, ultimately, more beneficial for the student in his or her future coursework. This work investigates the effects of mathematical rigor on student understanding of introductory mechanics. Using a series of diagnostic tools in conjunction with individual student course performance, a statistical analysis will be performed to examine student learning of introductory mechanics and its relation to student understanding of the underlying calculus.

  20. Enabling students to learn: Design, implementation and assessment of a supplemental study strategies course for an introductory undergraduate biology course

    Science.gov (United States)

    Sriram, Jayanthi Sanjeevi

    Attrition in the STEM disciplines is a national problem and one of the important reasons for this is student experiences in introductory courses. A myriad of factors influence students' experiences in those courses; inadequate student preparation is one of the most cited reasons. Incoming freshmen often lack the learning strategies required to meaningfully learn and succeed in college courses. Unfortunately, the instructors have limited time and/or have little experience in teaching learning strategies. In this paper, the design, implementation, and evaluation of a Supplemental Course (SC) model that emphasizes learning strategies is presented. SC was offered concurrently with the introductory biology courses for four consecutive semesters (fall 2011 to spring 2013); for 10 weeks in fall 2012 and 7 weeks in the other semesters at Miami University. 10 weeks SC began earlier in the semester than the shorter SC. This study evaluated the effects of the SC on students' (1) performance in the introductory biology course, (2) perceived changes in self-regulation and social support, and (3) experiences in the introductory biology course before, during, and after participation in the SC. A mixed methods approach was used to address these goals. A pre-post survey was administered to obtain students' use of self-regulation strategies and social-support data. Quantitative methods were utilized to analyze content exam grades and changes in self-regulation strategies and social-support. To explore the experiences of the students, semi-structured interviews were conducted, followed by analysis using grounded theory. The findings reveal that participants of the longer duration SC (with an earlier start date) significantly improved in content exam performance, perceived use of self-regulation strategies, and social support compared to the non-participants. Participants of the shorter duration SC (with a later start date) did not significantly improve in content exam performance

  1. An Engineering-Oriented Approach to the Introductory Differential Equations Course

    Science.gov (United States)

    Pennell, S.; Avitabile, P.; White, J.

    2009-01-01

    The introductory differential equations course can be made more relevant to engineering students by including more of the engineering viewpoint, in which differential equations are regarded as systems with inputs and outputs. This can be done without sacrificing any of the usual topical coverage. This point of view is conducive to student…

  2. Eating Competence of College Students in an Introductory Nutrition Course

    Science.gov (United States)

    Brown, Lora Beth; Larsen, Katrina J.; Nyland, Nora K.; Eggett, Dennis L.

    2013-01-01

    Objective: Describe eating competence, a positive and flexible way of conceptualizing eating attitudes and behaviors, in students enrolled in an introductory nutrition course. Methods: Online completion of the Satter Eating Competence Inventory (ecSI) and self-assessment of eating disorder status by 557 students (343 ages 18-20 years and 180 ages…

  3. A guided note taking strategy supports student learning in the large lecture classes

    Science.gov (United States)

    Tanamatayarat, J.; Sujarittham, T.; Wuttiprom, S.; Hefer, E.

    2017-09-01

    In higher education, lecturing has been found to be the most prevalent teaching format for large classes. Generally, this format tends not to result in effective learning outcomes. Therefore, to support student learning in these large lecture classes, we developed guided notes containing quotations, blank spaces, pictures, and problems. A guided note taking strategy was selected and has been used in our introductory physics course for many years. In this study, we investigated the results of implementing the guided note taking strategy to promote student learning on electrostatics. The samples were three groups of first-year students from two universities: 163 and 224 science students and 147 engineering students. All of the students were enrolled in the introductory physics course in the second semester. To assess the students’ understanding, we administered pre- and post-tests to the students by using the electrostatics test. The questions were selected from the conceptual survey of electricity and magnetism (CSEM) and some leading physics textbooks. The results of the students’ understanding were analyzed by the average normalized gains (). The value of each group was 0.61, 0.55, and 0.54, respectively. Furthermore, the students’ views on learning with the guided note taking strategy were explored by using the five-point rating scale survey. Most students perceived that the strategy helped support their active learning and engagement in the lectures.

  4. Students' conceptions of evidence during a university introductory forensic science course

    Science.gov (United States)

    Yeshion, Theodore Elliot

    Students' Conceptions of Science, Scientific Evidence, and Forensic Evidence during a University Introductory Forensic Science Course This study was designed to examine and understand what conceptions undergraduate students taking an introductory forensic science course had about scientific evidence. Because the relationships between the nature of science, the nature of evidence, and the nature of forensic evidence are not well understood in the science education literature, this study sought to understand how these concepts interact and affect students' understanding of scientific evidence. Four participants were purposefully selected for this study from among 89 students enrolled in two sections of an introductory forensic science course taught during the fall 2005 semester. Of the 89 students, 84 were criminal justice majors with minimal science background and five were chemistry majors with academic backgrounds in the natural and physical sciences. All 89 students completed a biographical data sheet and a pre-instruction Likert scale survey consisting of twenty questions relating to the nature of scientific evidence. An evaluation of these two documents resulted in a purposeful selection of four varied student participants, each of whom was interviewed three times throughout the semester about the nature of science, the nature of evidence, and the nature of forensic evidence. The same survey was administered to the participants again at the end of the semester-long course. This study examined students' assumptions, prior knowledge, their understanding of scientific inference, scientific theory, and methodology. Examination of the data found few differences with regard to how the criminal justice majors and the chemistry majors responded to interview questions about forensic evidence. There were qualitative differences, however, when the same participants answered interview questions relating to traditional scientific evidence. Furthermore, suggestions are

  5. Context Matters: Volunteer Bias, Small Sample Size, and the Value of Comparison Groups in the Assessment of Research-Based Undergraduate Introductory Biology Lab Courses

    Directory of Open Access Journals (Sweden)

    Sara E. Brownell

    2013-08-01

    Full Text Available The shift from cookbook to authentic research-based lab courses in undergraduate biology necessitates the need for evaluation and assessment of these novel courses. Although the biology education community has made progress in this area, it is important that we interpret the effectiveness of these courses with caution and remain mindful of inherent limitations to our study designs that may impact internal and external validity. The specific context of a research study can have a dramatic impact on the conclusions. We present a case study of our own three-year investigation of the impact of a research-based introductory lab course, highlighting how volunteer students, a lack of a comparison group, and small sample sizes can be limitations of a study design that can affect the interpretation of the effectiveness of a course.

  6. The Design and Transformation of Biofundamentals: A Nonsurvey Introductory Evolutionary and Molecular Biology Course.

    Science.gov (United States)

    Klymkowsky, Michael W; Rentsch, Jeremy D; Begovic, Emina; Cooper, Melanie M

    2016-01-01

    Many introductory biology courses amount to superficial surveys of disconnected topics. Often, foundational observations and the concepts derived from them and students' ability to use these ideas appropriately are overlooked, leading to unrealistic expectations and unrecognized learning obstacles. The result can be a focus on memorization at the expense of the development of a meaningful framework within which to consider biological phenomena. About a decade ago, we began a reconsideration of what an introductory course should present to students and the skills they need to master. The original Web-based course's design presaged many of the recommendations of the Vision and Change report; in particular, a focus on social evolutionary mechanisms, stochastic (evolutionary and molecular) processes, and core ideas (cellular continuity, evolutionary homology, molecular interactions, coupled chemical reactions, and molecular machines). Inspired by insights from the Chemistry, Life, the Universe & Everything general chemistry project, we transformed the original Web version into a (freely available) book with a more unified narrative flow and a set of formative assessments delivered through the beSocratic system. We outline how student responses to course materials are guiding future course modifications, in particular a more concerted effort at helping students to construct logical, empirically based arguments, explanations, and models. © 2016 M. W. Klymkowsky et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Active learning and student-centered pedagogy improve student attitudes and performance in introductory biology.

    Science.gov (United States)

    Armbruster, Peter; Patel, Maya; Johnson, Erika; Weiss, Martha

    2009-01-01

    We describe the development and implementation of an instructional design that focused on bringing multiple forms of active learning and student-centered pedagogies to a one-semester, undergraduate introductory biology course for both majors and nonmajors. Our course redesign consisted of three major elements: 1) reordering the presentation of the course content in an attempt to teach specific content within the context of broad conceptual themes, 2) incorporating active and problem-based learning into every lecture, and 3) adopting strategies to create a more student-centered learning environment. Assessment of our instructional design consisted of a student survey and comparison of final exam performance across 3 years-1 year before our course redesign was implemented (2006) and during two successive years of implementation (2007 and 2008). The course restructuring led to significant improvement of self-reported student engagement and satisfaction and increased academic performance. We discuss the successes and ongoing challenges of our course restructuring and consider issues relevant to institutional change.

  8. Active Learning by Design: An Undergraduate Introductory Public Health Course

    Directory of Open Access Journals (Sweden)

    Karin eYeatts

    2014-12-01

    Full Text Available Principles of active learning were used to design and implement an introductory public health course. Students were introduced to the breadth and practice of public health through team and individual-based activities. Team assignments covered topics in epidemiology, biostatistics, health behavior, nutrition, maternal and child health, environment, and health policy. Students developed an appreciation of the population perspective through an experience trip and related intervention project in a public health area of their choice. Students experienced several key critical component elements of a public health undergraduate major; they cover key public health domains, experience public health practice, and integrated concepts with their assignments. In this paper, course assignments, lessons learned, and student successes are described. Given the increased growth in the undergraduate public health major, these active learning assignments may be of interest to undergraduate public health programs at both liberal arts colleges and research universities.

  9. Cognitive Transfer Outcomes for a Simulation-Based Introductory Statistics Curriculum

    Science.gov (United States)

    Backman, Matthew D.; Delmas, Robert C.; Garfield, Joan

    2017-01-01

    Cognitive transfer is the ability to apply learned skills and knowledge to new applications and contexts. This investigation evaluates cognitive transfer outcomes for a tertiary-level introductory statistics course using the CATALST curriculum, which exclusively used simulation-based methods to develop foundations of statistical inference. A…

  10. Beyond Euler's Method: Implicit Finite Differences in an Introductory ODE Course

    Science.gov (United States)

    Kull, Trent C.

    2011-01-01

    A typical introductory course in ordinary differential equations (ODEs) exposes students to exact solution methods. However, many differential equations must be approximated with numerical methods. Textbooks commonly include explicit methods such as Euler's and Improved Euler's. Implicit methods are typically introduced in more advanced courses…

  11. Active Learning in ASTR 101 Lectures

    Science.gov (United States)

    Deming, Grace L.

    1998-12-01

    The lecture is the most common teaching method used at colleges and universities, but does this format facilitate student learning? Lectures can be brilliantly delivered, but they are received by a passive audience. As time passes during a lecture, student attention and effective notetaking diminish. Many students become more interested in a subject and retain information longer in courses that rely on active rather than passive teaching methods. Interactive teaching strategies such as the think-pair-share-(write), the 3-minute paper, and the misconception confrontation can be used to actively engage students during lecture. As a cooperative learning strategy, the think-pair-share-(write) technique requires active discussion by everyone in the class. The "write" component structures individual accountability into the activity. The 3-minute paper is an expansion of the standard 1-minute paper feedback technique, but is required of all students rather than voluntary or anonymous. The misconception confrontation technique allows students to focus on how their pre- conceived notions differ from the scientific explanation. These techniques can be easily adopted by anyone currently using a standard lecture format for introductory astronomy. The necessary components are a commitment by the instructor to require active participation by all students and a willingness to try new teaching methods.

  12. Media Literacy in Action? What Are We Teaching in Introductory College Media Studies Courses?

    Science.gov (United States)

    Ashley, Seth

    2015-01-01

    An introductory media studies course is a staple of post-secondary education. What are instructors teaching in this course, and to what extent are the principles of media literacy education being incorporated into this likely home? This article reports the findings of a small survey of instructors, who describe aspects of their course content and…

  13. A multinational randomised study comparing didactic lectures with case scenario in a severe sepsis medical simulation course.

    Science.gov (United States)

    Li, Chih-Huang; Kuan, Win-Sen; Mahadevan, Malcolm; Daniel-Underwood, Lynda; Chiu, Te-Fa; Nguyen, H Bryant

    2012-07-01

    Medical simulation has been used to teach critical illness in a variety of settings. This study examined the effect of didactic lectures compared with simulated case scenario in a medical simulation course on the early management of severe sepsis. A prospective multicentre randomised study was performed enrolling resident physicians in emergency medicine from four hospitals in Asia. Participants were randomly assigned to a course that included didactic lectures followed by a skills workshop and simulated case scenario (lecture-first) or to a course that included a skills workshop and simulated case scenario followed by didactic lectures (simulation-first). A pre-test was given to the participants at the beginning of the course, post-test 1 was given after the didactic lectures or simulated case scenario depending on the study group assignment, then a final post-test 2 was given at the end of the course. Performance on the simulated case scenario was evaluated with a performance task checklist. 98 participants were enrolled in the study. Post-test 2 scores were significantly higher than pre-test scores in all participants (80.8 ± 12.0% vs 65.4 ± 12.2%, pdidactic lectures followed by simulation experience.

  14. Web-Based versus lecture-based instruction in teaching development theories in teacher education

    Directory of Open Access Journals (Sweden)

    Sami Acar

    2013-12-01

    Full Text Available Web-based learning (WBL has been widely implemented in various educational settings as a learning medium but there is a doubt about its superiority over text or lecture-based, teacher centered traditional education because of inconclusive findings in the related research. The purpose of this study was to examine the effects of WBL on the teacher candidates’ content acquisition in a pedagogical course and on their attitudes toward this we-based course. Post-test only experimental study was conducted in a vocational teacher education program in Turkey. In the experimental group, WBL was conducted for three weeks for three topics: cognitive, moral and personality development and in the control group, lecture-based traditional teaching methods were applied. An achievement test was administered to both groups at the end of the study. According to the results, the groups did not show difference. In addition, the results of the attitude scale revealed that the students in the experimental group, on the average, had positive perceptions toward the web environment, web-based course, course instructor, course assessment, and success in the course. This result pointed out that though the impact of WBL on the acquisition of course topics did not differ between the groups, its positive impact on the students’ impression about teaching-learning process of the course, instructor and course assessment should not be ignored. Within the scope of this study, the results implied that WBL in teacher education might be applied in order to provide better learning environment rather than better knowledge gain.

  15. Evaluating multiple-choice exams in large introductory physics courses

    Directory of Open Access Journals (Sweden)

    Gary Gladding

    2006-07-01

    Full Text Available The reliability and validity of professionally written multiple-choice exams have been extensively studied for exams such as the SAT, graduate record examination, and the force concept inventory. Much of the success of these multiple-choice exams is attributed to the careful construction of each question, as well as each response. In this study, the reliability and validity of scores from multiple-choice exams written for and administered in the large introductory physics courses at the University of Illinois, Urbana-Champaign were investigated. The reliability of exam scores over the course of a semester results in approximately a 3% uncertainty in students’ total semester exam score. This semester test score uncertainty yields an uncertainty in the students’ assigned letter grade that is less than 1 / 3 of a letter grade. To study the validity of exam scores, a subset of students were ranked independently based on their multiple-choice score, graded explanations, and student interviews. The ranking of these students based on their multiple-choice score was found to be consistent with the ranking assigned by physics instructors based on the students’ written explanations ( r>0.94 at the 95% confidence level and oral interviews (r=0.94−0.09+0.06 .

  16. Students' attitudes towards use of COMPUSTAT in teaching an introductory course in business finance.

    Science.gov (United States)

    Sachdeva, Darshan

    2007-10-01

    This paper describes the use of the COMPUSTAT database in teaching an introductory course in business finance at a large College of Business Administration. To understand students' attitudes towards this innovative method of instruction in business finance, a simple one-page questionnaire of 10 attitudinal statements was used. Responses of 148 students, analyzed by chi square, indicated students were unanimous in their opinion that the World Wide Web greatly paved the way in data retrieval from the COMPUSTAT database. They further reported that this interface facilitated analyses for the course. Also their understanding of finance was enhanced, and they were motivated to learn more. They seem to be highly in favor of using COMPUSTAT database in the introductory courses in business finance and expressed this view by suggesting that this financial database should be made an integral part of teaching other courses in finance.

  17. Learner-Centered Teaching and Improving Learning by Writing Down the Statement of Problems in an Introductory Physics Course

    Science.gov (United States)

    Aurora, Tarlok

    2005-04-01

    In a calculus-based introductory physics course, students were assigned to write the statements of word problems (along with the accompanying diagrams if any), analyze these, identify important concepts/equations and try to solve these end-of- chapter homework problems. They were required to bring to class their written assignment until the chapter was completed in lecture. These were quickly checked at the beginning of the class. In addition, re-doing selected solved examples in the textbook were assigned as homework. Where possible, students were asked to look for similarities between the solved-examples and the end-of-the-chapter problems, or occasionally these were brought to the students' attention. It was observed that many students were able to solve several of the solved-examples on the test even though the instructor had not solved these in class. This was seen as an improvement over the previous years. It made the students more responsible for their learning. Another benefit was that it alleviated the problems previously created by many students not bringing the textbooks to class. It allowed more time for problem solving/discussions in class.

  18. Peer Instruction in Introductory Physics: A Method to Bring about Positive Changes in Students' Attitudes and Beliefs

    Science.gov (United States)

    Zhang, Ping; Ding, Lin; Mazur, Eric

    2017-01-01

    This paper analyzes pre-post matched gains in the epistemological views of science students taking the introductory physics course at Beijing Normal University (BNU) in China. In this study we examined the attitudes and beliefs of science majors (n = 441) in four classes, one taught using traditional (lecture) teaching methods, and the other three…

  19. A Tutorial Design Process Applied to an Introductory Materials Engineering Course

    Science.gov (United States)

    Rosenblatt, Rebecca; Heckler, Andrew F.; Flores, Katharine

    2013-01-01

    We apply a "tutorial design process", which has proven to be successful for a number of physics topics, to design curricular materials or "tutorials" aimed at improving student understanding of important concepts in a university-level introductory materials science and engineering course. The process involves the identification…

  20. Effectively Using Discussion Boards to Engage Students in Introductory Leadership Courses

    Science.gov (United States)

    Smith, Deborah N.

    2015-01-01

    This article discusses the use of online asynchronous discussion boards as a valuable tool for connecting students to leadership concepts, theories, and models in introductory leadership survey courses. Recommendations are given for designing effective discussion boards that engage students and enhance their learning. Student outcomes include…

  1. Video Lecture Capture Technology Helps Students Study without Affecting Attendance in Large Microbiology Lecture Courses

    Directory of Open Access Journals (Sweden)

    Jennifer Lynn McLean

    2016-12-01

    Full Text Available Recording lectures using video lecture capture software and making them available for students to watch anytime, from anywhere, has become a common practice in many universities across many disciplines. The software has become increasingly easy to use and is commonly provided and maintained by higher education institutions. Several studies have reported that students use lecture capture to enhance their learning and study for assessments, as well as to catch up on material they miss when they cannot attend class due to extenuating circumstances. Furthermore, students with disabilities and students from non-English Speaking Backgrounds (NESB may benefit from being able to watch the video lecture captures at their own pace. Yet, the effect of this technology on class attendance remains a controversial topic and largely unexplored in undergraduate microbiology education. Here, we show that when video lecture captures were available in our large enrollment general microbiology courses, attendance did not decrease. In fact, the majority of students reported that having the videos available did not encourage them to skip class, but rather they used them as a study tool. When we surveyed NESB students and nontraditional students about their attitudes toward this technology, they found it helpful for their learning and for keeping up with the material.

  2. (Role) Playing Politics in an Environmental Chemistry Lecture Course

    Science.gov (United States)

    Smythe, Meredith A.; Higgins, Daniel A.

    2007-01-01

    Participation of environmental chemistry students in mock congressional hearings is described, as a means of helping them better develop their speaking and debating skills. The activity brings active learning principles into the classroom and greatly increases student participation in an otherwise traditional lecture course.

  3. Coursera's Introductory Human Physiology Course: Factors That Characterize Successful Completion of a MOOC

    Science.gov (United States)

    Engle, Deborah; Mankoff, Chris; Carbrey, Jennifer

    2015-01-01

    Since Massive Open Online Courses (MOOCs) are accessible by anyone in the world at no cost, they have large enrollments that are conducive to educational research. This study examines students in the Coursera MOOC, Introductory Human Physiology. Of the 33,378 students who accessed the course, around 15,000 students responded to items on the…

  4. Student Autonomy and its Effects on Student Enjoyment in a Traditional Mechanics Course for First-Year Engineering Students

    Science.gov (United States)

    Perera, Janaki I.; Quinlivan, Brendan T.; Simonovich, Jennifer A.; Towers, Emily; Zadik, Oren H.; Zastavker, Yevgeniya V.

    2012-02-01

    In light of recent literature in educational psychology, this study investigates instructional support and students' autonomy at a small technical undergraduate school. Grounded theory is used to analyze twelve semi-structured open-ended interviews about engineering students' experiences in Introductory Mechanics that includes Lecture, Recitation, and Laboratory components. Using data triangulation with each course component as a unit of analysis, this study examines students' course enjoyment as a function of instructional support and autonomy. The Lecture utilizes traditional instructor-centered pedagogy with predominantly passive learning and no student autonomy. The Recitation creates an active learning environment through small group work with a moderate degree of autonomy. The Laboratory is designed around self-guided project-based activities with significant autonomy. Despite these differences, all three course components provide similar levels of instructional support. The data reveal that students enjoy the low autonomy provided by Lecture and Recitations while finding the Laboratory frustrating. Analyses indicate that the differences in autonomy contribute to students' misinterpretation of the three course components' value within the context of the entire course.

  5. A web-based course in nuclear and radiochemistry

    International Nuclear Information System (INIS)

    Landsberger, S.; Plionis, A.

    2009-01-01

    Over the last six years through a Department of Energy Radiochemistry Education Award Program (REAP) we have developed a completely webbased course in nuclear and radiochemistry given at the University of Texas at Austin. This course has had nuclear and radiation engineering and chemistry graduate students. While the course also has an extensive laboratory component only the lectures are web based. The lectures begin with a historical introduction of radiochemistry followed by two movies on Madame Curie. This is followed by the usual lectures on radioactivity, fundamental properties, radioactive decay, decay modes, and nuclear reactions. As section on radioactive waste management and nuclear fuel cycle is also presented. Lectures in neutron activation analysis, geo- and cosmochemistry, and plutonium chemistry have also been developed. All lectures are in power point with many animations and a significant number of solved problems. All students are required to make a short oral presentation on some aspect of nuclear and radiochemistry in their research or a chosen topic. (author)

  6. High school and college biology: A multi-level model of the effects of high school biology courses on student academic performance in introductory college biology courses

    Science.gov (United States)

    Loehr, John Francis

    The issue of student preparation for college study in science has been an ongoing concern for both college-bound students and educators of various levels. This study uses a national sample of college students enrolled in introductory biology courses to address the relationship between high school biology preparation and subsequent introductory college biology performance. Multi-Level Modeling was used to investigate the relationship between students' high school science and mathematics experiences and college biology performance. This analysis controls for student demographic and educational background factors along with factors associated with the college or university attended. The results indicated that high school course-taking and science instructional experiences have the largest impact on student achievement in the first introductory college biology course. In particular, enrollment in courses, such as high school Calculus and Advanced Placement (AP) Biology, along with biology course content that focuses on developing a deep understanding of the topics is found to be positively associated with student achievement in introductory college biology. On the other hand, experiencing high numbers of laboratory activities, demonstrations, and independent projects along with higher levels of laboratory freedom are associated with negative achievement. These findings are relevant to high school biology teachers, college students, their parents, and educators looking beyond the goal of high school graduation.

  7. The physical basis of electronics an introductory course

    CERN Document Server

    Harris, D J; Hammond, P

    1975-01-01

    The Physical Basis of Electronics: An Introductory Course, Second Edition is an 11-chapter text that discusses the physical concepts of electronic devices. This edition deals with the considerable advances in electronic techniques, from the introduction of field effect transistors to the development of integrated circuits. The opening chapters discuss the fundamentals of vacuum electronics and solid-state electronics. The subsequent chapters deal with the other components of electronic devices and their functions, including semiconductor diode and transistor as an amplifier and a switch. The d

  8. Why No Difference? A Controlled Flipped Classroom Study for an Introductory Differential Equations Course

    Science.gov (United States)

    Yong, Darryl; Levy, Rachel; Lape, Nancy

    2015-01-01

    Flipped classrooms have the potential to improve student learning and metacognitive skills as a result of increased time for active learning and group work and student control over pacing, when compared with traditional lecture-based courses. We are currently running a 4-year controlled study to examine the impact of flipping an Introductory…

  9. Collection of lectures delivered at decontamination course

    International Nuclear Information System (INIS)

    1986-01-01

    The collection contains 10 lectures read at the decontamination workshop DEK '85 held between 29-31 Oct 1985 at the Nuclear Research Institute at Rez, all of which fall under the INIS Subject Scope. The workshop, whose first course was held in 1975, is destined for personnel of various institutions who are decontamination process users but also for designers of nuclear installations, personnel of safety of work inspectorates, hygiene services, etc. (Z.M.)

  10. Video-based lectures: An emerging paradigm for teaching human ...

    African Journals Online (AJOL)

    Video-based teaching material is a rich and powerful medium being used in computer assisted learning. This paper aimed to assess the learning outcomes and student nurses' acceptance and satisfaction with the video-based lectures versus the traditional method of teaching human anatomy and physiology courses.

  11. Sex and Gender in the Social Sciences: Reassessing the Introductory Course, Principles in Microeconomics.

    Science.gov (United States)

    Gappa, Judith M.; Pearce, Janice

    Developed to help faculty teaching introductory courses in microeconomics, psychology, and sociology in colleges and universities incorporate existing knowledge about women into their course content and teaching practices, this report is organized into two sets of guidelines. The first, "Content Guidelines: Sex and Gender in the Introductory…

  12. Measuring and Advancing Experimental Design Ability in an Introductory Course without Altering Existing Lab Curriculum

    Directory of Open Access Journals (Sweden)

    Ryan A. Shanks

    2017-05-01

    Full Text Available Introductory biology courses provide an important opportunity to prepare students for future courses, yet existing cookbook labs, although important in their own way, fail to provide many of the advantages of semester-long research experiences. Engaging, authentic research experiences aid biology students in meeting many learning goals. Therefore, overlaying a research experience onto the existing lab structure allows faculty to overcome barriers involving curricular change. Here we propose a working model for this overlay design in an introductory biology course and detail a means to conduct this lab with minimal increases in student and faculty workloads. Furthermore, we conducted exploratory factor analysis of the Experimental Design Ability Test (EDAT and uncovered two latent factors which provide valid means to assess this overlay model’s ability to increase advanced experimental design abilities. In a pre-test/post-test design, we demonstrate significant increases in both basic and advanced experimental design abilities in an experimental and comparison group. We measured significantly higher gains in advanced experimental design understanding in students in the experimental group. We believe this overlay model and EDAT factor analysis contribute a novel means to conduct and assess the effectiveness of authentic research experiences in an introductory course without major changes to the course curriculum and with minimal increases in faculty and student workloads.

  13. Project-Based Learning Courses: The Relationship Between Faculty-Intended Course Implementation and Students' Perceptions

    Science.gov (United States)

    Simonovich, Jennifer A.; Towers, Emily; Zastavker, Yevgeniya V.

    2012-02-01

    Project-based learning (PjBL) has been shown to improve students' performance and satisfaction with their coursework, particularly in science and engineering courses. Specific aspects of PjBL that contribute to this improvement are student autonomy, course scaffolding, and instructor support. This study investigates two PjBL courses required for engineering majors at a small technical school, Introductory Mechanics Laboratory and Introductory Engineering Design. The three data sources used in this work are classroom observations (one laboratory and four design sessions) and semi-structured in-depth interviews with twelve students and six faculty. Grounded theory approach is used in a two-step fashion by (1) analyzing each data set individually and (2) performing full triangulation of all three data sets. In this talk, we demonstrate the relationship between faculty intentions and student perceptions regarding the three PjBL aspects -- student autonomy, course scaffolding, and instructor support -- within the context of these two courses. We further discuss implications for the course design and professional development of faculty.

  14. Effect of Task Presentation on Students' Performances in Introductory Statistics Courses

    Science.gov (United States)

    Tomasetto, Carlo; Matteucci, Maria Cristina; Carugati, Felice; Selleri, Patrizia

    2009-01-01

    Research on academic learning indicates that many students experience major difficulties with introductory statistics and methodology courses. We hypothesized that students' difficulties may depend in part on the fact that statistics tasks are commonly viewed as related to the threatening domain of math. In two field experiments which we carried…

  15. Clicking to Learn: A Case Study of Embedding Radio-Frequency Based Clickers in an Introductory Management Information Systems Course

    Science.gov (United States)

    Nelson, Matthew L.; Hauck, Roslin V.

    2008-01-01

    The challenges associated with teaching a core introductory management information systems (MIS) course are well known (large class sizes serving a majority of non-MIS majors, sustaining student interests, encouraging class participation, etc.). This study offers a mechanism towards managing these challenges through the use of a simple and…

  16. Peer Learning and Support of Technology in an Undergraduate Biology Course to Enhance Deep Learning

    Science.gov (United States)

    Tsaushu, Masha; Tal, Tali; Sagy, Ornit; Kali, Yael; Gepstein, Shimon; Zilberstein, Dan

    2012-01-01

    This study offers an innovative and sustainable instructional model for an introductory undergraduate course. The model was gradually implemented during 3 yr in a research university in a large-lecture biology course that enrolled biology majors and nonmajors. It gives priority to sources not used enough to enhance active learning in higher…

  17. Equity investigation of attitudinal shifts in introductory physics

    Directory of Open Access Journals (Sweden)

    Adrienne Traxler

    2015-11-01

    Full Text Available We report on seven years of attitudinal data using the Colorado Learning Attitudes about Science Survey from University Modeling Instruction (UMI sections of introductory physics at Florida International University. University Modeling Instruction is a curricular and pedagogical transformation of introductory university physics that engages students in building and testing conceptual models in an integrated lab and lecture learning environment. This work expands upon previous studies that reported consistently positive attitude shifts in UMI courses; here, we disaggregate the data by gender and ethnicity to look for any disparities in the pattern of favorable shifts. We find that women and students from statistically underrepresented ethnic groups have gains that are comparable to those of men and students from well-represented ethnic groups on this attitudinal measure, and that this result holds even when interaction effects of gender and ethnicity are included. We conclude with suggestions for future work in UMI courses and for attitudinal equity investigations generally. We encourage researchers to expand their scope beyond simple performance gaps when considering equity concerns, and to avoid relying on a single measure to evaluate student success. Finally, we conjecture that students’ social and academic networks are one means by which attitudinal and efficacy beliefs about the course are propagated.

  18. Equity investigation of attitudinal shifts in introductory physics

    Science.gov (United States)

    Traxler, Adrienne; Brewe, Eric

    2015-12-01

    We report on seven years of attitudinal data using the Colorado Learning Attitudes about Science Survey from University Modeling Instruction (UMI) sections of introductory physics at Florida International University. University Modeling Instruction is a curricular and pedagogical transformation of introductory university physics that engages students in building and testing conceptual models in an integrated lab and lecture learning environment. This work expands upon previous studies that reported consistently positive attitude shifts in UMI courses; here, we disaggregate the data by gender and ethnicity to look for any disparities in the pattern of favorable shifts. We find that women and students from statistically underrepresented ethnic groups have gains that are comparable to those of men and students from well-represented ethnic groups on this attitudinal measure, and that this result holds even when interaction effects of gender and ethnicity are included. We conclude with suggestions for future work in UMI courses and for attitudinal equity investigations generally. We encourage researchers to expand their scope beyond simple performance gaps when considering equity concerns, and to avoid relying on a single measure to evaluate student success. Finally, we conjecture that students' social and academic networks are one means by which attitudinal and efficacy beliefs about the course are propagated.

  19. An Empirical Evaluation of Puzzle-Based Learning as an Interest Approach for Teaching Introductory Computer Science

    Science.gov (United States)

    Merrick, K. E.

    2010-01-01

    This correspondence describes an adaptation of puzzle-based learning to teaching an introductory computer programming course. Students from two offerings of the course--with and without the puzzle-based learning--were surveyed over a two-year period. Empirical results show that the synthesis of puzzle-based learning concepts with existing course…

  20. Effectiveness of a GUM-compliant course for teaching measurement in the introductory physics laboratory

    International Nuclear Information System (INIS)

    Pillay, Seshini; Buffler, Andy; Lubben, Fred; Allie, Saalih

    2008-01-01

    An evaluation of a course aimed at developing university students' understanding of the nature of scientific measurement and uncertainty is described. The course materials follow the framework for metrology as recommended in the Guide to the Expression of Uncertainty in Measurement (GUM). The evaluation of the course is based on responses to written questionnaires administered to a cohort of 76 first year physics students both pre- and post-instruction, which were interpreted in terms of 'point' or 'set' reasoning. These findings are compared with responses from a control group of 70 students who completed a similar laboratory course apart from the use of traditional approaches to measurement and data analysis. The results suggest that the GUM framework, together with the specific teaching strategies described, provides opportunities for more effective learning of measurement and uncertainty in the introductory laboratory

  1. Effect of lecture instruction on student performance on qualitative questions

    Science.gov (United States)

    Heron, Paula R. L.

    2015-06-01

    The impact of lecture instruction on student conceptual understanding in physics has been the subject of research for several decades. Most studies have reported disappointingly small improvements in student performance on conceptual questions despite direct instruction on the relevant topics. These results have spurred a number of attempts to improve learning in physics courses through new curricula and instructional techniques. This paper contributes to the research base through a retrospective analysis of 20 randomly selected qualitative questions on topics in kinematics, dynamics, electrostatics, waves, and physical optics that have been given in introductory calculus-based physics at the University of Washington over a period of 15 years. In some classes, questions were administered after relevant lecture instruction had been completed; in others, it had yet to begin. Simple statistical tests indicate that the average performance of the "after lecture" classes was significantly better than that of the "before lecture" classes for 11 questions, significantly worse for two questions, and indistinguishable for the remaining seven. However, the classes had not been randomly assigned to be tested before or after lecture instruction. Multiple linear regression was therefore conducted with variables (such as class size) that could plausibly lead to systematic differences in performance and thus obscure (or artificially enhance) the effect of lecture instruction. The regression models support the results of the simple tests for all but four questions. In those cases, the effect of lecture instruction was reduced to a nonsignificant level, or increased to a significant, negative level when other variables were considered. Thus the results provide robust evidence that instruction in lecture can increase student ability to give correct answers to conceptual questions but does not necessarily do so; in some cases it can even lead to a decrease.

  2. Food Preparation and Service. An Introductory Course for Food Services Careers.

    Science.gov (United States)

    Douma, Elaine L.

    Intended for use in a comprehensive senior high school, this curriculum guide for an introductory laboratory course focuses on the development of abilities, attitudes, and personal qualities which would lead to job success at the entry level in the food service industry, including in the areas of cooking, waitressing, supermarkets, and similar…

  3. Evaluating multiple-choice exams in large introductory physics courses

    OpenAIRE

    Gary Gladding; Tim Stelzer; Michael Scott

    2006-01-01

    The reliability and validity of professionally written multiple-choice exams have been extensively studied for exams such as the SAT, graduate record examination, and the force concept inventory. Much of the success of these multiple-choice exams is attributed to the careful construction of each question, as well as each response. In this study, the reliability and validity of scores from multiple-choice exams written for and administered in the large introductory physics courses at the Unive...

  4. Use of a Laboratory Field Project in an Introductory Crop Science Course.

    Science.gov (United States)

    Lane, Robert A.

    1986-01-01

    Assesses the benefits resulting from a laboratory field project and report for agricultural students in an introductory crop science course. Student responses to evaluation statements indicated that the project helped them identify crops, understand cultural and management practices, and recognize environmental influences that affect crop…

  5. Active and Collaborative Learning in an Introductory Electrical and Computer Engineering Course

    Science.gov (United States)

    Kotru, Sushma; Burkett, Susan L.; Jackson, David Jeff

    2010-01-01

    Active and collaborative learning instruments were introduced into an introductory electrical and computer engineering course. These instruments were designed to assess specific learning objectives and program outcomes. Results show that students developed an understanding comparable to that of more advanced students assessed later in the…

  6. Reciprocal Questioning and Computer-based Instruction in Introductory Auditing: Student Perceptions.

    Science.gov (United States)

    Watters, Mike

    2000-01-01

    An auditing course used reciprocal questioning (Socratic method) and computer-based instruction. Separate evaluations by 67 students revealed a strong aversion to the Socratic method; students expected professors to lecture. They showed a strong preference for the computer-based assignment. (SK)

  7. Integrating Web-Based Teaching Tools into Large University Physics Courses

    Science.gov (United States)

    Toback, David; Mershin, Andreas; Novikova, Irina

    2005-12-01

    Teaching students in our large, introductory, calculus-based physics courses to be good problem-solvers is a difficult task. Not only must students be taught to understand and use the physics concepts in a problem, they must become adept at turning the physical quantities into symbolic variables, translating the problem into equations, and "turning the crank" on the mathematics to find both a closed-form solution and a numerical answer. Physics education research has shown that students' poor math skills and instructors' lack of pen-and-paper homework grading resources, two problems we face at our institution, can have a significant impact on problem-solving skill development.2-4 While Interactive Engagement methods appear to be the preferred mode of instruction,5 for practical reasons we have not been able to widely implement them. In this paper, we describe three Internet-based "teaching-while-quizzing" tools we have developed and how they have been integrated into our traditional lecture course in powerful but easy to incorporate ways.6 These are designed to remediate students' math deficiencies, automate homework grading, and guide study time toward problem solving. Our intent is for instructors who face similar obstacles to adopt these tools, which are available upon request.7

  8. CAS course on Plasma Wake Acceleration

    CERN Multimedia

    CERN Accelerator School

    2015-01-01

    The CERN Accelerator School (CAS) recently organised a specialised course on Plasma Wake Acceleration, held at CERN, Geneva, Switzerland, from 23 to 29 November 2014.    Following a number of introductory lectures on laser and plasma physics, as well as an overview of conventional accelerators and their limitations, the course covered a large number of aspects of plasma wake acceleration schemes: the creation of plasma by high power lasers or particle beams, a description of the plasma creation process through simulations and the characteristics of the accelerated particle beams, including results of the latest achievements. Lectures on beam diagnostics, the applications of plasma accelerated beams, and topical seminars completed the programme.  The course was very successful, with 109 students of 26 nationalities attending; most participants coming from European counties, but also from the US, Israel, India, South Korea, Russia and Ukraine. Feedback from the participants was...

  9. Investigating Flipped Learning: Student Self-Regulated Learning, Perceptions, and Achievement in an Introductory Biology Course

    Science.gov (United States)

    Sletten, Sarah Rae

    2017-06-01

    In flipped classrooms, lectures, which are normally delivered in-class, are assigned as homework in the form of videos, and assignments that were traditionally assigned as homework, are done as learning activities in class. It was hypothesized that the effectiveness of the flipped model hinges on a student's desire and ability to adopt a self-directed learning style. The purpose of this study was twofold; it aimed at examining the relationship between two variables—students' perceptions of the flipped model and their self-regulated learning (SRL) behaviors—and the impact that these variables have on achievement in a flipped class. For the study, 76 participants from a flipped introductory biology course were asked about their SRL strategy use and perceptions of the flipped model. SRL strategy use was measured using a modified version of the Motivated Strategies for Learning Questionnaire (MSLQ; Wolters et al. 2005), while the flipped perceptions survey was newly derived. Student letter grades were collected as a measure of achievement. Through regression analysis, it was found that students' perceptions of the flipped model positively predict students' use of several types of SRL strategies. However, the data did not indicate a relationship between student perceptions and achievement, neither directly nor indirectly, through SRL strategy use. Results suggest that flipped classrooms demonstrate their successes in the active learning sessions through constructivist teaching methods. Video lectures hold an important role in flipped classes, however, students may need to practice SRL skills to become more self-directed and effectively learn from them.

  10. Using Isomorphic Problems to Learn Introductory Physics

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2011-01-01

    In this study, we examine introductory physics students' ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the…

  11. Promoting Metacognition in Introductory Calculus-based Physics Labs

    Science.gov (United States)

    Grennell, Drew; Boudreaux, Andrew

    2010-10-01

    In the Western Washington University physics department, a project is underway to develop research-based laboratory curriculum for the introductory calculus-based course. Instructional goals not only include supporting students' conceptual understanding and reasoning ability, but also providing students with opportunities to engage in metacognition. For the latter, our approach has been to scaffold reflective thinking with guided questions. Specific instructional strategies include analysis of alternate reasoning presented in fictitious dialogues and comparison of students' initial ideas with their lab group's final, consensus understanding. Assessment of student metacognition includes pre- and post- course data from selected questions on the CLASS survey, analysis of written lab worksheets, and student opinion surveys. CLASS results are similar to a traditional physics course and analysis of lab sheets show that students struggle to engage in a metacognitive process. Future directions include video studies, as well as use of additional written assessments adapted from educational psychology.

  12. Curriculum Currency: Integrating Direct and Interactive Marketing Content in Introductory Marketing Courses

    Science.gov (United States)

    Spiller, Lisa D.; Scovotti, Carol

    2008-01-01

    This study investigates the extent to which educators address direct and interactive marketing concepts in undergraduate introductory marketing courses. As practitioners seek more accountability from their marketing efforts, so too must academia respond with more relevant content. Results from textbook content analysis suggest that direct and…

  13. Creating a 'Born Digital' Introductory Online Geology Course with a Community of Inquiry that Supports Discussion of Societal Challenges

    Science.gov (United States)

    d'Alessio, M. A.; Schwartz, J. J.

    2014-12-01

    With earth science relevant to so many societal challenges, we created an introductory geology course as a forum for students to explore the interplay between geoscience and society. With new media and digital tools enabling such rich collaboration, we designed the course as a fully online lecture and laboratory experience that meets the natural science general education requirements of our university. We hook students by using popular Hollywood blockbusters paired with documentary films that address related science content. Student ask questions using an online question ranking tool (Google Moderator) to guide the direction of further content delivery using the slide sharing/collaboration tool 'VoiceThread.' It allows instructors to post slides, add video narration, and invite students to comment or answer specific questions using video, voice, or text. Students report that VoiceThread makes an asynchronous class feel like a face-to-face experience. Student also collect data using online tools and pool their data in Google Spreadsheets. They discuss their collective findings in VoiceThread. With these tools in place, each content unit culminates with a challenge scenario. Students work in teams to come to a consensus about a real-world decision that requires them to apply their geologic knowledge. Examples include whether or not to evacuate a town in light of volcanic activity, which house to purchase in an earthquake prone area, which industry was polluting local groundwater, and whether or not to sell mineral rights for hydraulic fracturing. While many of these activities are widely utilized, our approach using them in an integrated online lecture/lab environment is unique. A survey of student attitudes towards the course revealed that students felt a stronger personal connection to the course instructor and one another than typical face-to-face GE classes, including those from our own department. Students' self-report of how much they learned was strongly

  14. The Effect of a Math Emporium Course Redesign in Developmental and Introductory Mathematics Courses on Student Achievement and Students' Attitudes toward Mathematics at a Two-Year College

    Science.gov (United States)

    Bishop, Amy Renee

    2010-01-01

    The purpose of this research was to determine the effect of computer-based instruction on student mathematics achievement and students' attitudes toward mathematics in developmental and introductory mathematics courses, namely Elementary Algebra, Intermediate Algebra, and College Algebra, at a community college. The researcher also examined the…

  15. Computer-Automated Approach for Scoring Short Essays in an Introductory Statistics Course

    Science.gov (United States)

    Zimmerman, Whitney Alicia; Kang, Hyun Bin; Kim, Kyung; Gao, Mengzhao; Johnson, Glenn; Clariana, Roy; Zhang, Fan

    2018-01-01

    Over two semesters short essay prompts were developed for use with the Graphical Interface for Knowledge Structure (GIKS), an automated essay scoring system. Participants were students in an undergraduate-level online introductory statistics course. The GIKS compares students' writing samples with an expert's to produce keyword occurrence and…

  16. Gender Gaps in Achievement and Participation in Multiple Introductory Biology Classrooms

    Science.gov (United States)

    Brownell, Sara E.; Wenderoth, Mary Pat

    2014-01-01

    Although gender gaps have been a major concern in male-dominated science, technology, engineering, and mathematics disciplines such as physics and engineering, the numerical dominance of female students in biology has supported the assumption that gender disparities do not exist at the undergraduate level in life sciences. Using data from 23 large introductory biology classes for majors, we examine two measures of gender disparity in biology: academic achievement and participation in whole-class discussions. We found that females consistently underperform on exams compared with males with similar overall college grade point averages. In addition, although females on average represent 60% of the students in these courses, their voices make up less than 40% of those heard responding to instructor-posed questions to the class, one of the most common ways of engaging students in large lectures. Based on these data, we propose that, despite numerical dominance of females, gender disparities remain an issue in introductory biology classrooms. For student retention and achievement in biology to be truly merit based, we need to develop strategies to equalize the opportunities for students of different genders to practice the skills they need to excel. PMID:25185231

  17. Comparisons Between Science Knowledge, Interest, and Information Literacy of Learners in Introductory Astronomy Courses

    Science.gov (United States)

    Buxner, Sanlyn; Impey, Chris David; Formanek, Martin; Wenger, Matthew

    2018-01-01

    Introductory astronomy courses are exciting opportunities to engage non-major students in scientific issues, new discoveries, and scientific thinking. Many undergraduate students take these courses to complete their general education requirements. Many free-choice learners also take these courses, but for their own interest. We report on a study comparing the basic science knowledge, interest in science, and information literacy of undergraduate students and free choice learners enrolled in introductory astronomy courses run by the University of Arizona. Undergraduate students take both in-person and online courses for college credit. Free choice learners enroll in massive open online courses (MOOCs), through commercial platforms, that can earn them a certificate (although most do not take advantage of that opportunity). In general, we find that undergraduate students outperform the general public on basic science knowledge and that learners in our astronomy MOOCs outperform the undergraduate students in the study. Learners in the MOOC have higher interest in science in general. Overall, learners in both groups report getting information about science from online sources. Additionally, learners’ judgement of the reliability of different sources of information is weakly related to their basic science knowledge and more strongly related to how they describe what it means to study something scientifically. We discuss the implications of our findings for both undergraduate students and free-choice learners as well as instructors of these types of courses.

  18. The Proposed Model of Collaborative Virtual Learning Environment for Introductory Programming Course

    Science.gov (United States)

    Othman, Mahfudzah; Othman, Muhaini

    2012-01-01

    This paper discusses the proposed model of the collaborative virtual learning system for the introductory computer programming course which uses one of the collaborative learning techniques known as the "Think-Pair-Share". The main objective of this study is to design a model for an online learning system that facilitates the…

  19. Making Politics "Click": The Costs and Benefits of Using Clickers in an Introductory Political Science Course

    Science.gov (United States)

    Evans, Heather K.

    2012-01-01

    In this article, the author addresses both the costs and benefits of implementing clickers into an introductory political science course. Comparing student responses to a mid-semester survey in both a clicker and non-clicker course, the results show that students have higher satisfaction of the course and instructor, higher exam scores, and feel…

  20. Use of Multimedia in an Introductory College Biology Course to Improve Comprehension of Complex Material

    Science.gov (United States)

    Rhodes, Ashley; Rozell, Tim; Shroyer, Gail

    2014-01-01

    Many students who have the ability to succeed in science, technology, engineering and math (STEM) disciplines are often alienated by the traditional instructional methods encountered within introductory courses; as a result, attrition from STEM fields is highest after completion of these courses. This is especially true for females. The present…

  1. Using Yeast to Determine the Functional Consequences of Mutations in the Human p53 Tumor Suppressor Gene: An Introductory Course-Based Undergraduate Research Experience in Molecular and Cell Biology

    Science.gov (United States)

    Hekmat-Scafe, Daria S.; Brownell, Sara E.; Seawell, Patricia Chandler; Malladi, Shyamala; Imam, Jamie F. Conklin; Singla, Veena; Bradon, Nicole; Cyert, Martha S.; Stearns, Tim

    2017-01-01

    The opportunity to engage in scientific research is an important, but often neglected, component of undergraduate training in biology. We describe the curriculum for an innovative, course-based undergraduate research experience (CURE) appropriate for a large, introductory cell and molecular biology laboratory class that leverages students' high…

  2. Citizen Science: The Small World Initiative Improved Lecture Grades and California Critical Thinking Skills Test Scores of Nonscience Major Students at Florida Atlantic University.

    Science.gov (United States)

    Caruso, Joseph P; Israel, Natalie; Rowland, Kimberly; Lovelace, Matthew J; Saunders, Mary Jane

    2016-03-01

    Course-based undergraduate research is known to improve science, technology, engineering, and mathematics student achievement. We tested "The Small World Initiative, a Citizen-Science Project to Crowdsource Novel Antibiotic Discovery" to see if it also improved student performance and the critical thinking of non-science majors in Introductory Biology at Florida Atlantic University (a large, public, minority-dominant institution) in academic year 2014-15. California Critical Thinking Skills Test pre- and posttests were offered to both Small World Initiative (SWI) and control lab students for formative amounts of extra credit. SWI lab students earned significantly higher lecture grades than control lab students, had significantly fewer lecture grades of D+ or lower, and had significantly higher critical thinking posttest total scores than control students. Lastly, more SWI students were engaged while taking critical thinking tests. These results support the hypothesis that utilizing independent course-based undergraduate science research improves student achievement even in nonscience students.

  3. Web-Based Gerontology Courses: How Do They Measure Up?

    Science.gov (United States)

    Hills, William E.; Brallier, Sara A.; Palm, Linda J.; Graham, Jamie M.

    2009-01-01

    This study compared Web-based and lecture-based Gerontology and Psychology of Aging courses in terms of student performance, demographic and academic characteristics of students enrolled in the courses, and extent to which these characteristics differentially predicted outcomes of learning in the two course types. Participants for this study were…

  4. Replacing lecture with peer-led workshops improves student learning.

    Science.gov (United States)

    Preszler, Ralph W

    2009-01-01

    Peer-facilitated workshops enhanced interactivity in our introductory biology course, which led to increased student engagement and learning. A majority of students preferred attending two lectures and a workshop each week over attending three weekly lectures. In the workshops, students worked in small cooperative groups as they solved challenging problems, evaluated case studies, and participated in activities designed to improve their general learning skills. Students in the workshop version of the course scored higher on exam questions recycled from preworkshop semesters. Grades were higher over three workshop semesters in comparison with the seven preworkshop semesters. Although males and females benefited from workshops, there was a larger improvement of grades and increased retention by female students; although underrepresented minority (URM) and non-URM students benefited from workshops, there was a larger improvement of grades by URM students. As well as improving student performance and retention, the addition of interactive workshops also improved the quality of student learning: Student scores on exam questions that required higher-level thinking increased from preworkshop to workshop semesters.

  5. Students' network integration as a predictor of persistence in introductory physics courses

    Science.gov (United States)

    Zwolak, Justyna P.; Dou, Remy; Williams, Eric A.; Brewe, Eric

    2017-06-01

    Increasing student retention (successfully finishing a particular course) and persistence (continuing through a sequence of courses or the major area of study) is currently a major challenge for universities. While students' academic and social integration into an institution seems to be vital for student retention, research into the effect of interpersonal interactions is rare. We use network analysis as an approach to investigate academic and social experiences of students in the classroom. In particular, centrality measures identify patterns of interaction that contribute to integration into the university. Using these measures, we analyze how position within a social network in a Modeling Instruction (MI) course—an introductory physics course that strongly emphasizes interactive learning—predicts their persistence in taking a subsequent physics course. Students with higher centrality at the end of the first semester of MI are more likely to enroll in a second semester of MI. Moreover, we found that chances of successfully predicting individual student's persistence based on centrality measures are fairly high—up to 75%, making the centrality a good predictor of persistence. These findings suggest that increasing student social integration may help in improving persistence in science, technology, engineering, and mathematics fields.

  6. Leveraging Global Geo-Data and Information Technologies to Bring Authentic Research Experiences to Students in Introductory Geosciences Courses

    Science.gov (United States)

    Ryan, J. G.

    2014-12-01

    The 2012 PCAST report identified the improvement of "gateway" science courses as critical to increasing the number of STEM graduates to levels commensurate with national needs. The urgent need to recruit/ retain more STEM graduates is particularly acute in the geosciences, where growth in employment opportunities, an aging workforce and flat graduation rates are leading to substantial unmet demand for geoscience-trained STEM graduates. The need to increase the number of Bachelors-level geoscience graduates was an identified priority at the Summit on the Future of Undergraduate Geoscience Education (http://www.jsg.utexas.edu/events/future-of-geoscience-undergraduateeducation/), as was the necessity of focusing on 2-year colleges, where a growing number of students are being introduced to geosciences. Undergraduate research as an instructional tool can help engage and retain students, but has largely not been part of introductory geoscience courses because of the challenge of scaling such activities for large student numbers. However, burgeoning information technology resources, including publicly available earth and planetary data repositories and freely available, intuitive data visualization platforms makes structured, in-classroom investigations of geoscience questions tractable, and open-ended student inquiry possible. Examples include "MARGINS Mini-Lessons", instructional resources developed with the support of two NSF-DUE grant awards that involve investigations of marine geosciences data resources (overseen by the Integrated Earth Data Applications (IEDA) portal: www.iedadata.org) and data visualization using GeoMapApp (www.geomapapp.org); and the growing suite of Google-Earth based data visualization and exploration activities overseen by the Google Earth in Onsite and Distance Education project (geode.net). Sample-based investigations are also viable in introductory courses, thanks to remote instrument operations technologies that allow real student

  7. Evaluating Two Models of Collaborative Tests in an Online Introductory Statistics Course

    Science.gov (United States)

    Björnsdóttir, Auðbjörg; Garfield, Joan; Everson, Michelle

    2015-01-01

    This study explored the use of two different types of collaborative tests in an online introductory statistics course. A study was designed and carried out to investigate three research questions: (1) What is the difference in students' learning between using consensus and non-consensus collaborative tests in the online environment?, (2) What is…

  8. Connecting biology and organic chemistry introductory laboratory courses through a collaborative research project.

    Science.gov (United States)

    Boltax, Ariana L; Armanious, Stephanie; Kosinski-Collins, Melissa S; Pontrello, Jason K

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an interdisciplinary, medically relevant, project intended to help students see connections between chemistry and biology. Second term organic chemistry laboratory students designed and synthesized potential polymer inhibitors or inducers of polyglutamine protein aggregation. The use of novel target compounds added the uncertainty of scientific research to the project. Biology laboratory students then tested the novel potential pharmaceuticals in Huntington's disease model assays, using in vitro polyglutamine peptide aggregation and in vivo lethality studies in Drosophila. Students read articles from the primary literature describing the system from both chemical and biological perspectives. Assessment revealed that students emerged from both courses with a deeper understanding of the interdisciplinary nature of biology and chemistry and a heightened interest in basic research. The design of this collaborative project for introductory biology and organic chemistry labs demonstrated how the local interests and expertise at a university can be drawn from to create an effective way to integrate these introductory courses. Rather than simply presenting a series of experiments to be replicated, we hope that our efforts will inspire other scientists to think about how some aspect of authentic work can be brought into their own courses, and we also welcome additional collaborations to extend the scope of the scientific exploration. © 2015 The International Union of Biochemistry and Molecular Biology.

  9. Teaching Electrostatics and Entropy in Introductory Physics

    Science.gov (United States)

    Reeves, Mark

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology courses is important contribution of the entropy in driving fundamental biological processes towards equilibrium. I will present material developed to teach electrostatic screening in solutions and the function of nerve cells where entropic effects act to counterbalance electrostatic attraction. These ideas are taught in an introductory, calculus-based physics course to biomedical engineers using SCALEUP pedagogy. Results of student mastering of complex problems that cross disciplinary boundaries between biology and physics, as well as the challenges that they face in learning this material will be presented.

  10. Understanding the gender gap: Social cognitive changes during an introductory stem course.

    Science.gov (United States)

    Hardin, Erin E; Longhurst, Melanie O

    2016-03-01

    Despite robust support for the basic theoretical model of social cognitive career theory (Lent, Brown, & Hackett, 1994) and predictions that, for example, increases (or declines) in self-efficacy would lead to subsequent increases (or declines) in interest, there has been surprisingly little longitudinal research that has directly examined the extent to which members of different groups (e.g., women and men) actually do experience changes in critical social-cognitive variables over time early in their curricula in the fields of science, technology, engineering, and mathematics (STEM). Knowing the extent to which such changes occur in typical introductory undergraduate courses is important for targeting interventions to increase persistence of underrepresented groups in STEM. We measured social-cognitive-career-theory-relevant variables near the middle and at the end of the 1st semester of a gateway introductory chemistry course and found that women had lower STEM self-efficacy, coping self-efficacy, and STEM interest than did men, even after controlling for actual course performance. Although there were no detrimental changes across the semester for women or men, men experienced a small but significant increase in their perceived support for pursuing a STEM degree, whereas women did not. (c) 2016 APA, all rights reserved).

  11. Student Responses to a Flipped Introductory Physics Class with built-in Post-Video Feedback Quizzes

    Science.gov (United States)

    Ramos, Roberto

    We present and analyze student responses to multiple Introductory physics classes in a university setting, taught in a ''flipped'' class format. The classes included algebra- and calculus-based introductory physics. Outside class, students viewed over 100 online video lectures on Classical Mechanics, Electricity and Magnetism, and Modern Physics prepared by this author and in some cases, by a third-party lecture package available over YouTube. Inside the class, students solved and discussed problems and conceptual issues in greater detail. A pre-class online quiz was deployed as an important source of feedback. I will report on the student reactions to the feedback mechanism, student responses using data based on anonymous surveys, as well as on learning gains from pre-/post- physics diagnostic tests. The results indicate a broad mixture of responses to different lecture video packages that depend on learning styles and perceptions. Students preferred the online quizzes as a mechanism to validate their understanding. The learning gains based on FCI and CSEM surveys were significant.

  12. Problem-Based Learning in a General Psychology Course.

    Science.gov (United States)

    Willis, Sandra A.

    2002-01-01

    Describes the adoption of problem-based learning (PBL) techniques in a general psychology course. States that the instructor used a combination of techniques, including think-pair-share, lecture/discussion, and PBL. Notes means and standard deviations for graded components of PBL format versus lecture/discussion format. (Contains 18 references.)…

  13. Use of Case-Based or Hands-On Laboratory Exercises with Physiology Lectures Improves Knowledge Retention, but Veterinary Medicine Students Prefer Case-Based Activities

    Science.gov (United States)

    McFee, Renee M.; Cupp, Andrea S.; Wood, Jennifer R.

    2018-01-01

    Didactic lectures are prevalent in physiology courses within veterinary medicine programs, but more active learning methods have also been utilized. Our goal was to identify the most appropriate learning method to augment the lecture component of our physiology course. We hypothesized that case-based learning would be well received by students and…

  14. Cognitive development in introductory physics: A research-based approach to curriculum reform

    Science.gov (United States)

    Teodorescu, Raluca Elena

    This project describes the research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments that can evaluate individual component processes of the problem-solving process, and for guiding curriculum design in introductory physics courses, specifically within the context of a "thinking-skills" curriculum. TIPP relies on the following resources: (1) cognitive research findings adopted by physics education research, (2) expert-novice research discoveries acknowledged by physics education research, (3) an educational psychology taxonomy for educational objectives, and (4) various collections of physics problems created by physics education researchers or developed by textbook authors. TIPP was used in the years 2006--2008 to reform the first semester of the introductory algebra-based physics course (called Phys 11) at The George Washington University. The reform sought to transform our curriculum into a "thinking-skills" curriculum that trades "breadth for depth" by focusing on fewer topics while targeting the students' cognitive development. We employed existing research on the physics problem-solving expert-novice behavior, cognitive science and behavioral science findings, and educational psychology recommendations. Our pedagogy relies on didactic constructs such as the GW-ACCESS problem-solving protocol, learning progressions and concept maps that we have developed and implemented in our introductory physics course. These tools were designed based on TIPP. Their purpose is: (1) to help students build local and global coherent knowledge structures, (2) to develop more context-independent problem-solving abilities, (3) to gain confidence in problem solving, and (4) to establish

  15. Learning Efficacy and Cost-Effectiveness of Print versus e-Book Instructional Material in an Introductory Financial Accounting Course

    Science.gov (United States)

    Annand, David

    2008-01-01

    This article describes the concurrent development of paper-based and e-book versions of a textbook and related instructional material used in an introductory-level financial accounting course. Break-even analysis is used to compare costs of the two media. A study conducted with 109 students is also used to evaluate the two media with respect to…

  16. Instructional strategies for online introductory college physics based on learning styles

    Science.gov (United States)

    Ekwue, Eleazer U.

    The practical nature of physics and its reliance on mathematical presentations and problem solving pose a challenge toward presentation of the course in an online environment for effective learning experience. Most first-time introductory college physics students fail to grasp the basic concepts of the course and the problem solving skills if the instructional strategy used to deliver the course is not compatible with the learners' preferred learning styles. This study investigates the effect of four instructional strategies based on four learning styles (listening, reading, iconic, and direct-experience) to improve learning for introductory college physics in an online environment. Learning styles of 146 participants were determined with Canfield Learning Style inventory. Of the 85 learners who completed the study, research results showed a statistically significant increase in learning performance following the online instruction in all four learning style groups. No statistically significant differences in learning were found among the four groups. However, greater significant academic improvement was found among learners with iconic and direct-experience modes of learning. Learners in all four groups expressed that the design of the unit presentation to match their individual learning styles contributed most to their learning experience. They were satisfied with learning a new physics concept online that, in their opinion, is either comparable or better than an instructor-led classroom experience. Findings from this study suggest that learners' performance and satisfaction in an online introductory physics course could be improved by using instructional designs that are tailored to learners' preferred ways of learning. It could contribute toward the challenge of providing viable online physics instruction in colleges and universities.

  17. Rudolf Ahlswede’s lectures on information theory

    CERN Document Server

    Althöfer, Ingo; Deppe, Christian; Tamm, Ulrich

    Volume 1 : The volume “Storing and Transmitting Data” is based on Rudolf Ahlswede's introductory course on "Information Theory I" and presents an introduction to Shannon Theory. Readers, familiar or unfamiliar with the technical intricacies of Information Theory, will benefit considerably from working through the book; especially Chapter VI with its lively comments and uncensored insider views from the world of science and research offers informative and revealing insights. This is the first of several volumes that will serve as a collected research documentation of Rudolf Ahlswede’s lectures on information theory. Each volume includes comments from an invited well-known expert. Holger Boche contributed his insights in the supplement of the present volume. Classical information processing concerns the main tasks of gaining knowledge, storage, transmitting and hiding data. The first task is the prime goal of Statistics. For the two next, Shannon presented an impressive mathematical theory called Informat...

  18. Investigating the Relationship between Instructors' Use of Active-Learning Strategies and Students' Conceptual Understanding and Affective Changes in Introductory Biology: A Comparison of Two Active-Learning Environments

    Science.gov (United States)

    Cleveland, Lacy M.; Olimpo, Jeffrey T.; DeChenne-Peters, Sue Ellen

    2017-01-01

    In response to calls for reform in undergraduate biology education, we conducted research examining how varying active-learning strategies impacted students' conceptual understanding, attitudes, and motivation in two sections of a large-lecture introductory cell and molecular biology course. Using a quasi-experimental design, we collected…

  19. Integrating quantitative thinking into an introductory biology course improves students' mathematical reasoning in biological contexts.

    Science.gov (United States)

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students' apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students' understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students' inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students' biology learning.

  20. Integrating Quantitative Thinking into an Introductory Biology Course Improves Students’ Mathematical Reasoning in Biological Contexts

    Science.gov (United States)

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students’ apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students’ understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students’ inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students’ biology learning. PMID:24591504

  1. An Eight-Year Study of Online Lecture Use in a Medical Gross Anatomy and Embryology Course

    Science.gov (United States)

    Nieder, Gary L.; Borges, Nicole J.

    2012-01-01

    Online lectures have been used in lieu of live lectures in our gross anatomy and embryology course for the past eight years. We examined patterns of online lecture use by our students and related that use to academic entry measures, gender and examination performance. Detailed access records identified by student were available from server logs.…

  2. Measuring the Effects of Virtual Pair Programming in an Introductory Programming Java Course

    Science.gov (United States)

    Zacharis, N. Z.

    2011-01-01

    This study investigated the effectiveness of virtual pair programming (VPP) on student performance and satisfaction in an introductory Java course. Students used online tools that integrated desktop sharing and real-time communication, and the metrics examined showed that VPP is an acceptable alternative to individual programming experience.…

  3. The Impact of Instructional Design on College Students' Cognitive Load and Learning Outcomes in a Large Food Science and Human Nutrition Course

    Science.gov (United States)

    Andrade, Jeanette; Huang, Wen-Hao David; Bohn, Dawn M.

    2015-01-01

    The effective design of course materials is critical for student learning, especially for large lecture introductory courses. This quantitative study was designed to explore the effect multimedia and content difficulty has on students' cognitive load and learning outcomes. College students (n = 268) were randomized into 1 of 3 multimedia groups:…

  4. Focused bedside ultrasonography by clinicians: experiences with a basic introductory course

    DEFF Research Database (Denmark)

    Hillingso, J.G.; Nielsen, M.B.; Svendsen, Lars Bo

    2008-01-01

    OBJECTIVE: Ultrasonography (US) performed by clinicians might shorten workout time and diminish the workload of simple diagnostic procedures for physicians specialized in US. The purpose of this follow-up study was to evaluate the effect of an introductory course in US on participants' clinical...... to be introduced for gastroenterologists and surgeons or the European Federation of Societies for Ultrasound in Medicine and Biology Guidelines should be implemented Udgivelsesdato: 2008...

  5. An Exploration of the Perceived Usefulness of the Introductory Statistics Course and Students’ Intentions to Further Engage in Statistics

    Directory of Open Access Journals (Sweden)

    Rossi Hassad

    2018-01-01

    Full Text Available Students� attitude, including perceived usefulness, is generally associated with academic success. The related research in statistics education has focused almost exclusively on the role of attitude in explaining and predicting academic learning outcomes, hence there is a paucity of research evidence on how attitude (particularly perceived usefulness impacts students� intentions to use and stay engaged in statistics beyond the introductory course. This study explored the relationship between college students� perception of the usefulness of an introductory statistics course, their beliefs about where statistics will be most useful, and their intentions to take another statistics course. A cross-sectional study of 106 students was conducted. The mean rating for usefulness was 4.7 (out of 7, with no statistically significant differences based on gender and age. Sixty-four percent reported that they would consider taking another statistics course, and this subgroup rated the course as more useful (p = .01. The majority (67% reported that statistics would be most useful for either graduate school or research, whereas 14% indicated their job, and 19% were undecided. The �undecided� students had the lowest mean rating for usefulness of the course (p = .001. Addressing data, in the context of real-world problem-solving and decision-making, could facilitate students to better appreciate the usefulness and practicality of statistics. Qualitative research methods could help to elucidate these findings.

  6. Impact of Multimedia and Network Services on an Introductory Level Course

    Science.gov (United States)

    Russ, John C.

    1996-01-01

    We will demonstrate and describe the impact of our use of multimedia and network connectivity on a sophomore-level introductory course in materials science. This class services all engineering students, resulting in large (more than 150) class sections with no hands-on laboratory. In 1990 we began to develop computer graphics that might substitute for some laboratory or real-world experiences, and demonstrate relationships hard to show with static textbook images or chalkboard drawings. We created a comprehensive series of modules that cover the entire course content. Called VIMS (Visualizations in Materials Science), these are available in the form of a CD-ROM and also via the internet.

  7. Teaching a Chemistry MOOC with a Virtual Laboratory: Lessons Learned from an Introductory Physical Chemistry Course

    Science.gov (United States)

    O'Malley, Patrick J.; Agger, Jonathan R.; Anderson, Michael W.

    2015-01-01

    An analysis is presented of the experience and lessons learned of running a MOOC in introductory physical chemistry. The course was unique in allowing students to conduct experimental measurements using a virtual laboratory constructed using video and simulations. A breakdown of the student background and motivation for taking the course is…

  8. General Procedure for the Easy Calculation of pH in an Introductory Course of General or Analytical Chemistry

    Science.gov (United States)

    Cepriá, Gemma; Salvatella, Luis

    2014-01-01

    All pH calculations for simple acid-base systems used in introductory courses on general or analytical chemistry can be carried out by using a general procedure requiring the use of predominance diagrams. In particular, the pH is calculated as the sum of an independent term equaling the average pK[subscript a] values of the acids involved in the…

  9. Interesting Guided-Inquiry Labs for a Large-Enrollment, Active Learning Physics II Course

    Science.gov (United States)

    Wagoner, Kasey; Hynes, K. Mairin; Flanagan, Daniel

    2018-04-01

    Introductory physics labs often focus on a series of common experiments intending to teach the student the measurement side of physics. While these experiments have the potential to be quite instructive, we observed that our students often consider them to be boring and monotonous, which often leads to them being uninstructive. To combat this, we have designed a series of labs with two major goals: the experiments should be relevant to the students' world, and the labs should gently guide the students to develop the experimental process on their own. Meeting these goals is difficult, particularly in a course with large enrollment where labs are instructed by graduate students. We have had success meeting these goals in our classroom, where over the last decade our introductory physics course has transformed from a traditional, lecture-learning class to a flipped class based on the textbook Six Ideas that Shaped Physics. Here we describe the structure of the new labs we have designed to capitalize on our classroom success while overcoming the aforementioned difficulties. These new labs are more engaging and instructive for our introductory physics students.

  10. IM-Chem: The Use of Instant Messaging to Improve Student Performance and Personalize Large Lecture General Chemistry Courses

    Science.gov (United States)

    Behmke, Derek A.; Atwood, Charles H.

    2012-01-01

    Previous research has linked poor student performance with the depersonalized feeling of large lecture courses. Various forms of enhanced communication have been tried that appear to enhance personalization in large courses. For general chemistry classes taught in a 365-seat lecture hall at the University of Georgia, we have attempted to enhance…

  11. Mathematics Prerequisites for Introductory Geoscience Courses: Using Technology to Help Solve the Problem

    Science.gov (United States)

    Burn, H. E.; Wenner, J. M.; Baer, E. M.

    2011-12-01

    The quantitative components of introductory geoscience courses can pose significant barriers to students. Many academic departments respond by stripping courses of their quantitative components or by attaching prerequisite mathematics courses [PMC]. PMCs cause students to incur additional costs and credits and may deter enrollment in introductory courses; yet, stripping quantitative content from geoscience courses masks the data-rich, quantitative nature of geoscience. Furthermore, the diversity of math skills required in geoscience and students' difficulty with transferring mathematical knowledge across domains suggest that PMCs may be ineffective. Instead, this study explores an alternative strategy -- to remediate students' mathematical skills using online modules that provide students with opportunities to build contextual quantitative reasoning skills. The Math You Need, When You Need It [TMYN] is a set of modular online student resources that address mathematical concepts in the context of the geosciences. TMYN modules are online resources that employ a "just-in-time" approach - giving students access to skills and then immediately providing opportunities to apply them. Each module places the mathematical concept in multiple geoscience contexts. Such an approach illustrates the immediate application of a principle and provides repeated exposure to a mathematical skill, enhancing long-term retention. At the same time, placing mathematics directly in several geoscience contexts better promotes transfer of learning by using similar discourse (words, tools, representations) and context that students will encounter when applying mathematics in the future. This study uses quantitative and qualitative data to explore the effectiveness of TMYN modules in remediating students' mathematical skills. Quantitative data derive from ten geoscience courses that used TMYN modules during the fall 2010 and spring 2011 semesters; none of the courses had a PMC. In all courses

  12. Lectures on general relativity

    CERN Document Server

    Papapetrou, Achille

    1974-01-01

    This book is an elaboration of lecture notes for the graduate course on General Rela­ tivity given by the author at Boston University in the spring semester of 1972. It is an introduction to the subject only, as the time available for the course was limited. The author of an introduction to General Relativity is faced from the beginning with the difficult task of choosing which material to include. A general criterion as­ sisting in this choice is provided by the didactic character of the book: Those chapters have to be included in priority, which will be most useful to the reader in enabling him to understand the methods used in General Relativity, the results obtained so far and possibly the problems still to be solved. This criterion is not sufficient to ensure a unique choice. General Relativity has developed to such a degree, that it is impossible to include in an introductory textbook of a reasonable length even a very condensed treatment of all important problems which have been discussed unt...

  13. The Development and Evolution of an Introductory Statistics Course for In-Service Middle-Level Mathematics Teachers

    Science.gov (United States)

    Schmind, Kendra K.; Blankenship, Erin E.; Kerby. April T.; Green, Jennifer L.; Smith, Wendy M.

    2014-01-01

    The statistical preparation of in-service teachers, particularly middle school teachers, has been an area of concern for several years. This paper discusses the creation and delivery of an introductory statistics course as part of a master's degree program for in-service mathematics teachers. The initial course development took place before the…

  14. Video-based lectures: An emerging paradigm for teaching human anatomy and physiology to student nurses

    Directory of Open Access Journals (Sweden)

    Rabab El-Sayed Hassan El-Sayed

    2013-09-01

    Full Text Available Video-based teaching material is a rich and powerful medium being used in computer assisted learning. This paper aimed to assess the learning outcomes and student nurses’ acceptance and satisfaction with the video-based lectures versus the traditional method of teaching human anatomy and physiology courses. Data were collected from 27 students in a Bachelor of Nursing program and experimental control was achieved using an alternating-treatments design. Overall, students experienced 10 lectures, which delivered by the teacher as either video-based or PowerPoint-based lectures. Results revealed that video-based lectures offer more successes and reduce failures in the immediate and follow-up measures as compared with the traditional method of teaching human anatomy and physiology that was based on printout illustrations, but these differences were not statistically significant. Moreover, nurse students appeared positive about their learning experiences, as they rated highly all the items assessing their acceptance and satisfaction with the video-based lectures. KEYWORDS: Video-based lecture, Traditional, Print-based illustration

  15. Introductory lectures on quantum field theory

    International Nuclear Information System (INIS)

    Alvarez-Gaume, L.; Vasquez-Mozo, M.A.

    2011-01-01

    In these lectures we present a few topics in quantum field theory in detail. Some of them are conceptual and some more practical. They have been selected because they appear frequently in current applications to particle physics and string theory. (author)

  16. A Case Study: Are Traditional Face-To-Face Lectures Still Relevant When Teaching Engineering Courses?

    Directory of Open Access Journals (Sweden)

    LillAnne Jackson

    2013-12-01

    Full Text Available In this rapidly changing age, with virtually all information available on the Internet including courses, students may not find any reason to physically attend the lectures. In spite of the many benefits the online lectures and materials bring to teaching, this drift from the traditional (norm face-to-face lectures is also creating further barriers, such as difficulty in communicating and building personal relationships, between students and instructor. In this paper we carry out a study that presents and analyzes factors that motivate students to attend a (1 face-to-face instruction in-class versus an (2 online class. This study is based on an anonymous and voluntary survey that was conducted in the School of Engineering at University of Victoria, BC, Canada. This paper presents and shares the detailed results and analysis of this survey that also includes some interesting and useful comments from the students. Based on the results, analysis and comments the paper suggests methodologies of how to improve face-to-face in-class instructions to make them more relevant to the current global information age.

  17. Incorporating Service Learning into the Introductory Astronomy Course

    Science.gov (United States)

    Mukherjee, K.

    2002-05-01

    The introductory Astronomy course can be enriched by adding a service learning component to it. This enables students to interact with and educate the general public about matters of outer space. At Slippery Rock University we have incorporated this idea into our Astronomy and Space Science courses. Working in groups, the students do a presentation which is often interdisciplinary. Frequently the department gets requests from schools to do a show specifically tailored to a topic like the solar system or constellations. Such projects are beneficial to students in many ways. They demand a thorough knowledge of the subject matter so as to communicate to the audience in a clear and nontechnical manner. The students also experience first hand the difficulties involved in coordinating a group effort. They learn to take responsibility for their allocated part and how to combine effectively to make the entire show a success. Interacting with various age groups demands a versatility in planning content and public speaking skills not easily available elsewhere in a traditional education. Our planetarium facilities help in attracting diverse audiences from preschoolers to senior citizens. Performance in these shows constitutes twenty five percent of course grade. Feedback from audience groups helps refine future shows by subsequent student cohorts.

  18. Teaching Science Writing in an Introductory Lab Course

    Science.gov (United States)

    Holstein, Sarah E.; Mickley Steinmetz, Katherine R.; Miles, John D.

    2015-01-01

    One challenge that many neuroscience instructors face is how to teach students to communicate within the field. The goal of this project was to improve students’ scientific writing in an introductory psychology laboratory course that serves as a feeder course into the neuroscience curriculum. This course included a scaffolded approach - breaking assignments into different sections that build upon each other to allow for more direction and feedback on each section. Students were also provided with examples of scientific writing, given direction on finding and reading journal articles, and were taught how to effectively peer review a paper. Research papers were assessed before (Year 1) and after (Year 2) this scaffolded approach was instituted. The assessment included measures of “Genre Knowledge” for each section of a research paper (abstract, introduction, method, results, discussion) as well as measures of “Writing Elements” (grammar, formatting, clarity, transitions, building to the hypothesis, using evidence). The results indicated that there was an improvement for Genre Knowledge scores when comparing Year 1 to Year 2. However, there was no systematic improvement in Writing Elements. This suggests that this teaching technique was most effective in improving students’ ability to write within the scientific genre. The logistics of implementing such an approach are discussed. PMID:25838801

  19. An Analysis of Economic Learning among Undergraduates in Introductory Economics Courses in Germany

    Science.gov (United States)

    Happ, Roland; Zlatkin-Troitschanskaia, Olga; Schmidt, Susanne

    2016-01-01

    In this article, the authors present the findings of a pretest-posttest measurement of the economic knowledge of students in introductory economics courses in undergraduate study programs in Germany. The responses of 403 students to 14 items selected from the "Test of Economic Literacy" (Soper and Walstad 1987) were analyzed to identify…

  20. The Use of Facebook in an Introductory MIS Course: Social Constructivist Learning Environment

    Science.gov (United States)

    Ractham, Peter; Kaewkitipong, Laddawan; Firpo, Daniel

    2012-01-01

    The major objective of this article is to evaluate via a Design Science Research Methodology (DSRM) the implementation of a Social Constructivist learning framework for an introductory Management Information System (MIS) course. Facebook was used as a learning artifact to build and foster a learning environment, and a series of features and…

  1. Assessing Outcomes of a Realistic Major Preview in an Introductory Sport Management Course

    Science.gov (United States)

    Pierce, David; Wanless, Elizabeth; Johnson, James

    2014-01-01

    This paper assessed the outcomes of a field experience assignment (FEA) in an introductory sport management course designed as a realistic major preview. Student learning outcomes assessed were commitment to the major, intent to pursue the major, expectation of a career in sports, and perceived preparation for a career in sports. A…

  2. Examining issues of underrepresented minority students in introductory physics

    Science.gov (United States)

    Watkins, Jessica Ellen

    In this dissertation we examine several issues related to the retention of under-represented minority students in physics and science. In the first section, we show that in calculus-based introductory physics courses, the gender gap on the FCI is diminished through the use of interactive techniques, but in lower-level introductory courses, the gap persists, similar to reports published at other institutions. We find that under-represented racial minorities perform similar to their peers with comparable academic preparation on conceptual surveys, but their average exam grades and course grades are lower. We also examine student persistence in science majors; finding a significant relationship between pedagogy in an introductory physics course and persistence in science. In the second section, we look at student end-of-semester evaluations and find that female students rate interactive teaching methods a full point lower than their male peers. Looking more deeply at student interview data, we find that female students report more social issues related to the discussions in class and both male and female students cite feeling pressure to obtain the correct answer to clicker questions. Finally, we take a look an often-cited claim for gender differences in STEM participation: cognitive differences explain achievement differences in physics. We examine specifically the role of mental rotations in physics achievement and problem-solving, viewing mental rotations as a tool that students can use on physics problems. We first look at student survey results for lower-level introductory students, finding a low, but significant correlation between performance on a mental rotations test and performance in introductory physics courses. In contrast, we did not find a significant relationship for students in the upper-level introductory course. We also examine student problem-solving interviews to investigate the role of mental rotations on introductory problems.

  3. Research-based approaches to nuclear education

    Energy Technology Data Exchange (ETDEWEB)

    Donev, J.M.K.C., E-mail: jason.donev@ucalgary.ca [Univ. of Calgary, Calgary, AB (Canada); Carpenter, Y., E-mail: ycarpenter@gmail.com [Univ.ty of Colorado at Boulder, Boulder, CO (United States)

    2014-07-01

    Teaching nuclear power requires an expert to communicate a significant number of abstract concepts from diverse disciplines, and assemble these into a larger intellectual framework for the students. Scholarly education research, particularly in individual science disciplines, has provided significant advances in teaching core subject material by breaking away from traditional lecturing. Thus far, however,little work has applied these results to introductory nuclear power classes. This paper explores a method of engaging introductory nuclear students deeply by using a combination of Socratic and mastery methods of teaching. Students develop conceptual understanding of the material through the group work and the use of diverse resources, including textbooks, online references, and computer models that encourage free exploration of these concepts. Marks have improved considerably, and students engage with the material at a significantly deeper level than in previous lecture-based iterations of this course. (author)

  4. Research-based approaches to nuclear education

    International Nuclear Information System (INIS)

    Donev, J.M.K.C.; Carpenter, Y.

    2014-01-01

    Teaching nuclear power requires an expert to communicate a significant number of abstract concepts from diverse disciplines, and assemble these into a larger intellectual framework for the students. Scholarly education research, particularly in individual science disciplines, has provided significant advances in teaching core subject material by breaking away from traditional lecturing. Thus far, however,little work has applied these results to introductory nuclear power classes. This paper explores a method of engaging introductory nuclear students deeply by using a combination of Socratic and mastery methods of teaching. Students develop conceptual understanding of the material through the group work and the use of diverse resources, including textbooks, online references, and computer models that encourage free exploration of these concepts. Marks have improved considerably, and students engage with the material at a significantly deeper level than in previous lecture-based iterations of this course. (author)

  5. The STEM Lecture Hall: A Study of Effective Instructional Practices for Diverse Learners

    Science.gov (United States)

    Reimer, Lynn Christine

    First-generation, low-income, underrepresented minority (URM) and female undergraduates are matriculating into science, technology, engineering, and math (STEM) majors at unprecedented levels. However, a disproportionate number of these students end up graduating in non-STEM disciplines. Attrition rates have been observed to spike in conjunction with introductory STEM courses in chemistry, biology, and physics. These "gateway" courses tend to be housed in large, impersonal lecture halls. First-generation and URM students struggle in this environment, possibly because of instructors' reliance on lecture-based content delivery and rote memorization. Recent social psychological studies suggest the problem may be related to cultural mismatch, or misalignment between independent learning norms typical of American universities and interdependent learning expectancies for first-generation and URM students. Value-affirming and utility-value interventions yield impressive academic achievement gains for these students. These findings overlap with a second body of literature on culturally responsive instruction. Active gateway learning practices that emphasize interactive instruction, frequent assessment, and epistemological instruction can be successful because of their propensity to incorporate values affirming and utility-value techniques. The present study observed instruction for gateway STEM courses over a three-year period at the University of California, Irvine (N = 13,856 undergraduates in 168 courses). Exploratory polychoric factor analysis was used to identify latent variables for observational data on gateway STEM instructional practices. Variables were regressed on institutional student data. Practices implemented in large lecture halls fall into three general categories: Faculty-Student Interaction, Epistemological Instruction, and Peer Interaction . The present study found that Faculty-Student Interaction was negatively associated with student outcomes for

  6. Examining the Delivery Modes of Metacognitive Awareness and Active Reading Lessons in a College Nonmajors Introductory Biology Course

    Directory of Open Access Journals (Sweden)

    Kendra M. Hill

    2014-02-01

    Full Text Available Current research supports the role of metacognitive strategies to enhance reading comprehension. This study measured the effectiveness of online versus face-to-face metacognitive and active reading skills lessons introduced by Biology faculty to college students in a non-majors introductory biology course. These lessons were delivered in two lectures either online (Group 1: N = 154 or face-to-face (Group 2: N = 152. Previously validated pre- and post-surveys were used to collect and compare data by paired and independent t-test analysis (α = 0.05. Pre- and post-survey data showed a statistically significant improvement in both groups in metacognitive awareness (p = 0.001, p = 0.003, respectively and reading comprehension (p < 0.001 for both groups. When comparing the delivery mode of these lessons, no difference was detected between the online and face-to-face instruction for metacognitive awareness (pre- p = 0.619, post- p = 0.885. For reading comprehension, no difference in gains was demonstrated between online and face-to-face (p = 0.381, however, differences in pre- and post- test scores was measured (pre- p = 0.005, post- p = 0.038. This study suggests that biology instructors can easily introduce effective metacognitive awareness and active reading lessons into their course, either through online or face-to-face instruction.

  7. From F = ma to flying squirrels: curricular change in an introductory physics course.

    Science.gov (United States)

    O'Shea, Brian; Terry, Laura; Benenson, Walter

    2013-06-01

    We present outcomes from curricular changes made to an introductory calculus-based physics course whose audience is primarily life sciences majors, the majority of whom plan to pursue postbaccalaureate studies in medical and scientific fields. During the 2011-2012 academic year, we implemented a Physics of the Life Sciences curriculum centered on a draft textbook that takes a novel approach to teaching physics to life sciences majors. In addition, substantial revisions were made to the homework and hands-on components of the course to emphasize the relationship between physics and the life sciences and to help the students learn to apply physical intuition to life sciences-oriented problems. Student learning and attitudinal outcomes were assessed both quantitatively, using standard physics education research instruments, and qualitatively, using student surveys and a series of postsemester interviews. Students experienced high conceptual learning gains, comparable to other active learning-based physics courses. Qualitatively, a substantial fraction of interviewed students reported an increased interest in physics relative to the beginning of the semester. Furthermore, more than half of students self-reported that they could now relate physics topics to their majors and future careers, with interviewed subjects demonstrating a high level of ability to come up with examples of how physics affects living organisms and how it helped them to better understand content presented in courses in their major.

  8. Assessing expertise in introductory physics using categorization task

    Directory of Open Access Journals (Sweden)

    Andrew Mason

    2011-10-01

    Full Text Available The ability to categorize problems based upon underlying principles, rather than surface features or contexts, is considered one of several proxy predictors of expertise in problem solving. With inspiration from the classic study by Chi, Feltovich, and Glaser, we assess the distribution of expertise among introductory physics students by asking three introductory physics classes, each with more than a hundred students, to categorize mechanics problems based upon similarity of solution. We compare their categorization with those of physics graduate students and faculty members. To evaluate the effect of problem context on students’ ability to categorize, two sets of problems were developed for categorization. Some problems in one set included those available from the prior study by Chi et al. We find a large overlap between calculus-based introductory students and graduate students with regard to their categorizations that were assessed as “good.” Our findings, which contrast with those of Chi et al., suggest that there is a wide distribution of expertise in mechanics among introductory and graduate students. Although the categorization task is conceptual, introductory students in the calculus-based course performed better than those in the algebra-based course. Qualitative trends in categorization of problems are similar between the non-Chi problems and problems available from the Chi study used in our study although the Chi problems used are more difficult on average.

  9. A retrospective look at replacing face-to-face embryology instruction with online lectures in a human anatomy course.

    Science.gov (United States)

    Beale, Elmus G; Tarwater, Patrick M; Lee, Vaughan H

    2014-01-01

    Embryology is integrated into the Clinically Oriented Anatomy course at the Texas Tech University Health Sciences Center School of Medicine. Before 2008, the same instructor presented embryology in 13 face-to-face lectures distributed by organ systems throughout the course. For the 2008 and 2009 offerings of the course, a hybrid embryology instruction model with four face-to-face classes that supplemented online recorded lectures was used. One instructor delivered the lectures face-to-face in 2007 and by online videos in 2008-2009, while a second instructor provided the supplemental face-to-face classes in 2008-2009. The same embryology learning objectives and selected examination questions were used for each of the three years. This allowed direct comparison of learning outcomes, as measured by examination performance, for students receiving only face-to-face embryology instruction versus the hybrid approach. Comparison of the face-to-face lectures to the hybrid approach showed no difference in overall class performance on embryology questions that were used all three years. Moreover, there was no differential effect of the delivery method on the examination scores for bottom quartile students. Students completed an end-of-course survey to assess their opinions. They rated the two forms of delivery similarly on a six-point Likert scale and reported that face-to-face lectures have the advantage of allowing them to interact with the instructor, whereas online lectures could be paused, replayed, and viewed at any time. These experiences suggest the need for well-designed prospective studies to determine whether online lectures can be used to enhance the efficacy of embryology instruction. © 2013 American Association of Anatomists.

  10. The Memorability of Introductory Psychology Revisited

    Science.gov (United States)

    Landrum, R. Eric; Gurung, Regan A. R.

    2013-01-01

    Almost 2 million students enroll in introductory psychology each year in the United States, making it the second most popular undergraduate course in the nation. Introductory psychology not only serves as a prerequisite for other courses in the discipline but for some students this course provides their only exposure to psychological science.…

  11. Effects of Guided Inquiry versus Lecture Instruction on Final Grade Distribution in a One-Semester Organic and Biochemistry Course

    Science.gov (United States)

    Conway, Colleen J.

    2014-01-01

    A comprehensive guided-inquiry approach was used in a combined organic and biochemistry course for prenursing and predietetics students rather than lecture. To assess its effectiveness, exam grades and final course grades of students in three instructional techniques were compared. The three groups were the following: (i) lecture only, (ii)…

  12. The Impact of Lecture Capture on Student Performance in Business Courses

    Science.gov (United States)

    Terry, Neil; Macy, Anne; Clark, Robin; Sanders, Gary

    2015-01-01

    This paper examines the effect of the e-learning technology of lecture capture on the performance of undergraduate business students in business law, economics, finance, and management courses. The sample consists of 890 student observations at a midsized regional institution located in the Southwestern region of the United States. The dependent…

  13. Off to the (Earthworm) Races: A Quick and Flexible Lab Experiment for Introductory Zoology Courses.

    Science.gov (United States)

    Switzer, Paul V.; Fritz, Ann H.

    2001-01-01

    Presents a hands-on, investigative lab activity for use in an introductory zoology course. Tests the behavioral hypothesis that substrate texture affects earthworm locomotor ability. Provides background information on earthworm locomotion followed by details of the lab exercise. (NB)

  14. Piloting case-based instruction in a didactic clinical immunology course.

    Science.gov (United States)

    Hoag, Kathleen; Lillie, Janet; Hoppe, Ruth

    2005-01-01

    To assess (1) the effect of case-based instructional modules on student critical thinking, class attendance, and satisfaction and (2) student opinion of case formats. University-based upper division course in clinical immunology and serology. The course was taught by the same instructor for two consecutive semesters with the intervention introduced in the second semester. Sixty-seven students experienced the intervention and 56 students were in the baseline cohort. Nine cases were interspersed between lectures during the semester. Each case took one 50-minute class in which students worked in groups of five or six. Student performance on five critical thinking multiple-choice examination questions and percent student attendance on case days versus lecture days were analyzed using the Mann-Whitney test. Student ratings on course evaluations were analyzed using t-test comparing semesters with and without intervention. Student opinion of cases was obtained through surveys and a focus group. Student performance on critical thinking exam questions was similar in the two groups. Student attendance was significantly higher on case days (95.6%) versus lecture days (80.3%; p student-instructor interaction, and course organization were significantly improved in the semester with cases compared to the semester with lecture only (p student performance on critical thinking questions, they still proved to be a valuable instructional method. Student attendance, student-instructor interaction, and instructor involvement in the course were all positively affected by incorporation of case studies. Discussion of cases also helped to uncover student misconceptions of course material.

  15. Comparison of the Medical Students' Attitudes Toward Problem­Based and Lecture-Based Learning in a Course of Basic Immunology

    Directory of Open Access Journals (Sweden)

    Davoud YadegariNia

    2003-01-01

    Full Text Available Background According to the available evidence, problem-based learning (PBL is one of the most successful methods in achieving higher educational objectives. In this method, the discussion about the subjects that should be taught to the students is based on a real clinical case. Various advantages and disadvantages of this method have been addressed in different studies, but the students' attitude toward this method is vita/for its success. Objective To evaluate the students• altitude toward problem- based learning and to compare it with lecture-based learning. Method In this experimental study, two topics of basic immunology were chosen after holding coordination meetings. The students were divided randomly into two groups. Group A received PBL for the first and LBL for the second topic, and group B had LBL for the first and PBL for the second topic. After the last session, a questionnaire was given to the students. Results The students considered PBL as superior in view of the student's active role in education. According to the students' opinion, group working was more evident in PBL. Although they preferred LBL to be used in a complete immunology course, they suggested that PBL is good to be used in some of the sessions. They suggested that although the learner's role is more evident in PBL, the instructor's role is still significant. They believed that self-assessment is better and easier in PBL. Discussion According to the results it is clear that, at least in some aspects, the students' attitude toward PBL is positive. This shows that by considering these aspects in educational reform programs, and by further study on the items not definitely determined in this research, we could modify PBL so that it could be used in a broader level. Key Words: problem-based learning, lecture-based learning, Attitude

  16. Lectures Abandoned: Active Learning by Active Seminars

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Corry, Aino Vonge

    2012-01-01

    Traditional lecture-based courses are widely criticised for be- ing less eective in teaching. The question is of course what should replace the lectures and various active learning tech- niques have been suggested and studied. In this paper, we report on our experiences of redesigning a software ......- tive seminars as a replacement of traditional lectures, an activity template for the contents of active seminars, an ac- count on how storytelling supported the seminars, as well as reports on our and the students' experiences....

  17. The use of Multiple Representations to Enhance Student Mental Model Development of a Complex Earth System in an Introductory Geoscience Course

    Science.gov (United States)

    Sell, K. S.; Heather, M. R.; Herbert, B. E.

    2004-12-01

    Exposing earth system science (ESS) concepts into introductory geoscience courses may present new and unique cognitive learning issues for students including understanding the role of positive and negative feedbacks in system responses to perturbations, spatial heterogeneity, and temporal dynamics, especially when systems exhibit complex behavior. Implicit learning goals of typical introductory undergraduate geoscience courses are more focused on building skill-sets and didactic knowledge in learners than developing a deeper understanding of the dynamics and processes of complex earth systems through authentic inquiry. Didactic teaching coupled with summative assessment of factual knowledge tends to limit student¡¦s understanding of the nature of science, their belief in the relevancy of science to their lives, and encourages memorization and regurgitation; this is especially true among the non-science majors who compose the majority of students in introductory courses within the large university setting. Students organize scientific knowledge and reason about earth systems by manipulating internally constructed mental models. This pilot study focuses on characterizing the impact of inquiry-based learning with multiple representations to foster critical thinking and mental model development about authentic environmental issues of coastal systems in an introductory geoscience course. The research was conducted in nine introductory physical geology laboratory sections (N ˜ 150) at Texas A&M University as part of research connected with the Information Technology in Science (ITS) Center. Participants were randomly placed into experimental and control groups. Experimental groups were exposed to multiple representations including both web-based learning materials (i.e. technology-supported visualizations and analysis of multiple datasets) and physical models, whereas control groups were provided with the traditional ¡workbook style¡" laboratory assignments

  18. Survey compare team based learning and lecture teaching method, on learning-teaching process nursing student\\'s, in Surgical and Internal Diseases course

    Directory of Open Access Journals (Sweden)

    AA Vaezi

    2015-12-01

    Full Text Available Introduction: The effect of teaching methods on learning process of students will help teachers to improve the quality of teaching by selecting an appropriate method. This study aimed to compare the team- based learning and lecture teaching method on learning-teaching process of nursing students in surgical and internal diseases courses. Method: This quasi-experimental study was carried on the nursing students in the School of Nursing and Midwifery in Yazd and Meybod cities. Studied sample was all of the students in the sixth term in the Faculty of Nursing in Yazd (48 persons and the Faculty of Nursing in Meybod (28 persons. The rate of students' learning through lecture was measured using MCQ tests and teaching based on team-based learning (TBL method was run using MCQ tests (IRAT, GRAT, Appeals and Task group. Therefore, in order to examine the students' satisfaction about the TBL method, a 5-point Likert scale (translated questionnaire (1=completely disagree, 2= disagree, 3=not effective, 4=agree, and 5=completely agree consisted of 22 items was utilized. The reliability and validity of this translated questionnaire was measured. The collected data were analyzed through SPSS 17.0 using descriptive and analytical statistic. Result: The results showed that the mean scores in team-based learning were meaningful in individual assessment (17±84 and assessment group (17.2±1.17. The mean of overall scores in TBL method (17.84±0.98% was higher compared with the lecture teaching method (16±2.31. Most of the students believed that TBL method has improved their interpersonal and group interaction skills (100%. Among them, 97.7% of students mentioned that this method (TBL helped them to understand the course content better. The lowest levels of the satisfaction have related to the continuous learning during lifelong (51.2%. Conclusion: The results of the present study showed that the TBL method led to improving the communication skills, understanding

  19. A Comparison of Online, Video Synchronous, and Traditional Learning Modes for an Introductory Undergraduate Physics Course

    Science.gov (United States)

    Faulconer, E. K.; Griffith, J.; Wood, B.; Acharyya, S.; Roberts, D.

    2018-05-01

    While the equivalence between online and traditional classrooms has been well-researched, very little of this includes college-level introductory Physics. Only one study explored Physics at the whole-class level rather than specific course components such as a single lab or a homework platform. In this work, we compared the failure rate, grade distribution, and withdrawal rates in an introductory undergraduate Physics course across several learning modes including traditional face-to-face instruction, synchronous video instruction, and online classes. Statistically significant differences were found for student failure rates, grade distribution, and withdrawal rates but yielded small effect sizes. Post-hoc pair-wise test was run to determine differences between learning modes. Online students had a significantly lower failure rate than students who took the class via synchronous video classroom. While statistically significant differences were found for grade distributions, the pair-wise comparison yielded no statistically significance differences between learning modes when using the more conservative Bonferroni correction in post-hoc testing. Finally, in this study, student withdrawal rates were lowest for students who took the class in person (in-person classroom and synchronous video classroom) than online. Students that persist in an online introductory Physics class are more likely to achieve an A than in other modes. However, the withdrawal rate is higher from online Physics courses. Further research is warranted to better understand the reasons for higher withdrawal rates in online courses. Finding the root cause to help eliminate differences in student performance across learning modes should remain a high priority for education researchers and the education community as a whole.

  20. Assessment of Student Learning Associated with Tree Thinking in an Undergraduate Introductory Organismal Biology Course

    Science.gov (United States)

    Smith, James J.; Cheruvelil, Kendra Spence; Auvenshine, Stacie

    2013-01-01

    Phylogenetic trees provide visual representations of ancestor-descendant relationships, a core concept of evolutionary theory. We introduced "tree thinking" into our introductory organismal biology course (freshman/sophomore majors) to help teach organismal diversity within an evolutionary framework. Our instructional strategy consisted…

  1. Cultivating the Capacity for Formal Reasoning: Objectives and Procedures in an Introductory Physical Science Course

    Science.gov (United States)

    Arons, A. B.

    1976-01-01

    Describes special factors and procedures which are utilized in an introductory physical science course for nonscience majors. It is designed to enable students who are at a concrete or transitional stage to attain the formal operational level of development. (Author/SL)

  2. Crossing the Threshold in Introductory Women's and Gender Studies Courses: An Assessment of Student Learning

    Science.gov (United States)

    Hassel, Holly; Launius, Christie

    2017-01-01

    This article reports on a scholarship of teaching and learning (SoTL) project in the introductory women's and gender studies course, occasioned by a curricular redesign to focus the course on four threshold concepts within the field: the social construction of gender, privilege and oppression, intersectionality, and feminist praxis. The authors…

  3. Multimedia's Effect on College Students' Quantitative Mental Effort Scores and Qualitative Extraneous Cognitive Load Responses in a Food Science and Human Nutrition Course

    Science.gov (United States)

    Andrade, Jeanette; Huang, Wen-Hao David; Bohn, Dawn M.

    2014-01-01

    Effective use of multimedia (MM) in instructional design is critical for student learning, especially for large lecture introductory courses. This study used a mixed-method approach to explore the effect of food science supporting course materials that utilized different MM formats, designed with Cognitive Theory of Multimedia Learning (CTML)…

  4. Teaching Introductory Geoscience: A Cutting Edge Workshop Report

    Science.gov (United States)

    Manduca, C.; Tewksbury, B.; Egger, A.; MacDonald, H.; Kirk, K.

    2008-12-01

    Introductory undergraduate courses play a pivotal role in the geosciences. They serve as recruiting grounds for majors and future professionals, provide relevant experiences in geoscience for pre-service teachers, and offer opportunities to influence future policy makers, business people, professionals, and citizens. An introductory course is also typically the only course in geoscience that most of our students will ever take. Because the role of introductory courses is pivotal in geoscience education, a workshop on Teaching Introductory Courses in the 21st Century was held in July 2008 as part of the On the Cutting Edge faculty development program. A website was also developed in conjunction with the workshop. One of the central themes of the workshop was the importance of considering the long-term impact a course should have on students. Ideally, courses can be designed with this impact in mind. Approaches include using the local geology to focus the course and illustrate concepts; designing a course for particular audience (such as Geology for Engineers); creating course features that help students understand and interpret geoscience in the news; and developing capstone projects to teach critical thinking and problem solving skills in a geologic context. Workshop participants also explored strategies for designing engaging activities including exploring with Google Earth, using real-world scenarios, connecting with popular media, or making use of campus features on local field trips. In addition, introductory courses can emphasize broad skills such as teaching the process of science, using quantitative reasoning and developing communication skills. Materials from the workshop as well as descriptions of more than 150 introductory courses and 350 introductory-level activities are available on the website: http://serc.carleton.edu/NAGTWorkshops/intro/index.html.

  5. Assessing the Effectiveness of Studio Physics in Introductory-Level Courses at Georgia State University

    Science.gov (United States)

    Upton, Brianna; Evans, John; Morrow, Cherilynn; Thoms, Brian

    2009-11-01

    Previous studies have shown that many students have misconceptions about basic concepts in physics. Moreover, it has been concluded that one of the challenges lies in the teaching methodology. To address this, Georgia State University has begun teaching studio algebra-based physics. Although many institutions have implemented studio physics, most have done so in calculus-based sequences. The effectiveness of the studio approach in an algebra-based introductory physics course needs further investigation. A 3-semester study assessing the effectiveness of studio physics in an algebra-based physics sequence has been performed. This study compares the results of student pre- and post-tests using the Force Concept Inventory. Using the results from this assessment tool, we will discuss the effectiveness of the studio approach to teaching physics at GSU.

  6. Opportunities for learning in an introductory undergraduate human anatomy and physiology course

    Science.gov (United States)

    Montplaisir, Lisa Marie

    2003-10-01

    The purpose of this study was to explore the course conditions that support the development of meaningful student learning in an introductory undergraduate human anatomy and physiology course. The study was conducted during an 8-week summer-session at a small mid-western university. Classroom observations and taped recordings of class sessions were used to determine content episodes within the instructional unit, opportunities for learning created by the instructor, demonstrations of information processing by the students, and the ways in which the instructor used the Personal Response System (PRS). Student interviews were used to determine students' level of understanding of pre-test and post-test items. Student interviews and a questionnaire were used to determine students' perceptions of the PRS as a learning tool. Findings reveal that the instructor had different expectations of students when posing verbal questions in-class than he had when posing PRS questions. The use of verbal questions did not permit demonstrations of student understanding; however, the use of the PRS did result in demonstrations of student understanding. Questions posed via the use of the PRS were categorized according to cognitive level. The cognitive level of the questions increased with time over the instructional unit and within the content episodes. Students demonstrated deeper understanding of the topics after instruction than they did before instruction. Students reported more in-class thinking about the content, more discussion of the content with their neighbors, more regular class attendance, more opportunities for deeper learning, and a general preference for the PRS over traditional lectures. Findings of the study indicate that the instructional decisions about the use of questions influences the opportunities for students to process information and demonstrate their understanding of the content and that students valued these opportunities. A better understanding of the

  7. Analysis of the Impact of Introductory Physics on Engineering Students at Texas A&M University

    Science.gov (United States)

    Perry, Jonathan; Bassichis, William

    Introductory physics forms a major part of the foundational knowledge of engineering majors, independent of discipline and institution. While the content of introductory physics courses is consistent from institution to institution, the manner in which it is taught can vary greatly due to professor, textbook, instructional method, and overall course design. This work attempts to examine variations in student success, as measured by overall academic performance in an engineering major, and matriculation rates, based on the type of introductory physics a student took while enrolled in an engineering degree at Texas A&M University. Specific options for introductory physics at Texas A&M University include two calculus based physics courses, one traditional (UP), and one more mathematically rigorous (DP), transfer credit, and high school (AP or dual) credit. In order to examine the impact of introductory physics on a student's degree progression, data mining analyses are performed on a data set of relatively comprehensive academic records for all students enrolled as an engineering major for a minimum of one academic term. Student data has been collected for years of entering freshman beginning in 1990 and ending in 2010. Correlations will be examined between freshman level courses, including introductory physics, and follow on engineering courses, matriculation rates, and time to graduation.

  8. Comparison between flipped classroom and lecture-based classroom in ophthalmology clerkship

    Science.gov (United States)

    Tang, Fen; Chen, Chuan; Zhu, Yi; Zuo, Chengguo; Zhong, Yimin; Wang, Nan; Zhou, Lijun; Zou, Yuxian; Liang, Dan

    2017-01-01

    ABSTRACT Background: In recent years, the flipped classroom method of teaching has received much attention in health sciences education. However, the application of flipped classrooms in ophthalmology education has not been well investigated. Objective: The goal of this study was to investigate the effectiveness and acceptability of the flipped classroom approach to teaching ophthalmology at the clerkship level. Design: Ninety-five fourth year medical students in an ophthalmology clerkship were randomly divided into two groups. An ocular trauma module was chosen for the content of this study. One group (FG (flipped group), n = 48) participated in flipped classroom instruction and was asked to watch a recorded lecture video and to read study materials before a face-to-face class meeting. They used the in-class time for discussion. The other group (TG (traditional group), n = 47) was assigned to traditional lecture-based instruction. These students attended a didactic lecture and completed assigned homework after the lecture. Feedback questionnaires were collected to compare students’ perspectives on the teaching approach they experienced and to evaluate students’ self-perceived competence and interest in ocular trauma. Pre- and post-tests were performed to assess student learning of the course materials. Results: More students in the FG agreed that the classroom helped to promote their learning motivation, improve their understanding of the course materials, and enhance their communication skill and clinical thinking. However, students in the FG did not show a preference for this method of teaching, and also reported more burden and pressure than those from the TG. Students from the FG performed better on the post test over the ocular trauma-related questions when compared to those from the TG. Conclusions: The flipped classroom approach shows promise in ophthalmology clerkship teaching. However, it has some drawbacks. Further evaluation and modifications

  9. Comparison between flipped classroom and lecture-based classroom in ophthalmology clerkship.

    Science.gov (United States)

    Tang, Fen; Chen, Chuan; Zhu, Yi; Zuo, Chengguo; Zhong, Yimin; Wang, Nan; Zhou, Lijun; Zou, Yuxian; Liang, Dan

    2017-01-01

    In recent years, the flipped classroom method of teaching has received much attention in health sciences education. However, the application of flipped classrooms in ophthalmology education has not been well investigated. The goal of this study was to investigate the effectiveness and acceptability of the flipped classroom approach to teaching ophthalmology at the clerkship level. Ninety-five fourth year medical students in an ophthalmology clerkship were randomly divided into two groups. An ocular trauma module was chosen for the content of this study. One group (FG (flipped group), n = 48) participated in flipped classroom instruction and was asked to watch a recorded lecture video and to read study materials before a face-to-face class meeting. They used the in-class time for discussion. The other group (TG (traditional group), n = 47) was assigned to traditional lecture-based instruction. These students attended a didactic lecture and completed assigned homework after the lecture. Feedback questionnaires were collected to compare students' perspectives on the teaching approach they experienced and to evaluate students' self-perceived competence and interest in ocular trauma. Pre- and post-tests were performed to assess student learning of the course materials. More students in the FG agreed that the classroom helped to promote their learning motivation, improve their understanding of the course materials, and enhance their communication skill and clinical thinking. However, students in the FG did not show a preference for this method of teaching, and also reported more burden and pressure than those from the TG. Students from the FG performed better on the post test over the ocular trauma-related questions when compared to those from the TG. The flipped classroom approach shows promise in ophthalmology clerkship teaching. However, it has some drawbacks. Further evaluation and modifications are required before it can be widely accepted and implemented

  10. A First Assignment to Create Student Buy-In in an Introductory Business Statistics Course

    Science.gov (United States)

    Newfeld, Daria

    2016-01-01

    This paper presents a sample assignment to be administered after the first two weeks of an introductory business focused statistics course in order to promote student buy-in. This assignment integrates graphical displays of data, descriptive statistics and cross-tabulation analysis through the lens of a marketing analysis study. A marketing sample…

  11. An Exploration of Student Attitudes and Satisfaction in a GAISE-Influenced Introductory Statistics Course

    Science.gov (United States)

    Paul, Warren; Cunnington, R. Clare

    2017-01-01

    We used the Survey of Attitudes Toward Statistics to (1) evaluate using presemester data the Students' Attitudes Toward Statistics Model (SATS-M), and (2) test the effect on attitudes of an introductory statistics course redesigned according to the Guidelines for Assessment and Instruction in Statistics Education (GAISE) by examining the change in…

  12. Another Nibble at the Core: Student Learning in a Thematically-Focused Introductory Sociology Course

    Science.gov (United States)

    Howard, Jay R.; Novak, Katherine B.; Cline, Krista M. C.; Scott, Marvin B.

    2014-01-01

    Identifying and assessing core knowledge has been and continues to be a challenge that vexes the discipline of sociology. With the adoption of a thematic approach to courses in the core curriculum at Butler University, faculty teaching Introductory Sociology were presented with the opportunity and challenge of defining the core knowledge and…

  13. Video-based lectures: An emerging paradigm for teaching human anatomy and physiology to student nurses

    OpenAIRE

    Rabab El-Sayed Hassan El-Sayed; Samar El-Hoseiny Abd El-Raouf El-Sayed

    2013-01-01

    Video-based teaching material is a rich and powerful medium being used in computer assisted learning. This paper aimed to assess the learning outcomes and student nurses’ acceptance and satisfaction with the video-based lectures versus the traditional method of teaching human anatomy and physiology courses. Data were collected from 27 students in a Bachelor of Nursing program and experimental control was achieved using an alternating-treatments design. Overall, students experienced 10 lecture...

  14. Feynman Lectures on Gravitation

    International Nuclear Information System (INIS)

    Borcherds, P

    2003-01-01

    In the early 1960s Feynman lectured to physics undergraduates and, with the assistance of his colleagues Leighton and Sands, produced the three-volume classic Feynman Lectures in Physics. These lectures were delivered in the mornings. In the afternoons Feynman was giving postgraduate lectures on gravitation. This book is based on notes compiled by two students on that course: Morinigo and Wagner. Their notes were checked and approved by Feynman and were available at Caltech. They have now been edited by Brian Hatfield and made more widely available. The book has a substantial preface by John Preskill and Kip Thorne, and an introduction entitled 'Quantum Gravity' by Brian Hatfield. You should read these before going on to the lectures themselves. Preskill and Thorne identify three categories of potential readers of this book. 1. Those with a postgraduate training in theoretical physics. 2. 'Readers with a solid undergraduate training in physics'. 3. 'Admirers of Feynman who do not have a strong physics background'. The title of the book is perhaps misleading: readers in category 2 who think that this book is an extension of the Feynman Lectures in Physics may be disappointed. It is not: it is a book aimed mainly at those in category 1. If you want to get to grips with gravitation (and general relativity) then you need to read an introductory text first e.g. General Relativity by I R Kenyon (Oxford: Oxford University Press) or A Unified Grand Tour of Theoretical Physics by Ian D Lawrie (Bristol: IoP). But there is no Royal Road. As pointed out in the preface and in the introduction, the book represents Feynman's thinking about gravitation some 40 years ago: the lecture course was part of his attempts to understand the subject himself, and for readers in all three categories it is this that makes the book one of interest: the opportunity to observe how a great physicist attempts to tackle some of the hardest challenges of physics. However, the book was written 40

  15. Making the Introductory Meteorology Class Relevant in a Minority Serving Community College

    Science.gov (United States)

    Marchese, P. J.; Tremberger, G.; Bluestone, C.

    2008-12-01

    Queensborough Community College (QCC), a constituent campus of the City University of New York (CUNY), has modified the introductory Meteorology Class lecture and lab to include active learning activities and discovery based learning. The modules were developed at QCC and other 4 year colleges and designed to introduce basic physical concepts important in meteorology. The modules consisted of either interactive lecture demonstrations or discovery-based activities. The discovery based activities are intended to have students become familiar with scientific investigation. Students engage in formulating hypotheses, developing and carrying out experiments, and analyzing scientific data. These activities differ from traditional lab experiments in that they avoid "cookbook" procedures and emphasize having the students learn about physical concepts by applying the scientific method. During the interactive lecture demonstrations the instructor describes an experiment/phenomenon that is to be demonstrated in class. Students discuss the phenomenon based on their experiences and make a prediction about the outcome. The class then runs the experiment, makes observations, and compares the expected results to the actual outcome. As a result of these activities students in the introductory Meteorology class scored higher in exams questions measuring conceptual understanding, as well as factual knowledge. Lower scoring students demonstrated the greatest benefit, while the better students had little (or no) changes. All students also had higher self-efficacy scores after the intervention, compared to an unmodified class.

  16. Dualism-Based Design of the Introductory Chinese MOOC "Kit de contact en langue chinoise"

    Science.gov (United States)

    Wang-Szilas, Jue; Bellassen, Joël

    2017-01-01

    This article reviews the existing Chinese language Massive Open Online Courses (MOOCs) and points out three problems in their design: the monism-based teaching method, the non-integration of cultural elements, and the lack of learner-learner interactions. It then presents the design principles of the Introductory Chinese MOOC in an attempt to…

  17. Experimental Course Development in Introductory Economics at Indiana University. The Journal of Economic Education, Special Issue No. 4, Fall 1975.

    Science.gov (United States)

    Saunders, Phillip

    A two part experimental introductory college economics course is described. Data on the combination macroeconomics and microeconomics course have been collected over eight consecutive terms and are presented in nine chapters. Chapter I describes course goals as stimulation of student interest, teaching a few basic economic principles, helping…

  18. Evaluation of medical students of teacher-based and student-based teaching methods in Infectious diseases course.

    Science.gov (United States)

    Ghasemzadeh, I; Aghamolaei, T; Hosseini-Parandar, F

    2015-01-01

    Introduction: In recent years, medical education has changed dramatically and many medical schools in the world have been trying for expand modern training methods. Purpose of the research is to appraise the medical students of teacher-based and student-based teaching methods in Infectious diseases course, in the Medical School of Hormozgan Medical Sciences University. Methods: In this interventional study, a total of 52 medical scholars that used Section in this Infectious diseases course were included. About 50% of this course was presented by a teacher-based teaching method (lecture) and 50% by a student-based teaching method (problem-based learning). The satisfaction of students regarding these methods was assessed by a questionnaire and a test was used to measure their learning. information are examined with using SPSS 19 and paired t-test. Results: The satisfaction of students of student-based teaching method (problem-based learning) was more positive than their satisfaction of teacher-based teaching method (lecture).The mean score of students in teacher-based teaching method was 12.03 (SD=4.08) and in the student-based teaching method it was 15.50 (SD=4.26) and where is a considerable variation among them (p<0.001). Conclusion: The use of the student-based teaching method (problem-based learning) in comparison with the teacher-based teaching method (lecture) to present the Infectious diseases course led to the student satisfaction and provided additional learning opportunities.

  19. A Theme-Based Course: Hydrogen as the Fuel of the Future

    Science.gov (United States)

    Shultz, Mary Jane; Kelly, Matthew; Paritsky, Leonid; Wagner, Julia

    2009-01-01

    A theme-based course focusing on the potential role of hydrogen as a future fuel is described. Numerous topics included in typical introductory courses can be directly related to the issue of hydrogen energy. Beginning topics include Avogadro's number, the mole, atomic mass, gas laws, and the role of electrons in chemical transformations. Reaction…

  20. Sustainability Education in Massive Open Online Courses: A Content Analysis Approach

    Directory of Open Access Journals (Sweden)

    Zehui Zhan

    2015-02-01

    Full Text Available The purpose of this study was to investigate the current status of sustainability education in Massive Open Online Courses (MOOCs. Sample MOOCs were searched for from seven popular platforms and three search engines. After screening, 51 courses were identified as the final sample. Course description, content outlines, reading materials, recommended textbooks and discussion threads were coded to obtain insights into sustainability education learning contents, pedagogical methods, and interaction situations. Results indicated that: (1 Edx and Coursera are platforms that incorporated the most sustainability-related courses, and most instructors were senior academics with the title of professor. American and European countries outperformed other English speaking countries as early birds in sustainability education using MOOCs. The average course length of our MOOC samples is 7.6 weeks, which is much shorter than a typical face-to-face college course; (2 Current MOOCs provided mainly introductory-level courses without prerequisites. Fourteen sustainability-related hot topics and five most popular textbooks were identified; (3 The pedagogical means used most frequently were discussion forums and lecture videos, while pedagogies such as team-based learning were not used to a large extent; (4 Learner interaction flourished in MOOCs, and sub-forums regarding Lecture Reflection, Welcome and Introduction were posted with most threads, replies, and votes. Our findings suggest that the MOOC is an innovative method in sustainability education and research. A variety of information and strategies could be used when preparing sustainability-related MOOCs.

  1. Attitudes and Motivation of Students in an Introductory Technical Graphics Course: A Meta-Analysis Study

    Science.gov (United States)

    Ernst, Jeremy V.; Clark, Aaron C.

    2012-01-01

    Students in introductory engineering graphics courses at North Carolina State University (NCSU) were asked to complete surveys to help educators and administrators understand their attitudes toward learning and their motivation to learn. Analyses of the completed surveys provided the Graphic Communications Program at NCSU with an understanding of…

  2. Can Personalized Nudges Improve Learning in Hybrid Classes? Experimental Evidence from an Introductory Undergraduate Course

    Science.gov (United States)

    O'Connell, Stephen D.; Lang, Guido

    2018-01-01

    A field experiment was conducted to investigate whether personalized e-mail reminders can improve study consistency and learning outcomes in an introductory-level undergraduate course. By randomly assigning whether nearly 300 students would receive occasional e-mail messages encouraging out-of-class study, we find that these reminders increased…

  3. Instructional Strategies for Online Introductory College Physics Based on Learning Styles

    Science.gov (United States)

    Ekwue, Eleazer U.

    2013-01-01

    The practical nature of physics and its reliance on mathematical presentations and problem solving pose a challenge toward presentation of the course in an online environment for effective learning experience. Most first-time introductory college physics students fail to grasp the basic concepts of the course and the problem solving skills if the…

  4. An Integrative Approach to Improving an Introductory Weather & Climate Course and Developing an Allied NASA Earth & Space Science Certificate Program for Pre-service Secondary Teachers (Invited)

    Science.gov (United States)

    Morrow, C. A.; Martin-Hansen, L.; Diem, J.; Elliott, W.

    2009-12-01

    An Atlanta-based partnership made up of leaders in science, education, and Georgia’s state-wide STEM Education Initiative are creating an enduring legacy of climate science education for pre-service and in-service teachers in Georgia as well as for underrepresented high school students who participate in an "Early College" program with Georgia State University (GSU). The core elements of our NASA-funded program are to infuse NASA global climate change resources and best pedagogical practice into a popular 4-credit lecture/lab course called “Introduction to Weather & Climate” (GEOG 1112) at GSU, and to establish a sustainable academic program for pre-service teachers in the College of Education called the NASA Earth & Space Science (ESS) Teacher Certificate. The NASA ESS Certificate will require candidates to accomplish the following as part of (or in addition to) standard degree and licensure requirements: 1. successfully complete a graduate section of “Introduction to Weather and Climate” (GEOG 7112), which requires lesson planning related to course content and engagement with GSU's new CO2 monitoring station whose research-quality data will provide unique hands-on opportunities for Metro Atlanta students and teachers; 2) complete an additional advanced course in climate change (GEOG 6784) plus elective hours in physical science disciplines (e.g. astronomy and physics); 3) serve as a lab teaching assistant for GEOG 1112 and a coach for a cadre of Carver Early College students who are taking the course; 4) make at least one of two teaching practica at a Georgia-based NASA Explorer School; and 5) participate or co-present in a week-long, residential, field-based, Summer Institute in Earth & Space Science intended to increase the interest, knowledge, and ability of in-service secondary science educators to fulfill climate-related standards in Earth Science and Earth Systems Science. We will evaluate, document, and disseminate (to the University System of

  5. News clippings for introductory astronomy

    Science.gov (United States)

    Bobrowsky, Matthew

    1999-09-01

    Most students entering our introductory astronomy course for nonscience majors arrive not merely lacking scientific facts-they also have misconceptions about the nature of science, and many have a handicapping ``science anxiety'' (in addition to math anxiety). So I have added a ``current science'' requirement to our introductory course. Each student must compile a file of five astronomy news articles taken from readily available sources.

  6. Comparison of student confidence and perceptions of biochemistry concepts using a team-based learning versus traditional lecture-based format.

    Science.gov (United States)

    Gryka, Rebecca; Kiersma, Mary E; Frame, Tracy R; Cailor, Stephanie M; Chen, Aleda M H

    To evaluate differences in student confidence and perceptions of biochemistry concepts using a team-based learning (TBL) format versus a traditional lecture-based format at two universities. Two pedagogies (TBL vs lecture-based) were utilized to deliver biochemistry concepts at two universities in a first-professional year, semester-long biochemistry course. A 21-item instrument was created and administered pre-post semester to assess changes in confidence in learning biochemistry concepts using Bandura's Social Cognitive Theory (eight items, 5-point, Likert-type) and changes in student perceptions of biochemistry utilizing the theory of planned behavior (TPB) domains (13 items, 7- point, Likert-type). Wilcoxon signed-rank tests were used to evaluate pre-post changes, and Mann Whitney U tests for differences between universities. All students (N=111) had more confidence in biochemistry concepts post-semester, but TBL students (N=53) were significantly more confident. TBL students also had greater agreement that they are expected to actively engage in science courses post-semester, according to the perceptions of biochemistry subscale. No other differences between lecture and TBL were observed post-semester. Students in a TBL course had greater gains in confidence. Since students often engage in tasks where they feel confident, TBL can be a useful pedagogy to promote student learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Redesigning a Large Lecture Course for Student Engagement: Process and Outcomes

    Directory of Open Access Journals (Sweden)

    Leslie F. Reid

    2012-12-01

    Full Text Available Using an action-research approach, a large-lecture science course (240 students was redesigned to improve student engagement in the areas of active and collaborative learning, faculty-student interaction and level of academic challenge. This was mainly achieved through the addition of a half-semester long group project, which replaced half of the lectures and the final exam. The course redesign did not result in more hours spent on teaching and teaching-related activities (grading, assessment preparation, lecturing, lecture preparation for the instructor – although the redesigned course requires the support of teaching assistants for the project component. Data on students’ perceptions of the modified course and the frequency to which they participated in the engagement activities were collected using the Classroom Survey of Student Engagement (CLASSE. The majority of students reported high levels of engagement in most of the intended areas and were comfortable with the new class design. The CLASSE data also helped identify areas where intended engagement levels were not met. These areas are the focus for future course development and action research questions.Utilisant une approche de type recherche-action, un cours de science offert dans un grand auditorium (240 étudiants a été reconfiguré afin d’amener les étudiants à s’engager davantage dans un apprentissage actif et collaboratif ainsi que dans leur interaction professeur-étudiants et à relever un défi de nature académique. Pour ce faire, la moitié des cours magistraux ainsi que l’examen final ont été remplacés par un projet de groupe. La reconfiguration du cours ne s’est pas traduite par une augmentation des heures d’enseignement ou des activités liées à l’enseignement (notation, préparation des évaluations, exposé magistral, préparation de l’exposé magistral – bien qu’elle ait nécessité le soutien des assistants à l’enseignement pour la

  8. Don't Believe the Gripe! Increasing Course Structure in a Large Non-majors Neuroscience Course.

    Science.gov (United States)

    Nagel, Anastasia; Nicholas, Andrea

    2017-01-01

    Active teaching is increasingly accepted as a better option for higher education STEM courses than traditional lecture-based instruction. However, concerns remain regarding student preferences and the impact of increased course structure on teaching evaluations. Undergraduates in a non-majors neuropharmacology course were enrolled in an enriched blended course format, providing online case-based learning opportunities in a large lecture hall setting. Students working in small assigned groups solved weekly case studies developed to teach basic neuropharmacology concepts. All case study assignments were peer reviewed and content was further reinforced with a weekly online quiz. A comparison of scores on equivalent midterm and final exam questions revealed that students enrolled in the High-Structure course scored better than students from the previous year that took a more traditional Low-Structure lecture-based course. Student performance increased significantly for exam questions that required Bloom's level understanding. When surveyed, students in the High-Structure course reported some regret for the lack of traditional lecture and revealed some disapproval towards the extra work required for active teaching and peer review. Yet, we saw no change in quantitative instructor evaluation between sections, challenging the idea that student resistance towards increased work lowers course evaluation scores. Future instructors using active learning strategies may benefit from revealing to students the value of increased course structure on performance outcomes compared with traditional lecture courses.

  9. Deliberation as Communication Instruction: A Study of a Climate Change Deliberation in an Introductory Biology Course

    Science.gov (United States)

    Drury, Sara A. Mehltretter

    2015-01-01

    The author argues that deliberation is an innovative method for teaching communication skills, particularly group communication, in the undergraduate science, technology, engineering, and math (STEM) curriculum. A case study using a deliberation activity on global climate change in an introductory biology course demonstrates how deliberative…

  10. Transforming Common-Sense Beliefs into Newtonian Thinking through Just-in-Time Teaching

    Science.gov (United States)

    Formica, Sarah P.; Easley, Jessica L.; Spraker, Mark C.

    2010-01-01

    To determine whether teaching an introductory physics course with a traditional lecture style or with Just-in-Time teaching (a student-centered, interactive-engagement style) will help students to better understand Newtonian concepts, such as Newton's Third Law, 222 students in introductory physics courses taught by traditional lecture styles and…

  11. Mathematization in introductory physics

    Science.gov (United States)

    Brahmia, Suzanne M.

    Mathematization is central to STEM disciplines as a cornerstone of the quantitative reasoning that characterizes these fields. Introductory physics is required for most STEM majors in part so that students develop expert-like mathematization. This dissertation describes coordinated research and curriculum development for strengthening mathematization in introductory physics; it blends scholarship in physics and mathematics education in the form of three papers. The first paper explores mathematization in the context of physics, and makes an original contribution to the measurement of physics students' struggle to mathematize. Instructors naturally assume students have a conceptual mastery of algebra before embarking on a college physics course because these students are enrolled in math courses beyond algebra. This paper provides evidence that refutes the validity of this assumption and categorizes some of the barriers students commonly encounter with quantification and representing ideas symbolically. The second paper develops a model of instruction that can help students progress from their starting points to their instructor's desired endpoints. Instructors recognize that the introductory physics course introduces new ideas at an astonishing rate. More than most physicists realize, however, the way that mathematics is used in the course is foreign to a large portion of class. This paper puts forth an instructional model that can move all students toward better quantitative and physical reasoning, despite the substantial variability of those students' initial states. The third paper describes the design and testing of curricular materials that foster mathematical creativity to prepare students to better understand physics reasoning. Few students enter introductory physics with experience generating equations in response to specific challenges involving unfamiliar quantities and units, yet this generative use of mathematics is typical of the thinking involved in

  12. Introductory Physics Gender Gaps: Pre- and Post-Studio Transition

    Science.gov (United States)

    Kohl, Patrick B.; Kuo, H. Vincent

    2009-11-01

    Prior work has characterized the gender gaps present in college-level introductory physics courses. Such work has also shown that research-based interactive engagement techniques can reduce or eliminate these gender gaps. In this paper, we study the gender gaps (and lack thereof) in the introductory calculus-based electricity and magnetism course at the Colorado School of Mines. We present eight semesters' worth of data, totaling 2577 students, with four semesters preceding a transition to Studio physics, and four following. We examine gender gaps in course grades, DFW (D grade, fail, or withdrawal) rates, and normalized gains on the Conceptual Survey of Electricity and Magnetism (CSEM), and consider factors such as student ACT scores and grades in prior math classes. We find little or no gap in male/female course grades and DFW rates, but substantial gaps in CSEM gains that are reduced somewhat by the transition to Studio physics.

  13. An Analysis of Learners in Introductory Astronomy Massive Open Online Courses

    Science.gov (United States)

    Buxner, Sanlyn; Formanek, Martin; Impey, Chris David; Wenger, Matthew

    2016-06-01

    We describe learners enrolled in three iterations of introductory astronomy massive open online courses (MOOCs). These courses are offered through commercial providers and facilitated by an instructional team at the University of Arizona. We describe an ongoing study of those who enroll, engage in, and complete these courses. The course has undergone several revisions, including integrating pedagogical techniques, found to be effective for in-person courses, to increase engagement including peer review, online discussions, and the use of cohorts. In its current version, learners enroll on a continual basis and complete 11 weeks of course content; they watch videos, complete content quizzes, submit writing assignments, complete peer review of other students’ work, and complete online citizen science projects. Tens of thousands of students has signed up for these courses but completion rates are much lower, around 10%. We have collected survey data from over 8,500 of these learners to assess their basic science knowledge, attitudes towards science and technology, motivations for taking the courses, and information about other ways they engage in science related activities. We present information about these learners, including their demographics, motivations, how they use the courses, and what factors lead to increased engagement and completion. Additionally, we present how survey data from these learners compare to 26 years of data we have collected from parallel group of undergraduate non-science major students enrolled in astronomy courses at the University of Arizona. Overall, we find that learners who enroll in the MOOCs have more interest in science and higher basic science knowledge that undergraduates who pay tuition for a similar course. Our work is helping us understand how to better serve learners in MOOCs and bridge more traditional courses with these types of courses.

  14. Analysis of a Student-Centered, Self-Paced Pedagogy Style for Teaching Information Systems Courses

    Directory of Open Access Journals (Sweden)

    Sharon Paranto

    2006-12-01

    Full Text Available The entry-level skills for students enrolling in a college-level information systems course can vary widely. This paper analyzes the impact of a "student-centered" pedagogy model, in which students use a self-paced approach for learning the material in an introductory information systems course, with pre-assigned dates for lectures and for assignment/exam deadlines. This new paradigm was implemented in several sections of an introductory information systems course over a two-semester time span. Under the new model, tutorial-style textbooks were used to help students master the material, all other materials were available online, and all exams were given using a hands-on, task-oriented online testing package, which included a multiple-choice/true-false component to test student understanding of the conceptual portion of the course. An anonymous student survey was used to gain student perceptions of the level of learning that took place under the new paradigm, as well as to measure student satisfaction with the course design, and a pre-/post-test was used to provide a measure of student learning.

  15. Introductory lectures on Chern-Simons theories

    Science.gov (United States)

    Zanelli, Jorge

    2012-02-01

    The Chern-Simons (CS) form evolved from an obstruction in mathematics into an important object in theoretical physics. In fact, the presence of CS terms in physics is more common than one may think. They are found in the studies of anomalies in quantum field theories and as Lagrangians for gauge fields, including gravity and supergravity. They seem to play an important role in high Tc superconductivity and in recently discovered topological insulators. CS forms are also the natural generalization of the minimal coupling between the electromagnetic field and a point charge when the source is not point-like but an extended fundamental object, a membrane. A cursory review of these ideas is presented at an introductory level.

  16. Are Statistics Labs Worth the Effort?--Comparison of Introductory Statistics Courses Using Different Teaching Methods

    Directory of Open Access Journals (Sweden)

    Jose H. Guardiola

    2010-01-01

    Full Text Available This paper compares the academic performance of students in three similar elementary statistics courses taught by the same instructor, but with the lab component differing among the three. One course is traditionally taught without a lab component; the second with a lab component using scenarios and an extensive use of technology, but without explicit coordination between lab and lecture; and the third using a lab component with an extensive use of technology that carefully coordinates the lab with the lecture. Extensive use of technology means, in this context, using Minitab software in the lab section, doing homework and quizzes using MyMathlab ©, and emphasizing interpretation of computer output during lectures. Initially, an online instrument based on Gardner’s multiple intelligences theory, is given to students to try to identify students’ learning styles and intelligence types as covariates. An analysis of covariance is performed in order to compare differences in achievement. In this study there is no attempt to measure difference in student performance across the different treatments. The purpose of this study is to find indications of associations among variables that support the claim that statistics labs could be associated with superior academic achievement in one of these three instructional environments. Also, this study tries to identify individual student characteristics that could be associated with superior academic performance. This study did not find evidence of any individual student characteristics that could be associated with superior achievement. The response variable was computed as percentage of correct answers for the three exams during the semester added together. The results of this study indicate a significant difference across these three different instructional methods, showing significantly higher mean scores for the response variable on students taking the lab component that was carefully coordinated with

  17. A guided problem solving approach for teaching quantum physics in secondary school and physics introductory courses

    Directory of Open Access Journals (Sweden)

    Francisco Savall Alemany

    2017-01-01

    Full Text Available The effectiveness of the problem based teaching on the science learning has been highlighted by the didactic research. This teaching model is characterized by organizing the units around problems and by proposing a research plan to find a solution which requires concepts and models to be introduced in a functional way, as possible solutions to the problem. In this article we present a problem based unit for teaching quantum physics  in  introductory  physics  courses  and  we  analyze  in  detail  the  teaching  strategy  that  we  follow  to build a model to explain the emission and absorption of radiation.

  18. Predicting Student Success in a Major's Introductory Biology Course via Logistic Regression Analysis of Scientific Reasoning Ability and Mathematics Scores

    Science.gov (United States)

    Thompson, E. David; Bowling, Bethany V.; Markle, Ross E.

    2018-02-01

    Studies over the last 30 years have considered various factors related to student success in introductory biology courses. While much of the available literature suggests that the best predictors of success in a college course are prior college grade point average (GPA) and class attendance, faculty often require a valuable predictor of success in those courses wherein the majority of students are in the first semester and have no previous record of college GPA or attendance. In this study, we evaluated the efficacy of the ACT Mathematics subject exam and Lawson's Classroom Test of Scientific Reasoning in predicting success in a major's introductory biology course. A logistic regression was utilized to determine the effectiveness of a combination of scientific reasoning (SR) scores and ACT math (ACT-M) scores to predict student success. In summary, we found that the model—with both SR and ACT-M as significant predictors—could be an effective predictor of student success and thus could potentially be useful in practical decision making for the course, such as directing students to support services at an early point in the semester.

  19. Use of questioning during lectures in a dental hygiene didactic course.

    Science.gov (United States)

    Hessheimer, Heather M; Rogo, Ellen J; Howlett, Bernadette

    2011-08-01

    The purposes of this quasi-experimental, one-group crossover study were to determine the effect of questioning during dental hygiene lectures on low-level and high-level learning and to evaluate student perceptions of questioning. Twenty-three dental hygiene students participated in two control lectures using traditional lecturing methods. The students served as their own controls by next participating in two experimental lectures with questions asked throughout the lecture at both low and high cognitive levels. Student performance was measured with an examination containing low- and high-level questions. The interaction between the group and the level of questions was analyzed using ANOVA, and no statistically significant difference was found. Based on a Likert scale (1 to 6), average ratings for student perceptions were as follows: enjoyment of use, 4.5; understanding the lecture material, 4.74; and questioning effectiveness, 4.35. Student perceptions of questioning were positive; however, this strategy was found to be no more effective than the traditional lecture in promoting retention of information.

  20. Puzzle-based versus traditional lecture: comparing the effects of pedagogy on academic performance in an undergraduate human anatomy and physiology II lab.

    Science.gov (United States)

    Stetzik, Lucas; Deeter, Anthony; Parker, Jamie; Yukech, Christine

    2015-06-23

    A traditional lecture-based pedagogy conveys information and content while lacking sufficient development of critical thinking skills and problem solving. A puzzle-based pedagogy creates a broader contextual framework, and fosters critical thinking as well as logical reasoning skills that can then be used to improve a student's performance on content specific assessments. This paper describes a pedagogical comparison of traditional lecture-based teaching and puzzle-based teaching in a Human Anatomy and Physiology II Lab. Using a single subject/cross-over design half of the students from seven sections of the course were taught using one type of pedagogy for the first half of the semester, and then taught with a different pedagogy for the second half of the semester. The other half of the students were taught the same material but with the order of the pedagogies reversed. Students' performance on quizzes and exams specific to the course, and in-class assignments specific to this study were assessed for: learning outcomes (the ability to form the correct conclusion or recall specific information), and authentic academic performance as described by (Am J Educ 104:280-312, 1996). Our findings suggest a significant improvement in students' performance on standard course specific assessments using a puzzle-based pedagogy versus a traditional lecture-based teaching style. Quiz and test scores for students improved by 2.1 and 0.4% respectively in the puzzle-based pedagogy, versus the traditional lecture-based teaching. Additionally, the assessments of authentic academic performance may only effectively measure a broader conceptual understanding in a limited set of contexts, and not in the context of a Human Anatomy and Physiology II Lab. In conclusion, a puzzle-based pedagogy, when compared to traditional lecture-based teaching, can effectively enhance the performance of students on standard course specific assessments, even when the assessments only test a limited

  1. Improving quantitative skills in introductory geoscience courses at a four-year public institution using online math modules

    Science.gov (United States)

    Gordon, E. S.

    2011-12-01

    Fitchburg State University has a diverse student population comprised largely of students traditionally underrepresented in higher education, including first-generation, low-income, and/or students with disabilities. Approximately half of our incoming students require developmental math coursework, but often enroll in science classes prior to completing those courses. Since our introductory geoscience courses (Oceanography, Meteorology, Geology, Earth Systems Science) do not have prerequisites, many students who take them lack basic math skills, but are taking these courses alongside science majors. In order to provide supplemental math instruction without sacrificing time for content, "The Math You Need, When You Need It (TMYN), a set of online math tutorials placed in a geoscience context, will be implemented in three of our introductory courses (Oceanography, Meteorology, and Earth Systems Science) during Fall, 2011. Students will complete 5-6 modules asynchronously, the topics of which include graphing skills, calculating rates, unit conversions, and rearranging equations. Assessment of quantitative skills will be tracked with students' pre- and post-test results, as well as individual module quiz scores. In addition, student assessment results from Oceanography will be compared to student data from Academic Year 2010-11, during which quantitative skills were evaluated with pre- and post-test questions, but students did not receive online supplemental instruction.

  2. Studio Physics at the Colorado School of Mines: A model for iterative development and assessment

    Science.gov (United States)

    Kohl, Patrick; Kuo, Vincent

    2009-05-01

    The Colorado School of Mines (CSM) has taught its first-semester introductory physics course using a hybrid lecture/Studio Physics format for several years. Based on this previous success, over the past 18 months we have converted the second semester of our traditional calculus-based introductory physics course (Physics II) to a Studio Physics format. In this talk, we describe the recent history of the Physics II course and of Studio at Mines, discuss the PER-based improvements that we are implementing, and characterize our progress via several metrics, including pre/post Conceptual Survey of Electricity and Magnetism (CSEM) scores, Colorado Learning About Science Survey scores (CLASS), failure rates, and exam scores. We also report on recent attempts to involve students in the department's Senior Design program with our course. Our ultimate goal is to construct one possible model for a practical and successful transition from a lecture course to a Studio (or Studio-like) course.

  3. Benefits of Completing Homework for Students with Different Aptitudes in an Introductory Electricity and Magnetism Course

    Science.gov (United States)

    Kontur, F.?J.; de La Harpe, K.; Terry, N.?B.

    2015-01-01

    We examine how student aptitudes impact how much students learn from doing graded online and written homework in an introductory electricity and magnetism course. Our analysis examines the correlation between successful homework completion rates and exam performance as well as how changes in homework completion correlate with changes in exam…

  4. Development and Evaluation of the Tigriopus Course-Based Undergraduate Research Experience: Impacts on Students’ Content Knowledge, Attitudes, and Motivation in a Majors Introductory Biology Course

    Science.gov (United States)

    Olimpo, Jeffrey T.; Fisher, Ginger R.; DeChenne-Peters, Sue Ellen

    2016-01-01

    Within the past decade, course-based undergraduate research experiences (CUREs) have emerged as a viable mechanism to enhance novices’ development of scientific reasoning and process skills in the science, technology, engineering, and mathematics disciplines. Recent evidence within the bioeducation literature suggests that student engagement in such experiences not only increases their appreciation for and interest in scientific research but also enhances their ability to “think like a scientist.” Despite these critical outcomes, few studies have objectively explored CURE versus non-CURE students’ development of content knowledge, attitudes, and motivation in the discipline, particularly among nonvolunteer samples. To address these concerns, we adopted a mixed-methods approach to evaluate the aforementioned outcomes following implementation of a novel CURE in an introductory cell/molecular biology course. Results indicate that CURE participants exhibited more expert-like outcomes on these constructs relative to their non-CURE counterparts, including in those areas related to self-efficacy, self-determination, and problem-solving strategies. Furthermore, analysis of end-of-term survey data suggests that select features of the CURE, such as increased student autonomy and collaboration, mediate student learning and enjoyment. Collectively, this research provides novel insights into the benefits achieved as a result of CURE participation and can be used to guide future development and evaluation of authentic research opportunities. PMID:27909022

  5. Instructors' Support of Student Autonomy in an Introductory Physics Course

    Science.gov (United States)

    Hall, Nicholas; Webb, David

    2014-12-01

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a self-determination theory perspective. A correlational study investigated whether certain aspects of the student experience correlated with how autonomy supportive (versus controlling) students perceived their instructors to be. An autonomy-supportive instructor acknowledges students' perspectives and feelings and provides students with information and opportunities for choice while minimizing external pressures (e.g., incentives or deadlines). It was found that the degree to which students perceived their instructors as autonomy supportive was positively correlated with student interest and enjoyment in learning physics (β =0.31***) and negatively correlated with student anxiety about taking physics (β =-0.23**). It was also positively correlated with how autonomous (versus controlled) students' reasons for studying physics became over the duration of the course (i.e., studying physics more because they wanted to versus had to; β =0.24***). This change in autonomous reasons for studying physics was in turn positively correlated with student performance in the course (β =0.17*). Additionally, the degree to which students perceived their instructors as autonomy supportive was directly correlated with performance for those students entering the course with relatively autonomous reasons for studying physics (β =0.25**). In summary, students who perceived their instructors as more autonomy supportive tended to have a more favorable motivational, affective, and performance experience in the course. The findings of the present study are consistent with experimental studies in other contexts that argue for autonomy-supportive instructor behaviors as the cause of a more favorable student experience.

  6. Hybrid Lecture-Online Format Increases Student Grades in an Undergraduate Exercise Physiology Course at a Large Urban University

    Science.gov (United States)

    McFarlin, Brian K.

    2008-01-01

    Hybrid courses allow students additional exposure to course content that is not possible in a traditional classroom environment. This exposure may lead to an improvement in academic performance. In this report, I describe the transition of a large undergraduate exercise physiology course from a traditional lecture format to a hybrid…

  7. Exploring the experiences of female students in introductory project-based engineering courses at two- and four-year institutions

    Science.gov (United States)

    Swan, Amy K.

    2011-12-01

    at the four-year institution. In the classroom, similarities and differences were related to projects, learning outcomes, language and time, while outside of the classroom they were primarily linked to time and peer support. This study's findings suggest a need for expanded access to experiential learning opportunities and ongoing attention to the role of community colleges in engineering education. Study findings also point toward ways that engineering educators might attend to the intrateam processes identified, and better accommodate the needs of all students in project-based introductory courses.

  8. The experiences of lecturers in African, Asian and European universities in preparing and delivering blended health research methods courses: a qualitative study

    Directory of Open Access Journals (Sweden)

    Myroslava Protsiv

    2016-10-01

    Full Text Available Background: Growing demand for Global Health (GH training and the internationalisation of education requires innovative approaches to training. Blended learning (BL, a form of e-learning combining face-to-face or real-time interaction with computer-assisted learning is a promising approach for increasing GH research capacity in low- to middle-income countries. Implementing BL, however, requires additional skills and efforts from lecturers. This paper explores lecturers’ views and experiences of delivering BL courses within the context of two north–south collaborative research capacity building projects, ARCADE HSSR and ARCADE RSDH. Design: We used a qualitative approach to explore the experiences and perceptions of 11 lecturers involved in designing and delivering BL courses collaboratively across university campuses in four countries (South Africa, Uganda, India and Sweden. Data were collected using interviews in person or via Skype. Inductive qualitative content analysis was used. Results: Participants reported that they felt BL increased access to learning opportunities and made training more flexible and convenient for adult learners, which were major motivations to engage in BL. However, despite eagerness to implement and experiment with BL courses, they lacked capacity and support, and found the task time consuming. They needed to make compromises between course objectives and available technological tools, in the context of poor Internet infrastructure. Conclusions: BL courses have the potential to build bridges between low- and middle-income contexts and between lecturers and students to meet the demand for GH training. Lecturers were very motivated to try these approaches but encountered obstacles in implementing BL courses. Considerable investments are needed to implement BL and support lecturers in delivering courses.

  9. Towards Automated Lecture Capture, Navigation and Delivery System for Web-Lecture on Demand

    OpenAIRE

    Kannan, Rajkumar; Andres, Frederic

    2010-01-01

    Institutions all over the world are continuously exploring ways to use ICT in improving teaching and learning effectiveness. The use of course web pages, discussion groups, bulletin boards, and e-mails have shown considerable impact on teaching and learning in significant ways, across all disciplines. ELearning has emerged as an alternative to traditional classroom-based education and training and web lectures can be a powerful addition to traditional lectures. They can even serve as a main c...

  10. Effectiveness of an e-learning course in evidence-based medicine for foundation (internship) training

    NARCIS (Netherlands)

    Hadley, Julie; Kulier, Regina; Zamora, Javier; Coppus, Sjors Fpj; Weinbrenner, Susanne; Meyerrose, Berrit; Decsi, Tamas; Horvath, Andrea R.; Nagy, Eva; Emparanza, Jose I.; Arvanitis, Theodoros N.; Burls, Amanda; Cabello, Juan B.; Kaczor, Marcin; Zanrei, Gianni; Pierer, Karen; Kunz, Regina; Wilkie, Veronica; Wall, David; Mol, Ben Wj; Khan, Khalid S.

    2010-01-01

    Aim To evaluate the educational effectiveness of a clinically integrated e-learning course for teaching basic evidence-based medicine (EBM) among postgraduate medical trainees compared to a traditional lecture-based course of equivalent content. Methods We conducted a cluster randomized controlled

  11. Learning Statistics at the Farmers Market? A Comparison of Academic Service Learning and Case Studies in an Introductory Statistics Course

    Science.gov (United States)

    Hiedemann, Bridget; Jones, Stacey M.

    2010-01-01

    We compare the effectiveness of academic service learning to that of case studies in an undergraduate introductory business statistics course. Students in six sections of the course were assigned either an academic service learning project (ASL) or business case studies (CS). We examine two learning outcomes: students' performance on the final…

  12. Curriculum renewal: Alignment of introductory pharmacy practice experiences with didactic course content.

    Science.gov (United States)

    Nuffer, Wesley; Botts, Sheila; Franson, Kari; Gilliam, Eric; Knutsen, Randy; Nuffer, Monika; O'Brien, Elizabeth; Saseen, Joseph; Thompson, Megan; Vande Griend, Joseph; Willis, Robert

    2017-11-01

    The University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences (SSPPS) used the opportunity of curriculum renewal to integrate knowledge and skills learned from didactic courses into the introductory pharmacy practice experiences (IPPEs) occurring simultaneously. This paper describes and evaluates the meaningful application of course content into IPPEs, and evaluates the success using qualitative feedback. Students entering the renewed curriculum starting in fall 2012 were provided a list of pharmacy skills and activities from didactic course directors that reinforced course content for that semester. The skills and activities were to be completed during the students' IPPE visits in the community or health systems settings, depending on the program year and semester. Students successfully completed course assignments during their IPPE course program. Not all activities could be completed as designed, and many required modification, including simulated experiences. Feedback from faculty and preceptor members of the school's experiential education committee demonstrated that these activities were valuable and improved learning of course material, but were challenging to implement. A renewed curriculum that mapped course assignments for completion in experiential settings was successfully established, after some modifications. The program was modified at regular intervals to improve the ability of preceptors to complete these activities in their individual practice environment. A balance between the school providing guidance on what activities students should perform and allowing unstructured independent learning with the preceptor is needed for an optimal experience. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Improving the Development of Student's Research Questions and Hypotheses in an Introductory Business Research Methods Course

    Science.gov (United States)

    Strangman, Lauria; Knowles, Elizabeth

    2012-01-01

    In an introductory research methods course, students often develop research questions and hypotheses that are vague or confusing, do not contain measurable concepts, and are too narrow in scope or vision. Because of this, the final research projects often fail to provide useful information or address the overall research problem. A Lesson Study…

  14. How gender and reformed introductory physics impacts student success in advanced physics courses and continuation in the physics major

    Science.gov (United States)

    Rodriguez, Idaykis; Potvin, Geoff; Kramer, Laird H.

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] Active-learning approaches to teaching introductory physics have been found to improve student learning and affective gains on short-term outcomes [S. Freeman et al., Proc. Natl. Acad. Sci. U.S.A. 111, 8410 (2014)]; however, whether or not the benefits of active learning impact women to the same degree as men has been a point of concern [A. Madsen, S. B. McKagan, and E. C. Sayre, Phys. Rev. ST Phys. Educ. Res. 9, 020121 (2013)]. Further, the long-term impacts of active-learning experiences are also understudied. At Florida International University, a Hispanic-majority institution, we have implemented Modeling Instruction (MI) and the Integrated Science Learning Environment (ISLE) in introductory physics classes for the past decade. In this empirical paper, we report on a longitudinal investigation of student performance and persistence in upper level physics courses after having previously experienced MI or ISLE in their introductory physics courses, and disaggregate students by gender. Using survival analysis methods, we find women who declare physics as a major are more likely than men to graduate with a physics degree. Women are also just as likely as men to pass through the upper division courses, with the highest failure risk for both men and women occurring in the first semester of upper-division course taking. These results reinforce the need to expand considerations of performance outcomes to be longitudinal to measure the effectiveness of the entire physics experience.

  15. How gender and reformed introductory physics impacts student success in advanced physics courses and continuation in the physics major

    Directory of Open Access Journals (Sweden)

    Idaykis Rodriguez

    2016-08-01

    Full Text Available [This paper is part of the Focused Collection on Gender in Physics.] Active-learning approaches to teaching introductory physics have been found to improve student learning and affective gains on short-term outcomes [S. Freeman et al., Proc. Natl. Acad. Sci. U.S.A. 111, 8410 (2014]; however, whether or not the benefits of active learning impact women to the same degree as men has been a point of concern [A. Madsen, S. B. McKagan, and E. C. Sayre, Phys. Rev. ST Phys. Educ. Res. 9, 020121 (2013]. Further, the long-term impacts of active-learning experiences are also understudied. At Florida International University, a Hispanic-majority institution, we have implemented Modeling Instruction (MI and the Integrated Science Learning Environment (ISLE in introductory physics classes for the past decade. In this empirical paper, we report on a longitudinal investigation of student performance and persistence in upper level physics courses after having previously experienced MI or ISLE in their introductory physics courses, and disaggregate students by gender. Using survival analysis methods, we find women who declare physics as a major are more likely than men to graduate with a physics degree. Women are also just as likely as men to pass through the upper division courses, with the highest failure risk for both men and women occurring in the first semester of upper-division course taking. These results reinforce the need to expand considerations of performance outcomes to be longitudinal to measure the effectiveness of the entire physics experience.

  16. 'Tech' versus 'talk': a comparison study of two different lecture styles within a Master of Science nurse practitioner course.

    Science.gov (United States)

    Lancaster, Jason W; Wong, Adrian; Roberts, Susan J

    2012-07-01

    Generation Y students have a strong preference for technology that has caused educators to re-evaluate their instructional techniques. Limited published literature exists evaluating the benefits of electronic lecture delivery to students enrolled within nursing degree programs, with no publications to date comparing traditional to blended learning modalities. To retrospectively compare student outcomes, including overall course grade and individual examination scores, between two cohorts of students utilizing two distinctly different methods of lecture delivery, traditional and blended. IRB approval was granted to retrospectively compare student outcomes from fifty-two students enrolled within Northeastern University's Master of Science Nurse Practitioner degree program. A total of 23 students were enrolled in the traditional section taught in 2010 and 29 students were enrolled in the blended section taught in 2011. Student'st-test was used to compare studied outcomes between each section. A p-value of ≤0.05 was considered to be statistically significant. The students enrolled within blended course scored statistically significantly higher than their counterparts within the traditional course for three of the four studied outcomes, including overall course score. This study demonstrates that nursing students enrolled within a more technologically advanced course may have improved performance over students enrolled in courses with traditional lecture styles given their generational preferences for learning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Audio-Tutorial Versus Conventional Lecture-Laboratory Instruction in a University Animal Biology Course.

    Science.gov (United States)

    Rowsey, Robert E.

    The purpose of this study was to analyze two methods of instruction used in an animal biology course. One group of students, the experimental group, was taught using an audio-tutorial program, and another group, the control group, was taught using the conventional lecture-laboratory method. Pretest and posttest data were collected from achievement…

  18. A patient safety course for preclinical medical students.

    Science.gov (United States)

    Shekhter, Ilya; Rosen, Lisa; Sanko, Jill; Everett-Thomas, Ruth; Fitzpatrick, Maureen; Birnbach, David

    2012-12-01

    We developed a course to introduce incoming third-year medical students to the subject of patient safety, to focus their attention on teamwork and communication, and to create an awareness of patient-safe practices that will positively impact their performance as clinicians. The course, held prior to the start of clinical rotations, consisted of lectures, web-based didactic materials, small group activities and simulation exercises, with an emphasis on experiential learning. First, students inspected a 'room of horrors', which is a simulated clinical environment riddled with errors. Second, we used lenticular puzzles in small groups to elicit teamwork behaviours that parallel real-life interactions in health care. Each team was given 8 minutes to complete a 48-piece puzzle, with five pieces removed at random and given to other teams. The salient teaching point of this exercise is that for a team to complete the task, team members must communicate with members of their own team as well as with other teams. Last, simulation scenarios provided a clinical context to reinforce the skills introduced through the puzzle exercise and lectures. The students were split into groups of six or seven members and challenged with two scenarios. Both scenarios focused on a 56-year-old man in respiratory distress. The teams were debriefed on both clinical management and teamwork. The vast majority of the students (93%) agreed that the course improved their patient safety knowledge and skills. The positive response from students to the introductory course is an important step in fostering a culture of patient safety. © Blackwell Publishing Ltd 2012.

  19. Particle in a Box: Software for computer-assisted learning in introductory quantum mechanics courses

    International Nuclear Information System (INIS)

    Magalhaes, A L; Vasconcelos, V P S

    2006-01-01

    Particle in a Box is a non-commercial program which was devised to help students to become familiar with typical quantum phenomena when they are introduced for the first time in a physical-chemistry course. Its name comes from the simple and well-known theoretical model on which it is based. The user can select three distinct potential wells, namely the one dimensional with two infinite walls, the one dimensional with one finite barrier and the two-dimensional infinite potential square box. In order to set the system conditions, the user may enter the values for different physical parameters, including the quantum level, mass of the particle, dimensions of the box and height of the finite potential barrier. Through a clear and attractive output, one can visualize and compare the wavefunctions and their squares for the chosen quantum levels, the corresponding energy diagrams and probabilities of tunnelling. The program was tested as a pedagogical tool in tutorials of an introductory course in atomic and molecular structure. The use of this software in the classroom increased the receptivity of the students to non-intuitive topics such as, for instance, quantization, nodes and tunnelling, which helped to improve their success in the course

  20. Effects of a Case-Based Reasoning System on Student Performance in a Java Programming Course

    Science.gov (United States)

    Schmidt, Cecil

    2007-01-01

    The purpose of this study was to determine if a case-based reasoning tool would improve a student's understanding of the complex concepts in a Java programming course. Subjects for the study were randomly assigned from two sections of an introductory Java programming course. Posttests were used to measure the effects of the case-based reasoning…

  1. CAS - CERN Accelerator School: Specialised course on Magnets

    CERN Document Server

    CAS 2009

    2010-01-01

    These proceedings present the lectures given at the twenty-third specialized course organized by the CERN Accelerator School (CAS), the topic being 'Magnets'. The course was held in Bruges, Belgium, from 16 to 25 June 2009. This is the first time this topic has been selected for a specialized course. Taking into account the number of related applications currently in use in accelerators around the world, but, even more important, the worrying decrease in the corresponding expertise in the different laboratories, it was recognized that such a topic should definitively be incorporated into the CAS series of specialized courses. The specific aim of the course was to introduce the participants to the basics of resistive magnet design and its underlying theoretical concepts. The first part of the school dealt with basic introductory courses such as Maxwell's equations for magnets, beam optics, physics and measurement of magnetic materials, the different types of resistive magnets and their respective performance, ...

  2. Efficacy of Multimedia Learning Modules as Preparation for Lecture-Based Tutorials in Electromagnetism

    Science.gov (United States)

    Moore, James Christopher

    2018-01-01

    We have investigated the efficacy of on-line, multimedia learning modules (MLMs) as preparation for in-class, lecture-based tutorials in electromagnetism in a physics course for natural science majors (biology and marine science). Specifically, we report the results of a multiple-group pre/post-test research design comparing two groups receiving…

  3. Teaching Quantum Mechanics on an Introductory Level.

    Science.gov (United States)

    Muller, Rainer; Wiesner, Hartmut

    2002-01-01

    Presents a new research-based course on quantum mechanics in which the conceptual issues of quantum mechanics are taught at an introductory level. Involves students in the discovery of how quantum phenomena deviate from classical everyday experiences. (Contains 31 references.) (Author/YDS)

  4. Assessing Student Performance and Perceptions in Lecture Capture vs. Face-to-Face Course Delivery

    Science.gov (United States)

    Euzent, Patricia; Martin, Thomas; Moskal, Patrick; Moskal, Patsy

    2011-01-01

    Public universities are currently facing a challenge in determining how to deliver quality instruction in the face of severe fiscal constraints. With recent technological advances, courses streamed over the Internet (i.e., lecture capture) are now becoming common. However, little research has been published that specifically examines student…

  5. The Hunger Project: Exercising Civic Leadership "with" the Community "for" the Common Good in an Introductory Leadership Course

    Science.gov (United States)

    Priest, Kerry L.; Bauer, Tamara; Fine, Leigh E.

    2015-01-01

    Contemporary trends in leadership education emphasize paradigms of learning and educational practices associated with developing responsible citizens, furthering higher education's civic mission. Yet, few introductory leadership courses include an explicit civic component (Johnson & Woodard, 2014). Service-learning is a high-impact practice…

  6. Cloning, Stem Cells, and the Current National Debate: Incorporating Ethics into a Large Introductory Biology Course

    Science.gov (United States)

    Fink, Rachel D.

    2002-01-01

    Discussing the ethical issues involved in topics such as cloning and stem cell research in a large introductory biology course is often difficult. Teachers may be wary of presenting material biased by personal beliefs, and students often feel inhibited speaking about moral issues in a large group. Yet, to ignore what is happening "out there"…

  7. Synthesis of Ibuprofen in the Introductory Organic Laboratory

    Science.gov (United States)

    Kjonaas, Richard A.; Williams, Peggy E.; Counce, David A.; Crawley, Lindsey R.

    2011-01-01

    A method for the synthesis of ibuprofen in introductory organic chemistry laboratory courses is reported. This experiment requires two 3-h lab sessions. All of the reactions and techniques are a standard part of any introductory organic chemistry course. In the first lab session, students reduce p-isobutylacetophenone to an alcohol and then…

  8. Interaction matters: Strategies to promote engaged learning in an online introductory nutrition course.

    Science.gov (United States)

    Banna, Jinan; Grace Lin, Meng-Fen; Stewart, Maria; Fialkowski, Marie K

    2015-06-01

    Fostering interaction in the online classroom is an important consideration in ensuring that students actively create their own knowledge and reach a high level of achievement in science courses. This study focuses on fostering interaction in an online introductory nutrition course offered in a public institution of higher education in Hawai'i, USA. Interactive features included synchronous discussions and polls in scheduled sessions, and social media tools for sharing of information and resources. Qualitative student feedback was solicited regarding the new course features. Findings indicated that students who attended monthly synchronous sessions valued live interaction with peers and the instructor. Issues identified included technical difficulties during synchronous sessions, lack of participation on the part of fellow students in discussion and inability to attend synchronous sessions due to scheduling conflicts. In addition, few students made use of the opportunity to interact via social media. While students indicated that the interactive components of the course were valuable, several areas in which improvement may be made remain. Future studies may explore potential solutions to issues identified with new features to further promote interaction and foster learning in the course. Recommendations for instructors who are interested in offering online science courses in higher education are provided.

  9. Student Perceptions of Team-based Learning vs Traditional Lecture-based Learning.

    Science.gov (United States)

    Frame, Tracy R; Cailor, Stephanie M; Gryka, Rebecca J; Chen, Aleda M; Kiersma, Mary E; Sheppard, Lorin

    2015-05-25

    To evaluate pharmacy student perceptions of team-based learning (TBL) vs traditional lecture-based learning formats. First professional year pharmacy students (N=111) at two universities used TBL in different courses during different semesters (fall vs spring). Students completed a 22-item team perceptions instrument before and after the fall semester. A 14-item teaching style preference instrument was completed at the end of the spring semester. Data were analyzed using Wilcoxon signed rank test and Mann-Whitney U test. Students who experienced TBL in the fall and went back to traditional format in the spring reported improved perceptions of teams and preferred TBL format over a traditional format more than students who experienced a traditional format followed by TBL. Students at both universities agreed that the TBL format assists with critical-thinking, problem-solving, and examination preparation. Students also agreed that teams should consist of individuals with different personalities and learning styles. When building teams, faculty members should consider ways to diversify teams by considering different views, perspectives, and strengths. Offering TBL early in the curriculum prior to traditional lecture-based formats is better received by students, as evidenced by anecdotal reports from students possibly because it allows students time to realize the benefits and assist them in building teamwork-related skills.

  10. Fiscal 2000 coal engineer training project. Report on senior course; 2000 nendo sekitan gijutsusha yosei jigyo jokyu course hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The above-named course consisted of three weeks of lectures and three months of visits to coal mines and harbor facilities and tours to coal consumers such as power stations and steel manufacturing plants. The report has turned out to be an introductory manual on coal mining consisting of coal mining technologies such as coal resource exploration, coal mining, and coal preparation, and the state of Australian coal industry. The manual comprises (1) job training in Japan (attendance at lectures), (2) inspection and training in Japan (coal consumers), (3) intensified lectures at University of New South Wales (coal mining and preparation), (4) current state of Austrian coal industry, (5) inspection tours to Australian coal mines, (6) inspection tours to Australian harbor facilities, and (7) the state of Australian coal mine management. Fifteen intensified lectures were given, including the 'Overview of Australian coal industry' and 'Coal handling and transport.' Nine coal mines were visited in Queensland, and 21 in New South Wales. As for the state of Australian coal mine management, there is a trend toward contract mining but self-mining constitutes the mainstream. (NEDO)

  11. Student Perceptions of Learning Data-Creation and Data-Analysis Skills in an Introductory College-Level Chemistry Course

    Science.gov (United States)

    Glazer, Nirit

    2015-01-01

    This study examines how students perceive their learning of creating and analyzing data in an introductory inquiry chemistry course at a college level that features oral presentations in student-centered discussions. A student Participant Perception Indicator (PPI) survey was administered in order to obtain data on student perceptions with respect…

  12. A comparative study on lecture based versus case based education on teaching general surgery to medical students

    Directory of Open Access Journals (Sweden)

    M. Moazeni Bistegani

    2013-06-01

    Full Text Available Introduction : various methods of teaching have different learning outcomes. Using a combination of teaching and training methods of training may boost education. This study compared lecture based and case based teaching as a combined approach in learning general surgery by medical students. Methods: This study was a quasi-experimental performed on two consecutive groups of 33 and 36 students who were studying general surgery course. The two styles of teaching were lecture-based and real case teaching methods. The final exam included twenty multiple choice questions. The mean scores of each group of students were collected and analyzed accordingly with descriptive tests, Fisher’s test and T-test. Results: The mean final mark of students' who received real case based education was 16.8/20 ± 1.8 and for the lecture group was 12.7± 1.7. There was a significant difference between the two groups (P <0.0001. In both groups, there were significant differences in the mean scores of questions with taxonomy two and three, but not in the questions with taxonomy one. Students' evaluation score of the teacher of the real case group increased by 1.7/20 (8.7% in the case based group compared to the lecture group. Conclusions: Case based teaching of general surgery led to a better outcome and students were more satisfied. It is recommended that case based education of surgery be encouraged.

  13. Designing flexible instructional space for teaching introductory physics with emphasis on inquiry and collaborative active learning

    Science.gov (United States)

    Bykov, Tikhon

    2010-03-01

    In recent years McMurry University's introductory physics curriculum has gone through a series of significant changes to achieve better integration of traditional course components (lecture/lab/discussion) by means of instructional design and technology. A system of flexible curriculum modules with emphasis on inquiry-based teaching and collaborative active learning has been introduced. To unify module elements, a technology suite has been used that consists of Tablet PC's and software applications including Physlets, tablet-adapted personal response system, PASCO data acquisition systems, and MS One-note collaborative writing software. Adoption of the new teaching model resulted in reevaluation of existing instructional spaces. The new teaching space will be created during the renovation of the McMurry Science Building. This space will allow for easy transitions between lecture and laboratory modes. Movable partitions will be used to accommodate student groups of different sizes. The space will be supportive of small peer-group activities with easy-to-reconfigure furniture, multiple white and black board surfaces and multiple projection screens. The new space will be highly flexible to account for different teaching functions, different teaching modes and learning styles.

  14. An overview of curriculum-based course timetabling

    DEFF Research Database (Denmark)

    Bettinelli, Andrea; Cacchiani, Valentina; Roberti, Roberto

    2015-01-01

    In 2007, the Second International Timetabling Competition (ITC-2007) has been organized and a formal definition of the Curriculum-Based Course Timetabling (CB-CTT) problem has been given, by taking into account several real-world constraints and objectives while keeping the problem general. CB......-CTT consists of finding the best weekly assignment of university course lectures to rooms and time periods. A feasible schedule must satisfy a set of hard constraints and must also take into account a set of soft constraints, whose violation produces penalty terms to be minimized in the objective function...

  15. The Positive Influence of Active Learning in a Lecture Hall: An Analysis of Normalised Gain Scores in Introductory Environmental Engineering

    Science.gov (United States)

    Kinoshita, Timothy J.; Knight, David B.; Gibbes, Badin

    2017-01-01

    Burgeoning college enrolments and insufficient funding to higher education have expanded the use of large lecture courses. As this trend continues, it is important to ensure that students can still learn in those challenging learning environments. Within education broadly and undergraduate engineering specifically, active learning pedagogies have…

  16. Sensation Seeking: A Potential Factor Influencing Perceived Risk and Perceived Competence in an Introductory Scuba Diving Course

    Science.gov (United States)

    Morgan, Cass

    2009-01-01

    This study examined the relationship between the sensation-seeking personality trait to changes in perceived risk and perceived competence during an adventure experience. Participants (n = 57) were enrolled in a 14-week introductory scuba diving course offered at a university in eastern North Carolina in 2006. The data was analyzed using a…

  17. Team-Based Learning in a Pipeline Course in Medical Microbiology for Under-Represented Student Populations in Medicine Improves Learning of Microbiology Concepts.

    Science.gov (United States)

    Behling, K C; Murphy, M M; Mitchell-Williams, J; Rogers-McQuade, H; Lopez, O J

    2016-12-01

    As part of an undergraduate pipeline program at our institution for students from underrepresented minorities in medicine backgrounds, we created an intensive four-week medical microbiology course. Team-based learning (TBL) was implemented in this course to enhance student learning of course content. Three different student cohorts participated in the study, and there were no significant differences in their prior academic achievement based on their undergraduate grade point average (GPA) and pre-course examination scores. Teaching techniques included engaged lectures using an audience response system, TBL, and guided self-directed learning. We hypothesized that more active learning exercises, irrespective of the amount of lecture time, would help students master course content. In year 2 as compared with year 1, TBL exercises were decreased from six to three with a concomitant increase in lecture time, while in year 3, TBL exercises were increased from three to six while maintaining the same amount of lecture time as in year 2. As we hypothesized, there was significant ( p < 0.01) improvement in performance on the post-course examination in years 1 and 3 compared with year 2, when only three TBL exercises were used. In contrast to the students' perceptions that more lecture time enhances learning of course content, our findings suggest that active learning strategies, such as TBL, are more effective than engaged lectures in improving student understanding of course content, as measured by post-course examination performance. Introduction of TBL in pipeline program courses may help achieve better student learning outcomes.

  18. Team-Based Learning in a Pipeline Course in Medical Microbiology for Under-Represented Student Populations in Medicine Improves Learning of Microbiology Concepts

    Directory of Open Access Journals (Sweden)

    Kathryn C. Behling

    2016-12-01

    Full Text Available As part of an undergraduate pipeline program at our institution for students from underrepresented minorities in medicine backgrounds, we created an intensive four-week medical microbiology course. Team-based learning (TBL was implemented in this course to enhance student learning of course content. Three different student cohorts participated in the study, and there were no significant differences in their prior academic achievement based on their undergraduate grade point average (GPA and pre-course examination scores. Teaching techniques included engaged lectures using an audience response system, TBL, and guided self-directed learning. We hypothesized that more active learning exercises, irrespective of the amount of lecture time, would help students master course content. In year 2 as compared with year 1, TBL exercises were decreased from six to three with a concomitant increase in lecture time, while in year 3, TBL exercises were increased from three to six while maintaining the same amount of lecture time as in year 2. As we hypothesized, there was significant (p < 0.01 improvement in performance on the post-course examination in years 1 and 3 compared with year 2, when only three TBL exercises were used. In contrast to the students’ perceptions that more lecture time enhances learning of course content, our findings suggest that active learning strategies, such as TBL, are more effective than engaged lectures in improving student understanding of course content, as measured by post-course examination performance. Introduction of TBL in pipeline program courses may help achieve better student learning outcomes.

  19. Plant Growth and Development: An Outline for a Unit Structured Around the Life Cycle of Rapid-Cycling Brassica Rapa.

    Science.gov (United States)

    Becker, Wayne M.

    This outline is intended for use in a unit of 10-12 lectures on plant growth and development at the introductory undergraduate level as part of a course on organismal biology. The series of lecture outlines is structured around the life cycle of rapid-cycling Brassica rapa (RCBr). The unit begins with three introductory lectures on general plant…

  20. Network-based Database Course

    DEFF Research Database (Denmark)

    Nielsen, J.N.; Knudsen, Morten; Nielsen, Jens Frederik Dalsgaard

    A course in database design and implementation has been de- signed, utilizing existing network facilities. The course is an elementary course for students of computer engineering. Its purpose is to give the students a theoretical database knowledge as well as practical experience with design...... and implementation. A tutorial relational database and the students self-designed databases are implemented on the UNIX system of Aalborg University, thus giving the teacher the possibility of live demonstrations in the lecture room, and the students the possibility of interactive learning in their working rooms...

  1. Knowledge and Attitude of Medical Students and Lecturers Toward Evidence-Based Medicine: Evidence from Shiraz

    Directory of Open Access Journals (Sweden)

    Ahmad Ghanizadeh

    2009-02-01

    Full Text Available Background and purpose: The application of diagnostic, therapeutic, and prognostic evidence in day-to-day management of patients has been in constant focus during the last two decades. This study is an attempt to investigate attitude and knowledge of post-graduated medical students and lecturers towards evidence-based medicine (EBM and assess their preferences to clinical practice guidelines.Methods: The designed questionnaire was posted to the randomly selected post-graduated medical students and lecturers of medical department at Shiraz University of Medical Sciences.Results: There were one hundred sixty subjects (60% who answered the questionnaire. Sixty nine percent were male, 46.3% were lecturers, and 53.2% were post-graduated medical students.About 66% of the respondents have heard of the term of EBM. Only 7.8% of the respondents have already attended to a course to learn the skills of EBM and one hundred twenty five (78.1% like to attend a course to learn the skills of EBM. The most common perceived reason for use of EBM was lack of enough motivation.Conclusion: They have not yet integrated the use of EBM into their practices widely. Their knowledge is at a high risk of becoming out of data. Education of EBM should be a hot topic among educationalplanning programmers until it becomes a part of university educational curriculum in Iran.Keywords: POST-GRADUATED MEDICAL STUDENT, LECTURER, KNOWLEDGE, ATTITUDE, EVIDENCE-BASED MEDICINE, IRAN.

  2. Resource-based learning strategies: implications for students and institutions

    Directory of Open Access Journals (Sweden)

    Malcolm Ryan

    1996-12-01

    Full Text Available In its strategic plan, the University of Greenwich envisages a significant shift to resource-based learning (RBL. Enterprise in Higher Education (EHE has funded five pilot RBL projects during the past year, including one in introductory economics. The project was managed by three lecturers in the School of Social Sciences, supported by an Academic Development Officer. Learning outcomes were completely revised, and a range of assessment strategies, including computer-based tests, was identified. A resources guide was produced which identified the materials and activities that would enable students to achieve the learning outcomes. A number of innovations were adopted, including: • computer-based curriculum delivery, assessment, and student evaluation of the course; • an open approach to assessment; • abolishing lectures in favour of a diverse range of teaching and learning activities.

  3. Does Living near Classmates Help Introductory Economics Students Get Better Grades?

    Science.gov (United States)

    Parker, Jeffrey

    2012-01-01

    This article examines whether first-year students in introductory economics courses get better grades if they have other students in their on-campus residential unit who either are taking the same course or have taken the course in the past. The study uses nine years of data for the introductory economics course at Reed College. The author finds…

  4. Facilitating Collaboration in Lecture-Based Learning through Shared Notes Using Wireless Technologies

    Science.gov (United States)

    Valtonen, T.; Havu-Nuutinen, S.; Dillon, P.; Vesisenaho, M.

    2011-01-01

    This paper reports a case study for developing lecture teaching in higher education by connecting simultaneously the benefits of face-to-face teaching and social software for capturing and sharing students' lecture notes. The study was conducted with 12 university students taking a degree course on pre-primary education. Data were collected on (1)…

  5. The Influence of Learning and Teaching Styles on Student Attitudes and Achievement in the Introductory Economics Course: A Case Study.

    Science.gov (United States)

    Wetzel, James N.; And Others

    1982-01-01

    Reports the results of a study that examined the influence of learning and teaching styles on changes in student achievement in economics and attitude toward economics among undergraduates enrolled in an introductory economics course. (AM)

  6. Reply to "Comment on "Benefits of Completing Homework for Students with Different Aptitudes in an Introductory Electricity and Magnetism Course""

    Science.gov (United States)

    Kontur, F. J.; de La Harpe, K.; Terry, N. B.

    2016-01-01

    We reply to Rieger, Reinsberg, and Wieman's forgoing Comment [Phys. Rev. Phys. Educ. Res., Comment on "Benefits of completing homework for students with different aptitudes in an introductory electricity and magnetism course" 12, 028001 (2016)].

  7. Dissociative conceptual and quantitative problem solving outcomes across interactive engagement and traditional format introductory physics

    Directory of Open Access Journals (Sweden)

    Mark A. McDaniel

    2016-11-01

    Full Text Available The existing literature indicates that interactive-engagement (IE based general physics classes improve conceptual learning relative to more traditional lecture-oriented classrooms. Very little research, however, has examined quantitative problem-solving outcomes from IE based relative to traditional lecture-based physics classes. The present study included both pre- and post-course conceptual-learning assessments and a new quantitative physics problem-solving assessment that included three representative conservation of energy problems from a first-semester calculus-based college physics course. Scores for problem translation, plan coherence, solution execution, and evaluation of solution plausibility were extracted for each problem. Over 450 students in three IE-based sections and two traditional lecture sections taught at the same university during the same semester participated. As expected, the IE-based course produced more robust gains on a Force Concept Inventory than did the lecture course. By contrast, when the full sample was considered, gains in quantitative problem solving were significantly greater for lecture than IE-based physics; when students were matched on pre-test scores, there was still no advantage for IE-based physics on gains in quantitative problem solving. Further, the association between performance on the concept inventory and quantitative problem solving was minimal. These results highlight that improved conceptual understanding does not necessarily support improved quantitative physics problem solving, and that the instructional method appears to have less bearing on gains in quantitative problem solving than does the kinds of problems emphasized in the courses and homework and the overlap of these problems to those on the assessment.

  8. Topic Order in Introductory Physics and its Impact on the STEM Curricular Ladder

    Directory of Open Access Journals (Sweden)

    Teresa L Larkin

    2017-02-01

    Full Text Available Introductory physics courses are an important rung on the curricular ladder in STEM. These courses help to strengthen students critical thinking and problem solving skills while simultaneously introducing them to many topics they will explore in more detail in later courses in physics and engineering. For these reasons, introductory physics is a required element on the curricular ladder. Most often, introductory physics is offered as a two-semester sequence with basic mechanics being taught in the first semester and electricity and magnetism in the second. In fact, this curricular sequence has not been altered in decades. Is there a reason for this? There are many other enduring questions that arise pertaining to these foundation courses in physics. These questions include: Does taking the introductory course sequence “out of order” have an impact on student learning in physics? What topics should be taught? When should these topics be taught? What topics could be left out? The list of questions is essentially endless. This paper will address some of these questions in part, through a brief discussion on student learning in a second-semester algebra-based physics course. Connections will also be made to the broader curricular ladder in STEM. To this end, an illustration that makes connections to an engineering statics course will be presented. This discussion will conclude by presenting some broader implications for the larger STEM communities.

  9. Lectures on Chevalley groups

    CERN Document Server

    Steinberg, Robert

    2016-01-01

    Robert Steinberg's Lectures on Chevalley Groups were delivered and written during the author's sabbatical visit to Yale University in the 1967-1968 academic year. The work presents the status of the theory of Chevalley groups as it was in the mid-1960s. Much of this material was instrumental in many areas of mathematics, in particular in the theory of algebraic groups and in the subsequent classification of finite groups. This posthumous edition incorporates additions and corrections prepared by the author during his retirement, including a new introductory chapter. A bibliography and editorial notes have also been added. This is a great unsurpassed introduction to the subject of Chevalley groups that influenced generations of mathematicians. I would recommend it to anybody whose interests include group theory. -Efim Zelmanov, University of California, San Diego Robert Steinberg's lectures on Chevalley groups were given at Yale University in 1967. The notes for the lectures contain a wonderful exposition of ...

  10. Gender gaps in achievement and participation in multiple introductory biology classrooms.

    Science.gov (United States)

    Eddy, Sarah L; Brownell, Sara E; Wenderoth, Mary Pat

    2014-01-01

    Although gender gaps have been a major concern in male-dominated science, technology, engineering, and mathematics disciplines such as physics and engineering, the numerical dominance of female students in biology has supported the assumption that gender disparities do not exist at the undergraduate level in life sciences. Using data from 23 large introductory biology classes for majors, we examine two measures of gender disparity in biology: academic achievement and participation in whole-class discussions. We found that females consistently underperform on exams compared with males with similar overall college grade point averages. In addition, although females on average represent 60% of the students in these courses, their voices make up less than 40% of those heard responding to instructor-posed questions to the class, one of the most common ways of engaging students in large lectures. Based on these data, we propose that, despite numerical dominance of females, gender disparities remain an issue in introductory biology classrooms. For student retention and achievement in biology to be truly merit based, we need to develop strategies to equalize the opportunities for students of different genders to practice the skills they need to excel. © 2014 S. L. Eddy et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Different behavioral patterns of success for men and women in an online introductory science course: Addressing the course grade gender gap

    Science.gov (United States)

    Mead, C.; Horodyskyj, L.; Buxner, S.; Semken, S. C.; Anbar, A. D.

    2016-12-01

    In this study, we explore how data provided by an online learning environment can provide fine-grained behavioral context for the performance gender gap commonly observed in introductory college science courses. Previous studies reported that women earn lower grades than men in such courses, often ascribed to reduced engagement and resilience driven by sociocultural causes, such as stereotype threat. This may be exacerbated in courses graded primarily based on high-stakes exams. Here, we use student data (n = 1121) from Habitable Worlds, an online laboratory science course, to identify behavioral differences between men and women. In Habitable Worlds, students earn points from 30 "trainings," which are scored on completion, and 30 "applications," which are scored on correctness. The lack of high-stakes cumulative exams represents a valuable contrast with typical science courses in which gender gaps have been reported. Our data indicate that a gender gap exists even for these low-stakes assessments. Results of a generalized linear model show that course success among women is much more strongly predicted by training scores than by application scores, while those factors have roughly equal predictive value among men. Predicted success among women is also modulated by the total number of attempts made on questions throughout the course, where more attempts implies lower success (holding other factors constant). This relationship is non-significant for men. Our interpretation of these model results is that obstacles such as stereotype threat represent a tax for women on effort and engagement, such that equivalent effort yields lesser success than for men. Thus, the women who do succeed differ sharply from lower performing women on indicators of effort. Future work should build on this result both as an indicator of conditions under which women are more likely to succeed and as a way to more quickly identify students who may struggle.

  12. A Quantitative Evaluation of the Flipped Classroom in a Large Lecture Principles of Economics Course

    Science.gov (United States)

    Balaban, Rita A.; Gilleskie, Donna B.; Tran, Uyen

    2016-01-01

    This research provides evidence that the flipped classroom instructional format increases student final exam performance, relative to the traditional instructional format, in a large lecture principles of economics course. The authors find that the flipped classroom directly improves performance by 0.2 to 0.7 standardized deviations, depending on…

  13. Unpacking Gender Differences in Students' Perceived Experiences in Introductory Physics

    Science.gov (United States)

    Kost, Lauren E.; Pollock, Steven J.; Finkelstein, Noah D.

    2009-11-01

    Prior research has shown, at our institution: 1) males outperform females on conceptual assessments (a gender gap), 2) the gender gap persists despite the use of research-based reforms, and 3) the gender gap is correlated with students' physics and mathematics background and prior attitudes and beliefs [Kost, et al. PRST-PER, 5, 010101]. Our follow-up work begins to explore how males and females experience the introductory course differently and how these differences relate to the gender gap. We gave a survey to students in the introductory course in which we investigated students' physics identity and self-efficacy. We find there are significant gender differences in each of these three areas, and further find that these measures are weakly correlated with student conceptual performance, and moderately correlated with course grade.

  14. Introductory lectures on fibre bundles and topology for physicists

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.H.

    1978-05-01

    These lectures may provide useful background material for understanding gauge theories, particularly the nonperturbative effects such as instantons and monopoles. The mathematical language of topology and fibre bundles is introduced.

  15. Introductory lectures on fibre bundles and topology for physicists

    International Nuclear Information System (INIS)

    Thomas, G.H.

    1978-05-01

    These lectures may provide useful background material for understanding gauge theories, particularly the nonperturbative effects such as instantons and monopoles. The mathematical language of topology and fibre bundles is introduced

  16. Promoting Student Inquiry Using "Zea Mays" (Corn) Cultivars for Hypothesis-Driven Experimentation in a Majors Introductory Biology Course

    Science.gov (United States)

    Blair, Amy C.; Peters, Brenda J.; Bendixen, Conrad W.

    2014-01-01

    The AAAS Vision and Change report (2011) recommends incorporating student research experiences into the biology curriculum at the undergraduate level. This article describes, in detail, how "Zea mays" (corn) cultivars were used as a model for a hypothesis-driven short-term research project in an introductory biology course at a small…

  17. A Qualitative Evaluation of the Use of Multimedia Case Studies in an Introductory Engineering Course at Two Southeastern Universities

    Science.gov (United States)

    Huett, Kim C.; Kawulich, Barbara

    2015-01-01

    Collaborating at two universities to improve teaching and learning in undergraduate engineering, an interdisciplinary team of researchers, instructors, and evaluators planned and implemented the use of multimedia case studies with students enrolled in an introductory engineering course. This qualitative action evaluation study focuses on results…

  18. Improving students' understanding by using on-going education research to refine active learning activities in a first-year electronics course

    Science.gov (United States)

    Peter Mazzolini, Alexander; Arthur Daniel, Scott

    2016-05-01

    Interactive Lecture Demonstrations (ILDs) have been used across introductory university physics as a successful active learning (AL) strategy to improve students' conceptual understanding. We have developed ILDs for more complex topics in our first-year electronics course. In 2006 we began developing ILDs to improve students' conceptual understanding of Operational Amplifiers (OAs) and negative feedback in amplification circuits. The ILDs were used after traditional lecture instruction to help students consolidate their understanding. We developed a diagnostic test, to be administered to students both before and after the ILDs, as a measure of how effective the ILDs were in improving students' understanding.

  19. An Empirical Consideration of a Balanced Amalgamation of Learning Strategies in Graduate Introductory Statistics Classes

    Science.gov (United States)

    Vaughn, Brandon K.

    2009-01-01

    This study considers the effectiveness of a "balanced amalgamated" approach to teaching graduate level introductory statistics. Although some research stresses replacing traditional lectures with more active learning methods, the approach of this study is to combine effective lecturing with active learning and team projects. The results of this…

  20. CERN TECHNICAL TRAINING 2002: LEARNING FOR THE LHC!

    CERN Multimedia

    Davide Vitè

    2002-01-01

    - FEED-2002 - Analogue and Digital Techniques in Closed Loop Regulation Applications   FEED-2002 is a two-term course, given by CERN engineers in a new format within the framework of the Technical Training Programme. The course will review the techniques dealing with closed loop systems, focussing on time-invariant linear systems. FEED-2002 is composed of two terms, and of an open Introductory Lecture. Attendance to the Introductory Lecture is a prerequisite to the participation to both terms. All sessions will take place on Tuesdays afternoons in the Training Centre Auditorium, from 14h30 to 17h00. The course will be in English, with questions and answers also in French.   Introductory Lecture: AD/DA Conversion Techniques - An Overview Technical Training Seminar, 17 September 2002 (free attendance, no registration required) Lecturer: John Pett, SL-PO Programme: The modern Analogue to Digital (AD) and Digital to Analogue (DA) conversion methods. Digital representations of time-varyi...

  1. CERN TECHNICAL TRAINING 2002: LEARNING FOR THE LHC !

    CERN Multimedia

    Davide Vitè

    2002-01-01

    - FEED-2002 - Analogue and Digital Techniques in Closed Loop Regulation Applications   FEED-2002 is a two-term course, given by CERN engineers in a new format within the framework of the Technical Training Programme. The course will review the techniques dealing with closed loop systems, focussing on time-invariant linear systems. FEED-2002 is composed of two terms, and of an open Introductory Lecture. Attendance to the Introductory Lecture is a prerequisite to the participation to both terms. All sessions will take place on Tuesdays afternoons in the Training Centre Auditorium, from 14h30 to 17h00. The course will be in English, with questions and answers also in French.   Introductory Lecture: AD/DA Conversion Techniques - An Overview Technical Training Seminar, 17 September 2002 (free attendance, no registration required) Lecturer: John Pett, SL-PO Programme: The modern Analogue to Digital (AD) and Digital to Analogue (DA) conversion methods. Digital representations of time-varying, rea...

  2. Integration of problem-based learning and innovative technology into a self-care course.

    Science.gov (United States)

    McFalls, Marsha

    2013-08-12

    To assess the integration of problem-based learning and technology into a self-care course. Problem-based learning (PBL) activities were developed and implemented in place of lectures in a self-care course. Students used technology, such as computer-generated virtual patients and iPads, during the PBL sessions. Students' scores on post-case quizzes were higher than on pre-case quizzes used to assess baseline knowledge. Student satisfaction with problem-based learning and the use of technology in the course remained consistent throughout the semester. Integrating problem-based learning and technology into a self-care course enabled students to become active learners.

  3. An Algebra-Based Introductory Computational Neuroscience Course with Lab.

    Science.gov (United States)

    Fink, Christian G

    2017-01-01

    A course in computational neuroscience has been developed at Ohio Wesleyan University which requires no previous experience with calculus or computer programming, and which exposes students to theoretical models of neural information processing and techniques for analyzing neural data. The exploration of theoretical models of neural processes is conducted in the classroom portion of the course, while data analysis techniques are covered in lab. Students learn to program in MATLAB and are offered the opportunity to conclude the course with a final project in which they explore a topic of their choice within computational neuroscience. Results from a questionnaire administered at the beginning and end of the course indicate significant gains in student facility with core concepts in computational neuroscience, as well as with analysis techniques applied to neural data.

  4. High school and college introductory science education experiences: A study regarding perceptions of university students persisting in science as a major area of study

    Science.gov (United States)

    Fredrick, L. Denise

    The focus of this study was to investigate college students' perception of high school and college introductory science learning experiences related to persistence in science as a major area of study in college. The study included students' perceptions of the following areas of science education: (1) teacher interpersonal relationship with students, (2) teacher personality styles, (3) teacher knowledge of the content, (4) instructional methods, and (5) science course content. A survey research design was employed in the investigative study to collect and analyze data. One hundred ninety two students participated in the research study. A survey instrument entitled Science Education Perception Survey was used to collect data. The researcher sought to reject or support three null hypotheses as related to participants' perceptions of high school and college introductory science education experiences. Using binomial regression analysis, this study analyzed differences between students persisting in science and students not persisting in science as a major. The quantitative research indicated that significant differences exist between persistence in science as a major and high school science teacher traits and college introductory science instructional methods. Although these variables were found to be significant predictors, the percent variance was low and should be considered closely before concluded these as strong predictors of persistence. Major findings of the qualitative component indicated that students perceived that: (a) interest in high school science course content and high school science teacher personality and interpersonal relationships had the greatest effect on students' choice of major area of study; (b) interest in college introductory science course content had the greatest effect on students' choice of major area of study; (c) students recalled laboratory activities and overall good teaching as most meaningful to their high school science

  5. Environmental law. A course of lectures for a cross-disciplinary audience

    International Nuclear Information System (INIS)

    Schulte, H.

    1999-01-01

    Readers interested in getting more insight in the legal framework available for supporting environmental protection policy will find a comprehensive picture of the environmental law applicable in Germany. The format chosen for the book is that of a lecture series, so that the reader is given step-by-step orientation and systematic guidance in approaching the complex material. The positive law and the underlying scientific systems are explained. An introductory part discusses the legal instruments available for enforcement of environmental law, the position of environmental law within the entire legal system of Germany, as well as relevant aspects of the law of the European Union, and international law. The subsequent chapters present an exhaustive survey of the subjects and objectives of German environmental law, as well as the legal practice and the issues involved. The chapters' headings read as follows: Abatement and control of emissions; the structure and functions of the state; administrative powers and action; civil rights and environmental protection; atomic energy law; water protection; waste management; nature conservation; the law on chemicals; the law relating to genetic engineering. The final chapter discusses aspects of environmental liability. (orig./CB) [de

  6. Empowering the crowd: faculty discourse strategies for facilitating student reasoning in large lecture

    Science.gov (United States)

    Demaree, Dedra

    2012-02-01

    Oregon State University (OSU) has restructured its introductory calculus-based sequence including reformed curriculum modeled after the Interactive Science Learning Environment (ISLE). ISLE is driven by an experimental cycle roughly summarized as: observe phenomena, find patterns and devise explanations, test explanations, develop a model, apply the model to new observations. In implementing ISLE at OSU we have chosen to focus on student scientific reasoning, specifically student ability to develop and test models, make explicit judgments on how to approach open-ended tasks, and take an authoritative role in knowledge development. In order to achieve these goals, the lecture course heavily utilizes social engagement. During large-lecture group work, emphasis is placed on facilitating student discourse about issues such as what systems to choose or how to define an open-ended problem. Instructional strategies are aimed at building off the group discourse to create a full-class community where knowledge is developed through collaboration with peers. We are achieving these goals along with an increase in measured student conceptual knowledge and traditional problem solving abilities, and no loss of content coverage. It is an ongoing effort to understand ``best'' instructional strategies and to facilitate new faculty when they teach the curriculum. Our research has focused on understanding how to facilitate activities that promote this form of discourse. We have quantitative analysis of engagement based on video data, qualitative analysis of dialogue from audio data, classroom observations by an external researcher, and survey data. In this session we share a subset of what we have learned about how to engage students in scientific reasoning discourse during large lecture, both at the group-work and full-class level.

  7. Pathways over Time: Functional Genomics Research in an Introductory Laboratory Course.

    Science.gov (United States)

    Reeves, Todd D; Warner, Douglas M; Ludlow, Larry H; O'Connor, Clare M

    2018-01-01

    National reports have called for the introduction of research experiences throughout the undergraduate curriculum, but practical implementation at many institutions faces challenges associated with sustainability, cost, and large student populations. We describe a novel course-based undergraduate research experience (CURE) that introduces introductory-level students to research in functional genomics in a 3-credit, multisection laboratory class. In the Pathways over Time class project, students study the functional conservation of the methionine biosynthetic pathway between divergent yeast species. Over the five semesters described in this study, students ( N = 793) showed statistically significant and sizable growth in content knowledge ( d = 1.85) and in self-reported research methods skills ( d = 0.65), experimental design, oral and written communication, database use, and collaboration. Statistical analyses indicated that content knowledge growth was larger for underrepresented minority students and that growth in content knowledge, but not research skills, varied by course section. Our findings add to the growing body of evidence that CUREs can support the scientific development of large numbers of students with diverse characteristics. The Pathways over Time project is designed to be sustainable and readily adapted to other institutional settings. © 2018 T. D. Reeves et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Lectures on the mathematics of quantum mechanics I

    CERN Document Server

    Dell'Antonio, Gianfausto

    2015-01-01

    The first volume (General Theory) differs from most textbooks as it emphasizes the mathematical structure and mathematical rigor, while being adapted to the teaching the first semester of an advanced course in Quantum Mechanics (the content of the book are the lectures of courses actually delivered.). It differs also from the very few texts in Quantum Mechanics that give emphasis to the mathematical aspects because this book, being written as Lecture Notes, has the structure of lectures delivered in a course, namely introduction of the problem, outline of the relevant points, mathematical tools needed, theorems, proofs. This makes this book particularly useful for self-study and for instructors in the preparation of a second course in Quantum Mechanics (after a first basic course). With some minor additions it can be used also as a basis of a first course in Quantum Mechanics for students in mathematics curricula. The second part (Selected Topics) are lecture notes of a more advanced course aimed at giving th...

  9. Predicting Student Success in a Major's Introductory Biology Course via Logistic Regression Analysis of Scientific Reasoning Ability and Mathematics Scores

    Science.gov (United States)

    Thompson, E. David; Bowling, Bethany V.; Markle, Ross E.

    2018-01-01

    Studies over the last 30 years have considered various factors related to student success in introductory biology courses. While much of the available literature suggests that the best predictors of success in a college course are prior college grade point average (GPA) and class attendance, faculty often require a valuable predictor of success in…

  10. Active Learning Outside the Classroom: Implementation and Outcomes of Peer-Led Team-Learning Workshops in Introductory Biology.

    Science.gov (United States)

    Kudish, Philip; Shores, Robin; McClung, Alex; Smulyan, Lisa; Vallen, Elizabeth A; Siwicki, Kathleen K

    2016-01-01

    Study group meetings (SGMs) are voluntary-attendance peer-led team-learning workshops that supplement introductory biology lectures at a selective liberal arts college. While supporting all students' engagement with lecture material, specific aims are to improve the success of underrepresented minority (URM) students and those with weaker backgrounds in biology. Peer leaders with experience in biology courses and training in science pedagogy facilitate work on faculty-generated challenge problems. During the eight semesters assessed in this study, URM students and those with less preparation attended SGMs with equal or greater frequency than their counterparts. Most agreed that SGMs enhanced their comprehension of biology and ability to articulate solutions. The historical grade gap between URM and non-URM students narrowed slightly in Biology 2, but not in other biology and science, technology, engineering, and mathematics courses. Nonetheless, URM students taking introductory biology after program implementation have graduated with biology majors or minors at the same rates as non-URM students, and have enrolled in postcollege degree programs at equal or greater rates. These results suggest that improved performance as measured by science grade point average may not be necessary to improve the persistence of students from underrepresented groups as life sciences majors. © 2016 P. Kudish et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Using the Quantitative Literacy and Reasoning Assessment (QLRA for Early Detection of Students in Need of Academic Support in Introductory Courses in a Quantitative Discipline: A Case Study

    Directory of Open Access Journals (Sweden)

    Nathan Grawe

    2018-01-01

    Full Text Available As the number of young people attending college has increased, the diversity of college students� educational backgrounds has also risen. Some students enter introductory courses with math anxiety or gaps in their quantitative training that impede their ability to master or even grasp relevant disciplinary content. Too often professors learn of these anxieties and gaps only during the post mortem of the first midterm. By that time, a good portion of a student�s grade is determined and successful recovery may be impossible. During the 2016-17 academic year, the Department of Economics at Carleton College ran a pilot project using the Quantitative Literacy and Reasoning Assessment (QLRA as a pre-course diagnostic tool. Results show that the QLRA predicts student grades even after controlling for other SAT/ACT math scores and overall GPA. This finding suggests that quantitative reasoning is an important input into success in Principles of Economics (both Macro and Micro. When the QLRA alone is used to predict success in a course (as defined by either a grade of C- or better, or a grade of B- or better, we find that we could nearly always pick out students who were on the way to sub-par performance. On the other hand, the tool has a fairly high false positive rate; almost half of students identified as �at risk� based on QLRA performance went on to earn a successful grade in the course. In total, we argue that the QLRA may be a useful and inexpensive early-warning device for introductory courses in economics; it may be worth exploring a similar use of the instrument in other disciplinary settings where introductory courses require quantitative reasoning.

  12. Improving students' understanding by using on-going education research to refine active learning activities in a first-year electronics course

    International Nuclear Information System (INIS)

    Mazzolini, Alexander Peter; Daniel, Scott Arthur

    2015-01-01

    Interactive Lecture Demonstrations (ILDs) have been used across introductory university physics as a successful active learning (AL) strategy to improve students’ conceptual understanding. We have developed ILDs for more complex topics in our first-year electronics course. In 2006 we began developing ILDs to improve students’ conceptual understanding of Operational Amplifiers (OAs) and negative feedback in amplification circuits. The ILDs were used after traditional lecture instruction to help students consolidate their understanding. We developed a diagnostic test, to be administered to students both before and after the ILDs, as a measure of how effective the ILDs were in improving students’ understanding.

  13. Analysis of requirements for teaching materials based on the course bioinformatics for plant metabolism

    Science.gov (United States)

    Balqis, Widodo, Lukiati, Betty; Amin, Mohamad

    2017-05-01

    A way to improve the quality of learning in the course of Plant Metabolism in the Department of Biology, State University of Malang, is to develop teaching materials. This research evaluates the needs of bioinformatics-based teaching material in the course Plant Metabolism by the Analyze, Design, Develop, Implement, and Evaluate (ADDIE) development model. Data were collected through questionnaires distributed to the students in the Plant Metabolism course of the Department of Biology, University of Malang, and analysis of the plan of lectures semester (RPS). Learning gains of this course show that it is not yet integrated into the field of bioinformatics. All respondents stated that plant metabolism books do not include bioinformatics and fail to explain the metabolism of a chemical compound of a local plant in Indonesia. Respondents thought that bioinformatics can explain examples and metabolism of a secondary metabolite analysis techniques and discuss potential medicinal compounds from local plants. As many as 65% of the respondents said that the existing metabolism book could not be used to understand secondary metabolism in lectures of plant metabolism. Therefore, the development of teaching materials including plant metabolism-based bioinformatics is important to improve the understanding of the lecture material in plant metabolism.

  14. Benefits of completing homework for students with different aptitudes in an introductory electricity and magnetism course

    OpenAIRE

    F. J. Kontur; K. de La Harpe; N. B. Terry

    2015-01-01

    We examine how student aptitudes impact how much students learn from doing graded online and written homework in an introductory electricity and magnetism course. Our analysis examines the correlation between successful homework completion rates and exam performance as well as how changes in homework completion correlate with changes in exam scores for students with different physics aptitudes. On average, successfully completing many homework problems correlated to better exam scores only fo...

  15. An Analysis of Learning Objectives and Content Coverage in Introductory Psychology Syllabi

    Science.gov (United States)

    Homa, Natalie; Hackathorn, Jana; Brown, Carrie M.; Garczynski, Amy; Solomon, Erin D.; Tennial, Rachel; Sanborn, Ursula A.; Gurung, Regan A. R.

    2013-01-01

    Introductory psychology is one of the most popular undergraduate courses and often serves as the gateway to choosing psychology as an academic major. However, little research has examined the typical structure of introductory psychology courses. The current study examined student learning objectives (SLOs) and course content in introductory…

  16. Crossword Puzzles as Learning Tools in Introductory Soil Science

    Science.gov (United States)

    Barbarick, K. A.

    2010-01-01

    Students in introductory courses generally respond favorably to novel approaches to learning. To this end, I developed and used three crossword puzzles in spring and fall 2009 semesters in Introductory Soil Science Laboratory at Colorado State University. The first hypothesis was that crossword puzzles would improve introductory soil science…

  17. Lecture Attendance and Web Based Lecture Technologies: A Comparison of Student Perceptions and Usage Patterns

    Science.gov (United States)

    von Konsky, Brian R.; Ivins, Jim; Gribble, Susan J.

    2009-01-01

    This paper investigates the impact of web based lecture recordings on learning and attendance at lectures. Student opinions regarding the perceived value of the recordings were evaluated in the context of usage patterns and final marks, and compared with attendance data and student perceptions regarding the usefulness of lectures. The availability…

  18. Developing an evidence-based public health informatics course.

    Science.gov (United States)

    Yu, Xinyu; Xie, Yue; Pan, Xuequn; Mayfield-Johnson, Susan; Whipple, Jessica; Azadbakht, Elena

    2015-10-01

    This study assessed the need to develop a public health informatics (PHI) introductory course and determine contents of such a course. Community assessments employing focus group interviews and an online survey were utilized to determine course need and content. Results revealed a need to provide PHI training to graduate public health students and suggested broad course content requirements. Results indicated lack of awareness of libraries and librarians as sources of public health information. A graduate PHI course was developed and delivered. Additionally, implementation of a subject guide increased the library's profile.

  19. Reality-Based Learning: Outbreak, an Engaging Introductory Course in Public Health and Epidemiology

    Science.gov (United States)

    Calonge, David Santandreu; Grando, Danilla

    2013-01-01

    Objective: To develop a totally online reality-based course that engages students and enables the development of enhanced teamwork and report-writing skills. Setting: Outbreaks of infectious diseases impacts upon commerce, trade and tourism as well as placing strains on healthcare systems. A general course introducing university students to…

  20. Using News Media Databases (LexisNexis) To Identify Relevant Topics For Introductory Earth Science Classes

    Science.gov (United States)

    Cervato, C.; Jach, J. Y.; Ridky, R.

    2003-12-01

    Introductory Earth science courses are undergoing pedagogical changes in universities across the country and are focusing more than ever on the non-science majors. Increasing enrollment of non-science majors in these introductory Earth science courses demands a new look at what is being taught and how the content can be objectively chosen. Assessing the content and effectiveness of these courses requires a quantitative investigation of introductory Earth science topics and their relevance to current issues and concerns. Relevance of Earth science topics can be linked to improved students' attitude toward science and a deeper understanding of concepts. We have used the Internet based national news search-engine LexisNexis Academic Universe (http://www.lexisnexis.org/) to select the occurrence of Earth science terms over the last 12 months, five and ten years both regionally and nationally. This database of term occurrences is being used to examine how Earth sciences have evolved in the news through the last 10 years and is also compared with textbook contents and course syllabi from randomly selected introductory earth science courses across the nation. These data constitute the quantitative foundation for this study and are being used to evaluate the relevance of introductory earth science course content. The relevance of introductory course content and current real-world issues to student attitudes is a crucial factor when considering changes in course curricula and pedagogy. We have examined students' conception of the nature of science and attitudes towards science and learning science using a Likert-scale assessment instrument in the fall 2002 Geology 100 classes at Iowa State University. A pre-test and post-test were administered to see if the students' attitudes changed during the semester using as reference a control group comprised of geoscience undergraduate and graduate students, and faculty. The results of the attitude survey have been analyzed in terms

  1. Who's Who in Introductory Psychology Textbooks: A Citation Analysis Redux

    Science.gov (United States)

    Griggs, Richard A.; Christopher, Andrew N.

    2016-01-01

    It is important to assess periodically how introductory textbooks portray our discipline because introductory psychology is the most popular psychology course, almost all teachers use textbooks for it, and textbooks play a major role in defining the course for students. To do so, past studies have used textbook citation analyses. We analyzed…

  2. Documenting the conversion from traditional to Studio Physics formats at the Colorado School of Mines: Process and early results

    Science.gov (United States)

    Kohl, Patrick B.; Kuo, H. Vincent; Ruskell, Todd G.

    2008-10-01

    The Colorado School of Mines (CSM) has taught its first-semester introductory physics course using a hybrid lecture/Studio Physics format for several years. Over the past year we have converted the second semester of our calculus-based introductory physics course (Physics II) to a Studio Physics format, starting from a traditional lecture-based format. In this paper, we document the early stages of this conversion in order to better understand which features succeed and which do not, and in order to develop a model for switching to Studio that keeps the time and resource investment manageable. We describe the recent history of the Physics II course and of Studio at Mines, discuss the PER-based improvements that we are implementing, and characterize our progress via several metrics, including pre/post Conceptual Survey of Electricity and Magnetism (CSEM) scores, Colorado Learning About Science Survey scores (CLASS), solicited student comments, failure rates, and exam scores.

  3. Comment on "Benefits of Completing Homework for Students with Different Aptitudes in an Introductory Electricity and Magnetism Course"

    Science.gov (United States)

    Rieger, G. W.; Reinsberg, S. A.; Wieman, C. E.

    2016-01-01

    We present a comment on "Benefits of completing homework for students with different aptitudes in an introductory electricity and magnetism course", by F. J. Kontur, K. de La Harpe, and N. B. Terry PRST-PER 11, 010105 (2015). Our data show that the conclusions Kontur and coworkers draw from their data may not be generally applicable.

  4. A Multi-Faceted Approach to Inquiry-Based Learning

    Science.gov (United States)

    Brudzinski, M. R.; Sikorski, J.

    2009-12-01

    In order to fully attain the benefits of inquiry-based learning, instructors who typically employ the traditional lecture format need to make several adjustments to their approach. This change in styles can be intimidating and logistically difficult to overcome. A stepwise approach to this transformation is likely to be more manageable for individual faculty or departments. In this session, we will describe several features that we are implementing in our introductory geology course with the ultimate goal of converting to an entirely inquiry-based approach. Our project is part of the Miami University initiative in the top 25 enrolled courses to move towards the “student as scholar” model for engaged learning. Some of the features we developed for our course include: student learning outcomes, student development outcomes, out-of-class content quizzes, in-class conceptests, pre-/post-course assessment, reflective knowledge surveys, and daily group activities.

  5. Effect of Video Triggering During Conventional Lectures on Final Grades of Dental Students in an Oral Biology Course: A Two-Year Retrospective Study.

    Science.gov (United States)

    Farooq, Imran; Al-Jandan, Badr A

    2015-12-01

    The aim of this study was to analyze the effect of the inclusion of video triggers in conventional face-to-face lectures on the final grades of dental students in an oral biology course. The study consisted of two groups of students taking the course in two academic years at a dental school in Saudi Arabia: group 1, 2013-14 (control); and group 2, 2014-15. The total sample comprised 163 students (n=163; group 1: 71 and group 2: 92). Group 1 received lectures without any videos, whereas group 2 received lectures that included two to three videos of one to five minutes in duration with triggering effect (a video was shown every 10-15 minutes into the lecture). The final examination grades of the students were accessed retrospectively, and the data were compared with a chi-square test. The results confirmed that a higher number of students who received video triggering during lectures (group 2) performed better than their counterparts who did not receive video triggers (group 1); the difference was statistically significant (pvideo triggers may offer an advantage over conventional methods and their inclusion in lectures can be a way to enhance students' learning.

  6. The Earth System Course at the University of Oklahoma: Science and Pedagogy Aimed at Pre-service Teachers

    Science.gov (United States)

    Postawko, S.; Soreghan, M.; Marek, E.

    2005-12-01

    . The surveys aimed to both assess the students' learning and retention (compared to students in the more traditional Introductory Geology course, who were given similar surveys), and solicit the students' opinions of the inquiry-based learning approach compared to more traditional lecture/lab classroom teaching methods.

  7. Active Learning outside the Classroom: Implementation and Outcomes of Peer-Led Team-Learning Workshops in Introductory Biology

    Science.gov (United States)

    Kudish, Philip; Shores, Robin; McClung, Alex; Smulyan, Lisa; Vallen, Elizabeth A.; Siwicki, Kathleen K.

    2016-01-01

    Study group meetings (SGMs) are voluntary-attendance peer-led team-learning workshops that supplement introductory biology lectures at a selective liberal arts college. While supporting all students' engagement with lecture material, specific aims are to improve the success of underrepresented minority (URM) students and those with weaker…

  8. The effect of problem-based and lecture-based instructional strategies on learner problem solving performance, problem solving processes, and attitudes

    Science.gov (United States)

    Visser, Yusra Laila

    This study compared the effect of lecture-based instruction to that of problem-based instruction on learner performance (on near-transfer and far-transfer problems), problem solving processes (reasoning strategy usage and reasoning efficiency), and attitudes (overall motivation and learner confidence) in a Genetics course. The study also analyzed the effect of self-regulatory skills and prior-academic achievement on performance for both instructional strategies. Sixty 11th grade students at a public math and science academy were assigned to either a lecture-based instructional strategy or a problem-based instructional strategy. Both treatment groups received 18 weeks of Genetics instruction through the assigned instructional strategy. In terms of problem solving performance, results revealed that the lecture-based group performed significantly better on near-transfer post-test problems. The problem-based group performed significantly better on far-transfer post-test problems. In addition, results indicated the learners in the lecture-based instructional treatment were significantly more likely to employ data-driven reasoning in the solving of problems, whereas learners in the problem-based instructional treatment were significantly more likely to employ hypothesis-driven reasoning in problem solving. No significant differences in reasoning efficiency were uncovered between treatment groups. Preliminary analysis of the motivation data suggested that there were no significant differences in motivation between treatment groups. However, a post-research exploratory analysis suggests that overall motivation was significantly higher in the lecture-based instructional treatment than in the problem-based instructional treatment. Learner confidence was significantly higher in the lecture-based group than in the problem-based group. A significant positive correlation was detected between self-regulatory skills scores and problem solving performance scores in the problem-based

  9. Failure Rates in Introductory Programming

    DEFF Research Database (Denmark)

    Bennedsen, Jens; Caspersen, Michael Edelgaard

    2007-01-01

    It is a common conception that CS1 is a very difficult course and that failure rates are high. However, until now there has only been anecdotal evidence for this claim. This article reports on a survey among institutions around the world regarding failure rates in introductory programming courses...

  10. The effectiveness of a clinically integrated e-learning course in evidence-based medicine: A cluster randomised controlled trial

    NARCIS (Netherlands)

    Kulier, Regina; Coppus, Sjors F. P. J.; Zamora, Javier; Hadley, Julie; Malick, Sadia; Das, Kausik; Weinbrenner, Susanne; Meyerrose, Berrit; Decsi, Tamas; Horvath, Andrea R.; Nagy, Eva; Emparanza, Jose I.; Arvanitis, Theodoros N.; Burls, Amanda; Cabello, Juan B.; Kaczor, Marcin; Zanrei, Gianni; Pierer, Karen; Stawiarz, Katarzyna; Kunz, Regina; Mol, Ben W. J.; Khan, Khalid S.

    2009-01-01

    ABSTRACT: BACKGROUND: To evaluate the educational effects of a clinically integrated e-learning course for teaching basic evidence-based medicine (EBM) among postgraduates compared to a traditional lecture-based course of equivalent content. METHODS: We conducted a cluster randomised controlled

  11. Development and Evaluation of the Tigriopus Course-Based Undergraduate Research Experience: Impacts on Students' Content Knowledge, Attitudes, and Motivation in a Majors Introductory Biology Course.

    Science.gov (United States)

    Olimpo, Jeffrey T; Fisher, Ginger R; DeChenne-Peters, Sue Ellen

    2016-01-01

    Within the past decade, course-based undergraduate research experiences (CUREs) have emerged as a viable mechanism to enhance novices' development of scientific reasoning and process skills in the science, technology, engineering, and mathematics disciplines. Recent evidence within the bioeducation literature suggests that student engagement in such experiences not only increases their appreciation for and interest in scientific research but also enhances their ability to "think like a scientist." Despite these critical outcomes, few studies have objectively explored CURE versus non-CURE students' development of content knowledge, attitudes, and motivation in the discipline, particularly among nonvolunteer samples. To address these concerns, we adopted a mixed-methods approach to evaluate the aforementioned outcomes following implementation of a novel CURE in an introductory cell/molecular biology course. Results indicate that CURE participants exhibited more expert-like outcomes on these constructs relative to their non-CURE counterparts, including in those areas related to self-efficacy, self-determination, and problem-solving strategies. Furthermore, analysis of end-of-term survey data suggests that select features of the CURE, such as increased student autonomy and collaboration, mediate student learning and enjoyment. Collectively, this research provides novel insights into the benefits achieved as a result of CURE participation and can be used to guide future development and evaluation of authentic research opportunities. © 2016 J. T. Olimpo et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. ACADEMIC TRAINING LECTURE

    CERN Multimedia

    Academic Training; Tel 73127

    2001-01-01

    28, 29, 30, 31 May and 1 June REGULAR LECTURE PROGRAMME From 11:00 hrs - Main Auditorium bldg. 500 Quantum computing and Quantum cryptography T. Hey / University of Southampton, GB, and D. Ross / CERN-TH This course will give both an overview and a detailed introduction to quantum computing and quantum cryptography. The first lecture will survey the field, starting from its origins in Feyman's lecture in 1981. The next three lectures will explain in detail the relevance of Bell states and the workings of Grover's Quantum Search and Shor's quantum factorization algorithms. In addition, an explanation of quantum teleportation will be given. The last lecture will survey the recent progress towards realizing working quantum computers and quantum cryptographic systems.

  13. Comparing the effects of problem-based learning and the traditional lecture method on critical thinking skills and metacognitive awareness in nursing students in a critical care nursing course.

    Science.gov (United States)

    Gholami, Mohammad; Moghadam, Parastou Kordestani; Mohammadipoor, Fatemeh; Tarahi, Mohammad Javad; Sak, Mandana; Toulabi, Tahereh; Pour, Amir Hossein Hossein

    2016-10-01

    Problem-based learning (PBL) is a method used to develop cognitive and metacognitive skills in nursing students. The present study was conducted to compare the effects of PBL and the traditional lecture method on critical thinking skills and metacognitive awareness in nursing students in a critical care nursing course. The present study was conducted with a quasi-experimental, single group, pretest-posttest design. A group of third-year nursing students (n=40) were recruited from Khorramabad School of Nursing and Midwifery in the west of Iran. The lecture method was used in one group over the first eight weeks of the first semester and PBL was adopted in the second eight weeks. Standardized self-report questionnaires including The California Critical Thinking Skills Test-B (CCTST-B) and the Metacognitive Awareness Inventory (MAI) were administered before and after the use of each of the instruction methods. Data were analyzed in SPSS using the paired t-test. No significant changes were observed in the students' critical thinking skills and metacognitive awareness after performing the lecture method. However, a significant increase was observed in the overall critical thinking score (Pmethod. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A Survey of Beginning Crop Science Courses at 49 U.S. Universities. I. Lecture Format, Teaching Methods, and Topical Content.

    Science.gov (United States)

    Karnok, Keith J.; Connors, Krista L.

    1986-01-01

    This paper is the first of a two-part series which discusses the findings related to lecture information in beginning crop science courses offered in Land Grant institutions. Survey results revealed considerable differences regarding course organization and teaching methods, but similarities in overall goals and topic areas. (ML)

  15. Is the P-Value Really Dead? Assessing Inference Learning Outcomes for Social Science Students in an Introductory Statistics Course

    Science.gov (United States)

    Lane-Getaz, Sharon

    2017-01-01

    In reaction to misuses and misinterpretations of p-values and confidence intervals, a social science journal editor banned p-values from its pages. This study aimed to show that education could address misuse and abuse. This study examines inference-related learning outcomes for social science students in an introductory course supplemented with…

  16. Cross-Course Collaboration in the Undergraduate Chemistry Curriculum: Isotopic Labeling with Sodium Borodeuteride in the Introductory Organic Chemistry Laboratory

    Science.gov (United States)

    Kjonaas, Richard A.; Fitch, Richard W.; Noll, Robert J.

    2017-01-01

    A microscale isotopic labeling experiment is described for the introductory organic chemistry laboratory course wherein half of the students use sodium borohydride (NaBH[subscript 4]) and the other half use sodium borodeuteride (NaBD[subscript 4]) to reduce acetophenone to 1-phenylethanol and then compare spectral data. The cost is reasonable, and…

  17. A Readability Analysis of Selected Introductory Economics.

    Science.gov (United States)

    Gallagher, Daniel J.; Thompson, G. Rodney

    1981-01-01

    To aid secondary school and college level economics teachers as they select textbooks for introductory economics courses, this article recounts how teachers can use the Flesch Reading Ease Test to measure readability. Data are presented on application of the Flesch Reading Ease Test to 15 introductory economics textbooks. (Author/DB)

  18. Characterizing, modeling, and addressing gender disparities in introductory college physics

    Science.gov (United States)

    Kost-Smith, Lauren Elizabeth

    2011-12-01

    The underrepresentation and underperformance of females in physics has been well documented and has long concerned policy-makers, educators, and the physics community. In this thesis, we focus on gender disparities in the first- and second-semester introductory, calculus-based physics courses at the University of Colorado. Success in these courses is critical for future study and careers in physics (and other sciences). Using data gathered from roughly 10,000 undergraduate students, we identify and model gender differences in the introductory physics courses in three areas: student performance, retention, and psychological factors. We observe gender differences on several measures in the introductory physics courses: females are less likely to take a high school physics course than males and have lower standardized mathematics test scores; males outscore females on both pre- and post-course conceptual physics surveys and in-class exams; and males have more expert-like attitudes and beliefs about physics than females. These background differences of males and females account for 60% to 70% of the gender gap that we observe on a post-course survey of conceptual physics understanding. In analyzing underlying psychological factors of learning, we find that female students report lower self-confidence related to succeeding in the introductory courses (self-efficacy) and are less likely to report seeing themselves as a "physics person". Students' self-efficacy beliefs are significant predictors of their performance, even when measures of physics and mathematics background are controlled, and account for an additional 10% of the gender gap. Informed by results from these studies, we implemented and tested a psychological, self-affirmation intervention aimed at enhancing female students' performance in Physics 1. Self-affirmation reduced the gender gap in performance on both in-class exams and the post-course conceptual physics survey. Further, the benefit of the self

  19. Applicability of Online Education to Large Undergraduate Engineering Courses

    Science.gov (United States)

    Bir, Devayan Debashis

    With the increase in undergraduate engineering enrollment, many universities have chosen to teach introductory engineering courses such as Statics of Engineering and Mechanics of Materials in large classes due to budget limitations. With the overwhelming literature against traditionally taught large classes, this study aims to see the effects of the trending online pedagogy. Online courses are the latest trend in education due to the flexibility they provide to students in terms of schedule and pace of learning with the added advantage of being less expensive for the university over a period. In this research, the effects of online lectures on engineering students' course performances and students' attitudes towards online learning were examined. Specifically, the academic performances of students enrolled in a traditionally taught, lecture format Mechanics of Materials course with the performance of students in an online Mechanics of Materials course in summer 2016 were compared. To see the effect of the two different teaching approaches across student types, students were categorized by gender, enrollment status, nationality, and by the grades students obtained for Statics, one of the prerequisite courses for Mechanics of Materials. Student attitudes towards the online course will help to keep the process of continuously improving the online course, specifically, to provide quality education through the online medium in terms of course content and delivery. The findings of the study show that the online pedagogy negatively affects student academic performance when compared to the traditional face-to-face pedagogy across all categories, except for the high scoring students. Student attitudes reveal that while they enjoyed the flexibility schedule and control over their pace of studying, they faced issues with self-regulation and face-to-face interaction.

  20. Comparing large lecture mechanics curricula using the Force Concept Inventory: A five thousand student study

    Science.gov (United States)

    Caballero, Marcos D.; Greco, Edwin F.; Murray, Eric R.; Bujak, Keith R.; Jackson Marr, M.; Catrambone, Richard; Kohlmyer, Matthew A.; Schatz, Michael F.

    2012-07-01

    The performance of over 5000 students in introductory calculus-based mechanics courses at the Georgia Institute of Technology was assessed using the Force Concept Inventory (FCI). Results from two different curricula were compared: a traditional mechanics curriculum and the Matter & Interactions (M&I) curriculum. Both were taught with similar interactive pedagogy. Post-instruction FCI averages were significantly higher for the traditional curriculum than for the M&I curriculum; the differences between curricula persist after accounting for factors such as pre-instruction FCI scores, grade point averages, and SAT scores. FCI performance on categories of items organized by concepts was also compared; traditional averages were significantly higher in each concept. We examined differences in student preparation between the curricula and found that the relative fraction of homework and lecture topics devoted to FCI force and motion concepts correlated with the observed performance differences. Concept inventories, as instruments for evaluating curricular reforms, are generally limited to the particular choice of content and goals of the instrument. Moreover, concept inventories fail to measure what are perhaps the most interesting aspects of reform: the non-overlapping content and goals that are not present in courses without reform.