WorldWideScience

Sample records for leaves stems roots

  1. Comparative analgesic activity of the root bark, stem bark, leaves ...

    African Journals Online (AJOL)

    The analgesic activity of the water extracts (50,100 and150 mg/Kg body weight) of the root bark, stem bark, leaves, fruits and seeds of Carissa edulis were evaluated in mice using the mechanical method (tail-chip method) and chemical method (acetic acid induced writhing). The plant was found to have analgesic activity, ...

  2. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests

    Science.gov (United States)

    Zhang, Hao; Wang, Kelin; Xu, Xianli; Song, Tongqing; Xu, Yanfang; Zeng, Fuping

    2015-01-01

    To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China’s forests using both the national forest inventory data (2004–2008) and our field measurements (2011–2012). Distribution patterns of leaf, stem, and root biomass showed significantly different trends according to latitude, longitude, and altitude, and were positively and significantly correlated with stand age and mean annual precipitation. Trade-offs among leaves, stems, and roots varied with forest type and origin and were mainly explained by stand biomass. Based on the constraints of stand biomass, biomass allocation was also influenced by forest type, origin, stand age, stand density, mean annual temperature, precipitation, and maximum temperature in the growing season. Therefore, after stand biomass was accounted for, the residual variation in biomass allocation could be partially explained by stand characteristics and environmental factors, which may aid in quantifying carbon cycling in forest ecosystems and assessing the impacts of climate change on forest carbon dynamics in China. PMID:26525117

  3. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China's forests.

    Science.gov (United States)

    Zhang, Hao; Wang, Kelin; Xu, Xianli; Song, Tongqing; Xu, Yanfang; Zeng, Fuping

    2015-11-03

    To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China's forests using both the national forest inventory data (2004-2008) and our field measurements (2011-2012). Distribution patterns of leaf, stem, and root biomass showed significantly different trends according to latitude, longitude, and altitude, and were positively and significantly correlated with stand age and mean annual precipitation. Trade-offs among leaves, stems, and roots varied with forest type and origin and were mainly explained by stand biomass. Based on the constraints of stand biomass, biomass allocation was also influenced by forest type, origin, stand age, stand density, mean annual temperature, precipitation, and maximum temperature in the growing season. Therefore, after stand biomass was accounted for, the residual variation in biomass allocation could be partially explained by stand characteristics and environmental factors, which may aid in quantifying carbon cycling in forest ecosystems and assessing the impacts of climate change on forest carbon dynamics in China.

  4. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots.

    Science.gov (United States)

    Reich, Peter B; Luo, Yunjian; Bradford, John B; Poorter, Hendrik; Perry, Charles H; Oleksyn, Jacek

    2014-09-23

    Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.

  5. Essential oils and crude extracts from Chrysanthemum trifurcatum leaves, stems and roots: chemical composition and antibacterial activity.

    Science.gov (United States)

    Sassi, Ahlem Ben; Skhiri, Fethia Harzallah; Chraief, Imed; Bourgougnon, Nathalie; Hammami, Mohamed; Aouni, Mahjoub

    2014-01-01

    The essential oils from the leaves, stems and roots of Chrysanthemum trifurcatum (Desf.) Batt. and Trab. var. macrocephalum (viv.) were obtained by hydrodistillation and their chemical compositions were analysed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), in order to get insight into similarities and differences as to their active composition. A total of fifty compounds were identified, constituting 97.84%, 99.02% and 98.20% of total oil composition of the leaves, stems and roots, respectively. Monoterpene hydrocarbons were shown to be the main group of constituents of the leaves and stems parts in the ratio of 67.88% and 51.29%, respectively. But, the major group in the roots oil was found to be sesquiterpene hydrocarbons (70.30%). The main compounds in leaves oil were limonene (26.83%), γ-terpinene (19.68%), α-pinene (9.7%) and α-terpenyl acetate (7.16%). The stems oil, contains mainly limonene (32.91%), 4-terpenyl acetate (16.33%) and γ-terpinene (5.93%), whereas the main compounds in roots oil were α-calacorene (25.98%), α-cedrene (16.55%), β-bourbobene (14.91%), elemol (7.45%) and 2-hexenal (6.88%). The crude organic extracts of leaves, stems and roots, obtained by maceration with solvents of increasing polarity: petroleum ether, ethyl acetate and methanol, contained tannins, flavonoids and alkaloids. Meanwhile, essential oils and organic extracts were tested for antibacterial activities against eight Gram-positive and Gram-negative strains, using a microdilution method. The oil and methanolic extact from C. trifurcatum leaves showed a great potential of antibacterial effect against Bacillus subtilis and Staphylococcus epidermidis, with an IC50 range of 31.25-62.5 µg/ml.

  6. Anti-inflammatory, antiallodynic effects and quantitative analysis of gallic acid in spray dried powders from Phyllanthus niruri leaves, stems, roots and whole plant

    Directory of Open Access Journals (Sweden)

    Angélica G. Couto

    2012-11-01

    Full Text Available The anti-inflammatory and antiallodynic effects of spray dried powders starting from leaves, stems, roots, the mixture of leaves and stems, as well as the whole plant aqueous solutions of Phyllanthus niruri L., Phyllanthaceae, were assessed. Gallic acid, used as chemical marker, was quantified by HPLC in the spray dried powders. Carrageenan-induced inflammatory and allodynic responses in the mouse paw were used as pharmacological models. Quantitative and qualitative differences among chemical composition of different herb parts were observed. The oral administration of leaves or leaves plus stems spray dried powders (100 mg/kg significantly inhibited the carrageenan-induced allodynic effect (42±5 and 54±3%, respectively. Additionally, the spray dried powders of leaves significantly reduced carrageenan-induced paw oedema (35±6%. The spray dried powders of roots, stems, or the mixture of leaves, stems and roots (100 mg/kg, p.o. did not exhibit antiallodynic or antioedematogenic effect in the same model. In conclusion, differences in the chemical composition of spray dried powders from P. niruri are reflected in their in vivo pharmacological actions. Despite of a direct relationship of anti-inflammatory and antiallodynic effects with the gallic acid content had been observed, especially in the spray dried powders of leaves, the use of spray dried powders of leaves plus stems showed to be more effective, suggesting a synergic effect between their constituents.

  7. Anti-inflammatory, antiallodynic effects and quantitative analysis of gallic acid in spray dried powders from Phyllanthus niruri leaves, stems, roots and whole plant

    Directory of Open Access Journals (Sweden)

    Angélica G. Couto

    2013-02-01

    Full Text Available The anti-inflammatory and antiallodynic effects of spray dried powders starting from leaves, stems, roots, the mixture of leaves and stems, as well as the whole plant aqueous solutions of Phyllanthus niruri L., Phyllanthaceae, were assessed. Gallic acid, used as chemical marker, was quantified by HPLC in the spray dried powders. Carrageenan-induced inflammatory and allodynic responses in the mouse paw were used as pharmacological models. Quantitative and qualitative differences among chemical composition of different herb parts were observed. The oral administration of leaves or leaves plus stems spray dried powders (100 mg/kg significantly inhibited the carrageenan-induced allodynic effect (42±5 and 54±3%, respectively. Additionally, the spray dried powders of leaves significantly reduced carrageenan-induced paw oedema (35±6%. The spray dried powders of roots, stems, or the mixture of leaves, stems and roots (100 mg/kg, p.o. did not exhibit antiallodynic or antioedematogenic effect in the same model. In conclusion, differences in the chemical composition of spray dried powders from P. niruri are reflected in their in vivo pharmacological actions. Despite of a direct relationship of anti-inflammatory and antiallodynic effects with the gallic acid content had been observed, especially in the spray dried powders of leaves, the use of spray dried powders of leaves plus stems showed to be more effective, suggesting a synergic effect between their constituents.

  8. Chemical composition of fatty acid and unsaponifiable fractions of leaves, stems and roots of Arbutus unedo and in vitro antimicrobial activity of unsaponifiable extracts.

    Science.gov (United States)

    Diba, Mohamed Amine; Paolini, Julien; Bendahou, Mourad; Varesi, Laurent; Allali, Hocine; Desjobert, Jean-Marie; Tabti, Boufeldja; Costa, Jean

    2010-07-01

    The chemical composition of the fatty acid and unsaponifiable fractions of the leaves, stems and roots of Arbutus unedo L. were determined using gas chromatography and gas chromatography-mass spectrometry. The fatty acid fractions of the leaves, stems and roots contained 38.5%, 31.3% and 14.1% palmitic acid, respectively, along with other long-chain fatty acids (up to C22). The chemical composition of the unsaponifiable fractions differed: the leaf and stem fractions contained high levels of aliphatic (32.1% and 62.6%, respectively) and terpenic compounds (49.6% and 25.7%, respectively), and the root fraction mainly contained esters, of which the most abundant was benzyl cinnamate (36.6%). The antimicrobial activities of the unsaponifiable fractions against nine species of microorganisms were assessed. The unsaponifiable leaf and stem extracts inhibited the growth of Klebsiella pneumoniae, Enterococcus faecalis and Candida albicans.

  9. Phytochemical and pharmacological variability in Golden Thistle functional parts: comparative study of roots, stems, leaves and flowers.

    Science.gov (United States)

    Marmouzi, Ilias; El Karbane, Miloud; El Hamdani, Maha; Kharbach, Mourad; Naceiri Mrabti, Hanae; Alami, Rachid; Dahraoui, Souhail; El Jemli, Meryem; Ouzzif, Zhor; Cherrah, Yahia; Derraji, Soufiane; Faouzi, My El Abbes

    2017-11-01

    Scolymus hispanicus or the Golden Thistle, locally known as 'Guernina' or 'Taghediwt', is one of the most appreciated wild vegetables in Morocco. This study aims to characterise the functional chemical and pharmacological variability of Scolymus hispanicus parts (roots, stems, leaves and flowers). The chemical analysis revealed higher content of α-tocopherol in the flowers (2.79 ± 0.07 mg/100 g) and lead to the identification of 3 flavonoids and 13 phenolic acids, with high content of gallic acid in leaves (187.01 ± 10.19 mg/kg); chlorogenic (936.18 ± 92.66 mg/kg) and caffeic (4400.14 ± 191.43 mg/kg) acids in flowers, roots were much more higher in sinapic acid (0.25 ± 0.03 mg/kg) compared to the other parts. Moreover, Scolymus hispanicus ethanolic extracts exhibited interesting antioxidant and antimicrobial properties, promising anti-amylase and anti-glucosidase activities and relevant diuretic effect that confirms its traditional uses.

  10. Phenolic characterization and variability in leaves, stems and roots of Micro-Tom and patio tomatoes, in response to nitrogen limitation.

    Science.gov (United States)

    Larbat, Romain; Paris, Cédric; Le Bot, Jacques; Adamowicz, Stéphane

    2014-07-01

    Phenolics are implicated in the defence strategies of many plant species rendering their concentration increase of putative practical interest in the field of crop protection. Little attention has been given to the nature, concentration and distribution of phenolics within vegetative organs of tomato (Solanum lycopersicum. L) as compared to fruits. In this study, we extensively characterized the phenolics in leaves, stems and roots of nine tomato cultivars using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-MS(n)) and assessed the impact of low nitrogen (LN) availability on their accumulation. Thirty-one phenolics from the four sub-classes, hydroxycinnamoyl esters, flavonoids, anthocyanins and phenolamides were identified, five of which had not previously been reported in these tomato organs. A higher diversity and concentration of phenolics was found in leaves than in stems and roots. The qualitative distribution of these compounds between plant organs was similar for the nine cultivars with the exception of Micro-Tom because of its significantly higher phenolic concentrations in leaves and stems as compared to roots. With few exceptions, the influence of the LN treatment on the three organs of all cultivars was to increase the concentrations of hydroxycinnamoyl esters, flavonoids and anthocyanins and to decrease those of phenolamides. This impact of LN was greater in roots than in leaves and stems. Nitrogen nutrition thus appears as a means of modulating the concentration and composition of organ phenolics and their distribution within the whole plant. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Evaluation of the larvicidal efficiency of stem, roots and leaves of the weed, Parthenium hysterophorus (Family: Asteraceae against Aedes aegypti L.

    Directory of Open Access Journals (Sweden)

    Sarita Kumar

    2012-10-01

    Full Text Available Objective: To assess the larvicidal potential of various extracts prepared from the stem, roots and leaves of Parthenium hysterophorus (P. hysterophorus against 3rd and 4th instars of Aedes aegypti (Ae. aegypti. Methods: The extracts from each part were prepared with four solvents; petroleum ether, hexane, acetone and diethyl ether. Each part was dried, powdered and soaked in different solvents, separately, for five days. The crude extracts thus formed were concentrated using rotary evaporator and stored as stock solution of 1 000 mg/L. Results: All the extracts prepared from the leaves were found ineffective against both the instars causing only 10%-40% mortality. Against 3rd instars, the hexane and petroleum ether extracts prepared from the stem of P. hysterophorus were found effective exhibiting LC50 values of 379.76 and 438.57 mg/L, respectively. Likewise the hexane and petroleum ether extracts from the Parthenium roots resulted in LC50 values of 432.38 and 562.50 mg/L, respectively, against 4th instars of Ae. aegypti revealing their larvicidal potential. It was further found that the hexane extracts, whether from roots or stem, were 13-28% more effective than the petroleum ether extracts. The qualitative phytochemical study of the effective extracts from the stems and roots showed the presence of alkaloids, saponins, terpenoids and flavonoids in different combinations. Conclusions: Our investigations demonstrated the potential of P. hysterophorus roots and stems against Ae. aegypti larvae and their benefits as new types of mosquito larvicides. Variety of types and levels of active constituents in each kind of extract may be responsible for the variability in their potential against Ae. aegypti. Further research is needed to identify these components.

  12. Metabolite modifications in Solanum lycopersicum roots and leaves ...

    African Journals Online (AJOL)

    During the treatment, Cd accumulated significantly in the roots compared to stems and leaves. Plant growth (root, stem and leaf) decreased when Cd concentration increased. The analysis of 1H-NMR spectra of polar extracts showed clear differences between metabolites amounts (soluble sugars, organic and amino acids) ...

  13. Determination of a various ions such as alkali metals in leaves, stems, roots and seeds of the radish and their distribution

    International Nuclear Information System (INIS)

    Fujino, Osamu; Matsui, Masakazu.

    1995-01-01

    Determination, uptake and distribution of various ions such as alkali metals in three different parts (leaf, stem and root) and seeds of radish (Kaiware daikon) were examined using flame emission spectrometry and ICP-AES. In order to examine the influence of concentration alkali metal ion concentration in the radish culture solution on the uptake and distribution of these metals, the radish was grown at pH 5.6 in solutions containing alkali metal chloride at concentrations ranging from 10 -5 to 10 -1 mol dm -3 . When the radish were grown in culture solution with alkali metal ions of low concentrations (10 -5 and 10 -4 mol dm -3 ), Na, K, Rb and trace Li were detected in leaves, stems and roots while Cs was scarcely detected. However, the contents of Na, K, Li in these organs were the same as those in radish cultivated in pure water. An increase of Rb uptake was observed with an increased Rb concentration. In the case of high concentrations (10 -3 and 10 -2 mol dm -3 ) of alkali metals in culture solution, the all alkali ions uptake of all alkali ions suddenly accelerated. Moreover, at concentrations higher than 0.1 mol dm -3 , the radish germinated poorly and did not completely mature. (author)

  14. Phytochemical screening and antimicrobial activity of roots, stem ...

    African Journals Online (AJOL)

    The roots, stem-bark and leaves of Grewia mollis which is used as herbal remedies for the cure of diarrhea and dysentery by natives in northern part of Nigeria were studied. The ethanol and water extracts of roots, stem-bark and leaves of the plant were subjected to phytochemical screening and antimicrobial activity against ...

  15. Early changes of the pH of the apoplast are different in leaves, stem and roots of Vicia faba L. under declining water availability.

    Science.gov (United States)

    Karuppanapandian, T; Geilfus, C-M; Mühling, K-H; Novák, O; Gloser, V

    2017-02-01

    Changes in pH of the apoplast have recently been discussed as an important factor in adjusting transpiration and water relations under conditions of drought via modulatory effect on abscisic acid (ABA) concentration. Using Vicia faba L., we investigated whether changes in the root, shoot and leaf apoplastic pH correlated with (1) a drought-induced reduction in transpiration and with (2) changes in ABA concentration. Transpiration, leaf water potential and ABA in leaves were measured and correlated with root and shoot xylem pH, determined by a pH microelectrode, and pH of leaf apoplast quantified by microscopy-based in vivo ratiometric analysis. Results revealed that a reduction in transpiration rate in the early phase of soil drying could not be linked with changes in the apoplastic pH via effects on the stomata-regulating hormone ABA. Moreover, drought-induced increase in pH of xylem or leaf apoplast was not the remote effect of an acropetal transport of alkaline sap from root, because root xylem acidified during progressive soil drying, whereas the shoot apoplast alkalized. We reason that other, yet unknown signalling mechanism was responsible for reduction of transpiration rate in the early phase of soil drying. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Partitioning of current photosynthate to different chemical fractions in leaves, stems, and roots of northern red oak seedlings during episodic growth

    Science.gov (United States)

    Richard E. Dickson; Patricia T. Tomlinson; J. G. Isebrands

    2000-01-01

    The episodic or flushing growth habit of northern red oak (Quercus rubra L.,) has a significant influence on carbon fixation, carbon transport from source leaves, and carbon allocation within the plant; however, the impact of episodic growth on carbon parciprioning among chemical fractions is unknown. Median-flush leaves of the first and second flush...

  17. Rooting of stem cuttings of ixora

    Directory of Open Access Journals (Sweden)

    Aline De Souza Silva

    2015-08-01

    Full Text Available The ixora is ornamental plant widely used in landscaping. In order to maximize the propagation of cuts, we evaluated the concentrations of auxin (indolbutiric acid and the presence of leaves on the rooting in cuts of Ixora coccinea L. The experiment was conducted in randomized block design, in factorial design 3x4, with three types of cuts (without leaf, with two or four leaves, four concentrations of indolbutiric acid (0, 1000, 2000 and 4000 mg L-1, with four replications and 10 cuts in each experimental unit. After 53 days of implantation the experiment, evaluated the survival(%, rooting(%, sprouting(%, formation of callus(%, number, length and biomass of roots formed. The interaction of the type of cuts with concentrations of auxin was not significant for any of the variables analyzed. The survival of cuttings was not influenced by the treatments. Cuts with two or four leaves presented rooting and length of roots above the cuttings without leaves. The application of auxin does not substitute the presence of leaf in cuts of ixora in vegetative propagation. The vegetative propagation by cut of ixora can be made without application of auxin, and the leaves must be maintained in the cuttings.

  18. Abscisic acid biosynthesis in leaves and roots of Xanthium strumarium

    International Nuclear Information System (INIS)

    Creelman, R.A.; Gage, D.A.; Stults, J.T.; Zeevaart, J.A.D.

    1987-01-01

    Research on the biosynthesis of abscisic acid (ABA) has focused primarily on two pathways: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. The authors have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in 18 O 2 . It was found that in stressed leaves three atoms of 18 O from 18 O 2 are incorporated into the ABA molecule, and that the amount of 18 O incorporated increases with time. One 18 O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in 18 O 2 shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more 18 O into the tertiary hydroxyl group at C-1' after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, 18 O is incorporated into ABA to a much lesser extent that it is in stressed leaves, whereas exogenously applied 14 C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional 18 O incorporated during 8'-hydroxylation of ABA to phaseic acid

  19. Abscisic Acid Biosynthesis in Leaves and Roots of Xanthium strumarium.

    Science.gov (United States)

    Creelman, R A; Gage, D A; Stults, J T; Zeevaart, J A

    1987-11-01

    RESEARCH ON THE BIOSYNTHESIS OF ABSCISIC ACID (ABA) HAS FOCUSED PRIMARILY ON TWO PATHWAYS: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. We have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in (18)O(2). It was found that in stressed leaves three atoms of (18)O from (18)O(2) are incorporated into the ABA molecule, and that the amount of (18)O incorporated increases with time. One (18)O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in (18)O(2) shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more (18)O into the tertiary hydroxyl group at C-1' after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 (carotenoid numbering scheme) plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, (18)O is incorporated into ABA to a much lesser extent than it is in stressed leaves, whereas exogenously applied (14)C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional (18)O incorporated during 8'-hydroxylation of ABA to phaseic acid.

  20. Pharmacognostical Studies On Leaves And Stem Of Cocculus ...

    African Journals Online (AJOL)

    The total ash values, acid insoluble ash and water soluble ash were found to be 2.20 %, 0.40 %, 0.60 % and 5.2 %,0.60 %, 1.50 % w/w for leaves and stem respectively. The loss on drying was found to be 1.21 % and 1.30 % w/w for the leaves and stem respectively. The leaf constants such as stomatal index (6.50), vein islet ...

  1. Pharmacognostic Investigation of the Leaves and Stems of ...

    African Journals Online (AJOL)

    Purpose: Some pharmacognostical investigations were carried out on the leaves and stems of Viburnum erubescens Wall.ex DC to record parameters for identifying and differentiating various species of Viburnum. Methods: The research specimens were authenticated and preserved both in fresh and dry forms. The leaves ...

  2. Abscisic acid biosynthesis in leaves and roots of Xanthium strumarium

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Gage, D.A.; Stults, J.T.; Zeevaart, J.A.D.

    1987-11-01

    Research on the biosynthesis of abscisic acid (ABA) has focused primarily on two pathways: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. The authors have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in /sup 18/O/sub 2/. It was found that in stressed leaves three atoms of /sup 18/O from /sup 18/O/sub 2/ are incorporated into the ABA molecule, and that the amount of /sup 18/O incorporated increases with time. One /sup 18/O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in /sup 18/O/sub 2/ shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more /sup 18/O into the tertiary hydroxyl group at C-1' after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, /sup 18/O is incorporated into ABA to a much lesser extent that it is in stressed leaves, whereas exogenously applied /sup 14/C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional /sup 18/O incorporated during 8'-hydroxylation of ABA to phaseic acid.

  3. Phenolic Compounds Analysis of Root, Stalk, and Leaves of Nettle

    Directory of Open Access Journals (Sweden)

    Semih Otles

    2012-01-01

    Full Text Available Types of nettles (Urtica dioica were collected from different regions to analyze phenolic compounds in this research. Nettles are specially grown in the coastal part. According to this kind of properties, nettle samples were collected from coastal part of (Mediterranean, Aegean, Black sea, and Marmara Turkey. Phenolic profile, total phenol compounds, and antioxidant activities of nettle samples were analyzed. Nettles were separated to the part of root, stalk, and leaves. Then, these parts of nettle were analyzed to understand the difference of phenolic compounds and amount of them. Nettle (root, stalk and leaves samples were analyzed by using High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD to qualitative and quantitative determination of the phenolic compounds. Total phenolic components were measured by using Folin-Ciocalteu method. The antioxidant activity was measured by using DPPH (2,2-diphenyl-1-picrylhydrazyl which is generally used for herbal samples and based on single electron transfer (SET.

  4. Phenolic compounds analysis of root, stalk, and leaves of nettle.

    Science.gov (United States)

    Otles, Semih; Yalcin, Buket

    2012-01-01

    Types of nettles (Urtica dioica) were collected from different regions to analyze phenolic compounds in this research. Nettles are specially grown in the coastal part. According to this kind of properties, nettle samples were collected from coastal part of (Mediterranean, Aegean, Black sea, and Marmara) Turkey. Phenolic profile, total phenol compounds, and antioxidant activities of nettle samples were analyzed. Nettles were separated to the part of root, stalk, and leaves. Then, these parts of nettle were analyzed to understand the difference of phenolic compounds and amount of them. Nettle (root, stalk and leaves) samples were analyzed by using High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) to qualitative and quantitative determination of the phenolic compounds. Total phenolic components were measured by using Folin-Ciocalteu method. The antioxidant activity was measured by using DPPH (2,2-diphenyl-1-picrylhydrazyl) which is generally used for herbal samples and based on single electron transfer (SET).

  5. Phenolic Compounds Analysis of Root, Stalk, and Leaves of Nettle

    Science.gov (United States)

    Otles, Semih; Yalcin, Buket

    2012-01-01

    Types of nettles (Urtica dioica) were collected from different regions to analyze phenolic compounds in this research. Nettles are specially grown in the coastal part. According to this kind of properties, nettle samples were collected from coastal part of (Mediterranean, Aegean, Black sea, and Marmara) Turkey. Phenolic profile, total phenol compounds, and antioxidant activities of nettle samples were analyzed. Nettles were separated to the part of root, stalk, and leaves. Then, these parts of nettle were analyzed to understand the difference of phenolic compounds and amount of them. Nettle (root, stalk and leaves) samples were analyzed by using High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) to qualitative and quantitative determination of the phenolic compounds. Total phenolic components were measured by using Folin-Ciocalteu method. The antioxidant activity was measured by using DPPH (2,2-diphenyl-1-picrylhydrazyl) which is generally used for herbal samples and based on single electron transfer (SET). PMID:22593694

  6. Phenolic Compounds Analysis of Root, Stalk, and Leaves of Nettle

    OpenAIRE

    Otles, Semih; Yalcin, Buket

    2012-01-01

    Types of nettles (Urtica dioica) were collected from different regions to analyze phenolic compounds in this research. Nettles are specially grown in the coastal part. According to this kind of properties, nettle samples were collected from coastal part of (Mediterranean, Aegean, Black sea, and Marmara) Turkey. Phenolic profile, total phenol compounds, and antioxidant activities of nettle samples were analyzed. Nettles were separated to the part of root, stalk, and leaves. Then, these parts ...

  7. Distribuição da matéria seca e composição química das raízes, caule e folhas de goiabeira submetida a estresse salino Dry matter partitioning and mineral composition of roots, stems and leaves of guava grown under salt stress conditions

    Directory of Open Access Journals (Sweden)

    Raimundo Gonçalves Ferreira

    2001-01-01

    , but decreased in stems and leaves. The K content was reduced with the increased levels of salinity, particularly in the leaves. On the other hand, Mg levels were not affected by salinity in stems and roots but decreased in the leaves. There was a positive relationship between Na and Cl and a negative relationship between Na and K concentration in roots and leaves. Mg concentration in leaves and roots did not vary with the concentration of Na. The concentration of Ca did not vary with Na in the leaves but showed an inverse relationship in the roots.

  8. New record of Phytophthora root and stem rot of Lavandula angustifolia

    Directory of Open Access Journals (Sweden)

    Leszek B. Orlikowski

    2013-12-01

    Full Text Available Phytophthora cinnamomi was isolated from rotted root and stem parts of lavender as well as from soil taken from containers with diseased plants. Additionally Botrytis cinerea, Fusarium spp. and Sclerotinia sclerotiorum were often isolated from diseased tissues. P. cinnamomi colonised leaves and stem parts of 4 lavender species in laboratory trials and caused stem rot of plants in greenhouse experiments. Cardinal temperature for in vitro growth were about 7,5 and 32°C with optimum 25-27,5°C. The species colonised stem tissues at temperature ranged from 10° to 32°C.

  9. Bioavailability of zinc from sweet potato roots and leaves

    International Nuclear Information System (INIS)

    Baiden, H.N.; Ercanli-Huffman, F.G.

    1986-01-01

    Bioavailability of zinc from sweet potato (SP) roots and leaves were determined, by extrinsic labeling technique, in rats fed control and zinc deficient diets. Weanling male Sprague Dawley (SD) rats (60-75g) were divided into 4 groups, and fed laboratory chow, a control diet (ad libitum and pair fed) and a zinc deficient diet, for 4 weeks. Each group then was divided into at least 2 sub groups, containing 6 rats, which were intubated with one of 3 tubing solutions extrinsically labeled with 65 Zn; baked sweet potato roots (BSPR), raw sweet potato leaves (RSPL) and cooked sweet potato leaves (CSPL). Five hours after intubation the rats were sacrificed, blood, liver, testes, spleen, heart, brain, thymus and lungs were removed. Feces, urine, and GI tract contents were collected and their 65 Zn activity was determined in a gamma counter. In all treatment groups zinc bioavailability from BSPR, RSPL or CSPL were not significantly different. Zinc deficient rats absorbed significantly more (P 65 Zn (86-90% of the dose), regardless of type of tubing solution than the pairfed or control animals (35-58% of the dose). The highest retention of 65 Zn was found in the liver (12-20% of absorbed dose), GI tract (6-17% of absorbed dose), kidney (2-8% of absorbed dose), and blood (1-5% of absorbed dose). The lowest retention was found in the brain, heart, thymus and testes. (< 1% of absorbed dose)

  10. Ethanol extracts of Newbouldia laevis stem and leaves modulate ...

    African Journals Online (AJOL)

    The ethanol extracts of N. laevis leaves and stem possessed antioxidant activity as shown by increased activities of superoxide dismutase and catalase, and glutathione levels of the diabetic rats after treatment. High levels of alkaline phosphatase (ALP), and alanine aminotransaminase (ALT), which are typical of oxidative ...

  11. The accumulation of two neolignan in the leaves, stems, and flower of red betel ( Piper crocatum Ruiz and Pav.)

    International Nuclear Information System (INIS)

    Hartini, Y S; Nugroho, L

    2017-01-01

    Organ for the biosynthesis of secondary metabolite is not always a place for its biosynthesis, even the same compound was synthesized in the different organs in different plants. Neolignan is a secondary metabolite, known as an imunostimulant, synthesized through shikimic acid pathway with the important precursor is chorismic acid. The compound was known to be accumulated in the roots, stems and leaves of Piper regnellii with the concentration varies depending on the type of neolignan. It has been investigated the accumulation of two compound neolignans (Pc-1 and Pc-2) isolated from the methanol extract of red betel leaf ( Piper crocatum Ruiz and Pav.) in the leaves, stems, and flowers of red betel. Chromatographic methods used was Gas Chromatography-Mass Spectrometry (GC-MS). Chromatogram of GC-MS showed that the Pc-1 with purity of 100%, m/z 460.3 could be detected at the minute of 29.986, while the Pc-2 with purity of 96.681%, m/z 418.3 was detected at the minute of 29.495. The research was then continued to investigate the existence and accumulation of both compounds in leaves, stems, and flowers of red betel. The GC-MS chromatogram shows that Pc-1 and Pc-2 could be detected in the leaves, stem and flower with various concentration among plant organs. Moreover, leaves contained the highest concentration of Pc-1 and Pc-2 compared to other plant organs. (paper)

  12. The accumulation of two neolignan in the leaves, stems, and flower of red betel (Piper crocatum Ruiz & Pav.)

    Science.gov (United States)

    Hartini, Y. S.; Nugroho, L.

    2017-05-01

    Organ for the biosynthesis of secondary metabolite is not always a place for its biosynthesis, even the same compound was synthesized in the different organs in different plants. Neolignan is a secondary metabolite, known as an imunostimulant, synthesized through shikimic acid pathway with the important precursor is chorismic acid. The compound was known to be accumulated in the roots, stems and leaves of Piper regnellii with the concentration varies depending on the type of neolignan. It has been investigated the accumulation of two compound neolignans (Pc-1 and Pc-2) isolated from the methanol extract of red betel leaf (Piper crocatum Ruiz & Pav.) in the leaves, stems, and flowers of red betel. Chromatographic methods used was Gas Chromatography-Mass Spectrometry (GC-MS). Chromatogram of GC-MS showed that the Pc-1 with purity of 100%, m/z 460.3 could be detected at the minute of 29.986, while the Pc-2 with purity of 96.681%, m/z 418.3 was detected at the minute of 29.495. The research was then continued to investigate the existence and accumulation of both compounds in leaves, stems, and flowers of red betel. The GC-MS chromatogram shows that Pc-1 and Pc-2 could be detected in the leaves, stem and flower with various concentration among plant organs. Moreover, leaves contained the highest concentration of Pc-1 and Pc-2 compared to other plant organs.

  13. Vegetative propagation by root and stem cuttings of Leptadenia ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the possibilities of the propagation of Leptadenia hastata cuttings during the 3 seasons of the year in Sahel. The cuttings of 20 cm of length, collected from the basal, apical and root parts of the plants, were used. Study investigations consisted in observing the buds and leaves ...

  14. The ROOT and STEM of a Fruitful Business Education

    Science.gov (United States)

    Badua, Frank

    2015-01-01

    The author discusses the role of the liberal arts in a business curriculum for an increasingly science, technology, engineering, and mathematics (STEM)-centered world. The author introduces the rhetoric, orthography, ontology, and teleology (ROOT) disciplines, and links them to the traditional liberal arts foundation of higher education. The…

  15. Antimosquito Phenylpropenoids from the Stem and Root Barks of ...

    African Journals Online (AJOL)

    Michael Horsfall

    The plant species was identified on site and its identity was further confirmed at the Herbarium of the. Department of Botany, University of Dar es Salaam, where a voucher specimen is deposited. Extraction and Isolation: The air dried and pulverized root and stem barks were extracted sequentially with CHCl3 and MeOH, 2 x ...

  16. Enhanced Conjugation of Auxin by GH3 Enzymes Leads to Poor Adventitious Rooting in Carnation Stem Cuttings

    Directory of Open Access Journals (Sweden)

    Antonio Cano

    2018-04-01

    Full Text Available Commercial carnation (Dianthus caryophyllus cultivars are vegetatively propagated from axillary stem cuttings through adventitious rooting; a process which is affected by complex interactions between nutrient and hormone levels and is strongly genotype-dependent. To deepen our understanding of the regulatory events controlling this process, we performed a comparative study of adventitious root (AR formation in two carnation cultivars with contrasting rooting performance, “2101–02 MFR” and “2003 R 8”, as well as in the reference cultivar “Master”. We provided molecular evidence that localized auxin response in the stem cutting base was required for efficient adventitious rooting in this species, which was dynamically established by polar auxin transport from the leaves. In turn, the bad-rooting behavior of the “2003 R 8” cultivar was correlated with enhanced synthesis of indole-3-acetic acid conjugated to aspartic acid by GH3 proteins in the stem cutting base. Treatment of stem cuttings with a competitive inhibitor of GH3 enzyme activity significantly improved rooting of “2003 R 8”. Our results allowed us to propose a working model where endogenous auxin homeostasis regulated by GH3 proteins accounts for the cultivar dependency of AR formation in carnation stem cuttings.

  17. Enhanced Conjugation of Auxin by GH3 Enzymes Leads to Poor Adventitious Rooting in Carnation Stem Cuttings.

    Science.gov (United States)

    Cano, Antonio; Sánchez-García, Ana Belén; Albacete, Alfonso; González-Bayón, Rebeca; Justamante, María Salud; Ibáñez, Sergio; Acosta, Manuel; Pérez-Pérez, José Manuel

    2018-01-01

    Commercial carnation ( Dianthus caryophyllus ) cultivars are vegetatively propagated from axillary stem cuttings through adventitious rooting; a process which is affected by complex interactions between nutrient and hormone levels and is strongly genotype-dependent. To deepen our understanding of the regulatory events controlling this process, we performed a comparative study of adventitious root (AR) formation in two carnation cultivars with contrasting rooting performance, "2101-02 MFR" and "2003 R 8", as well as in the reference cultivar "Master". We provided molecular evidence that localized auxin response in the stem cutting base was required for efficient adventitious rooting in this species, which was dynamically established by polar auxin transport from the leaves. In turn, the bad-rooting behavior of the "2003 R 8" cultivar was correlated with enhanced synthesis of indole-3-acetic acid conjugated to aspartic acid by GH3 proteins in the stem cutting base. Treatment of stem cuttings with a competitive inhibitor of GH3 enzyme activity significantly improved rooting of "2003 R 8". Our results allowed us to propose a working model where endogenous auxin homeostasis regulated by GH3 proteins accounts for the cultivar dependency of AR formation in carnation stem cuttings.

  18. Comparison of the Immunomodulatory Properties of Root and Leaves of Arctium Lappa (Burdock in Vitro

    Directory of Open Access Journals (Sweden)

    Hasan Namdar Ahmadabad

    2017-10-01

    Full Text Available Background: The roots and leaves of Arctium lappa (burdock have been used for different therapeutic purposes, especially for diseases linked to chronic inflammation. Objectives: The present study was designed to evaluate and compare the immunomodulatory activities of root extract of burdock and leaves extract of burdock in vitro. Methods: In this experimental study, PHA- or LPS-stimulated splenocytes were treated with different concentrations of root or leaves extract of burdock and proliferation of splenocytes measured by MTT assay. The levels of IFN-γ and IL4 in the supernatants of PHA-stimulated splenocytes determined using ELISA. We also studied the effects of root and leaves extract of burdock on Nitric Oxide production by LPS-stimulated macrophages using the Griess reagent. The data were analyzed by one-way ANOVA followed by Tukey’s post-test using GraphPad Prism software, version 5.0. Results: Our findings showed that both root and leaves extract of burdock have suppressive effects on LPS-stimulated splenocytes proliferation, IL-4 secretion from PHA-stimulated splenocytes, and NO production from LPS-stimulated macrophage and stimulatory effects on PHA-stimulated splenocytes proliferation, and IFN-γ secretion from PHA-stimulated splenocytes. Although both root and leaves extract of burdock had similar immunomodulatory effects in vitro, stronger immunomodulatory effects seen in root extract of burdock. Conclusions: According to our results, we suggest that root of burdock is better option than leaves of burdock in modulation immune responses and inflammations.

  19. Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems.

    Science.gov (United States)

    Narayanan, Narayanan; Beyene, Getu; Chauhan, Raj Deepika; Gaitán-Solis, Eliana; Grusak, Michael A; Taylor, Nigel; Anderson, Paul

    2015-11-01

    Iron is extremely abundant in the soil, but its uptake in plants is limited due to low solubility in neutral or alkaline soils. Plants can rely on rhizosphere acidification to increase iron solubility. AtVIT1 was previously found to be involved in mediating vacuolar sequestration of iron, which indicates a potential application for iron biofortification in crop plants. Here, we have overexpressed AtVIT1 in the starchy root crop cassava using a patatin promoter. Under greenhouse conditions, iron levels in mature cassava storage roots showed 3-4 times higher values when compared with wild-type plants. Significantly, the expression of AtVIT1 showed a positive correlation with the increase in iron concentration of storage roots. Conversely, young leaves of AtVIT1 transgenic plants exhibit characteristics of iron deficiency such as interveinal chlorosis of leaves (yellowing) and lower iron concentration when compared with the wild type plants. Interestingly, the AtVIT1 transgenic plants showed 4 and 16 times higher values of iron concentration in the young stem and stem base tissues, respectively. AtVIT1 transgenic plants also showed 2-4 times higher values of iron content when compared with wild-type plants, with altered partitioning of iron between source and sink tissues. These results demonstrate vacuolar iron sequestration as a viable transgenic strategy to biofortify crops and to help eliminate micronutrient malnutrition in at-risk human populations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. [Research on quality changes in ginseng stems and leaves before and after frost].

    Science.gov (United States)

    Zhao, Yan; Ma, Shuang; Cai, En-Bo; Liu, Shuang-Li; Yang, He; Zhang, Lian-Xue; Wang, Shi-Jie

    2014-08-01

    The present study is to investigate the quality changes of ginseng stems and leaves before and after frost. The contents changes of ginsenoside, free amino acid, and total phenolic compounds, as well as DPPH radical scavenging effect before and after frost were measured. The content of 9 ginsenoside monomer in ginseng stems was decreased except for Rg, and Re after frost, but in ginseng leaves was all decreased. The total content of amino acids was decreased in ginseng stems after frost, while increased in ginseng leaves. The content of phenolic compounds in ginseng stems and leaves were both decreased after frost while the ability of DPPH radical scavenging was improved. The factor of frost has great impact on the quality of ginseng stems and leaves.

  1. Origin, timing, and gene expression profile of adventitious rooting in Arabidopsis hypocotyls and stems.

    Science.gov (United States)

    Welander, Margareta; Geier, Thomas; Smolka, Anders; Ahlman, Annelie; Fan, Jing; Zhu, Li-Hua

    2014-02-01

    Adventitious root (AR) formation is indispensable for vegetative propagation, but difficult to achieve in many crops. Understanding its molecular mechanisms is thus important for such species. Here we aimed at developing a rooting protocol for direct AR formation in stems, locating cellular AR origins in stems and exploring molecular differences underlying adventitious rooting in hypocotyls and stems. In-vitro-grown hypocotyls or stems of wild-type and transgenic ecotype Columbia (Col-0) of Arabidopsis thaliana were rooted on rooting media. Anatomy of AR formation, qRT-PCR of some rooting-related genes and in situ GUS expression were carried out during rooting from hypocotyls and stems. We developed a rooting protocol for AR formation in stems and traced back root origins in stems by anatomical and in situ expression studies. Unlike rooting in hypocotyls, rooting in stems was slower, and AR origins were mainly from lateral parenchyma of vascular bundles and neighboring starch sheath cells as well as, to a lesser extent, from phloem cap and xylem parenchyma. Transcript levels of GH3-3, LBD16, LBD29, and LRP1 in hypocotyls and stems were similar, but transcript accumulation was delayed in stems. In situ expression signals of DR5::GUS, LBD16::GUS, LBD29::GUS, and rolB::GUS reporters in stems mainly occurred at the root initiation sites, suggesting their involvement in AR formation. We have developed an efficient rooting protocol using half-strength Lepoivre medium for studying AR formation in stems, traced back the cellular AR origins in stems, and correlated expression of rooting-related genes with root initiation sites.

  2. Rooting of stem segments from fig tree cultivars

    Directory of Open Access Journals (Sweden)

    Rayane Barcelos Bisi

    2016-06-01

    Full Text Available Although Brazil is the largest fig (Ficus carica L. producer in the Southern Hemisphere, it mainly uses only one cultivar, ‘Roxo de Valinhos’. In addition, propagation is almost entirely through hardwood cuttings. Therefore, the aim of this study was to establish a propagation method that provides more successful rooting of stem segments of fig cultivars for the purpose of expanding the genetic base of the fig tree. The cultivars used were ‘Brunswick’, ‘Calabacita’, ‘Negro de Bursa’, ‘Mini Figo’, ‘Lampa Preta’, ‘Lemon’, ‘Troiano’,’ Nazaré’, ‘Três num Prato’, ‘Princesa’, ‘Colo de Dama’, ‘Montes’, ‘Bêbera Branca’, ‘Pingo de Mel’, and ‘Roxo de Valinhos’. The propagation methods used were layering, hardwood cuttings, nodal segments, herbaceous cuttings originating from the removal of sprouts, and herbaceous cuttings obtained during growth. We found that the propagation method influences the rooting of stem segments, and cultivars differ in their rooting potential.

  3. Nootropic potential of Ashwagandha leaves: Beyond traditional root extracts.

    Science.gov (United States)

    Wadhwa, Renu; Konar, Arpita; Kaul, Sunil C

    2016-05-01

    Rapidly increasing aging population and environmental stressors are the two main global concerns of the modern society. These have brought in light rapidly increasing incidence of a variety of pathological conditions including brain tumors, neurodegenerative & neuropsychiatric disorders, and new challenges for their treatment. The overlapping symptoms, complex etiology and lack of full understanding of the brain structure and function to-date further complicate these tasks. On the other hand, several herbal reagents with a long history of their use have been asserted to possess neurodifferentiation, neuroregenerative and neuroprotective potentials, and hence been recommended as supplement to enhance and maintain brain health and function. Although they have been claimed to function by holistic approach resulting in maintaining body homeostasis and brain health, there are not enough laboratory studies in support to these and mechanism(s) of such beneficial activities remain largely undefined. One such herb is Ashwagandha, also called "Queen of Ayurveda" for its popular use in Indian traditional home medicine because of its extensive benefits including anticancer, anti-stress and remedial potential for aging and neurodegenerative pathologies. However, active principles and underlying mechanism(s) of action remain largely unknown. Here we provide a review on the effects of Ashwagandha extracts and active principles, and underlying molecular mechanism(s) for brain pathologies. We highlight our findings on the nootropic potential of Ashwagandha leaves. The effects of Ashwagandha leaf extracts are multidimensional ranging from differentiation of neuroblastoma and glioma cells, reversal of Alzheimer and Parkinson's pathologies, protection against environmental neurotoxins and enhancement of memory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Chemical Constituents from Stem Bark and Roots of Clausena anisata

    Directory of Open Access Journals (Sweden)

    Etienne Dongo

    2012-11-01

    Full Text Available Phytochemical investigations on the stem bark and roots of the tropical shrub Clausena anisata led to the isolation and characterization three carbazole alkaloids: girinimbine, murrayamine-A and ekeberginine; two peptide derivatives: aurantiamide acetate and N-benzoyl-l-phenylalaninyl-N-benzoyl-l-phenylalaninate; and a mixture of two phytosterols: sitosterol and stigmasterol. The structures of these compounds were established by nuclear magnetic resonance (1H-NMR, 13C-NMR, COSY, HSQC, HMQC, HMBC and NOESY spectroscopy and electrospray ionization mass spectrometry (MS.

  5. Distribution of radiocesium in bamboo leaves, roots and shoots. Application of an imaging plate

    International Nuclear Information System (INIS)

    Minowa, Haruka; Ogata, Yoshimune; Satou, Yukihiko

    2012-01-01

    When radiocesium is taken into a wild plant accidentally, it will circulate for a certain period of time. Bamboo is that in some cases relative high concentration of radiocesium have been reported. Radiocesium is considered to be concentrated in bamboo shoot by translocation in plants from bamboo leaves or roots. In this study, to investigate the behavior of radiocesium, shoots, roots, branches and leaves of bamboo (Phyllostadhys edulis) were collected at Yamakiya area, Kawamata-machi, Date-gun, Fukushima Prefecture. Radiation image analysis was conducted using an imaging plate BAS 2040 (Fujifilm) and an image analyzer Typhoon FLA7000 (GE Healthcare Japan Corp.). The content of radiocesium was about 500 Bq for "1"3"4Cs and 700 Bq for "1"3"7Cs per the bamboo shoot (500 g approximately). In the edible parts of bamboo shoots, the skin of bamboo shoots and leaves of newly-grown, radiocesium uptake was in high concentration, especially at the tip. (author)

  6. Physiological minimum temperatures for root growth in seven common European broad-leaved tree species.

    Science.gov (United States)

    Schenker, Gabriela; Lenz, Armando; Körner, Christian; Hoch, Günter

    2014-03-01

    Temperature is the most important factor driving the cold edge distribution limit of temperate trees. Here, we identified the minimum temperatures for root growth in seven broad-leaved tree species, compared them with the species' natural elevational limits and identified morphological changes in roots produced near their physiological cold limit. Seedlings were exposed to a vertical soil-temperature gradient from 20 to 2 °C along the rooting zone for 18 weeks. In all species, the bulk of roots was produced at temperatures above 5 °C. However, the absolute minimum temperatures for root growth differed among species between 2.3 and 4.2 °C, with those species that reach their natural distribution limits at higher elevations also tending to have lower thermal limits for root tissue formation. In all investigated species, the roots produced at temperatures close to the thermal limit were pale, thick, unbranched and of reduced mechanical strength. Across species, the specific root length (m g(-1) root) was reduced by, on average, 60% at temperatures below 7 °C. A significant correlation of minimum temperatures for root growth with the natural high elevation limits of the investigated species indicates species-specific thermal requirements for basic physiological processes. Although these limits are not necessarily directly causative for the upper distribution limit of a species, they seem to belong to a syndrome of adaptive processes for life at low temperatures. The anatomical changes at the cold limit likely hint at the mechanisms impeding meristematic activity at low temperatures.

  7. Abscisic Acid Biosynthesis in Leaves and Roots of Xanthium strumarium1

    Science.gov (United States)

    Creelman, Robert A.; Gage, Douglas A.; Stults, John T.; Zeevaart, Jan A. D.

    1987-01-01

    Research on the biosynthesis of abscisic acid (ABA) has focused primarily on two pathways: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. We have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in 18O2. It was found that in stressed leaves three atoms of 18O from 18O2 are incorporated into the ABA molecule, and that the amount of 18O incorporated increases with time. One 18O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in 18O2 shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more 18O into the tertiary hydroxyl group at C-1′ after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 (carotenoid numbering scheme) plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, 18O is incorporated into ABA to a much lesser extent than it is in stressed leaves, whereas exogenously applied 14C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional 18O incorporated during 8′-hydroxylation of ABA to phaseic acid. PMID:16665768

  8. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves.

    Science.gov (United States)

    Ferracane, Rosalia; Graziani, Giulia; Gallo, Monica; Fogliano, Vincenzo; Ritieni, Alberto

    2010-01-20

    In this work the bioactive metabolic profile, the antioxidant activity and total phenolic content of burdock (Arctium lappa) seeds, leaves and roots were obtained. TEAC values and total phenolic content for hydro-alcoholic extracts of burdock ranged from 67.39 to 1.63 micromol Trolox equivalent/100g dry weight (DW), and from 2.87 to 45 g of gallic acid equivalent/100g DW, respectively. Phytochemical compounds were analyzed by liquid chromatography coupled to electrospray tandem mass spectrometry (LC/MS/MS) in negative mode. The main compounds of burdock extracts were caffeoylquinic acid derivatives, lignans (mainly arctiin) and various flavonoids. The occurrence of some phenolic acids (caffeic acid, chlorogenic acid and cynarin) in burdock seeds; arctiin, luteolin and quercetin rhamnoside in burdock roots; phenolic acids, quercetin, quercitrin and luteolin in burdock leaves was reported for the first time.

  9. Genotoxic evaluation of infusions of Urera baccifera leaves and roots in Allium cepa cells

    Directory of Open Access Journals (Sweden)

    Amanda L. Gindri

    2015-04-01

    Full Text Available Context: The aqueous extracts of Urera baccifera Wedd. leaves and roots are used to inflammatory and infectious diseases in Brazilian folk medicine. Oxalic acid, a substance co-related with toxicity and stinging, was already quantified in this plant. Aims: To evaluate the action of leaves and roots infusions (1, 30, 75 g/L and the oxalic acid standard on mitosis as indicative of presumably antimitotic and genotoxic actions, using the Allium cepa test. Methods: Oxalic acid was quantified in the roots and leaves infusions by High-performance liquid chromatography (HPLC-DAD, with the mobile phase of 25 mM phosphate buffer (pH 2.5: acetonitrile at 95:5 (v/v. To the genotoxicity test, onion bulbs were used. After the rootlets germination, each bulb was submitted for 24 h of the individual treatments. Were analyzed 1000 cells per bulb, in a total of 5000 cells per treatment. Results: Results showed that all concentrations of roots infusions induced chromosomes abnormalities, except for the highest, that caused a substantial inhibition in the mitosis, precluding to be observed abnormalities. In the leaves infusions, only the two higher concentrations caused the highest values of damage in the cellular cycle. The oxalic acid also caused abnormalities in the mitosis, and may be considered responsible by part of the genotoxic action of U. baccifera. Conclusions: Oxalic acid can be responsible by part of the chromosomal abnormalities caused by U. baccifera, although, there must have more metabolites that evoke the same effect promoting the genotoxic effect of this nettle.

  10. Antimicrobial Activity of Extracts from Leaves, Stems and Flowers of Euphorbia macroclada against plant pathogenic fungi

    Directory of Open Access Journals (Sweden)

    K. Al-Mughrabi

    2003-12-01

    Full Text Available Extracts drawn from dried and powdered flowers, stems and leaves of Euphorbia macroclada with some organic solvents were tested for antimicrobial effect against the fungi Verticillium dahliae, Fusarium oxysporum, Rhizopus stolonifer, Penicillium italicum, Rhizoctonia solani, Alternaria solani, Stemphylium solani, Cladosporium sp., Mucor sp., and Pythium sp. The strongest inhibitory effect of the extracts was observed against R. solani, V. dahliae, F. oxysporum, Pythium sp. and R. stolonifer. The weakest effect was against A. solani. Extracts from the stems had a stronger inhibitory effect than those from the flowers or leaves. Butanol was the best solvent to extract antimicrobial compounds from leaves, stems and flowers and was superior to chloroform, water and petroleum ether. Results clearly indicate that E. macroclada is a promising source of antimicrobial compounds.

  11. Investigating and modeling the pyrolysis kinetic of leaves and stems of pistachio trees for biofuel production

    Directory of Open Access Journals (Sweden)

    M Ostad Hoseini

    2016-09-01

    Full Text Available Introduction The lignocelluloses materials have high potential for producing various types of biofuels. These materials include various parts of plants, especially leaves and stems that are left without a specific usage after annual pruning. These residues can be used through slow or fast pyrolysis process for production of liquid and gaseous biofuels. The slow pyrolysis is taking place at temperatures below 500°C while fast pyrolysis process takes place at a temperature above 700°C. Various studies on production of biofuels from plant residues have shown that the temperature, heating rate and the resident time of pyrolysis process are the main factors that affect the final product quality. At present time, in Iran, there are more than 360 thousands hectares of pistachio growing fields which annually produce over 215 thousands metric tons residues which are mainly leaves and stems. The main objective of this study was to measure the heating properties of the powders prepared from the leaves and the stem of pistachio trees. These properties include higher heating value (HHV, lower heating value (LHV and thermal gravimetric analysis (TGA of the powders. Then the powders were separately pyrolysed and the kinetic of the pyrolysis process for producing charcoal from them was investigated. Materials and Methods In this research, leaves and stems of pistachio trees were initially analyzed to determine their chemical constituents including moisture content, volatile compounds, carbon (C, hydrogen (H, nitrogen (N, sulfur (S and oxygen (O content. Using these constituents the height heating value and low heating value for the leaves and the stems were determined. The thermal gravimetric analysis (TGA of the powders was made to select a proper heating temperature for pyrolysis of the powders. In each experiment about 10 g of powder powders were pyrolyzed to produce char. Based on TGA results, the pyrolysis experiments were performed at 350, 400, 450 and

  12. Phosphorus application reduces aluminum toxicity in two Eucalyptus clones by increasing its accumulation in roots and decreasing its content in leaves.

    Science.gov (United States)

    Teng, Weichao; Kang, Yachao; Hou, Wenjuan; Hu, Houzhen; Luo, Wenji; Wei, Jie; Wang, Linghui; Zhang, Boyu

    2018-01-01

    Under acidic conditions, aluminum (Al) toxicity is an important factor limiting plant productivity; however, the application of phosphorus (P) might alleviate the toxic effects of Al. In this study, seedlings of two vegetatively propagated Eucalyptus clones, E. grandis × E. urophylla 'G9' and E. grandis × E. urophylla 'DH32-29'were subjected to six treatments (two levels of Al stress and three levels of P). Under excessive Al stress, root Al content was higher, whereas shoot and leaf Al contents were lower with P application than those without P application. Further, Al accumulation was higher in the roots, but lower in the shoots and leaves of G9 than in those of DH32-29. The secretion of organic acids was higher under Al stress than under no Al stress. Further, under Al stress, the roots of G9 secreted more organic acids than those of DH32-29. With an increase in P supply, Al-induced secretion of organic acids from roots decreased. Under Al stress, some enzymes, including PEPC, CS, and IDH, played important roles in organic acid biosynthesis and degradation. Thus, our results indicate that P can reduce Al toxicity via the fixation of elemental Al in roots and restriction of its transport to stems and leaves, although P application cannot promote the secretion of organic acid anions. Further, the higher Al-resistance of G9 might be attributed to the higher Al accumulation in and organic acid anion secretion from roots and the lower levels of Al in leaves.

  13. Phosphorus application reduces aluminum toxicity in two Eucalyptus clones by increasing its accumulation in roots and decreasing its content in leaves.

    Directory of Open Access Journals (Sweden)

    Weichao Teng

    Full Text Available Under acidic conditions, aluminum (Al toxicity is an important factor limiting plant productivity; however, the application of phosphorus (P might alleviate the toxic effects of Al. In this study, seedlings of two vegetatively propagated Eucalyptus clones, E. grandis × E. urophylla 'G9' and E. grandis × E. urophylla 'DH32-29'were subjected to six treatments (two levels of Al stress and three levels of P. Under excessive Al stress, root Al content was higher, whereas shoot and leaf Al contents were lower with P application than those without P application. Further, Al accumulation was higher in the roots, but lower in the shoots and leaves of G9 than in those of DH32-29. The secretion of organic acids was higher under Al stress than under no Al stress. Further, under Al stress, the roots of G9 secreted more organic acids than those of DH32-29. With an increase in P supply, Al-induced secretion of organic acids from roots decreased. Under Al stress, some enzymes, including PEPC, CS, and IDH, played important roles in organic acid biosynthesis and degradation. Thus, our results indicate that P can reduce Al toxicity via the fixation of elemental Al in roots and restriction of its transport to stems and leaves, although P application cannot promote the secretion of organic acid anions. Further, the higher Al-resistance of G9 might be attributed to the higher Al accumulation in and organic acid anion secretion from roots and the lower levels of Al in leaves.

  14. Comparative proteomics of leaves found at different stem positions of maize seedlings.

    Science.gov (United States)

    Chen, Yi-Bo; Wang, Dan; Ge, Xuan-Liang; Zhao, Biligen-Gaowa; Wang, Xu-Chu; Wang, Bai-Chen

    2016-07-01

    To better understand the roles of leaves at different stem positions during plant development, we measured the physiological properties of leaves 1-4 on maize seedling stems, and performed a proteomics study to investigate the differences in protein expression in the four leaves using two-dimensional difference gel electrophoresis and tandem mass spectrometry in conjunction with database searching. A total of 167 significantly differentially expressed protein spots were found and identified. Of these, 35% are involved in photosynthesis. By further analysis of the data, we speculated that in leaf 1 the seedling has started to transition from a heterotroph to an autotroph, development of leaf 2 is the time at which the seedling fully transitions from a heterotroph to an autotroph, and leaf maturity was reached only with fully expanded leaves 3 and 4, although there were still some protein expression differences in the two leaves. These results suggest that the different leaves make different contributions to maize seedling growth via modulation of the expression of the photosynthetic proteins. Together, these results provide insight into the roles of the different maize leaves as the plant develops from a heterotroph to an autotroph. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Mechanisms of copper stress alleviation in Citrus trees after metal uptake by leaves or roots.

    Science.gov (United States)

    Hippler, Franz Walter Rieger; Petená, Guilherme; Boaretto, Rodrigo Marcelli; Quaggio, José Antônio; Azevedo, Ricardo Antunes; Mattos-Jr, Dirceu

    2018-05-01

    Nutritional disorders caused by copper (Cu) have affected citrus orchards. Since Cu is foliar sprayed as a pesticide to control citrus diseases, this metal accumulates in the soil. Thereby, we evaluated the effects of Cu leaf absorption after spray of different metal sources, as well as roots absorption on growth, nutritional status, and oxidative stress of young sweet orange trees. Two experiments were carried out under greenhouse conditions. The first experiment was set up with varying Cu levels to the soil (nil Cu, 0.5, 2.0, 4.0 and 8.0 g of Cu per plant as CuSO 4 .5H 2 O), whereas the second experiment with Cu application via foliar sprays (0.5 and 2.0 g of Cu per plant) and comparing two metal sources (CuSO 4 .5H 2 O or Cu(OH) 2 ). Copper was mainly accumulated in roots with soil supply, but an increase of oxidative stress levels was observed in leaves. On the other hand, Cu concentrations were higher in leaves that received foliar sprays, mainly as Cu(OH) 2 . However, when sulfate was foliar sprayed, plants exhibited more symptoms of injuries in the canopy with decreased chlorophyll contents and increased hydrogen peroxide and lipid peroxidation levels. Copper toxicity was characterized by sap leakage from the trunk and twigs, which is the first report of this specific Cu excess symptom in woody trees. Despite plants with 8.0 g of Cu soil-applied exhibiting the sap leakage, growth of new plant parts was more vigorous with lower oxidative stress levels and injuries compared to those with 4.0 g of Cu soil-applied (without sap leakage). With the highest level of Cu applied via foliar as sulfate, Cu was eliminated by plant roots, increasing the rhizospheric soil metal levels. Despite citrus likely exhibiting different mechanisms to reduce the damages caused by metal toxicity, such as responsive enzymatic antioxidant system, metal accumulation in the roots, and metal exclusion by roots, excess Cu resulted in damages on plant growth and metabolism when the

  16. Immunologically related lectins from stems and roots of developing seedlings of Cucurbita ficifolia: purification and some properties of root and stem lectins

    Directory of Open Access Journals (Sweden)

    Irena Lorenc-Kubis

    2014-01-01

    Full Text Available Hemagglutinating activity has been found in acetate extracts from roots and stems of squash seedlings (Cucurbita ficifolia. The hemaglutinating activity changes during seeds germination and seedling development. Dot blot and Western blot techniques have shown that proteins from these vegetative tissues cross-reacted with antibodies raised against endogenous cotyledons lectin CLBa and Con A.Lectins were isolated from stems and roots of 6-day old seedlings by precipitation with ethanol, affinity chromatography on Con A-Sepharose, gel filtration on Bio-gel P100 and separated by electrophoresis on polyacrylamide gel. Three purified lectins (RLA1, RLA2, RLA3 were obtained from roots and four from stems (SLA1, SLA2, SLA3, SLA4. The purified lectins from roots and stems agglutinated all human red blood cells, but sheep erythrocytes were most sensitive to agglutination. The hemagglutination of the root lectins RLA2 and RLA3 was inhibited by a very low concentration of arabinose, while RLA1, of xylose and Ga1NAc. Arabinose and Xylose were also found to be the most effective inhibitors of all stem lectins.

  17. Effects of plant growth promoting rhizobacteria (PGPR on rooting and root growth of kiwifruit (Actinidia deliciosa stem cuttings

    Directory of Open Access Journals (Sweden)

    YASAR ERTURK

    2010-01-01

    Full Text Available The effects of plant growth promoting rhizobacteria (PGPR on the rooting and root growth of semi-hardwood and hardwood kiwifruit stem cuttings were investigated. The PGPR used were Bacillus RC23, Paenibacillus polymyxa RC05, Bacillus subtilis OSU142, Bacillus RC03, Comamonas acidovorans RC41, Bacillus megaterium RC01 and Bacillus simplex RC19. All the bacteria showed indole-3-acetic acid (IAA producing capacity. Among the PGPR used, the highest rooting ratios were obtained at 47.50% for semi-hardwood stem cuttings from Bacillus RC03 and Bacillus simplex RC19 treatments and 42.50% for hardwood stem cuttings from Bacillus RC03. As well, Comamonas acidovorans RC41 inoculations indicated higher value than control treatments. The results suggest that these PGPR can be used in organic nursery material production and point to the feasibility of synthetic auxin (IBA replacement by organic management based on PGPR.

  18. Determination of Cu, Fe, Zn Elements in Soil, Root Tea Plants, Tea Leaves, and Tea Beverage

    International Nuclear Information System (INIS)

    Supriyanto; Zainul-Kamal

    2006-01-01

    One of the causes of land quality damage was due to the pollution of Cu, Fe, and Zn so that it could directly and also indirectly cause the occurrence of pollution of plants which is growing on it for example tea plant that has been used by society for making of tea beverage. The sampling of soil, root tea plants, tea leaves and tea beverage samples were done in June, 2005 at sub district of Keparakan, Temanggung, Central Java. The purpose of research was to determine the content of Cu, Fe and Zn in soil, root tea plants, tea leaves and tea beverage. The research was done by digesting the sample with nitric acid until the clear solution was obtained, then it was added by aquabidest until 10.0 ml. Determination of Cu, Fe and Zn content used AAS instrument. The average concentration of Cu Fe and Zn obtained in deep soil samples area 0.155 ± 0.005 ppm, 127.16 ± 2.65 ppm, and 0.68 ± 0.02 ppm respectively, in surface soil samples are 0.355 ± 0.025 ppm, 360.59 ± 13.17 ppm and 0.78 ± 0.01 ppm respectively, in root of tea plants samples area 0.241 ± 0.098 ppm, 13.16 ± 1.34 ppm and 2.64 ± 0.06 ppm respectively, in tea leaves are 0.211 ± 0.013 ppm, 3.35 ± 0.886 ppm, and 0.795 ± 0.016 ppm respectively and in tea beverage 0.142 ± 0.086 ppm, 6.11 ± 0.35 ppm and 0.66 ± 0.02 ppm respectively. (author)

  19. Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits.

    Science.gov (United States)

    Köcher, Paul; Horna, Viviana; Leuschner, Christoph

    2013-08-01

    The functional role of internal water storage is increasingly well understood in tropical trees and conifers, while temperate broad-leaved trees have only rarely been studied. We examined the magnitude and dynamics of the use of stem water reserves for transpiration in five coexisting temperate broad-leaved trees with largely different morphology and physiology (genera Fagus, Fraxinus, Tilia, Carpinus and Acer). We expected that differences in water storage patterns would mostly reflect species differences in wood anatomy (ring vs. diffuse-porous) and wood density. Sap flux density was recorded synchronously at five positions along the root-to-branch flow path of mature trees (roots, three stem positions and branches) with high temporal resolution (2 min) and related to stem radius changes recorded with electronic point dendrometers. The daily amount of stored stem water withdrawn for transpiration was estimated by comparing the integrated flow at stem base and stem top. The temporal coincidence of flows at different positions and apparent time lags were examined by cross-correlation analysis. Our results confirm that internal water stores play an important role in the four diffuse-porous species with estimated 5-12 kg day(-1) being withdrawn on average in 25-28 m tall trees representing 10-22% of daily transpiration; in contrast, only 0.5-2.0 kg day(-1) was withdrawn in ring-porous Fraxinus. Wood density had a large influence on storage; sapwood area (diffuse- vs. ring-porous) may be another influential factor but its effect was not significant. Across the five species, the length of the time lag in flow at stem top and stem base was positively related to the size of stem storage. The stem stores were mostly exhausted when the soil matrix potential dropped below -0.1 MPa and daily mean vapor pressure deficit exceeded 3-5 hPa. We conclude that stem storage is an important factor improving the water balance of diffuse-porous temperate broad-leaved trees in moist

  20. Phytochemical Analysis and Antimicrobial Activities of Methanolic Extracts of Leaf, Stem and Root from Different Varieties of Labisa pumila Benth

    Directory of Open Access Journals (Sweden)

    Ehsan Karimi

    2011-05-01

    Full Text Available A local herb, Kacip Fatimah, is famous amongst Malay women for its uses in parturition; however, its phytochemical contents have not been fully documented. Therefore, a study was performed to evaluate the phenolics, flavonoids, and total saponin contents, and antibacterial and antifungal properties of the leaf, stem and root of three varieties of Labisia pumila Benth. Total saponins were found to be higher in the leaves of all three varieties, compared to the roots and stems. Leaves of var. pumila exhibited significantly higher total saponin content than var. alata and lanceolata, with values of 56.4, 43.6 and 42.3 mg diosgenin equivalent/g dry weight, respectively. HPLC analyses of phenolics and flavonoids in all three varieties revealed the presence of gallic acid, caffeic acid, rutin, and myricetin in all plant parts. Higher levels of flavonoids (rutin, quercitin, kaempferol were observed in var. pumila compared with alata and lanceolata, whereas higher accumulation of phenolics (gallic acid, pyrogallol was recorded in var. alata, followed by pumila and lanceolata. Antibacterial activities of leaf, stem and root extracts of all varieties determined against both Gram positive (Micrococcus luteus, Bacillus subtilis B145, Bacillus cereus B43, Staphylococcus aureus S1431 and Gram negative (Enterobacter aerogenes, Klebsiella pneumonia K36, Escherichia coli E256, Pseudomonas aeruginosa PI96 pathogens showed that crude methanolic extracts are active against these bacteria at low concentrations, albeit with lower antibacterial activity compared to kanamycin used as the control. Antifungal activity of methanolic extracts of all plant parts against Fusarium sp., Candida sp. and Mucor using the agar diffusion disc exhibited moderate to appreciable antifungal activities compared to streptomycin used as positive control.

  1. Carbon allocation to young loblolly pine roots and stems

    Science.gov (United States)

    Paul P. Kormanik; Shi-Jean S. Sung; Clanton C. Black; Stanley J. Zarnoch

    1995-01-01

    This study of root biomass with loblolly pine was designed with the following objectives: (1) to measure the root biomass for a range of individual trees between the ages of 3 and 10 years on different artificial and natural forest sites and (2) to relate the root biomass to aboveground biomass components.

  2. Molecular Transducers from Roots Are Triggered in Arabidopsis Leaves by Root-Knot Nematodes for Successful Feeding Site Formation: A Conserved Post-Embryogenic De novo Organogenesis Program?

    Directory of Open Access Journals (Sweden)

    Rocío Olmo

    2017-05-01

    Full Text Available Root-knot nematodes (RKNs; Meloidogyne spp. induce feeding cells (giant cells; GCs inside a pseudo-organ (gall from still unknown root cells. Understanding GCs ontogeny is essential to the basic knowledge of RKN–plant interaction and to discover novel and effective control strategies. Hence, we report for the first time in a model plant, Arabidopsis, molecular, and cellular features concerning ectopic de novo organogenesis of RKNs GCs in leaves. RKNs induce GCs in leaves with irregular shape, a reticulated cytosol, and fragmented vacuoles as GCs from roots. Leaf cells around the nematode enter G2-M shown by ProCycB1;1:CycB1;1(NT-GUS expression, consistent to multinucleated GCs. In addition, GCs nuclei present irregular and varied sizes. All these characteristics mentioned, being equivalent to GCs in root-galls. RKNs complete their life cycle forming a gall/callus-like structure in the leaf vascular tissues resembling auxin-induced callus with an auxin-response maxima, indicated by high expression of DR5::GUS that is dependent on leaf auxin-transport. Notably, induction of leaves calli/GCs requires molecular components from roots crucial for lateral roots (LRs, auxin-induced callus and root-gall formation, i.e., LBD16. Hence, LBD16 is a xylem pole pericycle specific and local marker in LR primordia unexpectedly induced locally in the vascular tissue of leaves after RKN infection. LBD16 is also fundamental for feeding site formation as RKNs could not stablish in 35S::LBD16-SRDX leaves, and likely it is also a conserved molecular hub between biotic and developmental signals in Arabidopsis either in roots or leaves. Moreover, RKNs induce the ectopic development of roots from leaf and root-galls, also formed in mutants compromised in LR formation, arf7/arf19, slr, and alf4. Therefore, nematodes must target molecular signatures to induce post-embryogenic de novo organogenesis through the LBD16 callus formation pathway partially different from those

  3. Foliar or root exposures to smelter particles: Consequences for lead compartmentalization and speciation in plant leaves

    International Nuclear Information System (INIS)

    Schreck, Eva; Dappe, Vincent; Sarret, Géraldine; Sobanska, Sophie; Nowak, Dorota; Nowak, Jakub; Stefaniak, Elżbieta Anna; Magnin, Valérie; Ranieri, Vincent; Dumat, Camille

    2014-01-01

    In urban areas with high fallout of airborne particles, metal uptake by plants mainly occurs by foliar pathways and can strongly impact crop quality. However, there is a lack of knowledge on metal localization and speciation in plants after pollution exposure, especially in the case of foliar uptake. In this study, two contrasting crops, lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), were exposed to Pb-rich particles emitted by a Pb-recycling factory via either atmospheric or soil application. Pb accumulation in plant leaves was observed for both ways of exposure. The mechanisms involved in Pb uptake were investigated using a combination of microscopic and spectroscopic techniques (electron microscopy, laser ablation, Raman microspectroscopy, and X-ray absorption spectroscopy). The results show that Pb localization and speciation are strongly influenced by the type of exposure (root or shoot pathway) and the plant species. Foliar exposure is the main pathway of uptake, involving the highest concentrations in plant tissues. Under atmospheric fallouts, Pb-rich particles were strongly adsorbed on the leaf surface of both plant species. In lettuce, stomata contained Pb-rich particles in their apertures, with some deformations of guard cells. In addition to PbO and PbSO 4 , chemical forms that were also observed in pristine particles, new species were identified: organic compounds (minimum 20%) and hexagonal platy crystals of PbCO 3 . In rye-grass, the changes in Pb speciation were even more egregious: Pb–cell wall and Pb–organic acid complexes were the major species observed. For root exposure, identified here as a minor pathway of Pb transfer compared to foliar uptake, another secondary species, pyromorphite, was identified in rye-grass leaves. Finally, combining bulk and spatially resolved spectroscopic techniques permitted both the overall speciation and the minor but possibly highly reactive lead species to be determined in order to better

  4. Foliar or root exposures to smelter particles: Consequences for lead compartmentalization and speciation in plant leaves

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Eva [Université de Toulouse, INP, UPS, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet-Tolosan (France); CNRS, EcoLab, 31326 Castanet-Tolosan (France); Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse (France); Dappe, Vincent [LASIR (UMR CNRS 8516), Université de Lille 1, Bât. C5, 59655 Villeneuve d' Ascq Cedex (France); Sarret, Géraldine [ISTerre, UMR 5275, Université Grenoble I, CNRS, F-38041 Grenoble (France); Sobanska, Sophie [LASIR (UMR CNRS 8516), Université de Lille 1, Bât. C5, 59655 Villeneuve d' Ascq Cedex (France); Nowak, Dorota; Nowak, Jakub; Stefaniak, Elżbieta Anna [Department of Chemistry, John Paul II Catholic University of Lublin, Al. Kraśnicka 102, 20-718 Lublin (Poland); Magnin, Valérie [ISTerre, UMR 5275, Université Grenoble I, CNRS, F-38041 Grenoble (France); Ranieri, Vincent [CEA-INAC, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Dumat, Camille, E-mail: camille.dumat@ensat.fr [Université de Toulouse, INP, UPS, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet-Tolosan (France); CNRS, EcoLab, 31326 Castanet-Tolosan (France)

    2014-04-01

    In urban areas with high fallout of airborne particles, metal uptake by plants mainly occurs by foliar pathways and can strongly impact crop quality. However, there is a lack of knowledge on metal localization and speciation in plants after pollution exposure, especially in the case of foliar uptake. In this study, two contrasting crops, lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), were exposed to Pb-rich particles emitted by a Pb-recycling factory via either atmospheric or soil application. Pb accumulation in plant leaves was observed for both ways of exposure. The mechanisms involved in Pb uptake were investigated using a combination of microscopic and spectroscopic techniques (electron microscopy, laser ablation, Raman microspectroscopy, and X-ray absorption spectroscopy). The results show that Pb localization and speciation are strongly influenced by the type of exposure (root or shoot pathway) and the plant species. Foliar exposure is the main pathway of uptake, involving the highest concentrations in plant tissues. Under atmospheric fallouts, Pb-rich particles were strongly adsorbed on the leaf surface of both plant species. In lettuce, stomata contained Pb-rich particles in their apertures, with some deformations of guard cells. In addition to PbO and PbSO{sub 4}, chemical forms that were also observed in pristine particles, new species were identified: organic compounds (minimum 20%) and hexagonal platy crystals of PbCO{sub 3}. In rye-grass, the changes in Pb speciation were even more egregious: Pb–cell wall and Pb–organic acid complexes were the major species observed. For root exposure, identified here as a minor pathway of Pb transfer compared to foliar uptake, another secondary species, pyromorphite, was identified in rye-grass leaves. Finally, combining bulk and spatially resolved spectroscopic techniques permitted both the overall speciation and the minor but possibly highly reactive lead species to be determined in order to

  5. Cuticle ultrastructure, cuticular lipid composition, and gene expression in hypoxia-stressed Arabidopsis stems and leaves.

    Science.gov (United States)

    Kim, Hyojin; Choi, Dongsu; Suh, Mi Chung

    2017-06-01

    An increased permeability of the cuticle is closely associated with downregulation of genes involved in cuticular lipid synthesis in hypoxia-stressed Arabidopsis and may allow plants to cope with oxygen deficiency. The hydrophobic cuticle layer consisting of cutin polyester and cuticular wax is the first barrier to protect the aerial parts of land plants from environmental stresses. In the present study, we investigated the role of cuticle membrane in Arabidopsis responses to oxygen deficiency. TEM analysis showed that the epidermal cells of hypoxia-treated Arabidopsis stems and leaves possessed a thinner electron-translucent cuticle proper and a more electron-dense cuticular layer. A reduction in epicuticular wax crystal deposition was observed in SEM images of hypoxia-treated Arabidopsis stem compared with normoxic control. Cuticular transpiration was more rapid in hypoxia-stressed leaves than in normoxic control. Total wax and cutin loads decreased by approximately 6-12 and 12-22%, respectively, and the levels of C29 alkanes, secondary alcohols, and ketones, C16:0 ω-hydroxy fatty acids, and C18:2 dicarboxylic acids were also prominently reduced in hypoxia-stressed Arabidopsis leaves and/or stems relative to normoxic control. Genome-wide transcriptome and quantitative RT-PCR analyses revealed that the expression of several genes involved in the biosynthesis and transport of cuticular waxes and cutin monomers were downregulated more than fourfold, but no significant alterations were detected in the transcript levels of fatty acid biosynthetic genes, BCCP2, PDH-E1α, and ENR1 in hypoxia-treated Arabidopsis stems and leaves compared with normoxic control. Taken together, an increased permeability of the cuticle is closely associated with downregulation of genes involved in cuticular lipid synthesis in hypoxia-stressed Arabidopsis. The present study elucidates one of the cuticle-related adaptive responses that may allow plants to cope with low oxygen levels.

  6. Investigation of the profile of phenolic compounds in the leaves and stems of Pandiaka heudelotii using gas chromatography coupled with flame ionization detector.

    Science.gov (United States)

    Ifeanacho, Mercy O; Ikewuchi, Catherine C; Ikewuchi, Jude C

    2017-05-01

    The profile of phenolic compounds in the leaves and stems of Pandiaka heudelotii was investigated using gas chromatography coupled with flame ionization detector. The leaves and stems had high flavonoids and benzoic acid derivatives content, and moderate levels of lignans and hydroxycinnamates. Twenty-eight known flavonoids were detected, which consisted mainly of kaempferol (41.93% in leaves and 47.97% in stems), (+)-catechin (17.12% in leaves and 16.11% in stems), quercetin (13.83% in leaves and 9.39% in stems), luteolin (7.34% in leaves and 7.71% in stems), and artemetin (6.53% in leaves and 4.83% in stems). Of the six known hydroxycinnamates detected, chlorogenic acid (80.79% in leaves and 87.56% in stems) and caffeic acid (18.98% in leaves and 12.30% in stems) were the most abundant, while arctigenin (77.81% in leaves and 83.40% in stems) and retusin (13.82% in leaves and 10.59% in stems) were the most abundant of the nine known lignans detected. Twelve known benzoic acid derivatives were detected, consisting mainly of ellagic acid (65.44% in leaves and 72.89% in stems), p-hydroxybenzoic acid (25.10% in leaves and 18.95% in stems), and vanillic acid (8.80% in leaves and 7.30% in stems). The rich phytochemical profile of the leaves and stems is an indication of their ability to serve as sources of nutraceuticals.

  7. Topsoil drying combined with increased sulfur supply leads to enhanced aliphatic glucosinolates in Brassica juncea leaves and roots.

    Science.gov (United States)

    Tong, Yu; Gabriel-Neumann, Elke; Ngwene, Benard; Krumbein, Angelika; George, Eckhard; Platz, Stefanie; Rohn, Sascha; Schreiner, Monika

    2014-01-01

    The decrease of water availability is leading to an urgent demand to reduce the plants' water supply. This study evaluates the effect of topsoil drying, combined with varying sulfur (S) supply on glucosinolates in Brassica juncea in order to reveal whether a partial root drying may already lead to a drought-induced glucosinolate increase promoted by an enhanced S supply. Without decreasing biomass, topsoil drying initiated an increase in aliphatic glucosinolates in leaves and in topsoil dried roots supported by increased S supply. Simultaneously, abscisic acid was determined, particularly in dehydrated roots, associated with an increased abscisic acid concentration in leaves under topsoil drying. This indicates that the dehydrated roots were the direct interface for the plants' stress response and that the drought-induced accumulation of aliphatic glucosinolates is related to abscisic acid formation. Indole and aromatic glucosinolates decreased, suggesting that these glucosinolates are less involved in the plants' response to drought. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Differential transcriptomic analysis by RNA-Seq of GSNO-responsive genes between Arabidopsis roots and leaves.

    Science.gov (United States)

    Begara-Morales, Juan C; Sánchez-Calvo, Beatriz; Luque, Francisco; Leyva-Pérez, María O; Leterrier, Marina; Corpas, Francisco J; Barroso, Juan B

    2014-06-01

    S-Nitrosoglutathione (GSNO) is a nitric oxide-derived molecule that can regulate protein function by a post-translational modification designated S-nitrosylation. GSNO has also been detected in different plant organs under physiological and stress conditions, and it can also modulate gene expression. Thirty-day-old Arabidopsis plants were grown under hydroponic conditions, and exogenous 1 mM GSNO was applied to the root systems for 3 h. Differential gene expression analyses were carried out both in roots and in leaves by RNA sequencing (RNA-seq). A total of 3,263 genes were identified as being modulated by GSNO. Most of the genes identified were associated with the mechanism of protection against stress situations, many of these having previously been identified as target genes of GSNO by array-based methods. However, new genes were identified, such as that for methionine sulfoxide reductase (MSR) in leaves or different miscellaneous RNA (miscRNA) genes in Arabidopsis roots. As a result, 1,945 GSNO-responsive genes expressed differently in leaves and roots were identified, and 114 of these corresponded exclusively to one of these organs. In summary, it is demonstrated that RNA-seq extends our knowledge of GSNO as a signaling molecule which differentially modulates gene expression in roots and leaves under non-stress conditions. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Why (and how) they decide to leave: A grounded theory analysis of STEM attrition at a large public research university

    Science.gov (United States)

    Minutello, Michael F.

    A grounded theory investigation of STEM attrition was conducted that describes and explains why undergraduates at a large Mid-Atlantic research university decided to leave their initial STEM majors to pursue non-STEM courses of study. Participants ultimately decided to leave their initial STEM majors because they were able to locate preferable non-STEM courses of study that did not present the same kinds of obstacles they had encountered in their original STEM majors. Grounded theory data analysis revealed participants initially enrolled in STEM majors with tenuous motivation that did not withstand the various obstacles that were present in introductory STEM coursework. Obstacles that acted as demotivating influences and prompted participants to locate alternative academic pathways include the following: (1.) disengaging curricula; (2.) competitive culture; (3.) disappointing grades; (4.) demanding time commitments; and (5.) unappealing career options. Once discouraged from continuing along their initial STEM pathways, participants then employed various strategies to discover suitable non-STEM majors that would allow them to realize their intrinsic interests and extrinsic goals. Participants were largely satisfied with their decisions to leave STEM and have achieved measures of personal satisfaction and professional success.

  10. Moringa oleifera Root Induces Cancer Apoptosis more Effectively than Leave Nanocomposites and Its Free Counterpart

    Science.gov (United States)

    Abd-Rabou, Ahmed A; Abdalla, Aboelfetoh M; Ali, Naglaa A; Zoheir, Khairy MA

    2017-01-01

    Medicinal plants are important elements of indigenous medical system that have persisted in developing countries. Many of the botanical chemo-preventions currently used as potent anticancer agents. However, some important anticancer agents are still extracted from plants because they cannot be synthesized chemically on a commercial scale due to their complex structures that often contain several chiral centers. The aim of this study was to test different extracts from the Moringa oleifera leaves (ML), its PLGA-CS-PEG nanocomposites (MLn), as well as root core (Rc) and outer (Ro) parts for activity against hepatocarcinoma HepG2, breast MCF7, and colorectal HCT 116/ Caco-2 cells in vitro. Nano-composites were prepared and characterized. Then, the nanocomposites and the free counterparts were screened on different propagated cancer cell lines. The underlying cytotoxic impact was followed using apoptosis measurements. All extracts kill the different cancer cells with different ratios, but intriguingly, the root core extract could kill the majority of cancer cells (approximately 70-80%), while sparing normal BHK-21 cells with minimal inhibitory effect (approximately 30-40%). Apoptotic cell increment came to confirm the cytotoxic effects of these extracts on HCT 116 cells (Rc: 212% and Ro: 180%, respectively) and HepG2 cells (ML: 567.5% and MLn: 608%, respectively) compared to control (100%) mechanistically wise. Moringa oleifera nanocomposites may have potential for use as a natural source of anti-cancer compounds. PMID:28843248

  11. Antioxidant, antimicrobial and urease inhibiting activities of methanolic extracts from Cyphostemma digitatum stem and roots.

    Science.gov (United States)

    Khan, Rasool; Saif, Abdullah Qasem; Quradha, Mohammed Mansour; Ali, Jawad; Rauf, Abdur; Khan, Ajmal

    2016-01-01

    Cyphostemma digitatum stem and roots extracts were investigated for antioxidant, antimicrobial, urease inhibition potential and phytochemical analysis. Phytochemical screening of the roots and stem extract revealed the presence of secondary metabolites including flavonoids, alkaloids, coumarins, saponins, terpenoids, tannins, carbohydrates/reducing sugars and phenolic compounds. The methanolic extracts of the roots displayed highest antioxidant activity (93.518%) against DPPH while the crude methanolic extract of the stem showed highest antioxidant activity (66.163%) at 100 μg/mL concentration. The methanolic extracts of both stem and roots were moderately active or even found to be less active against the selected bacterial and fungal strains (Tables S2 and S3). The roots extract (methanol) showed significant urease enzyme inhibition activity (IC50 = 41.2 ± 0.66; 0.2 mg/mL) while the stem extract was found moderately active (IC50 = 401.1 ± 0.58; 0.2 mg/mL) against thiourea (IC50 = 21.011; 0.2 mg/mL).

  12. Fungal colonization and decomposition of leaves and stems of Salix arctica on deglaciated moraines in high-Arctic Canada

    Science.gov (United States)

    Osono, Takashi; Matsuoka, Shunsuke; Hirose, Dai; Uchida, Masaki; Kanda, Hiroshi

    2014-06-01

    Fungal colonization, succession, and decomposition of leaves and stems of Salix arctica were studied to estimate the roles of fungi in the decomposition processes in the high Arctic. The samples were collected from five moraines with different periods of development since deglaciation to investigate the effects of ecosystem development on the decomposition processes during the primary succession. The total hyphal lengths and the length of darkly pigmented hyphae increased during decomposition of leaves and stems and were not varied with the moraines. Four fungal morphotaxa were frequently isolated from both leaves and stems. The frequencies of occurrence of two morphotaxa varied with the decay class of leaves and/or stems. The hyphal lengths and the frequencies of occurrence of fungal morphotaxa were positively or negatively correlated with the contents of organic chemical components and nutrients in leaves and stems, suggesting the roles of fungi in chemical changes in the field. Pure culture decomposition tests demonstrated that the fungal morphotaxa were cellulose decomposers. Our results suggest that fungi took part in the chemical changes in decomposing leaves and stems even under the harsh environment of the high Arctic.

  13. antibacterial properties of calyx, stem bark and root of hibiscus ...

    African Journals Online (AJOL)

    HS) were tested for their antibacterial activities. The root of the plant exhibited marked antibacterial activity against gram positive and gram negative organisms of Klebsiella pneumonia, Escherichia coli, Proteus spp., Pseudomonas aureginosa, ...

  14. Evaluation of Seasonal Variations in the Glucosinolate Content in Leaves and Roots of Four European Horseradish (Armoracia rusticana Landraces

    Directory of Open Access Journals (Sweden)

    Ciska Ewa

    2017-12-01

    Full Text Available In comparison with other cruciferous vegetables, horseradish has rarely been the object of scientific research, and the knowledge about the composition, content and distribution of glucosinolates (GLS in different organs of horseradish plants is limited. Therefore, the aim of this study was to evaluate changes in the GLS content in leaves and roots of four horseradish landraces during the growing season.

  15. Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings.

    Science.gov (United States)

    Agulló-Antón, María Ángeles; Ferrández-Ayela, Almudena; Fernández-García, Nieves; Nicolás, Carlos; Albacete, Alfonso; Pérez-Alfocea, Francisco; Sánchez-Bravo, José; Pérez-Pérez, José Manuel; Acosta, Manuel

    2014-03-01

    The rooting of stem cuttings is a common vegetative propagation practice in many ornamental species. A detailed analysis of the morphological changes occurring in the basal region of cultivated carnation cuttings during the early stages of adventitious rooting was carried out and the physiological modifications induced by exogenous auxin application were studied. To this end, the endogenous concentrations of five major classes of plant hormones [auxin, cytokinin (CK), abscisic acid, salicylic acid (SA) and jasmonic acid] and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid were analyzed at the base of stem cuttings and at different stages of adventitious root formation. We found that the stimulus triggering the initiation of adventitious root formation occurred during the first hours after their excision from the donor plant, due to the breakdown of the vascular continuum that induces auxin accumulation near the wounding. Although this stimulus was independent of exogenously applied auxin, it was observed that the auxin treatment accelerated cell division in the cambium and increased the sucrolytic activities at the base of the stem, both of which contributed to the establishment of the new root primordia at the stem base. Further, several genes involved in auxin transport were upregulated in the stem base either with or without auxin application, while endogenous CK and SA concentrations were specially affected by exogenous auxin application. Taken together our results indicate significant crosstalk between auxin levels, stress hormone homeostasis and sugar availability in the base of the stem cuttings in carnation during the initial steps of adventitious rooting. © 2013 Scandinavian Plant Physiology Society.

  16. Growth response of Casuarina equisetifolia Forst. rooted stem cuttings to Frankia in nursery and field conditions.

    Science.gov (United States)

    Karthikeyan, A; Chandrasekaran, K; Geetha, M; Kalaiselvi, R

    2013-11-01

    Casuarina equisetifolia Forst. is a tree crop that provides fuel wood, land reclamation, dune stabilization, and scaffolding for construction, shelter belts, and pulp and paper production. C. equisetifolia fixes atmospheric nitrogen through a symbiotic relationship with Frankia, a soil bacterium of the actinobacteria group. The roots of C. equisetifolia produce root nodules where the bacteria fix atmospheric nitrogen, which is an essential nutrient for all plant metabolic activities. However, rooted stem cuttings of elite clones of C. equisetifolia by vegetative propagation is being planted by the farmers of Pondicherry as costeffective method. As the vegetative propagation method uses inert material (vermiculite) for rooting there is no chance for Frankia association. Therefore after planting of these stocks the farmers are applying 150 kg of di-ammonium phosphate (DAP)/acre/year. To overcome this fertilizer usage, the Frankia-inoculated rooted stem cuttings were propagated under nursery conditions and transplanted in the nutrient-deficient soils of Karaikal, Pondicherry (India), in this study. Under nursery experiments the growth and biomass of C. equisetifolia rooted stem cuttings inoculated with Frankia showed 3 times higher growth and biomass than uninoculated control. These stocks were transplanted and monitored for their growth and survival for 1 year in the nutrient-deficient farm land. The results showed that the rooted stem cuttings of C. equisetifolia significantly improved growth in height (8.8 m), stem girth (9.6 cm) and tissue nitrogen content (3.3 mg g-1) than uninoculated controls. The soil nutrient status was also improved due to inoculation of Frankia.

  17. Physical properties and fiber dimension in Stem, Branch and root of Alder Wood

    OpenAIRE

    Moya-Roque, Roger; Kiaei, Majid

    2015-01-01

    The aim of this study was to determine physical properties and fiber dimensions in stem, branch and root wood for alder (Alnus glutinosa L) species. For this purpose, three normal alder trees were selected from Khanican forest in north of Iran. Disks were taken from three parts such as stem, branch and root of trees. Testing samples were randomly taken at disk surfaces to examine the physical properties (according to the ISO standard for oven-dry density and volumetric shrinkage) and fiber di...

  18. Comparative wood anatomy of root and stem of Citharexylum myrianthum (Verbenaceae)

    Science.gov (United States)

    Carmen Regina Marcati; Leandro Roberto Longo; Alex Wiedenhoeft; Claudia Franca Barros

    2014-01-01

    Root and stem wood anatomy of C. myrianthum (Verbenaceae) from a semideciduous seasonal forest in Botucatu municipality (22º52’20”S and 48º26’37”W), São Paulo state, Brazil, were studied. Growth increments demarcated by semi-ring porosity and marginal bands of axial parenchyma were observed in the wood of both root and stem. Many qualitative features...

  19. Toxicological evaluation of an aqueous suspension from leaves and stems of Petiveria alliacea L. (Phytolaccaceae).

    Science.gov (United States)

    García-Pérez, Martha-Estrella; Alfonso-Castillo, Alfredo; Lores, Onel Fong; Batista-Duharte, Alexander; Lemus-Rodríguez, Zoe

    2018-01-30

    Petiveria alliacea L. (Phytolaccaceae) is used in folk medicine due to its antispasmodic, diuretic, hypoglycemic, abortive, anti-inflammatory and anticancerogenic properties. Although P. alliacea is considered toxic by people, its toxicity remains a concern since it is strongly dependent on the extraction method and the part of the plant used during tests. Even if some healers prefer to use the aerial parts in a liquefied form or by chewing them, instead of decoctions or infusions, no toxicological studies exist using whole dried stems and leaves. The toxicity of a suspension of the powder from the leaves and stems of P. alliacea was assessed in Sprague Dawley rats by oral administration using two tests: 1) the acute toxic class method, which allows classification of substances according to their intrinsic toxicity and 2) the repeated dose 28-day method, following the guidelines 423 and 407 respectively from the Organization for the Economic Cooperation and Development. Chemical characterization of this powder was performed by GC-MS, UV-fluorescence, proximate and elemental analysis. P. alliacea powder from stems and leaves was classed in the hazard category 5 (LD 50 > 2000mg/kg) according to the acute toxicology study. There were no toxicity signs at 1000mg/kg in the repeated dose study, although higher values of total leukocytes were found in the satellite and males of the experimental group, which were attributed to the immunomodulatory properties of this plant. According to GC-MS, the prevailing compounds identified were phytol, (R)-(-)-(Z)-14-methyl-8-hexadecen-1-ol, 1-(2-hydrohyethyl)-1,2,4-triazole and methyl β-dimethylaminoisobutyrate. In conclusion, the oral administration of the P. alliacea powder to Sprague Dawley rats did not result in deaths and was not associated with adverse effects reflected in the general condition, body weights or histopathological abnormalities. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Role of chromatin factors in Arabidopsis root stem cell maintenance

    NARCIS (Netherlands)

    Kornet, N.G.

    2008-01-01

    Stem cells replenish the cells present in an organism throughout its lifetime and sustain growth. They have unique characteristics: the capability to self-renew and the potential to differentiate into several cell types. Recently, it has become clear that chromatin factors support these unique

  1. Studies on antidyslipidemic effects of Morinda citrifolia (Noni fruit, leaves and root extracts

    Directory of Open Access Journals (Sweden)

    Mandukhail Saf-ur

    2010-08-01

    Full Text Available Abstract Background The objective of present study was to provide the pharmacological basis for the medicinal use of Morinda citrifolia Linn in dyslipidemia using the aqueous-ethanolic extracts of its fruits (Mc.Cr.F, leaves (Mc.Cr.L and roots (Mc.Cr.R. Results Mc.Cr.F, Mc.Cr.L and Mc.Cr.R showed antidyslipidemic effects in both triton (WR-1339 and high fat diet-induced dyslipidemic rat models to variable extents. All three extracts caused reduction in total cholesterol and triglyceride levels in triton-induced dyslipidemia. In high fat diet-induced dyslipidemia all these extracts caused significant reduction in total cholesterol, triglyceride, low density lipoprotein-cholesterol (LDL-C, atherogenic index and TC/HDL ratio. Mc.Cr.R extract also caused increase in high density lipoprotein-cholesterol (HDL-C. The Mc.Cr.L and Mc.Cr.R reduced gain in body weight with a reduction in daily diet consumption but Mc.Cr.F had no effect on body weight and daily diet consumption. Conclusions These data indicate that the antidyslipidemic effect of the plant extracts was meditated through the inhibition of biosynthesis, absorption and secretion of lipids. This may be possibly due partly to the presence of antioxidant constituents in this plant. Therefore, this study rationalizes the medicinal use of Morinda citrifolia in dyslipidemia.

  2. Structural changes in leaves and roots are anatomical markers of aluminum sensitivity in sunflower

    Directory of Open Access Journals (Sweden)

    Daniel da Silva de Jesus

    2016-12-01

    Full Text Available Aluminum (Al toxicity in plants evidences the importance of genotype evaluation to the identification of tolerance markers. This study aimed at evaluating the effects of aluminum stress on the relative water content, membrane damages and anatomical changes, in Al-tolerant and Al-sensitive sunflower cultivars. Sunflower plants [Catissol (Al-tolerant and IAC-Uruguai (Al-sensitive] were grown in nutrient solution (control or nutrient solution containing 0.15 mM of AlCl3 (Al-stress treatment, in a greenhouse. The experimental design was completely randomized, in a factorial arrangement consisting of four harvest times x two sunflower cultivars x two Al levels, with four replications. The results showed that Al negatively affected the absolute integrity percentage and relative water content only for the IAC-Uruguay cultivar. These results in the stressed leaves of the Al-sensitive cultivar may be due to damage in the xylem structure. In addition, the increase in leaf blade thickness and parenchyma layers, as well as lignification of root tissues, are important traits of IAC-Uruguay plants and may be used as anatomical markers of Al sensitivity in sunflower.

  3. Functionality of resistance gene Hero, which controls plant root-infecting potato cyst nematodes, in leaves of tomato.

    Science.gov (United States)

    Poch, H L Cabrera; López, R H Manzanilla; Kanyuka, K

    2006-07-01

    The expression of host genomes is modified locally by root endoparasitic nematode secretions to induce the development of complex cellular structures referred as feeding sites. In compatible interactions, the feeding sites provide the environment and nutrients for the completion of the nematode's life cycle, whereas in an incompatible (resistant) interaction, the host immune system triggers a plant cell death programme, often in the form of a hypersensitive reaction, which restricts nematode reproduction. These processes have been studied in great detail in organ tissues normally infected by these nematodes: the roots. Here we show that host leaves can support a similar set of programmed developmental events in the potato cyst nematode Globodera rostochiensis life cycle that are typical of the root-invading nematodes. We also show that a gene-for-gene type specific disease resistance that is effective against potato cyst nematodes (PCN) in roots also operates in leaves: the expression of the resistance (R) gene Hero and members of its gene family in leaves correlates with the elicitation of a hypersensitive response only during the incompatible interaction. These findings, and the ability to isolate RNA from relevant parasitic stages of the nematode, may have significant implications for the identification of nematode factors involved in incompatible interactions.

  4. Chemical Composition and Insecticidal Activity of Essential Oils from Zanthoxylum dissitum Leaves and Roots against Three Species of Storage Pests.

    Science.gov (United States)

    Wang, Cheng-Fang; Yang, Kai; You, Chun-Xue; Zhang, Wen-Juan; Guo, Shan-Shan; Geng, Zhu-Feng; Du, Shu-Shan; Wang, Yong-Yan

    2015-05-04

    This work aimed to investigate chemical composition of essential oils obtained from Zanthoxylum dissitum leaves and roots and their insecticidal activities against several stored product pests, namely the cigarette beetle (Lasioderma serricorne), red flour beetle (Tribolium castaneum) and black carpet beetle (Attagenus piceus). The analysis by GC-MS of the essential oils allowed the identification of 28 and 22 components, respectively. It was found that sesquiterpenoids comprised a fairly high portion of the two essential oils, with percentages of 74.0% and 80.9% in the leaves and roots, respectively. The main constituents identified in the essential oil of Z. dissitum leaves were δ-cadinol (12.8%), caryophyllene (12.7%), β-cubebene (7.9%), 4-terpineol (7.5%) and germacrene D-4-ol (5.7%), while humulene epoxide II (29.4%), caryophyllene oxide (24.0%), diepicedrene-1-oxide (10.7%) and Z,Z,Z-1,5,9,9-tetramethyl-1,4,7-cycloundecatriene (8.7%) were the major components in the essential oil of Z. dissitum roots. The insecticidal activity results indicated that the essential oil of Z. dissitum roots exhibited moderate contact toxicity against three species of storage pests, L. serricorne,T. castaneum and A. piceus, with LD50 values of 13.8, 43.7 and 96.8 µg/adult, respectively.

  5. Short term effect of aqueous extracts of root, pod, and stem of ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    Telfairia occidentalis root, pod and stem aqueous extracts on rats. ... drug (Eseyin et al., 2007). Telfairia ... have a regenerative effect on the destroyed testicular ... histology induced by quinine therapy (Nwangwa et .... hepatic cell and increase in serum level of ALP has ..... Screening and Acute Toxicity Evaluation of. Telfairia ...

  6. Quantitative Variation of Flavonoids and Diterpenes in Leaves and Stems of Cistus ladanifer L. at Different Ages

    Directory of Open Access Journals (Sweden)

    Cristina Valares Masa

    2016-02-01

    Full Text Available The compounds derived from secondary metabolism in plants perform a variety of ecological functions, providing the plant with resistance to biotic and abiotic factors. The basal levels of these metabolites for each organ, tissue or cell type depend on the development stage of the plant and they may be modified as a response to biotic and/or abiotic stress. As a consequence, the resistance state of a plant may vary in space and time. The secondary metabolites of Cistus ladanifer have been quantified in leaves and stems throughout autumn, winter, spring and summer, and at different ages of the plant. This study shows that there are significant differences between young leaves, mature leaves and stems, and between individuals of different ages. Young leaves show significantly greater synthesis of flavonoids and diterpenes than mature leaves and stems, with a clear seasonal variation, and the differences between leaves at different growth stages and stems is maintained during the quantified seasons. With respect to age, specimens under one year of age secreted significantly lower amounts of compounds. The variation in the composition of secondary metabolites between different parts of the plant, the season and the variations in age may determine the interactions of Cistus ladanifer with the biotic and abiotic factors to which it is exposed.

  7. Anticonvulsant activity of methanolic extract from Kalanchoe pinnata Lam. stems and roots in mice: A comparison to diazepam.

    Science.gov (United States)

    Mora-Pérez, A; Hernández-Medel, M del R

    2016-04-01

    In ancient and current traditional medicine in México, extracts from the leaves or whole plant of 'life leaf' (Kalanchoe pinnata [K. pinnata]Lam) have been used to treat an entity known locally as 'yellow epilepsy' (alferecía amarilla) when it is accompanied by seizures. However, the anticonvulsive activity of its stems and roots remains unexplored The anticonvulsant activity of the methanolic root extract (MER) or stem (MES) of K. pinnata Lam. was evaluated in a pentylenetetrazol-induced seizure model in Balb/C mice, and effects were compared to those of diazepam. The stem extract fractions that produced anticonvulsant activity were subsequently evaluated using the pentylenetetrazol -induced seizure model. We observed increased latency of tonic-clonic seizures that was inversely proportional to the dose of MRE, with a similar impact on the lethal effects of pentylenetetrazol. Different doses of the MSE showed a dose-dependent increase in latency to myoclonus, clonus, and tonic-clonic seizures, acting similarly to diazepam and offering 100% protection against the lethal effects of pentylenetetrazol. Fractioning MSE decreased its effectiveness, but when fractions were mixed with fractions of chloroform and ethyl acetate, anticonvulsive activity was restored. The preliminary phytochemical analysis identified alkaloids and sterols in MRE, and sterols and terpenes in MSE CONCLUSIONS: The anticonvulsant activity of K. pinnata Lam. decreases with increased doses of MRE, whereas the effect of MSE is dose-dependent and preserved in the mixture chloroform and ethyl acetate. We suggest that the metabolites responsible for these effects are sterols in MRE, and sterols and terpenes in MSE. Copyright © 2015 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  8. The effect of leaf presence on the rooting of stem cutting of bitter melon and on changes in polyamine levels

    Science.gov (United States)

    The study was conducted to investigate the optimal hormone treatment for rooting in bitter melon and the effect of defoliation on rooting and polyamine levels. Commercial preparation (diluted 1:10 and 1: 20) gave extensive rooting within five days after treatment. The presence of leaf with the stem ...

  9. Chemical composition and anti-inflammatory evaluation of essential oils from leaves and stem barks from Drimys brasiliensis Miers (Winteraceae)

    Energy Technology Data Exchange (ETDEWEB)

    Lago, Joao Henrique G., E-mail: joao.lago@unifesp.b [Universidade Federal de Sao Paulo (UNIFESP-EPM), Diadema, SP (Brazil). Dept. de Ciencias Exatas e da Terra; Carvalho, Larissa A.C.; Silva, Flavia S. da; Romoff, Paulete [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil). Centro de Ciencias e Humanidades; Toyama, Daniela de O.; Favero, Oriana A. [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil). Centro de Ciencias Biologicas e da Saude

    2010-07-01

    The essential oils from leaves and stem barks from Drimys brasiliensis Miers (Winteraceae) were individually obtained by hydrodistillation and their compounds characterized by use of GC/FID and GC/MS. The main identified derivatives were monoterpenes (leaves 4.31% and stem barks 90.02%) and sesquiterpenes (leaves 52.31% and stem barks 6.35%). Additionally, the sesquiterpene polygodial was isolated from hexane extract from stem barks of D. brasiliensis after chromatographic steps and characterized by spectroscopic means, mainly NMR. Aiming the evaluation of anti-inflammatory potential, the crude essential oils and the sesquiterpene polygodial were subjected to bioassays to evaluate the acute toxicity of these compounds as well as the anti-inflammatory and antinociceptive activities induced by carrageenan and formalin in mice. Ours results showed that essential oil obtained from the stem barks significantly reduced the oedema induced by carrageenan. The anti-inflammatory effect induced by stem barks oil (at 200 mg kg{sup -1}) was similar to observed for indomethacin (at 10 mg kg{sup -1}) and superior for polygodial (at 200 mg kg{sup -1}) in 30 and 60 min after the administration of essential oils. The inflammatory response induced by formalin was effective to the stem barks oil (62.5%) in comparison to polygodial (50.0%). (author)

  10. Chemical composition and anti-inflammatory evaluation of essential oils from leaves and stem barks from Drimys brasiliensis Miers (Winteraceae)

    International Nuclear Information System (INIS)

    Lago, Joao Henrique G.; Carvalho, Larissa A.C.; Silva, Flavia S. da; Romoff, Paulete; Toyama, Daniela de O.; Favero, Oriana A.

    2010-01-01

    The essential oils from leaves and stem barks from Drimys brasiliensis Miers (Winteraceae) were individually obtained by hydrodistillation and their compounds characterized by use of GC/FID and GC/MS. The main identified derivatives were monoterpenes (leaves 4.31% and stem barks 90.02%) and sesquiterpenes (leaves 52.31% and stem barks 6.35%). Additionally, the sesquiterpene polygodial was isolated from hexane extract from stem barks of D. brasiliensis after chromatographic steps and characterized by spectroscopic means, mainly NMR. Aiming the evaluation of anti-inflammatory potential, the crude essential oils and the sesquiterpene polygodial were subjected to bioassays to evaluate the acute toxicity of these compounds as well as the anti-inflammatory and antinociceptive activities induced by carrageenan and formalin in mice. Ours results showed that essential oil obtained from the stem barks significantly reduced the oedema induced by carrageenan. The anti-inflammatory effect induced by stem barks oil (at 200 mg kg -1 ) was similar to observed for indomethacin (at 10 mg kg -1 ) and superior for polygodial (at 200 mg kg -1 ) in 30 and 60 min after the administration of essential oils. The inflammatory response induced by formalin was effective to the stem barks oil (62.5%) in comparison to polygodial (50.0%). (author)

  11. Model Persamaan Massa Karbon Akar Pohon dan Root-Shoot Ratio Massa Karbon (Equation Models of Tree Root Carbon Mass and Root-Shoot Carbon Mass Ratio

    Directory of Open Access Journals (Sweden)

    Elias .

    2011-03-01

    Full Text Available The case study was conducted in the area of Acacia mangium plantation at BKPH Parung Panjang, KPH Bogor. The objective of the study was to formulate equation models of tree root carbon mass and root to shoot carbon mass ratio of the plantation. It was found that carbon content in the parts of tree biomass (stems, branches, twigs, leaves, and roots was different, in which the highest and the lowest carbon content was in the main stem of the tree and in the leaves, respectively. The main stem and leaves of tree accounted for 70% of tree biomass. The root-shoot ratio of root biomass to tree biomass above the ground and the root-shoot ratio of root biomass to main stem biomass was 0.1443 and 0.25771, respectively, in which 75% of tree carbon mass was in the main stem and roots of tree. It was also found that the root-shoot ratio of root carbon mass to tree carbon mass above the ground and the root-shoot ratio of root carbon mass to tree main stem carbon mass was 0.1442 and 0.2034, respectively. All allometric equation models of tree root carbon mass of A. mangium have a high goodness-of-fit as indicated by its high adjusted R2.Keywords: Acacia mangium, allometric, root-shoot ratio, biomass, carbon mass

  12. Total flavonoid content and antioxidant activity in leaves and stems extract of cultivated and wild tabat barito (Ficus deltoidea Jack)

    Science.gov (United States)

    Manurung, Hetty; Kustiawan, Wawan; Kusuma, Irawan W.; Marjenah

    2017-02-01

    Tabat barito (Ficus deltoidea Jack) is a name given by Dayak Tribe who lived in Borneo-Kalimantan and it is belongs to the moraceae. Almost all of the parts of F. deltoidea plant is widely used as a medicinal property. The total flavonoid content (TFC) and antioxidant activity from cultivated and wild F. deltoidea leaves and stems extract were assessed. Total flavonoid content was estimated by using Aluminium chloride colorimetric method and expressed as catechin equivalents (mg CE g-1 extract) and the antioxidant activity by the DPPH (2,2-diphenyl-1-picryl hydrazyl) method. The content of total flavonoid of leaves and stems (430.77 and 371.80 µg CE mg-1 extract) of cultivated F. deltoidea were higher than in the wild leaves and stems (114.82 and 66.67 µg CE mg-1 extract). The IC50 of leaves extract of cultivated and wild F. deltoidea, based on the DPPH assay, has a strong antioxidant activity (34.19 and 39.31 µg mL-1 extract) as compared to stems extract. These results showed that the cultivated F. deltoidea are suitable source for medicinal properties and the leaves could be exploited as source of natural antioxidants.

  13. Interactions of Phytophthora capsici with Resistant and Susceptible Pepper Roots and Stems.

    Science.gov (United States)

    Dunn, Amara R; Smart, Christine D

    2015-10-01

    Using host resistance is an important strategy for managing pepper root and crown rot caused by Phytophthora capsici. An isolate of P. capsici constitutively expressing a gene for green fluorescent protein was used to investigate pathogen interactions with roots, crowns, and stems of Phytophthora-susceptible bell pepper 'Red Knight', Phytophthora-resistant bell pepper 'Paladin', and Phytophthora-resistant landrace Criollos de Morelos 334 (CM-334). In this study, the same number of zoospores attached to and germinated on roots of all cultivars 30 and 120 min postinoculation (pi), respectively. At 3 days pi, significantly more secondary roots had necrotic lesions on Red Knight than on Paladin and CM-334 plants. By 4 days pi, necrotic lesions had formed on the taproot of Red Knight but not Paladin or CM-334 plants. Although hyphae were visible in the crowns and stems of all Red Knight plants observed at 4 days pi, hyphae were observed in crowns of only a few Paladin and in no CM-334 plants, and never in stems of either resistant cultivar at 4 days pi. These results improve our understanding of how P. capsici infects plants and may contribute to the use of resistant pepper cultivars for disease management and the development of new cultivars.

  14. Structure of fructo-oligosaccharides from leaves and stem of Agave tequilana Weber, var. azul.

    Science.gov (United States)

    Praznik, Werner; Löppert, Renate; Cruz Rubio, Josè M; Zangger, Klaus; Huber, Anton

    2013-11-15

    Fructo-oligosaccharides (FOSs) of a six year old agave plant variety, Agave tequilana, were isolated and fractionated by 2D preparative chromatography (SEC and rpHPLC). Structural analyses of different FOS-fractions were performed by reductive methylation analysis connected to GC/FID identification and NMR-analysis. FOSs from leaves (d.p. 3-8) contain single α-d-Glcp residues as well in terminal as internal position, however (2→1)-linked β-d-Fruf residues only. FOSs from stem, however, contain as well (2→1)- and (2→6)-linked β-d-Fruf residues with branched oligomeric repeating units. These characteristics indicate an enzymatically catalyzed metabolic regulation for the biosynthesis and transformation of fructans in A. tequilana which strongly depends on location and transport activities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Cucurbitane-type triterpenoids from the stems and leaves of Momordica charantia.

    Science.gov (United States)

    Zhao, Gao-Ting; Liu, Jie-Qing; Deng, Yuan-Yuan; Li, Hai-Zhou; Chen, Jian-Chao; Zhang, Zhi-Run; Zhou, Lin; Qiu, Ming-Hua

    2014-06-01

    Six new cucurbitane-type triterpenoids, karavilagenin F (1), karavilosides XII and XIII (2, 3), momordicines VI, VII, and VIII (4, 5 and 6), along with four known ones, 5β,19-epoxy-25-methoxycucurbita-6,23-diene-3β,19-diol (7), 5β,19-epoxycucurbita-6, 23-diene-3β,19,25-triol (8), kuguacin R (9), and (19R,23E)-5β,19-epoxy-19-methoxycucurbita-6,23,25-trien-3β-ol (10), were isolated from the stems and leaves of Momordica charantia L. Their chemical structures were elucidated by extensive 1D NMR and 2D NMR (HSQC, HMBC, COSY, and ROESY), MS experiments, and CD spectrum. Compound 6 showed weak cytotoxicity against five human cancer cells lines with IC50 values of 14.3-20.5μmol/L. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. From stem to roots: Tissue engineering in endodontics

    Science.gov (United States)

    Kala, M.; Banthia, Priyank; Banthia, Ruchi

    2012-01-01

    The vitality of dentin-pulp complex is fundamental to the life of tooth and is a priority for targeting clinical management strategies. Loss of the tooth, jawbone or both, due to periodontal disease, dental caries, trauma or some genetic disorders, affects not only basic mouth functions but aesthetic appearance and quality of life. One novel approach to restore tooth structure is based on biology: regenerative endodontic procedure by application of tissue engineering. Regenerative endodontics is an exciting new concept that seeks to apply the advances in tissue engineering to the regeneration of the pulp-dentin complex. The basic logic behind this approach is that patient-specific tissue-derived cell populations can be used to functionally replace integral tooth tissues. The development of such ‘test tube teeth’ requires precise regulation of the regenerative events in order to achieve proper tooth size and shape, as well as the development of new technologies to facilitate these processes. This article provides an extensive review of literature on the concept of tissue engineering and its application in endodontics, providing an insight into the new developmental approaches on the horizon. Key words:Regenerative, tissue engineering, stem cells, scaffold. PMID:24558528

  17. A New Hypoxia Inducible Factor-2 Inhibitory Pyrrolinone Alkaloid from Roots and Stems of Piper sarmentosum

    OpenAIRE

    BOKESCH, Heidi Rose; GARDELLA, Roberta Scott; RABE, Daniel Christopher; BOTTARO, Donald Paul; LINEHAN, William Marston; MCMAHON, James Brislin; MCKEE, Tawnya Carlene

    2011-01-01

    A new trimethoxycinnamoyl-2-pyrrolinone alkaloid, langkamide (1), along with the known compounds piplartine (2) and 3,4,5-trimethoxycinnamic acid (3) were isolated from the roots and stems of the shrub Piper sarmentosum Roxb. The structures were established by spectroscopic analyses and comparison of their spectral data with values reported in the literature. The compounds were tested for their ability to modulate hypoxia inducible factor-2 (HIF-2) transcription activity and all three showed ...

  18. Oxidative stress response in Arabidopsis thaliana roots and leaves exposed to cadmium, uranium or a combination of both stressors

    Energy Technology Data Exchange (ETDEWEB)

    Horemans, N.; Saenen, E.; Vandenhove, H. [Belgian Nuclear Research Centre, SCK.CEN, Boeretang 200, 2400 Mol (Belgium); Hendrix, S.; Keunen, E.; Cuypers, A. [Hasselt University, Centre for Environmental Sciences, Agoralaan, Building D, 3590 Diepenbeek (Belgium)

    2014-07-01

    Nuclear energy production or NORM industry released low amounts of radioactive substances together with non-radioactive substances (e.g., heavy metals, organic chemicals) to the environment. As sessile organisms, plants are commonly exposed to a number of adverse conditions and therefore it is interesting to study the stress responses of plants induced by the single stressors as well as in a in a multi-pollution set-up. The aim of this study was to understand and predict fast induced oxidative stress responses in plants exposed to Cd and U or a combination of both stressors. Arabidopsis thaliana plants grown hydroponically for 18 days were exposed to a Cd (5 μM) or {sup 238}U (25 μM) or an equi-toxic mixture of Cd and {sup 238}U (2.5 μM + 12.5 μM) for 24 h. As expected both metals were taken up into the plants with Cd being more readily transported to the leaves than U. The root-to-shoot ratio was approximately 1,3 for Cd whereas it was above 3500 for U. For both U and Cd the root-to-shoot ratio was not affected under multiple exposure conditions used here. Notwithstanding the limited exposure time, leave and root fresh weight was already decreasing in U-treated plants. For Cd or Cd+U a decreasing but at this point not significant trend was visible. As U concentrations in the leaves were very low the decrease in leaf fresh weight is possibly due to signaling from the roots rather than a direct toxicity of U. The oxidative stress response was investigated by measuring the transcription of selected pro- and anti-oxidative genes, anti-oxidative enzyme capacities and concentration and redox status of major anti-oxidative metabolites. Cd strongly up-regulated lipoxygenase (LOX1) and NADPH-oxidases (RBOHD or C in roots and leaves, respectively) whereas this was not found in the U-treated plants. For the anti-oxidative response related enzymes both Cd and U induced a decrease in Cu/Zn superoxide dismutases (CSD1,2) and a concomitant increase in Fe-SOD (FSD1). However

  19. [Comparison on polysaccharide content and PMP-HPLC fingerprints of polysaccharide in stems and leaves of Dendrobium officinale].

    Science.gov (United States)

    Zhou, Gui-Fen; Pang, Min-Xia; Chen, Su-Hong; Lv, Gui-Yuan; Yan, Mei-Qiu

    2014-03-01

    In order to provide scientific basics for exploitation and sufficient application of Dendrobium officinale leaves resources, the phenol-sulfuric acid method was applied to determine the polysaccharide content. The monosaccharides were derivated by PMP and the derivatives were identified by HPLC-DAD-ESI-MS(n) and the contents of mannose and glucose were determined simultaneously. Similarity evaluation system for chromatographic fingerprint of traditional Chinese medicine (2004A) was employed to generate the mean chromatogram and similarity analysis of the samples was carried out. The results demonstrated that polysaccharide content, monosaccharide compositions and composition ratio had an obvious difference between stems and leaves. The polysaccharide content of stems was higher than that of leaves. Monosaccharide composition in leaf was significantly different from that in stem. The polysaccharide from stems was composed of mannose and glucose, however the polysaccharide of leaves was acid heteropolysaccharide and was mainly composed of five monosaccharides, including mannose, galacturonic acid, glucose, galactose and arabinose. The similarity value of the 14 batches was above 0.9, indicating that similarity of fingerprints among different samples was high. The study can provide evidence for expanding the medicinal parts of D. officinale.

  20. Hydraulic safety margins and embolism reversal in stems and leaves: Why are conifers and angiosperms so different?

    Science.gov (United States)

    Daniel M. Johnson; Katherine A. McCulloh; David R. Woodruff; Frederick C. Meinzer

    2012-01-01

    Angiosperm and coniferous tree species utilize a continuum of hydraulic strategies. Hydraulic safety margins (defined as differences between naturally occurring xylem pressures and pressures that would cause hydraulic dysfunction, or differences between pressures resulting in loss of hydraulic function in adjacent organs (e.g., stems vs. leaves) tend to be much greater...

  1. Long-term boron-deficiency-responsive genes revealed by cDNA-AFLP differ between Citrus sinensis roots and leaves

    Science.gov (United States)

    Lu, Yi-Bin; Qi, Yi-Ping; Yang, Lin-Tong; Lee, Jinwook; Guo, Peng; Ye, Xin; Jia, Meng-Yang; Li, Mei-Li; Chen, Li-Song

    2015-01-01

    Seedlings of Citrus sinensis (L.) Osbeck were supplied with boron (B)-deficient (without H3BO3) or -sufficient (10 μM H3BO3) nutrient solution for 15 weeks. We identified 54 (38) and 38 (45) up (down)-regulated cDNA-AFLP bands (transcript-derived fragments, TDFs) from B-deficient leaves and roots, respectively. These TDFs were mainly involved in protein and amino acid metabolism, carbohydrate and energy metabolism, nucleic acid metabolism, cell transport, signal transduction, and stress response and defense. The majority of the differentially expressed TDFs were isolated only from B-deficient roots or leaves, only seven TDFs with the same GenBank ID were isolated from the both. In addition, ATP biosynthesis-related TDFs were induced in B-deficient roots, but unaffected in B-deficient leaves. Most of the differentially expressed TDFs associated with signal transduction and stress defense were down-regulated in roots, but up-regulated in leaves. TDFs related to protein ubiquitination and proteolysis were induced in B-deficient leaves except for one TDF, while only two down-regulated TDFs associated with ubiquitination were detected in B-deficient roots. Thus, many differences existed in long-term B-deficiency-responsive genes between roots and leaves. In conclusion, our findings provided a global picture of the differential responses occurring in B-deficient roots and leaves and revealed new insight into the different adaptive mechanisms of C. sinensis roots and leaves to B-deficiency at the transcriptional level. PMID:26284101

  2. Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years

    Science.gov (United States)

    Chung, Ill-Min; Lim, Ju-Jin; Ahn, Mun-Seob; Jeong, Haet-Nim; An, Tae-Jin; Kim, Seung-Hyun

    2015-01-01

    Background The study of phenolic compounds profiles and antioxidative activity in ginseng fruit, leaves, and roots with respect to cultivation years, and has been little reported to date. Hence, this study examined the phenolic compounds profiles and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free-radical-scavenging activities in the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) as a function of cultivation year. Methods Profiling of 23 phenolic compounds in ginseng fruit, leaves, and roots was investigated using ultra-high performance liquid chromatography with the external calibration method. Antioxidative activity of ginseng fruit, leaves, and roots were evaluated using the method of DPPH free-radical-scavenging activity. Results The total phenol content in ginseng fruit and leaves was higher than in ginseng roots (p phenol content in the ginseng samples was significantly correlated to the DPPH free-radical-scavenging activity (r = 0.928****). In particular, p-coumaric acid (r = 0.847****) and ferulic acid (r = 0.742****) greatly affected the DPPH activity. Among the 23 phenolic compounds studied, phenolic acids were more abundant in ginseng fruit, leaves, and roots than the flavonoids and other compounds (p phenolic compounds in 3–6-yr-old ginseng fruit, leaves, and roots. Conclusion This study provides basic information about the antioxidative activity and phenolic compounds profiles in fruit, leaves, and roots of Korean ginseng with cultivation years. This information is potentially useful to ginseng growers and industries involved in the production of high-quality and nutritional ginseng products. PMID:26843824

  3. Analysis of essential oils of leaves, stems, flowers and rhizomes of Etlingera elatior (Jack) R.M. Smith

    International Nuclear Information System (INIS)

    Faridahanim Mohd Jaafar; Che Puteh Osman; Nor Hadiani Ismail; Khalijah Awang

    2007-01-01

    The essential oils from leaves, stems, flowers and rhizomes of Etlingera elatior, an aromatic plant that are widely used in traditional medicine and as a flavour in local dishes were extracted. The essential oils were extracted using the hydro distillation method and analysed by GC-MS. The percentage yield of volatile constituents of the leaves, stems, flowers and rhizomes were 0.0735%, 0.0029%, 0.0334% and 0.0021%, respectively. The leaf essential oil contained β- pinene (19.7%), caryophyllene (15.36%) and (E)-β-farnesene (27.90%) as major compounds whereas the stem essential oil were largely dominated by 1,1-dodecanediol diacetate (34.26%) and (E)-5-dodecane (26.99%). The essential oils of the flowers and rhizomes contained the major compounds 1, 1- dodecanediol diacetate (24.38% and 40.37% respectively) and cyclododecane (47.28% and 34.45% respectively). (author)

  4. A comprehensive phylogeny of auxin homeostasis genes involved in adventitious root formation in carnation stem cuttings.

    Directory of Open Access Journals (Sweden)

    Ana Belén Sánchez-García

    Full Text Available Understanding the functional basis of auxin homeostasis requires knowledge about auxin biosynthesis, auxin transport and auxin catabolism genes, which is not always directly available despite the recent whole-genome sequencing of many plant species. Through sequence homology searches and phylogenetic analyses on a selection of 11 plant species with high-quality genome annotation, we identified the putative gene homologs involved in auxin biosynthesis, auxin catabolism and auxin transport pathways in carnation (Dianthus caryophyllus L.. To deepen our knowledge of the regulatory events underlying auxin-mediated adventitious root formation in carnation stem cuttings, we used RNA-sequencing data to confirm the expression profiles of some auxin homeostasis genes during the rooting of two carnation cultivars with different rooting behaviors. We also confirmed the presence of several auxin-related metabolites in the stem cutting tissues. Our findings offer a comprehensive overview of auxin homeostasis genes in carnation and provide a solid foundation for further experiments investigating the role of auxin homeostasis in the regulation of adventitious root formation in carnation.

  5. Initial infection of roots and leaves reveals different resistance phenotypes associated with coat protein gene-mediated resistance to Potato mop-top virus.

    Science.gov (United States)

    Germundsson, Anna; Sandgren, Maria; Barker, Hugh; Savenkov, Eugene I; Valkonen, Jari P T

    2002-05-01

    Resistance to the pomovirus Potato mop-top virus (PMTV) was studied in potato (Solanum tuberosum cv. Saturna) and Nicotiana benthamiana transformed with the coat protein (CP) gene of PMTV. The incidence of PMTV infections was reduced in tubers of the CP-transgenic potatoes grown in the field in soil infested with the viruliferous vector, Spongospora subterranea. However, in those tubers that were infected, all three virus RNAs were detected and virus titres were high. The CP-transgenic N. benthamiana plants were inoculated with PMTV using two methods. Following mechanical inoculation of leaves, no RNA 3 (the CP-encoding RNA homologous to the transgene) was detected in leaves, but in some plants low amounts of RNA 3 were detected in roots; RNA 2 was readily detected in leaves and roots of several plants. Inoculation of roots using viruliferous S. subterranea resulted in infection of roots in all plants and the three PMTV RNAs were detected. However, no systemic movement of PMTV from roots to the above-ground parts was observed, indicating a novel expression of resistance. These data indicate that the CP gene-mediated resistance to PMTV specifically restricts accumulation of PMTV RNA 3, and is more effective in leaves than roots. Furthermore, expression of resistance is different depending on whether leaves or roots are inoculated. Data do not exclude the possibility that both a protein-mediated and an RNA-mediated resistance mechanism are involved.

  6. Hybrid Sequencing of Full-Length cDNA Transcripts of Stems and Leaves in Dendrobium officinale

    Directory of Open Access Journals (Sweden)

    Liu He

    2017-10-01

    Full Text Available Dendrobium officinale is an extremely valuable orchid used in traditional Chinese medicine, so sought after that it has a higher market value than gold. Although the expression profiles of some genes involved in the polysaccharide synthesis have previously been investigated, little research has been carried out on their alternatively spliced isoforms in D. officinale. In addition, information regarding the translocation of sugars from leaves to stems in D. officinale also remains limited. We analyzed the polysaccharide content of D. officinale leaves and stems, and completed in-depth transcriptome sequencing of these two diverse tissue types using second-generation sequencing (SGS and single-molecule real-time (SMRT sequencing technology. The results of this study yielded a digital inventory of gene and mRNA isoform expressions. A comparative analysis of both transcriptomes uncovered a total of 1414 differentially expressed genes, including 844 that were up-regulated and 570 that were down-regulated in stems. Of these genes, one sugars will eventually be exported transporter (SWEET and one sucrose transporter (SUT are expressed to a greater extent in D. officinale stems than in leaves. Two glycosyltransferase (GT and four cellulose synthase (Ces genes undergo a distinct degree of alternative splicing. In the stems, the content of polysaccharides is twice as much as that in the leaves. The differentially expressed GT and transcription factor (TF genes will be the focus of further study. The genes DoSWEET4 and DoSUT1 are significantly expressed in the stem, and are likely to be involved in sugar loading in the phloem.

  7. Comprehensive Profiling and Quantification of Ginsenosides in the Root, Stem, Leaf, and Berry of Panax ginseng by UPLC-QTOF/MS

    Directory of Open Access Journals (Sweden)

    Jae Won Lee

    2017-12-01

    Full Text Available The effective production and usage of ginsenosides, given their distinct pharmacological effects, are receiving increasing amounts of attention. As the ginsenosides content differs in different parts of Panax ginseng, we wanted to assess and compare the ginsenosides content in the ginseng roots, leave, stems, and berries. To extract the ginsenosides, 70% (v/v methanol was used. The optimal ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry (UPLC-QTOF/MS method was used to profile various ginsenosides from the different parts of P. ginseng. The datasets were then subjected to multivariate analysis including principal component analysis (PCA and hierarchical clustering analysis (HCA. A UPLC-QTOF/MS method with an in-house library was constructed to profile 58 ginsenosides. With this method, a total of 39 ginsenosides were successfully identified and quantified in the ginseng roots, leave, stem, and berries. PCA and HCA characterized the different ginsenosides compositions from the different parts. The quantitative ginsenoside contents were also characterized from each plant part. The results of this study indicate that the UPLC-QTOF/MS method can be an effective tool to characterize various ginsenosides from the different parts of P. ginseng.

  8. Assessment of the medicinal potentials of the methanol extracts of the leaves and stems of Buddleja saligna.

    Science.gov (United States)

    Adedapo, Adeolu A; Jimoh, Florence O; Koduru, Srinivas; Masika, Patrick J; Afolayan, Anthony J

    2009-07-06

    Buddleja saligna Willd (Loganiaceae) is a small to medium-sized evergreen tree; trunk short, often gnarled and crooked; crown dense, rounded or domed-shaped; foliage greyish green. The wild olives are traditionally used to lower blood pressures in many parts of the world. In southern Africa, bark and leaf decoctions are used to treat colic, coughs, colds, sore eyes, urinary problems and as purgatives. The antibacterial, antioxidant activities and phenolic contents of the methanol extracts of the leaves and stems of Buddleja saligna were evaluated using in vitro standard methods. Spectrophotometry was the basis for the determinations of total phenol, total flavonoids, flavonols, and proanthocyanidins. Tannins, quercetin and catechin equivalents were used for these parameters. The antioxidant activities of the leaves and stem extracts of Buddleja saligna were determined by ABTS, DPPH, and ferrous reducing antioxidant property (FRAP) methods. Laboratory isolates of 10 bacteria species which included five Gram-positive and five Gram-negative strains were used to assay for antibacterial activity of this plant. The antioxidant activities of the leaves as determined by the ABTS and DPPH were similar to that of the stem. The flavonoids and the flavonols contents of the leaves were higher than that of the stem but the total phenols, proanthocyanidins and FRAP activities were higher in the methanol extracts of the stem. The extracts did show activity against both Gram-positive and Gram-negative bacteria. For instance, while the methanol extract of the leaves showed good activities on all the organisms except Serratia marcescens and Pseudomonas aeruginosa at MICs of between 2.5 and 5.0 mg/ml, the extract of the stem only showed activities on Bacillus cereus, Streptococcus pyrogens and Pseudomonas aeruginosa at the same concentration. The results from this study indicate that the leaves and stem extracts of Buddleja saligna possess antioxidant properties and could serve as

  9. Assessment of the medicinal potentials of the methanol extracts of the leaves and stems of Buddleja saligna

    Directory of Open Access Journals (Sweden)

    Masika Patrick J

    2009-07-01

    Full Text Available Abstract Background Buddleja saligna Willd (Loganiaceae is a small to medium-sized evergreen tree; trunk short, often gnarled and crooked; crown dense, rounded or domed-shaped; foliage greyish green. The wild olives are traditionally used to lower blood pressures in many parts of the world. In southern Africa, bark and leaf decoctions are used to treat colic, coughs, colds, sore eyes, urinary problems and as purgatives. Methods The antibacterial, antioxidant activities and phenolic contents of the methanol extracts of the leaves and stems of Buddleja saligna were evaluated using in vitro standard methods. Spectrophotometry was the basis for the determinations of total phenol, total flavonoids, flavonols, and proanthocyanidins. Tannins, quercetin and catechin equivalents were used for these parameters. The antioxidant activities of the leaves and stem extracts of Buddleja saligna were determined by ABTS, DPPH, and ferrous reducing antioxidant property (FRAP methods. Laboratory isolates of 10 bacteria species which included five Gram-positive and five Gram-negative strains were used to assay for antibacterial activity of this plant. Results The antioxidant activities of the leaves as determined by the ABTS and DPPH were similar to that of the stem. The flavonoids and the flavonols contents of the leaves were higher than that of the stem but the total phenols, proanthocyanidins and FRAP activities were higher in the methanol extracts of the stem. The extracts did show activity against both Gram-positive and Gram-negative bacteria. For instance, while the methanol extract of the leaves showed good activities on all the organisms except Serratia marcescens and Pseudomonas aeruginosa at MICs of between 2.5 and 5.0 mg/ml, the extract of the stem only showed activities on Bacillus cereus, Streptococcus pyrogens and Pseudomonas aeruginosa at the same concentration. Conclusion The results from this study indicate that the leaves and stem extracts of

  10. [Allelopathy autotoxicity effects of aquatic extracts from rhizospheric soil on rooting and growth of stem cuttings in Pogostemon cablin].

    Science.gov (United States)

    Tang, Kun; Li, Ming; Dong, Shan; Li, Yun-qi; Huang, Jie-wen; Li, Long-ming

    2014-06-01

    To study the allelopathy effects of aquatic extracts from rhizospheric soil on the rooting and growth of stem cutting in Pogostemon cablin, and to reveal its mechanism initially. The changes of rhizogenesis characteristics and physic-biochemical during cutting seedlings were observed when using different concentration of aquatic extracts from rhizospheric soil. Aquatic extracts from rhizospheric soil had significant inhibitory effects on rooting rate, root number, root length, root activity, growth rate of cutting with increasing concentrations of tissue extracts; The chlorophyll content of cutting seedlings were decreased, but content of MDA were increased, and activities of POD, PPO and IAAO in cutting seedlings were affected. Aquatic extracts from rhizospheric soil of Pogostemon cablin have varying degrees of inhibitory effects on the normal rooting and growth of stem cuttings.

  11. Assessment of Euphorbia hirta L. Leaf, Flower, Stem and Root Extracts for Their Antibacterial and Antifungal Activity and Brine Shrimp Lethality

    Directory of Open Access Journals (Sweden)

    Santhanam Amutha

    2010-08-01

    Full Text Available The antimicrobial activities of the methanolic extracts of Euphorbia hirta L leaves, flowers, stems and roots were evaluated against some medically important bacteria and yeast using the agar disc diffusion method. Four Gram positive (Staphylococcus aureus, Micrococcus sp., Bacillus subtilis and Bacillus thuringensis, four Gram negative (Escherichia coli, Klebsiella pneumonia, Salmonella typhi and P. mirabilis and one yeast (Candida albicans species were screened. Inhibition zones ranged between 16–29 mm. Leaves extract inhibited the growth of all tested microorganisms with large zones of inhibition, followed by that of flowers, which also inhibited all the bacteria except C. albicans. The most susceptible microbes to all extracts were S. aureus and Micrococcus sp. Root extract displayed larger inhibition zones against Gram positive bacteria than Gram negative bacteria and had larger inhibition zones compared to stem extract. The lowest MIC values were obtained with E. coli and C. albicans (3.12 mg/mL, followed by S. aureus (12.50 mg/mL and P. mirabilis (50.00 mg/mL. All the other bacteria had MIC values of 100.00 mg/mL. Scanning Electron Microscopic (SEM studies revealed that the cells exposed to leaf extract displayed a rough surface with multiple blends and invaginations which increased with increasing time of treatment, and cells exposed to leaf extract for 36 h showed the most damage, with abundant surface cracks which may be related to final cell collapse and lossThe antimicrobial activities of the methanolic extracts of Euphorbia hirta L leaves, flowers, stems and roots were evaluated against some medically important bacteria and yeast using the agar disc diffusion method. Four Gram positive (Staphylococcus aureus, Micrococcus sp., Bacillus subtilis and Bacillus thuringensis, four Gram negative (Escherichia coli, Klebsiella pneumonia, Salmonella typhi and P. mirabilis and one yeast (Candida albicans species were screened. Inhibition

  12. IAA oxidase activity in relation to adventitious root formation on stem cuttings of some forest tree species. [Salix tetrasperma, Populus Robusta, Hibiscus rosa-sinensis, Eucalyptus citriodora

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, M.P.; Nanda, K.K.

    1981-01-01

    In rooting tests with stem cuttings, IAA oxidase activity was found to be very high in Salix tetrasperma and Populus 'Robusta' both of which rooted profusely, less in Hibiscus rosa-sinensis which rooted but weakly and insignificant in Eucalyptus citriodora, which did not root at all. Proteins extracted from the stem cuttings of E. citriodora inhibited IAA oxidase activity, and also root formation on hypocotyl cuttings of Phaseolus mungo.

  13. The nitrate reductase activity of some root and stem parasites and their hosts

    International Nuclear Information System (INIS)

    Hunter, J.J.

    1984-12-01

    This investigation surveyed the nitrate reductase activity (NRA) of some South African root and stem parasites, as well as their hosts. Fourteen species - five stem and nine root parasites, representative of seven families - and eleven different hosts from eight families, were studied. Two methods were applied in the determination of the NRA of parasite and host, namely the in vivo and in vitro methods. Because of the limited literature on the NRA of parasitic flowering plants both the in vivo and in vitro methods were developed for the host species and subsequently applied to that specific species of parasite as well. Parasites and hosts were also investigated in their natural habitat. The NRA of the roots could, however, only be increased providing phorsynthetic products as a source of NADH, were available. By using [U- 14 C]-Sucrose it was confirmed that the parasite could have fulfilled this need. Generally, the investigation showed that the parasites that were studied, have not altogether lost their ability to reduce nitrate. However, it would appear that the host is used as a source of reduced nitrogen, rather than nitrate, under natural conditions

  14. Identification of differentially expressed genes in sunflower (Helianthus annuus) leaves and roots under drought stress by RNA sequencing.

    Science.gov (United States)

    Liang, Chunbo; Wang, Wenjun; Wang, Jing; Ma, Jun; Li, Cen; Zhou, Fei; Zhang, Shuquan; Yu, Ying; Zhang, Liguo; Li, Weizhong; Huang, Xutang

    2017-10-25

    Sunflower is recognized as one of the most important oil plants with strong tolerance to drought in the world. In order to study the response mechanisms of sunflower plants to drought stress, gene expression profiling using high throughput sequencing was performed for seedling leaves and roots (sunflower inbred line R5) after 24 h of drought stress (15% PEG 6000). The transcriptome assembled using sequences of 12 samples was used as a reference. 805 and 198 genes were identified that were differentially expressed in leaves and roots, respectively. Another 71 genes were differentially expressed in both organs, in which more genes were up-regulated than down-regulated. In agreement with results obtained for other crops or from previous sunflower studies, we also observed that nine genes may be associated with the response of sunflower to drought. The results of this study may provide new information regarding the sunflower drought response, as well as add to the number of known genes associated with drought tolerance.

  15. THE HISTOPATHOLOGICAL EFFECT OF LEAF, STEM AND ROOT BARK EXTRACTS OF MORINDA LUCIDA ON SOME VISCERAL ORGANS AND MUSCLES OF WISTAR MICE

    Directory of Open Access Journals (Sweden)

    2016-11-01

    Full Text Available The leaf, stem and root bark of Morinda lucida (Ezeogwu, are bitter and astringent used in Nigeria in the treatment of fever, malaria, yellow fever, jaundice and dysentery. They are also used as dyestuff. The aim of the study was to investigate and compare histological effects of the leaves, stem and root bark extracts of Morinda lucida on some visceral organs and muscles of albino Wistar mice. Acute intraperitoneal toxicity tests were performed for each of the extracts to determine their LD50s using modified Lorke\\'s method. Sub-chronic toxicity study was then carried out by intraperitoneal administration of different doses of the extracts on daily basis to the different groups of male mice for 21 days. The weights of the mice were taken before, during and after administration of the substance at weekly intervals. The animals were subsequently sacrificed and the liver, kidney, stomach, colon and muscle excised for histology processing and analysis. The acute intraperitoneal toxicity result (LD50 revealed Morinda lucida leaf, stem and root bark extracts to be lethal at 1,732.1; 1,058.3 and 970.8mg/kg body weight respectively. Microscopic examinations of the kidney, liver, stomach, colon and cardiac muscles showed that the effects of sub-chronic administration of Morinda lucida on the liver varied with the type of extracts and was dose dependent. The root extract had higher toxic effect. It had no adverse effect on the kidney, muscles, stomach and colon. This result may form the basis for further trials. It shows that Morinda lucida extracts are nontoxic at the dosage and oral route used by local traditional healers for its administration. However, caution is necessary in case of over dose.

  16. Chromatographic fingerprinting and free-radical scavenging activity of ethanol extracts of Muntingia calabura L. leaves and stems

    Directory of Open Access Journals (Sweden)

    William Patrick Cruiz Buhian

    2017-02-01

    Conclusions: M. calabura exhibited very high antioxidant activity in its leaves and stems ethanol extracts, both of which are used in traditional medicine. The TLC results demonstrated the presence of diverse secondary metabolites in the leaf and stem ethanol extracts, indicating that the antioxidant activity, including other bioactivities may be attributed to these phytochemical constituents. This paper has reported for the first time the TLC fingerprinting of M. calabura using visible light, UV 254 nm, UV 366 and post-derivatization with vanillin-spray to visualize separate spots on TLC plates.

  17. Different parts, different stories: climate sensitivity of growth is stronger in root collars vs. stems in tundra shrubs.

    Science.gov (United States)

    Ropars, Pascale; Angers-Blondin, Sandra; Gagnon, Marianne; Myers-Smith, Isla H; Lévesque, Esther; Boudreau, Stéphane

    2017-08-01

    Shrub densification has been widely reported across the circumpolar arctic and subarctic biomes in recent years. Long-term analyses based on dendrochronological techniques applied to shrubs have linked this phenomenon to climate change. However, the multi-stemmed structure of shrubs makes them difficult to sample and therefore leads to non-uniform sampling protocols among shrub ecologists, who will favor either root collars or stems to conduct dendrochronological analyses. Through a comparative study of the use of root collars and stems of Betula glandulosa, a common North American shrub species, we evaluated the relative sensitivity of each plant part to climate variables and assessed whether this sensitivity is consistent across three different types of environments in northwestern Québec, Canada (terrace, hilltop and snowbed). We found that root collars had greater sensitivity to climate than stems and that these differences were maintained across the three types of environments. Growth at the root collar was best explained by spring precipitation and summer temperature, whereas stem growth showed weak and inconsistent responses to climate variables. Moreover, sensitivity to climate was not consistent among plant parts, as individuals having climate-sensitive root collars did not tend to have climate-sensitive stems. These differences in sensitivity of shrub parts to climate highlight the complexity of resource allocation in multi-stemmed plants. Whereas stem initiation and growth are driven by microenvironmental variables such as light availability and competition, root collars integrate the growth of all plant parts instead, rendering them less affected by mechanisms such as competition and more responsive to signals of global change. Although further investigations are required to determine the degree to which these findings are generalizable across the tundra biome, our results indicate that consistency and caution in the choice of plant parts are a key

  18. Xylem hydraulic properties of roots and stems of nine Mediterranean woody species.

    Science.gov (United States)

    Martínez-Vilalta, Jordi; Prat, Ester; Oliveras, Imma; Piñol, Josep

    2002-09-01

    We studied the hydraulic architecture and water relations of nine co-occurring woody species in a Spanish evergreen oak forest over the course of a dry season. Our main objectives were to: (1) test the existence of a trade-off between hydraulic conductivity and security in the xylem, and (2) establish the safety margins at which the species operated in relation to hydraulic failure, and compare these safety margins between species and tissues (roots vs. stems). Our results showed that the relationship between specific hydraulic conductivity (K s) and resistance to cavitation followed a power function with exponent ≈-2, consistent with the existence of a trade-off between conductivity and security in the xylem, and also consistent with a linear relationship between vessel diameter and the size of inter-vessel pores. The diameter of xylem conduits, K s and vulnerability to xylem embolism were always higher in roots than in stems of the same species. Safety margins from hydraulic failure were narrower in roots than in stems. Among species, the water potential (Ψ) at which 50% of conductivity was lost due to embolism ranged between -0.9 and Cistus albidus=Ilex aquifolium>Phillyrea latifolia>Juniperus oxycedrus. Gas exchange and seasonal Ψ minima were in general correlated with resistance to xylem embolism. Hydraulic safety margins differed markedly among species, with some of them (J. oxycedrus, I. aquifolium, P. latifolia) showing a xylem overly resistant to cavitation. We hypothesize that this overly resistant xylem may be related to the shape of the relationship between K s and security we have found.

  19. Antimicrobial activity of the root, stem bark and seed extracts of moringa oleifera lam

    International Nuclear Information System (INIS)

    Manoti Ondicho, J.; Mutai, C.; Rukunga, G.; Oketch, P.; Bii, C.

    2009-01-01

    Organic extracts (Hexane, dichloromethane, ethyl acetate, methanol) and the aqueous extracts of Moringa oleifera Lam or horseradish (root, stem bark and seed) were tested against five bacterial strains using the disc diffusion method and against three fungal strains. The water extracts of the seed was active against a wide range of organisms tested. Hexane and ethyl acetate extracts of the stem bark exhibited moderate activity. Of the fifteen extracts screened, five (33.3 percent) showed activity against Staphylococcus aureus ATCC 25923 and against Trichophyton mentagrophytes while two were active against Microsporum gypseum. The minimal inhibitory concentration (MIC) values for the water extracts ranged from 6.25 to 50 mg/ml. The good activity observed on the water extract explains the success in traditional use of Moringa oleifera for the treatment of infectious diseases.(author)

  20. Antimicrobial activity of the root, stem bark and seed extracts of moringa oleifera lam

    Energy Technology Data Exchange (ETDEWEB)

    Manoti Ondicho, J; Mutai, C; Rukunga, G; Oketch, P [Centre for Tradicional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi (Kenya); Bii, C [Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi (Kenya)

    2009-07-01

    Organic extracts (Hexane, dichloromethane, ethyl acetate, methanol) and the aqueous extracts of Moringa oleifera Lam or horseradish (root, stem bark and seed) were tested against five bacterial strains using the disc diffusion method and against three fungal strains. The water extracts of the seed was active against a wide range of organisms tested. Hexane and ethyl acetate extracts of the stem bark exhibited moderate activity. Of the fifteen extracts screened, five (33.3 percent) showed activity against Staphylococcus aureus ATCC 25923 and against Trichophyton mentagrophytes while two were active against Microsporum gypseum. The minimal inhibitory concentration (MIC) values for the water extracts ranged from 6.25 to 50 mg/ml. The good activity observed on the water extract explains the success in traditional use of Moringa oleifera for the treatment of infectious diseases.(author)

  1. Biomass production and essential oil yield from leaves, fine stems and resprouts using pruning the crown of Aniba canelilla (H.B.K.) (Lauraceae) in the Central Amazon

    OpenAIRE

    Manhães,Adriana Pellegrini; Veiga-Júnior,Valdir Florêncio da; Wiedemann,Larissa Silveira Moreira; Fernandes,Karenn Silveira; Sampaio,Paulo de Tarso Barbosa

    2012-01-01

    Aniba canelilla (H.B.K.) Mez. is a tree species from Amazon that produces essential oil. The oil extraction from its leaves and stems can be an alternative way to avoid the tree cutting for production of essential oil. The aim of this study was to analyse factors that may influence the essential oil production and the biomass of resprouts after pruning the leaves and stems of A. canelilla trees. The tree crowns were pruned in the wet season and after nine months the leaves and stems of the re...

  2. The relationship between growth and development of above ground organs with roots of winter wheat using 32P tracer

    International Nuclear Information System (INIS)

    Wang Zhifen; Chen Xueliu; Yu Meiyan

    1997-01-01

    The relationship of growth and development between above ground organs and roots of winter wheat, Lumai-14, was studied using 32 P tracer. The results showed that before the spike formation, dry matter accumulation in roots, stems and leaves were synchronous, and after that they were asynchronous. The dry matter accumulation in stems and leaves were significantly related to that of roots throughout the whole growing period of winter wheat. After the spike formation, the dry matter accumulation in spikes was not related to that of roots. The 32 P distribution in stems and leaves were related to that of roots significantly, however, the relationship between spikes and roots was not obviously related, which was consistent with the dry matter accumulations in various organs. The metabolic activities of stems, leaves and spike were significantly related to that of roots respectively

  3. Expression of genes associated with carbohydrate metabolism in cotton stems and roots

    Directory of Open Access Journals (Sweden)

    Scheffler Jodi

    2009-01-01

    Full Text Available Abstract Background Cotton (Gossypium hirsutum L is an important crop worldwide that provides fiber for the textile industry. Cotton is a perennial plant that stores starch in stems and roots to provide carbohydrates for growth in subsequent seasons. Domesticated cotton makes these reserves available to developing seeds which impacts seed yield. The goals of these analyses were to identify genes and physiological pathways that establish cotton stems and roots as physiological sinks and investigate the role these pathways play in cotton development during seed set. Results Analysis of field-grown cotton plants indicated that starch levels peaked about the time of first anthesis and then declined similar to reports in greenhouse-grown cotton plants. Starch accumulated along the length of the stem and the shape and size of the starch grains from stems were easily distinguished from transient starch. Microarray analyses compared gene expression in tissues containing low levels of starch with tissues rapidly accumulating starch. Statistical analysis of differentially expressed genes indicated increased expression among genes associated with starch synthesis, starch degradation, hexose metabolism, raffinose synthesis and trehalose synthesis. The anticipated changes in these sugars were largely confirmed by measuring soluble sugars in selected tissues. Conclusion In domesticated cotton starch stored prior to flowering was available to support seed production. Starch accumulation observed in young field-grown plants was not observed in greenhouse grown plants. A suite of genes associated with starch biosynthesis was identified. The pathway for starch utilization after flowering was associated with an increase in expression of a glucan water dikinase gene as has been implicated in utilization of transient starch. Changes in raffinose levels and levels of expression of genes controlling trehalose and raffinose biosynthesis were also observed in vegetative

  4. Physiological and comparative proteomic analysis reveals different drought responses in roots and leaves of drought-tolerant wild wheat (Triticum boeoticum.

    Directory of Open Access Journals (Sweden)

    Hui Liu

    Full Text Available To determine the proteomic-level responses of drought tolerant wild wheat (Triticum boeoticum, physiological and comparative proteomic analyses were conducted using the roots and the leaves of control and short term drought-stressed plants. Drought stress was imposed by transferring hydroponically grown seedlings at the 3-leaf stage into 1/2 Hoagland solution containing 20% PEG-6000 for 48 h. Root and leaf samples were separately collected at 0 (control, 24, and 48 h of drought treatment for analysis. Physiological analysis indicated that abscisic acid (ABA level was greatly increased in the drought-treated plants, but the increase was greater and more rapid in the leaves than in the roots. The net photosynthetic rate of the wild wheat leaves was significantly decreased under short-term drought stress. The deleterious effects of drought on the studied traits mainly targeted photosynthesis. Comparative proteomic analysis identified 98 and 85 differently changed protein spots (DEPs (corresponding to 87 and 80 unique proteins, respectively in the leaves and the roots, respectively, with only 6 mutual unique proteins in the both organs. An impressive 86% of the DEPs were implicated in detoxification and defense, carbon metabolism, amino acid and nitrogen metabolism, proteins metabolism, chaperones, transcription and translation, photosynthesis, nucleotide metabolism, and signal transduction. Further analysis revealed some mutual and tissue-specific responses to short-term drought in the leaves and the roots. The differences of drought-response between the roots and the leaves mainly included that signal sensing and transduction-associated proteins were greatly up-regulated in the roots. Photosynthesis and carbon fixation ability were decreased in the leaves. Glycolysis was down-regulated but PPP pathway enhanced in the roots, resulting in occurrence of complex changes in energy metabolism and establishment of a new homeostasis. Protein metabolism

  5. Rooting of hybrid clones of Populus tremula L. x P. tremuloides Michx. by stem cuttings derived from micropropagated plants

    Energy Technology Data Exchange (ETDEWEB)

    Qibin Yu [Univ. of Helsinki (Finland). Dept. of Plant Biology; Maentylae, N. [Univ. of Turku (Finland). Dept. of Biology, Plant Physiology and Molecular Biology; Salonen, M. [Finnish Forest Research Inst., Laeyliaeinen (Finland). Haapastensyrjae Breeding Station

    2001-07-01

    Propagation costs could be cut by replacing part of the micropropagation process with steps involving more traditional techniques. This study explored possibilities for improving existing vegetative propagation techniques for aspen using stem cuttings obtained from micropropagated plants. Vegetative propagation through stem cuttings was studied in 10 micropropagated hybrid aspen clones (Populus tremula L. x P. tremuloides Michx). Cuttings containing one axillary bud were harvested from the same donor plants twice during the growing season: the first harvest in May and the second harvest in July. Rooting percentage was correlated positively with root length, number of roots and height of cutting plant but negatively with length of rooting. The average rooting percentage was 53% in the first harvest and 27% in second harvest. Indole-3-butyric acid treatments (1.2 mM) significantly improved rooting in the second harvest, but not in the first harvest, suggesting different endogenous auxin levels in the cuttings. A significant variation for most traits related to rooting ability was found among the clones, indicating that clonal effects play an important role in the propagation of aspen. Thus, clones with a good response in shoot growth and rooting could be exploited in large-scale propagation using stem cuttings.

  6. Antimicrobial Activity of Extracts from Leaves, Stems and Flowers of Euphorbia macroclada against plant pathogenic fungi

    OpenAIRE

    K. Al-Mughrabi

    2003-01-01

    Extracts drawn from dried and powdered flowers, stems and leaves of Euphorbia macroclada with some organic solvents were tested for antimicrobial effect against the fungi Verticillium dahliae, Fusarium oxysporum, Rhizopus stolonifer, Penicillium italicum, Rhizoctonia solani, Alternaria solani, Stemphylium solani, Cladosporium sp., Mucor sp., and Pythium sp. The strongest inhibitory effect of the extracts was observed against R. solani, V. dahliae, F. oxysporum, Pythium sp. and R. ...

  7. Quantitative determination of total and individual flavonoids in stems and leaves of Buddleja davidii and Buddleja albiflora

    OpenAIRE

    Ying, Cheng; Wan, Dingrong

    2012-01-01

    Background: Buddleja davidii and B. albiflora are two different original plants of the famous crude medicine "Diaoyangchen." Materials and Methods: An ultraviolet-visible spectrophotometric method and a HPLC method were used for the determination of total and individual flavonoids (luteolin and apigenin) contents from their stems and leaves for the first time. Results: From the comparative evaluation, remarkable differences in flavonoids contents were observed between different origins and di...

  8. Antioxidant activity characterization, phytochemical screening, and proximate analysis of Cermela Hutan (Phyllanthus gomphocarpus Hook. F) roots and leaves.

    Science.gov (United States)

    Bahari, Ebby-Anuar; Zaaba, Nur Eleza; Haron, Norhisham; Dasiman, Razif; Amom, Zulkhairi

    2014-11-07

    Roots and leaves of the Cermela Hutan (Phyllanthus gomphocarpus Hook. F) plant were studied to determine antioxidant activity, phytochemical compounds, proportion of carbohydrate, crude protein, moisture, ash, fat, total phenolic content (TPC), and total flavonoid content (TFC). Ten percent (10%) aqueous extract from both Phyllanthus gomphocarpus roots (PGR) and leaves (PGL) were used in this study. Antioxidant activity characterization by TPC, TFC, Ferric Reducing Antioxidant Power (FRAP), 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity, and phytochemical screening, as well as proximate analysis from both extracts were analyzed in this study. Phyllanthus gomphocarpus roots (PGR) and leaves (PGL) tested positive for flavonoid, saponin, tannins, and terpenoids, but PGR showed negative result for anthraquinones. In average weight of 100.0 g dry sample, the carbohydrates, protein, moisture, ash, fat, and energy content in PGR and PGL were 80.9%, 5.5%, 7.8%, 3.4%, 2.4%, and 367 Kcal/100g, and 66.5%, 14.8%, 10.7%, 6.5%, 1.5%, and 399 Kcal/100 g, respectively. Antioxidant assessments using FRAP and DPPH assay showed that PGL extracts possessed higher antioxidant capacity by reducing the ferric ion-TPTZ complex by 0.14 mg/ml ±0.0018 and higher scavenging activity, 83.83% ±0.54 as compared to PGR, 0.07 mg/ml ±0.0035 for FRAP and 62.87% ±1.33 for DPPH, respectively. The total phenolics content was significantly higher in PGL (208.77 mg GAE/g ±3.79) as compared to PGR (27.53 mg GAE/g ±0.42). However, there was no significant different in the total flavonoid contents for PGR (34.8 mg QE/g ±3.12) and PGL (32.43 mg QE/g ±3.92). Further investigations are suggested to isolate and characterize the other active constituents from this plant in combatting diseases.

  9. Pattern of zinc-65 incorporation into soybean seeds by root absorption, stem injection, and foliar application

    International Nuclear Information System (INIS)

    Khan, A.; Weaver, C.M.

    1989-01-01

    The pattern of 65 Zn incorporation into soybean seeds of plants grown hydroponically and intrinsically labeled with 65 Zn by root absorption, stem injection, and foliar application was studied. Stem injection resulted in the greatest (64.5% of dose) accumulation of 65 Zn while incorporation of 65 Zn through root absorption was the least (23.4%) and through foliar application was intermediate (37.5%). Regardless of the labeling techniques, approximately 40-45% of the seed 65 Zn was associated with the subcellular organelles. The pattern of zinc incorporation did not change appreciably as a result of the labeling technique. The major portion of the soluble zinc was not associated with the major proteins (11S and 7S) of soybeans but either was free or was associated with very low molecular weight amino acids, peptides, or their complexes with phytic acid. Zinc in soybean seems to be ionically bound, and this association is affected by the pH of the extracting buffer

  10. Chemical diversity of essential oils from flowers, leaves, and stems of Rhanterium epapposum Oliv. growing in northern border region of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Marwa Awad

    2016-09-01

    Conclusions: Essential oils from flowers, leaves and stems of R. epapposum growing in northern border region of Saudi Arabia are considered as a rich source of monoterpenes which have biological activities.

  11. Wounding of Arabidopsis leaves induces indole-3-carbinol-dependent autophagy in roots of Arabidopsis thaliana.

    Science.gov (United States)

    Katz, Ella; Chamovitz, Daniel A

    2017-09-01

    In cruciferous plants insect attack or physical damage induce the synthesis of the glucosinolate breakdown product indole-3-carbinol, which plays a key role in the defense against attackers. Indole-3-carbinol also affects plant growth and development, acting as an auxin antagonist by binding to the TIR1 auxin receptor. Other potential functions of indole-3-carbinol and the underlying mechanisms in plant biology are unknown. Here we show that an indole-3-carbinol-dependent signal induces specific autophagy in root cells. Leaf treatment with exogenous indole-3-carbinol or leaf-wounding induced autophagy and inhibited auxin response in the root. This induction is lost in glucosinolate-defective mutants, indicating that the effect of indole-3-carbinol is transported in the plants. Thus, indole-3-carbinol is not only a defensive metabolite that repels insects, but is also involved in long-distance communication regulating growth and development in plants. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. Response of dandelion (Taraxacum officinale Web) to heavy metals from mine sites: micromorphology of leaves and roots.

    Science.gov (United States)

    Bini, Claudio; Maleci, Laura; Buffa, Gabriella; Wahsha, Mohammad; Fontana, Silvia

    2013-04-01

    Response of dandelion (Taraxacum officinale Web) to heavy metals from mine sites: micromorphology of leaves and roots. Maleci L.1 , Bini C.2, Buffa G. 2, Fontana S2., Wahsha M.3 1 - Dept of Biology, University of Florence, Italy. 2 - Dept of Environmental Sciences, Informatics and Statistics. Ca'Foscari University, Venice - Italy. 3 - Marine Science Centre - University of Jordan, Aqaba section, Jordan. Heavy metal accumulation is known to produce significant physiological and biochemical responses in vascular plants. Yet, metabolic and physiological responses of plants to heavy metal concentration can be viewed as potentially adaptive changes of the plants during stress. From this point of view, plants growing on abandoned mine sites are of particular interest, since they are genetically tolerant to high metal concentrations, and can be utilized in soil restoration. Among wild plants, the common dandelion (Taraxacum officinale Web) has received attention as bioindicator plant, and has been also suggested in remediation projects. Wild specimens of Taraxacum officinale Web, with their soil clod, were gathered from three sites with different contamination levels by heavy metals (Cd, Cr, Cu, Fe, Pb, Zn) in the abandoned Imperina Valley mine (Northeast Italy). A control plant was also gathered from a not contaminated site nearby. Plants were cultivated in pots for one year at HBF, and appeared macroscopically not affected by toxic signals (reduced growth, leaf necrosis) possibly induced by soil HM concentration. Leaves and roots taken at the same growing season were observed by LM and TEM. Light microscopy observations carried out on the leaf lamina show a clear difference in the cellular organization of not-contaminated and contaminated samples. The unpolluted samples present a well organized palisade tissue and spongy photosynthetic parenchyma. Samples from contaminated sites, instead, present a palisade parenchyma less organized, and a reduction of leaf thickness

  13. Composts containing fluorescent pseudomonads suppress fusarium root and stem rot development on greenhouse cucumber.

    Science.gov (United States)

    Bradley, Geoffrey G; Punja, Zamir K

    2010-11-01

    Three composts (Ball, dairy, and greenhouse) were tested for the ability to suppress the development of Fusarium root and stem rot (caused by Fusarium oxysporum f. sp. radicis-cucumerinum) on greenhouse cucumber. Dairy and greenhouse composts significantly reduced disease severity (P = 0.05), while Ball compost had no effect. Assessment of total culturable microbes in the composts showed a positive relationship between disease suppressive ability and total population levels of pseudomonads. In vitro antagonism assays between compost-isolated bacterial strains and the pathogen showed that strains of Pseudomonas aeruginosa exhibited the greatest antagonism. In growth room trials, strains of P. aeruginosa and nonantagonistic Pseudomonas maculicola, plus 2 biocontrol strains of Pseudomonas fluorescens, were tested for their ability to reduce (i) survival of F. oxysporum, (ii) colonization of plants by the pathogen, and (iii) disease severity. Cucumber seedlings grown in compost receiving P. aeruginosa and P. fluorescens had reduced disease severity index scores after 8 weeks compared with control plants without bacteria. Internal stem colonization by F. oxysporum was significantly reduced by P. aeruginosa. The bacteria colonized plant roots at 1.9 × 10(6) ± 0.73 × 10(6) CFU·(g root tissue)-1 and survival was >107 CFU·(g compost)-1 after 6 weeks. The locus for 2,4-diacetylphloroglucinol production was detected by Southern blot analysis and confirmed by PCR. The production of the antibiotic 2,4-diacetylphloroglucinol in liquid culture by P. aeruginosa was confirmed by thin layer chromatography. These results demonstrate that composts containing antibiotic-producing P. aeruginosa have the potential to suppress diseases caused by Fusarium species.

  14. Integrative omic analysis reveals distinctive cold responses in leaves and roots of strawberry, Fragaria × ananassa ‘Korona’

    Directory of Open Access Journals (Sweden)

    Gage eKoehler

    2015-10-01

    Full Text Available To assess underlying metabolic processes and regulatory mechanisms during cold exposure of strawberry, integrative omic approaches were applied to Fragaria × ananassa Duch. ‘Korona’. Both root and leaf tissues were examined for responses to the cold acclimation processes. Levels of metabolites, proteins, and transcripts in tissues from plants grown at 18°C were compared to those following 1 to 10 days of cold (2°C exposure. Overall, ‘Korona’ showed a modest increase of protective metabolites such as amino acids (aspartic acid, leucine, isoleucine, and valine, pentoses, phosphorylated and non-phosphorylated hexoses, and distinct compounds of the raffinose pathway (galactinol and raffinose. By 2DE proteomics a total of 845 spots were observed in leaves; 4.6% changed significantly in response to cold.Transcript levels in leaves were determined by microarray, where dozens of cold associated transcripts were quantitatively characterized, and levels of several potential key contributors (e.g., the dehydrin COR47 and GADb to cold tolerance were confirmed by qRT-PCR. Cold responses are placed within the existing knowledge base of low temperature stress change in plants, allowing an evaluation of the uniqueness or generality of Fragaria responses in photosynthetic tissues. Overall, the cold response characteristics of ‘Korona’ are consistent with a moderately cold tolerant plant.

  15. Biological activities and chemical composition of the stems and roots of Helichrysum oligocephalum DC grown in Iran.

    Science.gov (United States)

    Esmaeili, Akbar

    2013-05-01

    Helichrysum has long been used medicinally, proving to be beneficial in treatment of acne, asthma, bronchitis and circulatory problems, and lymphatic system diseases. The objective of this research was to study the antioxidant and antibacterial activities and chemical composition of the compounds derived from the stems and roots of cultivated H. oligocephalum using gas chromatography (GC) and gas chromatography-mass spectroscopy (GC-MS). The primary components found in the stem oil were ortho-vanillin (51.0%) and carvacrol (16.0%), and those found in the root oil were 1,8-cineole (30.6%) and isobornyl acetate (13.9%). Stem and root oils of H. oligocephalum demonstrated antibacterial activity, particularly in relation to Gram-positive bacteria. In a β-carotene/linoleic acid bleaching assay, the root oil of H. oligocephalum demonstrated an antioxidant effect. Antioxidant capacity measured with 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was 1205.0 for the stem oil and 722.8 μg/ml for the root oil.

  16. Cytotoxicity of latex and pharmacobotanical study of leaves and stem of Euphorbia umbellata (Janaúba

    Directory of Open Access Journals (Sweden)

    Lívia E.C. Luz

    Full Text Available AbstractIn southern Brazil, the bottled latex of Synadenium grantii Hook f., Euphorbiaceae, is popularly used as a treatment of all types of cancer. Similarly, Synadenium umbellatum Pax. is used in the central western region of Brazil for the same purpose and in the same manner of use. Both plants are popularly known as janaúba or leitosinha. The objectives of this study were to use pharmacobotanical analysis to verify whether these two species, which are considered to be distinct, are actually the same to determine anatomical markers; to assist in the identification and differentiation of other Euphorbia; and to evaluate the cytotoxic activity of the latex in relation to HeLa and HRT-18 cells. Leaves and stems of the species were collected in Goiânia and Ponta Grossa and were investigated using scanning electron microscopy and optical microscopy techniques. The latex was also collected and analyzed in relation to its cytotoxic effect by employing MTT and NR techniques. The pharmacobotanical study of the specimens in both localities showed that they were the same species, namely Euphorbia umbellata (Pax Bruyns, which is the scientific nomenclature accepted and confirmed by an expert taxonomist who specializes in Euphorbia. The pharmacobotanical characteristics highlighted in this study can assist in the identification of the taxon and contribute to the control of the quality of this plant drug. The evaluation of the latex in relation to HRT-18 cells demonstrated action after 48 h of experiment. In contrast, in relation to HeLa cells its induced cytotoxicity in all times and a dose-dependent manner. The IC50 values (72 h observed were 252.58 ± 18.51 µg/ml and 263.42 ± 15.92 µg/ml to MTT experiment and 250.18 ± 19.48 µg/ml and 430.56 ± 19.71 µg/ml to NR experiment for the HeLa and HRT-18 cells, respectively.

  17. Fatty acid composition and antibacterial potential of Cassia tora (leaves and stem collected from different geographic areas of India

    Directory of Open Access Journals (Sweden)

    Shipra Shukla

    2018-01-01

    Full Text Available The comparative analysis of the fatty acid composition of Cassia tora (leaves and stem was determined using gas chromatography–mass spectrometry. Twenty-seven fatty acids were identified in C. tora (leaves and stem which was collected from three different geographical areas of India: Lucknow (Uttar Pradesh, Nainital (Uttarakhand, and Bhavnagar (Gujarat, coded as CT-1, CT-2, and CT-3, respectively. The gas chromatography–mass spectrometry analysis showed the presence of various saturated and unsaturated fatty acids. The major fatty acids found were palmitic acid, linoleic acid, linolenic acid, margaric acid, melissic acid, and behenic acid. The highest amounts of saturated fatty acids were found in leaves of C. tora collected from Bhavnagar (Gujarat (60.7% ± 0.5%. Thus, the study reveals that C. tora has a major amount of nutritionally important fatty acids, along with significant antimicrobial potential. Fatty acids play a significant role in the development of fat products with enhanced nutritional value and clinical application. Remarkable differences were found in the present study between fatty acid profiles of C. tora collected from different locations in India. To the best of our knowledge there is no previously reported comparative study of the fatty acids of C. tora.

  18. Quantification of Catechin in Leaves and Stems of Malaysian Uncaria Gambir (Hunter) ROXB. by HPLC-DAD

    International Nuclear Information System (INIS)

    Nurliayana Ibrahim; Nurul Zulaikha Mohd Yusoff; Rohaya Ahmad; Rohaya Ahmad

    2016-01-01

    Recently, we reported the isolation of a novel flavonoid named uncariechin along with epicatechin and epiafzelechin from the leaf extract of Uncaria longiflora variety pteropoda (Miq.) Ridsd. of the family Rubiaceae. Continuing our investigation on the Uncaria genus, the identification and quantification of its phytoconstituents was carried out. The species of particular interest is the Malaysian Uncaria gambir. This species is distributed mainly in Malaysia and Indonesia and has been cultivated for the flavonoid catechin in Indonesia. Hence, the objective of this study is to determine the quantity of catechin in hexane (Hx), dichloromethane (DCM) and methanol (MeOH) extracts in both stem and leaf parts of the plant via HPLC-DAD. Our findings indicate that catechin is present in higher amounts in the MeOH extract [8.64 % (leaves); 5.12 % (stems)] compared to the DCM extract [0.77 % (leaves); 0.92 % (stems)] with no catechin found in the hexane extract. This is the first report of the quantification of catechin from Malaysian U. gambir using HPLC-DAD. The method can be used for the quantification of flavonoids from other Uncaria and related genus and is useful for targeted isolation of interest flavonoids. (author)

  19. Quantitative elemental localisation in leaves and stems of nickel hyperaccumulating shrub Hybanthusfloribundus subsp. floribundus using micro-PIXE spectroscopy

    International Nuclear Information System (INIS)

    Kachenko, Anthony G; Singh, Balwant; Bhatia, Naveen P; Siegele, Rainer

    2008-01-01

    Hybanthusfloribundus (Lindl.) F.Muell. subsp. floribundus is a native Australian nickel (Ni) hyperaccumulating shrub and a promising species for rehabilitation and phytoremediation of Ni tailings. Spatial localisation and quantification of Ni in leaf and stem tissues of H.floribundus subsp. floribundus was studied using micro-proton-induced X-ray emission (micro-PIXE) spectroscopy. Young plants, grown in a potting mix under controlled glasshouse conditions were exposed to Ni concentrations of 0 and 26 mM kg -1 for 20 weeks. Leaf and stem samples were hand-sectioned and freeze-dried prior to micro-PIXE analysis. Elemental distribution maps of leaves revealed Ni concentration of 7800 mg kg -1 dry weight (DW) in whole leaf sections, which was identical to the bulk tissue analysis. Elemental maps showed that Ni was preferentially localised in the adaxial epidermis (10,000 mg kg -1 DW) and reached a maximum of up to 10,000 mg kg -1 DW in the leaf margin. Freeze-dried stem sections from the same plants contained lower Ni than leaf tissues (1800 mg kg -1 versus 7800 mg kg -1 DW, respectively), however did not resolve a clear pattern of compartmentalisation across different anatomical regions. Our results suggest localisation in epidermal cells is an important physiological mechanism involved in Ni accumulation and tolerance in leaves of H.floribundus subsp. floribundus

  20. Effect of naphthalene acetic acid on adventitious root development and associated physiological changes in stem cutting of Hemarthria compressa.

    Directory of Open Access Journals (Sweden)

    Yan-Hong Yan

    Full Text Available In order to find a way to induce rooting on cuttings of Hemarthria compressa cv. Ya'an under controlled conditions, a project was carried out to study the effect of naphthalene acetic acid (NAA on rooting in stem cuttings and related physiological changes during the rooting process of Hemarthria compressa. The cuttings were treated with five concentrations of NAA (0, 100, 200 300, 400 mg/l at three soaking durations (10, 20, 30 minutes, and cuttings without treatment were considered as control. Samples were planted immediately into pots after treatment. IAA-oxidase (IAAO activity, peroxidase (POD activity and polyphenol oxidase (PPO activity were determined after planting. Results showed that NAA had positive effect on rooting at the concentration of 200 mg/l compared to other concentrations at 30 days after planting (DAP. Among the three soaking durations, 20 minutes (min of 200 mg/l NAA resulted in higher percentages of rooting, larger numbers of adventitious roots and heavier root dry weight per cutting. The lowest IAAO activity was obtained when soaked at 200 mg/l NAA for 20 min soaking duration. This was consistent with the best rooting ability, indicating that the lower IAAO activity, the higher POD activity and PPO activity could be used as an indicator of better rooting ability for whip grass cuttings and might serve as a good marker for rooting ability in cuttings.

  1. Access and Definition: Exploring how STEM Faculty, Department Heads, and University Policy Administrators Navigate the Implementation of a Parental Leave Policy

    OpenAIRE

    Schimpf, Corey T; Santiago, Marisol Mercado; Pawley, Alice L.

    2012-01-01

    Access and Definition: Exploring how STEM Faculty, Department Heads and University Policy Administrators Navigate the Enactment of a Parental Leave Policy A key feature in various reports exploring women’s persisting underrepresentation in STEM faculty positions in the US is the need to disseminate policy information to all stakeholders involved in issues relating to women STEM faculty underrepresentation and retention. Indeed, the National Academies of Science Beyond Barriers and Bias: Fulfi...

  2. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings.

    Science.gov (United States)

    Zhang, Wangxiang; Fan, Junjun; Tan, Qianqian; Zhao, Mingming; Zhou, Ting; Cao, Fuliang

    2017-01-01

    Malus hupehensis is an excellent Malus rootstock species, known for its strong adverse-resistance and apomixes. In the present study, stem cuttings of M. hupehensis were treated with three types of exogenous hormones, including indole acetic acid (IAA), naphthalene acetic acid (NAA), or green growth regulator (GGR). The effects and mechanisms of exogenous hormone treatment and antioxidant enzyme activity on adventitious root formation were investigated. The results showed that the apparent morphology of the adventitious root had four stages, including root pre-emergence stage (S0), early stage of root formation (S1), massive root formation stage (S2), and later stage of root formation (S3). The suitable concentrations of the three exogenous hormones, IAA, NAA and GGR, were 100 mg·L-1, 300 mg·L-1, and 300 mg·L-1, respectively. They shortened the rooting time by 25-47.4% and increased the rooting percentages of cuttings by 0.9-1.3 times, compared with that in the control. The dispersion in S0 stage was 3.6 times of that in the S1 stage after exogenous hormone application. The earlier the third critical point (P3) appeared, the shorter the rooting time and the greater the rooting percentage of the cuttings. During rhizogenesis, the activities of three antioxidant enzymes (POD, SOD, and PPO) showed an A-shaped trend. However, peak values of enzyme activity appeared at different points, which were 9 d before the P3, P3, and the fourth critical point (P4), respectively. Exogenous hormone treatment reduced the time to reach the peak value by 18 days, although the peak values of the enzymatic activities did not significantly changed. Our results suggested that exogenous hormone treatment mainly acted during the root pre-emergence stage, accelerated the synthesis of antioxidant enzymes, reduced the rooting time, and consequently promoted root formation. The three kinds of antioxidant enzymes acted on different stages of rooting.

  3. AVOCADO SEEDLINGS MULTIPLE STEMS PRODUCTION

    Directory of Open Access Journals (Sweden)

    MARCUS VINICIUS SANDOVAL PAIXÃO

    2016-01-01

    Full Text Available ABSTRACT This study aimed to evaluate the potential of multi-stems in avocado seeds according to their mass as well as the adventitious rooting of multi-stem budding with or without the use of auxin. The research was carried out at the Vegetation House of Federal Institute of Espírito Santo, Campus Santa Teresa -ES, with seeds of different masses: 100 g, in which each experimental unit was made of five seeds, distributed within five repetitions, under a completely randomized design. The seeds were put to germinate and the percentage number of emergence and multiple stems were evaluated. After 150 days, the following evaluations were carried out: survival of rooted cuttings; number of leaves; stem diameter; root length; root volume; root and shoot fresh mass; root and shoot dry mass; shoot height; absolute growth and shoot growth rate; shoot dry weight/root dry mass ratio; shoot height/stem diameter ratio; shoot height/root length and Dickson's quality index ratio. Avocado seeds with mass over 100 g and between 81-100 g presented higher percentage of multiple stems. Rods over 20 cm that were not treated with IBA (indole-3-butyric acid resulted on avocado plants of better quality. The use of IBA (2000 mg L-1 does not affect the rooting and growth of avocado's multi-stem plants.

  4. Leaves and roots of Typha latifolia L. and Iris pseudacorus L. as bioindicators of contamination of bottom sediments by heavy metals

    Directory of Open Access Journals (Sweden)

    Parzych Agnieszka

    2016-12-01

    Full Text Available The paper concerns the bioaccumulation of zinc, nickel, iron and manganese in leaves and roots of selected macrophytes from the Krzynia Reservoir (northern Poland. The research was conducted within the area of 10 stations situated in the littoral zone of the reservoir. Samples of surface waters, bottom sediments and plants were taken in summer. Heavy metal content was determined by the atomic absorption spectrometry method (ASA. The concentration of heavy metals in the waters of Krzynia Reservoir was low and noinfluence of anthropogenic factors was found. Concentration of heavy metals in the examined bottom sediments was low and remained within the limits of the geochemical background for Zn and Fe. In the case of Ni and Mn it sporadically exceeded the level of the geochemical background. The tested plants mainly accumulated heavy metals in roots, with the exception of nickel which appeared in larger quantities in leaves. The relationships among the content of the determined elements in the organs of macrophytes was identical for the tested species and could be arranged into the following sequences: Mn>Fe>Ni>Zn in leaves and Fe>Mn>Zn>Ni in roots. Statistically significant differences were found in the content of Mn in leaves and Zn and Fe in the roots of Typha latifolia L. and Iris pseudacorus L. By accumulating substantial quantities of heavy metals in their organs, macrophytes constitute an effective protective barrier for the waters and bottom sediments.

  5. A plant economics spectrum in Mediterranean forests along environmental gradients: is there coordination among leaf, stem and root traits?

    NARCIS (Netherlands)

    Riva, de la E.G.; Tosto, A.; Perez-Ramos, I.M.; Navarro-Fernandez, C.M.; Olmos, M.; Anten, N.P.R.; Maranon, T.; Villar, R.

    2016-01-01

    Questions: Is there any evidence of coordination among leaf, stem and root traits, and thereby of the existence of a plant economics spectrum at the species and community level in Mediterranean forests? Are these traits related to plant size and seedmass? Location: Mediterranean forests and

  6. The biomedical significance of the phytochemical, proximate and mineral compositions of the leaf, stem bark and root of Jatropha curcas

    Directory of Open Access Journals (Sweden)

    Atamgba Agbor Asuk

    2015-08-01

    Conclusions: The outcome of this study suggests that the leaf, stem bark and root of J. curcas have very good medicinal potentials, meet the standard requirements for drug formulation and serve as good sources of energy and nutrients except for the presence of some anti-nutritional elements predominant in the leaf.

  7. Rooting stem cuttings of northern red oak (Quercus rubra L.) utilizing hedged stump sprouts formed on recently felled trees

    Science.gov (United States)

    Matthew H. Gocke; Daniel J. Robinson

    2010-01-01

    The ability to root stem cuttings collected from hedged stump sprouts formed on recently felled trees was evaluated for 26 codominant northern red oak (Quercus rubra L.) trees growing in Durham County, NC. Sprouting occurred, the same year as felling, on 23 of the 26 tree stumps and sprout number was significantly and positively correlated with stump diameter. The...

  8. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance.

    Science.gov (United States)

    Kumar, Shashi; Dhingra, Amit; Daniell, Henry

    2004-09-01

    Salinity is one of the major factors that limits geographical distribution of plants and adversely affects crop productivity and quality. We report here high-level expression of betaine aldehyde dehydrogenase (BADH) in cultured cells, roots, and leaves of carrot (Daucus carota) via plastid genetic engineering. Homoplasmic transgenic plants exhibiting high levels of salt tolerance were regenerated from bombarded cell cultures via somatic embryogenesis. Transformation efficiency of carrot somatic embryos was very high, with one transgenic event per approximately seven bombarded plates under optimal conditions. In vitro transgenic carrot cells transformed with the badh transgene were visually green in color when compared to untransformed carrot cells, and this offered a visual selection for transgenic lines. BADH enzyme activity was enhanced 8-fold in transgenic carrot cell cultures, grew 7-fold more, and accumulated 50- to 54-fold more betaine (93-101 micromol g(-1) dry weight of beta-Ala betaine and Gly betaine) than untransformed cells grown in liquid medium containing 100 mm NaCl. Transgenic carrot plants expressing BADH grew in the presence of high concentrations of NaCl (up to 400 mm), the highest level of salt tolerance reported so far among genetically modified crop plants. BADH expression was 74.8% in non-green edible parts (carrots) containing chromoplasts, and 53% in proplastids of cultured cells when compared to chloroplasts (100%) in leaves. Demonstration of plastid transformation via somatic embryogenesis utilizing non-green tissues as recipients of foreign DNA for the first time overcomes two of the major obstacles in extending this technology to important crop plants.

  9. Effects of IAA, IBA, NAA, and GA3 on rooting and morphological features of Melissa officinalis L. stem cuttings.

    Science.gov (United States)

    Sevik, Hakan; Guney, Kerim

    2013-01-01

    This study analyzed the potential of producing Melissa officinalis L. using stem cuttings. Four different hormones (IAA, IBA, NAA, and GA3) were applied to the cuttings, with and without buds, in two doses (1000 mg/L and 5000 mg/L), and after 60 days, 10 morphological characteristics of newly generated plants were detected, and a statistical analysis was carried out. The results of the study show that the cuttings with at least one bud must be used in order to produce M. officinalis using stem cuttings. Even though the auxin group hormones (IAA, IBA, and NAA) do not have an apparent effect on rooting percentage, these hormones were detected to affect the morphological characteristics of the newly generated plants, especially root generation. GA3 application has a considerable effect on stem height.

  10. Removal ratio of gaseous toluene and xylene transported from air to root zone via the stem by indoor plants.

    Science.gov (United States)

    Kim, K J; Kim, H J; Khalekuzzaman, M; Yoo, E H; Jung, H H; Jang, H S

    2016-04-01

    This work was designed to investigate the removal efficiency as well as the ratios of toluene and xylene transported from air to root zone via the stem and by direct diffusion from the air into the medium. Indoor plants (Schefflera actinophylla and Ficus benghalensis) were placed in a sealed test chamber. Shoot or root zone were sealed with a Teflon bag, and gaseous toluene and xylene were exposed. Removal efficiency of toluene and total xylene (m, p, o) was 13.3 and 7.0 μg·m(-3)·m(-2) leaf area over a 24-h period in S. actinophylla, and was 13.0 and 7.3 μg·m(-3)·m(-2) leaf area in F. benghalensis. Gaseous toluene and xylene in a chamber were absorbed through leaf and transported via the stem, and finally reached to root zone, and also transported by direct diffusion from the air into the medium. Toluene and xylene transported via the stem was decreased with time after exposure. Xylene transported via the stem was higher than that by direct diffusion from the air into the medium over a 24-h period. The ratios of toluene transported via the stem versus direct diffusion from the air into the medium were 46.3 and 53.7% in S. actinophylla, and 46.9 and 53.1% in F. benghalensis, for an average of 47 and 53% for both species. The ratios of m,p-xylene transported over 3 to 9 h via the stem versus direct diffusion from the air into the medium was 58.5 and 41.5% in S. actinophylla, and 60.7 and 39.3% in F. benghalensis, for an average of 60 and 40% for both species, whereas the ratios of o-xylene transported via the stem versus direct diffusion from the air into the medium were 61 and 39%. Both S. actinophylla and F. benghalensis removed toluene and xylene from the air. The ratios of toluene and xylene transported from air to root zone via the stem were 47 and 60 %, respectively. This result suggests that root zone is a significant contributor to gaseous toluene and xylene removal, and transported via the stem plays an important role in this process.

  11. Influence of variety and type of shoot on rooting ability of green stem cuttings of highbush blueberry (Vaccinium corymbosum L.

    Directory of Open Access Journals (Sweden)

    А. А. Пиж’янова

    2013-05-01

    Full Text Available The article provides results of studying the output percentage of green stem cuttings of seven varieties of Highbush blueberry (Vaccinium corymbosum L. subject to the dates of cutting preparation, type of shoot and its metamerism in agroecological conditions of the Rightbank Forest Steppe of Ukraine. It is found that green stem cuttings of Highbush blueberry varieties under review display low regenerative ability and are characterized with medium rooting ability. The optimal procuring and planting for rooting dates for the shoots fall within the stage of their intensive growth, which lasts from the first decade of June till the second decade of July. The level of regenerative capacity for the cuttings is determined by the type of cutting and its metamerism. Basal three-node cuttings have displayed essentially improved rooting ability as compared to the apical and medial cuttings.

  12. Aquatic adventitious roots of the wetland plant Meionectes brownii can photosynthesize

    DEFF Research Database (Denmark)

    Rich, Sarah Meghan; Ludwig, Martha; Pedersen, Ole

    2011-01-01

    • Many wetland plants produce aquatic adventitious roots from submerged stems. Aquatic roots can form chloroplasts, potentially producing endogenous carbon and oxygen. Here, aquatic root photosynthesis was evaluated in the wetland plant Meionectes brownii, which grows extensive stem-borne aquatic...... roots during submergence. • Underwater photosynthetic light and CO(2) response curves were determined for aquatic-adapted leaves, stems and aquatic roots of M. brownii. Oxygen microelectrode and (14)CO(2)-uptake experiments determined shoot inputs of O(2) and photosynthate into aquatic roots. • Aquatic...... adventitious roots contain a complete photosynthetic pathway. Underwater photosynthetic rates are similar to those of stems, with a maximum net photosynthetic rate (P(max)) of 0.38 µmol O(2) m(-2) s(-1); however, this is c. 30-fold lower than that of aquatic-adapted leaves. Under saturating light with 300 mmol...

  13. Chemical diversity of essential oils from flowers,leaves,and stems of Rhanterium epapposum Oliv. growing in northern border region of Saudi Arabia

    Institute of Scientific and Technical Information of China (English)

    Marwa Awad; Abdelrhman Abdelwahab

    2016-01-01

    Objective:To evaluate the medicinal uses of Rhanterium epapposum Oliv.(R.epapposum) growing in northern border region of Saudi Arabia,through the chemical diversity of essential oils extracted from its flowers,leaves and stems.Methods:Aerial parts of R.epapposum were collected in April 2014.Air dried flowers,leaves,and stems were separately subjected to hydrodistillation in a Clevenger-type apparatus for 4 h to extract the essential oils.Gas chromatography-mass spectrometry analysis of the essential oils was carried out using an Agilent 6890 gas chromatograph equipped with an Agilent 5973 mass spectrometric detector.Results:A total of 51 compounds representing 76.35%–94.86% of flowers,leaves and stems oils composition were identified.The chemical profiles of the studied fractions revealed the dominance of monoterpenes,regardless of qualitative and quantitative differences observed.Limonene,linalool,4-terpineol and a-cadinol represented the major constituents of flowers oil.Leaves oil was dominated by limonene,sabinene,a-pinene and b-myrcene whereas linalool,ionole,a-cadinol,b-eudesmol,4-terpineol,and aterpineol were the major constituents of stems oil.Conclusions:Essential oils from flowers,leaves and stems of R.epapposum growing in northern border region of Saudi Arabia are considered as a rich source of monoterpenes which have biological activities.

  14. Multiple Biological Effects of Olive Oil By-products such as Leaves, Stems, Flowers, Olive Milled Waste, Fruit Pulp, and Seeds of the Olive Plant on Skin.

    Science.gov (United States)

    Kishikawa, Asuka; Ashour, Ahmed; Zhu, Qinchang; Yasuda, Midori; Ishikawa, Hiroya; Shimizu, Kuniyoshi

    2015-06-01

    As olive oil production increases, so does the amount of olive oil by-products, which can cause environmental problems. Thus, new ways to utilize the by-products are needed. In the present study, five bioactive characteristics of olive oil by-products were assessed, namely their antioxidant, anti-bacterial, anti-melanogenesis, anti-allergic, and collagen-production-promoting activities. First, the extracts of leaves (May and October), stems (May and October), flowers, olive milled waste, fruit pulp and seeds were prepared using two safe solvents, ethanol and water. According to HPLC and LC/MS analysis and Folin-Ciocalteu assay, the ethanol extracts of the leaves (May and October), stems (May and October) and flowers contained oleuropein, and the ethanol extract of the stems showed the highest total phenol content. Oleuropein may contribute to the antioxidant and anti-melanogenesis activities of the leaves, stems, and flowers. However, other active compounds or synergistic effects present in the ethanol extracts are also likely to contribute to the anti-bacterial activity of the leaves and flowers, the anti-melanogenesis activity of some parts, the anti-allergic activity of olive milled waste, and the collagen-production-promoting activity of the leaves, stems, olive milled waste and fruit pulp. This study provides evidence that the by-products of olive oil have the potential to be further developed and used in the skin care industry. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Anatomical adaptations of cynodon dactylon (l.) pers., from the salt range Pakistan, to salinity stress. I. root and stem anatomy

    International Nuclear Information System (INIS)

    Hameed, M.; Ashraf, M.; Naz, N.; Al-qurainy, F.

    2010-01-01

    A naturally adapted salt tolerant population of Cynodon dactylon (L.) Pers., from highly saline soils of Uchhali Lake, the Salt Range, Pakistan was evaluated for root and stem anatomical modifications. A population from the normal (non-saline) soils of the Faisalabad region was also collected for comparison. Both populations were subjected to salt stress hydroponically. The salt treatments used were: control (0 mM salt), 50, 100, 150 and 200 mM NaCl in 0.5 strength Hoagland's nutrient solution. The Salt Range population showed specific root and stem anatomical adaptations for its better survival under harsh saline environments. Increased exodermis and sclerenchyma, endodermis, cortex and pith parenchyma in roots were critical for checking water loss and enhancing water storage capability. In stem, increased stem area (succulence), increased epidermis and sclerenchyma thicknesses (preventing water loss), increased cortex thickness (increasing water storage), and increased number and area of vascular tissue (increased water conduction) seemed to be crucial for its better survival under harsh saline environments. (author)

  16. GENETIC MODIFICATION OF GIBBERELLIC ACID SIGNALING TO PROMOTE CARBON SEQUESTRATION IN TREE ROOTS AND STEMS

    Energy Technology Data Exchange (ETDEWEB)

    Busov, Victor

    2013-03-05

    , flowering onset, floral structure, and vegetative phenology. Most transgenes elicited various levels of height reduction consistent with the roles of GA in elongation growth. Several other growth traits were proportionally reduced, including branch length, internode distance, and leaf length. In contrast to elongation growth, stem diameter growth was much less affected, suggesting that semi-dwarf trees in dense stands might provide high levels of biomass production and carbon sequestration. The severity of phenotypic effects was strongly correlated with transgene expression among independent transgenic events, but often in a non-linear manner, the form of which varied widely among constructs. The majority of semi-dwarfed, transgenic plants showed delayed bud flush and early bud set, and expression of a native GAI transgene accelerated first time flowering in the field. All of the phenotypic changes observed in multiple years were stable over the 3 years of field study. Our results suggest that transgenic modification of GA action may be useful for producing semi-dwarf trees with modified growth and morphology for horticulture and other uses. We studied the poplar C(19) gibberellin 2-oxidase (GA2ox) gene subfamily. We show that a set of paralogous gene pairs differentially regulate shoot and root development. ? PtGA2ox4 and its paralogous gene PtGA2ox5 are primarily expressed in aerial organs, and overexpression of PtGA2ox5 produced a strong dwarfing phenotype characteristic of GA deficiency. Suppression of PtGA2ox4 and PtGA2ox5 led to increased biomass growth, but had no effect on root development. By contrast, the PtGA2ox2 and PtGA2ox7 paralogous pair was predominantly expressed in roots, and when these two genes were RNAi-suppressed it led to a decrease of root biomass. ? The morphological changes in the transgenic plants were underpinned by tissue-specific increases in bioactive GAs that corresponded to the predominant native expression of the targeted paralogous gene

  17. Comparison study of moisture content, colour properties and essential oil compounds extracted by hydrodistillation and supercritical fluid extraction between stem and leaves of lemongrass (Cymbopogun citratus)

    Science.gov (United States)

    Kamaruddin, Shazlin; Mustapha, Wan Aida Wan; Haiyee, Zaibunnisa Abdul

    2018-04-01

    The objectives of this study were to compare the properties of moisture content, colour and essential oil compounds between stem and leaves of lemongrass (Cymbopogun citratus). The essential oil was extracted using two different methods which are hydrodistillation and supercritical fluid extraction (SFE). There was no significant difference of moisture content between stem and leaves of lemongrass. The lightness (L) and yellowness (+b) values of the stems were significantly higher (pleaves. The highest yield of essential oil was obtained by extraction using supercritical fluid extraction (SFE) in leaves (˜ 0.7%) by treatment at 1700psi and 50°C. The main compound of extracted essential oil was citral (geranial and neral).

  18. From the root to the stem: interaction between the biocontrol root endophyte Pseudomonas fluorescens PICF7 and the pathogen Pseudomonas savastanoi NCPPB 3335 in olive knots

    Science.gov (United States)

    Maldonado-González, M Mercedes; Prieto, Pilar; Ramos, Cayo; Mercado-Blanco, Jesús

    2013-01-01

    Olive knot disease, caused by Pseudomonas savastanoi pv. savastanoi, is one of the most important biotic constraints for olive cultivation. Pseudomonas fluorescens PICF7, a natural colonizer of olive roots and effective biological control agent (BCA) against Verticillium wilt of olive, was examined as potential BCA against olive knot disease. Bioassays using in vitro-propagated olive plants were carried out to assess whether strain PICF7 controlled knot development either when co-inoculated with the pathogen in stems or when the BCA (in roots) and the pathogen (in stems) were spatially separated. Results showed that PICF7 was able to establish and persist in stem tissues upon artificial inoculation. While PICF7 was not able to suppress disease development, its presence transiently decreased pathogen population size, produced less necrotic tumours, and sharply altered the localization of the pathogen in the hyperplasic tissue, which may pose epidemiological consequences. Confocal laser scanning microscopy combined with fluorescent tagging of bacteria revealed that when PICF7 was absent the pathogen tended to be localized at the knot surface. However, presence of the BCA seemed to confine P. savastanoi at inner regions of the tumours. This approach has also enabled to prove that the pathogen can moved systemically beyond the hypertrophied tissue. PMID:23425069

  19. Differential auxin transport and accumulation in the stem base lead to profuse adventitious root primordia formation in the aerial roots (aer) mutant of tomato (Solanum lycopersicum L.).

    Science.gov (United States)

    Mignolli, F; Mariotti, L; Picciarelli, P; Vidoz, M L

    2017-06-01

    The aerial roots (aer) mutant of tomato is characterized by a profuse and precocious formation of adventitious root primordia along the stem. We demonstrated that auxin is involved in the aer phenotype but ruled out higher auxin sensitivity of mutant plants. Interestingly, polar auxin transport was altered in aer, as young seedlings showed a reduced response to an auxin transport inhibitor and higher expression of auxin export carriers SlPIN1 and SlPIN3. An abrupt reduction in transcripts of auxin efflux and influx genes in older aer hypocotyls caused a marked deceleration of auxin transport in more mature tissues. Indeed, in 20days old aer plants, the transport of labeled IAA was faster in apices than in hypocotyls, displaying an opposite trend in comparison to a wild type. In addition, auxin transport facilitators (SlPIN1, SlPIN4, SlLAX5) were more expressed in aer apices than in hypocotyls, suggesting that auxin moves faster from the upper to the lower part of the stem. Consequently, a significantly higher level of free and conjugated IAA was found at the base of aer stems with respect to their apices. This auxin accumulation is likely the cause of the aer phenotype. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Effect of harvest period on the quality of storage roots and protein content of the leaves in five cassava cultivars (Manihot esculenta, Crantz

    Directory of Open Access Journals (Sweden)

    Sagrilo Edvaldo

    2003-01-01

    Full Text Available The effect of harvest period on the quality of storage roots and leaves of cassava cultivars was determined in an experiment carried out in a randomized complete block design with four replications in a split plot scheme, with five cultivars in the plots and ten harvest times in the subplots. The IAC 13 cultivar had the highest rate of dry matter accumulation in the storage roots and the Mico cultivar the lowest. The period of least dry matter content in the storage roots occurred later for the Fécula Branca, Mico and IAC 14 cultivars, and the minimum starch content in the storage roots occurred later for the Fécula Branca and Mico cultivars. In general, the IAC 13, IAC 14 and Fécula Branca cultivars had higher dry matter content in the storage roots, while higher starch content in the dry and fresh matter were obtained in the Fécula Branca cultivar. The crude protein content in the leaves decreased as the plant aged.

  1. Bioactive metabolite profiles and antimicrobial activity of ethanolic extracts from Muntingia calabura L. leaves and stems

    Directory of Open Access Journals (Sweden)

    William Patrick Cruiz Buhian

    2016-08-01

    Conclusions: M. calabura leaf and stem ethanol extracts are potential sources of antibacterial agents against P. aeruginosa and S. aureus. This study reports for the first time the high degree of antifungal activity of M. calabura ethanolic extract, especially against C. albicans.

  2. AtMMS21, an SMC5/6 complex subunit, is involved in stem cell niche maintenance and DNA damage responses in Arabidopsis roots.

    Science.gov (United States)

    Xu, Panglian; Yuan, Dongke; Liu, Ming; Li, Chunxin; Liu, Yiyang; Zhang, Shengchun; Yao, Nan; Yang, Chengwei

    2013-04-01

    Plants maintain stem cells in meristems to sustain lifelong growth; these stem cells must have effective DNA damage responses to prevent mutations that can propagate to large parts of the plant. However, the molecular links between stem cell functions and DNA damage responses remain largely unexplored. Here, we report that the small ubiquitin-related modifier E3 ligase AtMMS21 (for methyl methanesulfonate sensitivity gene21) acts to maintain the root stem cell niche by mediating DNA damage responses in Arabidopsis (Arabidopsis thaliana). Mutation of AtMMS21 causes defects in the root stem cell niche during embryogenesis and postembryonic stages. AtMMS21 is essential for the proper expression of stem cell niche-defining transcription factors. Moreover, mms21-1 mutants are hypersensitive to DNA-damaging agents, have a constitutively increased DNA damage response, and have more DNA double-strand breaks (DSBs) in the roots. Also, mms21-1 mutants exhibit spontaneous cell death within the root stem cell niche, and treatment with DSB-inducing agents increases this cell death, suggesting that AtMMS21 is required to prevent DSB-induced stem cell death. We further show that AtMMS21 functions as a subunit of the STRUCTURAL MAINTENANCE OF CHROMOSOMES5/6 complex, an evolutionarily conserved chromosomal ATPase required for DNA repair. These data reveal that AtMMS21 acts in DSB amelioration and stem cell niche maintenance during Arabidopsis root development.

  3. Absorption and translocation of phosphorus-32 in guava leaves

    International Nuclear Information System (INIS)

    Natale, William

    1997-01-01

    Phosphorus is easily absorbed by the leaves and translocated. The objective of this work was to evaluate the absorption and translocation of P by guava leaves, with time. When a solution containing 2% MAP and specific activity 0.15 μCi/ml was applied. MAP labelled with 32 P was applied in the 3 rd pair of leaves. These and other leaves, roots and stem were collected separately and analyzed accordingly. The results showed that 20 days after application 12% of the applied P was absorbed by the guava leaves. The translocation of P started immediately after its absorption reaching 20% 2fter 20 days. (author). 19 refs., 4 tabs

  4. Anatomy and Histochemistry of Roots and Shoots in Wild Rice (Zizania latifolia Griseb.

    Directory of Open Access Journals (Sweden)

    Chaodong Yang

    2014-01-01

    Full Text Available Wild rice (Zizania latifolia Griseb. is a famous, perennial, emergent vegetable in China. The current work explores the anatomy and histochemistry of roots, stems, and leaves and the permeability of apoplastic barriers of wild rice. The adventitious roots in wild rice have suberized and lignified endodermis and adjacent, thick-walled cortical layers and suberized and lignified hypodermis, composed of a uniseriate sclerenchyma layer (SC underlying uniseriate exodermis; they also have lysigenous aerenchyma. Stems have a thickened epidermal cuticle, a narrow peripheral mechanical ring (PMR, an outer ring of vascular bundles, and an inner ring of vascular bundles embedded in a multiseriate sclerenchyma ring (SCR. There is evidence of suberin in stem SCR and PMR sclerenchyma cells. Sheathing leaves are characterized by thick cuticles and fibrous bundle sheath extensions. Air spaces in stems and leaves consist of mostly lysigenous aerenchyma and pith cavities in stems. Apoplastic barriers are found in roots and stems.

  5. Neofusicoccum parvum Colonization of the Grapevine Woody Stem Triggers Asynchronous Host Responses at the Site of Infection and in the Leaves

    Directory of Open Access Journals (Sweden)

    Mélanie Massonnet

    2017-06-01

    Full Text Available Grapevine trunk diseases cause important economic losses in vineyards worldwide. Neofusicoccum parvum, one of the most aggressive causal agents of the trunk disease Botryosphaeria dieback, colonizes cells and tissues of the grapevine wood, leading to the formation of an internal canker. Symptoms then extend to distal shoots, with wilting of leaves and bud mortality. Our aim was to characterize the transcriptional dynamics of grapevine genes in the woody stem and in the leaves during Neofusicoccum parvum colonization. Genome-wide transcriptional profiling at seven distinct time points (0, 3, and 24 hours; 2, 6, 8, and 12 weeks showed that both stems and leaves undergo extensive transcriptomic reprogramming in response to infection of the stem. While most intense transcriptional responses were detected in the stems at 24 hours, strong responses were not detected in the leaves until the next sampling point at 2 weeks post-inoculation. Network co-expression analysis identified modules of co-expressed genes common to both organs and showed most of these genes were asynchronously modulated. The temporal shift between stem vs. leaf responses affected transcriptional modulation of genes involved in both signal perception and transduction, as well as downstream biological processes, including oxidative stress, cell wall rearrangement and cell death. Promoter analysis of the genes asynchronously modulated in stem and leaves during N. parvum colonization suggests that the temporal shift of transcriptional reprogramming between the two organs might be due to asynchronous co-regulation by common transcriptional regulators. Topology analysis of stem and leaf co-expression networks pointed to specific transcription factor-encoding genes, including WRKY and MYB, which may be associated with the observed transcriptional responses in the two organs.

  6. Effects of Drying Temperature on Flavonoids Extraction Rate from Young Stems and Leaves of Two Cassava Varieties

    Directory of Open Access Journals (Sweden)

    WANG Ding-mei

    2017-01-01

    Full Text Available To improve flavonoids resources utilization level of young cassava stems and leaves, using cassava varieties SC09 and SC205 as ob jects, investigated the effect of different drying temperatures(40~120℃on the flavonoids extraction rate(FERand their stability in 120 d storage period after drying, explored a right drying storage method for postharvest young cassava stems and leaves. The research showed that total FER rised first, and then fell and rised again with the increase of drying temperature. During 40~80℃, the total FER was obviously in fluenced by variety and temperature, but only temperature was main factor affecting total FER during 90~120℃. Extract degree of flavonoids include rutin, amentoflavone or catechin, kaempferol, hesperidin, quercetin minished in order; the effect of cassava variety on the extraction rate of catechin and hesperidin was greater than that of drying temperature, but that contrary to other 4 flavonoids. Variety and temperature had a maximum impact respectively on catechin and rutin extraction rates. Whereas both of variety and temperature had a minimum impact on kaempferol extraction rate. FER reached higher levels of 1.42%and 1.53% respectively in SC09 after 120℃drying and SC205 after 110℃drying, and had best stability during 120 d storage period. The extraction rate of hesperidin increased after drying storage, and that of other 5 ingredients were changing with different varieties and temperatures; the coefficient variation(CV=1.03%~6.86%of kaempferol was minimum and its stability was best; extraction rates of rutin and kaempferol in SC205 after 110℃drying were maximum, whose increasing rates were 44.89%and 7.27%respectively with a small separate degree(CV were 6.94%, 4.59%and good extraction stability. Maximum in creasing rates of catechin, amentoflavone, quercetin and hesperidin were 211.60%,17.60%,186.39% and 538.08% respectively. However,their stabilities of extraction efficiency were poor

  7. Control of the synthesis and subcellular targeting of the two GDH genes products in leaves and stems of Nicotiana plumbaginifolia and Arabidopsis thaliana.

    Science.gov (United States)

    Fontaine, Jean-Xavier; Saladino, Francesca; Agrimonti, Caterina; Bedu, Magali; Tercé-Laforgue, Thérèse; Tétu, Thierry; Hirel, Bertrand; Restivo, Francesco M; Dubois, Frédéric

    2006-03-01

    Although the physiological role of the enzyme glutamate dehydrogenase which catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate remains to be elucidated, it is now well established that in higher plants the enzyme preferentially occurs in the mitochondria of phloem companion cells. The Nicotiana plumbaginifolia and Arabidopis thaliana enzyme is encoded by two distinct genes encoding either an alpha- or a beta-subunit. Using antisense plants and mutants impaired in the expression of either of the two genes, we showed that in leaves and stems both the alpha- and beta-subunits are targeted to the mitochondria of the companion cells. In addition, we found in both species that there is a compensatory mechanism up-regulating the expression of the alpha-subunit in the stems when the expression of the beta-subunit is impaired in the leaves, and of the beta-subunit in the leaves when the expression of the alpha-subunit is impaired in the stems. When one of the two genes encoding glutamate dehydrogenase is ectopically expressed, the corresponding protein is targeted to the mitochondria of both leaf and stem parenchyma cells and its production is increased in the companion cells. These results are discussed in relation to the possible signalling and/or physiological function of the enzyme which appears to be coordinated in leaves and stems.

  8. The effect of the biostimulator Goteo on the rooting of ninebark stem cuttings

    Directory of Open Access Journals (Sweden)

    Pacholczak Andrzej

    2016-12-01

    Full Text Available As a consequence of restrictions on the use of preparations containing synthetic auxins in nursery production, there is a necessity to replace them with more environmentally friendly biopreparations efficiently stimulating plant growth. The aim of the presented experiment was to compare the effects of the synthetic auxin indole-3-butyric acid (IBA and the biostimulator Goteo on the rooting of ninebark stem cuttings (Physocarpus opulifolius ‘Dart’s Gold’ and ‘Red Baron’ and to get some insight into the latter’s mechanisms of action in plants. Applications of the biostimulator Goteo produced comparable or slightly weaker effects compared to the treatments with IBA. Goteo stimulated elongation in new growth of cuttings when applied in watering or two-fold spraying methods. Application of the biostimulator resulted in increased levels of chlorophyll, soluble sugars and indole derivatives, while the contents of free amino acids and polyphenolic acids decreased. The above results indicate that, if necessary, Goteo may replace the synthetic auxin IBA in the propagation of ninebark in the future.

  9. Cadmium tolerance and accumulation characteristics of mature flax, cv. Hermes: Contribution of the basal stem compared to the root

    Energy Technology Data Exchange (ETDEWEB)

    Douchiche, Olfa, E-mail: olfa.douchiche@hotmail.fr [Laboratory Glyco-MEV EA 4358, IFRMP 23, University of Rouen, 76821 Mont Saint Aignan Cedex (France); Laboratory Biologie et Physiologie Cellulaires Vegetales, Department of Biology, University of Tunis, 1060 Tunis (Tunisia); Chaiebi, Wided [Laboratory Biologie et Physiologie Cellulaires Vegetales, Department of Biology, University of Tunis, 1060 Tunis (Tunisia); Morvan, Claudine, E-mail: claudine.morvan@univ-rouen.fr [Laboratory PBS-UMR 6270 CNRS, FR 3038, University of Rouen, 76821 Mont Saint Aignan Cedex (France)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Cd accumulated in stem bottom part exceeded the defined hyperaccumulator threshold. Black-Right-Pointing-Pointer No toxic symptoms occurred and TI of all growth parameters ranged between 0.7 and 1. Black-Right-Pointing-Pointer The high level of Zn, Mn and Cu may contribute to the absence of chlorosis in stem. Black-Right-Pointing-Pointer Cd/Ca synergistic effect observed in the stem may alleviate Cd toxicity. Black-Right-Pointing-Pointer Hermes variety accumulated more Cd than the other flax varieties ever described. - Abstract: The potential of mature flax plants (cv. Hermes) to tolerate and accumulate cadmium (Cd) was studied to determine which part of the plant would be the key organ for phytoremediation purposes. After 4 month-growth on sand substrate containing 0.1 mM Cd in a greenhouse, the roots and stems were separated and the stems were divided into three parts. The effects of Cd were studied on growth parameters, histology and mineral nutrition. No visible toxic symptoms were observed. Tolerance-index values calculated from growth parameters and nutrients remained relatively high, allowing the development of the plant until maturity and formation of seeds. The roots and bottom stem accumulated the highest quantity of Cd (750 and 360 mg/kg dry matter), values which largely exceeded the threshold defined for hyperaccumulators. On the other hand, basal stem had a high bioconcentration factor (BCF = 32) and translocation factor TF Prime (2.5) but a low TF (0.5), indicating that this basal part would play a major role in phytoremediation (phytostabilization rather than phytorextraction). Therefore, the high tolerance to Cd and accumulation capacity make possible to grow Hermes flax on Cd-polluted soils.

  10. Quantitative determination of total and individual flavonoids in stems and leaves of Buddleja davidii and Buddleja albiflora.

    Science.gov (United States)

    Ying, Cheng; Wan, Dingrong

    2012-10-01

    Buddleja davidii and B. albiflora are two different original plants of the famous crude medicine "Diaoyangchen". An ultraviolet-visible spectrophotometric method and a HPLC method were used for the determination of total and individual flavonoids (luteolin and apigenin) contents from their stems and leaves for the first time. From the comparative evaluation, remarkable differences in flavonoids contents were observed between different origins and different parts of the samples. And content of specific flavonoid did not correspond to the total flavonoids contents in Buddleja davidii and Buddleja albiflora. With a better accuracy and precision, the methods had been proved simple, rapid, and reliable for quantitative determination of the total flavonoids and luteolin and apigenin in the two phytomedicines. Furthermore, our present study will pave the way of guidelines for the differentiation and standardization and exploitation of individual parts of this herb material.

  11. Thin layer chromatography fingerprint, antioxidant, and antibacterial activities of rhizomes, stems, and leaves of Curcuma aeruginosa Roxb.

    Science.gov (United States)

    Safitri, A.; Batubara, I.; Khumaida, N.

    2017-05-01

    Fingerprints of 5 temu hitam (Curcuma aeruginosa Roxb.) accessions (Malang, Cirebon, Kuningan 1, Bogor, and Liwa) were determined by thin-layer chromatography (TLC) and compared to fingerprints of turmeric (Curcuma longa L), temu putih (Curcuma zedoaria (Christm.) Roscoe), and temu lawak (Curcuma zanthorriza Roxb.). Maceration method with ethanol as the solvent was used for extraction. The eluent used for fingerprint by TLC was chloroform:dichloromethane (9:1v/v). Five accessions of temu hitam show similar fingerprint patterns, but different in band thickness. Temu hitam rhizomes have bands of curcuminoid (Rf 0.22, 0.10, 0.03), and characteristic bands of Rf 0.42, 0.27, and 0.77, which can be distinguished from turmeric and temu lawak and Rf 0.13, which is different from temu putih. Leaves and stems of temu hitam can be distinguished from temu putih, turmeric, and temu lawak at Rf 0.60. Rhizomes of all plants reveal strong antibacterial activity against Staphylococcus aureus and antioxidant activity on DPPH radicals than its corresponding stems and leaves. Antibacterial and antioxidant activities were determined by microdilution and TLC-bioautography. Antibacterial activity of rhizomes of Cirebon and Kuningan 1 accessions are higher than that of other accessions (MIC = 250 μg/mL MBC = 500 μg/mL, but lower as compared to that of temu lawak (MIC = 62.5 μg/mL, MBC = 250 μg/mL) and tetracycline (MIC = MBC = 15.63 μg/mL). Rhizome of Liwa accession exhibits the highest antioxidant activity (IC50 = 124.88 μg/mL) amongst all accessions, but lower than that of temu lawak (IC50 = 18.45 μg/mL), turmeric (IC50 = 18.82 μg/mL), and temu putih (IC50 = 94.35 μg/mL).

  12. In vitro antileishmanial and cytotoxicity activities of essential oils from Haplophyllum tuberculatum A. Juss leaves, stems and aerial parts.

    Science.gov (United States)

    Hamdi, Assia; Bero, Joanne; Beaufay, Claire; Flamini, Guido; Marzouk, Zohra; Vander Heyden, Yvan; Quetin-Leclercq, Joelle

    2018-02-14

    Plants used for traditional medicine produce diverse and complex secondary metabolites exhibiting various medicinal properties. The medicinal plant Haplophyllum tuberculatum is used by native people against malaria and parasitic infections. In this study and in order to contribute for the search of new natural drugs for leishmaniasis, the essential oils of H. tuberculatum leaves, stems and aerial parts (leaves+stems) collected in two different periods, 2013 and 2015, and their components by GC/FID and GC/MS analyses were investigated. Those collected in 2013 were also re-analyzed two years later. The extracted oils were screened in vitro for anti-leishmanial activity on Leishmania mexicana mexicana (L.m.m.) promastigotes and cytotoxicity on the Chinese Hamster Ovary (CHO) cell line. Limonene (1.5 - 8%), its isomers (R- (+)-limonene and S-(-)-limonene), linalool and octanol were also tested. Results showed that the chemical composition varied according to the year of collection. Though major compounds remain almost the same, qualitative and quantitative variations in the composition of the EOs can be observed between the two years of collection, with some minor compounds identified only in one type of samples. Variation in the composition were also observed in the re-analyzed volatile oils, showing stability concerns. The essential oils and R-(+)-limonene showed moderate anti-leishmanial activity. Their IC 50 range from 6.48 to 50.28 μg/ml. Cytotoxicity assays for theses volatile extracts, R- (+)-limonene and S- (-)-limonene on CHO cells showed relatively potent cytotoxicity with a selectivity index <10. Their CC 50 range from 27.79 to 82.56 μg/ml. The findings of the present study demonstrated that H. tuberculatum might not be considered as a natural source for production of new anti-leishmanial agents without further analyzing its eventual in vivo toxicity as well as that of major pure compounds.

  13. Studies on analgesic, anti-inflammatory activities of stem and roots of Inula cuspidata C.B Clarke

    Directory of Open Access Journals (Sweden)

    Sarvesh Kumar Paliwal

    2017-10-01

    Stem and roots were extracted with chloroform (ICSCE, ICRCE and methanol (ICSME, ICRME. Acute oral toxicity of all extracts was determined by OECD guidelines 425. Analgesic activity was investigated by using hot plate and acetic acid induced writhing models. Anti-inflammatory activity (acute of all extracts was evaluated by carrageenan induced paw edema model. In addition, root and stem powder was screened for heavy metals (As, Pb, Cd, Hg estimation using atomic absorption spectroscopy. In acute toxicity study no mortality was observed when each extract was orally administered with 2.0 g/kg. At the doses (100 and 200 mg/kg ICRME followed by ICSME showed significant and dose dependent analgesic and anti-inflammatory effects compared with chloroform extracts. The heavy metals concentration in stem and root powders was found to be within the permissible limits as recommended by WHO for herbal raw materials. The findings of the present study validated the folkloric use of Inula cuspidata as analgesic and anti-inflammatory. In addition, the results intimate that heavy metals present in raw material were found to be within the defined limits, and it exhibits that the therapeutic efficacy of plant may not be effected, which can be otherwise possibly effected if the plant sequester high concentration of heavy metals from the polluted environment as well as from the soil rich in pesticides and sewage sludge etc.

  14. MALDI-TOF MS analysis of condensed tannins with potent antioxidant activity from the leaf, stem bark and root bark of Acacia confusa.

    Science.gov (United States)

    Wei, Shu-Dong; Zhou, Hai-Chao; Lin, Yi-Ming; Liao, Meng-Meng; Chai, Wei-Ming

    2010-06-15

    The structures of the condensed tannins from leaf, stem bark and root bark of Acacia confusa were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, and their antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and ferric reducing/antioxidant power (FRAP) assays. The results showed that the condensed tannins from stem bark and root bark include propelargonidin and procyanidin, and the leaf condensed tannins include propelargonidin, procyanidin and prodelphinidin, all with the procyanidin dominating. The condensed tannins had different polymer chain lengths, varying from trimers to undecamers for leaf and root bark and to dodecamers for stem bark. The condensed tannins extracted from the leaf, stem bark and root bark all showed a very good DPPH radical scavenging activity and ferric reducing power.

  15. Alterations in carbon and nitrogen metabolism induced by water deficit in the stems and leaves of Lupinus albus L.

    Science.gov (United States)

    Pinheiro, C; Chaves, M M; Ricardo, C P

    2001-05-01

    Water deficit (WD) in Lupinus albus L. brings about tissue-specific responses that are dependent on stress intensity. Carbohydrate metabolism is very sensitive to changes in plant water status. Six days from withholding water (DAW), sucrose, glucose and fructose levels of the leaf blade had already increased over 5-fold, and the activities of SS and INV(A) had increased c. 1.5-2 times. From 9 DAW on, when stress intensity was more pronounced, these effects were reversed with fructose and glucose concentrations as well as INV(A) activity dropping in parallel. The stem (specifically the stele) responded to the stress intensification with striking increases in the concentration of sugars, N and S, and in the induction of thaumatin-like-protein and an increase in chitinase and peroxidase. At 13 DAW, the plants lost most of the leaves but on rewatering they fully recovered. Thus, the observed changes appear to contribute to a general mechanism of survival under drought, the stem playing a key role in that process.

  16. Azorhizobium caulinodans Transmembrane Chemoreceptor TlpA1 Involved in Host Colonization and Nodulation on Roots and Stems

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-07-01

    Full Text Available Azorhizobium caulinodans ORS571 is a motile soil bacterium that interacts symbiotically with legume host Sesbania rostrata, forming nitrogen-fixing root and stem nodules. Bacterial chemotaxis plays an important role in establishing this symbiotic relationship. To determine the contribution of chemotaxis to symbiosis in A. caulinodans ORS571-S. rostrata, we characterized the function of TlpA1 (transducer-like protein in A. caulinodans, a chemoreceptor predicted by SMART (Simple Modular Architecture Research Tool, containing two N-terminal transmembrane regions. The tlpA1 gene is located immediately upstream of the unique che gene cluster and is transcriptionally co-oriented. We found that a ΔtlpA1 mutant is severely impaired for chemotaxis to various organic acids, glycerol and proline. Furthermore, biofilm forming ability of the strain carrying the mutation is reduced under certain growth conditions. Interestingly, competitive colonization ability on S. rostrata root surfaces is impaired in the ΔtlpA1 mutant, suggesting that chemotaxis of the A. caulinodans ORS571 contributes to root colonization. We also found that TlpA1 promotes competitive nodulation not only on roots but also on stems of S. rostrata. Taken together, our data strongly suggest that TlpA1 is a transmembrane chemoreceptor involved in A. caulinodans-S. rostrata symbiosis.

  17. MALDI-TOF MS Analysis of Condensed Tannins with Potent Antioxidant Activity from the Leaf, Stem Bark and Root Bark of Acacia confusa

    OpenAIRE

    Wei; Zhou; Lin; Liao; Chai

    2010-01-01

    The structures of the condensed tannins from leaf, stem bark and root bark of Acacia confusa were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, and their antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and ferric reducing/antioxidant power (FRAP) assays. The results showed that the condensed tannins from stem bark and root bark include propelargonidin and procyanidi...

  18. Enraizamento de miniestaca caulinar e foliar na propagação vegetativa de cedro-rosa (Cedrela fissilis Vell. Rooting of stem and leaf minicuttings in the vegetative propagation of cedro-rosa (Cedrela fissilis Vell.

    Directory of Open Access Journals (Sweden)

    Aloisio Xavier

    2003-06-01

    Full Text Available No presente trabalho objetivou-se avaliar o enraizamento de cinco diferentes tipos de miniestaca (caulinar, caulinar apical, caulinar intermediária, caulinar apical desfolhada e foliar, na propagação vegetativa de cedro-rosa (Cedrela fissilis por miniestaquia, a partir de material seminal. Os resultados obtidos quanto ao enraizamento indicaram o melhor desempenho da miniestaca caulinar, com 84% de sobrevivência das mudas aos 90 dias de idade, demonstrando o potencial da miniestaquia como alternativa na produção de mudas de cedro-rosa.This work aimed to evaluate the rooting of five different types of minicuttings (stem, apical stem, intermediate stem, apical stem with removed leaves and leaf, in the vegetative propagation of cedro-rosa (Cedrela fissilis, by applying the minicutting technique, using seedlings material. The results showed that stem cutting was the most efficient technique for the vegetative propagation of this species, with up to 84% survival at 90 days of age. Thus, this technique can be used as an alternative in the production of minicuttings of this species, throughout the year.

  19. Potential nutritional and antioxidant activity of various solvent extracts from leaves and stem bark of Anisophyllea laurina R. Br ex Sabine used in folk medicine

    Directory of Open Access Journals (Sweden)

    Gbago Onivogui

    2017-07-01

    Full Text Available ABSTRACT Anisophyllea laurina is a plant that has been used in folk medicine to treat malaria, dysentery, diabetes, toothache and various skin diseases. Leaves extract had protein content of 9.68% and a high calcium content of 25084.317 mg/100 g while stem bark extract was found to contain greater amounts of calcium (8560.96 mg/100 g, potassium (7649.47 mg/100 g, magnesium (1462.49 mg/100 g and iron (973.33 mg/100 g. Palmitic acid, linolenic acid, linoleic acid and oleic acid were the most abundant fatty acids in leaves and stem bark extracts. Furthermore, total phenolic (2382.39 mg GAE /100 g and total flavonoid (385.79 mg QE/100 g contents were abundant in stem bark while leaves extract was rich in total tannin content (3466.63 mg CE/100 g. However, both leaves and stem bark contained great amounts of vitamins and amino acids were a good source of antioxidant activities. For the individual polyphenol, stenophyllanin A (45.87 mg/g, casuarinin (24.55 mg/g and digalloyl-HHDP-glucopyranose isomer (15.63 mg/g were found to be the major compounds from the leaves whereas procyanidin tetramer (14.89 mg/g, (--Epicatechin (12.18 mg/g and procyanidin trimer (11.25 mg/g were the most predominant compounds from the stem bark. Additionally, the results revealed a significant and strong correlation between phenolic compounds and antioxidant activities.

  20. Phytophthora cinnamon causing stem canker and root rot of nursery-grown Platanus × acerifolia: first report in the Northern emisphere

    Directory of Open Access Journals (Sweden)

    Massimo PILOTTI

    2014-05-01

    Full Text Available Lethal stem and root cankers were observed in nursery-grown Platanus × acerifolia trees in Rome. Externally, canker lesions appeared as bluish or blackish areas starting from the stem base and extending upward. Inner bark was necrotised. In some cases an irregularly-shaped callus reaction attempted to heal the bark lesions. Black-stained necrosis affected the primary roots and the small branch roots to different degrees. The presence of Ceratocystis platani was excluded in the diseased trees. Phytophthora-like organisms were isolated from the altered tissue. Morphological and ITS-region-based analyses identified the isolates as Phytophthora cinnamomi. A pathogenicity test confirmed P. cinnamomi as the causal agent of the disease here defined as: stem canker and root rot of plane tree. This is the first report of P. cinnamomi in Platanus spp. in the Northern emisphere.

  1. Salinity-Induced Callus Browning and Re-Differentiation, Root Formation by Plantlets and Anatomical Structures of Plantlet Leaves in Two Malus Species

    International Nuclear Information System (INIS)

    Gou, W.; Zheng, P.; Zheng, P.; Wang, K.; Zhang, L.; Akram, N. A.

    2016-01-01

    Apple (Malus domestica L.) is widely grown in northern China. However, soil salinization has become one of the most severe factors limiting apple productivity in some regions including the Loess Plateau. In our study, the regeneration system of both rootstock Rehd (Malus robusta Rehd) and scion Fuji (Malus domestica Borkh. cv. Fuji) was established In vitro. The two Malus species were cultured on the MS medium containing 0 or 150 mM NaCl to examine salt-induced effects on callus browning and re-differentiation, root formation of plantlets and anatomical structures of plantlet leaves at 15 days old callus and plantlet stages. Salt stress caused a marked increase in callus browning rate, while a decrease in re-differentiation rate, rooting rate, root number and length in both species. Additionally, anatomical structures of plantlet leave showed salt-induced damage such as reduced palisade tissue and intracellular chloroplast, incomplete development of xylem and severe damage of the phloem tissue. Salt stress also caused a few adaptive structural features in leaves including increased thickness of upper and lower epidermis, elevated proportion of spongy tissue and formation of lignified vessels. The responses of the two Malus species did not differ significantly at the differentiation stage. However, they were more sensitive to salinity at the callus stage than those at the plantlet stage in each species. Therefore, callus stage has been found to be more suitable for evaluating responses of the two apple species to salt stress. The Fuji and Rehd could be treated as a good scion/rootstock combination of apple to adapt to soil salinity based on their similar degree of salt stress-tolerance. (author)

  2. Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress

    Directory of Open Access Journals (Sweden)

    Wei eJi

    2016-04-01

    Full Text Available Salinity severely threatens land use capability and crop yields worldwide. Understanding the mechanisms that protect soybean from salt stress will help in the development of salt-stress tolerant leguminous plants. Here we firstly analyzed the changes in malondialdehyde levels, the activities of superoxide dismutase and peroxidases, cholorophyll contents, and Na+/K+ ratios in leaves and roots from soybean seedlings treated with 200 mM NaCl for different time points, and suggested that 200 mM NaCl treated for 12 h was enough for exploring proteomic analysis to soybean seedlings. iTRAQ-based proteomic approach was used to investigate the proteomes of soybean leaves and roots under salt treatment. Data are available via ProteomeXchange with identifier PXD002851. In total, 278 and 440 proteins with significantly altered abundance were identified in leaves and roots of soybean, respectively, with only 50 mutual unique proteins in the both tissues. These identified differentially expressed proteins (DEPs were mainly involved in 13 biological processes. Moreover, protein-protein interaction analysis revealed that the proteins involved in metabolism, carbohydrate and energy metabolism, protein synthesis and redox homeostasis constructed four types of response networks to high salt stress. Besides, semi-quantitative RT-PCR analysis revealed that some of the proteins, such as 14-3-3, MMK2, PP1, TRX-h, were also regulated by salt stress at the level of transcription. These results indicated that effective regulatory protein expression related to signalling, membrane and transport, stress defense and metabolism played important roles in the short-term salt response of soybean seedlings.

  3. In-vivo electrochemical monitoring of H2O2 production induced by root-inoculated endophytic bacteria in Agave tequilana leaves.

    Science.gov (United States)

    Lima, Alex S; Prieto, Kátia R; Santos, Carla S; Paula Valerio, Hellen; Garcia-Ochoa, Evelyn Y; Huerta-Robles, Aurora; Beltran-Garcia, Miguel J; Di Mascio, Paolo; Bertotti, Mauro

    2018-01-15

    A dual-function platinum disc microelectrode sensor was used for in-situ monitoring of H 2 O 2 produced in A. tequilana leaves after inoculation of their endophytic bacteria (Enterobacter cloacae). Voltammetric experiments were carried out from 0.0 to -1.0V, a potential range where H 2 O 2 is electrochemically reduced. A needle was used to create a small cavity in the upper epidermis of A. tequilana leaves, where the fabricated electrochemical sensor was inserted by using a manual three-dimensional micropositioner. Control experiments were performed with untreated plants and the obtained electrochemical results clearly proved the formation of H 2 O 2 in the leaves of plants 3h after the E. cloacae inoculation, according to a mechanism involving endogenous signaling pathways. In order to compare the sensitivity of the microelectrode sensor, the presence of H 2 O 2 was detected in the root hairs by 3,3-diaminobenzidine (DAB) stain 72h after bacterial inoculation. In-situ pH measurements were also carried out with a gold disc microelectrode modified with a film of iridium oxide and lower pH values were found in A. tequilana leaves treated with bacteria, which may indicate the plant produces acidic substances by biosynthesis of secondary metabolites. This microsensor could be an advantageous tool for further studies on the understanding of the mechanism of H 2 O 2 production during the plant-endophyte interaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Studies on Hormonal Effects on Rooting of Marcotting and Stem-Cuttings of Akee Apple (Blighia sapida K. D. Koenig

    Directory of Open Access Journals (Sweden)

    Ehoniyotan Olayemi IBUKUN

    2016-12-01

    Full Text Available The effect of hormone on the rooting of stem-cuttings and marcotting of akee apple was studied using a combination between Indole -3- Butyric Acid (IBA and 1- Naphthalene Acetic Acid (NAA. Stem-cuttings from mature akee trees from Challenge, Jalala and Ganmo in Ilorin, were treated with different dilutions of the liquid hormone in the combination of 1.0% Indole-3- butyric acid + 0.5% 1-Naphthaleneacetic acid before propagating them in a non-mist propagator. Marcotting was also carried-out on trees, using the hormonal combination of different dilutions. Observations and the results obtained revealed that the hormonal combination had significant effect on the rooting of stem-cuttings and marcotting. Both marcotting and stem cuttings did not produce at the end of the experiment roots in the absence of the hormonal treatment; a particular aspect was marcotting that initials produced roots. On the other hand, both marcotting and stem cuttings produced roots with the hormonal treatments; more roots were produced using the combination of 2,000 ppm of IBA and 1,000 ppm of NAA, compared with lower concentrations of the hormone mixtures. After callus formation, 2,000 ppm of IBA and 1,000 ppm of NAA combination gave the best results within stem-cuttings. Based on the results obtained, it was concluded that the combination of IBA and NAA in appropriate concentration promoted rooting in Akee apple and therefore are highly valuable for the vegetative propagation of this species through stem cutting and marcotting.

  5. Toxicological evaluation of methanol leaves extract of Vernonia ...

    African Journals Online (AJOL)

    of hepatocytes, peripheral cramped chromatin, shrinkages (single cell death) of hepatocytes, fragmentation of hepatocytes while no histopathological changes were ... of the stem- bark, the roots, and the leaves of V. amyg- dalina are also reported to be ... Mice of the same sex were grouped into. 8 experimental and 1 control ...

  6. Influence of lead-doped hydroponic medium on the adsorption/bioaccumulation processes of lead and phosphorus in roots and leaves of the aquatic macrophyte Eicchornia crassipes.

    Science.gov (United States)

    Espinoza-Quiñones, Fernando R; Módenes, Aparecido Nivaldo; de Oliveira, Ana Paula; Trigueros, Daniela Estelita Goes

    2013-11-30

    In this study, lead bioaccumulation by the living free-floating aquatic macrophyte Eicchornia crassipes in different hydroponic conditions with variations in phosphorus and lead concentrations was investigated. A set of growth experiments in hydroponic media doped with lead and phosphorus within a wide concentration range was performed for 32 days in a greenhouse. All experiments were carried out with periodic replacement of all nutrients and lead. The concentration of lead and nutrients in biomass was determined by synchrotron radiation-excited total reflection X-ray fluorescence. By increasing the lead concentration in the medium, a reduction in biomass growth was observed, but a higher phosphorus retention in roots and leaves was shown at lower lead concentrations. In addition, an increase in the amount of bioaccumulated lead and phosphorus in roots was observed for higher lead and phosphorus concentrations in the medium, reaching saturation values of 4 mg Pb g(-1) and 7 mg P g(-1), respectively. Four non-structural kinetic models were tested, to represent the bioaccumulation of lead and phosphorus in roots. Pseudo-second order and irreversible kinetic models described the lead bioaccumulation data well, however, an irreversible kinetic model better fitted phosphorus uptake in roots. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Evaluation of Antioxidant, Anticholinesterase, and Antidiabetic Potential of Dry Leaves and Stems in Tamarix aphylla Growing Wild in Tunisia.

    Science.gov (United States)

    Mahfoudhi, Adel; Grosso, Clara; Gonçalves, Rui F; Khelifi, Eltaief; Hammami, Saoussen; Achour, Sami; Trabelsi-Ayadi, Malika; Valentão, Patrícia; Andrade, Paula B; Mighri, Zine

    2016-12-01

    Tamarix aphylla (L.) Karst. has a wide geographic distribution and was employed in traditional medicine as astringent, anti-rheumatic and to treat fever. T. aphylla leaves and stems extracts were studied from both chemical and biological points of view to assess the antidiabetic, anticholinesterase and antioxidant potential of this species. The HPLC/Diode Array Detector (DAD) analysis showed the presence of 14 phenolic compounds (gallic, caffeic, p-coumaric, ferulic and ellagic acids, kaempferol, quercetin, quercetin 3-O-galactoside and six flavonol derivatives). This is the first study reporting a comparative study of the biological activities of different extracts from T. aphylla. High activities were obtained against DPPH radical, superoxide anion radical (O2∙-) and nitric oxide radical ( • NO) in a concentration-dependent manner, the most active extracts being the polar ones. T. aphylla also showed moderate protective effects against acetylcholinesterase, but no effects were observed against butyrylcholinesterase. Against α-glucosidase the MeOH extracts displayed IC 50 values from 8.41 to 24.81 μg/ml. © 2016 Wiley-VHCA AG, Zurich, Switzerland.

  8. The characteristics of pyrophosphate: D-fructose-6-phosphate 1-phosphotransferases from Sansevieria trifasciata leaves and Phaseolus coccineus stems.

    Science.gov (United States)

    Kowalczyk, S

    1987-01-01

    Three different molecular forms of pyrophosphate-dependent phosphofructokinase have been isolated: one from Sansevieria trifasciata leaves and two from Phaseolus coccineus stems. The form isolated from S. trifasciata has the molecular weight of about 115,000. The apparent molecular weights for the two forms from mung bean were approximately 220,000 and 450,000. All three forms have the same pH optima, an absolute requirement for Mg2+ ions both in the forward and reverse reaction, but differ in their sensitivity toward fructose 2,6-bisphosphate. Kinetic properties of the partially purified enzymes have been investigated in the presence and absence of fructose 2,6-bisphosphate. Pyrophosphate-dependent phosphofructokinase from S. trifasciata exhibited hyperbolic kinetics with all substrates tested. The saturation curves of the enzyme (form A) from mung bean for pyrophosphate, fructose 6-phosphate and fructose 1,6-bisphosphate were sigmoidal in the absence of fructose 2,6-bisphosphate. In the presence of fructose 2,6-bisphosphate these kinetics became hyperbolic.

  9. Comparative analysis of transcriptomes in aerial stems and roots of Ephedra sinica based on high-throughput mRNA sequencing

    Directory of Open Access Journals (Sweden)

    Taketo Okada

    2016-12-01

    Full Text Available Ephedra plants are taxonomically classified as gymnosperms, and are medicinally important as the botanical origin of crude drugs and as bioresources that contain pharmacologically active chemicals. Here we show a comparative analysis of the transcriptomes of aerial stems and roots of Ephedra sinica based on high-throughput mRNA sequencing by RNA-Seq. De novo assembly of short cDNA sequence reads generated 23,358, 13,373, and 28,579 contigs longer than 200 bases from aerial stems, roots, or both aerial stems and roots, respectively. The presumed functions encoded by these contig sequences were annotated by BLAST (blastx. Subsequently, these contigs were classified based on gene ontology slims, Enzyme Commission numbers, and the InterPro database. Furthermore, comparative gene expression analysis was performed between aerial stems and roots. These transcriptome analyses revealed differences and similarities between the transcriptomes of aerial stems and roots in E. sinica. Deep transcriptome sequencing of Ephedra should open the door to molecular biological studies based on the entire transcriptome, tissue- or organ-specific transcriptomes, or targeted genes of interest.

  10. Salicylates isolated from leaves and stems of Salix martiana Leyb. (Salicaceae); Salicilatos isolados de folhas e talos de Salix martiana Leyb. (Salicaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Carromberth Carioca [Universidade Federal do Acre (UFAC), Rio Branco, AC (Brazil). Centro de Ciencias Biologicas e da Natureza; Cursino, Lorena Mayara de Carvalho; Novaes, Jussival de Abreu Pinheiro; Demetrio, Camilla Avelino; Pereira Junior, Orlando Liborio; Nunez, Cecilia Veronica [Instituto de Pesquisa da Amazonia (INPA), Manaus, AM (Brazil). Coordenacao de Pesquisas em Produtos Naturais; Amaral, Ieda Leao do [Instituto de Pesquisa da Amazonia (INPA), Manaus, AM (Brazil). Coordenacao de Pesquisas em Botanica

    2009-07-01

    Salix martiana Leyb. is an endemic species from the Amazon river floodplain areas (varzeas), of the State of Amazonas. Stems and leaves were extracted with dichloromethane, methanol and hydro-alcohol and these extracts were fractionated by using conventional chromatographic techniques. The major substances isolated, salicin and trichocarposide (6-0-p-coumaroyl salicin), were determined through analyses of NMR 1D ({sup 1}H and {sup 13}C) and NMR 2D (gHSQC and gHMBC). These compounds were isolated for the first time in Salix martiana Leyb. (Salicaceae). The percentage of these compounds in S. martiana is very high. The extracts were analyzed for their DPPH antioxidant capacity and the methanolic from the leaves and the hydro-alcoholic from the stems were the more active. (author)

  11. Salicilatos isolados de folhas e talos de Salix martiana Leyb. (Salicaceae Salicylates isolated from leaves and stems of Salix martiana Leyb. (Salicaceae

    Directory of Open Access Journals (Sweden)

    Carromberth Carioca Fernandes

    2009-01-01

    Full Text Available Salix martiana Leyb. is an endemic species from the Amazon river floodplain areas (varzeas, of the State of Amazonas. Stems and leaves were extracted with dichloromethane, methanol and hydro-alcohol and these extracts were fractionated by using conventional chromatographic techniques. The major substances isolated, salicin and trichocarposide (6-0-p-coumaroyl salicin, were determined through analyses of NMR 1D (¹H and 13C and NMR 2D (gHSQC and gHMBC. These compounds were isolated for the first time in Salix martiana Leyb. (Salicaceae. The percentage of these compounds in S. martiana is very high. The extracts were analyzed for their DPPH antioxidant capacity and the methanolic from the leaves and the hydro-alcoholic from the stems were the more active.

  12. Use of UHPLC-TripleQ with synthetic standards to profile anti-inflammatory hydroxycinnamic acid amides in root barks and leaves of Lycium barbarum

    Directory of Open Access Journals (Sweden)

    Siyu Wang

    2018-04-01

    Full Text Available Hydroxycinnamic acid amides (HCAA are the secondary metabolites ubiquitously exist in flowering plants, formed by condensation between hydroxycinnamates and mono or polyamines. HCAA species not only serve multiple functions in plant growth and development, but also exert significant positive effects on human health. In this study, we combined organic synthesis and UPHLC-TripleQ-MS/MS specifically targeting at HCAA species. The method was fully validated with respect to specificity, linearity, intra- and inter-day precision and accuracy, limit of detection (LOD, limit of quantification (LOQ, recovery, and reproducibility. We applied this method to identify and quantify HCAAs from the root barks and leaves of Lycium barbarum. HCAA species were reported in leaves for the first time, and 10 new HCAA species were further identified in root barks in addition to the ones reported in the literature. We also examine anti-inflammatory properties of identified HCAAs species. Seven HCAA compounds had a potent NO inhibitory effect with IC50 as low as 2.381 μM (trans-N-caffeoyl phenethylamine. Our developed method largely improved analytical sensitivity of HCAAs species that potentially contributes to plant metabolomics studies. Keywords: Hydroxycinnamic acid amide, Lycium barbarum, UHPLC-MS/MS, Quantification, Anti-inflammatory

  13. Effects of Soil Fertility and Atmospheric CO2 Enrichment on Leaf, Stem and Root Dark Respiration of Populus tremuloides

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An open-top chamber experiment was conducted at the University of Michigan Biological Station near Pellston, Michigan, USA, to study the effects of soil fertility and CO2 on leaf, stem and root dark respiration (Rd) of Populus tremuloides. Overall, area-based daytime leaf Rd (Rda) was significantly greater at elevated than at ambient CO2 in high-fertility soil, but not in low-fertility soil. Mass-based leaf Rd (Rdm) was overall greater for high- than for low-fertility soil grown trees at elevated, but not at ambient CO2. Nighttime leaf Rda and Rdm were unaffected by soil fertility or CO2, nor was stem Rda, which ranged from 1.0 to 1.4 μmol m-2 s-1 in the spring and 3.5 to 4.5 μmol m-2 s-1 in the summer. Root Rda was significantly higher in high- than in low-fertility soil, but was unaffected by CO2. Since biomass production of P. tremuloides will be significantly greater at elevated CO2 while specific Rd will either increase or remain unchanged, we predict that carbon loss to the atmosphere through respiration from this ecologically important species would increase at higher CO2. Soil fertility would also interact with elevated CO2 in affecting the carbon flow in the plant-soil-air system.

  14. Eucalyptus oleosa Essential Oils: Chemical Composition and Antimicrobial and Antioxidant Activities of the Oils from Different Plant Parts (Stems, Leaves, Flowers and Fruits

    Directory of Open Access Journals (Sweden)

    Mohamed Larbi Khouja

    2011-02-01

    Full Text Available Essential oils obtained by hydrodistillation from the different parts (stems, adult leaves, immature flowers and fruits of Eucalyptus oleosa were screened for their antioxidant and antimicrobial properties and their chemical composition. According to GC-FID and GC-MS, the principal compound of the stem, immature flowers and the fruit oils was 1,8-cineole, representing 31.5%, 47.0% and 29.1%, respectively. Spathulenol (16.1% and γ-eudesmol (15.0% were the two principal compounds of adult leaves oil. In the DPPH (1,1-diphenyl-2-picrylhydrazyl assay, the oils of the four parts showed moderate antioxidant activity. In the ABTS (2,2’-azinobis-3-ethylbenzothiazoline-6-sulphonate assay, the most active part was the adult leaves, with a IC50 value 13.0 ± 0.6 mg/L, followed by stems (IC50 = 43.5 ± 1.4 mg/L. The essential oils showed a better antibacterial activity against Gram-positive and Gram-negative bacteria, and a significant antifungal activity also was observed against yeast-like fungi. A strong correlations between oxygenated monoterpenes and antimicrobial activity (especially 1,8-cineole were noted (R2 = 0.99, 0.97 and 0.79 for B. subtilis, P. aeruginosa and C. albicans, respectively.

  15. Optimization, Purification, and Starch Stain Wash Application of Two New α-Amylases Extracted from Leaves and Stems of Pergularia tomentosa

    Directory of Open Access Journals (Sweden)

    Imen Lahmar

    2017-01-01

    Full Text Available A continuous research is attempted to fulfil the highest industrial demands of natural amylases presenting special properties. New α-amylases extracted from stems and leaves of Pergularia tomentosa, which is widespread and growing spontaneously in Tunisia, were studied by the means of their activities optimization and purification. Some similarities were recorded for the two identified enzymes: (i the highest amylase activity showed a promoted thermal stability at 50°C; (ii the starch substrate at 1% enhanced the enzyme activity; (iii the two α-amylases seem to be calcium-independent; (iv Zn2+, Cu2+, and Ag2+ were considered as important inhibitors of the enzyme activity. Following the increased gradient of elution on Mono Q-Sepharose column, an increase in the specific activity of 11.82-fold and 10.92-fold was recorded, respectively, for leaves and stems with the presence of different peaks on the purification profiles. Pergularia amylases activities were stable and compatible with the tested commercial detergents. The combination of plant amylase and detergent allowed us to enhance the wash performance with an increase of 35.24 and 42.56%, respectively, for stems and leaves amylases. Characterized amylases were reported to have a promoted potential for their implication notably in detergent industry as well as biotechnological sector.

  16. Enraizamento de estacas caulinares de kiwi (Actinidia chinensis Planch cv Abbott tratadas com auxinas e boro Rooting of kiwi stem cuttings (Actinidia chinensis Planch. cv Abbott treated with auxins and boron

    Directory of Open Access Journals (Sweden)

    E.G. Ono

    1995-12-01

    Department, Bioscience Institute, UNESP, Botucatu -SP. The stem cuttings had two nodes and two leaves cut in half, the basal cut was performed nearly a node and the apical one in the next upper node. The auxin effect in Actinidia chinensis Planch rooting stems was observed through seven different treatments: T1 H(20; T2 (NAA 300 ppm; T3 (IBA 300 ppm; T4 (NAA 300 ppm + B; T5 (IBA 300 ppm + B; T6 (NAA 0,5%-talc and T7 (IBA 0,5%-talc, applied to the stem bases. After these treatments, the stems were placed in suitable rooting dishes, with pure vermiculite in a misty nebulization chamber for 120 days until collection. The evaluation of auxin and boric acid effects in kiwi stem cuttings was made based on the following observations: 1. the percentage of rooted stem cuttings; 2. reductor sugar and total sugar analyses (in g/100 g of dry matter; and 3. tryptophan analyses (in µg/100 mg of dry matter. The results showed that the winter and autumn seasons are the best for rooting of Actinidia chinensis Planch, stem cuttings. The use of auxins in the cuttings showed positive results too and the higher contents of reductor and total sugars, increased rooting percentage.

  17. Studies on the antidiabetic effects of Mangifera indica stem-barks and leaves on nondiabetic, type 1 and type 2 diabetic model rats

    Directory of Open Access Journals (Sweden)

    Amrita Bhowmik

    2009-06-01

    Full Text Available Mangifera indica Linn, locally known as mango tree has been claimed to possess antidiabetic properties by many investigators. The present study was undertaken to screen the hypo- and antihyperglycemic activity of both ethanol and water extracts of leaves and stem-barks of M. indica in nondiabetic and diabetic model rats in different prandial states. The results showed that all of the extracts had significant antihyperglycemic effect in type 2 model rats when fed simultaneously with glucose load (p< 0.05-0.01; p< 0.005-0.001. Moreover, the ethanol extract of stem-barks showed significant antihyperglycemic effect when the extract was fed 30 min prior to the glucose load (p< 0.01. Investigations were carried out to evaluate the effect of M. indica on glucose absorption using a rat intestinal preparation in situ. The ethanol extracts of stem-barks reduced glucose absorption gradually during the whole perfusion period in type 2 rats.

  18. Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche

    Directory of Open Access Journals (Sweden)

    Alvarez-Buylla Elena R

    2010-10-01

    Full Text Available Abstract Background Recent experimental work has uncovered some of the genetic components required to maintain the Arabidopsis thaliana root stem cell niche (SCN and its structure. Two main pathways are involved. One pathway depends on the genes SHORTROOT and SCARECROW and the other depends on the PLETHORA genes, which have been proposed to constitute the auxin readouts. Recent evidence suggests that a regulatory circuit, composed of WOX5 and CLE40, also contributes to the SCN maintenance. Yet, we still do not understand how the niche is dynamically maintained and patterned or if the uncovered molecular components are sufficient to recover the observed gene expression configurations that characterize the cell types within the root SCN. Mathematical and computational tools have proven useful in understanding the dynamics of cell differentiation. Hence, to further explore root SCN patterning, we integrated available experimental data into dynamic Gene Regulatory Network (GRN models and addressed if these are sufficient to attain observed gene expression configurations in the root SCN in a robust and autonomous manner. Results We found that an SCN GRN model based only on experimental data did not reproduce the configurations observed within the root SCN. We developed several alternative GRN models that recover these expected stable gene configurations. Such models incorporate a few additional components and interactions in addition to those that have been uncovered. The recovered configurations are stable to perturbations, and the models are able to recover the observed gene expression profiles of almost all the mutants described so far. However, the robustness of the postulated GRNs is not as high as that of other previously studied networks. Conclusions These models are the first published approximations for a dynamic mechanism of the A. thaliana root SCN cellular pattering. Our model is useful to formally show that the data now available are not

  19. The occurrence of fungi on the stem base and roots of spring wheat (Triticum aestivum L. grown in monoculture depending on tillage systems and catch crops

    Directory of Open Access Journals (Sweden)

    Piotr Kraska

    2012-12-01

    Full Text Available The present study was carried out in the period 2006-2008 based on an experiment established in 2005. The study evaluated the effect of conservation and plough tillage as well as of four catch crops on the level of infection by fungal pathogens of the stem base and roots of the spring wheat cultivar ‘Zebra’ grown in monoculture. The species composition of fungi colonizing the stem base and roots of spring wheat was determined. The split-plot design of the experiment set up on rendzina soil included plough tillage and conservation tillage with autumn and spring disking of catch crops. The experiment used four methods for regeneration of the spring wheat monoculture stand using the following: undersown red clover and Westerwolds ryegrass crops as well as lacy phacelia and white mustard stubble crops. Plots without catch crops were the control treatment. Red clover and Westerwolds ryegrass catch crops as well as lacy phacelia and white mustard stubble crops had a significant effect on the decrease in the stem base and root infection index of spring wheat compared to the control without catch crops. The disease indices in the tillage treatments under evaluation did not differ significantly from one another. The stem base and roots of spring wheat were most frequently infected by fungi of the genus Fusarium, with F. culmorum being the dominant pathogen of cereals. Compared to conservation tillage, in plough tillage the pathogenic fungus Bipolaris sorokiniana was not found to occur on the stem base and roots. The Westerwolds ryegrass catch crop promoted the occurrence of F. culmorum, both on the stem base and roots of spring wheat.

  20. The fate of the dry matter, carbohydrates and 14C lost from the leaves and stems of wheat during grain filling

    International Nuclear Information System (INIS)

    Austin, R.B.; Edrich, J.A.; Ford, M.A.; Blackwell, R.D.

    1977-01-01

    In a field study with six winter wheat genotypes losses of dry matter from the stems between 30 June and maturity averaged 172 g m - 2 (range 82 to 256), there being significant differences in loss between genotypes. Respiration from the stems during the same period was estimated to amount to 106 g m -2 (range 104 to 225). The amount of dry matter mobilized from the stems, calculated by difference, was estimated as 66 g m -2 . The loss of ethanol- and water-soluble carbohydrate from the stems (170 g m -2 ; range 124 to 215) was very similar to the dry weight loss. Carbon-14 labelling was used to trace the time course and the amount of the movement of assimilates from the vegetative organs to the grain. Only 14.3 per cent (range 10.3 to 21.0) of the products of photosynthesis over the period 21 May to 20 June were relocated to the grains. This relocation amounted to an average of 7 per cent (range 5.7 to 11.4) of the final grain weight. It was estimated that during the 18 days following anthesis on 20 June photosynthesis contributed 48 per cent (range 39 to 55) of the final grain dry weight. Of this, about half was translocated to the grain within 10 days of initial assimilation. The remainder appeared to be stored temporarily in the stems and leaves and translocated to the grains during the period 17 to 29 July. In general, relocation of dry matter from the vegetative organs to the grains, assessed by carbon-14 labelling, was greatest in those genotypes (Hobbit and Sportsman) which lost most dry weight from the stems and leaves. (author)

  1. Composition of the essential oil constituents from leaves and stems of Korean Coriandrum sativum and their immunotoxicity activity on the Aedes aegypti L.

    Science.gov (United States)

    Chung, Ill-Min; Ahmad, Ateeque; Kim, Sun-Jin; Naik, Poornanand Madhava; Nagella, Praveen

    2012-02-01

    The leaves and stems of Coriandrum sativum were extracted and the essential oil composition and immunotoxicity effects were studied. The analyses were conducted by gas chromatography-mass spectroscopy (GC-MS), which revealed the essential oils of C. sativum leaves and stems. Thirty-nine components representing 99.62% of the total oil were identified from the leaves. The major components are cyclododecanol (23.11%), tetradecanal (17.86%), 2-dodecenal (9.93%), 1-decanol (7.24%), 13-tetradecenal (6.85%), 1-dodecanol (6.54%), dodecanal (5.16%), 1-undecanol (2.28%), and decanal (2.33%). Thirty-eight components representing 98.46% of the total oil were identified from the stems of the coriander. The major components are phytol (61.86%), 15-methyltricyclo[6.5.2(13,14),0(7,15)]-pentadeca-1,3,5,7,9,11,13-heptene (7.01%), dodecanal (3.18%), and 1-dodecanol (2.47%). The leaf oil had significant toxic effects against the larvae of Aedes aegypti with an LC₅₀ value of 26.93 ppm and an LC₉₀ value of 37.69 ppm and the stem oil has toxic effects against the larvae of A. aegypti with an LC₅₀ value of 29.39 ppm and an LC₉₀ value of 39.95 ppm. Also, the above data indicate that the major compounds may play an important role in the toxicity of essential oils.

  2. Transcriptional profiling of sugarcane leaves and roots under progressive osmotic stress reveals a regulated coordination of gene expression in a spatiotemporal manner.

    Directory of Open Access Journals (Sweden)

    Alejandro Pereira-Santana

    Full Text Available Sugarcane is one of the most important crops worldwide and is a key plant for the global production of sucrose. Sugarcane cultivation is severely affected by drought stress and it is considered as the major limiting factor for their productivity. In recent years, this plant has been subjected to intensive research focused on improving its resilience against water scarcity; particularly the molecular mechanisms in response to drought stress have become an underlying issue for its improvement. To better understand water stress and the molecular mechanisms we performed a de novo transcriptomic assembly of sugarcane (var. Mex 69-290. A total of 16 libraries were sequenced in a 2x100 bp configuration on a HiSeq-Illumina platform. A total of 536 and 750 genes were differentially up-regulated along with the stress treatments for leave and root tissues respectively, while 1093 and 531 genes were differentially down-regulated in leaves and roots respectively. Gene Ontology functional analysis showed that genes related to response of water deprivation, heat, abscisic acid, and flavonoid biosynthesis were enriched during stress treatment in our study. The reliability of the observed expression patterns was confirmed by RT-qPCR. Additionally, several physiological parameters of sugarcane were significantly affected due to stress imposition. The results of this study may help identify useful target genes and provide tissue-specific data set of genes that are differentially expressed in response to osmotic stress, as well as a complete analysis of the main groups is significantly enriched under this condition. This study provides a useful benchmark for improving drought tolerance in sugarcane and other economically important grass species.

  3. Effect of salinity on biomass yield and physiological and stem-root anatomical characteristics of purslane (Portulaca oleracea L.) accessions.

    Science.gov (United States)

    Alam, Md Amirul; Juraimi, Abdul Shukor; Rafii, M Y; Abdul Hamid, Azizah

    2015-01-01

    13 selected purslane accessions were subjected to five salinity levels 0, 8, 16, 24, and 32 dS m(-1). Salinity effect was evaluated on the basis of biomass yield reduction, physiological attributes, and stem-root anatomical changes. Aggravated salinity stress caused significant (P < 0.05) reduction in all measured parameters and the highest salinity showed more detrimental effect compared to control as well as lower salinity levels. The fresh and dry matter production was found to increase in Ac1, Ac9, and Ac13 from lower to higher salinity levels but others were badly affected. Considering salinity effect on purslane physiology, increase in chlorophyll content was seen in Ac2, Ac4, Ac6, and Ac8 at 16 dS m(-1) salinity, whereas Ac4, Ac9, and Ac12 showed increased photosynthesis at the same salinity levels compared to control. Anatomically, stem cortical tissues of Ac5, Ac9, and Ac12 were unaffected at control and 8 dS m(-1) salinity but root cortical tissues did not show any significant damage except a bit enlargement in Ac12 and Ac13. A dendrogram was constructed by UPGMA based on biomass yield and physiological traits where all 13 accessions were grouped into 5 clusters proving greater diversity among them. The 3-dimensional principal component analysis (PCA) has also confirmed the output of grouping from cluster analysis. Overall, salinity stressed among all 13 purslane accessions considering biomass production, physiological growth, and anatomical development Ac9 was the best salt-tolerant purslane accession and Ac13 was the most affected accession.

  4. Effect of Salinity on Biomass Yield and Physiological and Stem-Root Anatomical Characteristics of Purslane (Portulaca oleracea L. Accessions

    Directory of Open Access Journals (Sweden)

    Md. Amirul Alam

    2015-01-01

    Full Text Available 13 selected purslane accessions were subjected to five salinity levels 0, 8, 16, 24, and 32 dS m−1. Salinity effect was evaluated on the basis of biomass yield reduction, physiological attributes, and stem-root anatomical changes. Aggravated salinity stress caused significant (P<0.05 reduction in all measured parameters and the highest salinity showed more detrimental effect compared to control as well as lower salinity levels. The fresh and dry matter production was found to increase in Ac1, Ac9, and Ac13 from lower to higher salinity levels but others were badly affected. Considering salinity effect on purslane physiology, increase in chlorophyll content was seen in Ac2, Ac4, Ac6, and Ac8 at 16 dS m−1 salinity, whereas Ac4, Ac9, and Ac12 showed increased photosynthesis at the same salinity levels compared to control. Anatomically, stem cortical tissues of Ac5, Ac9, and Ac12 were unaffected at control and 8 dS m−1 salinity but root cortical tissues did not show any significant damage except a bit enlargement in Ac12 and Ac13. A dendrogram was constructed by UPGMA based on biomass yield and physiological traits where all 13 accessions were grouped into 5 clusters proving greater diversity among them. The 3-dimensional principal component analysis (PCA has also confirmed the output of grouping from cluster analysis. Overall, salinity stressed among all 13 purslane accessions considering biomass production, physiological growth, and anatomical development Ac9 was the best salt-tolerant purslane accession and Ac13 was the most affected accession.

  5. In vitro antioxidant activity, phenolic compounds and protective effect against DNA damage provided by leaves, stems and flowers of Portulaca oleracea (Purslane).

    Science.gov (United States)

    Silva, Rúben; Carvalho, Isabel S

    2014-01-01

    This study analyzed the antioxidant properties of Portulaca oleracea L., known as purslane. The samples (leaves, flowers and stems) were collected at two different locations in Portugal: Tavira (L1) and Vendas Novas (L2). Assays for total antioxidant activity, total phenolic content and ferric-reducing antioxidant power were conducted and, for both locations, significantly higher values (P < 0.05) were observed for stems (508.8 and 982.3 mg AAE/100 g DW, 1008.6 and 2285.5 mg GAE/100 g DW, 121.0 and 166.3 mg TE/100 g DW, respectively for each location), than in leaves or flowers. In the DPPH assay, the three-plant parts from L2 reached the 50% inhibition rate in lower concentrations than plants from L1. On the other hand, higher concentrations of total monomeric anthocyanins were found in samples from L1 (95.5, 88.8 and 86.0 mg/L) than in samples from L2 (81.7, 70.5 and 59.8 mg/L). The same was true for phenolic acids, estimated by liquid-chromatography, where methanol extracts were used. Phenolic extracts from all three-plant parts from both locations showed protective effects on DNA against hydroxyl radicals. This work suggests the possibility of benefit to human health from its consumption, related to the high antioxidant activity of purslane, even the stems, usually discarded in daily consumption.

  6. Comparative Analysis of the Volatile Components of Agrimonia eupatoria from Leaves and Roots by Gas Chromatography-Mass Spectrometry and Multivariate Curve Resolution

    Directory of Open Access Journals (Sweden)

    Xiao-Liang Feng

    2013-01-01

    Full Text Available Gas chromatography-mass spectrometry and multivariate curve resolution were applied to the differential analysis of the volatile components in Agrimonia eupatoria specimens from different plant parts. After extracted with water distillation method, the volatile components in Agrimonia eupatoria from leaves and roots were detected by GC-MS. Then the qualitative and quantitative analysis of the volatile components in the main root of Agrimonia eupatoria was completed with the help of subwindow factor analysis resolving two-dimensional original data into mass spectra and chromatograms. 68 of 87 separated constituents in the total ion chromatogram of the volatile components were identified and quantified, accounting for about 87.03% of the total content. Then, the common peaks in leaf were extracted with orthogonal projection resolution method. Among the components determined, there were 52 components coexisting in the studied samples although the relative content of each component showed difference to some extent. The results showed a fair consistency in their GC-MS fingerprint. It was the first time to apply orthogonal projection method to compare different plant parts of Agrimonia eupatoria, and it reduced the burden of qualitative analysis as well as the subjectivity. The obtained results proved the combined approach powerful for the analysis of complex Agrimonia eupatoria samples. The developed method can be used to further study and quality control of Agrimonia eupatoria.

  7. Sesquiterpene Lactone Composition and Cellular Nrf2 Induction of Taraxacum officinale Leaves and Roots and Taraxinic Acid β-d-Glucopyranosyl Ester.

    Science.gov (United States)

    Esatbeyoglu, Tuba; Obermair, Betina; Dorn, Tabea; Siems, Karsten; Rimbach, Gerald; Birringer, Marc

    2017-01-01

    Taraxacum officinale, the common dandelion, is a plant of the Asteraceae family, which is used as a food and medical herb. Various secondary plant metabolites such as sesquiterpene lactones, triterpenoids, flavonoids, phenolic acids, coumarins, and steroids have been described to be present in T. officinale. Dandelion may exhibit various health benefits, including antioxidant, anti-inflammatory, and anticarcinogenic properties. We analyzed the leaves and roots of the common dandelion (T. officinale) using high-performance liquid chromatography/mass spectrometry to determine its sesquiterpene lactone composition. The main compound of the leaf extract taraxinic acid β-d-glucopyranosyl ester (1), a sesquiterpene lactone, was isolated and the structure elucidation was conducted by nuclear magnetic resonance spectrometry. The leaf extract and its main compound 1 activated the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) in human hepatocytes more significantly than the root extract. Furthermore, the leaf extract induced the Nrf2 target gene heme oxygenase 1. Overall, present data suggest that compound 1 may be one of the active principles of T. officinale.

  8. Comparative Analysis of the Volatile Components of Agrimonia eupatoria from Leaves and Roots by Gas Chromatography-Mass Spectrometry and Multivariate Curve Resolution.

    Science.gov (United States)

    Feng, Xiao-Liang; He, Yun-Biao; Liang, Yi-Zeng; Wang, Yu-Lin; Huang, Lan-Fang; Xie, Jian-Wei

    2013-01-01

    Gas chromatography-mass spectrometry and multivariate curve resolution were applied to the differential analysis of the volatile components in Agrimonia eupatoria specimens from different plant parts. After extracted with water distillation method, the volatile components in Agrimonia eupatoria from leaves and roots were detected by GC-MS. Then the qualitative and quantitative analysis of the volatile components in the main root of Agrimonia eupatoria was completed with the help of subwindow factor analysis resolving two-dimensional original data into mass spectra and chromatograms. 68 of 87 separated constituents in the total ion chromatogram of the volatile components were identified and quantified, accounting for about 87.03% of the total content. Then, the common peaks in leaf were extracted with orthogonal projection resolution method. Among the components determined, there were 52 components coexisting in the studied samples although the relative content of each component showed difference to some extent. The results showed a fair consistency in their GC-MS fingerprint. It was the first time to apply orthogonal projection method to compare different plant parts of Agrimonia eupatoria, and it reduced the burden of qualitative analysis as well as the subjectivity. The obtained results proved the combined approach powerful for the analysis of complex Agrimonia eupatoria samples. The developed method can be used to further study and quality control of Agrimonia eupatoria.

  9. Chemical constituents of the ethyl acetate extracts of the stem bark and fruits of Dichrostachys cinerea and the roots of Parkia bicolor

    Directory of Open Access Journals (Sweden)

    J. Fotie

    2004-06-01

    Full Text Available The antibacterial activities of ethyl acetate, methanol and aqueous extracts of the stem bark of Dichrostachys cinerea and the roots of Parkia bicolor have been evaluated. Ethyl acetate extracts have been investigated, studies that led to a series of known compounds, amongst which many are reported here for the very first time from both the species.

  10. Translocation of radiocesium from stems and leaves of plants and the effect on radiocesium concentrations in newly emerged plant tissues

    International Nuclear Information System (INIS)

    Tagami, Keiko; Uchida, Shigeo; Ishii, Nobuyoshi; Kagiya, Shigeo

    2012-01-01

    An accident occurred at the Fukushima Dai-ichi Nuclear Power Plant in March 2011 at which time large amounts of radionuclides were released into the atmosphere and the sea. In early May 2011, it was found that newly emerged tea (Camellia sinensis) leaves contained radiocesium, both 134 Cs and 137 Cs in some areas more than 300 km away from the Fukushima plant. To understand the mechanisms of radiocesium transfer to newly emerged tissues (shoots, leaves and fruits) of other plants in the future, radiocesium concentrations in newly emerged leaves of 14 plant species collected from the sampling areas in and near National Institute of Radiological Sciences in Chiba, Japan. The studied plant types were: (1) herbaceous plants, (2) woody plants with no old leaves at the time of the March accident, and (3) woody plants with old leaves out before the accident. About 40–50 d after the start of the accident, newly emerged leaves from woody plant with old leaves tended to show higher values than other woody or herbaceous plants. Concentrations of radiocesium in newly emerged tissues of trees decreased with time, but they did not decrease to the level of herbaceous plants. The type of the plant and presence of old leaves at the time of the heavy deposition period affected the radiocesium concentrations in newly emerged tissues.

  11. The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees.

    Science.gov (United States)

    Plavcová, Lenka; Hoch, Günter; Morris, Hugh; Ghiasi, Sara; Jansen, Steven

    2016-04-01

    Concentrations of nonstructural carbohydrates (NSCs) are used as proxies for the net carbon balance of trees and as indicators of carbon starvation resulting from environmental stress. Woody organs are the largest NSC-storing compartments in forest ecosystems; therefore, it is essential to understand the factors that affect the size of this important storage pool. In wood, NSC are predominantly deposited in ray and axial parenchyma (RAP); however, direct links between nutrient storage and RAP anatomy have not yet been established. Here, we tested whether the NSC storage capacity of wood is influenced by the amount of RAP. We measured NSC concentrations and RAP fractions in root and stem sapwood of 12 temperate species sampled at the onset of winter dormancy and in stem sapwood of four tropical trees growing in an evergreen lowland rainforest. The patterns of starch distribution were visualized by staining with Lugol's solution. The concentration of NSCs in sapwood of temperate trees scales tightly with the amount of RAP and living fibers (LFs), with almost all RAP and LFs being densely packed with starch grains. In contrast, the tropical species had lower NSC concentrations despite their higher RAP and LFs fraction and had considerable interspecific differences in starch distribution. The differences in RAP and LFs abundance affect the ability of sapwood to store NSC in temperate trees, whereas a more diverse set of functions of RAP might be pronounced in species growing in a tropical environment with little seasonality. © 2016 Botanical Society of America.

  12. Effects of Soil Fertility and Atmospheric CO2 Enrichment on Leaf,Stem and Root Dark Respiration of Populus tremuloides

    Institute of Scientific and Technical Information of China (English)

    X.Z.WANG; P.S.CURTIS; 等

    2001-01-01

    An open-top chamber experiment was conducted at the University of Michigan Biological Station near Pellston,Michigan,USA,to study the effects of soil fertility and CO2 on leaf,sdtem and root dark respiration (Rd) of Populus tremuloides.Overall,area-based daytime leaf Rd(Rda) was significantly greater at elevated than at ambient CO2 in high-fertility soil,but not in low-fertility soil.Mass-based leaf Rd(Rdm) was overall greater for high-than for low-fertility soil grown trees at elevated,but not at ambient CO2 .Nighttime leaf Rda and Rdm were unaffected by soil fertility or CO2,nor was stem Rda ,which ranged from 1.0 to 1.4μmol m-2s-1 in the spring and 3.5 to 4.5μmol m-2s-1 in the summer.Root Rda was significantly higher in high-than in low-fertiliy soil,but was unaffected by CO2.Since biomass production of P.tremuloides will be significantly greater at elevated CO2 while specific Rd will either increase or remain unchanged,we predict that carbon loss to the atmosphere through respiration from this ecologically important species would increase at higher CO2.Soil fertility would also interact with elevated CO2 in affecting the carbon flow in the plant-soil-air system.

  13. Antioxidant and immunomodulatory properties of polysaccharides from Allanblackia floribunda Oliv stem bark and Chromolaena odorata (L.) King and H.E. Robins leaves.

    Science.gov (United States)

    Boudjeko, Thaddée; Megnekou, Rosette; Woguia, Alice Louise; Kegne, Francine Mediesse; Ngomoyogoli, Judith Emery Kanemoto; Tchapoum, Christiane Danielle Nounga; Koum, Olga

    2015-12-09

    Many plant polysaccharides have shown high antioxidant and immunostimulating properties and can be explored as novel molecules with biological properties that can potentially improve immune function. The objective of this work was to characterize soluble and cell wall polysaccharides isolated from the stem bark of Allanblackia floribunda and Chromolaena odorata leaves and to evaluate their antioxidant and immunomodulatory properties. Three polysaccharide fractions: soluble polysaccharides (PoS), pectins (Pec) and hemicelluloses (Hem) were extracted from A. floribunda stem bark and C. odorata leaves. These samples were analysed for their proteins, phenolic compounds and total sugar contents. The monosaccharide composition was determined by gas chromatography and arabinogalactan proteins content in PoS was evaluated by rocket electrophoresis. The in vitro antioxidant activities were evaluated by 1, 1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2'-azino-bis-3-éthylbenzylthiazoline-6-sulphonic acid (ABTS) radical scavenging assays and ferrous ions chelating activity. Immunomodulatory activities were performed on the peripheral blood mononuclear cells (PBMCs) using proliferation and enzyme linked immunospot (ELISPOT) method to determine the production of an interferon-gamma. The characterization of the various fractions showed varied metabolites in each plant. In PoS fractions, Ara and Gal were the major monosaccharides found, indicating that arabinogalactans are the primary macromolecules. Hem fractions contained predominantly Xyl and GalA for A. floribunda and Xyl (upto 80 %) for and C. odorata. A. floribunda Hem fraction and C. odorata PoS fraction showed significant DPPH and ABTS radical scavenging activities and immunostimulatory activity via stimulation of PBMC and production of IFN-γ in a dose-dependent manner. The results obtained from this study support the ethnomedicinal use of the stem bark of A. floribunda and leaves of C. odorata. Further research is

  14. Potential of Tissue Culture for Breeding Root-Knot Nematode Resistance into Vegetables

    OpenAIRE

    Fassuliotis, G.; Bhatt, D. P.

    1982-01-01

    Plant protoplast technology is being investigated as a means of transferring root-knot nematode resistance factors from Solanum sisymbriifolium into the susceptible S. melongena. Solanum sisymbriifolium plants regenerated from callus lost resistance to Meloidogyne javanica but retained resistance to M. incognita. Tomato plants cloned from leaf discs of the root-knot nematode resistant 'Patriot' were completely susceptible to M. incognita, while sections of stems and leaves rooted in sand in t...

  15. Rooting of healthy and CVC-affected 'Valência' sweet orange stem cuttings, through the use of plant regulators

    Directory of Open Access Journals (Sweden)

    Gustavo Habermann

    2006-01-01

    Full Text Available Citrus variegated chlorosis (CVC is a disease caused by Xylella fastidiosa. Using different concentrations of plant regulators, such as auxins (indole-3-butyric acid and gibberellic acid biosynthesis-inhibitor (paclobutrazol, physiological rooting capacity of healthy and CVC-affected stem cuttings were evaluated in order to investigate the importance of plant hormone imbalance and xylem occlusion in plants with CVC. The percentages of dead, alive and rooted cuttings, cuttings with callus and mean number of roots per cuttings did not show statistical differences in response to the distinct concentrations of synthetic plant regulators. There were differences only between healthy and CVC-affected cuttings. This showed the importance of xylem occlusion and diffusive disturbances in diseased plants, in relation to root initiation capacity and hormonal translocation in the plant tissue.Clorose variegada dos citros (CVC é uma doença causada por Xylella fastidiosa, podendo determinar oclusão do xilema e desbalanço hormonal, o que por fim está relacionado ao processo de iniciação radicial em estacas. Usando diferentes concentrações de fitorreguladores, como auxinas (ácido 3-indol butírico e inibidores da biossíntese de ácido giberélico (paclobutrazol, que são promotores do enraizamento de estacas, verificou-se a capacidade fisiológica de enraizamento de estacas sadias e com CVC, a fim de investigar a importância do desbalanço hormonal e oclusão do xilema em plantas doentes. As porcentagens de estacas mortas, vivas, enraizadas e com calo e o número médio de raízes por estaca não mostraram diferenças estatísticas em resposta às diferentes concentrações dos reguladores vegetais sintéticos. Houve diferenças apenas entre estacas sadias e doentes. Isto aponta a importância da oclusão do xilema e distúrbios difusivos em plantas doentes, em relação à capacidade de iniciação radicial e à translocação hormonal no tecido

  16. Integrated Management of Damping-off, Root and/or Stem Rot Diseases of Chickpea and Efficacy of the Suggested Formula

    Directory of Open Access Journals (Sweden)

    Montaser Fawzy ABDEL-MONAIM

    2011-08-01

    Full Text Available Eleven fungal isolates were isolated from naturally infected chickpea roots collected from different locations in New Valley Governorate (Egypt. The isolated fungi were purified and identified as Rhizoctonia solani (5 isolates, Fusarium solani (4 isolates and Sclerotinia sclerotiorum (2 isolates. The isolated fungi proved their pathogenicity on cv. Giza 3. Response of chickpea cvs. Giza 1, Giza 2, Giza 3, Giza 4, Giza 88, Giza 195, Giza 531 to infection by the tested fungi was significantly varied. Giza 1 was the most resistant one followed by Giza 531, while the other tested cvs. were highly susceptible. Seven biocontrol agents, namely Bacillus subtilis, B. megaterium, B. cereus, Trichoderma viride, T. harzianum, Aspergillus sp., Penicillium sp. isolated from chickpea rhizosphere, were tested for their antagonistic action against the tested pathogens. B. subtilis isolate BSM1, B. megaterium isolate TVM5, T. viride isolate TVM2 and T. harzianum isolate THM4 were the most antagonistic ones to the tested fungi in vitro, while the other isolates were moderate or weak antagonists. The most antagonistic isolates as well as the commercial biocide Rhizo-N were applied as seed treatment for controlling damping-off, root and/or stem rot diseases caused by the tested fungi under greenhouse conditions. The obtained data showed that all tested antagonistic isolates were able to cause significant reduction of damping-off, root and/or stem rot diseases in chickpea plants. T. viride (isolate TVM2 and B. megaterium (isolate BMM5 proved to be the most effective isolates for controlling the diseases. Under field condition, the obtained data indicated that all the tested antagonistic isolates significantly reduced damping-off, root and/or stem rot. T. viride (isolate TVM2 and B. megaterium (isolate BMM5 recorded the highest reduction of damping-off, root and/or stem rot in all sowing dates. Sowing of treated seeds with bioagents in first of November gave the

  17. The effects of replacing Dichantium hay with banana (Musa paradisiaca) leaves and pseudo-stem on carcass traits of Ovin Martinik sheep.

    Science.gov (United States)

    Marie-Magdeleine, Carine; Liméa, Léticia; Etienne, Tatiana; Lallo, Cicero H O; Archimède, Harry; Alexandre, Gisele

    2009-10-01

    A study was done to evaluate banana (Musa paradisiaca) as a forage (leaves and pseudo-stems) for feeding Ovin Martinik lambs (OMK), with the aim to test its impact on carcass quality. Forty four intact OMK male were used after weaning with an initial mean live weight of 14.4 (+/- 3.3) kg, reared in individual pens. Animals were offered either Dichantium hay (control diet, Dh) or cut chopped leaves and pseudo-stems of banana (experimental diet, Blps). They were fed 200-250 g x d(-1) of commercial concentrate. Lambs were slaughtered according to 3 classes of slaughter weight (SW): SW20, SW23 and SW26. Growth and carcass performances of both groups were not significantly different, 77 vs. 81 g x d(-1) and 42% vs. 43% hot carcass yield, for Dh vs. Blps, respectively. There was a significant (P < 0.05) decrease (31.0 vs. 29.7%) for the dry matter content of the shoulder for lambs fed the banana diet. However, there was no effect observed for the other chemical component (CP, lipid and mineral 585, 317 and 95 g x kg(-1) DM, respectively). The shoulder (20% of the carcass whatever the SW) was precocious as demonstrated by the allometry coefficient relative to carcass weight (0.894) significantly (P < 0.01) less than 1. It was concluded that, the use of Blps had no significant effect on growth, carcass weights and yields of the OMK lambs, irrespective of the class of the slaughter weight. From these initial results, the use of banana foliages and pseudo-stems could be recommended as sources of forages.

  18. Antioxidant activity and phenol content of extracts of bark, stems, and young and mature leaves from Blepharocalyx salicifolius (Kunth O. Berg

    Directory of Open Access Journals (Sweden)

    E. Habermann

    Full Text Available Abstract Phenolic compounds are a group of plant secondary metabolites known to have a variety of bioactivities, including the ability to function as antioxidants. Because of the side effects of the use of synthetic substances, the search for natural and less toxic compounds has increased significantly. This study was designed to evaluate the antioxidant activity and phenol content of hexane, ethyl acetate, and aqueous extracts of the bark (suber and stems as well as the young and mature leaves of Blepharocalyx salicifolius. The extracts were obtained by extraction with organic solvents and subsequent fractionation by chromatographic partition coefficient. Preliminary tests for the presence of antioxidants were performed using bioautography in thin-layer chromatography. The antioxidant activity of the extracts was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH method, and the phenol content of the extracts was quantified using the Folin-Ciocalteu technique. The results showed that 9 of the 12 extracts evaluated displayed very strong antioxidant activity and three displayed moderate activity. Aqueous extracts of the young leaves and bark and the ethyl acetate extract of the young leaves showed the highest levels of antioxidant activity and total phenolic content (TPC. A correlation was observed between TPC and antioxidant activity index (AAI with a correlation coefficient (r2 of 0.7999. Thus, the high phenol content of B. salicifolius extracts and its correlation with antioxidant activity provide substrates for further studies.

  19. In vitro schistosomicidal effects of aqueous and dichloromethane fractions from leaves and stems of Piper species and the isolation of an active amide from P. amalago L. (Piperaceae).

    Science.gov (United States)

    Carrara, V S; Vieira, S C H; de Paula, R G; Rodrigues, V; Magalhães, L G; Cortez, D A G; Da Silva Filho, A A

    2014-09-01

    Dichloromethane and aqueous fractions from leaves and stems of Piper arboreum Aubl., P. aduncum L., P. amalago L., P. crassinervium H.B. & K., P. diospyrifolium Kunth, P. hispidum Sw. and P. xylosteoides (Kunth) Steud. were tested against adult worms of Schistosoma mansoni. The in vitro activity was evaluated in terms of mortality, number of separated worms and number of worms with reduced motor activity. Most dichloromethane fractions from all Piper species showed moderate schistosomicidal activity, but aqueous fractions were not active. The dichloromethane fraction of P. amalago leaves (at 100 μg/ml) showed the highest activity, resulting in worm mortality, the separation of worm pairs and reduced motor activity. Chromatographic fractionation of the dichloromethane fraction of P. amalago leaves led to the isolation of its major compound, which was also tested against adults of S. mansoni. The isolated piperamide N-[7-(3',4'-methylenedioxyphenyl)-2(Z),4(Z)-heptadienoyl] pyrrolidine, at 100 μ m, resulted in the mortality of all adult worms after 24 h of incubation. The findings suggest that species of Piper are potential sources of schistosomicidal compounds.

  20. Studies on the antidiabetic effects of Mangifera indica stem-barks and leaves on nondiabetic, type 1 and type 2 diabetic model rats

    Directory of Open Access Journals (Sweden)

    Amrita Bhowmik, Liakot Ali Khan, Masfida Akhter and Begum Rokeya

    2009-12-01

    Full Text Available Mangifera indica Linn, locally known as mango tree has been claimed to possess antidiabetic properties by many investigators. The present study was undertaken to screen the hypoglycemic and antihyperglycemic activity of both ethanol and water extracts of leaves and stem-barks of M. indica in nondiabetic and diabetic model rats in different prandial state. The results showed that all of the extracts had significant antihyperglycemic effect in type 2 diabetic model rats when fed simultaneously with glucose load (p<0.05-0.01; p<0.005-0.001. Moreover, the ethanol extract of stem-barks showed significant antihyperglycemic effect when the extract was fed 30 min prior to the glucose load (p<0.01. Investigations were carried out to evaluate the effect of M. indica on glucose absorption using a rat intestinal preparation in situ. The ethanol extracts of stem-barks reduced glucose absorption gradually during the whole perfusion period in type 2 diabetic rats.

  1. Spatial statistical analysis of basal stem root disease under natural field epidemic of oil palm

    Science.gov (United States)

    Kamu, Assis; Phin, Chong Khim; Seman, Idris Abu; Wan, Hoong Hak; Mun, Ho Chong

    2015-02-01

    Oil palm or scientifically known as Elaeis guineensis Jacq. is the most important commodity crop in Malaysia and has greatly contributed to the economy growth of the country. As far as disease is concerned in the industry, Basal Stem Rot (BSR) caused by Ganoderma boninence remains the most important disease. BSR disease is the most widely studied with information available for oil palm disease in Malaysia. However, there is still limited study on the spatial as well as temporal pattern or distribution of the disease especially under natural field epidemic condition in oil palm plantation. The objective of this study is to spatially identify the pattern of BSR disease under natural field epidemic using two geospatial analytical techniques, which are quadrat analysis for the first order properties of partial pattern analysis and nearest-neighbor analysis (NNA) for the second order properties of partial pattern analysis. Two study sites were selected with different age of tree. Both sites are located in Tawau, Sabah and managed by the same company. The results showed that at least one of the point pattern analysis used which is NNA (i.e. the second order properties of partial pattern analysis) has confirmed the disease is complete spatial randomness. This suggests the spread of the disease is not from tree to tree and the age of palm does not play a significance role in determining the spatial pattern of the disease. From the spatial pattern of the disease, it would help in the disease management program and for the industry in the future. The statistical modelling is expected to help in identifying the right model to estimate the yield loss of oil palm due to BSR disease in the future.

  2. Anti-inflammatory and anti-oxidant properties of Sida rhombifolia stems and roots in adjuvant induced arthritic rats.

    Science.gov (United States)

    Narendhirakannan, R T; Limmy, T P

    2012-04-01

    Free radical stress leads to tissue injury and progression of disease conditions such as arthritis, hemorrhagic shock, atherosclerosis, diabetes, hepatic injury, aging and ischemia, reperfusion injury of many tissues, gastritis, tumor promotion, neurodegenerative diseases and carcinogenesis. Safer anti-oxidants suitable for long term use are needed to prevent or stop the progression of free radical mediated disorders. Herbal medicine provides a foundation for various traditional medicine systems worldwide. The Sida species is one of the most important families of medicinal plants in India. Hence, the present study was aimed to investigate the possible anti-oxidant potential of Sida rhombifolia extracts for 30 days on adjuvant induced arthritis in experimental rats. The altered levels of hematological parameters were reverted to near normal levels, especially the elevated rate of erythrocyte sedimentation was significantly reduced by S. rhombifolia extracts in experimental rats. Oral administration of root and stem of S. rhombifolia extracts significantly increased the levels of thiobarbituric acid reactive substances and activities of catalase and glutathione peroxidase and decreased the levels of reduced glutathione and superoxide dismutase activity in arthritis induced rats. The free radical scavenging activity of the plant was further evidenced by histological and transmission electron microscopy observations made on the hind limb tissue.

  3. Comparison of total phenolic content, scavenging activity and HPLC-ESI-MS/MS profiles of both young and mature leaves and stems of Andrographis paniculata.

    Science.gov (United States)

    Chua, Lee Suan; Yap, Ken Choy; Jaganath, Indu Bala

    2013-12-01

    The total phenolic content and radical scavenging activity of Andrographis paniculata has been investigated to estimate the amount of phenolic compounds and diterpene lactones, respectively in the plant extracts. The stem extracts exhibited higher total phenolic content and scavenging activity than those of the leaf extracts from both young and mature plants. A range of 19.6-47.8 mg extract of A. paniculata from different parts of the plant is equivalent to the scavenging activity exhibited by one mg of standard Trolox. HPLC-ESI-MS/MS was also used to identify simultaneously the phytochemicals from the leaves and stems of both young and mature plant samples. Of the identified compounds, seven of the sixteen diterpene lactones, three of the six flavonoids, five of the six phenolic acids and two cyclic acids are reported here for the first time for this species. Multivariate statistical approaches such as Hierarchiral Component Analysis (HCA) and Principle Component Analysis (PCA) have clustered the plant extracts into the leaf and stem groups, regardless of plant age. Further classification based on the phytochemical profiles revealed that mostly phenolic acids and flavonoids were from the young leaf extracts, and diterpenoids and their glycosides from the mature leaf extracts. However, the phytochemical profiles for the stems of both young and mature plants were not significantly different as presented in the dendrogram of HCA and the score plot of PCA. The marker for mature plants might be the m/z 557 ion (dihydroxyl dimethyl 19-[(beta-D-glucopyranosyl)oxy]-19-oxo-ent-labda-8(17),13-dien-16,15-olide), whereas the m/z 521 ion (propyl neoandrographolide) could be the marker for leaf extracts.

  4. Dark exposure of petunia cuttings strongly improves adventitious root formation and enhances carbohydrate availability during rooting in the light.

    Science.gov (United States)

    Klopotek, Yvonne; Haensch, Klaus-Thomas; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe

    2010-05-01

    The effect of temporary dark exposure on adventitious root formation (ARF) in Petuniaxhybrida 'Mitchell' cuttings was investigated. Histological and metabolic changes in the cuttings during the dark treatment and subsequent rooting in the light were recorded. Excised cuttings were exposed to the dark for seven days at 10 degrees C followed by a nine-day rooting period in perlite or were rooted immediately for 16 days in a climate chamber at 22/20 degrees C (day/night) and a photosynthetic photon flux density (PPFD) of 100micromolm(-2)s(-1). Dark exposure prior to rooting increased, accelerated and synchronized ARF. The rooting period was reduced from 16 days (non-treated cuttings) to 9 days (treated cuttings). Under optimum conditions, despite the reduced rooting period, dark-exposed cuttings produced a higher number and length of roots than non-treated cuttings. An increase in temperature to 20 degrees C during the dark treatment or extending the cold dark exposure to 14 days caused a similar enhancement of root development compared to non-treated cuttings. Root meristem formation had already started during the dark treatment and was enhanced during the subsequent rooting period. Levels of soluble sugars (glucose, fructose and sucrose) and starch in leaf and basal stem tissues significantly decreased during the seven days of dark exposure. This depletion was, however, compensated during rooting after 6 and 24h for soluble sugars in leaves and the basal stem, respectively, whereas the sucrose level in the basal stem was already increased at 6h. The association of higher carbohydrate levels with improved rooting in previously dark-exposed versus non-treated cuttings indicates that increased post-darkness carbohydrate availability and allocation towards the stem base contribute to ARF under the influence of dark treatment and provide energy for cell growth subject to a rising sink intensity in the base of the cutting. Copyright 2009 Elsevier GmbH. All rights reserved.

  5. Allelopathic Effects of Aqueous Extract of Leaf Stem and Root of Sorghum bicolor on Seed Germination and Seedling Growth of Vigna radiata L.

    Directory of Open Access Journals (Sweden)

    Amir MOOSAVI

    2011-05-01

    Full Text Available Seed germination under field conditions is highly influenced by the presence of other plants. Allelopathy is an important mechanism of plant competition, by producing phytotoxins to the plant environment in order to decline other plants growth. Soil sickness problem in farm lands is also known as an allelopathic effect or even autotoxicity. The toxicity of released allelochemicals by a plant in the environment is attributed to its function of concentration, age and metabolic stage. In this study we investigate the effect (5, 20, 35 and 50 g l-1 of leaf, stem and root water extract of sorghum on seed germination and seedling growth of mung bean. The results of the experiment showed that allelopathic effect of different concentrations was not significant for germination percentage, but germination rate and mean germination time decreased significantly by increasing the concentration of allelopathic extracts; also, there was a clear allelopathic effect of sorghum extract on seedling growth of mung bean. 50 g l-1 sorghum stem extract exhibited the highest inhibitory effect on root and shoot growth of mung bean. Among all parts of sorghum, stem extracts showed the highest allelopatic effect on seedling growth. Root extract showed higher inhibitory effect than leaf extracts.

  6. Allelopathic Effects of Aqueous Extract of Leaf Stem and Root of Sorghum bicolor on Seed Germination and Seedling Growth of Vigna radiata L.

    Directory of Open Access Journals (Sweden)

    Amir MOOSAVI

    2011-05-01

    Full Text Available Seed germination under field conditions is highly influenced by the presence of other plants. Allelopathy is an important mechanism of plant competition, by producing phytotoxins to the plant environment in order to decline other plants� growth. Soil sickness problem in farm lands is also known as an allelopathic effect or even autotoxicity. The toxicity of released allelochemicals by a plant in the environment is attributed to its function of concentration, age and metabolic stage. In this study we investigate the effect (5, 20, 35 and 50 g l-1 of leaf, stem and root water extract of sorghum on seed germination and seedling growth of mung bean. The results of the experiment showed that allelopathic effect of different concentrations was not significant for germination percentage, but germination rate and mean germination time decreased significantly by increasing the concentration of allelopathic extracts; also, there was a clear allelopathic effect of sorghum extract on seedling growth of mung bean. 50 g l-1 sorghum stem extract exhibited the highest inhibitory effect on root and shoot growth of mung bean. Among all parts of sorghum, stem extracts showed the highest allelopatic effect on seedling growth. Root extract showed higher inhibitory effect than leaf extracts.

  7. A Proteomic Approach of Bradyrhizobium/Aeschynomene Root and Stem Symbioses Reveals the Importance of the fixA Locus for Symbiosis

    Directory of Open Access Journals (Sweden)

    Nathanael Delmotte

    2014-02-01

    Full Text Available Rhizobia are soil bacteria that are able to form symbiosis with plant hosts of the legume family. These associations result in the formation of organs, called nodules in which bacteria fix atmospheric nitrogen to the benefit of the plant. Most of our knowledge on the metabolism and the physiology of the bacteria during symbiosis derives from studying roots nodules of terrestrial plants. Here we used a proteomics approach to investigate the bacterial physiology of photosynthetic Bradyrhizobium sp. ORS278 during the symbiotic process with the semi aquatical plant Aeschynomene indica that forms root and stem nodules. We analyzed the proteomes of bacteria extracted from each type of nodule. First, we analyzed the bacteroid proteome at two different time points and found only minor variation between the bacterial proteomes of 2-week- and 3-week-old nodules. High conservation of the bacteroid proteome was also found when comparing stem nodules and root nodules. Among the stem nodule specific proteins were those related to the phototrophic ability of Bradyrhizobium sp. ORS278. Furthermore, we compared our data with those obtained during an extensive genetic screen previously published. The symbiotic role of four candidate genes which corresponding proteins were found massively produced in the nodules but not identified during this screening was examined. Mutant analysis suggested that in addition to the EtfAB system, the fixA locus is required for symbiotic efficiency.

  8. Chemical Composition of the Essential Oils of the Flowers, Leaves and Stems of Two Senecio polyanthemoides Sch. Bip. Samples from South Africa

    Directory of Open Access Journals (Sweden)

    Lawal A. Oladipupo

    2009-06-01

    Full Text Available The essential oils of the flowers, leaves and stems of Senecio polyanthemoides Sch. Bip. Samples collected from two different localities within the city of uMhlathuze, KwaZulu-Natal Province (South Africa were isolated by hydrodistillation and analyzed using GC and GC/MS. Twenty-six constituents were identified, representing an average of 86.0 - 99.6% of the total oil composition. The chemical profile reveals the dominance of monoterpenoid compounds, although some quantitative variance was noticed. The main constituents of the oils were limonene (3.1 – 43.0%, p-cymene (4.9-36.3%, β-selinene (1.3-32.7%, α-pinene (1.8-21.4%, β-pinene (7.6-16.5% and 1,8-cineole (9.3-11.4%, caryophyllene oxide (4.1-13.4% and humulene epoxide II (8.6-10.3%.

  9. Evaluating the bioreducing potential of the leaves, knobs and roots of Zanthoxylum capense (small knobwood) for the synthesis of silver nanoparticles, applicable to in vitro fungal contamination control

    Science.gov (United States)

    Bodede, Olusola; Shaik, Shakira; Govinden, Roshini; Moodley, Roshila

    2017-12-01

    In this study we report on the green synthesis of silver nanoparticles using extracts from selected morphological parts of Zanthoxylum capense. UV-vis spectra of the biosynthesised silver nanoparticles (AgNPs) revealed absorption peaks at around 450 nm, indicative of the nanoparticles’ surface plasmon resonance, whilst infrared vibrational frequencies indicated the presence of flavonoids, alkaloids, and free and bonded sugars which could be responsible for the reduction and stabilisation of the AgNPs. 1H-NMR fingerprinting of the aqueous knob extract confirmed the active bio-reducing phytochemical of the knobs to be 6-O-p-coumaroyl-β-D-glucopyranoside. The nature, shape and morphology of the biosynthesised AgNPs were examined using transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) analysis. Z. capense AgNPs were mostly spherical in shape with particle sizes in the range of 4-28 nm, 7-20 nm and 4-32 nm for leaves, knobs and roots, respectively. Leaf extracts were the most efficient in the synthesis of AgNPs with an average yield of 0.027 g AgNPs per g of plant (dry mass). The AgNPs were more effective than sodium hypochlorite (NaOCl) and sodium dichloroisocyanurate (NaDCC) in the control of in vitro fungal contamination in nodal explants of Z. capense up to two weeks. Shoots induced from the surface sterilised explants were further used for shoot multiplication on benzyl aminopurine (BAP) and kinetin (KIN). BAP at 0.5 mg l-1 gave the highest percentage (88.6%) of explants bearing shoots with an average of 4.78 shoots per explant. A total of 15 fungal endophyte strains associated with Z. capense were identified using molecular methods.

  10. Evaluation of the delivery of mesenchymal stem cells into the root canal space of necrotic immature teeth after clinical regenerative endodontic procedure.

    Science.gov (United States)

    Lovelace, Tyler W; Henry, Michael A; Hargreaves, Kenneth M; Diogenes, Anibal

    2011-02-01

    Immature teeth with open apices treated with conventional nonsurgical root canal treatment often have a poor prognosis as a result of the increased risk of fracture and susceptibility to recontamination. Regenerative endodontics represents a new treatment modality that focuses on reestablishment of pulp vitality and continued root development. This clinical procedure relies on the intracanal delivery of a blood clot (scaffold), growth factors (possibly from platelets and dentin), and stem cells. However, to date, the clinical presence of stem cells in the canal space after this procedure has not been demonstrated. The purpose of this clinical study was to evaluate whether regenerative endodontic procedures are able to deliver stem cells into the canal space of immature teeth in young patients and to identify the possible tissue origin for these cells. After informed consent, the first appointment consisted of NaOCl irrigation and treatment with a triple antibiotic paste. One month later, the root canal space was irrigated with sterile saline, and bleeding was evoked with collection of samples on paper points. Real-time reverse-transcription polymerase chain reaction and immunocytochemistry were conducted to compare the gene transcripts and proteins found in the root canal sample with levels found in the systemic circulation. Molecular analyses of blood collected from the canal system indicated the significant accumulation of transcripts for the stem cell markers CD73 and CD105 (up to 600-fold), compared with levels found in the systemic blood. Furthermore, this effect was selective because there was no change in expression of the differentiation markers ALK-P, DSPP, ZBTB16, and CD14. Histologic analyses demonstrated that the delivered cells expressed both CD105 and STRO-1, markers for a subpopulation of mesenchymal stem cells. Collectively, these findings demonstrate that the evoked-bleeding step in regenerative procedures triggers the significant accumulation of

  11. Patterns in hydraulic architecture from roots to branches in six tropical tree species from cacao agroforestry and their relation to wood density and stem growth.

    Science.gov (United States)

    Kotowska, Martyna M; Hertel, Dietrich; Rajab, Yasmin Abou; Barus, Henry; Schuldt, Bernhard

    2015-01-01

    For decades it has been assumed that the largest vessels are generally found in roots and that vessel size and corresponding sapwood area-specific hydraulic conductivity are acropetally decreasing toward the distal twigs. However, recent studies from the perhumid tropics revealed a hump-shaped vessel size distribution. Worldwide tropical perhumid forests are extensively replaced by agroforestry systems often using introduced species of various biogeographical and climatic origins. Nonetheless, it is unknown so far what kind of hydraulic architectural patterns are developed in those agroforestry tree species and which impact this exerts regarding important tree functional traits, such as stem growth, hydraulic efficiency and wood density (WD). We investigated wood anatomical and hydraulic properties of the root, stem and branch wood in Theobroma cacao and five common shade tree species in agroforestry systems on Sulawesi (Indonesia); three of these were strictly perhumid tree species, and the other three tree species are tolerating seasonal drought. The overall goal of our study was to relate these properties to stem growth and other tree functional traits such as foliar nitrogen content and sapwood to leaf area ratio. Our results confirmed a hump-shaped vessel size distribution in nearly all species. Drought-adapted species showed divergent patterns of hydraulic conductivity, vessel density, and relative vessel lumen area between root, stem and branch wood compared to wet forest species. Confirming findings from natural old-growth forests in the same region, WD showed no relationship to specific conductivity. Overall, aboveground growth performance was better predicted by specific hydraulic conductivity than by foliar traits and WD. Our study results suggest that future research on conceptual trade-offs of tree hydraulic architecture should consider biogeographical patterns underlining the importance of anatomical adaptation mechanisms to environment.

  12. Patterns in hydraulic architecture from roots to branches in six tropical tree species from cacao agroforestry and their relation to wood density and stem growth

    Directory of Open Access Journals (Sweden)

    Martyna Malgorzata Kotowska

    2015-03-01

    Full Text Available For decades it has been assumed that the largest vessels are generally found in roots and that vessel size and corresponding sapwood area-specific hydraulic conductivity are acropetally decreasing towards the distal twigs. However, recent studies from the perhumid tropics revealed a hump-shaped vessel size distribution. Worldwide tropical perhumid forests are extensively replaced by agroforestry systems often using introduced species of various biogeographical and climatic origins. Nonetheless, it is unknown so far what kind of hydraulic architectural patterns are developed in those agroforestry tree species and which impact this exerts regarding important tree functional traits, such as stem growth, hydraulic efficiency and wood density. We investigated wood anatomical and hydraulic properties of the root, stem and branch wood in Theobroma cacao and five common shade tree species in agroforestry systems on Sulawesi (Indonesia; three of these were strictly perhumid tree species, and the other three tree species are tolerating seasonal drought. The overall goal of our study was to relate these properties to stem growth and other tree functional traits such as foliar nitrogen content and sapwood to leaf area ratio. Our results confirmed a hump-shaped vessel size distribution in nearly all species. Drought-adapted species showed divergent patterns of hydraulic conductivity, vessel density and relative vessel lumen area between root, stem and branch wood compared to wet forest species. Confirming findings from natural old-growth forests in the same region, wood density showed no relationship to specific conductivity. Overall, aboveground growth performance was better predicted by specific hydraulic conductivity than by foliar traits and wood density. Our study results suggest that future research on conceptual trade-offs of tree hydraulic architecture should consider biogeographical patterns underlining the importance of anatomical adaptation

  13. Chemical constituents of the leaves and anti-inflammatory activity evaluation of extracts of roots and leaves of Guettarda pohliana Muell. Arg. (Rubiaceae); Constituintes quimicos das folhas e avaliacao da atividade anti-inflamatoria de extratos das raizes e folhas de Guettarda pohliana Muell. Arg. (Rubiaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Testa, Glaucio; Oliveira, Paulo Roberto Neves de; Silva, Cleuza Conceicao da; Schuquel, Ivania Teresinha Albrecht; Santin, Silvana Maria de Oliveira, E-mail: smoliveira@uem.br [Departamento de Quimica, Universidade Estadual de Maringa, Maringa, PR (Brazil); Kato, Lucilia; Oliveira, Cecilia Maria Alves de [Instituto de Quimica, Universidade Federal de Goias, Samambaia, Goiania, GO (Brazil); Arruda, Laura Licia Milani de; Bersani-Amado, Ciomar Aparecida [Departamento de Farmacologia e Terapeutica, Universidade Estadual de Maringa, Maringa, PR (Brazil)

    2012-07-01

    This phytochemical investigation of Guettarda pohliana leaves led to the isolation of the triterpenes pomolic acid, rotundic acid, 3b,6a,19a,23-tetrahydroxyurs-12-en-28-oic acid, clethric acid, ursolic acid and oleanolic acid, the monoterpenoids loliolide and secoxyloganin, besides daucosterol and steroids. The structures of the isolated compounds were assigned on the basis of NMR data, including two-dimensional NMR methods. The anti-inflammatory activity of the crude methanolic extracts from leaves and roots, as well as of their fractions, was evaluated. (author)

  14. Phytochemical analysis and antimicrobial activity of baobab (Adansonia digitata leaves and stem bark extracts on Staphylococcus aureus and Escherichia coli

    Directory of Open Access Journals (Sweden)

    Mohammed Sani Sambo Datsugwai

    2017-05-01

    Full Text Available The phytochemical analysis and antibacterial activity of methanolic and ethanolic leaf and stem bark extracts of baobab tree on Escherichia coli and Staphylococcus aureus were carried out using agar well diffusion method. The clinical bacterial isolates of Escherichia coli and Staphylococcus aureus were obtained from Microbiology laboratory, Kaduna State University, Kaduna. The bacteria isolates were re-confirmed and identified based on their morphology, cultural characteristics and biochemical tests. The bacteria isolates were confirmed to be Escherichia coli and Staphylococcus aureus. The phytochemical analysis revealed the presence of Alkaloids, Saponins, Flavonoids, Tannins and Terpenoids. The methanolic leaf extract showed a wide range of activity on test isolates, with varying zones of inhibitions as 12 mm, 10 mm, 7 mm, and 4 mm against Staphylococcus aureus and 13 mm, 9 mm, 7 mm, and 3 mm against Escherichia coli at concentration of 1000 mg/ml, 500 mg/ml, 200 mg/ml and 100 mg/ml respectively. The ethanolic leaf extract also showed a wide range of activity on test isolates with varying zones of inhibitions, such as 11mm, 6mm, 5mm and 3mm against S. aureus and 8mm, 7mm, 5mm, and 4mm against E. coli at the concentration of 1000 mg/ml, 500mg/ml, 200 mg/ml and 100mg/ml for each respectively. The methanolic stem bark extract showed less antibacterial activity against the test isolates with the inhibition of 5mm and 4mm against S. aureus and 4mm and 3mm against E.coli at concentration of 1000 mg/ml and 500 mg/ml respectively with no zones of inhibition at concentration of 200 mg/ml and 100mg/ml. The ethanolic stem bark extract also showed no antibacterial activity with no zones of inhibition against the test isolates at concentration of 1000 mg/ml, 500 mg/ml, 200mg/ml and 100 mg/ml. The methanolic leaf extract inhibited the growth of S. aureus and E.coli at concentration of 100 mg/ml with minimum bactericidal concentration at 100 mg/ml. The

  15. Root uptake and translocation of perfluorinated alkyl acids by three hydroponically grown crops

    NARCIS (Netherlands)

    Felizeter, S.; McLachlan, M.S.; de Voogt, P.

    2014-01-01

    Tomato, cabbage, and zucchini plants were grown hydroponically in a greenhouse. They were exposed to 14 perfluorinated alkyl acids (PFAAs) at four different concentrations via the nutrient solution. At maturity the plants were harvested, and the roots, stems, leaves, twigs (where applicable), and

  16. Organizer-Derived WOX5 Signal Maintains Root Columella Stem Cells through Chromatin-Mediated Repression of CDF4 Expression.

    NARCIS (Netherlands)

    Pi, L.; Graaff, van der E.; Llavata Peris, C.I.; Weijers, D.; Henning, L.; Groot, de E.; Laux, T.

    2015-01-01

    Stem cells in plants and animals are maintained pluripotent by signals from adjacent niche cells. In plants, WUSCHEL HOMEOBOX (WOX) transcription factors are central regulators of stem cell maintenance in different meristem types, yet their molecular mode of action has remained elusive. Here we show

  17. In Vitro Assessment of Anthelmintic Activities of Rauwolfia vomitoria (Apocynaceae Stem Bark and Roots against Parasitic Stages of Schistosoma mansoni and Cytotoxic Study

    Directory of Open Access Journals (Sweden)

    Emmanuel Mouafo Tekwu

    2017-01-01

    Full Text Available Schistosomiasis is a Neglected Tropical Diseases which can be prevented with mass deworming chemotherapy. The reliance on a single drug, praziquantel, is a motivation for the search of novel antischistosomal compounds. This study investigated the anthelmintic activity of the stem bark and roots of Rauwolfia vomitoria against two life stages of Schistosoma mansoni. Both plant parts were found to be active against cercariae and adult worms. Within 2 h of exposure all cercariae were killed at a concentration range of 62.5–1000 µg/mL and 250–1000 µg/mL of R. vomitoria stem bark and roots, respectively. The LC50 values determined for the stem bark after 1 and 2 h of exposure were 207.4 and 61.18 µg/mL, respectively. All adult worms exposed to the concentrations range of 250–1000 µg/mL for both plant parts died within 120 h of incubation. The cytotoxic effects against HepG2 and Chang liver cell assessed using MTT assay method indicated that both plant extracts which were inhibitory to the proliferation of cell lines with IC50 > 20 μg/mL appear to be safe. This report provides the first evidence of in vitro schistosomicidal potency of R. vomitoria with the stem bark being moderately, but relatively, more active and selective against schistosome parasites. This suggests the presence of promising medicinal constituent(s.

  18. Electrical signaling, stomatal conductance, ABA and Ethylene content in avocado trees in response to root hypoxia

    Science.gov (United States)

    Gurovich, Luis; Schaffer, Bruce; García, Nicolás; Iturriaga, Rodrigo

    2009-01-01

    Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone. PMID:19649181

  19. Antioxidative, anti-inflammatory potentials and phytochemical profile of Commiphora africana(A. Rich.) Engl.(Burseraceae) and Loeseneriella africana(Willd.)(Celastraceae) stem leaves extracts

    Institute of Scientific and Technical Information of China (English)

    Moussa Compaoré; Roland Ng-Tiéro Meda; Sahabi Bakasso; Laurian Vlase; Martin Kiendrebeogo

    2016-01-01

    Objective: To assess the antioxidant and anti-inflammatory activities as well as to determine the flavonoids and phenolic acids content of active fractions.Methods: Two medicinal plant samples were extracted successively in Soxhlet apparatus with n-hexane, dichloromethane, acetonitrile, ethyl acetate, methanol and n-butanol. Five methods were used to evaluate the antioxidant activity. Anti-inflammatory activity was done through the inhibition of the cyclooxygenase enzymes(COX-1 and COX-2).Polyphenolic compounds were analyzed by using a spectrophotometrical and high performance liquid chromatography-mass spectrometry(HPLC-MS) methods.Results: The data showed that the stem leaves extracts of Commiphora africana and Loeseneriella africana possessed significant in vitro antioxidant and anti-inflammatory activities. Polar extracts had radical scavenging effects and they reduced iron(III). The prostaglandin production was significantly stopped by acetonitrile and methanol extracts.These biological activities were supported by some bioactive compounds quantified by using the HPLC-MS. p-Coumaric acid, ferulic acid, isoquercitrin, quercitrin, quercetin,rutin, kaempferol and apigenin were the most metabolites quantified.Conclusions: The present study may explain the effectiveness of plants in traditional medicine of Burkina Faso, singularly Commiphora africana and Loeseneriella africana.The next investigation was to sub-fractionate the methanol fraction in order to isolate new antioxidant and/or anti-inflammatory compounds.

  20. Optimization of dynamic-microwave assisted enzymatic hydrolysis extraction of total ginsenosides from stems and leaves of panax ginseng by response surface methodology.

    Science.gov (United States)

    Wang, Xiao-Yan; Ren, Hui

    2018-03-21

    Ginseng stems and leaves (GSAL) are abundant in ginsenosides compounds. For efficient utilization of GSAL and the enhancement of total ginsenosides (TG) compound yields in GSAL, TG from GSAL were extracted, using dynamic-microwave assisted extraction coupled with enzymatic hydrolysis (DMAE-EH) method. The extraction process has been simulated and its main influencing factors such as ethanol concentration, microwave temperature, microwave time and pump flow rate have been optimized by response surface methodology coupled with a Box-Behnken design(BBD). The experimental results indicated that optimal extraction conditions of TG from GSAL were as follows: ethanol concentration of 75%, microwave temperature of 60°C, microwave time of 20 min and pump flow rate of 38 r/min. After experimental verification, the experimental yields of TG was 60.62 ± 0.85 mg g -1 , which were well agreement with the predicted by the model. In general, the present results demonstrated that DMAE-EH method was successfully used to extract total ginsenosides in GSAL.

  1. Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici.

    Science.gov (United States)

    Aravind, R; Kumar, A; Eapen, S J; Ramana, K V

    2009-01-01

    To isolate and identify black pepper (Piper nigrum L) associated endophytic bacteria antagonistic to Phytophthora capsici causing foot rot disease. Endophytic bacteria (74) were isolated, characterized and evaluated against P. capsici. Six genera belong to Pseudomonas spp (20 strains), Serratia (1 strain), Bacillus spp. (22 strains), Arthrobacter spp. (15 strains), Micrococcus spp. (7 strains), Curtobacterium sp. (1 strain) and eight unidentified strains were isolated from internal tissues of root and stem. Three isolates, IISRBP 35, IISRBP 25 and IISRBP 17 were found effective for Phytophthora suppression in multilevel screening assays which recorded over 70% disease suppression in greenhouse trials. A species closest match (99% similarity) of IISRBP 35 was established as Pseudomonas aeruginosa (Pseudomonas EF568931), IISRBP 25 as P. putida (Pseudomonas EF568932), and IISRBP 17 as Bacillus megaterium (B. megaterium EU071712) based on 16S rDNA sequencing. Black pepper associated P. aeruginosa, P. putida and B. megaterium were identified as effective antagonistic endophytes for biological control of Phytophthora foot rot in black pepper. This work provides the first evidence for endophytic bacterial diversity in black pepper stem and roots, with biocontrol potential against P. capsici infection.

  2. Strigolactones suppress adventitious rooting in Arabidopsis and pea.

    Science.gov (United States)

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-04-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.

  3. Effects of long-term pruning, meristem origin, and branch order on the rooting of Douglas-fir stem cuttings.

    Science.gov (United States)

    D.L. Copes

    1992-01-01

    The rooting percentages of 14 Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) clones were examined annually from 1974 to 1988. The trees were 10 and 13 years old in 1974 and were pruned to 2.0 m in 1978 and 1979 and then recut annually to 0.5, 1.0, or 1.5 m, starting in 1983. The pruned trees showed no evidence of decreased rooting percentage...

  4. Effects of elevated CO2 concentrations and fly ash amended soils on trace element accumulation and translocation among roots, stems and seeds of Glycine max (L.) Merr

    International Nuclear Information System (INIS)

    Rodriguez, J.H.; Klumpp, A.; Fangmeier, A.; Pignata, M.L.

    2011-01-01

    The carbon dioxide (CO 2 ) levels of the global atmosphere and the emissions of heavy metals have risen in recent decades, and these increases are expected to produce an impact on crops and thereby affect yield and food safety. In this study, the effects of elevated CO 2 and fly ash amended soils on trace element accumulation and translocation in the root, stem and seed compartments in soybean [Glycine max (L.) Merr.] were evaluated. Soybean plants grown in fly ash (FA) amended soil (0, 1, 10, 15, and 25% FA) at two CO 2 regimes (400 and 600 ppm) in controlled environmental chambers were analyzed at the maturity stage for their trace element contents. The concentrations of Br, Co, Cu, Fe, Mn, Ni, Pb and Zn in roots, stems and seeds in soybeans were investigated and their potential risk to the health of consumers was estimated. The results showed that high levels of CO 2 and lower concentrations of FA in soils were associated with an increase in biomass. For all the elements analyzed except Pb, their accumulation in soybean plants was higher at elevated CO 2 than at ambient concentrations. In most treatments, the highest concentrations of Br, Co, Cu, Fe, Mn, and Pb were found in the roots, with a strong combined effect of elevated CO 2 and 1% of FA amended soils on Pb accumulation (above maximum permitted levels) and translocation to seeds being observed. In relation to non-carcinogenic risks, target hazard quotients (TQHs) were significant in a Chinese individual for Mn, Fe and Pb. Also, the increased health risk due to the added effects of the trace elements studied was significant for Chinese consumers. According to these results, soybean plants grown for human consumption under future conditions of elevated CO 2 and FA amended soils may represent a toxicological hazard. Therefore, more research should be carried out with respect to food consumption (plants and animals) under these conditions and their consequences for human health.

  5. Influência do ethephon e do ácido indolbutírico no enraizamento de estacas de ramos de goiabeira (Psidium guajava L. Influence of ethephon and indole butyric on the rooting of stem cuttings of guava (Psidium guajava L.

    Directory of Open Access Journals (Sweden)

    Cláudia Araújo Marco

    1998-06-01

    Full Text Available Este trabalho teve o objetivo de avaliar a influência do ethephon, do ácido indolbutírico (AIB e do substrato no enraizamento de estacas obtidas de ramos de goiabeira. As plantas de um pomar com cinco anos de idade foram pulverizadas com ethephon nas concentrações de zero, 50 e 100ppm, sendo que após sete dias, foram feitas estacas de ramos do último lançamento, com três nós por estaca e um par de folhas. Estas foram tratadas com as concentrações de zero, 1000, 2000, 3000 e 4000ppm de AIB na forma liquida, por imersão de dois cm da base da estaca durante cinco segundos. Os substratos utilizados como meio de enraizamento foram vermiculita e cinza de casca de arroz. Os resultados mostram que com a utilização de vermiculita obteve-se maior percentagem de estacas enraizadas (21,48 %. Os reguladores Ethephon e AIB afetaram a percentagem de estacas enraizadas assim como o número de raízes.The objective of this work was to evaluate the influence of ethephon, indole butyric acid (IBA and substrate on root formation of guava stem cuttings. Orchard plants withfive years old were sprayed with ethephon in concentrations of zero, 50 and 100ppm. However, after seven days, stem cuttings were made, of the last lauching with three knots by cutting including one pair of leaves. Cuttings were treated with concentrations of zero, 1000, 2000. 3000 and 4000ppm of liquid IBA by immersion of two centimeter of the basis of cutting for five minutes. Vermiculite and ash rice were used as substrato. Results showed that the use of vermiculite produced greater percentage of cuttings rooted (21.48%. A greater cutting rooted and number of roots were obtained using ethephon and IBA.

  6. Effects of IAA and IBA on the in vitro rooting of stem cuttings of Sechium edule (Jacq. Sw

    Directory of Open Access Journals (Sweden)

    José García García

    2015-01-01

    Full Text Available This investigation was carried out with the objective of evaluating the response of shoots of chayote [S. edule (Jacq. Sw.] to the application of indole-3-butyric acid (IBA and indole-3-acetic acid (IAA on the in vitro rooting phase. The effect of three culture media, modified from the proposed of Murashige and Skoog (MS was studied: 1- 65% MS salt base, 2- 65% MS salt base + 0.05 mg l-1 of indolebutyric acid (AIB and 3- 65% MS salt base + 3.0 mg l-1-3-indole acetic acid (IAA. The variables evaluated were: number of roots, length and number of shoots per in vitro seedling. The best result were obtained when using 65% MS salt base with 3.0 mg l-1 of IAA. Significant differences (P<0.05 among treatments containing growth regulators was obtained for the variables number of roots and length of in vitro plantlets. In the UNA-730 accession root induction was obtained in a 65% MS salt base culture medium without growth regulators; however, when IAA and IBA was added the induction was 100%. The differences identified in this work with regards to the root induction were probably the combined result of genotype and specific culture conditions. Key words: auxins, chayote, growth regulators, in vitro culture

  7. Responses of fine roots and soil N availability to short-term nitrogen fertilization in a broad-leaved Korean pine mixed forest in northeastern China.

    Directory of Open Access Journals (Sweden)

    Cunguo Wang

    Full Text Available Knowledge of the responses of soil nitrogen (N availability, fine root mass, production and turnover rates to atmospheric N deposition is crucial for understanding fine root dynamics and functioning in forest ecosystems. Fine root biomass and necromass, production and turnover rates, and soil nitrate-N and ammonium-N in relation to N fertilization (50 kg N ha(-1 year(-1 were investigated in a temperate forest over the growing season of 2010, using sequential soil cores and ingrowth cores methods. N fertilization increased soil nitrate-N by 16% (P<0.001 and ammonium-N by 6% (P<0.01 compared to control plots. Fine root biomass and necromass in 0-20 cm soil were 13% (4.61 vs. 5.23 Mg ha(-1, P<0.001 and 34% (1.39 vs. 1.86 Mg ha(-1, P<0.001 less in N fertilization plots than those in control plots. The fine root mass was significantly negatively correlated with soil N availability and nitrate-N contents, especially in 0-10 cm soil layer. Both fine root production and turnover rates increased with N fertilization, indicating a rapid underground carbon cycling in environment with high nitrogen levels. Although high N supply has been widely recognized to promote aboveground growth rates, the present study suggests that high levels of nitrogen supply may reduce the pool size of the underground carbon. Hence, we conclude that high levels of atmospheric N deposition will stimulate the belowground carbon cycling, leading to changes in the carbon balance between aboveground and underground storage. The implications of the present study suggest that carbon model and prediction need to take the effects of nitrogen deposition on underground system into account.

  8. Abutilon ornamental (Abutilon sp. - Malvaceae mostrando pústulas de Synchytrium australe Pustules on stems, leaves and pods of ornamental abutilon (Abutilon sp. caused by Synchytrium australe

    Directory of Open Access Journals (Sweden)

    Mário Barreto Figueiredo

    2007-06-01

    Full Text Available Plantas de abutilon recebidas para análise fitopatológica pelo Instituto Biológico, São Paulo, Brasil mostrando como sintomas pústulas semelhantes a ferrugem (Uredinales sobre folhas e caule foram estudadas para determinar o agente causal. Numerosos esporângios amarelos característicos de fungos zoospóricos pertencentes à Ordem Chytridiales foram encontrados no interior de galhas superficiais. Com base no estudo de KARLING (1955, o patógeno foi identificado como Synchytrium australe Speg. O material foi herborizado e armazenado no Herbário Micológico do Instituto Biológico sob o número IBI/SP 11975. Esta foi a primeira constatação desta espécie no Brasil.The genus Abutilon includes a large number of ornamental species with nice foliage and flowers. The different species are known under several common names as Indian mallow, China jute, butterprint, etc. Plants of abutilon received for phytopathological analysis by the Instituto Biologico, São Paulo, Brazil showing curious rust like symptoms (pustules on leaves, stems and pods were studied to determine the causal agent. Numerous yellow sporangia characteristic of zoosporic fungi belonging to the Order Chytridiales were found within the superficial intact galls. Based on KARLING (1955 paper the pathogen was identified as Synchytrium australe Speg. The voucher material was saved and settled in the Mycological Herbarium of the Institution under the number IBI/SP 11975. This was the first report of the occurrence of this species in Brazil.

  9. Construction of 12 EST libraries and characterization of a 12,226 EST dataset for chicory (Cichorium intybus root, leaves and nodules in the context of carbohydrate metabolism investigation

    Directory of Open Access Journals (Sweden)

    Boutry Marc

    2009-01-01

    Full Text Available Abstract Background The industrial chicory, Cichorium intybus, is a member of the Asteraceae family that accumulates fructan of the inulin type in its root. Inulin is a low calories sweetener, a texture agent and a health promoting ingredient due to its prebiotic properties. Average inulin chain length is a critical parameter that is genotype and temperature dependent. In the context of the study of carbohydrate metabolism and to get insight into the transcriptome of chicory root and to visualize temporal changes of gene expression during the growing season, we obtained and characterized 10 cDNA libraries from chicory roots regularly sampled in field during a growing season. A leaf and a nodule libraries were also obtained for comparison. Results Approximately 1,000 Expressed Sequence Tags (EST were obtained from each of twelve cDNA libraries resulting in a 12,226 EST dataset. Clustering of these ESTs returned 1,922 contigs and 4,869 singlets for a total of 6,791 putative unigenes. All ESTs were compared to public sequence databases and functionally classified. Data were specifically searched for sequences related to carbohydrate metabolism. Season wide evolution of functional classes was evaluated by comparing libraries at the level of functional categories and unigenes distribution. Conclusion This chicory EST dataset provides a season wide outlook of the genes expressed in the root and to a minor extent in leaves and nodules. The dataset contains more than 200 sequences related to carbohydrate metabolism and 3,500 new ESTs when compared to other recently released chicory EST datasets, probably because of the season wide coverage of the root samples. We believe that these sequences will contribute to accelerate research and breeding of the industrial chicory as well as of closely related species.

  10. Cancer Stem Cell Hypothesis for Therapeutic Innovation in Clinical Oncology? Taking the Root Out, Not Chopping the Leaf.

    Science.gov (United States)

    Dzobo, Kevin; Senthebane, Dimakatso Alice; Rowe, Arielle; Thomford, Nicholas Ekow; Mwapagha, Lamech M; Al-Awwad, Nasir; Dandara, Collet; Parker, M Iqbal

    2016-12-01

    Clinical oncology is in need of therapeutic innovation. New hypotheses and concepts for translation of basic research to novel diagnostics and therapeutics are called for. In this context, the cancer stem cell (CSC) hypothesis rests on the premise that tumors comprise tumor cells and a subset of tumor-initiating cells, CSCs, in a quiescent state characterized by slow cell cycling and expression of specific stem cell surface markers with the capability to maintain a tumor in vivo. The CSCs have unlimited self-renewal abilities and propagate tumors through division into asymmetric daughter cells. This differentiation is induced by both genetic and environmental factors. Another characteristic of CSCs is their therapeutic resistance, which is due to their quiescent state and slow dividing. Notably, the CSC phenotype differs greatly between patients and different cancer types. The CSCs may differ genetically and phenotypically and may include primary CSCs and metastatic stem cells circulating within the blood system. Targeting CSCs will require the knowledge of distinct stem cells within the tumor. CSCs can differentiate into nontumorigenic cells and this has been touted as the source of heterogeneity observed in many solid tumors. The latter cannot be fully explained by epigenetic regulation or by the clonal evolution theory. This heterogeneity markedly influences how tumors respond to therapy and prognosis. The present expert review offers an analysis and synthesis of the latest research and concepts on CSCs, with a view to truly disruptive innovation for future diagnostics and therapeutics in clinical oncology.

  11. iRoot FM exerts an antibacterial effect on Porphyromonas endodontalis and improves the properties of stem cells from the apical papilla.

    Science.gov (United States)

    Bi, J; Liu, Y; Liu, X M; Jiang, L M; Chen, X

    2018-03-07

    To investigate the antibacterial activity of a novel intracanal medicament, iRoot FM, against Porphyromonas endodontalis and its effects on the proliferation and osteo-/odontogenic differentiation of stem cells from apical papilla (SCAP). The agar diffusion test was used to compare the antimicrobial efficacy of iRoot FM with two traditional intracanal medicaments, calcium hydroxide [Ca(OH) 2 ] and triple antibiotic paste (TAP). The CCK-8 assay was used to assess the proliferation rate of SCAP when exposed to the three intracanal medicaments. The expression levels of ALP and DMP-1 and the capacity to form mineralized nodules were used to evaluate the osteo-/odontogenic differentiation of SCAP, as assessed by real-time PCR, Western blotting and alizarin red S staining. Data were statistically analysed with one-way analysis of variance (anova), and comparisons between each of two groups were analysed by the least significance difference method. P values less than 0.05 were considered statistically significant. The zone of inhibition against P. endodontalis produced by iRoot FM was 20.74 ± 4.35 mm, whilst the zones of inhibition of Ca(OH) 2 and TAP were 24.89 ± 3.84 mm and 34.51 ± 1.20 mm. The antibacterial capacity of iRoot FM was similar to that of Ca(OH) 2 (P > 0.05). SCAP, cultured in conditioned medium with iRoot FM, was associated with greater proliferation and osteo-/odontogenic differentiation capacity than those cultured in conditioned medium with Ca(OH) 2 and TAP (P endodontalis and could improve the proliferation and differentiation of SCAP. The findings provide evidence that iRoot FM has potential as an intracanal medicament for endodontic procedures in immature permanent teeth. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. effects of different concentrations of auxins on rooting and root

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: The effect of auxins and their different concentrations on rooting and root ... primary root length and the longest primary root was recorded with the ... ceuticals, lubricants, foods, electrical insulators, .... stem cuttings of jojoba treated with IBA and NAA, .... increasing cell division and enlargement at each.

  13. Controlling the root and stem rot of cucumber, caused by Pythium aphanidermatum, using resistance cultivars and grafting onto the cucurbit rootstocks

    Directory of Open Access Journals (Sweden)

    Fatemeh Rostami

    2015-02-01

    Full Text Available Cucumber damping off caused by Pythium aphanidermatum is the most important root and stem rot that limits greenhouse cultivations. In this study, relative susceptibility of grafting commercial cucumber cultivars including Alpha, Caspian 340, Storm 5910, Shalim 616, Delta scar, Janette 810, Festibal C5, Royal, Negyn, Soltan and Fadia on two Cucurbita rootstocks were evaluated against P. aphanidermatum . Disease severity, survival and seedling growth were used for the evaluation. The results showed significant differences between the studied cultivars (p≤0.01. Caspian 340 and Alpha with 15.7% and 100% disease severity had more and less tolerant to P. aphanidermatum, respectively. Cucurbita maxima rootstock was more resistant than Cucurbita pepo to P. aphanidermatum. C. pepo had less compatibility with the cucumber and showed little resistance to the pathogen. The study revealed that grafting Caspian340 on the resistant cucurbit rootstock i.e. Cucurbita maxima could be used as disease control strategies in greenhouses.

  14. Determination of the Effects of Nutrient sources on Enhancement of Crop Tolerance to Bean Root Rot and Bean Stem Maggot in Western Kenya

    International Nuclear Information System (INIS)

    Otsyula, R.M.; Nderitu, J.H.

    1999-01-01

    Field bean phaseolus vulgaris tolerance to root rot (BRR) and bean stem maggot (BSM) is enhanced by improvement of soil nutrients. Organic and inorganic sources of soil nutrients were evaluated in this study to determine their effects on crop tolerance to BRR and BSM. Three variety of GLP 585 susceptible to BRR and BSM; GLP X92 tolerant to BRR and BSM; and KK-8 resistant to BRR and BSM were used. The study was conducted in farmer's field with high level of BRR and BSM over three seasons in a split plot design. Nutrient sources were laid down in main plots while varieties were in subplots. KK-8 gave the highest plant survival and yield over the seasons. GLP 585 had the lowest mean yield and plant survival. Crop tolerance was greatly improved by application of DAP as applied as nutrient sources and varieties for crop tolerance were identified

  15. Introduction of the rd29A: AtDREB2A CA gene into soybean (Glycine max L. Merril and its molecular characterization in leaves and roots during dehydration

    Directory of Open Access Journals (Sweden)

    Cibelle Engels

    2013-01-01

    Full Text Available The loss of soybean yield to Brazilian producers because of a water deficit in the 2011-2012 season was 12.9%. To reduce such losses, molecular biology techniques, including plant transformation, can be used to insert genes of interest into conventional soybean cultivars to produce lines that are more tolerant to drought. The abscisic acid (ABA-independent Dehydration Responsive Element Binding (DREB gene family has been used to obtain plants with increased tolerance to abiotic stresses. In the present study, the rd29A:AtDREB2A CA gene from Arabidopsis thaliana was inserted into soybean using biolistics. Seventy-eight genetically modified (GM soybean lines containing 2-17 copies of the AtDREB2A CA gene were produced. Two GM soybean lines (P1397 and P2193 were analyzed to assess the differential expression of the AtDREB2A CA transgene in leaves and roots submitted to various dehydration treatments. Both GM lines exhibited high expression of the transgene, with the roots of P2193 showing the highest expression levels during water deficit. Physiological parameters examined during water deficit confirmed the induction of stress. This analysis of AtDREB2A CA expression in GM soybean indicated that line P2193 had the greatest stability and highest expression in roots during water deficit-induced stress.

  16. Comparative Analysis of the Anatomy of Two Populations of Red-Root Amaranth (Amaranthus retroflexus L.

    Directory of Open Access Journals (Sweden)

    Sava Vrbničanin

    2009-01-01

    Full Text Available The anatomy of stems and leaves of two populations of the weed species Amaranthus retroflexus L. (red-root amaranth (pop. AMARE1 having green stems covered in sparse hairs and pop. AMARE2 with green but notably dense stem hairs was analysed in order better to understand the uptake and translocation of herbicides that could be indicative of the species’ evolving resistance to herbicides. Samples of the two populations (AMARE1 and AMARE2 were collected from arable land of the Institute of Maize Research at Zemun Polje in 2006. Sampling was performed at the stage of full vegetative growth of plants.Permanent microscoping preparations were made to measure and analyze elements of the anatomy of stems (stem epidermis, cortex, collenchyma, central cylinder and diameter and leaves (leaf epidermis upper surface and underside, mesophyll, leaf thickness and bundle sheath thickness.Both analysed populations of A. retroflexus, morphologically characterized by different density of stem hairiness, were found to have a typical structure of herbaceous dicots. The stem had three distinctive zones: epidermis, cortex and central cylinder. Amaranth leaves have dorsoventral structure, i.e. their upper surface and underside can be differentiated. The results indicated high and very high significance of differences found in stem anatomy between the two analysed populations, while leaf anatomy was not found to display significant differences other than in mesophyll thickness.

  17. Effects of elevated CO2 concentrations and fly ash amended soils on trace element accumulation and translocation among roots, stems and seeds of Glycine max (L.) Merr.

    Science.gov (United States)

    Rodriguez, J H; Klumpp, A; Fangmeier, A; Pignata, M L

    2011-03-15

    The carbon dioxide (CO(2)) levels of the global atmosphere and the emissions of heavy metals have risen in recent decades, and these increases are expected to produce an impact on crops and thereby affect yield and food safety. In this study, the effects of elevated CO(2) and fly ash amended soils on trace element accumulation and translocation in the root, stem and seed compartments in soybean [Glycine max (L.) Merr.] were evaluated. Soybean plants grown in fly ash (FA) amended soil (0, 1, 10, 15, and 25% FA) at two CO(2) regimes (400 and 600 ppm) in controlled environmental chambers were analyzed at the maturity stage for their trace element contents. The concentrations of Br, Co, Cu, Fe, Mn, Ni, Pb and Zn in roots, stems and seeds in soybeans were investigated and their potential risk to the health of consumers was estimated. The results showed that high levels of CO(2) and lower concentrations of FA in soils were associated with an increase in biomass. For all the elements analyzed except Pb, their accumulation in soybean plants was higher at elevated CO(2) than at ambient concentrations. In most treatments, the highest concentrations of Br, Co, Cu, Fe, Mn, and Pb were found in the roots, with a strong combined effect of elevated CO(2) and 1% of FA amended soils on Pb accumulation (above maximum permitted levels) and translocation to seeds being observed. In relation to non-carcinogenic risks, target hazard quotients (TQHs) were significant in a Chinese individual for Mn, Fe and Pb. Also, the increased health risk due to the added effects of the trace elements studied was significant for Chinese consumers. According to these results, soybean plants grown for human consumption under future conditions of elevated CO(2) and FA amended soils may represent a toxicological hazard. Therefore, more research should be carried out with respect to food consumption (plants and animals) under these conditions and their consequences for human health. Copyright © 2010

  18. The parenchymo-vascular cambium and its derivative tissues in stems and roots of Bougainvillaea glabra Choisy (Nyctaginaceae

    Directory of Open Access Journals (Sweden)

    Z. Puławska

    2015-01-01

    Full Text Available In the shoots and roots of Bougainmllaea, the parenchymo-vascular cambium produces thinwalled secondary parenchyma to one side and the secondary vascular bundles embedded in the "conjunctive tissue" to the other. Periclinal division of a single cambial cell in one radial row brings about periclinal divisions of the adjacent cells of the neighbouring rows. Anticlinal division of a single cambial cell at one level, on the other hand, causes anticlinal. divisions of the adjacent cells of the overlying and underlying tiers.

  19. Alterações anatômicas em folhas e raízes de Jatropha curcas L. cultivadas sob estresse salino Anatomical changes in the leaves and roots of Jatropha curcas L. cultivated under saline stress

    Directory of Open Access Journals (Sweden)

    Gemima Manço de Melo

    2011-09-01

    Full Text Available A espécie Jatropha curcas L. está entre as mais destacadas fontes de grãos oleaginosos, com baixa exigência hídrica e nutricional, sendo promissora para regiões áridas e semiáridas, em geral sujeitas à salinização do solo. Objetivou-se neste trabalho avaliar o efeito de diferentes concentrações salinas, sobre a anatomia de folhas e raízes de Jatropha curcas. Cinqüenta sementes foram semeadas em bandejas, e as plântulas transferidas para potes com capacidade para 5 litros, o ensaio foi conduzido em casa de vegetação. Após 21 dias da germinação, as plantas foram submetidas aos seguintes tratamentos salinos: 25; 50; 75; 100; 150 e 200 mM de NaCl, além do controle (0 mM de NaCl, em delineamento inteiramente casualizado, com cinco repetições por tratamento. Ao final do 32º dia de tratamento, a terceira folha e raízes, medindo aproximadamente 5 cm de comprimento, foram coletadas e fixadas em FAA 50. Seções transversais da porção mediana da nervura central da folha e da região mediana da raiz foram cortadas e coradas com safrablau. Foram observadas na folha redução no número de células do xilema e floema e alterações em sua distribuição, em função do aumento das concentrações de sal na solução. Nas raízes observou-se que, quanto mais alta a concentração salina, maior a lignificação das células xilemáticas e endodérmicas, e maior a redução no diâmetro e no número de elementos de vaso. Portanto, ocorrem alterações anatômicas em folhas e raízes das plantas quando cultivadas sob altas concentrações salinas.The species Jatropha curcas L. is among the most prominent sources of oilseeds, with low water requirement and nutrition, and promising to arid and semiarid regions, usually subject to soil salinization. The objective of this study was to evaluate the effect of different salt concentrations on the anatomy of leaves and roots of Jatropha curcas. Fifty seeds were sown in trays and the seedlings

  20. BRANCH JUNCTIONS AND THE FLOW OF WATER THROUGH XYLEM IN DOUGLAS-FIR AND PONDEROSA PINE STEMS

    Science.gov (United States)

    Water flowing through the xylem of most plants from the roots to the leaves must pass through junctions where branches have developed from the main stem. These junctions have been studied as both flow constrictions and components of a hydraulic segmentation mechanism to protect ...

  1. Taking Leave?

    CERN Multimedia

    2000-01-01

    Planning a holiday? Then if you're a member of the personnel, you'll need to use the Laboratory's new leave system that will be put in place on 1 October. Leave allocations don't change - you are entitled to just as much holiday as before - but instead of being credited annually, your leave will be credited on a monthly basis, and this information will be communicated on your salary slip. The reason for the change is that with the various new leave schemes such as Recruitment by Saved Leave (RSL) and the Progressive Retirement Programme (PRP), a streamlined procedure was required for dealing with all kinds of leave. In the new system, each member of the personnel will have leave accounts to which leave will be credited monthly from the payroll and debited each time an absence is registered in the CERN Electronic Document Handling system (EDH). Leave balances will appear on monthly pay slips, and full details of leave transactions and balances will be available through EDH at all times. As the leave will be c...

  2. A novel life cycle arising from leaf segments in plants regenerated from horseradish hairy roots.

    Science.gov (United States)

    Mano, Y; Matsuhashi, M

    1995-03-01

    Horseradish (Armoracia rusticana) hairy root clones were established from hairy roots which were transformed with the Ri plasmid in Agrobacterium rhizogenes 15834. The transformed plants, which were regenerated from hairy root clones, had thicker roots with extensive lateral branches and thicker stems, and grew faster compared with non-transformed horseradish plants. Small sections of leaves of the transformed plants generated adventitious roots in phytohormone-free G (modified Gamborg's) medium. Root proliferation was followed by adventitious shoot formation and plant regeneration. Approximately twenty plants were regenerated per square centimeter of leaf. The transformed plants were easily transferable from sterile conditions to soil. When leaf segments of the transformed plants were cultured in a liquid fertilizer under non-sterile conditions, adventitious roots were generated at the cut ends of the leaves. Adventitious shoots were generated at the boundary between the leaf and the adventitious roots and developed into complete plants. This novel life cycle arising from leaf segments is a unique property of the transformed plants derived from hairy root clones.

  3. A novel, multiplexed, probe-based quantitative PCR assay for the soybean root- and stem-rot pathogen, Phytophthora sojae, utilizes its transposable element.

    Science.gov (United States)

    Haudenshield, James S; Song, Jeong Y; Hartman, Glen L

    2017-01-01

    Phytophthora root rot of soybean [Glycine max (L.) Merr.] is caused by the oomycete Phytophthora sojae (Kaufm. & Gerd.). P. sojae has a narrow host range, consisting primarily of soybean, and it is a serious pathogen worldwide. It exists in root and stem tissues as mycelium, wherein it can form oospores which subsequently germinate to release motile, infectious zoospores. Molecular assays detecting DNA of P. sojae are useful in disease diagnostics, and for determining the presence of the organism in host tissues, soils, and runoff or ponded water from potentially infested fields. Such assays as published have utilized ITS sequences from the nuclear ribosomal RNA genes in conventional PCR or dye-binding quantitative PCR (Q-PCR) but are not amenable to multiplexing, and some of these assays did not utilize control strategies for type I or type II errors. In this study, we describe primers and a bifunctional probe with specificity to a gypsy-like retroelement in the P. sojae genome to create a fluorogenic 5'-exonuclease linear hydrolysis assay, with a multiplexed internal control reaction detecting an exogenous target to validate negative calls, and with uracil-deglycosylase-mediated protection against carryover contamination. The assay specifically detected 13 different P. sojae isolates, and excluded 17 other Phytophthora species along with 20 non-Phytophthora fungal and oomycete species pathogenic on soybean. A diagnostic limit of detection of 34 fg total P. sojae DNA was observed in serial dilutions, equivalent to 0.3 genome, and a practical detection sensitivity of four zoospores per sample was achieved, despite losses during DNA extraction.

  4. Early changes of the pH of the apoplast are different in leaves, stem and roots of Vicia faba L. under declining water availability

    Czech Academy of Sciences Publication Activity Database

    Karuppanapandian, T.; Geilfus, C.M.; Muehling, K.H.; Novák, Ondřej; Gloser, V.

    2017-01-01

    Roč. 255, FEB (2017), s. 51-58 ISSN 0168-9452 Institutional support: RVO:61389030 Keywords : xylem sap constituents * abscisic-acid * stomatal conductance * leaf apoplast * helianthus-annuus * plant-responses * intact plants * nacl stress * drying soil * guard-cells * Drought stress * Abscisic acid * Soil drying * Xylem sap * Osmolality * Water relations * Leaf water potential Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 3.437, year: 2016

  5. Women 1.5 Times More Likely to Leave STEM Pipeline after Calculus Compared to Men: Lack of Mathematical Confidence a Potential Culprit.

    Science.gov (United States)

    Ellis, Jessica; Fosdick, Bailey K; Rasmussen, Chris

    2016-01-01

    The substantial gender gap in the science, technology, engineering, and mathematics (STEM) workforce can be traced back to the underrepresentation of women at various milestones in the career pathway. Calculus is a necessary step in this pathway and has been shown to often dissuade people from pursuing STEM fields. We examine the characteristics of students who begin college interested in STEM and either persist or switch out of the calculus sequence after taking Calculus I, and hence either continue to pursue a STEM major or are dissuaded from STEM disciplines. The data come from a unique, national survey focused on mainstream college calculus. Our analyses show that, while controlling for academic preparedness, career intentions, and instruction, the odds of a woman being dissuaded from continuing in calculus is 1.5 times greater than that for a man. Furthermore, women report they do not understand the course material well enough to continue significantly more often than men. When comparing women and men with above-average mathematical abilities and preparedness, we find women start and end the term with significantly lower mathematical confidence than men. This suggests a lack of mathematical confidence, rather than a lack of mathematically ability, may be responsible for the high departure rate of women. While it would be ideal to increase interest and participation of women in STEM at all stages of their careers, our findings indicate that if women persisted in STEM at the same rate as men starting in Calculus I, the number of women entering the STEM workforce would increase by 75%.

  6. Women 1.5 Times More Likely to Leave STEM Pipeline after Calculus Compared to Men: Lack of Mathematical Confidence a Potential Culprit

    Science.gov (United States)

    Ellis, Jessica; Fosdick, Bailey K.; Rasmussen, Chris

    2016-01-01

    The substantial gender gap in the science, technology, engineering, and mathematics (STEM) workforce can be traced back to the underrepresentation of women at various milestones in the career pathway. Calculus is a necessary step in this pathway and has been shown to often dissuade people from pursuing STEM fields. We examine the characteristics of students who begin college interested in STEM and either persist or switch out of the calculus sequence after taking Calculus I, and hence either continue to pursue a STEM major or are dissuaded from STEM disciplines. The data come from a unique, national survey focused on mainstream college calculus. Our analyses show that, while controlling for academic preparedness, career intentions, and instruction, the odds of a woman being dissuaded from continuing in calculus is 1.5 times greater than that for a man. Furthermore, women report they do not understand the course material well enough to continue significantly more often than men. When comparing women and men with above-average mathematical abilities and preparedness, we find women start and end the term with significantly lower mathematical confidence than men. This suggests a lack of mathematical confidence, rather than a lack of mathematically ability, may be responsible for the high departure rate of women. While it would be ideal to increase interest and participation of women in STEM at all stages of their careers, our findings indicate that if women persisted in STEM at the same rate as men starting in Calculus I, the number of women entering the STEM workforce would increase by 75%. PMID:27410262

  7. Women 1.5 Times More Likely to Leave STEM Pipeline after Calculus Compared to Men: Lack of Mathematical Confidence a Potential Culprit.

    Directory of Open Access Journals (Sweden)

    Jessica Ellis

    Full Text Available The substantial gender gap in the science, technology, engineering, and mathematics (STEM workforce can be traced back to the underrepresentation of women at various milestones in the career pathway. Calculus is a necessary step in this pathway and has been shown to often dissuade people from pursuing STEM fields. We examine the characteristics of students who begin college interested in STEM and either persist or switch out of the calculus sequence after taking Calculus I, and hence either continue to pursue a STEM major or are dissuaded from STEM disciplines. The data come from a unique, national survey focused on mainstream college calculus. Our analyses show that, while controlling for academic preparedness, career intentions, and instruction, the odds of a woman being dissuaded from continuing in calculus is 1.5 times greater than that for a man. Furthermore, women report they do not understand the course material well enough to continue significantly more often than men. When comparing women and men with above-average mathematical abilities and preparedness, we find women start and end the term with significantly lower mathematical confidence than men. This suggests a lack of mathematical confidence, rather than a lack of mathematically ability, may be responsible for the high departure rate of women. While it would be ideal to increase interest and participation of women in STEM at all stages of their careers, our findings indicate that if women persisted in STEM at the same rate as men starting in Calculus I, the number of women entering the STEM workforce would increase by 75%.

  8. Use of sediment CO2 by submersed rooted plants

    DEFF Research Database (Denmark)

    Winkel, Anders; Borum, Jens

    2009-01-01

    freshwater plants with different morphology and growth characteristics (Lobelia dortmanna, Lilaeopsis macloviana, Ludwigia repens, Vallisneria americana and Hydrocotyle verticillata) are able to support photosynthesis supplied by uptake of CO2 from the sediment. Methods: Gross photosynthesis was measured......Background and Aims: Submersed plants have different strategies to overcome inorganic carbon limitation. It is generally assumed that only small rosette species (isoetids) are able to utilize the high sediment CO2 availability. The present study examined to what extent five species of submersed......, the shoot to root ratio on an areal basis was the single factor best explaining variability in the importance of sediment CO2. For Ludwigia, diffusion barriers limited uptake or transport from roots to stems and transport from stems to leaves. Conclusions: Submersed plants other than isoetids can utilize...

  9. Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea1[C][W][OA

    Science.gov (United States)

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B.; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-01-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation. PMID:22323776

  10. Somatic embryogenesis and plant regeneration in Carica papaya L. tissue culture derived from root explants.

    Science.gov (United States)

    Chen, M H; Wang, P J; Maeda, E

    1987-10-01

    The regeneration potential of shoot tip, stem, leaf, cotyledon and root explants of two papaya cultivars (Carica papaya cv. 'Solo' and cv. 'Sunrise') were studed. Callus induction of these two cultivars of papaya showed that the shoot tips and stems are most suitable for forming callus, while leaves, cotyledons and roots are comparatively difficult to induce callus. Callus induction also varied with the varities. Somatic embryogenesis was obtained from 3-month-old root cultures. A medium containing half strength of MS inorganic salts, 160 mg/l adenine sulfate, 1.0 mg/1 NAA, 0.5 mg/1 kinetin and 1.0 mg/1 GA3 was optimal for embryogenesis. The callus maintained high regenerative capacity after two years of culture on this medium. Plants derived from somatic embryos were obtained under green-house conditions.

  11. Rooting of jade vine (Strongylodon macrobotrys A. Gray cuttings treated with indolbutiric acid

    Directory of Open Access Journals (Sweden)

    Fabiana Rezende Muniz

    2015-12-01

    Full Text Available The jade vine (Strongylodon macrobotrys A. Gray, is native plant from Philippines. It has long blue-green pseudoracemes inflorescence, which makes it unique and incomparable. It is considered one of the most admired and sought vines, although rare in gardens. This study evaluated the effect of indolbutiric acid (IBA on the stalks rooting of this ornamental specie. Stem cuttings without leaves and with a couple of leaves cut in half, were collected from branches of a well developed jade vine plant and were immerged into dipping solutions with a concentration range of IBA (0, 500, 1.000, 2.000 and 4.000 mg L-1 for 15 seconds. Subsequently, the bases of the cuttings was planted in polystyrene trays containing vermiculite (one cutting per cell and maintained in an intermittent water mist chamber for a 80 days period. Then the percentage of stem rooting was assessed as well as the number of roots and the length of the main root. Jade vine plants can be produced byr stem cutting treated in a dipping solution containing an IBA concentration of 2.000 mg L-1.

  12. Impact of root growth and root hydraulic conductance on water availability of young walnut trees

    Science.gov (United States)

    Jerszurki, Daniela; Couvreur, Valentin; Hopmans, Jan W.; Silva, Lucas C. R.; Shackel, Kenneth A.; de Souza, Jorge L. M.

    2015-04-01

    Walnut (Juglans regia L.) is a tree species of high economic importance in the Central Valley of California. This crop has particularly high water requirements, which makes it highly dependent on irrigation. The context of decreasing water availability in the state calls for efficient water management practices, which requires improving our understanding of the relationship between water application and walnut water availability. In addition to the soil's hydraulic conductivity, two plant properties are thought to control the supply of water from the bulk soil to the canopy: (i) root distribution and (ii) plant hydraulic conductance. Even though these properties are clearly linked to crop water requirements, their quantitative relation remains unclear. The aim of this study is to quantitatively explain walnut water requirements under water deficit from continuous measurements of its water consumption, soil and stem water potential, root growth and root system hydraulic conductance. For that purpose, a greenhouse experiment was conducted for a two month period. Young walnut trees were planted in transparent cylindrical pots, equipped with: (i) rhizotron tubes, which allowed for non-invasive monitoring of root growth, (ii) pressure transducer tensiometers for soil water potential, (iii) psychrometers attached to non-transpiring leaves for stem water potential, and (iv) weighing scales for plant transpiration. Treatments consisted of different irrigation rates: 100%, 75% and 50% of potential crop evapotranspiration. Plant responses were compared to predictions from three simple process-based soil-plant-atmosphere models of water flow: (i) a hydraulic model of stomatal regulation based on stem water potential and vapor pressure deficit, (ii) a model of plant hydraulics predicting stem water potential from soil-root interfaces water potential, and (iii) a model of soil water depletion predicting the water potential drop between the bulk soil and soil-root interfaces

  13. Root rots

    Science.gov (United States)

    Kathryn Robbins; Philip M. Wargo

    1989-01-01

    Root rots of central hardwoods are diseases caused by fungi that infect and decay woody roots and sometimes also invade the butt portion of the tree. By killing and decaying roots, root rotting fungi reduce growth, decrease tree vigor, and cause windthrow and death. The most common root diseases of central hardwoods are Armillaria root rot, lnonotus root rot, and...

  14. Influence of root-bed size on the response of tobacco to elevated CO2 as mediated by cytokinins

    Science.gov (United States)

    Schaz, Ulrike; Düll, Barbara; Reinbothe, Christiane; Beck, Erwin

    2014-01-01

    The extent of growth stimulation of C3 plants by elevated CO2 is modulated by environmental factors. Under optimized environmental conditions (high light, continuous water and nutrient supply, and others), we analysed the effect of an elevated CO2 atmosphere (700 ppm, EC) and the importance of root-bed size on the growth of tobacco. Biomass production was consistently higher under EC. However, the stimulation was overridden by root-bed volumes that restricted root growth. Maximum growth and biomass production were obtained at a root bed of 15 L at ambient and elevated CO2 concentrations. Starting with seed germination, the plants were strictly maintained under ambient or elevated CO2 until flowering. Thus, the well-known acclimation effect of growth to enhanced CO2 did not occur. The relative growth rates of EC plants exceeded those of ambient-CO2 plants only during the initial phases of germination and seedling establishment. This was sufficient for a persistently higher absolute biomass production by EC plants in non-limiting root-bed volumes. Both the size of the root bed and the CO2 concentration influenced the quantitative cytokinin patterns, particularly in the meristematic tissues of shoots, but to a smaller extent in stems, leaves and roots. In spite of the generally low cytokinin concentrations in roots, the amounts of cytokinins moving from the root to the shoot were substantially higher in high-CO2 plants. Because the cytokinin patterns of the (xylem) fluid in the stems did not match those of the shoot meristems, it is assumed that cytokinins as long-distance signals from the roots stimulate meristematic activity in the shoot apex and the sink leaves. Subsequently, the meristems are able to synthesize those phytohormones that are required for the cell cycle. Root-borne cytokinins entering the shoot appear to be one of the major control points for the integration of various environmental cues into one signal for optimized growth. PMID:24790131

  15. Absorption and translocation of phosphorus-32 in guava leaves; Absorcao e redistribuicao de fosforo (P-32) aplicado via foliar em mudas de goiabeira

    Energy Technology Data Exchange (ETDEWEB)

    Natale, William [UNESP, Jaboticabal, SP (Brazil). Faculdade de Ciencias Agrarias e Veterinarias; Boaretto, Antonio E.; Muraoka, Takashi [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil)

    1997-12-01

    Phosphorus is easily absorbed by the leaves and translocated. The objective of this work was to evaluate the absorption and translocation of P by guava leaves, with time. When a solution containing 2% MAP and specific activity 0.15 {mu}Ci/ml was applied. MAP labelled with {sup 32} P was applied in the 3{sup rd} pair of leaves. These and other leaves, roots and stem were collected separately and analyzed accordingly. The results showed that 20 days after application 12% of the applied P was absorbed by the guava leaves. The translocation of P started immediately after its absorption reaching 20% 2fter 20 days. (author). 19 refs., 4 tabs.

  16. Differential effects of auxin polar transport inhibitors on rooting in some Crassulaceae species

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2014-07-01

    Full Text Available Effects of auxin polar transport inhibitors, 2,3,5-triio-dobenzoic acid (TIBA, 1-N-naphthylphthalamic acid (NPA and methyl 2-chloro-9-hydroxyfluorene-9-carboxylate (morphactin IT 3456, as a lanolin paste, on root formation in cuttings of some species of Crassulaceae, such as Bryophyllum daigremontianum, B. calycinum, Kalanchoe blossfeldiana and K. tubiflora, were studied. Cuttings of these plants were easily rooted in water without any treatment. TIBA and morphactin IT 3456 completely inhibited root formation in the cuttings of these plants but NPA did not when these inhibitors were applied around the stem below the leaves. When TIBA and morphactin were applied around the stem near the top, but leaves were present below the treatment, the root formation was observed in B. calycinum and K. blossfeldiana but in a smaller degree than in control cuttings. These results strongly suggest that endogenous auxin is required for root formation in cuttings of Crassulaceae plants. The differential mode of action of NPA is discussed together with its effect on auxin polar transport.

  17. Rhizophores in Rhizophora mangle L: an alternative interpretation of so-called ''aerial roots''

    Directory of Open Access Journals (Sweden)

    Menezes Nanuza L. de

    2006-01-01

    Full Text Available Rhizophora mangle L., one of the most common mangrove species, has an aerial structure system that gives it stability in permanently swampy soils. In fact, these structures, known as "aerial roots" or "stilt roots", have proven to be peculiar branches with positive geotropism, which form a large number of roots when in contact with swampy soils. These organs have a sympodial branching system, wide pith, slightly thickened cortex, collateral vascular bundles, polyarch stele and endarch protoxylem, as in the stem, and a periderm produced by a phellogen at the apex similar to a root cap. They also have the same type of trichosclereid that occurs in the stem, with negative geotropism, unlike true Rhizophora roots, which do not form trichosclereids at all. On the other hand, these branches do not form leaves and in this respect they are similar to roots. These peculiar branches are rhizophores or special root-bearing branches, analogous to those found in Lepidodendrales and other Carboniferous tree ferns that grew in swampy soils.

  18. Comparative Methods of Application of Wild Plant Parts on Growth and in the Control of Root Rot Fungi of Leguminous Crops

    International Nuclear Information System (INIS)

    Ikram, N.; Dawae, S.

    2016-01-01

    Present research work was carried out for the management of root rot fungi with wild plant part capsules and pellets formulation in soil. When application of pellets and capsules was carried out with Prosopis juliflora stem, leaves and flowers showed significant reduction in disease incidence and enhancement in growth and physiological parameters. Colonization of Fusarium spp., Macrophomina phaseolina and Rhizoctonia solani was completely suppressed when P. juliflora leaves pellets incorporated in soil. Physiological parameters such as chlorophyll a and b and protein were significantly increased when leaves pellets incorporated in soil at the rate of 1 percent w/w so P. juliflora leaves pellets were most effective in the control of root rot fungi and enhanced the growth of crop plants. (author)

  19. Cadmium-induced ultramorphological and physiological changes in leaves of two transgenic cotton cultivars and their wild relative

    International Nuclear Information System (INIS)

    Daud, M.K.; Variath, M.T.; Ali, Shafaqat; Najeeb, U.; Jamil, Muhammad; Hayat, Y.; Dawood, M.; Khan, Muhammad Imran; Zaffar, M.; Cheema, Sardar Alam; Tong, X.H.; Zhu Shuijin

    2009-01-01

    The present study describes cadmium-induced alterations in the leaves as well as at the whole plant level in two transgenic cotton cultivars (BR001 and GK30) and their wild relative (Coker 312) using both ultramorphological and physiological indices. With elevated levels of Cd (i.e. 10, 100, 1000 μM), the mean lengths of root, stem and leaf and leaf width as well as their fresh and dry biomasses linearly decreased over their respective controls. Moreover, root, stem and leaf water absorption capacities progressively stimulated, which were high in leaves followed by roots and stems. BR001 accumulated more cadmium followed by GK30 and Coker 312. Root and shoot cadmium uptakes were significantly and directly correlated with each other as well as with leaf, stem and root water absorption capacities. The ultrastructural modifications in leaf mesophyll cells were triggered with increase in Cd stress regime. They were more obvious in BR001 followed by GK30 and Coker 312. Changes in morphology of chloroplast, increase in number and size of starch grains as well as increase in number of plastoglobuli were the noticed qualitative effects of Cd on photosynthetic organ. Cd in the form of electron dense granules could be seen inside the vacuoles and attached to the cell walls in all these cultivars. From the present experiment, it can be well established that both apoplastic and symplastic bindings are involved in Cd detoxification in these cultivars. Absence of tonoplast invagination reveals that Cd toxic levels did not cause water stress in any cultivars. Additionally, these cultivars possess differential capabilities towards Cd accumulation and its sequestration.

  20. Antioxidant enzymatic activities and gene expression associated with heat tolerance in the stems and roots of two cucurbit species ("Cucurbita maxima" and "Cucurbita moschata") and their interspecific inbred line "Maxchata".

    Science.gov (United States)

    Ara, Neelam; Nakkanong, Korakot; Lv, Wenhui; Yang, Jinghua; Hu, Zhongyuan; Zhang, Mingfang

    2013-12-10

    The elucidation of heat tolerance mechanisms is required to combat the challenges of global warming. This study aimed to determine the antioxidant enzyme responses to heat stress, at the enzymatic activity and gene expression levels, and to investigate the antioxidative alterations associated with heat tolerance in the stems and roots of squashes using three genotypes differing in heat tolerance. Plants of heat-tolerant "C. moschata", thermolabile "C. maxima" and moderately heat-tolerant interspecific inbred line "Maxchata" genotypes were exposed to moderate (37 °C) and severe (42 °C) heat shocks. "C. moschata" exhibited comparatively little oxidative damage, with the lowest hydrogen peroxide (H2O2), superoxide (O2(-)) and malondialdehyde (MDA) contents in the roots compared to stems, followed by "Maxchata". The enzyme activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD) were found to be increased with heat stress in tolerant genotypes. The significant inductions of FeSOD, MnSOD, APX2, CAT1 and CAT3 isoforms in tolerant genotypes suggested their participation in heat tolerance. The differential isoform patterns of SOD, APX and CAT between stems and roots also indicated their tissue specificity. Furthermore, despite the sequence similarity of the studied antioxidant genes among "C. maxima" and "Maxchata", most of these genes were highly induced under heat stress in "Maxchata", which contributed to its heat tolerance. This phenomenon also indicated the involvement of other unknown genetic and/or epigenetic factors in controlling the expression of these antioxidant genes in squashes, which demands further exploration.

  1. Antioxidant Enzymatic Activities and Gene Expression Associated with Heat Tolerance in the Stems and Roots of Two Cucurbit Species (“Cucurbita maxima” and “Cucurbita moschata”) and Their Interspecific Inbred Line “Maxchata”

    Science.gov (United States)

    Ara, Neelam; Nakkanong, Korakot; Lv, Wenhui; Yang, Jinghua; Hu, Zhongyuan; Zhang, Mingfang

    2013-01-01

    The elucidation of heat tolerance mechanisms is required to combat the challenges of global warming. This study aimed to determine the antioxidant enzyme responses to heat stress, at the enzymatic activity and gene expression levels, and to investigate the antioxidative alterations associated with heat tolerance in the stems and roots of squashes using three genotypes differing in heat tolerance. Plants of heat-tolerant “C. moschata”, thermolabile “C. maxima” and moderately heat-tolerant interspecific inbred line “Maxchata” genotypes were exposed to moderate (37 °C) and severe (42 °C) heat shocks. “C. moschata” exhibited comparatively little oxidative damage, with the lowest hydrogen peroxide (H2O2), superoxide (O2−) and malondialdehyde (MDA) contents in the roots compared to stems, followed by “Maxchata”. The enzyme activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD) were found to be increased with heat stress in tolerant genotypes. The significant inductions of FeSOD, MnSOD, APX2, CAT1 and CAT3 isoforms in tolerant genotypes suggested their participation in heat tolerance. The differential isoform patterns of SOD, APX and CAT between stems and roots also indicated their tissue specificity. Furthermore, despite the sequence similarity of the studied antioxidant genes among “C. maxima” and “Maxchata”, most of these genes were highly induced under heat stress in “Maxchata”, which contributed to its heat tolerance. This phenomenon also indicated the involvement of other unknown genetic and/or epigenetic factors in controlling the expression of these antioxidant genes in squashes, which demands further exploration. PMID:24336062

  2. Antioxidant Enzymatic Activities and Gene Expression Associated with Heat Tolerance in the Stems and Roots of Two Cucurbit Species (“Cucurbita maxima” and “Cucurbita moschata” and Their Interspecific Inbred Line “Maxchata”

    Directory of Open Access Journals (Sweden)

    Neelam Ara

    2013-12-01

    Full Text Available The elucidation of heat tolerance mechanisms is required to combat the challenges of global warming. This study aimed to determine the antioxidant enzyme responses to heat stress, at the enzymatic activity and gene expression levels, and to investigate the antioxidative alterations associated with heat tolerance in the stems and roots of squashes using three genotypes differing in heat tolerance. Plants of heat-tolerant “C. moschata”, thermolabile “C. maxima” and moderately heat-tolerant interspecific inbred line “Maxchata” genotypes were exposed to moderate (37 °C and severe (42 °C heat shocks. “C. moschata” exhibited comparatively little oxidative damage, with the lowest hydrogen peroxide (H2O2, superoxide (O2− and malondialdehyde (MDA contents in the roots compared to stems, followed by “Maxchata”. The enzyme activities of superoxide dismutase (SOD, ascorbate peroxidase (APX, catalase (CAT and peroxidase (POD were found to be increased with heat stress in tolerant genotypes. The significant inductions of FeSOD, MnSOD, APX2, CAT1 and CAT3 isoforms in tolerant genotypes suggested their participation in heat tolerance. The differential isoform patterns of SOD, APX and CAT between stems and roots also indicated their tissue specificity. Furthermore, despite the sequence similarity of the studied antioxidant genes among “C. maxima” and “Maxchata”, most of these genes were highly induced under heat stress in “Maxchata”, which contributed to its heat tolerance. This phenomenon also indicated the involvement of other unknown genetic and/or epigenetic factors in controlling the expression of these antioxidant genes in squashes, which demands further exploration.

  3. Estudo anatômico do xilema secundário da raiz e do caule de Maytenus guyanensis Klotzsch ex Reissek (Celastraceae Anatomic study of secundary xylem of root and stem of Maytenus guyanensis Klotzsch ex Reissek (Celastraceae

    Directory of Open Access Journals (Sweden)

    Ressiliane Ribeiro Prata

    2009-01-01

    Full Text Available Maytenus guyanensis é uma planta medicinal, conhecida popularmente por chichuá, possuindo ação analgésica, antiinflamatória, afrodisíaca e antireumática. O objetivo do presente trabalho foi analisar as características estruturais, da raiz e caule desta espécie como contribuição aos trabalhos anatômicos já realizados para o gênero. O material botânico foi coletado na Reserva Florestal Adolpho Ducke, Manaus/AM onde foram selecionados três indivíduos e de cada um deles retirados fragmentos de 1cm³ do caule e raiz. Amostras foram seccionadas em micrótomo de deslize e coradas com safranina e azul de astra. A análise estrutural revelou-se de acordo com o registrado pela literatura para o gênero. O xilema secundário da raiz e do caule apresentam parênquima axial apotraqueal, raios multisseriados, heterogêneos, vasos solitários, de distribuição difusa, uniforme, seção circular, com parede delgada, pontoações intervasculares alternas e areoladas.Maytenus guyanensis, known popularly as chichuá, possess analgesic, anti-inflammatory, aphrodisiac and anti-rheumatic agents. The object of this present wor was the anatomical analysis of material collected of this species at the Adolpho Ducke Forest Reserve. Stem and root fragments of 1cm were removed from 3 selected individuals. Sections from the stem and root were cut with slide microtome, and stained with astra blue and safranin. The structural analysis of stems and roots was in accordance with the literature available for the Maytenus genus. The secondary xylem of the root and stem presented parenchyma axial apotracheal, multiseriates, heterogeneous rays, solitary vessels, of diffuse distribution, uniform, circular section, with thin wall, bordered and alternate intervascular pits.

  4. Cultivated method of short root american ginseng

    International Nuclear Information System (INIS)

    Chen Guang; Yuan Yuchun; Jia Zhifa; Suo Binhua

    1998-01-01

    The distribution rate of 14 C assimilated material and root vitality of two years old American ginseng at green seed stage were measured. An exploratory research was made by cutting part of main root and spraying ABT on leaves of American ginseng. The results show that with cutting part of main root out before transplant and then sticking them in the seed bed, the plant develop and grow normally and the lateral and fibrous roots grow well. Spraying ABT on leaves of the plant at seed forming stage accelerate the transfer of assimilated material to the root and enhance the root vitality, especially the lateral root vitality. It is considered that cutting part of main root out is major method and spraying ABT on leaves is a supplementary measurement

  5. Establishment of in vitro adventitious root cultures and analysis of andrographolide in Andrographis paniculata.

    Science.gov (United States)

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar

    2013-08-01

    Andrographolide is the principal bioactive component of the medicinal plant Andrographis paniculata, to which various diverse pharmacological properties are attributed. Traditionally, andrographolide was extracted from the leaves, stems and other parts of the plant. Leaves have the highest andrographolide content (2-3%) in comparison with the other plant parts. Adventitious root culture of leaf explants of A. paniculata was studied using different strength MS medium supplemented by different concentrations of auxins and a combination of NAA + kinetin for growth and andrographolide production. Among the different auxin treatments in adventitious root culture, only NAA was able to induce adventitious roots. Adventitious roots grown in modified strength MS medium showed the highest root growth (26.7 +/- 1.52), as well as the highest amount of andrographolide (133.3 +/- 1.5 mg/g DW) as compared with roots grown in half- and full-strength MS medium. Growth kinetics showed maximum biomass production after five weeks of culture in different strength MS liquid medium. The produced andrographolide content was 3.5 - 5.5 folds higher than that of the natural plant, depending on the medium strength.

  6. Effects of gamma radiation on stem diameter growth, carbon gain and biomass partitioning in Helianthus annuus

    International Nuclear Information System (INIS)

    Thiede, M.E.; Link, S.O.; Fellows, R.J.; Beedlow, P.A.

    1995-01-01

    To determine the effects of gamma radiation on stem diameter growth, carbon gain, and biomass partitioning, 19-day-old dwarf sunflower plants (Helianthus annuus, variety NK894) were given variable doses (0–40 Gy) from a 60Co gamma source. Exposure of plants to gamma radiation caused a significant reduction in stem growth and root biomass. Doses as low as 5 Gy resulted in a significant increase in leaf density, suggesting that very low doses of radiation could induce morphological growth changes. Carbohydrate analysis of plants exposed to 40 Gy demonstrated significantly more starch content in leaves and significantly less in stems 18 days after exposure compared with control plants. In contrast, the carbohydrate content of the roots of plants exposed to 40 Gy was not significantly different from non-irradiated plants 18 days after exposure. (author)

  7. Heterologous Expression of Panax ginseng PgTIP1 Confers Enhanced Salt Tolerance of Soybean Cotyledon Hairy Roots, Composite, and Whole Plants

    Directory of Open Access Journals (Sweden)

    Jing An

    2017-07-01

    Full Text Available The Panax ginseng TIP gene PgTIP1 was previously demonstrated to have high water channel activity by its heterologous expression in Xenopus laevis oocytes and in yeast; it also plays a significant role in growth of PgTIP1-transgenic Arabidopsis plants under favorable conditions and has enhanced tolerance toward salt and drought treatment. In this work, we first investigated the physiological effects of heterologous PgTIP1 expression in soybean cotyledon hairy roots or composite plants mediated by Agrobacterium rhizogenes toward enhanced salt tolerance. The PgTIP1-transgenic soybean plants mediated by the pollen tube pathway, represented by the lines N and J11, were analyzed at the physiological and molecular levels for enhanced salt tolerance. The results showed that in terms of root-specific heterologous expression, the PgTIP1-transformed soybean cotyledon hairy roots or composite plants displayed superior salt tolerance compared to the empty vector-transformed ones according to the mitigatory effects of hairy root growth reduction, drop in leaf RWC, and rise in REL under salt stress. Additionally, declines in K+ content, increases in Na+ content and Na+/K+ ratios in the hairy roots, stems, or leaves were effectively alleviated by PgTIP1-transformation, particularly the stems and leaves of composite soybean plants. At the whole plant level, PgTIP1-trasgenic soybean lines were found to possess stronger root vigor, reduced root and leaf cell membrane damage, increased SOD, POD, CAT, and APX activities, steadily increased leaf Tr, RWC, and Pn values, and smaller declines in chlorophyll and carotenoid content when exposed to salt stress compared to wild type. Moreover, the distribution patterns of Na+, K+, and Cl- in the roots, stems, and leaves of salt-stressed transgenic plants were readjusted, in that the absorbed Na+ and Cl- were mainly restricted to the roots to reduce their transport to the shoots, and the transport of root-absorbed K+ to the

  8. The relationship between carbohydrate content and gamma irradiation during rooting of chrysanthemum cuttings

    International Nuclear Information System (INIS)

    Noh, Seol Ah; Kim, Jin Kyu

    2003-01-01

    The effect of gamma radiation on carbohydrate metabolism was studied in chrysanthemum cuttings. Total water-soluble carbohydrate, glucose, fructose, sucrose, and starch contents were measured in leaves and stems. Differences in the accumulation of carbohydrate associated with inhibition or stimulation in response to gamma irradiation. Sucrose levels increased significantly in leaves and stems until the 15th day, reaching maximum values on that day. Glucose contents declined rapidly until the 10th day and increased later, reaching maximum values on the 15th day. Fructose levels gradually increased, reaching maximum values at the 10th day, and then decreased again. Differences in the components of soluble carbohydrates were evident between rooting durations and doses. Soluble sugars were in the highest contents in the 20 Gy irradiated group. However, irradiation dose higher than 20 Gy resulted in an inhibitory effect

  9. Root-to-seed transport and metabolism of fixed nitrogen in soybean

    International Nuclear Information System (INIS)

    McClure, P.R.

    1983-01-01

    The great energetic demand of nitrogen fixation to support growth of the exceptionally high-N seeds is certainly a major yield barrier for soybeans. Transport of carbohydrate energy supplies to the root and of fixed nitrogen (N) from the root appear to contribute to the yield barrier, also. N is loaded into the soybean xylem stream principally as allantoin (ALL), and allantonic acid (ALLA), but xylem carries only dilute N and cannot reach the seeds at sufficient rate to support their N needs. Explants consisting of stem and a few leaves and pods were allowed to take up 14 C- and/or 15 N-ALL/ALLA in synthetic xylem sap. The 14 C label was found to become fairly quantitatively immobilized in leaves. The N (and 15 N label) almost certainly is separated from the C( 14 C label) at this time

  10. Striga seed-germination activity of root exudates and compounds present in stems of Striga host and nonhost (trap crop) plants is reduced due to root colonization by arbuscular mycorrhizal fungi.

    NARCIS (Netherlands)

    Lendzemo, V.W.; Kuyper, T.W.; Vierheilig, H.

    2009-01-01

    Root colonization by arbuscular mycorrhizal (AM) fungi reduces stimulation of seed germination of the plant parasite Striga (Orobanchaceae). This reduction can affect not only host plants for Striga, resulting in a lower parasite incidence, but also false hosts or trap crops, which induce suicidal

  11. Plant stem cell niches.

    Science.gov (United States)

    Stahl, Yvonne; Simon, Rüdiger

    2005-01-01

    Stem cells are required to support the indeterminate growth style of plants. Meristems are a plants stem cell niches that foster stem cell survival and the production of descendants destined for differentiation. In shoot meristems, stem cell fate is decided at the populational level. The size of the stem cell domain at the meristem tip depends on signals that are exchanged with cells of the organizing centre underneath. In root meristems, individual stem cells are controlled by direct interaction with cells of the quiescent centre that lie in the immediate neighbourhood. Analysis of the interactions and signaling processes in the stem cell niches has delivered some insights into the molecules that are involved and revealed that the two major niches for plant stem cells are more similar than anticipated.

  12. Enraizamento de estacas de Trichilia catigua A. Juss (catigua em diferentes estações do ano Rooting of Trichilia catigua A. Juss (catigua stem cuttings in different seasons of the year

    Directory of Open Access Journals (Sweden)

    Janice Valmorbida

    2008-06-01

    Full Text Available Pertencente à família Meliaceae, Trichilia catigua A. Juss possui casca com propriedades adstringente, inseticida, purgativa, tônica, bactericida, antiinflamatória e antidepressiva. Este estudo objetivou enraizar estacas de ramos lenhosos da espécie em diferentes estações do ano. Para tal, estacas com aproximadamente 15 cm de comprimento, coletadas de árvores adultas, foram preparadas da parte apical e mediana dos ramos e submetidas aos reguladores vegetais AIB (ácido indolbutírico, ANA (ácido naftalenoacético e AIA (ácido 3-indolacético. Determinaram-se a porcentagem de estacas enraizadas e mortas e, quando enraizadas, seu comprimento e diâmetro. Na primavera de 2004, as estacas foram submetidas às concentrações de 1.000 e 2.000 mg L-1 de AIB, ANA e AIA e avaliadas aos 90 dias. As maiores porcentagens de enraizamento foram iguais a 33,33; 25,00; 22,91; e 23,43%, respectivamente com AIB 1.000, 2.000 mg L-1 e ANA 1.000 e 2.000 mg L-1. No verão, outono, inverno e primavera de 2005 os experimentos foram conduzidos com AIB, ANA e AIA nas concentrações de 1.000, 2.000 e 3.000 mg L-1, sendo as avaliações realizadas aos 120 dias. A maior porcentagem de enraizamento, igual a 19,17%, foi obtida com AIB 3.000 mg L-1. Na primavera de 2006 foram testadas as doses iguais a 1.000, 2.000, 3.000, 4.000 e 5.000 mg L-1 de AIB e 1.000, 2.000 e 3.000 mg L-1 de ANA. A maior porcentagem de enraizamento, 41,67%, foi obtida com a utilização de 5.000 mg L-1 de AIB.Trichilia catigua A. Juss contains substances with astringent, insecticidal, purgative, tonic, bactericidal, anti-inflammatory and anti-depressive properties in its barks. This study aimed at rooting of hardwood cuttings of this species in different seasons. Stem cuttings -about 15 cm long- were collected from adult trees and were prepared from the apical and medial part of the branches. The cuttings were treated with the plant regulators AIB (indole-3-butyric acid, NAA (naphthalene

  13. Stem and root anatomy of two species of Echinopsis (Trichocereeae: Cactaceae Anatomía de la raíz y del tallo de dos especies de Echinopsis (Trichocereeae: Cactaceae

    Directory of Open Access Journals (Sweden)

    Joelma dos Santos Garcia

    2012-12-01

    Full Text Available This study characterizes and compares the stem and root anatomy of Echinopsis calochlora and E. rhodotricha (Cactaceae occurring in the Central-Western Region of Brazil, in Mato Grosso do Sul State. Three individuals of each species were collected, fixed, stored and prepared following usual anatomy techniques, for subsequent observation in light and scanning electronic microscopy. Echinopsis calochlora revealed uniseriated epidermis, while E. rhodotricha had patches of bisseriated epidermis; all species showed thick cuticle, parallelocytic stomata at the epidermis level, and a well-developed hypodermis. Cortical and medullary bundles are present in the studied species, as well as mucilage cells in the cortex region. The secondary phloem is composed by sieve tube elements, companion cells, axial and radial parenchyma. Sclereids were found at the outer regions of phloem in the roots. The secondary xylem is non fibrous in the stems of E. calochlora, and fibrous in the stems of E. rhodotricha and in the roots of both species. Many of these characteristics are commonly found in Cactaceae, and represent important adaptations for survival in xeric environments.Este estudio está enfocado a caracterizar y comparar la anatomía de tallos y raíces de Echinopsis calochlora y E. rhodotricha (Cactaceae que habitan en la región centro-oeste de Brasil, en el Estado de Mato Grosso do Sul. Se recolectaron 3 individuos de cada especie, los cuales fueron fijados, almacenados y preparados siguiendo las técnicas comunes de anatomía, para observarlos en microscopía de luz y electrónica de barrido. Echinopsis calochlora mostró epidermis uniseriada, mientras que la de E. rhodotricha fue biseriada; todas las especies presentaron cutícula gruesa, estomas paralelocíticos a nivel de la epidermis y una hipodermis bien desarrollada. Se presentaron haces vasculares corticales y medulares en las especies estudiadas, así como células mucilaginosas en la regi

  14. Uptake and translocation of zinc absorbed through roots and fruiting organs in peanuts

    International Nuclear Information System (INIS)

    Chahal, R.S.; Singh, S.P.; Shukla, U.C.

    1979-01-01

    Peanut plants (Arachis hypogaea L.) are known to absorb Ca, P and S through the fruiting organs but information on Zn uptake pattern is lacking. Therefore, a green-house experiment was conducted to study the uptake and translocation of Zn when applied in the rooting and fruiting zones of peanut plants. To locate the pathway and distribution of radioactive Zn, autoradiographs of plants were also taken. Zinc uptake data and autoradiographs indicated that a substantial amount of 65 Zn was absorbed through the fruiting organs (auxillary system). Of the total 65 Zn in the whole plant, 55.2 per cent was absorbed through roots and remaining 44.8 per cent through fruiting organs. Zinc was translocated to all the plant parts regardless of its absorption through roots or fruiting organs. The highest zinc concentration was recorded in the kernels, followed by leaves, stem and the shell. (Auth.)

  15. Physiological changes in leaves of mungbean plants infected with Meloidogyne javanica

    Directory of Open Access Journals (Sweden)

    N. Ahmed

    2009-09-01

    Full Text Available Sequential changes induced by the root-knot nematode Meloidogyne javanica (Treub Chitwood in mung bean (Vigna radiata (L. Wilczek cv. MN95 were studied. Physiological and biochemical changes were recorded 15, 30 and 45 days after nematode inoculation. The changes noted varied with the length of exposure to the nematode. Chlorophyll and carotenoid contents decreased in nematode-infected plants. Total phenols increased in the leaves compared with the controls for up to 30 days after inoculation. Protein content declined significantly at 30 days after exposure to the nematodes. Amylase activity was enhanced in both the leaves and the stems as compared with the controls. The results suggested that plants responded to the nematode by adopting biochemical strategies to withstand the adverse effects of infection.

  16. Carbohydrate storage in meadow plants and its depletion after disturbance: do roots and stem-derived organs differ in their roles?

    Czech Academy of Sciences Publication Activity Database

    Janeček, Štěpán; Klimešová, Jitka

    2014-01-01

    Roč. 175, č. 1 (2014), s. 51-61 ISSN 0029-8549 R&D Projects: GA ČR GA526/09/0963 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : carbon * roots * rhizomes Subject RIV: EH - Ecology, Behaviour Impact factor: 3.093, year: 2014

  17. The relation between fine root density and proximity of stems in closed Douglas-fir plantations on homogen[e]ous sandy soils: implications for sampling design

    NARCIS (Netherlands)

    Olsthoorn, A.F.M.; Klap, J.M.; Oude Voshaar, J.H.

    1999-01-01

    Studies have been carried out in two fully stocked, fast growing Douglas-fir plantations of the Dutch ACIFORN project in three consecutive years, to obtain information on fine root densities (Olsthoorn 1991). For the present paper, data collected in early summer 1987 were used to study the relation

  18. Plant stem cell niches.

    Science.gov (United States)

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  19. Quantificação de ácido alfa-linolênico em caules e folhas de linho (Linum usitatissimum L. colhidos em diferentes estágios de desenvolvimento Quantification of alpha-linolenic acid in stems and leaves of flax (Linum usitatissimum L. harvested in different stages of development

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Aguiar

    2010-12-01

    Full Text Available O objetivo deste estudo foi quantificar o ácido alfa-linolênico [LNA, 18:3 (n-3], avaliar a composição centesimal das folhas e caules de linho (Linum usitatissimum L. submetidos à secagem e colhidos em diferentes estágios de desenvolvimento (40, 80 e 120 dias, e determinar o potencial antioxidante das folhas colhidas aos 80 dias através do teste com o radical DPPH. As folhas obtiveram maiores teores de cinzas, proteína e lipídios totais em relação aos caules. Tanto as folhas quanto os caules apresentaram razões de AGPI/AGS e n-6/n-3 dentro dos valores considerados adequados para a alimentação. Os caules colhidos nos diferentes tempos não apresentaram diferenças significativas (PThe objective of this study was to quantify the alpha-linolenic acid [LNA, 18:3 (n-3] and to evaluate the proximate composition of leaves and stems of flax (Linum usitatissimum L. dried and harvested at different stages of development (40, 80 and 120 days, and to determine the antioxidant potential of the leaf harvested at 80 days using the test of DPPH radical. The leaves had higher levels of ash, protein and total lipids when compared to the stems. Both the leaves as the stems had ratios of PUFA/SFA and n-6/n-3 within the values considered suitable for food. Stems in the different stages showed no significant difference (P<0.05 of LNA content. Leaves harvested at 80 days showed the highest concentration of LNA, corresponding to 1,262.36 mg/100g dried leaf. The different extracts (methanol, butanol, acetate and water were efficient in the inhibition of DPPH radical, with emphasis on the butanolic and acetate fractions and the values of IC50 were approximately 42 ppm. These results highlight the nutritional potential and antioxidant activity of leaves and stems of flaxseed for future use in the animal and human feeding.

  20. Fate of polycyclic aromatic hydrocarbons in plant-soil systems: Plant responses to a chemical stress in the root zone

    Energy Technology Data Exchange (ETDEWEB)

    Hoylman, Anne M. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-01-01

    Under laboratory conditions selected to maximize root uptake, plant tissue distribution of PAH-derived 14C was largely limited to root tissue of Malilotus alba. These results suggest that plant uptake of PAHs from contaminated soil via roots, and translocation to aboveground plant tissues (stems and leaves), is a limited mechanism for transport into terrestrial food chains. However, these data also indicate that root surface sorption of PAHs may be important for plants grown in soils containing elevated concentration PAHs. Root surface sorption of PAHs may be an important route of exposure for plants in soils containing elevated concentrations of PAHS. Consequently, the root-soil interface may be the site of plant-microbial interactions in response to a chemical stress. In this study, evidence of a shift in carbon allocation to the root zone of plants exposed to phenanthrene and corresponding increases in soil respiration and heterotrophic plate counts provide evidence of a plant-microbial response to a chemical stress. The results of this study establish the importance of the root-soil interface for plants growing in PAH contaminated soil and indicate the existence of plant-microbial interactions in response to a chemical stress. These results may provide new avenues of inquiry for studies of plant toxicology, plant-microbial interactions in the rhizosphere, and environmental fates of soil contaminants. In addition, the utilization of plants to enhance the biodegradation of soil contaminants may require evaluation of plant physiological changes and plant shifts in resource allocation.

  1. The effect of sugars in relation to methyl jasmonate on anthocyanin formation in the roots of Kalanchoe blossfeldiana (Poelln.

    Directory of Open Access Journals (Sweden)

    Justyna Góraj-Koniarska

    2015-07-01

    Full Text Available This study investigated the effects of different sugars (sucrose, fructose, glucose and sugar alcohols (mannitol, sorbitol applied alone and in solution with methyl jasmonate (JA-Me on the anthocyanin content in the roots of Kalanchoe blossfeldiana. None of the sugars used individually in the experiment affected anthocyanin accumulation in the roots of intact plants. The anthocyanin level was similar to that in the control. Sucrose at concentrations of 0.5% and 3.0%, and glucose at a concentration of 3.0% inhibited anthocyanin accumulation induced by JA-Me. Only fructose at a concentration of 3.0% stimulated anthocyanin accumulation induced by JA-Me. The sugar alcohols, mannitol at a concentration of 3.0% and sorbitol at 0.5% and 3.0%, inhibited anthocyanin accumulation in the roots of intact K. blossfeldiana plants induced by JA-Me. In excised roots, both sugars and JA-Me used individually did not affect the formation of anthocyanins. Also, the sugar alcohols (mannitol and sorbitol applied simultaneously with JA-Me had no effect on the accumulation of anthocyanins. However, roots treated with sugars (sucrose, fructose, glucose in solution with JA-Me promoted the induction of anthocyanins in the apical parts of the roots.  The results suggest that anthocyanin elicitation in the roots of K. blossfeldiana by methyl jasmonate may be dependent on the interaction of JA-Me with sugars transported from the stems (leaves to the roots.

  2. Root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  3. Distribution and utilization of 15N in cowpeas injected into the stem under influence of water deficit.

    Science.gov (United States)

    Götz K-P; Herzog, H

    2000-01-01

    Investigations were carried out on Vigna unguiculata L. Walp. to estimate the distribution and utilization of 15N in different organs after stem injection during vegetative, flowering and pod filling stage. During flowering effects of water deficit were also examined. In well watered plants, within 4 days after injection, 65% of 15N accumulated in leaves. This was drastically reduced to 42% by water deficit. 15N accumulation in stems increased under water deficit. The translocation of 15N from the stem base to roots were not altered by water deficit. During pod filling 62% of recovered 15N in the plants had accumulated in seeds, 24% in leaves and 11% in stems within 4 days, whereas the uptake of nitrogen in pod walls and roots remained low (2%). These results demonstrate that the method of injecting very small quantities (1 mg/plant) of 15N into the stem base allows an exact and detailed quantitative assessment of N translocation/distribution with regard to different organs, different growth stages and different treatments.

  4. Water transport through tomato roots infected with Meloidogyne incognita.

    NARCIS (Netherlands)

    Dorhout, R.; Gommers, F.J.; Kollöffel, C.

    1991-01-01


    The effect of Meloidogyne incognita on water flow in tomato roots was investigated in rooted split-stem cuttings. Total water flow through infected root parts was significantly lower than through comparable uninfected parts. Total water uptake was correlated with total length of the root

  5. What is a stem cell?

    Science.gov (United States)

    Slack, Jonathan M W

    2018-05-15

    The historical roots of the stem cell concept are traced with respect to its usage in embryology and in hematology. The modern consensus definition of stem cells, comprising both pluripotent stem cells in culture and tissue-specific stem cells in vivo, is explained and explored. Methods for identifying stem cells are discussed with respect to cell surface markers, telomerase, label retention and transplantability, and properties of the stem cell niche are explored. The CreER method for identifying stem cells in vivo is explained, as is evidence in favor of a stochastic rather than an obligate asymmetric form of cell division. In conclusion, it is found that stem cells do not possess any unique and specific molecular markers; and stem cell behavior depends on the environment of the cell as well as the stem cell's intrinsic qualities. Furthermore, the stochastic mode of division implies that stem cell behavior is a property of a cell population not of an individual cell. In this sense, stem cells do not exist in isolation but only as a part of multicellular system. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Methods and Principles Adult Stem Cells, Tissue Renewal, and Regeneration > Environmental Control of Stem Cells. © 2018 Wiley Periodicals, Inc.

  6. Effects of elevated CO{sub 2} concentrations and fly ash amended soils on trace element accumulation and translocation among roots, stems and seeds of Glycine max (L.) Merr

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.H. [Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator Section, Faculty of Physical and Natural Sciences, National University of Cordoba, Av. Velez Sarsfield 1611, X5016CGA Cordoba (Argentina); Klumpp, A.; Fangmeier, A. [Institute of Landscape and Plant Ecology (320), Plant Ecology and Ecotoxicology, Universitaet Hohenheim, August-von-Hartmann-Str. 3, 70599 Stuttgart (Germany); Pignata, M.L., E-mail: pignata@com.uncor.edu [Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator Section, Faculty of Physical and Natural Sciences, National University of Cordoba, Av. Velez Sarsfield 1611, X5016CGA Cordoba (Argentina)

    2011-03-15

    The carbon dioxide (CO{sub 2}) levels of the global atmosphere and the emissions of heavy metals have risen in recent decades, and these increases are expected to produce an impact on crops and thereby affect yield and food safety. In this study, the effects of elevated CO{sub 2} and fly ash amended soils on trace element accumulation and translocation in the root, stem and seed compartments in soybean [Glycine max (L.) Merr.] were evaluated. Soybean plants grown in fly ash (FA) amended soil (0, 1, 10, 15, and 25% FA) at two CO{sub 2} regimes (400 and 600 ppm) in controlled environmental chambers were analyzed at the maturity stage for their trace element contents. The concentrations of Br, Co, Cu, Fe, Mn, Ni, Pb and Zn in roots, stems and seeds in soybeans were investigated and their potential risk to the health of consumers was estimated. The results showed that high levels of CO{sub 2} and lower concentrations of FA in soils were associated with an increase in biomass. For all the elements analyzed except Pb, their accumulation in soybean plants was higher at elevated CO{sub 2} than at ambient concentrations. In most treatments, the highest concentrations of Br, Co, Cu, Fe, Mn, and Pb were found in the roots, with a strong combined effect of elevated CO{sub 2} and 1% of FA amended soils on Pb accumulation (above maximum permitted levels) and translocation to seeds being observed. In relation to non-carcinogenic risks, target hazard quotients (TQHs) were significant in a Chinese individual for Mn, Fe and Pb. Also, the increased health risk due to the added effects of the trace elements studied was significant for Chinese consumers. According to these results, soybean plants grown for human consumption under future conditions of elevated CO{sub 2} and FA amended soils may represent a toxicological hazard. Therefore, more research should be carried out with respect to food consumption (plants and animals) under these conditions and their consequences for human

  7. MAIL1 is essential for development of the primary root but not of anchor roots.

    Science.gov (United States)

    Ühlken, Christine; Hoth, Stefan; Weingartner, Magdalena

    2014-01-01

    MAIN-LIKE1 (MAIL1) is a ubiquitously expressed nuclear protein, which has a crucial function during root development. We have recently described loss of function mutants for MAIL1, in which the organization and function of the primary root meristem is lost soon after germination. Moreover cell differentiation is impaired resulting in primary root growth arrest soon after emergence. Here we show that mail1 mutants form several anchor roots from the hypocotyl to root junction. These anchor roots show similar defects in the organization of the stem cell niche as the primary root. In contrast, differentiation processes are not impaired and thus anchor roots seem to be able to compensate for the loss of primary root function. Our data show that MAIL1 is essential for specification of cell fate in the primary root but not in anchor roots.

  8. Translocation of metal ions from soil to tobacco roots and their concentration in the plant parts.

    Science.gov (United States)

    da Silva, Cleber Pinto; de Almeida, Thiago E; Zittel, Rosimara; de Oliveira Stremel, Tatiana R; Domingues, Cinthia E; Kordiak, Januário; de Campos, Sandro Xavier

    2016-12-01

    This paper presents a study on the translocation factors (TFs) and bioconcentration factors (BCFs) of copper (Cu), manganese (Mn), zinc (Zn), cobalt (Co), chromium (Cr), cadmium (Cd), lead (Pb), iron (Fe), nickel (Ni), and arsenic (As) ions in roots, stems, and leaves of tobacco. The results revealed that during the tobacco growth, the roots are able to increase the sensitiveness of the physiological control, reducing the translocation of the metals Ni (0.38) and Pb (0.48) to the leaves. Cd and Zn presented factors TF and BCF >1 in the three tissues under analysis, which indicates the high potential for transportation and accumulation of these metals in all plant tissues. The TF values for Cr (0.65) and As (0.63) revealed low translocation of these ions to the aerial parts, indicating low mobility of ions from the roots. Therefore, tobacco can be considered an efficient accumulator of Ni, Cr, As and Pb in roots and Cd and Zn in all plant parts.

  9. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  10. Roots & Hollers

    OpenAIRE

    Kollman, Patrick L; Gorman, Thomas A

    2011-01-01

    Roots & Hollers, 2011 A documentary by Thomas Gorman & Patrick Kollman Master’s Project Abstract: Roots & Hollers uncovers the wild American ginseng trade, revealing a unique intersection between Asia and rural America. Legendary in Asia for its healing powers, ginseng helps sustain the livelihoods of thousands in Appalachia. A single root can sell for thousands of dollars at auction. Shot on-location in the mountains of Kentucky and West Virginia, this student doc...

  11. Do rice water weevils and rice stem borers compete when sharing a host plant?

    Science.gov (United States)

    Shi, Sheng-Wei; He, Yan; Ji, Xiang-Hua; Jiang, Ming-Xing; Cheng, Jia-An

    2008-07-01

    The rice water weevil (RWW) Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae) is an invasive insect pest of rice Oryza sativa L. in China. Little is known about the interactions of this weevil with indigenous herbivores. In the present study, adult feeding and population density of the weevil, injury level of striped stem borer Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) and pink stem borer Sesamia inferens (Walker) (Lepidoptera: Noctuidae) to rice, as well as growth status of their host plants were surveyed in a rice field located in Southeastern Zhejiang, China, in 2004 with the objective to discover interspecific interactions on the rice. At tillering stage, both adult feeding of the weevil and injury of the stem borers tended to occur on larger tillers (bearing 5 leaves) compared with small tillers (bearing 2~4 leaves), but the insects showed no evident competition with each other. At booting stage, the stem borers caused more withering/dead hearts and the weevil reached a higher density on the plants which had more productive tillers and larger root system; the number of weevils per tiller correlated negatively with the percentage of withering/dead hearts of plants in a hill. These observations indicate that interspecific interactions exist between the rice water weevil and the rice stem borers with negative relations occurring at booting or earlier developmental stages of rice.

  12. Do rice water weevils and rice stem borers compete when sharing a host plant?*

    Science.gov (United States)

    Shi, Sheng-wei; He, Yan; Ji, Xiang-hua; Jiang, Ming-xing; Cheng, Jia-an

    2008-01-01

    The rice water weevil (RWW) Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae) is an invasive insect pest of rice Oryza sativa L. in China. Little is known about the interactions of this weevil with indigenous herbivores. In the present study, adult feeding and population density of the weevil, injury level of striped stem borer Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) and pink stem borer Sesamia inferens (Walker) (Lepidoptera: Noctuidae) to rice, as well as growth status of their host plants were surveyed in a rice field located in Southeastern Zhejiang, China, in 2004 with the objective to discover interspecific interactions on the rice. At tillering stage, both adult feeding of the weevil and injury of the stem borers tended to occur on larger tillers (bearing 5 leaves) compared with small tillers (bearing 2~4 leaves), but the insects showed no evident competition with each other. At booting stage, the stem borers caused more withering/dead hearts and the weevil reached a higher density on the plants which had more productive tillers and larger root system; the number of weevils per tiller correlated negatively with the percentage of withering/dead hearts of plants in a hill. These observations indicate that interspecific interactions exist between the rice water weevil and the rice stem borers with negative relations occurring at booting or earlier developmental stages of rice. PMID:18600788

  13. Efeito de três fertilizantes acidificantes sobre a concentração de alumínio e de manganês em folhas e raízes de cafeeiros Effect of three acidifying fertilizers on the concentration of aluminum and manganese on coffee leaves and roots

    Directory of Open Access Journals (Sweden)

    Ferdinando Roberto Pupo de Moraes

    1979-01-01

    Full Text Available Foi determinada a concentração de alumínio e de manganês em folhas de cafeeiros cultivados em vasos com três solos diferentes e com aplicação de três fertilizantes nitrogenados acidificantes (nitrato de amônio, uréia e sulfato de amônio e um não acidificante (salitre-do-chile, além de dois tratamentos extras com corretivos de acidez e um com enxofre. Nas raízes estes elementos foram também determinados para os tratamentos que receberam uréia, uréia mais enxofre e o controle sem nitrogênio. Nos três solos determinou-se o efeito dos tratamentos sobre o pH e a concentração de A1(3+ e Mn3+. A análise foliar revelou diferenças significativas entre tratamentos na concentração de alumínio e manganês das folhas e em todos os três solos estudados. Alguns sintomas específicos observados nas folhas e raízes estiveram associados à presença de níveis elevados de manganês nessas partes vegetais.There were determined concentrations of aluminum and manganese in leaves of coffee trees cultivated in pots with 3 different soils fertilized with acidifying nitrogen fertilizers (ammonium nitrate, urea and ammonium sulphate and non acidifying nitrogen fertilizer (chilean nitrate and 3 other treatments (urea plus calcium carbonate, urea plus lime and urea plus sulfur. Aluminum and manganese were determined in coffee roots of pots fertilized with urea, urea plus sulfur and a control without nitrogen. The relation of pH and concentration of Al3+ and Mn2+ are discussed for the soils utilized. Leaves analysis showed significant differences in aluminum and manganese concentration in the leaves among treatments and among the 3 soils types. Symptoms correlated with high levels of manganese in the leaves and roots of the coffee trees were observed.

  14. Parental Leave in Denmark

    DEFF Research Database (Denmark)

    Rostgaard, Tine; Christoffersen, Mogens; Weise, Hanne

    This artcle considders the political aims for different leave schemes and reviews studies af these schemes. The use of parental leave is sensitive to the financial loss involved in taking leave: a decrease in the benefit payments has had a significant influence on take-up, while, in general, fami......, families'' loss of income is less if leave is taken up by the mothers. Only few fathers participate in parental leave....

  15. Cytotoxic Constituents from the Leaves of Zanthoxylum schinifolium

    International Nuclear Information System (INIS)

    Fang, Zhe; Min, Byung Sun; Kim, Ae Kyong; Woo, Mi Hee; Jun, Do Youn; Kim, Young Ho

    2010-01-01

    The roots, stems, pericarps, and seeds of Z. schinifolium were each extracted with MeOH, and the leaves were extracted with 80% MeOH and concentrated. These extracts were examined on MTT for cytotoxicity against Jurkat T cell clone E6.1. The results showed that the leaves extract had the strongest MTT cytotoxicity. The MeOH extract of Z. schinifolium leaves was subsequently fractionated into four parts: methylene chloride, ethyl acetate, n-butanol and water. These fractions were examined on MTT for cytotoxicity. The results showed that the methylene chloride fraction exhibited the strongest MTT cytotoxicity. Chromatographic separation of the methylene chloride and butanol fractions had yielded a quinolin (1), three phenylpropanoids (2, 3, 12), four coumarins (4 ∼ 7), three triterpenoids (8 ∼ 10), an alkaloid (11), an alcohol glucoside (13) and three monoterpene glucosides (14, 15, 16). One of these compounds were identified as new threo-6-amino-5-hydroxy-5-methyl-1,3-oxazinan-4-one (11) together with fifteen known, 3-heptyl-2-methylisoquinolin-1(2H)-one (1), integrifoliodiol (2), cuspidiol (3), bergapten (4), aurapten (5), 8-hydroxy-7-methoxy-chromen-2-one (6), 6,7-dimethoxy-2H-naphthalen-1-one (7), lupeol (8), lupeone (9), β-sitosterol (10), syringin (12), 2-propyl alchol β-D-glucopyranoside (13), vomifoliol-9-O-β-D-glucopyranoside (14), betulalbuside A (15) and cnidioside C (16) on the basis of spectroscopic and chemical evidences. All of the compounds were isolated for the first time from this plant except 5 and 7. In the MTT cytotoxicity assay against Jurkat T cell clone E6.1, IC 50 values of cuspidiol (3) and auraptene (5) were obtained at 7.3 μg/mL and 16.5 μg/mL, respectively

  16. Cytotoxic Constituents from the Leaves of Zanthoxylum schinifolium

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhe; Min, Byung Sun; Kim, Ae Kyong; Woo, Mi Hee [Catholic Univ. of Daegu, Gyeongsan (Korea, Republic of); Jun, Do Youn; Kim, Young Ho [Kyungpook National Univ., Daegu (Korea, Republic of)

    2010-04-15

    The roots, stems, pericarps, and seeds of Z. schinifolium were each extracted with MeOH, and the leaves were extracted with 80% MeOH and concentrated. These extracts were examined on MTT for cytotoxicity against Jurkat T cell clone E6.1. The results showed that the leaves extract had the strongest MTT cytotoxicity. The MeOH extract of Z. schinifolium leaves was subsequently fractionated into four parts: methylene chloride, ethyl acetate, n-butanol and water. These fractions were examined on MTT for cytotoxicity. The results showed that the methylene chloride fraction exhibited the strongest MTT cytotoxicity. Chromatographic separation of the methylene chloride and butanol fractions had yielded a quinolin (1), three phenylpropanoids (2, 3, 12), four coumarins (4 ∼ 7), three triterpenoids (8 ∼ 10), an alkaloid (11), an alcohol glucoside (13) and three monoterpene glucosides (14, 15, 16). One of these compounds were identified as new threo-6-amino-5-hydroxy-5-methyl-1,3-oxazinan-4-one (11) together with fifteen known, 3-heptyl-2-methylisoquinolin-1(2H)-one (1), integrifoliodiol (2), cuspidiol (3), bergapten (4), aurapten (5), 8-hydroxy-7-methoxy-chromen-2-one (6), 6,7-dimethoxy-2H-naphthalen-1-one (7), lupeol (8), lupeone (9), β-sitosterol (10), syringin (12), 2-propyl alchol β-D-glucopyranoside (13), vomifoliol-9-O-β-D-glucopyranoside (14), betulalbuside A (15) and cnidioside C (16) on the basis of spectroscopic and chemical evidences. All of the compounds were isolated for the first time from this plant except 5 and 7. In the MTT cytotoxicity assay against Jurkat T cell clone E6.1, IC{sub 50} values of cuspidiol (3) and auraptene (5) were obtained at 7.3 μg/mL and 16.5 μg/mL, respectively.

  17. Improving rooting uniformity in rose cuttings

    NARCIS (Netherlands)

    Telgen, van H.J.; Eveleens-Clark, B.A.; Garcia Victoria, N.

    2007-01-01

    Studies to improve rooting uniformity of single node stem cuttings for rose are reported. We found that the variation in shoot growth in a young rose crop depended on the variation in root number of the cuttings, which, in turn, was related to the auxin concentration applied to the cutting before

  18. Root patterning

    NARCIS (Netherlands)

    Scheres, Ben; Laskowski, Marta

    2016-01-01

    The mechanisms that pattern lateral root primordial are essential for the elaboration of root system architecture, a trait of key importance for future crop breeding. But which are most important: periodic or local cues? In this issue of Journal of Experimental Botany (pages 1411-1420), Kircher

  19. Stem girdling evidences a trade-off between cambial activity and sprouting and dramatically reduces plant transpiration due to feedback inhibition of photosynthesis and hormone signaling.

    Science.gov (United States)

    López, Rosana; Brossa, Ricard; Gil, Luis; Pita, Pilar

    2015-01-01

    The photosynthesis source-sink relationship in young Pinus canariensis seedlings was modified by stem girdling to investigate sprouting and cambial activity, feedback inhibition of photosynthesis, and stem and root hydraulic capacity. Removal of bark tissue showed a trade-off between sprouting and diameter growth. Above the girdle, growth was accelerated but the number of sprouts was almost negligible, whereas below the girdle the response was reversed. Girdling resulted in a sharp decrease in whole plant transpiration and root hydraulic conductance. The reduction of leaf area after girdling was strengthened by the high levels of abscisic acid found in buds which pointed to stronger bud dormancy, preventing a new needle flush. Accumulation of sugars in leaves led to a coordinated reduction in net photosynthesis (AN) and stomatal conductance (gS) in the short term, but later (gS below 0.07 mol m(-2) s(-1)) AN decreased faster. The decrease in maximal efficiency of photosystem II (FV/FM) and the operating quantum efficiency of photosystem II (ΦPSII) in girdled plants could suggest photoprotection of leaves, as shown by the vigorous recovery of AN and ΦPSII after reconnection of the phloem. Stem girdling did not affect xylem embolism but increased stem hydraulic conductance above the girdle. This study shows that stem girdling affects not only the carbon balance, but also the water status of the plant.

  20. Stem girdling evidences a trade-off between cambial activity and sprouting and dramatically reduces plant transpiration due to feedback inhibition of photosynthesis and hormone signaling

    Directory of Open Access Journals (Sweden)

    Rosana eLópez

    2015-04-01

    Full Text Available The photosynthesis source-sink relationship in young Pinus canariensis seedlings was modified by stem girdling to investigate sprouting and cambial activity, feedback inhibition of photosynthesis, and stem and root hydraulic capacity. Removal of bark tissue showed a trade-off between sprouting and diameter growth. Above the girdle, growth was accelerated but the number of sprouts was almost negligible, whereas below the girdle the response was reversed. Girdling resulted in a sharp decrease in whole plant transpiration and root hydraulic conductance. The reduction of leaf area after girdling was strengthened by the high levels of ABA found in buds which pointed to stronger bud dormancy, preventing a new needle flush. Accumulation of sugars in leaves led to a coordinated reduction in net photosynthesis (AN and stomatal conductance (gS in the short term, but later (gS below 0.07 mol m-2 s-1 AN decreased faster. The decrease in maximal efficiency of photosystem II (FV/FM and the operating quantum efficiency of photosystem II (ΦPSII in girdled plants could suggest photoprotection of leaves, as shown by the vigorous recovery of AN and ΦPSII after reconnection of the phloem. Stem girdling did not affect xylem embolism but increased stem hydraulic conductance above the girdle. This study shows that stem girdling affects not only the carbon balance, but also the water status of the plant.

  1. Unique and Conserved Features of the Barley Root Meristem

    Directory of Open Access Journals (Sweden)

    Gwendolyn K. Kirschner

    2017-07-01

    Full Text Available Plant root growth is enabled by root meristems that harbor the stem cell niches as a source of progenitors for the different root tissues. Understanding the root development of diverse plant species is important to be able to control root growth in order to gain better performances of crop plants. In this study, we analyzed the root meristem of the fourth most abundant crop plant, barley (Hordeum vulgare. Cell division studies revealed that the barley stem cell niche comprises a Quiescent Center (QC of around 30 cells with low mitotic activity. The surrounding stem cells contribute to root growth through the production of new cells that are displaced from the meristem, elongate and differentiate into specialized root tissues. The distal stem cells produce the root cap and lateral root cap cells, while cells lateral to the QC generate the epidermis, as it is typical for monocots. Endodermis and inner cortex are derived from one common initial lateral to the QC, while the outer cortex cell layers are derived from a distinct stem cell. In rice and Arabidopsis, meristem homeostasis is achieved through feedback signaling from differentiated cells involving peptides of the CLE family. Application of synthetic CLE40 orthologous peptide from barley promotes meristem cell differentiation, similar to rice and Arabidopsis. However, in contrast to Arabidopsis, the columella stem cells do not respond to the CLE40 peptide, indicating that distinct mechanisms control columella cell fate in monocot and dicot plants.

  2. Root~Shoot Growth Interactions of Sorghmn (Sorghwn Bicolor L ...

    African Journals Online (AJOL)

    growth. Studies on root-shoot intera'ctions in relation to mechanical impedance have only investigated the effect on shoots of ... growth regulators that may be responsible. Studies of root-shoot ... of germinating seeds to MI leaving roots in rela-.

  3. Effects of synthetic hormone substitutes and genotypes on rooting ...

    African Journals Online (AJOL)

    The vine cuttings were sampled for rooting percentage, number of roots, root length and mini tuber initiation 21 days after treatment (DAT). The number and weight of tubers obtained from IBA and wood ash treated vines were not significantly different. The rice straw ash, IBA and neem leaves powder treated vines produced ...

  4. Root resorption

    DEFF Research Database (Denmark)

    Kjaer, Inger

    2014-01-01

    Introduction: This paper summarizes the different conditions, which have a well-known influence on the resorption of tooth roots, exemplified by trauma and orthodontic treatment. The concept of the paper is to summarize and explain symptoms and signs of importance for avoiding resorption during...... orthodontic treatment. The Hypothesis: The hypothesis in this paper is that three different tissue layers covering the root in the so-called periroot sheet can explain signs and symptoms of importance for avoiding root resorption during orthodontic treatment. These different tissue layers are; outermost...... processes provoked by trauma and orthodontic pressure. Inflammatory reactions are followed by resorptive processes in the periroot sheet and along the root surface. Evaluation of the Hypothesis: Different morphologies in the dentition are signs of abnormal epithelium or an abnormal mesodermal layer. It has...

  5. Goodbye, Mandatory Maternity Leaves

    Science.gov (United States)

    Nation's Schools, 1972

    1972-01-01

    In precedent-setting decrees, courts and federal and State authorities have branded compulsory maternity leaves either unconstitutional or illegal. School administrators are urged to prod boards of education to adopt more lenient maternity leave policies -- now. (Author)

  6. Leaving home in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Rikke Skovgaard

    2015-01-01

    The paper focuses on ethnic differences in the timing and patterns of leaving the parental home. Leaving home is a key transition in the life course of the individual, and extensive research has been conducted on the timing and patterns of leaving it. However, ethnic differences in these patterns...... of leaving home. Results showed that while some differences disappeared when controlling for covariates, others persisted, thus indicating ethnic differences in home-leaving patterns. A strong link between leaving home and marriage was substantiated for Turks, but not for Somalis. The home-leaving patterns...... of Somalis were much more similar to those of Danes. Overall, Turkish descendants were similar to Turkish immigrants but with some differentiation. The analyses identified the existence of ethnic differences in home-leaving patterns but also found evidence of a shift towards less traditional patterns, i...

  7. Rooting Platanus (Platanus acerifolia (Aiton Willd. cuttings in Marechal Cândido Rondon - PR, Brazil: Influence of lesions at cutting bases and depth of planting

    Directory of Open Access Journals (Sweden)

    Danimar Dalla Rosa

    2018-01-01

    Full Text Available Platanus, an arboreal and deciduous plant, is widely adapted and can be used for several purposes. Despite producing viable seeds, production of platanus seedlings usually occurs through vegetative propagation; cuttings are the best and most efficient source for obtaining seedlings. Although cuttings offer a practical and easy method to obtain seedlings in different vegetable species, they are influenced by several factors, both external and internal. The present study aimed to analyze the behavior of plantain cuttings planted in sand subjected to damage or no damage at the cuttings base, and planted at depths of 20 and 40 cm. Experiment was carried out at the experimental station of horticulture and protected cultivation of UNIOESTE-Brazil, in a randomized 2×2 factorial design, which comprises both, planted at 20 cm and 40 cm depths, with 5 replicates and 5 cuttings per replicate. After 170 days of incubation, injured and non- injured cuttings, were evaluated for rooting percentage and cuttings sprouted, length of roots and medium length of stems, stem diameter, number of leaves per stem, and dry mass of roots and shoots. No significant differences were observed in cutting injury. All variables analyzed presented higher values when cuttings were planted at 20 cm depth. Results indicate that planting of platanus cuttings at 20 cm depth leads to better rooting rates and vegetative development.

  8. Hypocotyl adventitious root organogenesis differs from lateral root development.

    Science.gov (United States)

    Verstraeten, Inge; Schotte, Sébastien; Geelen, Danny

    2014-01-01

    Wound-induced adventitious root (AR) formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR) and the initiated AR share histological and developmental characteristics with lateral roots (LRs). In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid, and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in A. thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are distinct from LR

  9. Hypocotyl adventitious root organogenesis differs from lateral root development

    Directory of Open Access Journals (Sweden)

    Inge eVerstraeten

    2014-09-01

    Full Text Available Wound-induced adventitious root (AR formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR and the initiated AR share histological and developmental characteristics with lateral roots (LR. In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in Arabidopsis thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are

  10. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation

    Science.gov (United States)

    Greenfield, Melinda; Gómez-Jiménez, María I.; Ortiz, Viviana; Vega, Fernando E.; Kramer, Matthew; Parsa, Soroush

    2016-01-01

    We investigated the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae to determine if endophytic colonization could be achieved in cassava. An inoculation method based on drenching the soil around cassava stem cuttings using conidial suspensions resulted in endophytic colonization of cassava roots by both entomopathogens, though neither was found in the leaves or stems of the treated cassava plants. Both fungal entomopathogens were detected more often in the proximal end of the root than in the distal end. Colonization levels of B. bassiana were higher when plants were sampled at 7–9 days post-inoculation (84%) compared to 47–49 days post-inoculation (40%). In contrast, the colonization levels of M. anisopliae remained constant from 7–9 days post-inoculation (80%) to 47–49 days post-inoculation (80%), which suggests M. anisopliae is better able to persist in the soil, or as an endophyte in cassava roots over time. Differences in colonization success and plant growth were found among the fungal entomopathogen treatments. PMID:27103778

  11. Enraizamento de estacas lenhosas de pessegueiro cv. Okinawa em diferentes diâmetros de ramos, substratos e recipientes Rooting of peach cv. Okinawa hardwood cuttings at different stem diameters, substrates, and pots

    Directory of Open Access Journals (Sweden)

    Mauro Brasil Dias Tofanelli

    2003-06-01

    Full Text Available O trabalho foi desenvolvido no Departamento de Produção Vegetal - Setor Horticultura da Faculdade de Ciências Agronômicas (FCA da Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP, Campus de Botucatu (SP com o objetivo de avaliar a influência de diferentes substratos e tipos de recipientes no potencial de enraizamento de estacas lenhosas de pessegueiro cultivar Okinawa com diferentes diâmetros. As estacas foram tratadas com 2,5g L-1 de ácido indol-butírico. O período de permanência das estacas na casa de vegetação foi de 50 dias. Os tratamentos consistiram de seis substratos: areia, casca de arroz carbonizada, vermiculita, areia + casca de arroz carbonizada, areia + vermiculita e casca de arroz carbonizada + vermiculita, com as misturas na proporção 1:1v/v, três tipos de recipientes: sacos plásticos, bandejas de poliestireno expandido e bandejas plásticas e dois grupos de estacas com diâmetros diferentes: 2 a 6mm e 6 a 10mm. O melhor resultado de enraizamento foi obtido em sacos plásticos com vermiculita independente do diâmetro das estacas.This work was carried out at the Department of Plant Production/Horticulture of the Faculdade de Ciências Agronômicas (FCA of the Universidade Estadual Paulista (UNESP located in Botucatu (SP, Brazil. The purpose of this study was to evaluate the influence of substrate and pot type on rooting of stem hardwood cuttings of peach cultivar Okinawa with different diameters. The cuttings were treated with 2.5g L-1 of IBA. The cuttings were maintained in greenhouse for 50 days. The treatments consisted of the combination of six substrate compositions: sand, carbonized rice husk, vermiculite, sand + carbonized rice husk, sand + vermiculite, and carbonized rice husk + vermiculite, mixture at proportion 1:1v/v and three types of pots: plastic bags, polystyrene trays, plastic trays and two groups of cutting diameter: 2 to 6mm and 6 to 10mm. The highest rooting frequency was obtained

  12. Response of the Andean diversity panel to root rot in a root rot nursery in Puerto Rico

    Science.gov (United States)

    The Andean Diversity Panel (ADP) was evaluated under low-fertility and root rot conditions in two trials conducted in 2013 and 2015 in Isabela, Puerto Rico. About 246 ADP lines were evaluated in the root rot nursery with root rot and stem diseases caused predominantly by Fusarium solani, which cause...

  13. Assessment of atmospheric pollution level using Asclepias procera leaves as biomonitor

    Energy Technology Data Exchange (ETDEWEB)

    Daud, M.; Khalid, N.; Ahmad, S. [Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan). Nuclear Chemistry Div.; Iqbal, J. [University of the Punjab, Lahore (Pakistan). Inst. of Chemistry

    2007-07-01

    The potential of Asclepias procera plant leaves as biomonitor for air pollution monitoring has been explored by analyzing 36 elements in the leaf samples employing Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectrometric (AAS) techniques. The leaf samples were collected in summer and winter seasons from urban areas of Islamabad with different anthropogenic activities as well as from a rural area as a reference site. The soil samples of the respective sites were also analyzed. The reliability of the methods used was established by analyzing the certified reference materials under identical experimental conditions and comparing the results obtained with the certified values, which are in quite good agreement with each other. Pollution Load Index (PLI) of the determined elements was computed and is discussed accordingly. The uptake of metals from soil to roots, stem and leaves has also been investigated by analyzing these parts of the same plant. The results suggest that the leaves of Asclepias procera plant have a good potential to indicate the air pollution levels both in the vicinity of industrial as well as near roadside areas. (orig.)

  14. Assessment of atmospheric pollution level using Asclepias procera leaves as biomonitor

    International Nuclear Information System (INIS)

    Daud, M.; Khalid, N.; Ahmad, S.; Iqbal, J.

    2007-01-01

    The potential of Asclepias procera plant leaves as biomonitor for air pollution monitoring has been explored by analyzing 36 elements in the leaf samples employing Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectrometric (AAS) techniques. The leaf samples were collected in summer and winter seasons from urban areas of Islamabad with different anthropogenic activities as well as from a rural area as a reference site. The soil samples of the respective sites were also analyzed. The reliability of the methods used was established by analyzing the certified reference materials under identical experimental conditions and comparing the results obtained with the certified values, which are in quite good agreement with each other. Pollution Load Index (PLI) of the determined elements was computed and is discussed accordingly. The uptake of metals from soil to roots, stem and leaves has also been investigated by analyzing these parts of the same plant. The results suggest that the leaves of Asclepias procera plant have a good potential to indicate the air pollution levels both in the vicinity of industrial as well as near roadside areas. (orig.)

  15. Morus nigra plant leaves as biomonitor for elemental air pollution monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Daud, M.; Khalid, N.; Waheed, S.; Wasim, M.; Arif, M.; Zaidi, J.H. [Pakistan Institute of Nuclear Science and Technology, Islamabad (Pakistan). Chemistry Div.

    2011-07-01

    The present paper deals with the determination of 36 elements in 120 leaf samples of Morus nigra plant to assess their potential as biomonitor for elemental air pollution monitoring. The elemental quantification was made by employing Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectrometric (AAS) techniques. The leaf samples were collected in spring, summer and winter seasons from various sites in Islamabad with different types of anthropogenic activities as well as from a reference site with minimum of such activities. Twenty four soil samples from the respective sites were also analyzed. The reliability of the adopted procedures was established by analyzing the certified reference materials, i.e., citrus leaves-1572 and soil-7, from NIST and IAEA, respectively, under identical experimental conditions and comparing the results obtained with the certified values which are in quite good agreement with each other. The enrichment values and Pollution Load Index (PLI) of the determined elements were computed and discussed accordingly. The elemental translocation from soil to roots, stem and leaves has also been studied by analyzing these parts of the same plant. The results indicated that the leaves of Morus nigra plant have promising potential to monitor the extent of air pollution in the vicinity of industrial as well as in high traffic areas. (orig.)

  16. Root morphology and growth of bare-root seedlings of Oregon white oak

    Science.gov (United States)

    Peter J. Gould; Constance A. Harrington

    2009-01-01

    Root morphology and stem size were evaluated as predictors of height and basal-area growth (measured at groundline) of 1-1 Oregon white oak (Quercus garryana Dougl. ex Hook.) seedlings planted in raised beds with or without an additional irrigation treatment. Seedlings were classified into three root classes based on a visual assessment of the...

  17. What make them leave and where do they go?

    DEFF Research Database (Denmark)

    Ulriksen, Lars; Madsen, Lene Møller; Holmegaard, Henriette Tolstrup

    2015-01-01

    This chapter presents the results of a quantitative analysis of national data covering Danish students who in the period 1995-2009 completed an uppersecondary school programme and entered a higher-education science, technology, engineering or mathematics (STEM) programme. The analysis focuses...... chance of a male or female student entering a STEM programme. The results suggest that female students are more affected by achieving a high grade-point average and by the educational background of their parents than are the male students. The relative risk of non-completion is higher for women than...... on identifying variables that change the hazard ratio for (1) entering a STEM programme and (2) leaving a STEM programme without completing it. Finally, the chapter explores (3) the destinations of students who leave a STEM higher-education programme. It is found that there has been no change in the relative...

  18. Seed priming with extracts of Acacia nilotica (L.) Willd. ex Delile and Sapindus mukorossi (L.) plant parts in the control of root rot fungi and growth of plants

    International Nuclear Information System (INIS)

    Rafi, H.; Dawar, S.; Zaki, M.J.

    2015-01-01

    Seed priming with plant extracts and chemicals has been used as an important growth enhancement tool in crop plants. In this research, an attempt was made to understand the mechanism of various seed priming treatments on greenhouse-grown okra (Abelmoschus esculentus (L.) Moench.), sunflower (Helianthus annuus L.), peanut (Arachis hypogaea L.) and chickpea (Cicer arietinum L.) for the control of root infecting fungi like Rhizoctonia solani (Kn), Fusarium spp. and Macrophomina phaseolina (Tassi) Goid by plant parts extracts (stem, leaves and seeds) of Acacia nilotica (L.) Willd. ex Delile and Sapindus mukorossi (L) at different time intervals (5, 10, 20, 40 minutes). Results showed significant suppression of root rot fungi and significantly enhanced the growth parameters like shoot length, root length, shoot weight and root weight. Seed-priming with A. nilotica and S. mukorossi leaves extract for 10 minutes time interval was found to be effective for the control of root rot fungi and growth of all tested leguminous and non-leguminous plants. (author)

  19. Negative leave balances

    CERN Multimedia

    Human Resources Department

    2005-01-01

    Members of the personnel entitled to annual leave and, where appropriate, saved leave and/or compensatory leave are requested to take note of the new arrangements described below, which were recommended by the Standing Concertation Committee (SCC) at its meeting on 1Â September 2005 and subsequently approved by the Director-General. The changes do not apply to members of the personnel participating in the Progressive Retirement Programme (PRP) or the Part-time Work as a pre-retirement measure, for whom the specific provisions communicated at the time of joining will continue to apply. Â Negative balances in annual leave, saved leave and/or compensatory leave accounts at the end of the leave year (30th September) and on the date on which bonuses are credited to the saved leave account (31st December): Where members of the personnel have a leave account with a negative balance on 30Â September and/or 31Â December, leave will automatically be transferred from one account to another on the relevant dates i...

  20. Negative leave balances

    CERN Multimedia

    Human Resources Department

    2005-01-01

    Members of the personnel entitled to annual leave and, where appropriate, saved leave and/or compensatory leave are requested to take note of the new arrangements described below, which were recommended by the Standing Concertation Committee (SCC) at its meeting on 1 September 2005 and subsequently approved by the Director-General. The changes do not apply to members of the personnel participating in the Progressive Retirement Programme (PRP) or the Part-time Work as a pre-retirement measure, for whom the specific provisions communicated at the time of joining will continue to apply.  Negative balances in annual leave, saved leave and/or compensatory leave accounts at the end of the leave year (30th September) and on the date on which bonuses are credited to the saved leave account (31st December): Where members of the personnel have a leave account with a negative balance on 30 September and/or 31 December, leave will automatically be transferred from one account to another on the relevant dates in or...

  1. Cadmium accumulation and strategies to avoid its toxicity in roots of the citrus rootstock Citrumelo

    Energy Technology Data Exchange (ETDEWEB)

    Podazza, Griselda [Instituto de Ecologia, Fundacion Miguel Lillo, Miguel Lillo 251, CP 4000, Tucuman (Argentina); Arias, Marta [Catedra de Anatomia Vegetal, Facultad de Ciencias Naturales e IML, Miguel Lillo 205, CP 4000, Tucuman (Argentina); Prado, Fernando E., E-mail: prad@arnet.com.ar [Catedra de Fisiologia Vegetal, Facultad de Ciencias Naturales e IML, Miguel Lillo 205, CP 4000, Tucuman (Argentina)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Cd induces oxidative stress, increasing the H{sub 2}O{sub 2} and O{sub 2}{center_dot}{sup -} generation. Black-Right-Pointing-Pointer SOD, G-POD, CAT activities are enhanced by Cd. Black-Right-Pointing-Pointer G-POD activity participates in Cd-induced lignin synthesis. Black-Right-Pointing-Pointer Cd mainly accumulates in exodermis and vascular cylinder. Black-Right-Pointing-Pointer Cd is mostly immobilized in roots, limiting its transport to aerial parts. - Abstract: In order to assess implications of Cd-induced oxidative stress in roots of the citrus rootstock Citrumelo, seedlings were hydroponically exposed to two relatively realistic Cd concentrations during 7 days. Our results showed that increasing Cd concentrations in external solution were associated with higher Cd accumulations in roots. At 5 {mu}M Cd the accumulation of Cd in roots was over 70-f higher than in aerial part (stem + leaves). Malondialdehyde (MDA), superoxide radical (O{sub 2}{center_dot}{sup -}), hydrogen peroxide (H{sub 2}O{sub 2}) and lipoxygenase activity (LOX) increased in Cd-exposed roots, suggesting a metal-induced oxidative stress. The Cd treatment enhanced the activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and guaiacol-type peroxidase (G-POD), as well as the content of secondary metabolites i.e. soluble phenolics (SPs) and lignin. Histochemical analyses of roots showed that Cd, H{sub 2}O{sub 2}, (O{sub 2}{center_dot}{sup -}), lignin and G-POD displayed a similar location pattern. Almost all analyzed parameters showed a similar dynamic tendency with increases under 5 {mu}M Cd followed by decreases under 10 {mu}M Cd, suggesting that a complex coordinated Cd-defensive mechanism is operating in Citrumelo roots exposed to environmental realistic Cd concentrations.

  2. Cadmium accumulation and strategies to avoid its toxicity in roots of the citrus rootstock Citrumelo

    International Nuclear Information System (INIS)

    Podazza, Griselda; Arias, Marta; Prado, Fernando E.

    2012-01-01

    Highlights: ► Cd induces oxidative stress, increasing the H 2 O 2 and O 2 · − generation. ► SOD, G-POD, CAT activities are enhanced by Cd. ► G-POD activity participates in Cd-induced lignin synthesis. ► Cd mainly accumulates in exodermis and vascular cylinder. ► Cd is mostly immobilized in roots, limiting its transport to aerial parts. - Abstract: In order to assess implications of Cd-induced oxidative stress in roots of the citrus rootstock Citrumelo, seedlings were hydroponically exposed to two relatively realistic Cd concentrations during 7 days. Our results showed that increasing Cd concentrations in external solution were associated with higher Cd accumulations in roots. At 5 μM Cd the accumulation of Cd in roots was over 70-f higher than in aerial part (stem + leaves). Malondialdehyde (MDA), superoxide radical (O 2 · − ), hydrogen peroxide (H 2 O 2 ) and lipoxygenase activity (LOX) increased in Cd-exposed roots, suggesting a metal-induced oxidative stress. The Cd treatment enhanced the activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and guaiacol-type peroxidase (G-POD), as well as the content of secondary metabolites i.e. soluble phenolics (SPs) and lignin. Histochemical analyses of roots showed that Cd, H 2 O 2 , (O 2 · − ), lignin and G-POD displayed a similar location pattern. Almost all analyzed parameters showed a similar dynamic tendency with increases under 5 μM Cd followed by decreases under 10 μM Cd, suggesting that a complex coordinated Cd-defensive mechanism is operating in Citrumelo roots exposed to environmental realistic Cd concentrations.

  3. Caracterización de acelga fresca de Santiago del Estero (Argentina. Comparación del contenido de nutrientes en hoja y tallo. Evaluación de los carotenoides presentes Characterization of fresh Beta vulgaris from Santiago del Estero (Argentina. Nutrient and caroteniod content of stem and leaves

    Directory of Open Access Journals (Sweden)

    Sara Macías de Costa

    2003-04-01

    Full Text Available Se realizaron estudios de caracterización integral de acelga (Beta vulgaris, var. cycla cultivada en la Provincia de Santiago del Estero, Argentina. Por tratarse de un vegetal de importante consumo regional, se realizó la determinación de sus constituyentes básicos, minerales y pigmentos para conocer los valores nutricionales que aporta este alimento en nuestra región. Se analizaron comparando hoja y tallo: humedad, cenizas, proteínas, grasas, hidratos de carbono utilizables, fibra dietaria total, contenido de clorofila y carotenoides. En cuanto a minerales, se determinaron calcio, magnesio, sodio, potasio, manganeso, zinc, hierro, fósforo y boro. Se encontraron diferencias en los aportes de minerales, proteínas, grasas y fibra entre hoja y tallo, así como también el contenido de carotenoides exclusivamente en las hojas. Los resultados marcan importantes diferencias en el contenido energético y en su valor provitamínico A entre la hoja y el tallo de este vegetal, mostrando que este último es una parte aprovechable de la planta, recomendable en dietas hipocalóricas.An integrated characterization study of Swiss chard grown in Santiago del Estero, Argentina, was carried out. As Swiss chard is a vegetable of important regional consumption, the determination of its basic constituents, minerals and pigments was done to appraise the nutritional value offered by this food in our area. Moisture, ash content, proteins, fats, available carbohydrates, total dietary fiber, chlorophylls and carotenoids were analysed, comparing the leaves and the stems. As to minerals, calcium, magnesium, sodium, manganese, zinc, iron, phosphorous, potassium, and boron were determined. Differences in the concentration of minerals, proteins, fats and fiber between the leaves and the stems were found, as well as the carotenoid content mainly in the leaves. These findings revealed important differences in energy content and provitamin A value, showing that the stem

  4. Do ectomycorrhizal and arbuscular mycorrhizal temperate tree species systematically differ in root order-related fine root morphology and biomass?

    OpenAIRE

    Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph

    2015-01-01

    While most temperate broad-leaved tree species form ectomycorrhizal (EM) symbioses, a few species have arbuscular mycorrhizas (AM). It is not known whether EM and AM tree species differ systematically with respect to fine root morphology, fine root system size and root functioning. In a species-rich temperate mixed forest, we studied the fine root morphology and biomass of three EM and three AM tree species from the genera Acer, Carpinus, Fagus, Fraxinus, and Tilia searching for principal dif...

  5. Root (Botany)

    Science.gov (United States)

    Robert R. Ziemer

    1981-01-01

    Plant roots can contribute significantly to the stability of steep slopes. They can anchor through the soil mass into fractures in bedrock, can cross zones of weakness to more stable soil, and can provide interlocking long fibrous binders within a weak soil mass. In deep soil, anchoring to bedrock becomes negligible, and lateral reinforcement predominates

  6. The Temporary Leave Dilemma -

    DEFF Research Database (Denmark)

    Amilon, Anna

    2010-01-01

    Lone mothers have to take care of a sick child with little or no help from the child’s other parent and have to carry all costs connected to leave-taking. This paper empirically tests whether lone mothers take more temporary parental leave to care for sick children than partnered mothers...... and whether parental leave is associated with a signaling cost. The results from this study of Swedish mothers show that lone mothers use more temporary parental leave than partnered mothers. Further, within the group of lone mothers, those with higher socioeconomic status take less temporary parental leave...... than those with lower socioeconomic status, whereas no such differences are found within the group of partnered mothers. One possible interpretation is that signaling costs negatively influence the utilization of temporary parental leave for lone mothers....

  7. Women in STEM hit by discrimination

    Science.gov (United States)

    Randall, Ian

    2016-02-01

    Almost a third of women in science, technology, engineering and mathematics (STEM) in Australia are considering leaving their job within the next five years, according to a survey by the employee association Professionals Australia.

  8. Efficacy of wild plant in combination with microbial antagonists for the control of root rot fungi on mungbean and cowpea

    International Nuclear Information System (INIS)

    Ikram, N.; Dawar, S.

    2015-01-01

    Present work was carried out to investigate the efficacy of Aerva javanica in combination with different microbial antagonists namely Rhizobium meliloti, Pseudomonas aeruginosa, Trichoderma harzianum and Aspergillus niger. Soil amended with A. javanica stem, leaves, flower powder at the rate1% w/w and seeds of cowpea (Vigna unguiculata L.) and mungbean (Vigna radiata L.) were coated with microbial antagonists for the control of root infecting fungi like Macrophomina phaseolina (Tassi) Goid, Fusarium spp. and Rhizoctonia solani Kiihn. Infection of M. phaseolina and R. solani were completely suppressed when seeds were coated with P. aeruginosa, T. harzianum, A. niger, R. meliloti and A. javanica leaves powder mixed in soil at the rate 1% w/w. All antagonists showed reduction in combination with A. javanica leaves powder at the rate1% but T. harzianum and P. aeruginosa in combination with A. javanica leaves showed promising results in complete reduction of R. solani and M. phaseolina on both crops. All growth parameters were maximum when soil was amended with A. javanica leaves powder at the rate 1% w/w and seeds were coated with T. harzianum and P. aeruginosa. (author)

  9. Automated Root Tracking with "Root System Analyzer"

    Science.gov (United States)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  10. Regrowth of Cirsium arvense from intact roots and root fragments at different soil depths

    Directory of Open Access Journals (Sweden)

    Thomsen, Mette Goul

    2014-02-01

    Full Text Available In the present work we measured the shoot rate from intact roots and from root fragments of Cirsium arvense at different digging depths and the number of leaves were used as estimate of minimum regenerative capacity. The experiments were performed on four sites with three or four repetitions of each treatment. On each site plot, the soil was removed down to a given depth within a 1 x 1 m square. All plant parts was excavated from the soil and the soil was either replaced without any root material, or roots of C. arvense was cut into 10 cm long fragments and replaced into the source hole. Shoot number, aboveground biomass and number of leaves were measured. Digging depth and time explained 50% - 60% of the variation in biomass (P<0.001. Replacement of root fragments increased the shoot number in one out of four treatments but did not affect biomass produced compared to production from undisturbed root systems. Number of leaves showed that shoots from all digging depths passed the level of minimum regenerative capacity. We conclude that the intact root system from all depths was able to regenerate within one season and it has a high contribution to the produced biomass compared with root fragments in the upper soil layers.

  11. A novel root based Arabic stemmer

    Directory of Open Access Journals (Sweden)

    Mohammed N. Al-Kabi

    2015-04-01

    Full Text Available Stemming algorithms are used in information retrieval systems, indexers, text mining, text classifiers etc., to extract stems or roots of different words, so that words derived from the same stem or root are grouped together. Many stemming algorithms were built in different natural languages. Khoja stemmer is one of the known and widely used Arabic stemmers. In this paper, we introduced a new light and heavy Arabic stemmer. This new stemmer is presented in this study and compared with two well-known Arabic stemmers. Results showed that accuracy of our stemmer is slightly better than the accuracy yielded by each one of those two well-known Arabic stemmers used for evaluation and comparison. Evaluation tests on our novel stemmer yield 75.03% accuracy, while the other two Arabic stemmers yield slightly lower accuracy.

  12. Putative storage root specific promoters from cassava and yam: cloning and evaluation in transgenic carrots as a model system.

    Science.gov (United States)

    Arango, Jacobo; Salazar, Bertha; Welsch, Ralf; Sarmiento, Felipe; Beyer, Peter; Al-Babili, Salim

    2010-06-01

    A prerequisite for biotechnological improvements of storage roots is the availability of tissue-specific promoters enabling high expression of transgenes. In this work, we cloned two genomic fragments, pMe1 and pDJ3S, controlling the expression of a gene with unknown function from cassava (Manihot esculenta) and of the storage protein dioscorin 3 small subunit gene from yam (Dioscorea japonica), respectively. Using beta-glucuronidase as a reporter, the activities of pMe1 and pDJ3S were evaluated in independent transgenic carrot lines and compared to the constitutive CaMV35S and the previously described cassava p15 promoters. Activities of pMe1 and pDJ3S in storage roots were assessed using quantitative GUS assays that showed pDJ3S as the most active one. To determine organ specificities, uidA transcript levels in leaves, stems and roots were measured by real-time RT-PCR analyses showing highest storage root specificity for pDJ3S. Root cross sections revealed that pMe1 was highly active in secondary xylem. In contrast, pDJ3S was active in all root tissues except for the central xylem. The expression patterns caused by the cassava p15 promoter in carrot storage roots were consistent with its previously described activities for the original storage organ. Our data demonstrate that the pDJ3S and, to a lesser extent, the pMe1 regulatory sequences represent feasible candidates to drive high and preferential expression of genes in carrot storage roots.

  13. Locally Finite Root Supersystems

    OpenAIRE

    Yousofzadeh, Malihe

    2013-01-01

    We introduce the notion of locally finite root supersystems as a generalization of both locally finite root systems and generalized root systems. We classify irreducible locally finite root supersystems.

  14. Shoot-derived abscisic acid promotes root growth.

    Science.gov (United States)

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture. © 2015 John Wiley & Sons Ltd.

  15. Distinct modes of adventitious rooting in Arabidopsis thaliana.

    Science.gov (United States)

    Correa, L da Rocha; Troleis, J; Mastroberti, A A; Mariath, J E A; Fett-Neto, A G

    2012-01-01

    The literature describes different rooting protocols for Arabidopsis thaliana as models to study adventitious rooting, and results are generally perceived as comparable. However, there is a lack of investigations focusing on the distinct features, advantages and limitations of each method in the study of adventitious rooting with both wild-type (WT) ecotypes and their respective mutants. This investigation was undertaken to evaluate the adventitious rooting process in three different experimental systems, all using A. thaliana, analysing the same rooting parameters after transient exposure to auxin (indole-3-acetic acid) and control conditions: excised leaves, de-rooted plants and etiolated seedlings. The founding tissues and sites of origin of roots differed depending on the system used, whereas all rooting patterns were of the direct type (i.e., without callus formation). None of the systems had an absolute requirement for exogenous auxin, although rooting was enhanced by this phytohormone, with the exception of de-rooted plants, which had adventitious rooting strongly inhibited by exogenous auxin. Root elongation was much favoured in isolated leaves. Auxin-overproducing mutants could not be used in the detached leaf system due to precocious senescence; in the de-rooted plant system, these mutants had a WT-like rooting response, whereas the expression of the 'rooty' phenotype was only evident in the etiolated seedling system. Adventitious rooting of etiolated WT seedlings in the presence of exogenous auxin was inhibited by exogenous flavonoids, which act as auxin transport inhibitors; surprisingly, the flavonoid-deficient mutant chs had a lower rooting response compared to WT. Although Arabidopsis is an excellent model system to study adventitious rooting, physiological and developmental responses differed significantly, underlining the importance of avoiding data generalisation on rooting responses derived from different experimental systems with this species.

  16. Falling for Clay Leaves.

    Science.gov (United States)

    Kernan, Christine

    2002-01-01

    Describes an art project that integrated science and art education. Explains that students create ceramic bowls by using real leaves. Discusses the process of creating the ceramic bowls, including how to glaze the bowls. Includes a list of materials. (CMK)

  17. Antimicrobial activities of the leaves and roots of Elaeagnus ...

    African Journals Online (AJOL)

    AZHAR

    2013-11-27

    Nov 27, 2013 ... Key words: Elaeagnus umbellata, extracts, fungi, yeast, antibiotic discs. INTRODUCTION. Biological screening is an important step in the evaluation of medicinal ... criminate and repetitive use of antimicrobial drugs. (Shariff ...

  18. Prevention of root caries with dentin adhesives.

    Science.gov (United States)

    Grogono, A L; Mayo, J A

    1994-04-01

    This in vitro investigation determined the feasibility of using dentin adhesives to protect root surfaces against caries. The roots of 22 recently extracted human teeth were all painted with a protective lacquer leaving two unprotected small windows. On each specimen, one window (control) was left untreated and the other window (experimental) was treated using a dentin adhesive (Scotchbond Multi-Purpose). The roots were then immersed in an in vitro acetate/calcium/phosphate demineralization model at pH 4.3. After 70 days, the samples were removed and sectioned through the windows. The undecalcified ground sections were examined under transmitted and polarized light. Lesions characteristic of natural root caries were seen in the untreated control windows. No such lesions were apparent in the experimental windows. The results of this preliminary study suggest that dentin adhesives may provide protection against root caries.

  19. Maternity Leave Policies

    Science.gov (United States)

    Strang, Lucy; Broeks, Miriam

    2017-01-01

    Abstract Over recent years many European Union countries have made changes to the design of the maternity leave provision. These policy developments reflect calls for greater gender equality in the workforce and more equal share of childcare responsibilities. However, while research shows that long period of leave can have negative effects on women's labour market attachment and career advancements, early return to work can be seen as a factor preventing exclusive breastfeeding, and therefore, potentially having negative health impacts for babies. Indeed, the World Health Organisation recommends exclusive breastfeeding up to 6 months of age to provide babies with the nutrition for healthy growth and brain development, protection from life-threatening ailments, obesity and non-communicable diseases such as asthma and diabetes. Therefore, labour market demands on women may be at odds with the health benefits for children gained by longer periods of maternity leave. The aim of this article is to examine the relationship between leave provision and health benefits for children. We examine maternity and parental leave provision across European countries and its potential impact on the breastfeeding of very young babies (up to 6-months of age). We also consider economic factors of potential extension of maternity leave provision to 6 months, such as costs to businesses, effects on the female labour market attachment, and wider consequences (benefits and costs) for individuals, families, employers and the wider society. PMID:28983432

  20. Types of Stem Cells

    Science.gov (United States)

    ... Stem Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... Learn About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...

  1. The effect of flowering on adventitious root-formation

    NARCIS (Netherlands)

    Selim, H.H.A.

    1956-01-01

    The rooting of cuttings from day-neutral tomato was not influenced by flower development, nor by SD or LD treatments of them or of the mother plants. In cuttings of the SD plant Perilla crispa flower initiation and development severely inhibited rooting. Leaves produced about 61 %

  2. Mesenchymal stem cell-mediated functional tooth regeneration in swine.

    Directory of Open Access Journals (Sweden)

    Wataru Sonoyama

    2006-12-01

    Full Text Available Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla. Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This work integrates a stem cell-mediated tissue regeneration strategy, engineered materials for structure, and current dental crown technologies. This hybridized tissue engineering approach led to recovery of tooth strength and appearance.

  3. Biomass production and essential oil yield from leaves, fine stems and resprouts using pruning the crown of Aniba canelilla (H.B.K. (Lauraceae in the Central Amazon Produção de biomassa e rendimento de óleo essencial de folhas, galhos finos e rebrotas utilizando poda da copa de Aniba canelilla (H.B.K. (Lauraceae na Amazônia Central

    Directory of Open Access Journals (Sweden)

    Adriana Pellegrini Manhães

    2012-09-01

    Full Text Available Aniba canelilla (H.B.K. Mez. is a tree species from Amazon that produces essential oil. The oil extraction from its leaves and stems can be an alternative way to avoid the tree cutting for production of essential oil. The aim of this study was to analyse factors that may influence the essential oil production and the biomass of resprouts after pruning the leaves and stems of A. canelilla trees. The tree crowns were pruned in the wet season and after nine months the leaves and stems of the remaining crown and the resprouts were collected, in the dry season. The results showed that the essential oil yield and chemical composition differed among the stems, leaves and resprouts. The stems' essential oil production differed between the seasons and had a higher production in the resprouting stems than the old stems of the remaining crown. The production of essential oil and leaf biomass of resprouts were differently related to the canopy openness, indicating that light increases the production of the essential oil and decreases the biomass of resprouting leaves. This study revealed that plant organs differ in their essential oil production and that the canopy openness must be taken into account when pruning the A. canelilla tree crown in order to achieve higher oil productivity.Aniba canelilla (H.B.K. Mez. é uma espécie arbórea da Amazônia que produz óleo essencial. A extração do óleo de suas folhas e galhos pode ser uma forma alternativa de evitar a derrubada do tronco para sua produção de óleo essencial. O objetivo deste estudo foi analisar os fatores que podem influenciar a produção de óleo essencial e sua biomassa da rebrota após a poda de folhas e galhos das árvores de A. canelilla. As copas das árvores foram podadas na estação chuvosa e, após nove meses, as folhas e os galhos da copa remanescente e da rebrota foram coletadas na estação seca. Os resultados mostraram que o rendimento e a composição química de

  4. Root Formation in Ethylene-Insensitive Plants1

    Science.gov (United States)

    Clark, David G.; Gubrium, Erika K.; Barrett, James E.; Nell, Terril A.; Klee, Harry J.

    1999-01-01

    Experiments with ethylene-insensitive tomato (Lycopersicon esculentum) and petunia (Petunia × hybrida) plants were conducted to determine if normal or adventitious root formation is affected by ethylene insensitivity. Ethylene-insensitive Never ripe (NR) tomato plants produced more belowground root mass but fewer aboveground adventitious roots than wild-type Pearson plants. Applied auxin (indole-3-butyric acid) increased adventitious root formation on vegetative stem cuttings of wild-type plants but had little or no effect on rooting of NR plants. Reduced adventitious root formation was also observed in ethylene-insensitive transgenic petunia plants. Applied 1-aminocyclopropane-1-carboxylic acid increased adventitious root formation on vegetative stem cuttings from NR and wild-type plants, but NR cuttings produced fewer adventitious roots than wild-type cuttings. These data suggest that the promotive effect of auxin on adventitious rooting is influenced by ethylene responsiveness. Seedling root growth of tomato in response to mechanical impedance was also influenced by ethylene sensitivity. Ninety-six percent of wild-type seedlings germinated and grown on sand for 7 d grew normal roots into the medium, whereas 47% of NR seedlings displayed elongated taproots, shortened hypocotyls, and did not penetrate the medium. These data indicate that ethylene has a critical role in various responses of roots to environmental stimuli. PMID:10482660

  5. Phytophthora Root and Crown Rot on Apples in Bulgaria

    Directory of Open Access Journals (Sweden)

    Mariana Nakova

    2010-01-01

    Full Text Available Phytophthora is a genus of Oomycota responsible for some of the most serious diseases with great economic impact (Judelson and Blanco, 2005. While 54 species were found in the 20th century (Erwin and Ribeiro, 1996 another 51-54 new species have been identified(Brasier, 2008 since the year 2000. They are spread worldwide and have broad range of host plants – fruit trees, citrus, forest and park species. Phytophthora can cause serious damages in orchards and nurseries of apples, cherries, etc. In Bulgaria they have been found first on young apples and cherries (1998-1999 in Plovdiv region (Nakova, 2003. Surveys have been done for discovering disease symptoms in Plovdiv and Kjustendil regions. Isolates have been obtained from infected plant material (roots and stem bases applying baiting bioassay (green apples, variety Granny Smith and/or PARP 10 selective media. Phytophthora strains were identified based on standard morphology methods – types of colonies on PDA, CMA, V 8, type and size of sporangia, oogonia and antheridia, andoospores. Cardial temperatures for their growth were tested on CMA and PDA.For molecular studies, DNA was extracted from mycelium using the DNA extraction kit.DNA was amplified using universal primers ITS 6 and ITS 4. Amplification products concentrations were estimated by comparison with the standard DNA. Sequencing was done at the Scottish Crop Research Institute (SCRI, Dundee, Scotland. Phytophthora root and crown rot symptoms first appear in early spring. Infected trees show bud break delay, have small chlorotic leaves, and branches die all of a sudden. Later symptoms are found in August-September. Leaves of the infected trees show reddish discoloration and drop down. Both symptoms are connected with lesions (wet, necrotic in appearance at stem bases of the trees.Disease spread was 2-3% in most gardens, only in an apple orchard in Bjaga (Plovdiv region it was up to 8-10%. Morphologically, the isolates acquired from

  6. Copper distribution in leaves and roots of plants growing on a copper mine-tailing storage facility in northern Chile Distribución de cobre en hojas y raíces de plantas que crecen sobre relaves mineros de cobre en el norte de Chile

    Directory of Open Access Journals (Sweden)

    CLAUDIA ORTIZ-CALDERÓN

    2008-12-01

    Full Text Available In a copper mine-tailing afforested we characterized the physicochemical properties of the substrate at vegetated and non-vegetated patches. We studied the accumulation of copper in roots and leaves of the species present at the site, to evaluate their phytoextraction and/or phytostabilization potential. The non-vegetated mine-tailing substrate showed a high contení of metals, mainly copper (> 2.5 g kg-1, a pH 7.4, high contení of salts and 5.0 % organic matler. Vegelaled palches al íhe lailing showed similar characlerislics of pH, salís and organic maller conlenl, and showed a lolal copper concenlralion lower íhan íhe conlenl found ai íhe non-vegelaled patches. Nine plant species present at the site were screened for copper accumulation and distribulion in rools and leaves, and polenlial for copper phyloexlraclion or phyloslabilizalion was suggesled. The nalive species Schinus polygamus and Atriplex deserticola, accumulaled over 1.2 g kg-1 copper in íheir leaves, showing íhal íhey are pseudomelallophyles for íhe melal. Five of íhe nine plañí species sludied were considered suilable for phyloexlraclion procedures and four were apt for phytostabilization of copper polluted sites. By making a screening of species growing on a copper polluted site, we were able to select plants adapted lo semi-arid environmental conditions and suitable for mine-tailings remediation purposes.En un tranque de relaves previamente forestado, se realizó una caracterización fisicoquímica del sustralo en sectores vegetados y no vegetados. Se esludió la acumulación de cobre en raíces y hojas de las especies présenles en el sitio de trabajo, con el objeto de evaluar su potencial fitoextractor y fitoestabilizador. El sustrato del sector no vegetado presentó un pH 7,4; altos contenidos de sales y 5,0 % de materia orgánica, además de un alto contenido de metales pesados, principalmente cobre (> 2,5 g kg-1. Los sectores vegetados del tranque de relaves

  7. Seasonal dynamics of mobile carbohydrates and stem growth in Scots pine (Pinus sylvestris) exposed to drought

    Science.gov (United States)

    Oberhuber, Walter; Kofler, Werner; Schuster, Roman; Swidrak, Irene; Gruber, Andreas

    2014-05-01

    Tree growth requires a continuous supply of carbon as structural material and as a source for metabolic energy. To detect whether intra-annual stem growth is related to changes in carbon allocation, we monitored seasonal dynamics of shoot and radial growth and concentrations of mobile carbohydrates (NSC) in above- and belowground organs of Scots pine (Pinus sylvestris L.). The study area is situated within an inner Alpine dry environment (750 m asl, Tyrol, Austria), which is characterized by recurring drought periods at the start of the growing season in spring and limited water holding capacity of nutrient deficient, shallow stony soils. Shoot elongation was monitored on lateral branches in the canopy and stem radius changes were continuously followed by electronic band dendrometers. Daily radial stem growth and tree water deficit (ΔW) were extracted from dendrometer records. ΔW is regarded a reliable measure of drought stress in trees and develops when transpirational water loss from leaves exceeds water uptake by the root system. Daily radial stem growth and ΔW were related to environmental variables and determination of NSC was performed using specific enzymatic assays. Results revealed quite early culmination of aboveground growth rates in late April (shoot growth) and late May (radial growth), and increasing accumulation of NSC in coarse roots in June. NSC content in roots peaked at the end of July and thereafter decreased again, indicating a shift in carbon allocation after an early cessation of aboveground stem growth. ΔW was found to peak in late summer, when high temperatures prevailed. That maximum growth rates of aboveground organs peaked quite before precipitation increased during summer is related to the finding that ΔW and radial stem growth were more strongly controlled by the atmospheric environment, than by soil water content. We conclude that as a response to the seasonal development of ΔW a shift in carbon allocation from aboveground

  8. New substitution models for rooting phylogenetic trees.

    Science.gov (United States)

    Williams, Tom A; Heaps, Sarah E; Cherlin, Svetlana; Nye, Tom M W; Boys, Richard J; Embley, T Martin

    2015-09-26

    The root of a phylogenetic tree is fundamental to its biological interpretation, but standard substitution models do not provide any information on its position. Here, we describe two recently developed models that relax the usual assumptions of stationarity and reversibility, thereby facilitating root inference without the need for an outgroup. We compare the performance of these models on a classic test case for phylogenetic methods, before considering two highly topical questions in evolutionary biology: the deep structure of the tree of life and the root of the archaeal radiation. We show that all three alignments contain meaningful rooting information that can be harnessed by these new models, thus complementing and extending previous work based on outgroup rooting. In particular, our analyses exclude the root of the tree of life from the eukaryotes or Archaea, placing it on the bacterial stem or within the Bacteria. They also exclude the root of the archaeal radiation from several major clades, consistent with analyses using other rooting methods. Overall, our results demonstrate the utility of non-reversible and non-stationary models for rooting phylogenetic trees, and identify areas where further progress can be made. © 2015 The Authors.

  9. Antioxidant compounds in Salvia officinalis L. shoot and hairy root cultures in the nutrient sprinkle bioreactor

    Directory of Open Access Journals (Sweden)

    Izabela Grzegorczyk

    2011-01-01

    Full Text Available The study focused on the production of compounds with antioxidant activity in hairy root and shoot cultures of Salvia officinalis grown in laboratory-scale sprinkle nutrient bioreactors. HPLC analysis showed that production of rosmarinic acid in transformed roots (34.65 ±1.07 mg l-1 was higher that in shoot culture (26.24 ±0.48 mg l-1. In the latter diterpenoids: carnosic acid (1.74 ±0.02 mg l-1 and carnosol (1.34 ±0.01 mg l-1 were also found. Biomass accumulation after a growth period in the bioreactor was also studied. An 18-fold increase in hairy root biomass was recorded after 40 days of culture. In sage shoot culture, biomass increased 43 times after 21 days of bioreactor run. The current operating conditions of the bioreactor were not suitable for the propagation of Salvia officinalis mainly due to the hyperhydricity problem of leaves and stems.

  10. Analysis of Metabolites in Stem Parasitic Plant Interactions: Interaction of Cuscuta–Momordica versus Cassytha–Ipomoea

    Science.gov (United States)

    Furuhashi, Takeshi; Nakamura, Takemichi; Iwase, Koji

    2016-01-01

    Cuscuta and Cassytha are two well-known stem parasitic plant genera with reduced leaves and roots, inducing haustoria in their stems. Their similar appearance in the field has been recognized, but few comparative studies on their respective plant interactions are available. To compare their interactions, we conducted a metabolite analysis of both the Cassytha–Ipomoea and the Cuscuta–Momordica interaction. We investigated the energy charge of the metabolites by UFLC (ultra-high performance liquid chromatography), and conducted GC-MS (gas chromatography-mass spectrometry) analysis for polar metabolites (e.g., saccharides, polyols) and steroids. The energy charge after parasitization changed considerably in Cassytha but not in Cusucta. Cuscuta changed its steroid pattern during the plant interaction, whereas Cassytha did not. In the polar metabolite analysis, the laminaribiose increase after parasitization was conspicuous in Cuscuta, but not in Cassytha. This metabolite profile difference points to different lifestyles and parasitic strategies. PMID:27941603

  11. Analysis of Metabolites in Stem Parasitic Plant Interactions: Interaction of Cuscuta–Momordica versus Cassytha–Ipomoea

    Directory of Open Access Journals (Sweden)

    Takeshi Furuhashi

    2016-12-01

    Full Text Available Cuscuta and Cassytha are two well-known stem parasitic plant genera with reduced leaves and roots, inducing haustoria in their stems. Their similar appearance in the field has been recognized, but few comparative studies on their respective plant interactions are available. To compare their interactions, we conducted a metabolite analysis of both the Cassytha–Ipomoea and the Cuscuta–Momordica interaction. We investigated the energy charge of the metabolites by UFLC (ultra-high performance liquid chromatography, and conducted GC-MS (gas chromatography-mass spectrometry analysis for polar metabolites (e.g., saccharides, polyols and steroids. The energy charge after parasitization changed considerably in Cassytha but not in Cusucta. Cuscuta changed its steroid pattern during the plant interaction, whereas Cassytha did not. In the polar metabolite analysis, the laminaribiose increase after parasitization was conspicuous in Cuscuta, but not in Cassytha. This metabolite profile difference points to different lifestyles and parasitic strategies.

  12. Analysis of Metabolites in Stem Parasitic Plant Interactions: Interaction of Cuscuta-Momordica versus Cassytha-Ipomoea.

    Science.gov (United States)

    Furuhashi, Takeshi; Nakamura, Takemichi; Iwase, Koji

    2016-12-07

    Cuscuta and Cassytha are two well-known stem parasitic plant genera with reduced leaves and roots, inducing haustoria in their stems. Their similar appearance in the field has been recognized, but few comparative studies on their respective plant interactions are available. To compare their interactions, we conducted a metabolite analysis of both the Cassytha-Ipomoea and the Cuscuta-Momordica interaction. We investigated the energy charge of the metabolites by UFLC (ultra-high performance liquid chromatography), and conducted GC-MS (gas chromatography-mass spectrometry) analysis for polar metabolites (e.g., saccharides, polyols) and steroids. The energy charge after parasitization changed considerably in Cassytha but not in Cusucta . Cuscuta changed its steroid pattern during the plant interaction, whereas Cassytha did not. In the polar metabolite analysis, the laminaribiose increase after parasitization was conspicuous in Cuscuta , but not in Cassytha . This metabolite profile difference points to different lifestyles and parasitic strategies.

  13. TRAVEL AND HOME LEAVE

    CERN Multimedia

    Human Resources Division

    2002-01-01

    Administrative procedures for : Travel to the home station and home leave (hl) Additional travel to the home station (at) Travel to the home station and home leave for family reasons (hlf) As part of the process of simplifying administrative procedures, HR and AS Divisions have devised a new, virtually automatic procedure for payment of travel expenses to the home station. The changes are aimed at rationalising administrative procedures and not at reducing benefits. The conditions of eligibility are unchanged. The new procedure, which will be operational with effect from 1st June 2002, will greatly simplify the administrative processing of claims for travel expenses and the recording of home leaves. Currently, requests for payment are introduced manually into the Advances and Claims system (AVCL) by divisional secretariats. All travel to the home station starting prior to 1st June 2002 will be processed according to the existing system whereas that starting on 1st June and after will be processed accordi...

  14. Seedling root targets

    Science.gov (United States)

    Diane L. Haase

    2011-01-01

    Roots are critical to seedling performance after outplanting. Although root quality is not as quick and simple to measure as shoot quality, target root characteristics should be included in any seedling quality assessment program. This paper provides a brief review of root characteristics most commonly targeted for operational seedling production. These are: root mass...

  15. Plant-specific Histone Deacetylases HDT½ Regulate GIBBERELLIN 2-OXIDASE 2 Expression to Control Arabidopsis Root Meristem Cell Number

    KAUST Repository

    Li, Huchen; Torres-Garcia, Jesus; latrasse, David; Benhamed, Moussa; Schilderink, Stefan; Zhou, Wenkun; Kulikova, Olga; Hirt, Heribert; Bisseling, Ton

    2017-01-01

    Root growth is modulated by environmental factors and depends on cell production in the root meristem (RM). New cells in the meristem are generated by stem cells and transit-amplifying cells, which together determine RM cell number. Transcription

  16. Antimicrobial activity of extracts of leaves of Pseudocedrela kotschyi ...

    African Journals Online (AJOL)

    hope&shola

    2010-11-08

    Nov 8, 2010 ... and leaves are used to treat rheumatism and dysentery. In Northern Nigeria, the plant serves as an occasional ingredient for use in arrow poison (Oliver-Bever, 1986). In. West Africa, it has been established that the root of P. kotschyi is widely used as chewing sticks for dental cleaning (Akande and Hayashi, ...

  17. Cadmium accumulation and antioxidative defenses in leaves of ...

    African Journals Online (AJOL)

    Corn (Zea Mays L.) and wheat (Triticum aestivum L. ) seedlings were grown in four cadmium (Cd) concentration levels (0 - 1 mg/l) in a hydroponic system to analyze the antioxidant enzyme system, Cd concentration in the shoots and roots of plants, proline contents, growth responses and chlorophyll contents in the leaves of ...

  18. Redistribution of boron in leaves reduces boron toxicity.

    Science.gov (United States)

    Reid, Robert J; Fitzpatrick, Kate L

    2009-11-01

    High soil boron (B) concentrations lead to the accumulation of B in leaves, causing the development of necrotic regions in leaf tips and margins, gradually extending back along the leaf. Plants vary considerably in their tolerance to B toxicity, and it was recently discovered that one of the tolerance mechanisms involved extrusion of B from the root. Expression of a gene encoding a root B efflux transporter was shown to be much higher in tolerant cultivars. In our current research we have shown that the same gene is also upregulated in leaves. However, unlike in the root, the increased activity of the B efflux transporter in the leaves cannot reduce the tissue B concentration. Instead, we have shown that in tolerant cultivars, these transporters redistribute B from the intracellular phase where it is toxic, into the apoplast which is much less sensitive to B. These results provide an explanation of why different cultivars with the same leaf B concentrations can show markedly different toxicity symptoms. We have also shown that rain can remove a large proportion of leaf B, leading to significant improvements of growth of both leaves and roots.

  19. Cassava leaves as protein source for pigs in Central Vietnam

    NARCIS (Netherlands)

    2007-01-01

    The aim of the studies described in this thesis was to evaluate the use of cassava leaves as protein sources for pigs when used at high levels in the diet, either in fresh form or with simplified methods of processing. In twenty cassava varieties taken from the upper part of the plant at the root

  20. Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana.

    Science.gov (United States)

    Wimalasekera, Rinukshi; Pejchar, Premysl; Holk, André; Martinec, Jan; Scherer, Günther F E

    2010-05-01

    Phosphatidylcholine-hydrolyzing phospholipase C (PC-PLC) catalyzes the hydrolysis of phosphatidylcholine (PC) to generate phosphocholine and diacylglycerol (DAG). PC-PLC has a long tradition in animal signal transduction to generate DAG as a second messenger besides the classical phosphatidylinositol splitting phospholipase C (PI-PLC). Based on amino acid sequence similarity to bacterial PC-PLC, six putative PC-PLC genes (NPC1 to NPC6) were identified in the Arabidopsis genome. RT-PCR analysis revealed overlapping expression pattern of NPC genes in root, stem, leaf, flower, and silique. In auxin-treated P(NPC3):GUS and P(NPC4):GUS seedlings, strong increase of GUS activity was visible in roots, leaves, and shoots and, to a weaker extent, in brassinolide-treated (BL) seedlings. P(NPC4):GUS seedlings also responded to cytokinin with increased GUS activity in young leaves. Compared to wild-type, T-DNA insertional knockouts npc3 and npc4 showed shorter primary roots and lower lateral root density at low BL concentrations but increased lateral root densities in response to exogenous 0.05-1.0 μM BL. BL-induced expression of TCH4 and LRX2, which are involved in cell expansion, was impaired but not impaired in repression of CPD, a BL biosynthesis gene, in BL-treated npc3 and npc4. These observations suggest NPC3 and NPC4 are important in BL-mediated signaling in root growth. When treated with 0.1 μM BL, DAG accumulation was observed in tobacco BY-2 cell cultures labeled with fluorescent PC as early as 15 min after application. We hypothesize that at least one PC-PLC is a plant signaling enzyme in BL signal transduction and, as shown earlier, in elicitor signal transduction.

  1. Piriformospora indica root colonization triggers local and systemic root responses and inhibits secondary colonization of distal roots.

    Science.gov (United States)

    Pedrotti, Lorenzo; Mueller, Martin J; Waller, Frank

    2013-01-01

    Piriformosporaindica is a basidiomycete fungus colonizing roots of a wide range of higher plants, including crop plants and the model plant Arabidopsis thaliana. Previous studies have shown that P. indica improves growth, and enhances systemic pathogen resistance in leaves of host plants. To investigate systemic effects within the root system, we established a hydroponic split-root cultivation system for Arabidopsis. Using quantitative real-time PCR, we show that initial P. indica colonization triggers a local, transient response of several defense-related transcripts, of which some were also induced in shoots and in distal, non-colonized roots of the same plant. Systemic effects on distal roots included the inhibition of secondary P. indica colonization. Faster and stronger induction of defense-related transcripts during secondary inoculation revealed that a P. indica pretreatment triggers root-wide priming of defense responses, which could cause the observed reduction of secondary colonization levels. Secondary P. indica colonization also induced defense responses in distant, already colonized parts of the root. Endophytic fungi therefore trigger a spatially specific response in directly colonized and in systemic root tissues of host plants.

  2. Stem cells

    NARCIS (Netherlands)

    Jukes, Jojanneke; Both, Sanne; Post, Janine; van Blitterswijk, Clemens; Karperien, Marcel; de Boer, Jan; van Blitterswijk, Clemens A.

    2008-01-01

    This chapter defines stem cells and their properties. It identifies the major differences between embryonic and adult stem cells. Stem cells can be defined by two properties: the ability to make identical copies of themselves and the ability to form other cell types of the body. These properties are

  3. A bell pepper cultivar tolerant to chilling enhanced nitrogen allocation and stress-related metabolite accumulation in the roots in response to low root-zone temperature.

    Science.gov (United States)

    Aidoo, Moses Kwame; Sherman, Tal; Lazarovitch, Naftali; Fait, Aaron; Rachmilevitch, Shimon

    2017-10-01

    Two bell pepper (Capsicum annuum) cultivars, differing in their response to chilling, were exposed to three levels of root-zone temperatures. Gas exchange, shoot and root phenology, and the pattern of change of the central metabolites and secondary metabolites caffeate and benzoate in the leaves and roots were profiled. Low root-zone temperature significantly inhibited gaseous exchange, with a greater effect on the sensitive commercial pepper hybrid (Canon) than on the new hybrid bred to enhance abiotic stress tolerance (S103). The latter was less affected by the treatment with respect to plant height, shoot dry mass, root maximum length, root projected area, number of root tips and root dry mass. More carbon was allocated to the leaves of S103 than nitrogen at 17°C, while in the roots at 17°C, more nitrogen was allocated and the ratio between C/N decreased. Metabolite profiling showed greater increase in the root than in the leaves. Leaf response between the two cultivars differed significantly. The roots accumulated stress-related metabolites including γ-aminobutyric acid (GABA), proline, galactinol and raffinose and at chilling (7°C) resulted in an increase of sugars in both cultivars. Our results suggest that the enhanced tolerance of S103 to root cold stress, reflected in the relative maintenance of shoot and root growth, is likely linked to a more effective regulation of photosynthesis facilitated by the induction of stress-related metabolism. © 2017 Scandinavian Plant Physiology Society.

  4. Pengaruh penambahan auxin terhadap pertunasan dan perakaran kopi arabika perbanyakan Somatic Embryogenesis (The effects of shooting and rooting of arabica coffee propagation through Embryogenesis Somatic auxin uses.

    Directory of Open Access Journals (Sweden)

    Rina Arimarsetiowati

    2012-08-01

    Full Text Available Plantlet that has developed shoots and roots will have a high level adaptation in the field. The objective of this experiment was to improve the ability of planlet in shooting and rooting so that it is ready for acclimatization in the field. The increase ability in shooting and rooting of the planlet were conducted by adding various types of auxin in the media. The arabica coffee embryo of clone AS 2K which has entered the phase of the cotyledons was transfered into the treatment media containing half-strength of MS (Murashige & Skoog macro and micro nutrient, vitamin B5, 30 g/L glucose, 100 ml/L coconut water, 50 mg/L AgNO3 added with the combination of IAA, IBA and NAA. The research was conducted by using completely randomized design with seven combined treatment i.e. 0.1 mg/L IBA, 0.1 mg/L NAA, 0.1 mg/L IAA; 0 , 1 mg/L IBA + 0.1 mg/L NAA, 0.1 mg/L IBA + 0.1 mg/L IAA, 0.1 mg/L NAA + 0.1 mg/L IAA; without auxin. There were 12 replications in every treatment and each replication consisted of five cotyledonary embryos. The parameters of observation were the root length, leaf number, leaf area, stem diameter, and height of plantlets. The observations were conducted in eighth weeks after cotyledonary embryo had shoots. The results showed that in the number of leaves and height of planlet parameters, the treatment without auxin was the best result compared to planlet with auxin addition. The addition of auxin varians and their combination did not significantly influent leaf area, root length and stem diameter parameters. The medium tested was optimum for the growth of shoots and roots of AS 2K arabica coffee.

  5. Stem secondary growth of tundra shrubs

    DEFF Research Database (Denmark)

    Campioli, Matteo; Leblans, Niki; Michelsen, Anders

    2012-01-01

    Our knowledge of stem secondary growth of arctic shrubs (a key component of tundra net primary production, NPP) is very limited. Here, we investigated the impact of the physical elements of the environment on shrub secondary growth by comparing annual growth rates of model species from similar...... growth (stem apical growth, stem length, and apical growth of stem plus leaves), in some cases even with opposite responses. Thus caution should be taken when estimating the impact of the environment on shrub growth from apical growth only. Integration of our data set with the (very limited) previously...

  6. Does Leave Work?

    NARCIS (Netherlands)

    Heleen van Luijn; Saskia Keuzenkamp

    2004-01-01

    More and more people have to combine work and care responsibilities, and work part-time or use daycare and after-school care facilities to help them do so. The Work and Care Act, which came into force on 1 December 2001, combined all the existing schemes - such as parental and maternity leave -

  7. Maternity Leave in Taiwan

    Science.gov (United States)

    Feng, Joyce Yen; Han, Wen-Jui

    2010-01-01

    Using the first nationally representative birth cohort study in Taiwan, this paper examines the role that maternity leave policy in Taiwan plays in the timing of mothers returning to work after giving birth, as well as the extent to which this timing is linked to the amount of time mothers spend with their children and their use of breast milk…

  8. REMINDER: Saved Leave Scheme (SLS)

    CERN Multimedia

    2003-01-01

    Transfer of leave to saved leave accounts Under the provisions of the voluntary saved leave scheme (SLS), a maximum total of 10 days'* annual and compensatory leave (excluding saved leave accumulated in accordance with the provisions of Administrative Circular No 22B) can be transferred to the saved leave account at the end of the leave year (30 September). We remind you that unused leave of all those taking part in the saved leave scheme at the closure of the leave year accounts is transferred automatically to the saved leave account on that date. Therefore, staff members have no administrative steps to take. In addition, the transfer, which eliminates the risk of omitting to request leave transfers and rules out calculation errors in transfer requests, will be clearly shown in the list of leave transactions that can be consulted in EDH from October 2003 onwards. Furthermore, this automatic leave transfer optimizes staff members' chances of benefiting from a saved leave bonus provided that they ar...

  9. Botanical pharmacognosy of stem of Gmelina asiatica Linn.

    Science.gov (United States)

    Kannan, R; Prasant, K; Babu, U V

    2012-04-01

    Gmelina asiatica Linn (G. parvifolia Roxb.) is a large shrub or a small tree. Roots and aerial parts are used in Ayurvedic medicine and also have ethno-medical uses. Root is reported as adulterant to G. arborea roxb roots. Pharmacognostical characters of root were reported. Owing to the shortage of genuine drug and ever-increasing demands in market, it becomes necessary to search an alternative with equal efficacy without compromising the therapeutic value. Nowadays, it becomes a common practice of using stem. In case of roots phytochemical and pharmacological analysis of stem was reported. However, there is no report on the pharmacognostical characters of stem and to differentiate it from roots. The present report describes the botanical pharmacognostical characters of stem and a note to differentiate it from root. Hollow pith, faint annual rings in cut ends, alternatively arranged macrosclereids and bundle cap fibers, and presence of abundant starch grains and calcium oxalates in pith and in ray cells are the diagnostic microscopic characters of stem. Stem pieces can be differentiated from roots by absence of tylosis.

  10. Nitrogen remobilisation facilitates adventitious root formation on reversible dark-induced carbohydrate depletion in Petunia hybrida.

    Science.gov (United States)

    Zerche, Siegfried; Haensch, Klaus-Thomas; Druege, Uwe; Hajirezaei, Mohammad-Reza

    2016-10-10

    Adventitious root (AR) formation in axillary shoot tip cuttings is a crucial physiological process for ornamental propagation that is utilised in global production chains for young plants. In this process, the nitrogen and carbohydrate metabolisms of a cutting are regulated by its total nitrogen content (N t ), dark exposure during transport and irradiance levels at distinct production sites and phases through a specific plasticity to readjust metabolite pools. Here, we examined how elevated N t contents with a combined dark exposure of cuttings influence their internal N-pools including free amino acids and considered early anatomic events of AR formation as well as further root development in Petunia hybrida cuttings. Enhanced N t contents of unrooted cuttings resulted in elevated total free amino acid levels and in particular glutamate (glu) and glutamine (gln) in leaf and basal stem. N-allocation to mobile N-pools increased whereas the allocation to insoluble protein-N declined. A dark exposure of cuttings conserved initial N t and nitrate-N, while it reduced insoluble protein-N and increased soluble protein, amino- and amide-N. The increase of amino acids mainly comprised asparagine (asn), aspartate (asp) and arginine (arg) in the leaves, with distinct tissue specific responses to an elevated N supply. Dark exposure induced an early transient rise of asp followed by a temporary increase of glu. A strong positive N effect of high N t contents of cuttings on AR formation after 384 h was observed. Root meristematic cells developed at 72 h with a negligible difference for two N t levels. After 168 h, an enhanced N t accelerated AR formation and gave rise to first obvious fully developed roots while only meristems were formed with a low N t . However, dark exposure for 168 h promoted AR formation particularly in cuttings with a low N t to such an extent so that the benefit of the enhanced N t was almost compensated. Combined dark exposure and low N t of

  11. Cadmium translocation by contractile roots differs from that in regular, non-contractile roots.

    Science.gov (United States)

    Lux, Alexander; Lackovič, Andrej; Van Staden, Johannes; Lišková, Desana; Kohanová, Jana; Martinka, Michal

    2015-06-01

    Contractile roots are known and studied mainly in connection with the process of shrinkage of their basal parts, which acts to pull the shoot of the plant deeper into the ground. Previous studies have shown that the specific structure of these roots results in more intensive water uptake at the base, which is in contrast to regular root types. The purpose of this study was to find out whether the basal parts of contractile roots are also more active in translocation of cadmium to the shoot. Plants of the South African ornamental species Tritonia gladiolaris were cultivated in vitro for 2 months, at which point they possessed well-developed contractile roots. They were then transferred to Petri dishes with horizontally separated compartments of agar containing 50 µmol Cd(NO3)2 in the region of the root base or the root apex. Seedlings of 4-d-old maize (Zea mays) plants, which do not possess contractile roots, were also transferred to similar Petri dishes. The concentrations of Cd in the leaves of the plants were compared after 10 d of cultivation. Anatomical analyses of Tritonia roots were performed using appropriately stained freehand cross-sections. The process of contraction required specific anatomical adaptation of the root base in Tritonia, with less lignified and less suberized tissues in comparison with the subapical part of the root. These unusual developmental characteristics were accompanied by more intensive translocation of Cd ions from the basal part of contractile roots to the leaves than from the apical-subapical root parts. The opposite effects were seen in the non-contractile roots of maize, with higher uptake and transport by the apical parts of the root and lower uptake and transport by the basal part. The specific characteristics of contractile roots may have a significant impact on the uptake of ions, including toxic metals from the soil surface layers. This may be important for plant nutrition, for example in the uptake of nutrients from

  12. Lower Permian stems as fluvial paleocurrent indicators of the Parnaíba Basin, northern Brazil

    Science.gov (United States)

    Capretz, Robson Louiz; Rohn, Rosemarie

    2013-08-01

    seasons. Thick mudstones and some coquinites below and above the sandy interval may represent lacustrine facies formed in probably more humid conditions. The taphonomic history of the preserved plants began with exceptional storms that caused fast-flowing high water in channels and far into the floodplains. In the eastern site region, many tree ferns only fell, thus sometimes covering and protecting plant litter and leaves from further fragmentation. Assemblages of the central and western sites suggest that the trees were uprooted and transported in suspension (floating) parallel to the flow. Heavier ends of stems (according to their form or because of attached basal bulbous root mantle or large apical fronds) were oriented to upstream because of inertial forces. During falling water stage, the stems were stranded on riverbanks, usually maintaining the previous transport orientation, and were slightly buried. The perpendicular or oblique positions of some stems may have been caused by interference with other stems or shallow bars. Rare observed stems were apparently waterlogged before the final depositional process and transported as bedload. The differences of interpreted channel orientations between the three sites are expected in a braided fluvial system, considering the very low gradients of the basin and the work scale in the order of tens of kilometers. The mean direction of the drainage probably was to east and the flows apparently became weaker downstream. This study seems to provide reliable data for paleocurrent interpretations, especially considering areas with scarce preserved sedimentary structures.

  13. Predicting stem borer density in maize using RapidEye data and generalized linear models

    Science.gov (United States)

    Abdel-Rahman, Elfatih M.; Landmann, Tobias; Kyalo, Richard; Ong'amo, George; Mwalusepo, Sizah; Sulieman, Saad; Ru, Bruno Le

    2017-05-01

    Average maize yield in eastern Africa is 2.03 t ha-1 as compared to global average of 6.06 t ha-1 due to biotic and abiotic constraints. Amongst the biotic production constraints in Africa, stem borers are the most injurious. In eastern Africa, maize yield losses due to stem borers are currently estimated between 12% and 21% of the total production. The objective of the present study was to explore the possibility of RapidEye spectral data to assess stem borer larva densities in maize fields in two study sites in Kenya. RapidEye images were acquired for the Bomet (western Kenya) test site on the 9th of December 2014 and on 27th of January 2015, and for Machakos (eastern Kenya) a RapidEye image was acquired on the 3rd of January 2015. Five RapidEye spectral bands as well as 30 spectral vegetation indices (SVIs) were utilized to predict per field maize stem borer larva densities using generalized linear models (GLMs), assuming Poisson ('Po') and negative binomial ('NB') distributions. Root mean square error (RMSE) and ratio prediction to deviation (RPD) statistics were used to assess the models performance using a leave-one-out cross-validation approach. The Zero-inflated NB ('ZINB') models outperformed the 'NB' models and stem borer larva densities could only be predicted during the mid growing season in December and early January in both study sites, respectively (RMSE = 0.69-1.06 and RPD = 8.25-19.57). Overall, all models performed similar when all the 30 SVIs (non-nested) and only the significant (nested) SVIs were used. The models developed could improve decision making regarding controlling maize stem borers within integrated pest management (IPM) interventions.

  14. ROOT Reference Documentation

    CERN Document Server

    Fuakye, Eric Gyabeng

    2017-01-01

    A ROOT Reference Documentation has been implemented to generate all the lists of libraries needed for each ROOT class. Doxygen has no option to generate or add the lists of libraries for each ROOT class. Therefore shell scripting and a basic C++ program was employed to import the lists of libraries needed by each ROOT class.

  15. Translocation of nitrogen and carbon from levels to roots of different nodes in rice plants

    International Nuclear Information System (INIS)

    Tatsumi, Jiro; Kono, Yasuhiro; Okano, Kunio.

    1983-01-01

    The whole shoot of the plant at the stage of developing the 12th leaf (12L) and the 9th nodal roots (9nR) was fed with 13 C-labelled CO 2 gas for 60 minutes after bein g sprayed with 15 N-labeled urea solution, and the fate of 15 N and 13 C in the plant was followed over 12 days. 15 N and 13 C were translocated to all parts of the plant, preferentially to the expanding 12L and the root system. Among the roots, the upper roots (9nR) were the largest sink of 15 N and 13 C exported from the expanded leaves. However, not only the young upper roots, but also the old lower roots were the sinks of the nitrogenous compounds. The difference in the 13 C/ 15 N ratio among the nodal roots suggests that the C/N ratio of the foliar products imported into the roots varied with their node positions; lower roots received the products containing richer N relative to C than the upper roots. Each leaf at different node seemed to play a specific role to supply the root system with the products of variable C/N ratio; upper leaves supplied the products of higher C/N ratio mainly to upper roots, while lower leaves fed the products of lower C/N ratio to lower roots. (Kaihara, S.)

  16. What's So Special about STEM? A Comparison of Women's Retention in STEM and Professional Occupations.

    Science.gov (United States)

    Glass, Jennifer L; Sassler, Sharon; Levitte, Yael; Michelmore, Katherine M

    2013-01-01

    We follow female college graduates in the National Longitudinal Survey of Youth 1979 and compare the trajectories of women in science, technology, engineering, and mathematics (STEM)-related occupations to other professional occupations. Results show that women in STEM occupations are significantly more likely to leave their occupational field than professional women, especially early in their career, while few women in either group leave jobs to exit the labor force. Family factors cannot account for the differential loss of STEM workers compared to other professional workers. Few differences in job characteristics emerge either, so these cannot account for the disproportionate loss of STEM workers. What does emerge is that investments and job rewards that generally stimulate field commitment, such as advanced training and high job satisfaction, fail to build commitment among women in STEM.

  17. Conjoined lumbosacral nerve roots

    International Nuclear Information System (INIS)

    Kyoshima, Kazumitsu; Nishiura, Iwao; Koyama, Tsunemaro

    1986-01-01

    Several kinds of the lumbosacral nerve root anomalies have already been recognized, and the conjoined nerve roots is the most common among them. It does not make symptoms by itself, but if there is a causation of neural entrapment, for example, disc herniation, lateral recessus stenosis, spondylolisthesis, etc., so called ''biradicular syndrome'' should occur. Anomalies of the lumbosacral nerve roots, if not properly recognized, may lead to injury of these nerves during operation of the lumbar spine. Recently, the chance of finding these anomalous roots has been increased more and more with the use of metrizamide myelography and metrizamide CT, because of the improvement of the opacification of nerve roots. We describe the findings of the anomalous roots as revealed by these two methods. They demonstrate two nerve roots running parallel and the asymmetrical wide root sleeve. Under such circumstances, it is important to distinguish the anomalous roots from the normal ventral and dorsal roots. (author)

  18. Employer Provisions for Parental Leave.

    Science.gov (United States)

    Meisenheimer, Joseph R., II

    1989-01-01

    Slightly more than one-third of full-time employees in medium and large firms in private industry were covered by maternity- or paternity-leave policies; days off were usually leave without pay. (Author)

  19. Root canal irrigants

    OpenAIRE

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are...

  20. REMINDER Saved Leave Scheme (SLS) : Transfer of leave to saved leave accounts

    CERN Multimedia

    HR Division

    2002-01-01

    Under the provisions of the voluntary saved leave scheme (SLS), a maximum total of 10 days'*) annual and compensatory leave (excluding saved leave accumulated in accordance with the provisions of Administrative Circular No. 22B) can be transferred to the saved leave account at the end of the leave year (30 September). We remind you that, since last year, unused leave of all those taking part in the saved leave scheme at the closure of the leave-year accounts is transferred automatically to the saved leave account on that date. Therefore, staff members have no administrative steps to take. In addition, the transfer, which eliminates the risk of omitting to request leave transfers and rules out calculation errors in transfer requests, will be clearly shown in the list of leave transactions that can be consulted in EDH from October 2002 onwards. Furthermore, this automatic leave transfer optimizes staff members' chances of benefiting from a saved leave bonus provided that they are still participants in the schem...

  1. Saved Leave Scheme (SLS) : Simplified procedure for the transfer of leave to saved leave accounts

    CERN Multimedia

    HR Division

    2001-01-01

    As part of the process of streamlining procedures, the HR and AS Divisions have jointly developed a system whereby annual and compensatory leave will henceforth be automatically transferred1) to saved leave accounts. Under the provisions of the voluntary saved leave scheme (SLS), a maximum total of 10 days'2) annual and compensatory leave (excluding saved leave accumulated in accordance with the provisions of Administrative Circular No. 22 B) can be transferred to the saved leave account at the end of the leave year (30 September). Previously, every person taking part in the scheme has been individually issued with a form for the purposes of requesting the transfer of leave to the leave account and the transfer has then had to be done manually by HR Division. To streamline the procedure, unused leave of all those taking part in the saved leave scheme at the closure of of the leave-year accounts will henceforth be transferred automatically to the saved leave account on that date. This simplification is in the ...

  2. Root phenology at Harvard Forest and beyond

    Science.gov (United States)

    Abramoff, R. Z.; Finzi, A.

    2013-12-01

    Roots are hidden from view and heterogeneously distributed making them difficult to study in situ. As a result, the causes and timing of root production are not well understood. Researchers have long assumed that above and belowground phenology is synchronous; for example, most parameterizations of belowground carbon allocation in terrestrial biosphere models are based on allometry and represent a fixed fraction of net C uptake. However, using results from metaanalysis as well as empirical data from oak and hemlock stands at Harvard Forest, we show that synchronous root and shoot growth is the exception rather than the rule. We collected root and shoot phenology measurements from studies across four biomes (boreal, temperate, Mediterranean, and subtropical). General patterns of root phenology varied widely with 1-5 production peaks in a growing season. Surprisingly, in 9 out of the 15 studies, the first root production peak was not the largest peak. In the majority of cases maximum shoot production occurred before root production (Offset>0 in 32 out of 47 plant sample means). The number of days offset between maximum root and shoot growth was negatively correlated with median annual temperature and therefore differs significantly across biomes (ANOVA, F3,43=9.47, pGrowth form (woody or herbaceous) also influenced the relative timing of root and shoot growth. Woody plants had a larger range of days between root and shoot growth peaks as well as a greater number of growth peaks. To explore the range of phenological relationships within woody plants in the temperate biome, we focused on above and belowground phenology in two common northeastern tree species, Quercus rubra and Tsuga canadensis. Greenness index, rate of stem growth, root production and nonstructural carbohydrate content were measured beginning in April 2012 through August 2013 at the Harvard Forest in Petersham, MA, USA. Greenness and stem growth were highest in late May and early June with one clear

  3. Interações entre auxinas e ácido bórico, no enraizamento de estacas caulinares de Coffea arabica L. cv. Mundo Novo Interactions between auxins and boric acid in the rooting of stem cuttings Coffea arabica L. cv. "Mundo Novo"

    Directory of Open Access Journals (Sweden)

    E.O. Ono

    1992-01-01

    Full Text Available O presente trabalho teve como finalidade, estudar o efeito de auxinas e do boro no enraizamento de estacas caulinares de Coffea arabica L. cv. "Mundo Novo". As estacas foram retiradas de ramos ortotrópicos semi-lenhosos de cafeeiro, as quais foram tratadas durante 24 horas com soluções de IBA ou NAA e boro, e a mistura das três substâncias, resultando um total de 14 tratamentos. Para a avaliação do objetivo em questão, foram realizadas as seguintes observações, mediante coleta após 90 dias de plantio: número de estacas enraizadas e número de estacas com calos. Através dos resultados obtidos, pode-se concluir que, para obter um maior número de estacas enraizadas, é conveniente o tratamento com NAA à 100 ou 200 ppm mais boro.The present research had as purpose to study auxin and boron effects on rooting of Coffea arábica L. cv. "Mundo Novo" stem cuttings. The cuttings were taken from orthotropous semi-hardwood branches of coffee-tree, which were treated during 24 hours with IBA or NAA and boron solutions, and the mixture of the three substances, resulting a total of 14 treatments. The following observations were realized, taking the cuttings 90 days after planting: number of rooted cuttings and "callus" formation per cutting. It can be concluded that to obtain a higher number of rooted cuttings, the treatment with NAA at 100 or 200 ppm plus boron is the most suitable.

  4. STEM Education.

    Science.gov (United States)

    Xie, Yu; Fang, Michael; Shauman, Kimberlee

    2015-08-01

    Improving science, technology, engineering, and mathematics (STEM) education, especially for traditionally disadvantaged groups, is widely recognized as pivotal to the U.S.'s long-term economic growth and security. In this article, we review and discuss current research on STEM education in the U.S., drawing on recent research in sociology and related fields. The reviewed literature shows that different social factors affect the two major components of STEM education attainment: (1) attainment of education in general, and (2) attainment of STEM education relative to non-STEM education conditional on educational attainment. Cognitive and social psychological characteristics matter for both major components, as do structural influences at the neighborhood, school, and broader cultural levels. However, while commonly used measures of socioeconomic status (SES) predict the attainment of general education, social psychological factors are more important influences on participation and achievement in STEM versus non-STEM education. Domestically, disparities by family SES, race, and gender persist in STEM education. Internationally, American students lag behind those in some countries with less economic resources. Explanations for group disparities within the U.S. and the mediocre international ranking of US student performance require more research, a task that is best accomplished through interdisciplinary approaches.

  5. What’s So Special about STEM? A Comparison of Women’s Retention in STEM and Professional Occupations

    OpenAIRE

    Glass, Jennifer L.; Sassler, Sharon; Levitte, Yael; Michelmore, Katherine M.

    2013-01-01

    We follow female college graduates in the National Longitudinal Survey of Youth 1979 and compare the trajectories of women in science, technology, engineering, and mathematics (STEM)-related occupations to other professional occupations. Results show that women in STEM occupations are significantly more likely to leave their occupational field than professional women, especially early in their career, while few women in either group leave jobs to exit the labor force. Family factors cannot ac...

  6. Constituintes químicos fixos e voláteis dos talos e frutos de Piper tuberculatum Jacq. e das raízes de P. hispidum H. B. K. Fixed and volatile chemical constituents from stems and fruits of Piper tuberculatum Jacq. and from roots of P. hispidum H. B. K.

    Directory of Open Access Journals (Sweden)

    Valdir Alves Facundo

    2008-12-01

    Full Text Available Os óleos essenciais dos frutos e talos finos de Piper tuberculatum e das raízes de P. hispidum, coletados no estado de Rondônia, foram obtidos por hidrodestilação e analisados por GC e GC-MS. Foram identificados como constituintes majoritários, nos óleos dos frutos e talos finos de P. tuberculatum, o óxido de cariofileno (32,1% e (26,6% e o (E-cariofileno (17,7% e (12,3%, respectivamente. No óleo essencial das raízes de P. hispidum, foram identificados, como constituintes majoritários, o dilapiol (57,5%, a elemicina (24,5% e o apiol (10,2%. Do extrato etanólico dos frutos de P. tuberculatum, foram isolados os esteróides β-sitosterol e estigmasterol, as amidas piplartina e dihidropiplartina e um derivado do ácido cinâmico, o ácido 3,4,5-trimetoxi-dihidrocinâmico.The essential oils of the fruits and fine stems of Piper tuberculatum and of the roots of P. hispidum, collected in the state of Rondônia, had been gotten by hydrodistillation and analyzed by GC and GC-MS. Caryophyllene oxide - 32,1% in fruits and 26,6% in fine stem, and (E-caryophyllene - 17,7% in fruits and 12,3% in fine stems, were identified as the major constituents in such parts of P. tuberculatum. In the essential oil of the roots of P. hispidum, dillapiol (57,5%, elemicine (24,5% and apiole (10,2% were identified as the most abundant constituents. From the ethanolic extract of the fruits of P. tuberculatum, the steroids β-sitosterol and stigmasterol, the amides piplartine and dihidropiplartine and the derivative of the cinâmico acid 3,4,5-trimethoxy-dihidrocinâmic acid were isolated.

  7. Isolation of Astilbin from Leaves of Cratoxylum Arborescens

    International Nuclear Information System (INIS)

    Samsiah Jusoh; Samsiah Jusoh; Zuriati Zakaria; Laily Din

    2013-01-01

    Phytochemicals studies was conducted on the leaves of Cratoxylum arborescens that has been collected from Post Brooke, Gua Musang, Kelantan, Malaysia. Traditionally, latex of the stem bark of C. arborescens is being used for the treatment of wound. Extraction of leaves of C. arborescens using organic solvents followed by purification using standard procedure of purification yielded known compound, astilbin. This compound was identified by NMR spectral data using various 2D-techniques and comparison with the literature data. Reports showed that this compound has a unique immunosuppressive activity, a selective inhibition against activated T lymphocytes. This characteristic of astilbin is beneficial for the treatment of human immune diseases. (author)

  8. Sorghum root-system classification in contrasting P environments reveals three main rooting types and root-architecture-related marker-trait associations.

    Science.gov (United States)

    Parra-Londono, Sebastian; Kavka, Mareike; Samans, Birgit; Snowdon, Rod; Wieckhorst, Silke; Uptmoor, Ralf

    2018-02-12

    Roots facilitate acquisition of macro- and micronutrients, which are crucial for plant productivity and anchorage in the soil. Phosphorus (P) is rapidly immobilized in the soil and hardly available for plants. Adaptation to P scarcity relies on changes in root morphology towards rooting systems well suited for topsoil foraging. Root-system architecture (RSA) defines the spatial organization of the network comprising primary, lateral and stem-derived roots and is important for adaptation to stress conditions. RSA phenotyping is a challenging task and essential for understanding root development. In this study, 19 traits describing RSA were analysed in a diversity panel comprising 194 sorghum genotypes, fingerprinted with a 90-k single-nucleotide polymorphism (SNP) array and grown under low and high P availability. Multivariate analysis was conducted and revealed three different RSA types: (1) a small root system; (2) a compact and bushy rooting type; and (3) an exploratory root system, which might benefit plant growth and development if water, nitrogen (N) or P availability is limited. While several genotypes displayed similar rooting types in different environments, others responded to P scarcity positively by developing more exploratory root systems, or negatively with root growth suppression. Genome-wide association studies revealed significant quantitative trait loci (P root-system development on chromosomes SBI-02 and SBI-03. Sorghum genotypes with a compact, bushy and shallow root system provide potential adaptation to P scarcity in the field by allowing thorough topsoil foraging, while genotypes with an exploratory root system may be advantageous if N or water is the limiting factor, although such genotypes showed highest P uptake levels under the artificial conditions of the present study. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Parental leave and child health.

    Science.gov (United States)

    Ruhm, C J

    2000-11-01

    This study investigates whether rights to parental leave improve pediatric health. Aggregate data are used for 16 European countries over the 1969 through 1994 period. More generous paid leave is found to reduce deaths of infants and young children. The magnitudes of the estimated effects are substantial, especially where a causal effect of leave is most plausible. In particular, there is a much stronger negative relationship between leave durations and post-neonatal or child fatalities than for perinatal mortality, neonatal deaths, or low birth weight. The evidence further suggests that parental leave may be a cost-effective method of bettering child health.

  10. Can root electrical capacitance be used to predict root mass in soil?

    Science.gov (United States)

    Dietrich, R C; Bengough, A G; Jones, H G; White, P J

    2013-07-01

    Electrical capacitance, measured between an electrode inserted at the base of a plant and an electrode in the rooting substrate, is often linearly correlated with root mass. Electrical capacitance has often been used as an assay for root mass, and is conventionally interpreted using an electrical model in which roots behave as cylindrical capacitors wired in parallel. Recent experiments in hydroponics show that this interpretation is incorrect and a new model has been proposed. Here, the new model is tested in solid substrates. The capacitances of compost and soil were determined as a function of water content, and the capacitances of cereal plants growing in sand or potting compost in the glasshouse, or in the field, were measured under contrasting irrigation regimes. Capacitances of compost and soil increased with increasing water content. At water contents approaching field capacity, compost and soil had capacitances at least an order of magnitude greater than those of plant tissues. For plants growing in solid substrates, wetting the substrate locally around the stem base was both necessary and sufficient to record maximum capacitance, which was correlated with stem cross-sectional area: capacitance of excised stem tissue equalled that of the plant in wet soil. Capacitance measured between two electrodes could be modelled as an electrical circuit in which component capacitors (plant tissue or rooting substrate) are wired in series. The results were consistent with the new physical interpretation of plant capacitance. Substrate capacitance and plant capacitance combine according to standard physical laws. For plants growing in wet substrate, the capacitance measured is largely determined by the tissue between the surface of the substrate and the electrode attached to the plant. Whilst the measured capacitance can, in some circumstances, be correlated with root mass, it is not a direct assay of root mass.

  11. The prevalence of sick leave

    DEFF Research Database (Denmark)

    Backhausen, Mette; Damm, Peter; Bendix, Jane

    2018-01-01

    of long-term sick leave. Method Data from 508 employed pregnant women seeking antenatal care was collected by questionnaires from August 2015 to March 2016. The questionnaires, which were filled in at 20 and 32 weeks of gestation, provided information on maternal characteristics, the number of days spent...... on sick leave and the associated reasons. Descriptive statistics and logistic regression analysis were applied. Results The prevalence of sick leave was 56% of employed pregnant women in the first 32 weeks of gestation and more than one in four reported long-term sick leave (>20 days, continuous...... was a negative predictor. Conclusions The prevalence of sick leave was 56% in the first 32 weeks of gestation and more than one in four women reported long-term sick leave. The majority of reasons for sick leave were pregnancy-related and low back pain was the most frequently given reason....

  12. Learn About Stem Cells

    Science.gov (United States)

    ... Patient Handbook Stem Cell Glossary Search Toggle Nav Stem Cell Basics Stem cells are the foundation from which ... original cell’s DNA, cytoplasm and cell membrane. About stem cells Stem cells are the foundation of development in ...

  13. Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte

    Science.gov (United States)

    Matsunaga, Kelly K. S.; Tomescu, Alexandru M. F.

    2016-01-01

    Background and Aims The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology. Methods Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian–Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions. Key Results The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme. Conclusions This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant–substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily

  14. Successful isolation, in vitro expansion and characterization of stem cells from Human Dental Pulp

    OpenAIRE

    Preethy SP; Srinivasan T; Tholcopiyan L; Thamaraikannan P; Srinivasan V; Murugan P; Manjunath S; Kannan TA; Shalini R; Sunil PM; Manikandhan R; Muthu MS; Abraham S

    2010-01-01

    BACKGROUND: Recent studies have shown that mesenchymal stem cells isolated from post natal human dental pulp, (Dental pulp stem cells-DPSCs) which is from permanent teeth and SHED (stem cells from human exfoliated deciduous teeth),the Periodontal ligament stem cells (PDLSC) and Stem cells from root Apical papilla(SCAP)have the potential to differentiate into cells of a variety of tissues including heart, muscle, cartilage, bone, nerve, salivary glands, teeth etc(1,2,3,4).This multipotential a...

  15. Determination of the best application time of 2,4-D 14C-labelled herbicides and 14C-labelled glyphosate for translocation to the root system of Glycyrrhiza Glabra vegetative growth stage

    International Nuclear Information System (INIS)

    Ahari Mostafavi, H.; Fathollahi, H.; Naserian, B.; Majd, F.; Rahimian, H.; Ghanbari, A.; Minbashi, M.

    2002-01-01

    In this research work, four different growth stages of Glycyrrhiza Glabra were studied separately and under green house conditions, and in all of these stages the plants were treated by labelled herbicides 14 C-2,4-D and 14 C-Glyphosate through the ad axial surface with activity of 0.60μci up to 0.1018 μci (in each 10μLi of solution). The plants were harvested 72 hours after treatment. They were divided into treated leaf, leaves and stem above the treated leaf and leaves and stem below the treated leaf and root. The amount of radio labelled herbicides in each homo genus solution (produced from extraction of herbicides from plants samples) was quantified using liquid scintillation counter. The amount of herbicide mobility and transfer to different parts of Glycyrrhiza Glabra in each growth stage were determined. This study shows that the best application time of 2,4-D for translocation to the root system of the plant is at 6- leaf stage, and 2,4-D indicates more trans loc ability as compared with Glyphosate

  16. Paid Family Leave, Fathers' Leave-Taking, and Leave-Sharing in Dual-Earner Households

    OpenAIRE

    Bartel, Ann P.; Rossin-Slater, Maya; Ruhm, Christopher J.; Stearns, Jenna; Waldfogel, Jane

    2015-01-01

    This paper provides quasi-experimental evidence on the impact of paid leave legislation on fathers' leave-taking, as well as on the division of leave between mothers and fathers in dual-earner households. Using difference-in-difference and difference-in-difference-in-difference designs, we study California's Paid Family Leave (CA-PFL) program, which is the first source of government-provided paid parental leave available to fathers in the United States. Our results show that fathers in Califo...

  17. The gastroprotective effect of Memora nodosa roots against experimental gastric ulcer in mice

    Directory of Open Access Journals (Sweden)

    DAYANE M. SILVA

    2016-01-01

    Full Text Available ABSTRACT Memora nodosa is popularly known as "caroba" and widely found in the Cerrado regions of Brazil. In traditional medicine, the leaves and stems are used for the healing of external ulcer and the roots for abdominal pain. This study investigated the effect of ethanolic roots extract of Memora nodosa (EMN on the gastric mucosa of mice. In the indomethacin induced gastric ulcer model, the treatments of the animals with EMN at doses of 100, 300 and 1000 mg/kg, p.o., markedly reduced the index of lesions. In the gastric ulcer models induced by ethanol and cold restraint-stress the previous treatment with EMN at dose of 300 mg/kg showed 69% and 43% of protection, respectively. Seven days after food-restriction, the animals treated with EMN (300 mg/kg p.o. showed reduction in the index of lesion by 65% as compared to control group. The intraduodenal administration of EMN (300 mg/kg did not alter the gastric acid secretion parameters. The treatment with EMN (300 mg/kg p.o. did not alter glutathione levels (GSH, but showed an increase of adhered gastric mucus as compared to the control group with lesion. These results showed that EMN has gastroprotective activity probably due with an increase of adhered gastric mucus.

  18. Roots of pioneer trees in the lower sub-tropical area of Dinghushan, Guangdong, China

    Institute of Scientific and Technical Information of China (English)

    HAO Yan-ru; PENG Shao-lin; MO Jiang-ming; LIU Xin-wei; CHEN Zhuo-quan; ZHOU Kai; WU Jin-rong

    2006-01-01

    Representative pioneer tree root systems in the subtropical area of South China were examined with regard to their structure, underground stratification and biomass distribution. Excavation of skeleton roots and observation of fine roots of seven species including the Euphorbiaceae, Theaceae, Melastomataceae, Lauraceae and Fagaceae families was carried out. The results showed that: (1) Pioneer tree roots in the first stage of natural succession were of two types, one characterized by taproot system with bulky plagiotropic branches; the other characterized by flat root system with several tabular roots. The late mesophilous tree roots were characterized by one obvious taproot and tactic braches roots up and down. Shrub species roots were characterized by heart fibrous root type featured both by horizontally and transversally growing branches. Root shapes varied in different dominant species at different stages of succession. (2) Roots of the different species varied in the external features-color, periderm and structure of freshly cut slash. (3) In a set of successional stages the biomass of tree roots increased linearly with the age of growth. During monsoon, the total root biomass amounted to 115.70 t/ha in the evergreen broad-leaved forest; 50.61t/ha in needle and broad-leaved mixed forest dominated by coniferous forest; and 64.20 t/ha in broad-and needle-leaved mixed forest dominated by broad-leaved heliophytes, and are comparable to the underground biomass observed in similar tropical forests. Thisis the first report about roots characteristics of forest in the lower sub-tropical area of Dinghushan, Guangdong, China.

  19. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots

    Directory of Open Access Journals (Sweden)

    Carmen eGómez-Lama Cabanás

    2014-09-01

    Full Text Available Pseudomonas fluorescens PICF7, a native olive root endophyte and effective biocontrol agent (BCA against Verticillium wilt of olive, is able to trigger a broad range of defense responses in root tissues of this woody plant. In order to elucidate whether strain PICF7 also induces systemic defense responses in above-ground organs, aerial tissues of olive plants grown under non-gnotobiotic conditions were collected at different time points after root bacterization with this endophytic BCA. A suppression subtractive hybridization (SSH cDNA library, enriched in up-regulated genes, was generated. This strategy enabled the identification of 376 ESTs (99 contigs and 277 singlets, many of them related to response to different stresses. Five ESTs, involved in defense responses, were selected to carry out time-course quantitative real-time PCR (qRT-PCR experiments aiming to: (i validate the induction of these genes, and (ii shed light on their expression pattern along time (from 1 to 15 days. Induction of olive genes potentially coding for lypoxigenase 2, catalase, 1-aminocyclopropane-1-carboxylate oxidase and phenylananine ammonia-lyase was thus confirmed at some time points. Computational analysis also revealed that different transcription factors were up-regulated in olive aerial tissues (i.e. jerf, bHLH, WRKYs, as previously reported for roots. Results confirmed that root colonization by this endophytic bacterium does not only trigger defense responses in this organ but also mount a wide array of systemic defense responses in distant tissues (stems, leaves. This sheds light on how olive plants respond to the ‘non-hostile’ colonization by a bacterial endophyte and how induced defense response can contribute to the biocontrol activity of strain PICF7.

  20. Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees.

    Science.gov (United States)

    Schuldt, Bernhard; Leuschner, Christoph; Brock, Nicolai; Horna, Viviana

    2013-02-01

    It is generally assumed that the largest vessels are occurring in the roots and that vessel diameters and the related hydraulic conductance in the xylem are decreasing acropetally from roots to leaves. With this study in five tree species of a perhumid tropical rainforest in Sulawesi (Indonesia), we searched for patterns in hydraulic architecture and axial conductivity along the flow path from small-diameter roots through strong roots and the trunk to distal sun-canopy twigs. Wood density differed by not more than 10% across the different flow path positions in a species, and branch and stem wood density were closely related in three of the five species. Other than wood density, the wood anatomical and xylem hydraulic traits varied in dependence on the position along the flow path, but were unrelated to wood density within a tree. In contrast to reports from conifers and certain dicotyledonous species, we found a hump-shaped variation in vessel diameter and sapwood area--specific conductivity along the flow path in all five species with a maximum in the trunk and strong roots and minima in both small roots and twigs; the vessel size depended on the diameter of the organ. This pattern might be an adaptation to the perhumid climate with a low risk of hydraulic failure. Despite a similar mean vessel diameter in small roots and twigs, the two distal organs, hydraulically weighted mean vessel diameters were on average 30% larger in small roots, resulting in ∼ 85% higher empirical and theoretical specific conductivities. Relative vessel lumen area in percent of sapwood area decreased linearly by 70% from roots to twigs, reflecting the increase in sclerenchymatic tissue and tracheids in acropetal direction in the xylem. Vessel size was more closely related to the organ diameter than to the distance along the root-to-shoot flow path. We conclude that (i) the five co-occurring tree species show convergent patterns in their hydraulic architecture despite different growth

  1. Paid Family Leave, Fathers' Leave-Taking, and Leave-Sharing in Dual-Earner Households.

    Science.gov (United States)

    Bartel, Anne P; Rossin-Slater, Maya; Ruhm, Christopher J; Stearns, Jenna; Waldfogel, Jane

    Using difference-in-difference and difference-in-difference-in-difference designs, we study California's Paid Family Leave (CA-PFL) program, the first source of government-provided paid parental leave available to fathers in the Unites States. Relative to the pre-treatment mean, fathers of infants in California are 46 percent more likely to be on leave when CA-PFL is available. In households where both parents work, we find suggestive evidence that CA-PFL increases both father-only leave-taking (i.e., father on leave while mother is at work) and joint leave-taking (i.e., both parents on leave at the same time). Effects are larger for fathers of first-born children than for fathers of later-born children.

  2. Pharmacognostic evaluation of the leaves and stem-bark of ...

    African Journals Online (AJOL)

    The microscopy revealed the dorsiventral nature of the leaf and was observed to be hypostomatic with anomocytic type of stomata, with numerous unicellular covering and glandular trichomes on the abaxial surface. Chemomicroscopic characters present include; lignin, starch, cellulose, tannin, suberin and calcium oxalate ...

  3. Modeling of desorption of Alfalfa (Medicago sativa) stems and leaves.

    NARCIS (Netherlands)

    ArabHosseini, A.; Huisman, W.; Müller, J.

    2011-01-01

    The equilibrium moisture content of agricultural products is necessary to optimize drying process and helps to keep the quality of the product during the period of storage. The main aim of this research was to find the best model which could define well, the exchange of moisture between alfalfa

  4. Phytochemical and antimicrobial studies on the leaves and stem of ...

    African Journals Online (AJOL)

    Administrator

    2006-08-25

    Aug 25, 2006 ... powdered material weighing 79 g was packed into a soxhlet extractor and ... loop to transfer a strand of the organism into the plate followed by ... distilled water which was swirled and mixed thoroughly by heating to allow ... solution was then mixed gently with molten double strength nutrient agar in a ...

  5. Molluscicidal Activity of Aqueous Extract of Leaves, Stem Back and ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2018-03-23

    Mar 23, 2018 ... medium, provided the original work is properly cited. Dates: Received: 19 ... of Africa, the Middle East and South Asia. It is ... Bauchi. This work is designed to determine .... the lowest molluscicides within and after 24 hours of.

  6. Pharmacognostic evaluation of the leaves and stem bark of ...

    African Journals Online (AJOL)

    The epidermal walls are straight with distinctively shaped calcium oxalate crystals clustered in the row of parenchymatous cells. The starch grains are of varying sizes and contains eccentric helium. The trichomes are uniserrate and the fibre is spindle – shaped. Chemomicroscopy revealed the presence of cellulose, lignin, ...

  7. Pharmacognostic Investigation of the Leaves and Stems of ...

    African Journals Online (AJOL)

    Erah

    Tropical Journal of Pharmaceutical Research, December 2009; 8 (6): 557-566. © Pharmacotherapy ... The periderm was four-layered followed by homogenous .... in width. The adaxial surface was smooth and .... scalariform perforation plate.

  8. Why rooting fails

    OpenAIRE

    Creutz, Michael

    2007-01-01

    I explore the origins of the unphysical predictions from rooted staggered fermion algorithms. Before rooting, the exact chiral symmetry of staggered fermions is a flavored symmetry among the four "tastes." The rooting procedure averages over tastes of different chiralities. This averaging forbids the appearance of the correct 't Hooft vertex for the target theory.

  9. Rooting gene trees without outgroups: EP rooting.

    Science.gov (United States)

    Sinsheimer, Janet S; Little, Roderick J A; Lake, James A

    2012-01-01

    Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important questions in evolution require knowing both the topologies and the roots of trees. However, general algorithms for calculating rooted trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP) (Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 4:167-181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301-316; Nguyen T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60-76), we explicitly enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene and genomic sequences. These new EP linear rooting invariants allow one to determine rooted trees, even in the complete absence of outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny (Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489-493; Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763-766) may be rooted directly from sequences, even when they are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255-260).

  10. STEM Education

    Science.gov (United States)

    & Development (LDRD) National Security Education Center (NSEC) Office of Science Programs Richard P Databases National Security Education Center (NSEC) Center for Nonlinear Studies Engineering Institute Scholarships STEM Education Programs Teachers (K-12) Students (K-12) Higher Education Regional Education

  11. A heterogeneous boron distribution in soil influences the poplar root system architecture development

    Science.gov (United States)

    Rees, R.; Robinson, B. H.; Hartmann, S.; Lehmann, E.; Schulin, R.

    2009-04-01

    . We irrigated the poplars with modified Hoagland's solution that contained no B. We imaged the roots in the soil every 3rd week using neutron radiography (NR) at the Paul-Scherrer Institute. Living roots can be visualised in soil by NR because of their higher water content compared to the surrounding soil. At the end of the growing period, the Al containers were opened and the soil surface was scanned by a standard office scanner. The soil in the containers was divided into nine equal portions representing different depths and spiked or un-spiked regions in soil profile. We separated roots and soil as well as the aerial parts (stems and leaves). We obtained data on root morphological parameters like root length and root density by evaluating scans of the washed root samples with an image evaluation software. All soil and plant samples were dried, weighed and analyzed for B and mineral nutrients using ICP-OES. Plant vitality parameters like water use, growth and number of living leaves did not show any reaction to the treatments. The oldest poplar leaves from poplars in the B-spiked treatments showed signs of light to serious necrosis. From the neutron radiographs it was apparent that poplar roots reached the walls of the Al- containers during the experiment. Primary roots grew at first strongly in lengths in horizontal as well as in vertical direction and only after this lateral root growth was visible. Although the filling and packing of the containers was done with great care to establish an ideally homogeneous soil profile settlement occurred in some containers resulting in gaps in the profile. However, roots growth did not seem to be deranged since roots simply crossed these gaps and continued growth in the adjacent soil patch. The complete results will be available at the time of the conference.

  12. [Precautionary maternity leave in Tirol].

    Science.gov (United States)

    Ludescher, K; Baumgartner, E; Roner, A; Brezinka, C

    1998-01-01

    Under Austrian law, precautionary maternity leave is a decree issued by the district public health physician. It forbids a pregnant woman to work and mandates immediate maternity leave. Regular maternity leave for all women employed in all jobs begins at 32 weeks of gestation. Women who work in workplaces deemed dangerous and women with a history of obstetric problems such as premature or growth-retarded babies from previous pregnancies are regularly 'sent' into precautionary maternity leave. The public health physicians of Tirol's nine administrative districts were interviewed and supplied data on precautionary maternity leave from their districts. In 100 women who attended the clinic for pregnancies at risk of the Obstetrics/Gynecology Department of Innsbruck University Hospital and who had already obtained precautionary maternity leave, the medical/administrative procedure was studied in each case and correlated with pregnancy outcome. The town district of Innsbruck and the district that comprises the suburbs of the provincial capital had the highest rates of precautionary maternity leave. The town district of Innsbruck had a rate of 24.3% of all pregnant women (employed and not employed) in precautionary maternity leave in 1997, whereas the whole province of Tirol had 13.4%. More than 80% of decrees for precautionary maternity leave are issued by district public health physicians on the basis of written recommendations from gynecologists. One third of women who are sent into precautionary maternity leave are issued the decree prior to 12 weeks of gestation - mostly cases of multiple pregnancies and women with previous miscarriages. The present system of precautionary maternity leave appears to work in the sense that most working pregnant women with risk factors are correctly identified - with most errors on the side of caution. As the system also helps employers - the employee's pay is paid from the federal family support fund and state insurance once she is in

  13. Accumulation of Heavy Metals (Pb, Cd, V) in Sediment, roots and ...

    African Journals Online (AJOL)

    Michael Horsfall

    info and www.bioline.org.br/ja. Accumulation of Heavy Metals (Pb, Cd, V) in Sediment, roots and leaves of ... ABSTRACT: Sirik mangrove forests harbour two species, Avicennia marina and .... Based on the soil critical concentration value of Pb.

  14. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    OpenAIRE

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H.; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R.

    2014-01-01

    Adventitious root (AR) formation in the stem base of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours after excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from stem base to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the cate...

  15. Absorption and translocation of 32P through root feeding by root (Wilt) affected coconut palms

    International Nuclear Information System (INIS)

    Beena George, S.; Moossa, P.P.; Sureshkumar, P.

    2017-01-01

    An investigation was carried out during 2015-16 to study the absorption and translocation of 32 P by root (wilt) affected coconut palms through root feeding in the Department of Soil Science and Agricultural Chemistry, College of Horticulture, Vellanikkara. Root (wilt) is one of the major diseases affecting coconut production in India. Etiology of the disease has been examined from several angles and it was found that nutrition imbalance in association with root (wilt) and it remains so even if integrated nutrient management practices are applied to diseased palms. Absorption and translocation of nutrients in three different types of coconut palms (healthy, apparently healthy and diseased palms) were studied using radioactive phosphorusin laterite soil. Ten morphologically uniform palms of same age were selected from each type of palms. Four active young roots were excavated from each palm and 32 P was applied by root feeding and index leaves were radio assayed for 32 P count at 24 hours, 15 and 30 days after application. The results revealed that healthy palms recorded significantly higher count rate(581 to 25158.66 cpm g -1 ) with root feeding compared to diseased palms(263 to 1068.38 cpm g - 1 ). From the present study it was clear that root (wilt) disease cannot be managed by soil application of nutrients because roots of the diseased palms are not able to translocate these nutrients. Since nutrient imbalance was one of the major problems noticed in root (wilt) affected palms, further study is required to find out proper method of nutrient application. (author)

  16. Parental Leave Policies and Parents' Employment and Leave-Taking

    Science.gov (United States)

    Han, Wen-Jui; Ruhm, Christopher; Waldfogel, Jane

    2009-01-01

    We describe trends in maternal employment and leave-taking after birth of a newborn and analyze the extent to which these behaviors are influenced by parental leave policies. Data are from the June Current Population Survey (CPS) Fertility Supplements, merged with other months of the CPS, and cover the period 1987 to 1994. This time span is one…

  17. Synergy between root hydrotropic response and root biomass in maize (Zea mays L.) enhances drought avoidance.

    Science.gov (United States)

    Eapen, Delfeena; Martínez-Guadarrama, Jesús; Hernández-Bruno, Oralia; Flores, Leonardo; Nieto-Sotelo, Jorge; Cassab, Gladys I

    2017-12-01

    Roots of higher plants change their growth direction in response to moisture, avoiding drought and gaining maximum advantage for development. This response is termed hydrotropism. There have been few studies of root hydrotropism in grasses, particularly in maize. Our goal was to test whether an enhanced hydrotropic response of maize roots correlates with a better adaptation to drought and partial/lateral irrigation in field studies. We developed a laboratory bioassay for testing hydrotropic response in primary roots of 47 maize elite DTMA (Drought Tolerant Maize for Africa) hybrids. After phenotyping these hybrids in the laboratory, selected lines were tested in the field. Three robust and three weak hybrids were evaluated employing three irrigation procedures: normal irrigation, partial lateral irrigation and drought. Hybrids with a robust hydrotropic response showed growth and developmental patterns, under drought and partial lateral irrigation, that differed from weak hydrotropic responders. A correlation between root crown biomass and grain yield in hybrids with robust hydrotropic response was detected. Hybrids with robust hydrotropic response showed earlier female flowering whereas several root system traits, such as projected root area, median width, maximum width, skeleton width, skeleton nodes, average tip diameter, rooting depth skeleton, thinner aboveground crown roots, as well as stem diameter, were considerably higher than in weak hydrotropic responders in the three irrigation procedures utilized. These results demonstrate the benefit of intensive phenotyping of hydrotropism in primary roots since maize plants that display a robust hydrotropic response grew better under drought and partial lateral irrigation, indicating that a selection for robust hydrotropism might be a promising breeding strategy to improve drought avoidance in maize. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. First report of root rot of cowpea caused by Fusarium equiseti in Georgia in the United States

    Science.gov (United States)

    Root rot was observed on cowpea in Tift County, Georgia, in May of 2015. The disease occurred on approximately 10% of cowpea plants in 2 fields (2 ha). Symptoms appeared as sunken reddish brown lesions on roots and stems under the soil line, secondary roots became dark brown and rotted, and infected...

  19. Nursery Cultural Practices and Morphological Attributes of Longleaf Pine Bare-Root Stock as Indicators of Early Field Performance; FINAL

    International Nuclear Information System (INIS)

    Glyndon E. Hatchell, Research Forester, Retired Institute for Mycorrhizal Research and Development Athens, Georgia and H. David Muse, Professor Department of Mathematics University of North Alabama Florence, Alabama

    1990-01-01

    A large study of morphological attributes of longleaf pine nursery stock at the Savannah River site of the various attributes measured, only number of lateral roots and seedling diameters were related to performance. Lateral root pruning in the nursery also improved performance. Both survival and growth during the first two years were strongly correlated with larger stem diameter and larger root system development

  20. Nutrient allocation among stem, leaf and inflorescence of jatropha plants

    Directory of Open Access Journals (Sweden)

    Rosiane L. S. de Lima

    2015-08-01

    Full Text Available ABSTRACTInformation on the partitioning of nutrients among various organs in jatropha plants, as a complementary tool for the recommendation of fertilization, is still not available. This study aimed to evaluate the contents of macro and micronutrients in stems, leaves and inflorescences of jatropha branches at the beginning of flowering. At the beginning of flowering, adult jatropha plants were sampled and divided into five compartments: inflorescences, leaves from vegetative branches, leaves from flowering branches, stems from vegetative branches and stems from flowering branches. Jatropha inflorescences are a drain of nutrients. Leaves are important sources of nutrients demanded by the inflorescences at the beginning of flowering. The higher allocation of nutrients in the inflorescences suggests the need for preventive/corrective fertilizations, which must be performed at least 30 days before flowering, providing plants with nutrients in adequate amounts for a good yield.

  1. REMINDER Saved Leave Scheme (SLS) : Simplified procedure for the transfer of leave to saved leave accounts

    CERN Multimedia

    HR Division

    2001-01-01

    As part of the process of streamlining procedures, the HR and AS Divisions have jointly developed a system whereby annual and compensatory leave will henceforth be automatically transferred1) to saved leave accounts. Under the provisions of the voluntary saved leave scheme (SLS), a maximum total of 10 days'2)Previously, every person taking part in the scheme has been individually issued with a form for the purposes of requesting the transfer of leave to the leave account and the transfer has then had to be done manually by HR Division. To streamline the procedure, unused leave of all those taking part in the saved leave scheme at the closure of the leave-year accounts will henceforth be transferred automatically to the saved leave account on that date. This simplification is in the interest of all parties concerned. This automatic transfer procedure has a number of advantages for participants in the SLS scheme. First, staff members will no longer have to take any administrative steps. Secondly, the new proced...

  2. Influence of light and shoot development stage on leaf photosynthesis and carbohydrate status during the adventitious root formation in cuttings of Corylus avellana L.

    Directory of Open Access Journals (Sweden)

    Sergio eTombesi

    2015-11-01

    Full Text Available Adventitious root formation in plant cuttings is influenced by many endogenous and environmental factors. Leaf photosynthesis during rooting of leafy cuttings in hard to root species can contribute to supply carbohydrates to the intensive metabolic processes related to adventious root formation. Light intensity during rooting is artificially kept low to decrease potential cutting desiccation, but can be limiting for photosynthetic activity. Furthermore, leafy cuttings collected from different part of the shoot can have a different ability to fuel adventitious root formation in cutting stem. The aim of this work was to determine the role of leaf photosynthesis on adventitious root formation in hazelnut (Corylus avellana L (a hard-to-root specie leafy cuttings and to investigate the possible influence of the shoot developmental stage on cutting rooting and survival in the post-rooting phase. Cutting rooting was closely related to carbohydrate content in cutting stems during the rooting process. Cutting carbohydrate status was positively influenced by leaf photosynthesis during rooting. Non saturating light exposure of leafy cuttings can contribute to improve photosynthetic activity of leafy cuttings. Collection of cuttings from different part of the mother shoots influenced rooting percentage and this appear related to the different capability to concentrate soluble sugars in the cutting stem during rooting. Adventitious root formation depend on the carbohydrate accumulation at the base of the cutting. Mother shoot developmental stage and leaf photosynthesis appear pivotal factors for adventitious roots formation.

  3. Negotiating leave in the workplace

    DEFF Research Database (Denmark)

    Bloksgaard, Lotte

    In Denmark leave entitlement is not only regulated by law but is also part of the various collective agreements established in the respective occupational sectors and at the local workplace level. Consequently, Danish fathers have very different leave entitlements, depending on the sector, branch...

  4. Negotiating leave in the workplace

    DEFF Research Database (Denmark)

    Bloksgaard, Lotte

    2014-01-01

    In Denmark leave entitlement is not only regulated by law but is also part of the various collective agreements established in the respective occupational sectors and at the local workplace level. Consequently, Danish fathers have very different leave entitlements, depending on the sector, branch...

  5. 5 CFR 630.1204 - Intermittent leave or reduced leave schedule.

    Science.gov (United States)

    2010-01-01

    ... insurance, health benefits, retirement coverage, and leave accrual). (e) The agency shall determine the... REGULATIONS ABSENCE AND LEAVE Family and Medical Leave § 630.1204 Intermittent leave or reduced leave schedule... reduced leave schedule unless the employee and the agency agree to do so. (b) Leave under § 630.1203(a) (3...

  6. Effects of root restriction on the ultrastructure of phloem in grape ...

    African Journals Online (AJOL)

    Yomi

    2011-12-28

    Dec 28, 2011 ... spaces among PP cells in the minor veins occurred in leaves from plants subjected to root restriction than in controls (Figure 4C to E). DISCUSSION. Since structure is often a meaningful guide to function, the ultrastructure of phloem in leaves is expected to yield clues to the mechanisms of phloem loading ...

  7. Stem photosynthesis in a desert ephemeral, Eriogonum inflatum : Characterization of leaf and stem CO2 fixation and H2O vapor exchange under controlled conditions.

    Science.gov (United States)

    Osmond, C B; Smith, S D; Gui-Ying, B; Sharkey, T D

    1987-07-01

    The gas exchange characteristics of photosynthetic tissues of leaves and stems of Eriogonum inflatum are described. Inflated stems were found to contain extraordinarily high internal CO 2 concentrations (to 14000 μbar), but fixation of this internal CO 2 was 6-10 times slower than fixation of atmospheric CO 2 by these stems. Although the pool of CO 2 is a trivial source of CO 2 for stem photosynthesis, it may result in higher water-use efficiency of stem tissues. Leaf and stem photosynthetic activities were compared by means of CO 2 fixation in CO 2 response curves, light and temperature response curves in IRGA systems, and by means of O 2 exchange at CO 2 saturation in a leaf disc O 2 electrode system. On an area basis leaves contain about twice the chlorophyll and nitrogen as stems, and are capable of up to 4-times the absolute CO 2 and O 2 exchange rates. However, the stem shape is such that lighting of the shaded side leads to a substantial increase in overall stem photosynthesis on a projected area basis, to about half the leaf rate in air. Stem conductance is lower than leaf conductance under most conditions and is less sensitive to high temperature or high VPD. Under most conditions, the ratio C i /C a is lower in stems than in leaves and stems show greater water-use efficiency (higher ratio assimilation/transpiration) as a function of VPD. This potential advantage of stem photosynthesis in a water limited environment may be offset by the higher VPD conditions in the hotter, drier part of the year when stems are active after leaves have senesced. Stem and leaf photosynthesis were similarly affected by decreasing plant water potential.

  8. Stem Cell Basics

    Science.gov (United States)

    ... Tips Info Center Research Topics Federal Policy Glossary Stem Cell Information General Information Clinical Trials Funding Information Current ... Basics » Stem Cell Basics I. Back to top Stem Cell Basics I. Introduction: What are stem cells, and ...

  9. Stem Cells

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2004-01-01

    In his influential essay on markets, An essay on framing and overflowing (1998), Michel Callon writes that `the growing complexity of industrialized societies [is] due in large part to the movements of the technosciences, which are causing connections and interdependencies to proliferate'. This p...... and tantalizing than stem cells, in research, in medicine, or as products.......'. This paper is about tech-noscience, and about the proliferation of connections and interdependencies created by it.More specifically, the paper is about stem cells. Biotechnology in general has the power to capture the imagination. Within the field of biotechnology nothing seems more provocative...

  10. Genetic association among root morphology, root quality and root yield in ashwagandha (Withania somnifera)

    OpenAIRE

    Kumar Ramesh R.; Reddy Anjaneya Prasanna L.; Subbaiah Chinna J.; Kumar Niranjana A.; Prasad Nagendra H.N.; Bhukya Balakishan

    2011-01-01

    Ashwagandha (Withania somnifera) is a dryland medicinal crop and roots are used as valuable drug in traditional systems of medicine. Morphological variants (morphotypes) and the parental populations were evaluated for root - morphometric, quality and yield traits to study genetic association among them. Root morphometric traits (root length, root diameter, number of secondary roots/ plant) and crude fiber content exhibited strong association among them and ...

  11. Belowground uptake strategies: how fine-root traits determine tree growth

    NARCIS (Netherlands)

    Weemstra, Monique

    2017-01-01

    The growth of trees depends on photosynthetic carbon gain by the leaves, which in turn relies on water and nutrient acquisition by the fine roots. Because the availability of carbon, water and nutrients fluctuates, trees can adjust their leaf and fine-root functional traits to maintain their

  12. root rot disease of five fruit tree seedlings in the nursery

    African Journals Online (AJOL)

    KAMALDEEN

    on them. Our experience in the nursery in Port Harcourt had been that many tree species of the tropical region are susceptible to root rot diseases of fungal origin. The fungal invasion of the succulent root tissues causes the young tree seedlings to dieback; their leaves becomes discoloured, wilted and eventually dead.

  13. Endoscopic root canal treatment.

    Science.gov (United States)

    Moshonov, Joshua; Michaeli, Eli; Nahlieli, Oded

    2009-10-01

    To describe an innovative endoscopic technique for root canal treatment. Root canal treatment was performed on 12 patients (15 teeth), using a newly developed endoscope (Sialotechnology), which combines an endoscope, irrigation, and a surgical microinstrument channel. Endoscopic root canal treatment of all 15 teeth was successful with complete resolution of all symptoms (6-month follow-up). The novel endoscope used in this study accurately identified all microstructures and simplified root canal treatment. The endoscope may be considered for use not only for preoperative observation and diagnosis but also for active endodontic treatment.

  14. RUNTIME DICTIONARIES FOR ROOT

    CERN Document Server

    Wind, David Kofoed

    2013-01-01

    ROOT is the LHC physicists' common tool for data analysis; almost all data is stored using ROOT's I/O system. This system benefits from a custom description of types (a so-called dictionary) that is optimised for the I/O. Until now, the dictionary cannot be provided at run-time; it needs to be prepared in a separate prerequisite step. This project will move the generation of the dictionary to run-time, making use of ROOT 6's new just-in-time compiler. It allows a more dynamic and natural access to ROOT's I/O features especially for user code.

  15. New statement of leave format

    CERN Multimedia

    HR Department

    2009-01-01

    Following the communication of the Standing Concertation Committee published in Weekly Bulletin No. 18-19 of 27 April 2009, the current statement of leave on monthly pay slips has been replaced with the EDH Leave Transactions report that displays the up-to-date situation of individual leave balances at all times. The report is available on EDH. Additionally, the layout of the pay slip has been modernised. The new version of the pay slip will be send out from September 2009 onwards. Finance and Purchasing Department, Personnel Accounting Human Resources Department, Organisation and Procedures General Infrastructure Services Department, Administrative Information Services

  16. Ozone impact on vegetation: A primary lesion in sugar export from source leaves

    Energy Technology Data Exchange (ETDEWEB)

    Grantz, D.A.

    1999-07-01

    Ozone (O{sub 3}) remains a serious threat to native and agricultural vegetation. In many plants, including Pima cotton (Gossypium barbadense L.), O{sub 3} reduces development of efficient root systems. To investigate the mechanism of O{sub 3}-inhibited allocation of biomass to roots, leaves were exposed to 45 min pulses of O{sub 3} ranging from 0.0 to 0.8 {micro}l 1{sup 11} followed by a 15 min pulse of {sup 14}CO{sub 2}. The rapid phase of export of {sup 14}C-carbohydrate from source leaves was monitored with a Geiger Muller Tube. A single compartment model with a single exponential decay function yielded first order rate constants. O{sub 3} retarded efflux, decreased the rate constant, and increased the calculated soluble sugar pool remaining in the source leaves. With incorporation of an asymptote into the single exponential model, equivalent to the label remaining in the leaf at the end of a prolonged photoperiod, calculated rate constants and sugar contents for O{sub 3}-free control leaves were similar to values from the literature. Total carbohydrate transported from source leaves and thus available for export to the roots was reduced by O{sub 3} effects on assimilation (up to 20%) and O{sub 3} effects on efflux (up to 70%). O{sub 3}-inhibition of root system development is therefore dominated by the impact on phloem translocation rather than by effects on carbon assimilation.

  17. Why STEM?

    Science.gov (United States)

    Mitts, Charles R.

    2016-01-01

    The International Technology and Engineering Educators Association (ITEEA) defines STEM as a new transdisciplinary subject in schools that integrates the disciplines of science, technology, engineering, and mathematics into a single course of study. There are three major problems with this definition: There is no consensus in support of the ITEEA…

  18. TOXICITY STUDIES OF THE AQUEOUS ROOT EXTRACT OF ...

    African Journals Online (AJOL)

    Administrator

    ... and stem twigs is given for abnormal swelling caused by liver abscess, bark infusion ... Cupaniodes is used in folk medicine, particularly among the. Yoruba people ... Plant Materials: Fresh root part of L. cupaniodes growing in the wild was .... Treatment and Dose. Mean organ weight per body weight + S.E.M. Heart. Lungs.

  19. Effects of Growth Hormones on Sprouting and Rooting of Jatropha ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    ABSTRACT: This study was conducted to assess the effect of growth hormone on sprouting and rooting ability of Jatropha curcas (L). Stem cuttings from mature plants were treated with two types of growth hormones: Naphthalene Acetic Acid and Indole-3-Butyric Acid while the untreated cuttings were used as control.

  20. Tradeoff between Stem Hydraulic Efficiency and Mechanical Strength Affects Leaf–Stem Allometry in 28 Ficus Tree Species

    Directory of Open Access Journals (Sweden)

    Ze-Xin Fan

    2017-09-01

    Full Text Available Leaf–stem allometry is an important spectrum that linked to biomass allocation and life history strategy in plants, although the determinants and evolutionary significance of leaf–stem allometry remain poorly understood. Leaf and stem architectures – including stem area/mass, petiole area/mass, lamina area/mass, leaf number, specific leaf area (LA, and mass-based leafing intensity (LI – were measured on the current-year branches for 28 Ficus species growing in a common garden in SW China. The leaf anatomical traits, stem wood density (WD, and stem anatomical and mechanical properties of these species were also measured. We analyzed leaf–stem allometric relationships and their associations with stem hydraulic ad mechanical properties using species-level data and phylogenetically independent contrasts. We found isometric relationship between leaf lamina area/mass and stem area/mass, suggesting that the biomass allocation to leaf was independent to stem size. However, allometric relationship between LA/mass and petiole mass was found, indicating large leaves invest a higher fractional of biomass in petiole than small ones. LI, i.e., leaf numbers per unit of stem mass, was negatively related with leaf and stem size. Species with larger terminal branches tend to have larger vessels and theoretical hydraulic conductivity, but lower WD and mechanical strength. The size of leaf lamina, petiole, and stem was correlated positively with stem theoretical hydraulic conductivity, but negatively with stem WD and mechanical strength. Our results suggest that leaf–stem allometry in Ficus species was shaped by the trade-off between stem hydraulic efficiency and mechanical stability, supporting a functional interpretation of the relationship between leaf and stem dimensions.

  1. Leaves of Absence. School Law Summary.

    Science.gov (United States)

    National Education Association, Washington, DC. Research Div.

    This report contains State-by-State statutory summaries on three types of leaves of absence relating to teachers -- sick leave, maternity leave, and sabbatical leave. Only State laws that have specific reference to one of these three types of leaves of absence are included. Not included are those statutes granting boards of education the general…

  2. Root-to-shoot signal transduction in rice under salt stress

    International Nuclear Information System (INIS)

    Bano, A.

    2010-01-01

    This paper describes the impact of salt stress on changes in the level of Abscisic acid (ABA) and cytokinins as signal molecules communicated through root-to-shoot in rice. The study focus to investigate the time related changes in the salt induced ABA and cytokinins accumulation concomitant with the changes in water potential and stomatal conductance of salt stressed plants. Seeds of 3 rice varieties were grown in plastic pots in phytotron. The changes in the level of abscisic acid (ABA), transzeatin riboside (t-zr) and 2-isopentyl adenine (2-ipa) were monitored in xylem sap and leaves of three rice varieties viz. BAS-385 (salt-sensitive), BG-402 (moderately tolerant) and NIAB-6 (tolerant). The salt solution (NaCl,1.2 dS m-1) was added to the rooting medium after transplanting when plants were 50 d old. There was delay in response of stomata to salt treatment in BAS-385 as opposed to earlier increase in leaf resistance in BG-402 and NIAB-6. The stem water potential increased sharply in all the varieties following salt treatment but the decrease in stomatal conductance of leaves preceded the decrease in stem water potential. The concentration of xylem ABA increased significantly greatly reaching a peak in BAS-385 much earlier (24 h of salt treatment) than that of other varieties. The ABA accumulation was delayed and the magnitude of ABA accumulation was greater in BG-402 and NIAB-6.The xylem flux of ABA followed a similar pattern. The concentration of xylem t-zr showed a short- term increase in all the varieties but the magnitude of increase was greater in BAS-385 at all the measurements till 96h of salt treatment .The concentration of xylem 2-ipa was higher in BAS-385 till 48 h of salt treatment . The flux of both the t-zr and 2ipa was greater in the tolerant variety 96h after salt treatment. The basal level of ABA and cytokinin appears to play important role in determining the response of a variety to salt stress. The xylem flux of ABA and cytokinin (2-ipa and t

  3. Long range lateral root activity by neo-tropical savanna trees.

    Science.gov (United States)

    Leonel da S. L. Sternberg; Sandra Bucci; Augusto Franco; Guillermo Goldstein; William A. Hoffman; Frederick C. Meinzer; Marcelo Z. Moreira; Fabian. Scholz

    2004-01-01

    The extent of water uptake by lateral roots of savanna trees in the Brazilian highlands was measured by irrigating two 2 by 2 m plots with deuterium-enriched water and assaying for the abundance of deuterium in stem water from trees inside and at several distances from the irrigation plots. Stem water of trees inside the irrigation plots was highly enriched compared to...

  4. Establishment of in vitro fast-growing normal root culture of Vernonia ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... established from leaf explants of in vitro raised shoot induced from the stem nodal segments on murashige and ... cell/ root and hairy root culture is one of the major solutions to .... Means with same letter (s) in the same column are not significantly different at 5% using Duncan's multiple range test. Table 2.

  5. Effects of plant growth regulators on callus, shoot and root formation ...

    African Journals Online (AJOL)

    Root and stem explants of fluted pumpkin were cultured in medium containing different types and concentrations of plant growth regulators (PGRs). The explants were observed for callus, root and shoot formation parameters after four months. Differences among explants, plant growth regulators and their interaction were ...

  6. A co-opted hormonal cascade activates dormant adventitious root primordia upon flooding in solanum dulcamara

    NARCIS (Netherlands)

    Dawood, Thikra; Yang, Xinping; Visser, Eric J.W.; Beek, Te Tim A.H.; Kensche, Philip R.; Cristescu, Simona M.; Lee, Sangseok; Floková, Kristýna; Nguyen, Duy; Mariani, Celestina; Rieu, Ivo

    2016-01-01

    Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR

  7. Expression of a Petunia inflata pectin methyl esterase in Solanum tuberosum L. enhances stem elongation and modifies cation distribution.

    Science.gov (United States)

    Pilling, J; Willmitzer, L; Fisahn, J

    2000-02-01

    Transgenic potato (Solanum tuberosum L.) plants were constructed with a Petunia inflata-derived cDNA encoding a pectin methyl esterase (PME; EC 3.1.1.11) in sense orientation under the control of the cauliflower mosaic virus 35S promoter. The PME activity was elevated in leaves and tubers of the transgenic lines but slightly reduced in apical segments of stems from mature plants. Stem segments from the base of juvenile PME-overexpressing plants did not differ in PME activity from the control, whereas in apical parts PME was less active than in the wild-type. During the early stages of development stems of these transgenic plants elongated more rapidly than those of the wild-type. Further evidence that overexpression of a plant-derived PME has an impact on plant development is based on modifications of tuber yield, which was reduced in the transgenic lines. Cell walls from transgenic tubers showed significant differences in their cation-binding properties in comparison with the wild-type. In particular, cell walls displayed increased affinity for sodium and calcium, while potassium binding was constant. Furthermore, the total ion content of transgenic potatoes was modified. Indications of PME-mediated differences in the distribution of ions in transgenic plants were also obtained by monitoring relaxations of the membrane potential of roots subsequent to changes in the ionic composition of the bathing solution. However, no effects on the chemical structure of pectin from tuber cell walls could be detected.

  8. Carbon cost of the fungal symbiont relative to net leaf P accumulation in a split-root VA mycorrhizal symbiosis

    International Nuclear Information System (INIS)

    Douds, D.D. Jr.; Johnson, C.R.; Koch, K.E.

    1988-01-01

    Translocation of 14 C-photosynthates to mycorrhizal (++), half mycorrhizal (0+), and nonmycorrhizal (00) split-root systems was compared to P accumulation in leaves of the host plant. Carrizo citrange seedlings (Poncirus trifoliata [L.] Raf. x Citrus sinensis [L.] Osbeck) were inoculated with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices Schenck and Smith. Plants were exposed to 14 CO 2 for 10 minutes and ambient air for 2 hours. Three to 4% of recently labeled photosynthate was allocated to metabolism of the mycorrhiza in each inoculated root half independent of shoot P concentration, growth response, and whether one or both root halves were colonized. Nonmycorrhizal roots respired more of the label translocated to them than did mycorrhizal roots. Label recovered in the potting medium due to exudation or transport into extraradical hyphae was 5 to 6 times greater for (++) versus (00) plants. In low nutrient media, roots of (0+) and (++) plants transported more P to leaves per root weight than roots of (00) plants. However, when C translocated to roots utilized for respiration, exudation, etc., as well as growth is considered, (00) plant roots were at least as efficient at P uptake (benefit) per C utilized (cost) as (0+) and (++) plants. Root systems of (++) plants did not supply more P to leaves than (0+) plants in higher nutrient media, yet they still allocated twice the 14 C-photosynthate to the mycorrhiza as did (0+) root systems

  9. Chitinase from phaseolus vulgaris leaves

    International Nuclear Information System (INIS)

    Boller, T.; Gehri, A.; Mauch, F.; Vogeli, V.

    1988-01-01

    This paper examines the effect of ethylene on chitinase activity in bean leaves. The authors have purified the enzyme in the course of their work. The purification method is detailed and the colorimetric and radiochemical assays are compared

  10. Irrational Square Roots

    Science.gov (United States)

    Misiurewicz, Michal

    2013-01-01

    If students are presented the standard proof of irrationality of [square root]2, can they generalize it to a proof of the irrationality of "[square root]p", "p" a prime if, instead of considering divisibility by "p", they cling to the notions of even and odd used in the standard proof?

  11. The Problems of Parental Leave.

    Science.gov (United States)

    Price, Sean

    2017-10-01

    The United States is the only major industrialized country in the world to not require paid parental leave. Numerous studies have shown that allowing parents time with a newborn makes the child and the parents healthier, both physically and mentally. Many physicians, especially those who work in practices with five or fewer doctors, worry about how to pay for parental leave for themselves and their staff.

  12. Betacyanin accumulation and guaiacol peroxidase activity in Beta vulgaris L. leaves following copper stress

    Directory of Open Access Journals (Sweden)

    Janet M. León Morales

    2012-07-01

    Full Text Available The effect of copper stress on betacyanin accumulation and guaiacol peroxidase (GPOD activity in leaves of different age was evaluated in red beet (Beta vulgaris L. var. Crosby Egyptian plants. In hydroponic culture, plants were treated with 0.3 μM (control, 50 μM, 100 μM, and 250 μM of CuSO4 for 6 days. Copper was taken up and accumulated in old roots but was not translocated to leaves. However in young leaves, the increase of lipid peroxidation and reduction of growth were evident from day 3 of copper exposure; whereas in old leaves, the lipid peroxidation and growth were the same from either copper-treated or control plants. In response to copper exposure, the betacyanin accumulation was evident in young leaves by day 3, and continued to increase until day 6. Betacyanin only were accumulated in old leaves until day 6, but the contents were from 4 to 5 times lower than those observed in young leaves at the same copper concentrations. GPOD activity increased 3.3- and 1.4-fold in young and old leaves from day 3 of copper treatment respectively, but only in the young leaves was sustained at the same level until day 6. Old roots shown betacyanin in the control plants, but the betacyanin level and growth were reduced with the copper exposure. In contrast, young roots emerged by copper effect also accumulated copper and showed the highest betacyanin content of all plant parts assayed. These results indicate that betacyanin accumulation and GPOD activity are defense responses to copper stress in actively growing organs.

  13. Studies on photosynthate distribution and root exudates of cinesische by 14C tracer technique

    International Nuclear Information System (INIS)

    Chen Junwei; Ni Zhuru; Liu Zhihong; Fu Zhijian

    1994-01-01

    Cinesische (Cunninghamia sinesis R. Br.) plants grown in nutrient solution were exposed to 14 CO 2 for 24 hours to study the photosynthate distribution and root exudates. One day after feeding 14 CO 2 , the majority of 14 C assimilate was remained in leaves, only 27.38% of 14 C assimilate was translocated into new shoots, main branches, lateral branches and roots. 3 days after feeding 14 CO 2 , the distribution rate of 14 C photosynthate in leaves was still the highest, but the percentage decreased and it correspondingly increased in other plant parts. 22 days after feeding 14 CO 2 , the distribution rate in new shoots became the highest, roots ranked the second, main branches were the third, leaves and lateral branches were the lowest. The photosynthate in the root could rapidly convert into root exudates. The amount of root exudates reached a peak after 4 days of feeding 14 CO 2 , afterward the amount of 14 C root exudates decreased rapidly. The amount of sugar was the highest among all kinds of root exudates, the amount of organic acid was the second, the content of amino acid was much lower than that of the other two root exudates

  14. Root reinforcement and slope bioengineering stabilization by Spanish Broom (Spartium junceum L.

    Directory of Open Access Journals (Sweden)

    F. Giadrossich

    2009-09-01

    Full Text Available The present paper deals with the root system's characteristics of Spanish Broom (Spartium junceum L., a species whose capacity for adaptating and resisting to drought is worth investigating. In particular, the aims of the study were 1 to investigate the plant's bio-mechanical aspects and 2 to verify whether root reinforcement and the field rooting ability of stem cuttings enhance its potential for use in slope stabilization and soil bio-engineering techniques, particularly in the Mediterranean areas. Single root specimens were sampled and tested for tensile strength, obtaining classic tensile strength-diameter relationships. Analysis were performed on the root systems in order to assess root density distribution. The Root Area Ratio (RAR was analyzed by taking both direct and indirect measurements, the latter relying on image processing. The data obtained were used to analyze the stability of an artificial slope (landfill and the root reinforcement. The measurement and calculation of mean root number, mean root diameter, RAR, root cohesion and Factor of safety are presented in order to distinguish the effect of plant origin and propagation. Furthermore, tests were performed to assess the possibility of agamic propagation (survival rate of root-ball endowed plants, rooting from stem cuttings. These tests confirmed that agamic propagation is difficult, even though roots were produced from some buried stems, and for practical purposes it has been ruled out. Our results show that Spanish Broom has good bio-mechanical characteristics with regard to slope stabilization, even in critical pedoclimatic conditions and where inclinations are quite steep, and it is effective on soil depths up to about 50 cm, in agreement with other studies on Mediterranean species. It is effective in slope stabilization, but less suitable for soil bio-engineering or for triggering natural plant succession.

  15. The DCL gene of tomato is required for chloroplast development and palisade cell morphogenesis in leaves.

    OpenAIRE

    Keddie, J S; Carroll, B; Jones, J D; Gruissem, W

    1996-01-01

    The defective chloroplasts and leaves-mutable (dcl-m) mutation of tomato was identified in a Ds mutagenesis screen. This unstable mutation affects both chloroplast development and palisade cell morphogenesis in leaves. Mutant plants are clonally variegated as a result of somatic excision of Ds and have albino leaves with green sectors. Leaf midribs and stems are light green with sectors of dark green tissue but fruit and petals are wild-type in appearance. Within dark green sectors of dcl-m l...

  16. Chromatic roots and hamiltonian paths

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2000-01-01

    We present a new connection between colorings and hamiltonian paths: If the chromatic polynomial of a graph has a noninteger root less than or equal to t(n) = 2/3 + 1/3 (3)root (26 + 6 root (33)) + 1/3 (3)root (26 - 6 root (33)) = 1.29559.... then the graph has no hamiltonian path. This result...

  17. INFLUENCE OF NPK AND LIME APLICATION ON ERVA-MATE GROWTH, ROOT-ROT SEVERITY AND SOIL FUNGI POPULATION1

    Directory of Open Access Journals (Sweden)

    Igor Poletto

    2011-09-01

    Full Text Available The present work evaluated the influence of the application of NPK and liming doses in the soil, on the growth of Erva-mate, the severity of rot-root and the fungi population of the soil. To do so, an experiment was installed at the green house, in the Forest Nursery of UFSM, using an experimental design completely randomized factorial 4x3x4 (Factor F: Fusarium spp. inoculation; Factor C: soil limestone; Factor A: NPK doses , totaling 48 treatments. The seedlings were cultivated in vases containing 2 kg of soil, classified as ‘Red-Yellow Argisoil’ (clay soil. At the end of the experiment was measured the stem diameter, height of the aerial part, leaves number, aerial dry biomass, root dry biomass and total dry biomass of the seedlings. Also, the soil was collected, from each treatment, for the chemical analysis and the counting of the fungi population. It was observed that the association among application of NPK and liming in the soil hampered the development of Erva-mate seedlings. The analysis of some variables suggests that the limestone absence provided greater resistance of seedlings to the attack of Fusarium spp. or the severity of Fusarium spp. was reduced in lower pH. The fungi population of the soil presented varied behavior depending on the applied treatments.

  18. Sodium and chloride accumulation in leaf, woody, and root tissue of Populus after irrigation with landfill leachate

    International Nuclear Information System (INIS)

    Zalesny, Jill A.; Zalesny, Ronald S.; Wiese, Adam H.; Sexton, Bart; Hall, Richard B.

    2008-01-01

    The response of Populus to irrigation sources containing elevated levels of sodium (Na + ) and chloride (Cl - ) is poorly understood. We irrigated eight Populus clones with fertilized well water (control) (N, P, K) or municipal solid waste landfill leachate weekly during 2005 and 2006 in Rhinelander, Wisconsin, USA (45.6 deg. N, 89.4 deg. W). During August 2006, we tested for differences in total Na + and Cl - concentration in preplanting and harvest soils, and in leaf, woody (stems + branches), and root tissue. The leachate-irrigated soils at harvest had the greatest Na + and Cl - levels. Genotypes exhibited elevated total tree Cl - concentration and increased biomass (clones NC14104, NM2, NM6), elevated Cl - and decreased biomass (NC14018, NC14106, DM115), or mid levels of Cl - and biomass (NC13460, DN5). Leachate tissue concentrations were 17 (Na + ) and four (Cl - ) times greater than water. Sodium and Cl - levels were greatest in roots and leaves, respectively. - Sodium and chloride supplied via landfill leachate irrigation is accumulated at high concentrations in tissues of Populus

  19. A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition.

    Science.gov (United States)

    Burleigh, S H; Harrison, M J

    1997-05-01

    A cDNA clone (Mt4) was isolated as a result of a differential screen to identify genes showing altered expression during the interaction between Medicago truncatula and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus versiforme. Mt4 represents a M. truncatula mRNA that contains numerous short open reading frames, the two longest of which are predicted to encode polypeptides of 51 amino acids each. One of these open reading frames shares a short region of identity with a phosphate starvation-inducible gene from tomato. Mt4 gene expression is regulated in response to colonization by mycorrhizal fungi: transcripts were detected in non-colonized roots and levels decreased in both M. truncatula and M. sativa (alfalfa) roots after colonization by G. versiforme. Transcript levels also decreased during the incomplete interaction between G. versiforme and a M. sativa mycorrhizal minus (myc-) line, indicating that the down-regulation of this gene occurs early during the interaction between the fungus and its host plant. Phosphate levels in the nutrient media also affected the expression of the Mt4 gene: transcripts were present in the roots of plants grown under phosphate-deficient conditions, but were undetectable in the roots of plants grown under phosphate sufficient conditions. Furthermore, expression was only observed when plants were grown under nitrogen-sufficient conditions. Northern blot analyses indicate that Mt4 transcripts are present primarily in roots and barely detectable in stems or leaves. Thus, Mt4 represents a M. truncatula gene whose expression is regulated in response to both colonization by mycorrhizal fungi and to the phosphate status of the plant.

  20. [Disability leave and sick leave in Spain. 2016 legislative update].

    Science.gov (United States)

    Vicente-Herrero, María Teófila; Terradillos-García, María Jesús; Capdevila-García, Luisa M; Ramírez-Íñiguez de la Torre, María Victoria; Aguilar-Jiménez, Encarna; Aguado-Benedí, María José; López-González, Angel Arturo; Torres-Alberich, José Ignacio

    2018-01-01

    In Spanish, the concepts of discapacidad (disability leave) and incapacidad (sick leave) jointly refer to the impairment of a person due to injuries, diseases or deficiencies that limit their activity in a social, personal or occupational field. However, this common link does not imply that both concepts are the same. Statistical data from INE (Instituto Nacional de Estadística: Statistic National Institute) show that Spain had in 2015 3.85 million persons with a disability (59.8% were women). Statistical data from 2015 from INSS (Instituto Nacional de Seguridad Social: Social Security National Institute) show high levels in the number of processes and in workers affected by temporary sick leave, with social costs to the social security system. Both concepts have been updated: about disability leave, Law 39/2006 adjusted terminology by avoiding the use of concepts with discriminating or pejorative connotation. Regarding sick leave, the Ley General de Seguridad Social (General Social Security Law)has been amended and came into effect in January, 2016. It is necessary to know and distinguish these aspects for a better administrative management, and a more oriented information to the affected patient.

  1. Comparison of two possible routes of pathogen contamination of spinach leaves in a hydroponic cultivation system.

    Science.gov (United States)

    Koseki, Shigenobu; Mizuno, Yasuko; Yamamoto, Kazutaka

    2011-09-01

    The route of pathogen contamination (from roots versus from leaves) of spinach leaves was investigated with a hydroponic cultivation system. Three major bacterial pathogens, Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes, were inoculated into the hydroponic solution, in which the spinach was grown to give concentrations of 10⁶ and 10³ CFU/ml. In parallel, the pathogens were inoculated onto the growing leaf surface by pipetting, to give concentrations of 10⁶ and 10³ CFU per leaf. Although contamination was observed at a high rate through the root system by the higher inoculum (10⁶ CFU) for all the pathogens tested, the contamination was rare when the lower inoculum (10³ CFU) was applied. In contrast, contamination through the leaf occurred at a very low rate, even when the inoculum level was high. For all the pathogens tested in the present study, the probability of contamination was promoted through the roots and with higher inoculum levels. The probability of contamination was analyzed with logistic regression. The logistic regression model showed that the odds ratio of contamination from the roots versus from the leaves was 6.93, which suggested that the risk of contamination from the roots was 6.93 times higher than the risk of contamination from the leaves. In addition, the risk of contamination by L. monocytogenes was about 0.3 times that of Salmonella enterica subsp. enterica serovars Typhimurium and Enteritidis and E. coli O157:H7. The results of the present study indicate that the principal route of pathogen contamination of growing spinach leaves in a hydroponic system is from the plant's roots, rather than from leaf contamination itself.

  2. Anatomia de raiz, caule e folha e identificação de estruturas secretoras de Achillea millefolium L. (Asteraceae - DOI: 10.4025/actascibiolsci.163 Anatomy of root, stem and leaf and identification of secretory structures of Achillea millefolium L. (Asteraceae- DOI: 10.4025/actascibiolsci.163

    Directory of Open Access Journals (Sweden)

    Ismar Sebastião Moscheta

    2007-11-01

    Full Text Available Realizou-se o estudo anatômico dos órgãos vegetativos raiz, caule e folha, e extraíram-se os óleos essenciais das diferentes partes da planta, identificando-se as possíveis estruturas secretoras desses óleos. Utilizou-se material fresco para a realização dos testes histoquímicos e para a confecção de lâminas semipermanentes, as quais se coraram com Safrablau. Para a confecção de lâminas permanentes, utilizou-se material fixado em FAA 50%, incluído em historesina. Observaram-se pêlos tectores no escapo e na folha, enquanto que pêlos glandulares foram encontrados no escapo e na flor. Canais secretores de origem esquizógena acompanham os feixes vasculares no rizoma, no escapo, na folha e na bráctea da flor. Na raiz, esses canais estão ausentes. Na folha e na inflorescência fechada, observouse maior quantidade de óleos essenciais. A folha é anfistomática e os estômatos, do tipo anomocítico, estão presentes também no escapo. A estrutura geral de Achillea millefolium é semelhante à de outras espécies da família Asteraceae.An anatomic study of the vegetative organs: root, stem and leaf was made. The essential oils were extracted from the plant identifying the possible secretory structures. Fresh material was used in order to perform histochemical tests and to prepare semi-permanent slides, which were colored with Safrabau. For the preparation of the semi-permanent slides, material fixed in FAA 50% was used including historesina. Tector hairs can be observed in the scape and flower. Secretory channels of schizogeneous origin follow the vascular bundles in the rhizome, scape, leaf and bract of the flower. In the root, these channels are absent. In the leaf and in the unopened inflorescence there is a greater quantity of the essential oils. The leaf is amphistomatic and the stomata of anomocytic type are present in the scape as well. The general structure of the Achillea millefolium is similar to the structures of the

  3. Chitinase activities, scab resistance, mycorrhization rates and biomass of own-rooted and grafted transgenic apple

    Directory of Open Access Journals (Sweden)

    Tina Schäfer

    2012-01-01

    Full Text Available This study investigated the impact of constitutively expressed Trichoderma atroviride genes encoding exochitinase nag70 or endochitinase ech42 in transgenic lines of the apple cultivar Pinova on the symbiosis with arbuscular mycorrhizal fungi (AMF. We compared the exo- and endochitinase activities of leaves and roots from non-transgenic Pinova and the transgenic lines T386 and T389. Local and systemic effects were examined using own-rooted trees and trees grafted onto rootstock M9. Scab susceptibility was also assessed in own-rooted and grafted trees. AMF root colonization was assessed microscopically in the roots of apple trees cultivated in pots with artificial substrate and inoculated with the AMF Glomus intraradices and Glomus mosseae. Own-rooted transgenic lines had significantly higher chitinase activities in their leaves and roots compared to non-transgenic Pinova. Both of the own-rooted transgenic lines showed significantly fewer symptoms of scab infection as well as significantly lower root colonization by AMF. Biomass production was significantly reduced in both own-rooted transgenic lines. Rootstock M9 influenced chitinase activities in the leaves of grafted scions. When grafted onto M9, the leaf chitinase activities of non-transgenic Pinova (M9/Pinova and transgenic lines (M9/T386 and M9/T389 were not as different as when grown on their own roots. M9/T386 and M9/T389 were only temporarily less infected by scab than M9/Pinova. M9/T386 and M9/T389 did not differ significantly from M9/Pinova in their root chitinase activities, AMF root colonization and biomass.

  4. STUDY OF ORGANIC ACIDS IN ALMOND LEAVES

    Directory of Open Access Journals (Sweden)

    Lenchyk L.V.

    2015-05-01

    Full Text Available Introduction. Almond (Amygdalus communis is a stone fruit, from the Rosaceae family, closest to the peach. It is spread throughout the entire Mediterranean region and afterwards to the Southwestern USA, Northern Africa, Turkey, Iran, Australia and South Africa. It is sensitive to wet conditions, and therefore is not grown in wet climates. Iran is located in the semi-arid region of the world. Because of its special tolerance to water stress, almond is one of the main agricultural products in rainfed condition in Iran. Almond leaves have been investigated for their phenolic content and antioxidant activity. It was found that total antioxidant activity and phenolic compounds exhibited variations according to season, plant organ (leaf and stem and variety. Analysis of previous research on almonds focused on investigating compounds mostly in seeds and phenolic compounds in leaves, but organic acids in leaves have not been studied. Aim of this study was investigation of organic acids in leaves of almond variety which is distributed in Razavi Khorasan province of Iran. Materials and Methods. In August 2012 almond leaves were collected in Iran, dried and grinded. The study of qualitative composition and quantitative determination of carboxylic acids in almond leaves was carried out by gas chromatography with mass spectrometric detection. For determination organic acids content, to 50 mg of dried plant material in 2 ml vial internal standard (50 μg of tridecane in hexane was added and filled up with 1.0 ml of methylating agent (14 % BCl3 in methanol, Supelco 3-3033. The mixture was kept in a sealed vial during 8 hours at 65 °C. At this time fatty oil was fully extracted, and hydrolyzed into its constituent fatty acids and their methylation was done. At the same time free organic and phenolcarbonic acids were methylated too. The reaction mixture was poured from the plant material sediment and was diluted with 1 ml of distilled water. To extract methyl

  5. Why People Leave Their Jobs?

    Directory of Open Access Journals (Sweden)

    Luis R. Domínguez A.

    2014-12-01

    Full Text Available This article aims to show the results of the review of literature of relevant studies of the causal elements of intention to leave in the last five years (2009-2013. The method used to evaluate the literature was based on the seven steps for research synthesis: problem formulation, literature search, obtaining information from studies, quality assessment studies, analysis and integration of results, interpretation of evidence and presentation of results. 48 studies from 15 different countries with a sample of 35804 employees of different companies were evaluated. The findings suggest the existence of 89 different variables influencing the intention to leave of employees in an organization. The results of this study will allow researchers to better understand the variables that can be studied to verify the impact of variables such as causal elements, but also see those that have a mediating effect between them for predicting intention to leave as an element of employee turnover. This study makes three important contributions to literature of turnover. First, in this study all the parameters associated with the intention to leave were checked. Second, this study categorizes and displays in proportion relevant interests to the scientific community whom studying employee turnover across the intention to leave. And thirdly provides clues organizations to improve some of its structural and contextual features to control turnover.

  6. Allowable stem nut wear and diagnostic monitoring for MOVs

    International Nuclear Information System (INIS)

    Swinburne, P.

    1994-01-01

    After a motor-operated valve (MOV) stem nut failure in 1991 that contributed to a forced plant shutdown, the FitzPatrick Plant staff developed criteria to check for excessive stem nut wear in MOVs. Allowable stem nut wear monitoring uses both direct dimensional measurement and diagnostic test data interpretation. The wear allowance is based on the recommended permitted backlash discussed in the Electric Power Research Institute/Nuclear Maintenance Assistance Center Technical Repair Guideline for the Limitorque SMB-000 Motor Actuator. The diagnostic analysis technique measures the time at zero load and compares this with a precalculated allowable zero force time. Excessive zero force time may be the result of other MOV problems, such as a loose stem nut lock nut or excessive free play in the drive sleeve bearing. Stress levels for new or nominal stem nuts and stem nuts with the full wear allowance were compared. Bending and shear stresses at the thread root increase for the maximum wear condition when compared with a open-quotes newclose quotes stem nut. These stresses are directly related to the thread root thickness. For typical MOV loading and common stem threading (with two diameters of thread engagement), the thread stresses are well within acceptable limits for ASTM B584-C86300 (formerly B147-863) manganese bronze (typical stem nut material)

  7. Stem cell biobanks.

    Science.gov (United States)

    Bardelli, Silvana

    2010-04-01

    Stem cells contribute to innate healing and harbor a promising role for regenerative medicine. Stem cell banking through long-term storage of different stem cell platforms represents a fundamental source to preserve original features of stem cells for patient-specific clinical applications. Stem cell research and clinical translation constitute fundamental and indivisible modules catalyzed through biobanking activity, generating a return of investment.

  8. Parental leave: the impact of recent legislation on parents' leave taking.

    Science.gov (United States)

    Han, Wen-Jui; Waldfogel, Jane

    2003-02-01

    We use data from the Survey of Income and Program Participation to examine the impact of leave entitlements on unpaid leave usage by men and women after the birth of a child from 1991 to 1999. The results indicate that legislation providing the right to unpaid leave has not affected men's leave usage. The results for women are mixed: in some specifications, leave entitlements are associated with increased leave taking or longer leaves, but the results depend on how we define leave coverage. Our results point to the limited impact of unpaid leave policies and the potential importance of paid-leave policies.

  9. Avaliação do enraizamento de estacas de crisântemo (Chrysanthemum morifolium L. cv. white Reagan 606 tratadas com ácido indolbutírico (IBA Rooting evaluation in Chrysanthemum morifolium cv. white Reagan 606 stem cuttings as affected by indolbutyric acid (IBA

    Directory of Open Access Journals (Sweden)

    F.L. Cuquel

    1992-01-01

    Full Text Available Avaliou-se o efeito de doses crescentes do ácido indolbutírico (IBA e de diferentes tempos de imersão no enraizamento de estacas de Chrysanthemum morifolium cv. White Reagan 606. O fator doses foi aplicado em quatro níveis: 0, 500, 1000 e 1500 ppm de IBA e o fator tempo em três níveis: 5s, 1h e 2h. O delineamento utilizado foi o de blocos completos casualizados com parcelas subdivididas, onde as dosagens de IBA foram aplicadas como tratamento principal. O experimento foi instalado em caixas de isopor, em casa de vegetação sob nebulização, tendo vermiculit