WorldWideScience

Sample records for learning-related visual problems

  1. Problem solving of student with visual impairment related to mathematical literacy problem

    Science.gov (United States)

    Pratama, A. R.; Saputro, D. R. S.; Riyadi

    2018-04-01

    The student with visual impairment, total blind category depends on the sense of touch and hearing in obtaining information. In fact, the two senses can receive information less than 20%. Thus, students with visual impairment of the total blind categories in the learning process must have difficulty, including learning mathematics. This study aims to describe the problem-solving process of the student with visual impairment, total blind category on mathematical literacy issues based on Polya phase. This research using test method similar problems mathematical literacy in PISA and in-depth interviews. The subject of this study was a student with visual impairment, total blind category. Based on the result of the research, problem-solving related to mathematical literacy based on Polya phase is quite good. In the phase of understanding the problem, the student read about twice by brushing the text and assisted with information through hearing three times. The student with visual impairment in problem-solving based on the Polya phase, devising a plan by summoning knowledge and experience gained previously. At the phase of carrying out the plan, students with visual impairment implement the plan in accordance with pre-made. In the looking back phase, students with visual impairment need to check the answers three times but have not been able to find a way.

  2. Learning about Complex Multi-Stakeholder Issues: Assessing the Visual Problem Appraisal

    NARCIS (Netherlands)

    Witteveen, L.M.; Put, M.; Leeuwis, C.

    2010-01-01

    This paper presents an evaluation of the visual problem appraisal (VPA) learning environment in higher education. The VPA has been designed for the training of competences that are required in complex stakeholder settings in relation to sustainability issues. The design of VPA incorporates a

  3. Learning about “wicked” problems in the Global South. Creating a film-based learning environment with “Visual Problem Appraisal”

    NARCIS (Netherlands)

    Witteveen, L.M.; Lie, R.

    2012-01-01

    The current complexity of sustainable development in the Global South calls for the design of learning strategies that can deal with this complexity. One such innovative learning strategy, called Visual Problem Appraisal (VPA), is highlighted in this article. The strategy is termed visual as it

  4. Learning about “wicked” problems in the Global South. Creating a film-based learning environment with “Visual Problem Appraisal”

    Directory of Open Access Journals (Sweden)

    Loes Witteveen

    2012-03-01

    Full Text Available The current complexity of sustainable development in the Global South calls for the design of learning strategies that can deal with this complexity. One such innovative learning strategy, called Visual Problem Appraisal (VPA, is highlighted in this article. The strategy is termed visual as it creates a learning environment that is film-based. VPA enhances the analysis of complex issues, and facilitates stakeholder dialogue and action planning. The strategy is used in workshops dealing with problem analysis and policy design, and involves the participants “meeting” stakeholders through filmed narratives. The article demonstrates the value of using film in multi stakeholder learning environments addressing issues concerning sustainable development.

  5. Age-related impairments in active learning and strategic visual exploration

    Directory of Open Access Journals (Sweden)

    Kelly L Brandstatt

    2014-02-01

    Full Text Available Old age could impair memory by disrupting learning strategies used by younger individuals. We tested this possibility by manipulating the ability to use visual-exploration strategies during learning. Subjects controlled visual exploration during active learning, thus permitting the use of strategies, whereas strategies were limited during passive learning via predetermined exploration patterns. Performance on tests of object recognition and object-location recall was matched for younger and older subjects for objects studied passively, when learning strategies were restricted. Active learning improved object recognition similarly for younger and older subjects. However, active learning improved object-location recall for younger subjects, but not older subjects. Exploration patterns were used to identify a learning strategy involving repeat viewing. Older subjects used this strategy less frequently and it provided less memory benefit compared to younger subjects. In previous experiments, we linked hippocampal-prefrontal co-activation to improvements in object-location recall from active learning and to the exploration strategy. Collectively, these findings suggest that age-related memory problems result partly from impaired strategies during learning, potentially due to reduced hippocampal-prefrontal co-engagement.

  6. Age-related impairments in active learning and strategic visual exploration.

    Science.gov (United States)

    Brandstatt, Kelly L; Voss, Joel L

    2014-01-01

    Old age could impair memory by disrupting learning strategies used by younger individuals. We tested this possibility by manipulating the ability to use visual-exploration strategies during learning. Subjects controlled visual exploration during active learning, thus permitting the use of strategies, whereas strategies were limited during passive learning via predetermined exploration patterns. Performance on tests of object recognition and object-location recall was matched for younger and older subjects for objects studied passively, when learning strategies were restricted. Active learning improved object recognition similarly for younger and older subjects. However, active learning improved object-location recall for younger subjects, but not older subjects. Exploration patterns were used to identify a learning strategy involving repeat viewing. Older subjects used this strategy less frequently and it provided less memory benefit compared to younger subjects. In previous experiments, we linked hippocampal-prefrontal co-activation to improvements in object-location recall from active learning and to the exploration strategy. Collectively, these findings suggest that age-related memory problems result partly from impaired strategies during learning, potentially due to reduced hippocampal-prefrontal co-engagement.

  7. Learning about “wicked” problems in the Global South. Creating a film-based learning environment with “Visual Problem Appraisal”

    OpenAIRE

    Loes Witteveen; Rico Lie

    2012-01-01

    The current complexity of sustainable development in the Global South calls for the design of learning strategies that can deal with this complexity. One such innovative learning strategy, called Visual Problem Appraisal (VPA), is highlighted in this article. The strategy is termed visual as it creates a learning environment that is film-based. VPA enhances the analysis of complex issues, and facilitates stakeholder dialogue and action planning. The strategy is used in workshops dealing with ...

  8. Teaching with Concrete and Abstract Visual Representations: Effects on Students' Problem Solving, Problem Representations, and Learning Perceptions

    Science.gov (United States)

    Moreno, Roxana; Ozogul, Gamze; Reisslein, Martin

    2011-01-01

    In 3 experiments, we examined the effects of using concrete and/or abstract visual problem representations during instruction on students' problem-solving practice, near transfer, problem representations, and learning perceptions. In Experiments 1 and 2, novice students learned about electrical circuit analysis with an instructional program that…

  9. Age-related declines of stability in visual perceptual learning.

    Science.gov (United States)

    Chang, Li-Hung; Shibata, Kazuhisa; Andersen, George J; Sasaki, Yuka; Watanabe, Takeo

    2014-12-15

    One of the biggest questions in learning is how a system can resolve the plasticity and stability dilemma. Specifically, the learning system needs to have not only a high capability of learning new items (plasticity) but also a high stability to retain important items or processing in the system by preventing unimportant or irrelevant information from being learned. This dilemma should hold true for visual perceptual learning (VPL), which is defined as a long-term increase in performance on a visual task as a result of visual experience. Although it is well known that aging influences learning, the effect of aging on the stability and plasticity of the visual system is unclear. To address the question, we asked older and younger adults to perform a task while a task-irrelevant feature was merely exposed. We found that older individuals learned the task-irrelevant features that younger individuals did not learn, both the features that were sufficiently strong for younger individuals to suppress and the features that were too weak for younger individuals to learn. At the same time, there was no plasticity reduction in older individuals within the task tested. These results suggest that the older visual system is less stable to unimportant information than the younger visual system. A learning problem with older individuals may be due to a decrease in stability rather than a decrease in plasticity, at least in VPL. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Improving mathematical problem solving skills through visual media

    Science.gov (United States)

    Widodo, S. A.; Darhim; Ikhwanudin, T.

    2018-01-01

    The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.

  11. Feature and Region Selection for Visual Learning.

    Science.gov (United States)

    Zhao, Ji; Wang, Liantao; Cabral, Ricardo; De la Torre, Fernando

    2016-03-01

    Visual learning problems, such as object classification and action recognition, are typically approached using extensions of the popular bag-of-words (BoWs) model. Despite its great success, it is unclear what visual features the BoW model is learning. Which regions in the image or video are used to discriminate among classes? Which are the most discriminative visual words? Answering these questions is fundamental for understanding existing BoW models and inspiring better models for visual recognition. To answer these questions, this paper presents a method for feature selection and region selection in the visual BoW model. This allows for an intermediate visualization of the features and regions that are important for visual learning. The main idea is to assign latent weights to the features or regions, and jointly optimize these latent variables with the parameters of a classifier (e.g., support vector machine). There are four main benefits of our approach: 1) our approach accommodates non-linear additive kernels, such as the popular χ(2) and intersection kernel; 2) our approach is able to handle both regions in images and spatio-temporal regions in videos in a unified way; 3) the feature selection problem is convex, and both problems can be solved using a scalable reduced gradient method; and 4) we point out strong connections with multiple kernel learning and multiple instance learning approaches. Experimental results in the PASCAL VOC 2007, MSR Action Dataset II and YouTube illustrate the benefits of our approach.

  12. Effects of Using Graphics and Animation Online Problem-Based Learning on Visualization Skills among Students

    Science.gov (United States)

    Ariffin, A.; Samsudin, M. A.; Zain, A. N. Md.; Hamzah, N.; Ismail, M. E.

    2017-05-01

    The Engineering Drawing subject develops skills in geometry drawing becoming more professional. For the concept in Engineering Drawing, students need to have good visualization skills. Visualization is needed to help students get a start before translating into a drawing. So that, Problem Based Learning (PBL) using animation mode (PBL-A) and graphics mode (PBL-G) will be implemented in class. Problem-solving process is repeatedly able to help students interpret engineering drawings step work correctly and accurately. This study examined the effects of PBL-A online and PBL-G online on visualization skills of students in polytechnics. Sixty eight mechanical engineering students have been involved in this study. The visualization test adapted from Bennett, Seashore and Wesman was used in this study. Results showed significant differences in mean scores post-test of visualization skills among the students enrolled in PBL-G with the group of students who attended PBL-A online after effects of pre-test mean score is controlled. Therefore, the effects of animation modes have a positive impact on increasing students’ visualization skills.

  13. Two-stage perceptual learning to break visual crowding.

    Science.gov (United States)

    Zhu, Ziyun; Fan, Zhenzhi; Fang, Fang

    2016-01-01

    When a target is presented with nearby flankers in the peripheral visual field, it becomes harder to identify, which is referred to as crowding. Crowding sets a fundamental limit of object recognition in peripheral vision, preventing us from fully appreciating cluttered visual scenes. We trained adult human subjects on a crowded orientation discrimination task and investigated whether crowding could be completely eliminated by training. We discovered a two-stage learning process with this training task. In the early stage, when the target and flankers were separated beyond a certain distance, subjects acquired a relatively general ability to break crowding, as evidenced by the fact that the breaking of crowding could transfer to another crowded orientation, even a crowded motion stimulus, although the transfer to the opposite visual hemi-field was weak. In the late stage, like many classical perceptual learning effects, subjects' performance gradually improved and showed specificity to the trained orientation. We also found that, when the target and flankers were spaced too finely, training could only reduce, rather than completely eliminate, the crowding effect. This two-stage learning process illustrates a learning strategy for our brain to deal with the notoriously difficult problem of identifying peripheral objects in clutter. The brain first learned to solve the "easy and general" part of the problem (i.e., improving the processing resolution and segmenting the target and flankers) and then tackle the "difficult and specific" part (i.e., refining the representation of the target).

  14. Understanding ill-structured engineering ethics problems through a collaborative learning and argument visualization approach.

    Science.gov (United States)

    Hoffmann, Michael; Borenstein, Jason

    2014-03-01

    As a committee of the National Academy of Engineering recognized, ethics education should foster the ability of students to analyze complex decision situations and ill-structured problems. Building on the NAE's insights, we report about an innovative teaching approach that has two main features: first, it places the emphasis on deliberation and on self-directed, problem-based learning in small groups of students; and second, it focuses on understanding ill-structured problems. The first innovation is motivated by an abundance of scholarly research that supports the value of deliberative learning practices. The second results from a critique of the traditional case-study approach in engineering ethics. A key problem with standard cases is that they are usually described in such a fashion that renders the ethical problem as being too obvious and simplistic. The practitioner, by contrast, may face problems that are ill-structured. In the collaborative learning environment described here, groups of students use interactive and web-based argument visualization software called "AGORA-net: Participate - Deliberate!". The function of the software is to structure communication and problem solving in small groups. Students are confronted with the task of identifying possible stakeholder positions and reconstructing their legitimacy by constructing justifications for these positions in the form of graphically represented argument maps. The argument maps are then presented in class so that these stakeholder positions and their respective justifications become visible and can be brought into a reasoned dialogue. Argument mapping provides an opportunity for students to collaborate in teams and to develop critical thinking and argumentation skills.

  15. The Effects of Online Interactions on the Relationship between Learning-Related Anxiety and Intention to Persist among E-Learning Students with Visual Impairment

    Science.gov (United States)

    Oh, Yunjin; Lee, Soon Min

    2016-01-01

    This study explored whether learning-related anxiety would negatively affect intention to persist with e-learning among students with visual impairment, and examined the roles of three online interactions in the relationship between learning-related anxiety and intention to persist with e-learning. For this study, a convenience sample of…

  16. Problem-Based Learning: Student Engagement, Learning and Contextualized Problem-Solving. Occasional Paper

    Science.gov (United States)

    Mossuto, Mark

    2009-01-01

    The adoption of problem-based learning as a teaching method in the advertising and public relations programs offered by the Business TAFE (Technical and Further Education) School at RMIT University is explored in this paper. The effect of problem-based learning on student engagement, student learning and contextualised problem-solving was…

  17. Colouring the Gaps in Learning Design: Aesthetics and the Visual in Learning

    Science.gov (United States)

    Carroll, Fiona; Kop, Rita

    2016-01-01

    The visual is a dominant mode of information retrieval and understanding however, the focus on the visual dimension of Technology Enhanced Learning (TEL) is still quite weak in relation to its predominant focus on usability. To accommodate the future needs of the visual learner, designers of e-learning environments should advance the current…

  18. Analysis and Visualization of Relations in eLearning

    Science.gov (United States)

    Dráždilová, Pavla; Obadi, Gamila; Slaninová, Kateřina; Martinovič, Jan; Snášel, Václav

    The popularity of eLearning systems is growing rapidly; this growth is enabled by the consecutive development in Internet and multimedia technologies. Web-based education became wide spread in the past few years. Various types of learning management systems facilitate development of Web-based courses. Users of these courses form social networks through the different activities performed by them. This chapter focuses on searching the latent social networks in eLearning systems data. These data consist of students activity records wherein latent ties among actors are embedded. The social network studied in this chapter is represented by groups of students who have similar contacts and interact in similar social circles. Different methods of data clustering analysis can be applied to these groups, and the findings show the existence of latent ties among the group members. The second part of this chapter focuses on social network visualization. Graphical representation of social network can describe its structure very efficiently. It can enable social network analysts to determine the network degree of connectivity. Analysts can easily determine individuals with a small or large amount of relationships as well as the amount of independent groups in a given network. When applied to the field of eLearning, data visualization simplifies the process of monitoring the study activities of individuals or groups, as well as the planning of educational curriculum, the evaluation of study processes, etc.

  19. Visual and verbal learning deficits in Veterans with alcohol and substance use disorders.

    Science.gov (United States)

    Bell, Morris D; Vissicchio, Nicholas A; Weinstein, Andrea J

    2016-02-01

    This study examined visual and verbal learning in the early phase of recovery for 48 Veterans with alcohol use (AUD) and substance use disorders (SUD, primarily cocaine and opiate abusers). Previous studies have demonstrated visual and verbal learning deficits in AUD, however little is known about the differences between AUD and SUD on these domains. Since the DSM-5 specifically identifies problems with learning in AUD and not in SUD, and problems with visual and verbal learning have been more prevalent in the literature for AUD than SUD, we predicted that people with AUD would be more impaired on measures of visual and verbal learning than people with SUD. Participants were enrolled in a comprehensive rehabilitation program and were assessed within the first 5 weeks of abstinence. Verbal learning was measured using the Hopkins Verbal Learning Test (HVLT) and visual learning was assessed using the Brief Visuospatial Memory Test (BVMT). Results indicated significantly greater decline in verbal learning on the HVLT across the three learning trials for AUD participants but not for SUD participants (F=4.653, df=48, p=0.036). Visual learning was less impaired than verbal learning across learning trials for both diagnostic groups (F=0.197, df=48, p=0.674); there was no significant difference between groups on visual learning (F=0.401, df=14, p=0.538). Older Veterans in the early phase of recovery from AUD may have difficulty learning new verbal information. Deficits in verbal learning may reduce the effectiveness of verbally-based interventions such as psycho-education. Published by Elsevier Ireland Ltd.

  20. Visual acuity and visual skills in Malaysian children with learning disabilities

    Directory of Open Access Journals (Sweden)

    Muzaliha MN

    2012-09-01

    children displayed accommodation problems including convergence insufficiency, poor accommodation, and accommodative infacility. Convergence and divergence recovery are the most affected visual skills in children with learning disabilities in Malaysia.Keywords: Learning disabilities, Malaysian children, visual acuity, visual skills

  1. Visual teaching and learning in the fields of engineering

    Directory of Open Access Journals (Sweden)

    Kyvete S. Shatri

    2015-11-01

    Full Text Available Engineering education today is faced with numerous demands that are closely connected with a globalized economy. One of these requirements is to draw the engineers of the future, who are characterized with: strong analytical skills, creativity, ingenuity, professionalism, intercultural communication and leadership. To achieve this effective teaching methods should be used to facilitate and enhance the learning of students and their performance in general, making them able to cope with market demands of a globalized economy. One of these methods is the visualization as a very important method that increases the learning of students. A visual approach in science and in engineering also increases communication, critical thinking and provides analytical approach to various problems. Therefore, this research is aimed to investigate the effect of the use of visualization in the process of teaching and learning in engineering fields and encourage teachers and students to use visual methods for teaching and learning. The results of this research highlight the positive effect that the use of visualization has in the learning process of students and their overall performance. In addition, innovative teaching methods have a good effect in the improvement of the situation. Visualization motivates students to learn, making them more cooperative and developing their communication skills.

  2. Using Technology to Support Visual Learning Strategies

    Science.gov (United States)

    O'Bannon, Blanche; Puckett, Kathleen; Rakes, Glenda

    2006-01-01

    Visual learning is a strategy for visually representing the structure of information and for representing the ways in which concepts are related. Based on the work of Ausubel, these hierarchical maps facilitate student learning of unfamiliar information in the K-12 classroom. This paper presents the research base for this Type II computer tool, as…

  3. Emergence of auditory-visual relations from a visual-visual baseline with auditory-specific consequences in individuals with autism.

    Science.gov (United States)

    Varella, André A B; de Souza, Deisy G

    2014-07-01

    Empirical studies have demonstrated that class-specific contingencies may engender stimulus-reinforcer relations. In these studies, crossmodal relations emerged when crossmodal relations comprised the baseline, and intramodal relations emerged when intramodal relations were taught during baseline. This study investigated whether auditory-visual relations (crossmodal) would emerge after participants learned a visual-visual baseline (intramodal) with auditory stimuli presented as specific consequences. Four individuals with autism learned AB and CD relations with class-specific reinforcers. When A1 and C1 were presented as samples, the selections of B1 and D1, respectively, were followed by an edible (R1) and a sound (S1). Selections of B2 and D2 under the control of A2 and C2, respectively, were followed by R2 and S2. Probe trials tested for visual-visual AC, CA, AD, DA, BC, CB, BD, and DB emergent relations and auditory-visual SA, SB, SC, and SD emergent relations. All of the participants demonstrated the emergence of all auditory-visual relations, and three of four participants showed emergence of all visual-visual relations. Thus, the emergence of auditory-visual relations from specific auditory consequences suggests that these relations do not depend on crossmodal baseline training. The procedure has great potential for applied technology to generate auditory-visual discriminations and stimulus classes in the context of behavior-analytic interventions for autism. © Society for the Experimental Analysis of Behavior.

  4. Per-Sample Multiple Kernel Approach for Visual Concept Learning

    Directory of Open Access Journals (Sweden)

    Ling-Yu Duan

    2010-01-01

    Full Text Available Learning visual concepts from images is an important yet challenging problem in computer vision and multimedia research areas. Multiple kernel learning (MKL methods have shown great advantages in visual concept learning. As a visual concept often exhibits great appearance variance, a canonical MKL approach may not generate satisfactory results when a uniform kernel combination is applied over the input space. In this paper, we propose a per-sample multiple kernel learning (PS-MKL approach to take into account intraclass diversity for improving discrimination. PS-MKL determines sample-wise kernel weights according to kernel functions and training samples. Kernel weights as well as kernel-based classifiers are jointly learned. For efficient learning, PS-MKL employs a sample selection strategy. Extensive experiments are carried out over three benchmarking datasets of different characteristics including Caltech101, WikipediaMM, and Pascal VOC'07. PS-MKL has achieved encouraging performance, comparable to the state of the art, which has outperformed a canonical MKL.

  5. Per-Sample Multiple Kernel Approach for Visual Concept Learning

    Directory of Open Access Journals (Sweden)

    Tian Yonghong

    2010-01-01

    Full Text Available Abstract Learning visual concepts from images is an important yet challenging problem in computer vision and multimedia research areas. Multiple kernel learning (MKL methods have shown great advantages in visual concept learning. As a visual concept often exhibits great appearance variance, a canonical MKL approach may not generate satisfactory results when a uniform kernel combination is applied over the input space. In this paper, we propose a per-sample multiple kernel learning (PS-MKL approach to take into account intraclass diversity for improving discrimination. PS-MKL determines sample-wise kernel weights according to kernel functions and training samples. Kernel weights as well as kernel-based classifiers are jointly learned. For efficient learning, PS-MKL employs a sample selection strategy. Extensive experiments are carried out over three benchmarking datasets of different characteristics including Caltech101, WikipediaMM, and Pascal VOC'07. PS-MKL has achieved encouraging performance, comparable to the state of the art, which has outperformed a canonical MKL.

  6. Features and characteristics of problem based learning

    Directory of Open Access Journals (Sweden)

    Eser Ceker

    2016-12-01

    Full Text Available Throughout the years, there appears to be an increase in Problem Based Learning applications in education; and Problem Based Learning related research areas. The main aim of this research is to underline the fundamentals (basic elements of Problem Based Learning, investigate the dimensions of research approached to PBL oriented areas (with a look for the latest technology supported tools of Problem Based Learning. This research showed that the most researched characteristics of PBL are; teacher and student assessments on Problem Based Learning, Variety of disciplines in which Problem Based Learning strategies were tried and success evaluated, Using Problem Based Learning alone or with other strategies (Hybrid or Mix methods, Comparing Problem Based Learning with other strategies, and new trends and tendencies in Problem Based Learning related research. Our research may help us to identify the latest trends and tendencies referred to in the published studies related to “problem based learning” areas. In this research, Science Direct and Ulakbim were used as our main database resources. The sample of this study consists of 150 articles.

  7. The effects of inspecting and constructing part-task-specific visualizations on team and individual learning

    NARCIS (Netherlands)

    Slof, Bert; Erkens, Gijsbert; Kirschner, Paul A.; Helms-Lorenz, Michelle

    This study examined whether inspecting and constructing different part-task-specific visualizations differentially affects learning. To this end, a complex business-economics problem was structured into three phase-related part-tasks: (1) determining core concepts, (2) proposing multiple solutions,

  8. The Effect of Problem-Based Learning on the Creative Thinking and Critical Thinking Disposition of Students in Visual Arts Education

    Science.gov (United States)

    Ulger, Kani

    2018-01-01

    The problem-based learning (PBL) approach was implemented as a treatment for higher education visual arts students over one semester to examine its effect on the creative thinking and critical thinking disposition of these students. PBL had a significant effect on creative thinking, but critical thinking disposition was affected to a lesser…

  9. Visual problem solving and self-regulation in training air traffic control

    NARCIS (Netherlands)

    Van Meeuwen, Ludo

    2013-01-01

    Van Meeuwen, L. W. (2013). Visual problem solving and self-regulation in training air traffic control (Unpublished doctoral dissertation). Centre for Learning Sciences and Technologies, Open Universiteit, Heerlen, The Netherlands.

  10. Visual Problem Solving and Self‐regulation in Training Air Traffic Control

    NARCIS (Netherlands)

    Meeuwen van, Ludo

    2015-01-01

    Van Meeuwen, L. W. (2013). Visual problem solving and self-regulation in training air traffic control (Unpublished doctoral dissertation). Centre for Learning Sciences and Technologies, Open Universiteit, Heerlen, The Netherlands.

  11. Incorporating technology-based learning tools into teaching and learning of optimization problems

    Science.gov (United States)

    Yang, Irene

    2014-07-01

    The traditional approach of teaching optimization problems in calculus emphasizes more on teaching the students using analytical approach through a series of procedural steps. However, optimization normally involves problem solving in real life problems and most students fail to translate the problems into mathematic models and have difficulties to visualize the concept underlying. As an educator, it is essential to embed technology in suitable content areas to engage students in construction of meaningful learning by creating a technology-based learning environment. This paper presents the applications of technology-based learning tool in designing optimization learning activities with illustrative examples, as well as to address the challenges in the implementation of using technology in teaching and learning optimization. The suggestion activities in this paper allow flexibility for educator to modify their teaching strategy and apply technology to accommodate different level of studies for the topic of optimization. Hence, this provides great potential for a wide range of learners to enhance their understanding of the concept of optimization.

  12. Changing viewer perspectives reveals constraints to implicit visual statistical learning.

    Science.gov (United States)

    Jiang, Yuhong V; Swallow, Khena M

    2014-10-07

    Statistical learning-learning environmental regularities to guide behavior-likely plays an important role in natural human behavior. One potential use is in search for valuable items. Because visual statistical learning can be acquired quickly and without intention or awareness, it could optimize search and thereby conserve energy. For this to be true, however, visual statistical learning needs to be viewpoint invariant, facilitating search even when people walk around. To test whether implicit visual statistical learning of spatial information is viewpoint independent, we asked participants to perform a visual search task from variable locations around a monitor placed flat on a stand. Unbeknownst to participants, the target was more often in some locations than others. In contrast to previous research on stationary observers, visual statistical learning failed to produce a search advantage for targets in high-probable regions that were stable within the environment but variable relative to the viewer. This failure was observed even when conditions for spatial updating were optimized. However, learning was successful when the rich locations were referenced relative to the viewer. We conclude that changing viewer perspective disrupts implicit learning of the target's location probability. This form of learning shows limited integration with spatial updating or spatiotopic representations. © 2014 ARVO.

  13. Visual Perceptual Learning and Models.

    Science.gov (United States)

    Dosher, Barbara; Lu, Zhong-Lin

    2017-09-15

    Visual perceptual learning through practice or training can significantly improve performance on visual tasks. Originally seen as a manifestation of plasticity in the primary visual cortex, perceptual learning is more readily understood as improvements in the function of brain networks that integrate processes, including sensory representations, decision, attention, and reward, and balance plasticity with system stability. This review considers the primary phenomena of perceptual learning, theories of perceptual learning, and perceptual learning's effect on signal and noise in visual processing and decision. Models, especially computational models, play a key role in behavioral and physiological investigations of the mechanisms of perceptual learning and for understanding, predicting, and optimizing human perceptual processes, learning, and performance. Performance improvements resulting from reweighting or readout of sensory inputs to decision provide a strong theoretical framework for interpreting perceptual learning and transfer that may prove useful in optimizing learning in real-world applications.

  14. Blended learning as a solution to practice-related problems in vocational schools

    DEFF Research Database (Denmark)

    Kjærgaard, Hanne Wacher; Duch, Henriette Skjærbæk; Mark, Lene

    Four different types of vocational schools have experimented with blended learning as a way of dealing with problems faced in their students’ theoretical and practical training and the interplay between these. A large part of this has involved the need for differentiated teaching...... as will be illustrated through selected cases. The foci of the cases are: •How can students be part of school-based teaching and learning during periods of practical training? •How can authentic practice be brought into school-based practical training? •How may blended learning assist and support students who...... are otherwise challenged in terms of meeting the prescribed competence goals? Methodologically, scenarios have been employed as a tool for defining the practice-related problems teachers meet in their practice and describing ways in which blended learning may present solutions. Subsequently, the solutions have...

  15. Modeling visual problem solving as analogical reasoning.

    Science.gov (United States)

    Lovett, Andrew; Forbus, Kenneth

    2017-01-01

    We present a computational model of visual problem solving, designed to solve problems from the Raven's Progressive Matrices intelligence test. The model builds on the claim that analogical reasoning lies at the heart of visual problem solving, and intelligence more broadly. Images are compared via structure mapping, aligning the common relational structure in 2 images to identify commonalities and differences. These commonalities or differences can themselves be reified and used as the input for future comparisons. When images fail to align, the model dynamically rerepresents them to facilitate the comparison. In our analysis, we find that the model matches adult human performance on the Standard Progressive Matrices test, and that problems which are difficult for the model are also difficult for people. Furthermore, we show that model operations involving abstraction and rerepresentation are particularly difficult for people, suggesting that these operations may be critical for performing visual problem solving, and reasoning more generally, at the highest level. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Creating visual explanations improves learning.

    Science.gov (United States)

    Bobek, Eliza; Tversky, Barbara

    2016-01-01

    Many topics in science are notoriously difficult for students to learn. Mechanisms and processes outside student experience present particular challenges. While instruction typically involves visualizations, students usually explain in words. Because visual explanations can show parts and processes of complex systems directly, creating them should have benefits beyond creating verbal explanations. We compared learning from creating visual or verbal explanations for two STEM domains, a mechanical system (bicycle pump) and a chemical system (bonding). Both kinds of explanations were analyzed for content and learning assess by a post-test. For the mechanical system, creating a visual explanation increased understanding particularly for participants of low spatial ability. For the chemical system, creating both visual and verbal explanations improved learning without new teaching. Creating a visual explanation was superior and benefitted participants of both high and low spatial ability. Visual explanations often included crucial yet invisible features. The greater effectiveness of visual explanations appears attributable to the checks they provide for completeness and coherence as well as to their roles as platforms for inference. The benefits should generalize to other domains like the social sciences, history, and archeology where important information can be visualized. Together, the findings provide support for the use of learner-generated visual explanations as a powerful learning tool.

  17. Learning without knowing: subliminal visual feedback facilitates ballistic motor learning

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Leukel, Christian; Nielsen, Jens Bo

    by subconscious (subliminal) augmented visual feedback on motor performance. To test this, 45 subjects participated in the experiment, which involved learning of a ballistic task. The task was to execute simple ankle plantar flexion movements as quickly as possible within 200 ms and to continuously improve...... by the learner, indeed facilitated ballistic motor learning. This effect likely relates to multiple (conscious versus unconscious) processing of visual feedback and to the specific neural circuitries involved in optimization of ballistic motor performance.......). It is a well- described phenomenon that we may respond to features of our surroundings without being aware of them. It is also a well-known principle, that learning is reinforced by augmented feedback on motor performance. In the present experiment we hypothesized that motor learning may be facilitated...

  18. Improving of Junior High School Visual Thinking Representation Ability in Mathematical Problem Solving by CTL

    Directory of Open Access Journals (Sweden)

    Edy Surya

    2013-01-01

    Full Text Available The students’  difficulty which was found is in the problem of understanding, drawing diagrams, reading the charts correctly, conceptual formal  mathematical understanding, and  mathematical problem solving. The appropriate problem representation is the basic way in order to understand the problem itself and make a plan to solve it. This research was the experimental classroom design with a pretest-posttest control in order to increase the representation of visual thinking ability on mathematical problem solving approach  with  contextual learning. The research instrument was a test, observation and interviews. Contextual approach increases of mathematical representations ability increases in students with high initial category, medium, and low compared to conventional approaches. Keywords: Visual Thinking Representation, Mathematical  Problem Solving, Contextual Teaching Learning Approach DOI: http://dx.doi.org/10.22342/jme.4.1.568.113-126

  19. The voice of the visual : visual learning strategies for problem analysis, social dialogue and mediated participation

    NARCIS (Netherlands)

    Witteveen, L.M.

    2009-01-01

    The changing needs for innovative learning strategies in the life sciences results from the growing complexity of societal issues. Nowadays, complex societal issues are also called ‘wicked problems.’ Wicked problems are problems that do not have one single solution that is right or wrong, good or

  20. Associative visual learning by tethered bees in a controlled visual environment.

    Science.gov (United States)

    Buatois, Alexis; Pichot, Cécile; Schultheiss, Patrick; Sandoz, Jean-Christophe; Lazzari, Claudio R; Chittka, Lars; Avarguès-Weber, Aurore; Giurfa, Martin

    2017-10-10

    Free-flying honeybees exhibit remarkable cognitive capacities but the neural underpinnings of these capacities cannot be studied in flying insects. Conversely, immobilized bees are accessible to neurobiological investigation but display poor visual learning. To overcome this limitation, we aimed at establishing a controlled visual environment in which tethered bees walking on a spherical treadmill learn to discriminate visual stimuli video projected in front of them. Freely flying bees trained to walk into a miniature Y-maze displaying these stimuli in a dark environment learned the visual discrimination efficiently when one of them (CS+) was paired with sucrose and the other with quinine solution (CS-). Adapting this discrimination to the treadmill paradigm with a tethered, walking bee was successful as bees exhibited robust discrimination and preferred the CS+ to the CS- after training. As learning was better in the maze, movement freedom, active vision and behavioral context might be important for visual learning. The nature of the punishment associated with the CS- also affects learning as quinine and distilled water enhanced the proportion of learners. Thus, visual learning is amenable to a controlled environment in which tethered bees learn visual stimuli, a result that is important for future neurobiological studies in virtual reality.

  1. Learning Problems

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Learning Problems KidsHealth / For Kids / Learning Problems What's in ... for how to make it better. What Are Learning Disabilities? Learning disabilities aren't contagious, but they ...

  2. Learning Visual Basic NET

    CERN Document Server

    Liberty, Jesse

    2009-01-01

    Learning Visual Basic .NET is a complete introduction to VB.NET and object-oriented programming. By using hundreds of examples, this book demonstrates how to develop various kinds of applications--including those that work with databases--and web services. Learning Visual Basic .NET will help you build a solid foundation in .NET.

  3. Medical students' preferences for problem-based learning in relation to culture and personality: a multicultural study.

    Science.gov (United States)

    Holen, Are; Manandhar, Kedar; Pant, Devendra S; Karmacharya, Biraj M; Olson, Linda M; Koju, Rajendra; Mansur, Dil I

    2015-07-19

    The aim of this study was to explore positive and negative preferences towards problem-based learning in relation to personality traits and socio-cultural context. The study was an anonymous and voluntary cross-sectional survey of medical students (N=449) in hybrid problem-based curricula in Nepal, Norway and North Dakota. Data was collected on gender, age, year of study, cohabitation and medical school. The PBL Preference Inventory identified students' positive and negative preferences in relation to problem-based learning; the personality traits were detected by the NEO Five-Factor Inventory. The determinants of the two kinds of preferences were analyzed by hierarchical multiple linear regressions. Positive preferences were mostly determined by personality; associations were found with the traits Extra-version, Openness to experience, Conscientiousness and Neuroticism; the first three are related to sociability, curiosity and orderliness, the last, to mental health. The learn-ing environments of such curricula may be supportive for some and unnerving for others who score high on Neuroticism. Negative preferences were rather determined by culture, but also, they correlated with Neuroticism and Conscientiousness. Negative preferences were lower among females and students living in symmetrical relationships. Some high on Conscientiousness disliked group work, and the negative correlation with Agreeableness indicated that less sociable students were not predisposed to this kind of learning activity. Preferences related to problem-based learning were significantly and independently determined both by personality traits and culture. More insights into the nature of students' preferences may guide aspects of curriculum modifications and the daily facilitation of groups.

  4. Implicit visual learning and the expression of learning.

    Science.gov (United States)

    Haider, Hilde; Eberhardt, Katharina; Kunde, Alexander; Rose, Michael

    2013-03-01

    Although the existence of implicit motor learning is now widely accepted, the findings concerning perceptual implicit learning are ambiguous. Some researchers have observed perceptual learning whereas other authors have not. The review of the literature provides different reasons to explain this ambiguous picture, such as differences in the underlying learning processes, selective attention, or differences in the difficulty to express this knowledge. In three experiments, we investigated implicit visual learning within the original serial reaction time task. We used different response devices (keyboard vs. mouse) in order to manipulate selective attention towards response dimensions. Results showed that visual and motor sequence learning differed in terms of RT-benefits, but not in terms of the amount of knowledge assessed after training. Furthermore, visual sequence learning was modulated by selective attention. However, the findings of all three experiments suggest that selective attention did not alter implicit but rather explicit learning processes. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Algebraic Reasoning in Solving Mathematical Problem Based on Learning Style

    Science.gov (United States)

    Indraswari, N. F.; Budayasa, I. K.; Ekawati, R.

    2018-01-01

    This study aimed to describe algebraic reasoning of secondary school’s pupils with different learning styles in solving mathematical problem. This study begins by giving the questionnaire to find out the learning styles and followed by mathematical ability test to get three subjects of 8th-grade whereas the learning styles of each pupil is visual, auditory, kinesthetic and had similar mathematical abilities. Then it continued with given algebraic problems and interviews. The data is validated using triangulation of time. The result showed that in the pattern of seeking indicator, subjects identified the things that were known and asked based on them observations. The visual and kinesthetic learners represented the known information in a chart, whereas the auditory learner in a table. In addition, they found the elements which makes the pattern and made a relationship between two quantities. In the pattern recognition indicator, they created conjectures on the relationship between two quantities and proved it. In the generalization indicator, they were determining the general rule of pattern found on each element of pattern using algebraic symbols and created a mathematical model. Visual and kinesthetic learners determined the general rule of equations which was used to solve problems using algebraic symbols, but auditory learner in a sentence.

  6. Visual Aversive Learning Compromises Sensory Discrimination.

    Science.gov (United States)

    Shalev, Lee; Paz, Rony; Avidan, Galia

    2018-03-14

    Aversive learning is thought to modulate perceptual thresholds, which can lead to overgeneralization. However, it remains undetermined whether this modulation is domain specific or a general effect. Moreover, despite the unique role of the visual modality in human perception, it is unclear whether this aspect of aversive learning exists in this modality. The current study was designed to examine the effect of visual aversive outcomes on the perception of basic visual and auditory features. We tested the ability of healthy participants, both males and females, to discriminate between neutral stimuli, before and after visual learning. In each experiment, neutral stimuli were associated with aversive images in an experimental group and with neutral images in a control group. Participants demonstrated a deterioration in discrimination (higher discrimination thresholds) only after aversive learning. This deterioration was measured for both auditory (tone frequency) and visual (orientation and contrast) features. The effect was replicated in five different experiments and lasted for at least 24 h. fMRI neural responses and pupil size were also measured during learning. We showed an increase in neural activations in the anterior cingulate cortex, insula, and amygdala during aversive compared with neutral learning. Interestingly, the early visual cortex showed increased brain activity during aversive compared with neutral context trials, with identical visual information. Our findings imply the existence of a central multimodal mechanism, which modulates early perceptual properties, following exposure to negative situations. Such a mechanism could contribute to abnormal responses that underlie anxiety states, even in new and safe environments. SIGNIFICANCE STATEMENT Using a visual aversive-learning paradigm, we found deteriorated discrimination abilities for visual and auditory stimuli that were associated with visual aversive stimuli. We showed increased neural

  7. An Interactive Approach to Learning and Teaching in Visual Arts Education

    Directory of Open Access Journals (Sweden)

    Zlata Tomljenović

    2015-09-01

    Full Text Available The present research focuses on modernising the approach to learning and teaching the visual arts in teaching practice, as well as examining the performance of an interactive approach to learning and teaching in visual arts classes with the use of a combination of general and specific (visual arts teaching methods. The study uses quantitative analysis of data on the basis of results obtained from a pedagogical experiment. The subjects of the research were 285 second- and fourth-grade students from four primary schools in the city of Rijeka, Croatia. Paintings made by the students in the initial and final stage of the pedagogical experiment were evaluated. The research results confirmed the hypotheses about the positive effect of interactive approaches to learning and teaching on the following variables: (1 knowledge and understanding of visual arts terms, (2 abilities and skills in the use of art materials and techniques within the framework of planned painting tasks, and (3 creativity in solving visual arts problems. The research results can help shape an optimised model for the planning and performance of visual arts education, and provide guidelines for planning professional development and the further professional education of teachers, with the aim of establishing more efficient learning and teaching of the visual arts in primary school.

  8. The Role of Visual Learning in Improving Students' High-Order Thinking Skills

    Science.gov (United States)

    Raiyn, Jamal

    2016-01-01

    Various concepts have been introduced to improve students' analytical thinking skills based on problem based learning (PBL). This paper introduces a new concept to increase student's analytical thinking skills based on a visual learning strategy. Such a strategy has three fundamental components: a teacher, a student, and a learning process. The…

  9. Differences in children and adolescents' ability of reporting two CVS-related visual problems.

    Science.gov (United States)

    Hu, Liang; Yan, Zheng; Ye, Tiantian; Lu, Fan; Xu, Peng; Chen, Hao

    2013-01-01

    The present study examined whether children and adolescents can correctly report dry eyes and blurred distance vision, two visual problems associated with computer vision syndrome. Participants are 913 children and adolescents aged 6-17. They were asked to report their visual problems, including dry eyes and blurred distance vision, and received an eye examination, including tear film break-up time (TFBUT) and visual acuity (VA). Inconsistency was found between participants' reports of dry eyes and TFBUT results among all 913 participants as well as for all of four subgroups. In contrast, consistency was found between participants' reports of blurred distance vision and VA results among 873 participants who had never worn glasses as well as for the four subgroups. It was concluded that children and adolescents are unable to report dry eyes correctly; however, they are able to report blurred distance vision correctly. Three practical implications of the findings were discussed. Little is known about children's ability to report their visual problems, an issue critical to diagnosis and treatment of children's computer vision syndrome. This study compared children's self-reports and clinic examination results and found children can correctly report blurred distance vision but not dry eyes.

  10. Perceptual learning in children with visual impairment improves near visual acuity.

    Science.gov (United States)

    Huurneman, Bianca; Boonstra, F Nienke; Cox, Ralf F A; van Rens, Ger; Cillessen, Antonius H N

    2013-09-17

    This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four- to nine-year-old children with visual impairment. Participants were 45 children with visual impairment and 29 children with normal vision. Children with visual impairment were divided into three groups: a magnifier group (n = 12), a crowded perceptual learning group (n = 18), and an uncrowded perceptual learning group (n = 15). Children with normal vision also were divided in three groups, but were measured only at baseline. Dependent variables were single near visual acuity (NVA), crowded NVA, LH line 50% crowding NVA, number of trials, accuracy, performance time, amount of small errors, and amount of large errors. Children with visual impairment trained during six weeks, two times per week, for 30 minutes (12 training sessions). After training, children showed significant improvement of NVA in addition to specific improvements on the training task. The crowded perceptual learning group showed the largest acuity improvements (1.7 logMAR lines on the crowded chart, P children in the crowded perceptual learning group showed improvements on all NVA charts. Children with visual impairment benefit from perceptual training. While task-specific improvements were observed in all training groups, transfer to crowded NVA was largest in the crowded perceptual learning group. To our knowledge, this is the first study to provide evidence for the improvement of NVA by perceptual learning in children with visual impairment. (http://www.trialregister.nl number, NTR2537.).

  11. Neural correlates of context-dependent feature conjunction learning in visual search tasks.

    Science.gov (United States)

    Reavis, Eric A; Frank, Sebastian M; Greenlee, Mark W; Tse, Peter U

    2016-06-01

    Many perceptual learning experiments show that repeated exposure to a basic visual feature such as a specific orientation or spatial frequency can modify perception of that feature, and that those perceptual changes are associated with changes in neural tuning early in visual processing. Such perceptual learning effects thus exert a bottom-up influence on subsequent stimulus processing, independent of task-demands or endogenous influences (e.g., volitional attention). However, it is unclear whether such bottom-up changes in perception can occur as more complex stimuli such as conjunctions of visual features are learned. It is not known whether changes in the efficiency with which people learn to process feature conjunctions in a task (e.g., visual search) reflect true bottom-up perceptual learning versus top-down, task-related learning (e.g., learning better control of endogenous attention). Here we show that feature conjunction learning in visual search leads to bottom-up changes in stimulus processing. First, using fMRI, we demonstrate that conjunction learning in visual search has a distinct neural signature: an increase in target-evoked activity relative to distractor-evoked activity (i.e., a relative increase in target salience). Second, we demonstrate that after learning, this neural signature is still evident even when participants passively view learned stimuli while performing an unrelated, attention-demanding task. This suggests that conjunction learning results in altered bottom-up perceptual processing of the learned conjunction stimuli (i.e., a perceptual change independent of the task). We further show that the acquired change in target-evoked activity is contextually dependent on the presence of distractors, suggesting that search array Gestalts are learned. Hum Brain Mapp 37:2319-2330, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Caudate nucleus reactivity predicts perceptual learning rate for visual feature conjunctions.

    Science.gov (United States)

    Reavis, Eric A; Frank, Sebastian M; Tse, Peter U

    2015-04-15

    Useful information in the visual environment is often contained in specific conjunctions of visual features (e.g., color and shape). The ability to quickly and accurately process such conjunctions can be learned. However, the neural mechanisms responsible for such learning remain largely unknown. It has been suggested that some forms of visual learning might involve the dopaminergic neuromodulatory system (Roelfsema et al., 2010; Seitz and Watanabe, 2005), but this hypothesis has not yet been directly tested. Here we test the hypothesis that learning visual feature conjunctions involves the dopaminergic system, using functional neuroimaging, genetic assays, and behavioral testing techniques. We use a correlative approach to evaluate potential associations between individual differences in visual feature conjunction learning rate and individual differences in dopaminergic function as indexed by neuroimaging and genetic markers. We find a significant correlation between activity in the caudate nucleus (a component of the dopaminergic system connected to visual areas of the brain) and visual feature conjunction learning rate. Specifically, individuals who showed a larger difference in activity between positive and negative feedback on an unrelated cognitive task, indicative of a more reactive dopaminergic system, learned visual feature conjunctions more quickly than those who showed a smaller activity difference. This finding supports the hypothesis that the dopaminergic system is involved in visual learning, and suggests that visual feature conjunction learning could be closely related to associative learning. However, no significant, reliable correlations were found between feature conjunction learning and genotype or dopaminergic activity in any other regions of interest. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Visual Learning in Application of Integration

    Science.gov (United States)

    Bt Shafie, Afza; Barnachea Janier, Josefina; Bt Wan Ahmad, Wan Fatimah

    Innovative use of technology can improve the way how Mathematics should be taught. It can enhance student's learning the concepts through visualization. Visualization in Mathematics refers to us of texts, pictures, graphs and animations to hold the attention of the learners in order to learn the concepts. This paper describes the use of a developed multimedia courseware as an effective tool for visual learning mathematics. The focus is on the application of integration which is a topic in Engineering Mathematics 2. The course is offered to the foundation students in the Universiti Teknologi of PETRONAS. Questionnaire has been distributed to get a feedback on the visual representation and students' attitudes towards using visual representation as a learning tool. The questionnaire consists of 3 sections: Courseware Design (Part A), courseware usability (Part B) and attitudes towards using the courseware (Part C). The results showed that students demonstrated the use of visual representation has benefited them in learning the topic.

  14. Learning Science Through Visualization

    Science.gov (United States)

    Chaudhury, S. Raj

    2005-01-01

    In the context of an introductory physical science course for non-science majors, I have been trying to understand how scientific visualizations of natural phenomena can constructively impact student learning. I have also necessarily been concerned with the instructional and assessment approaches that need to be considered when focusing on learning science through visually rich information sources. The overall project can be broken down into three distinct segments : (i) comparing students' abilities to demonstrate proportional reasoning competency on visual and verbal tasks (ii) decoding and deconstructing visualizations of an object falling under gravity (iii) the role of directed instruction to elicit alternate, valid scientific visualizations of the structure of the solar system. Evidence of student learning was collected in multiple forms for this project - quantitative analysis of student performance on written, graded assessments (tests and quizzes); qualitative analysis of videos of student 'think aloud' sessions. The results indicate that there are significant barriers for non-science majors to succeed in mastering the content of science courses, but with informed approaches to instruction and assessment, these barriers can be overcome.

  15. Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network.

    Science.gov (United States)

    Li, Na; Zhao, Xinbo; Yang, Yongjia; Zou, Xiaochun

    2016-01-01

    Humans can easily classify different kinds of objects whereas it is quite difficult for computers. As a hot and difficult problem, objects classification has been receiving extensive interests with broad prospects. Inspired by neuroscience, deep learning concept is proposed. Convolutional neural network (CNN) as one of the methods of deep learning can be used to solve classification problem. But most of deep learning methods, including CNN, all ignore the human visual information processing mechanism when a person is classifying objects. Therefore, in this paper, inspiring the completed processing that humans classify different kinds of objects, we bring forth a new classification method which combines visual attention model and CNN. Firstly, we use the visual attention model to simulate the processing of human visual selection mechanism. Secondly, we use CNN to simulate the processing of how humans select features and extract the local features of those selected areas. Finally, not only does our classification method depend on those local features, but also it adds the human semantic features to classify objects. Our classification method has apparently advantages in biology. Experimental results demonstrated that our method made the efficiency of classification improve significantly.

  16. LEARNING PROBLEMS IN CHILDREN WITH MILD INTELLECTUAL DISABILITY

    Directory of Open Access Journals (Sweden)

    Keskinova Angelka

    2018-04-01

    Full Text Available School failure is one of the more complex, more difficult and unfortunately frequent problem that modern school meets. Many factors can cause school failure, such as: child development characteristics, family and school-originated factors. The purpose of the research is analysis of the specific learning problems in students with a mild intellectual disability. For our research we used ACADIA test, which contains 13 subtests for assessing the overall individual functioning. The research involved 144 students. We divided the sample into two groups, children with intellectual disability (our target group and control group. We found that generally all students with the intellectual disability have special learning problems. According to individual subtests analysis we concluded that the ability for visual association is best developed among these students while on the subtest for auditory memory they achieved worse results. With the analysis of the control group we found that 13.75% of the students have special learning problems.

  17. Features and Characteristics of Problem Based Learning

    Science.gov (United States)

    Ceker, Eser; Ozdamli, Fezile

    2016-01-01

    Throughout the years, there appears to be an increase in Problem Based Learning applications in education; and Problem Based Learning related research areas. The main aim of this research is to underline the fundamentals (basic elements) of Problem Based Learning, investigate the dimensions of research approached to PBL oriented areas (with a look…

  18. Reflexive Learning through Visual Methods

    DEFF Research Database (Denmark)

    Frølunde, Lisbeth

    2014-01-01

    What. This chapter concerns how visual methods and visual materials can support visually oriented, collaborative, and creative learning processes in education. The focus is on facilitation (guiding, teaching) with visual methods in learning processes that are designerly or involve design. Visual...... methods are exemplified through two university classroom cases about collaborative idea generation processes. The visual methods and materials in the cases are photo elicitation using photo cards, and modeling with LEGO Serious Play sets. Why. The goal is to encourage the reader, whether student...... or professional, to facilitate with visual methods in a critical, reflective, and experimental way. The chapter offers recommendations for facilitating with visual methods to support playful, emergent designerly processes. The chapter also has a critical, situated perspective. Where. This chapter offers case...

  19. Metacognition Difficulty of Students with Visual-Spatial Intelligence during Solving Open-Ended Problem

    Science.gov (United States)

    Rimbatmojo, S.; Kusmayadi, T. A.; Riyadi, R.

    2017-09-01

    This study aims to find out students metacognition difficulty during solving open-ended problem in mathematics. It focuses on analysing the metacognition difficulty of students with visual-spatial intelligence in solving open-ended problem. A qualitative research with case study strategy is used in this study. Data in the form of visual-spatial intelligence test result and recorded interview during solving open-ended problems were analysed qualitatively. The results show that: (1) students with high visual-spatial intelligence have no difficulty on each metacognition aspects, (2) students with medium visual-spatial intelligence have difficulty on knowledge aspect on strategy and cognitive tasks, (3) students with low visual-spatial intelligence have difficulty on three metacognition aspects, namely knowledge on strategy, cognitive tasks and self-knowledge. Even though, several researches about metacognition process and metacognition literature recommended the steps to know the characteristics. It is still important to discuss that the difficulties of metacognitive is happened because of several factors, one of which on the characteristics of student’ visual-spatial intelligence. Therefore, it is really important for mathematics educators to consider and pay more attention toward students’ visual-spatial intelligence and metacognition difficulty in designing better mathematics learning.

  20. Robust Visual Knowledge Transfer via Extreme Learning Machine Based Domain Adaptation.

    Science.gov (United States)

    Zhang, Lei; Zhang, David

    2016-08-10

    We address the problem of visual knowledge adaptation by leveraging labeled patterns from source domain and a very limited number of labeled instances in target domain to learn a robust classifier for visual categorization. This paper proposes a new extreme learning machine based cross-domain network learning framework, that is called Extreme Learning Machine (ELM) based Domain Adaptation (EDA). It allows us to learn a category transformation and an ELM classifier with random projection by minimizing the -norm of the network output weights and the learning error simultaneously. The unlabeled target data, as useful knowledge, is also integrated as a fidelity term to guarantee the stability during cross domain learning. It minimizes the matching error between the learned classifier and a base classifier, such that many existing classifiers can be readily incorporated as base classifiers. The network output weights cannot only be analytically determined, but also transferrable. Additionally, a manifold regularization with Laplacian graph is incorporated, such that it is beneficial to semi-supervised learning. Extensively, we also propose a model of multiple views, referred as MvEDA. Experiments on benchmark visual datasets for video event recognition and object recognition, demonstrate that our EDA methods outperform existing cross-domain learning methods.

  1. Cross-modal interaction between visual and olfactory learning in Apis cerana.

    Science.gov (United States)

    Zhang, Li-Zhen; Zhang, Shao-Wu; Wang, Zi-Long; Yan, Wei-Yu; Zeng, Zhi-Jiang

    2014-10-01

    The power of the small honeybee brain carrying out behavioral and cognitive tasks has been shown repeatedly to be highly impressive. The present study investigates, for the first time, the cross-modal interaction between visual and olfactory learning in Apis cerana. To explore the role and molecular mechanisms of cross-modal learning in A. cerana, the honeybees were trained and tested in a modified Y-maze with seven visual and five olfactory stimulus, where a robust visual threshold for black/white grating (period of 2.8°-3.8°) and relatively olfactory threshold (concentration of 50-25%) was obtained. Meanwhile, the expression levels of five genes (AcCREB, Acdop1, Acdop2, Acdop3, Actyr1) related to learning and memory were analyzed under different training conditions by real-time RT-PCR. The experimental results indicate that A. cerana could exhibit cross-modal interactions between visual and olfactory learning by reducing the threshold level of the conditioning stimuli, and that these genes may play important roles in the learning process of honeybees.

  2. EFEKTIVITAS MODEL PROBLEM BASED LEARNING BERBANTUAN MEDIA AUDIO VISUAL DITINJAU DARI HASIL BELAJAR IPA SISWA KELAS 5 SDN 1 GADU SAMBONG - BLORA SEMESTER 2 TAHUN 2014/2015

    Directory of Open Access Journals (Sweden)

    Andhini Virgiana

    2016-05-01

    Full Text Available Tujuan dari penelitian ini adalah untuk mengetahui perbedaan tingkat hasil belajar antara model problem based learning berbantuan media audio visual dengan model pembelajaran think pair share berbantuan media visual pada pembelajaran IPA siswa kelas 5 SDN 1 Gadu Sambong Kabupaten Blora semester 2 tahun pelajaran 2014/2015. Penelitian ini merupakan penelitian quasi experiment dengan nonequivalent control group design. Subjek penelitian dalam penelitian ini adalah siswa kelas 5 SDN 1 Gadu dan siswa kelas 5 SDN 2 Gagakan. Teknik  pengumpulan data dalam penelitian adalah tes dan observasi. Teknik analisis data yang digunakan adalah statistik deskriptif, statistik parametrik, dan uji t dengan  independent sample t-tes pada taraf signifikansi 5% (α = 0,05. Berdasarkan hasil penelitian dan pembahasan, maka dapat disimpulkan bahwa terdapat perbedaan tingkat efektivitas antara model problem based learning berbantu media audio visual dengan model pembelajaran think pair share berbantu media visual terhadap hasil belajar IPA siswa kelas 5 SDN 1 Gadu Kecamatan Sambong Kabupaten Blora semester 2 tahun 2014/2015. Terbukti hal ini ditunjukkan oleh hasil uji t-test sebesar 3,603 > 1,999 dan signifikansi sebesar 0,001 rata-rata kelas kontrol yaitu 87,0588 > 80,2000.

  3. Effects of tutor-related behaviours on the process of problem-based learning.

    Science.gov (United States)

    Chng, Esther; Yew, Elaine H J; Schmidt, Henk G

    2011-10-01

    Tutors in a Problem-Based Learning (PBL) curriculum are thought to play active roles in guiding students to develop frameworks for use in the construction of knowledge. This implies that both subject-matter expertise and the ability of tutors to facilitate the learning process must be important in helping students learn. This study examines the behavioural effects of tutors in terms of subject-matter expertise, social congruence and cognitive congruence on students' learning process and on their final achievement. The extent of students' learning at each PBL phase was estimated by tracking the number of relevant concepts recalled at the end of each learning phase, while student achievement was based on students' ability to describe and elaborate upon the relationship between relevant concepts learned. By using Analysis of Covariance, social congruence of the tutor was found to have a significant influence on learning in each PBL phase while all of the tutor-related behaviours had a significant impact on student achievement. The results suggest that the ability of tutors to communicate informally with students and hence create a less threatening learning environment that promotes a free flow exchange of ideas, has a greater impact on learning at each of the PBL phases as compared to tutors' subject-matter expertise and their ability to explain concepts in a way that is easily understood by students. The data presented indicates that these tutor-related behaviours are determinants of learning in a PBL curriculum, with social congruence having a greater influence on learning in the different PBL phases.

  4. Joint learning and weighting of visual vocabulary for bag-of-feature based tissue classification

    KAUST Repository

    Wang, Jim Jing-Yan

    2013-12-01

    Automated classification of tissue types of Region of Interest (ROI) in medical images has been an important application in Computer-Aided Diagnosis (CAD). Recently, bag-of-feature methods which treat each ROI as a set of local features have shown their power in this field. Two important issues of bag-of-feature strategy for tissue classification are investigated in this paper: the visual vocabulary learning and weighting, which are always considered independently in traditional methods by neglecting the inner relationship between the visual words and their weights. To overcome this problem, we develop a novel algorithm, Joint-ViVo, which learns the vocabulary and visual word weights jointly. A unified objective function based on large margin is defined for learning of both visual vocabulary and visual word weights, and optimized alternately in the iterative algorithm. We test our algorithm on three tissue classification tasks: classifying breast tissue density in mammograms, classifying lung tissue in High-Resolution Computed Tomography (HRCT) images, and identifying brain tissue type in Magnetic Resonance Imaging (MRI). The results show that Joint-ViVo outperforms the state-of-art methods on tissue classification problems. © 2013 Elsevier Ltd.

  5. Online multi-modal robust non-negative dictionary learning for visual tracking.

    Science.gov (United States)

    Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang

    2015-01-01

    Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality.

  6. Learning style, judgements of learning, and learning of verbal and visual information.

    Science.gov (United States)

    Knoll, Abby R; Otani, Hajime; Skeel, Reid L; Van Horn, K Roger

    2017-08-01

    The concept of learning style is immensely popular despite the lack of evidence showing that learning style influences performance. This study tested the hypothesis that the popularity of learning style is maintained because it is associated with subjective aspects of learning, such as judgements of learning (JOLs). Preference for verbal and visual information was assessed using the revised Verbalizer-Visualizer Questionnaire (VVQ). Then, participants studied a list of word pairs and a list of picture pairs, making JOLs (immediate, delayed, and global) while studying each list. Learning was tested by cued recall. The results showed that higher VVQ verbalizer scores were associated with higher immediate JOLs for words, and higher VVQ visualizer scores were associated with higher immediate JOLs for pictures. There was no association between VVQ scores and recall or JOL accuracy. As predicted, learning style was associated with subjective aspects of learning but not objective aspects of learning. © 2016 The British Psychological Society.

  7. Learning sorting algorithms through visualization construction

    Science.gov (United States)

    Cetin, Ibrahim; Andrews-Larson, Christine

    2016-01-01

    Recent increased interest in computational thinking poses an important question to researchers: What are the best ways to teach fundamental computing concepts to students? Visualization is suggested as one way of supporting student learning. This mixed-method study aimed to (i) examine the effect of instruction in which students constructed visualizations on students' programming achievement and students' attitudes toward computer programming, and (ii) explore how this kind of instruction supports students' learning according to their self-reported experiences in the course. The study was conducted with 58 pre-service teachers who were enrolled in their second programming class. They expect to teach information technology and computing-related courses at the primary and secondary levels. An embedded experimental model was utilized as a research design. Students in the experimental group were given instruction that required students to construct visualizations related to sorting, whereas students in the control group viewed pre-made visualizations. After the instructional intervention, eight students from each group were selected for semi-structured interviews. The results showed that the intervention based on visualization construction resulted in significantly better acquisition of sorting concepts. However, there was no significant difference between the groups with respect to students' attitudes toward computer programming. Qualitative data analysis indicated that students in the experimental group constructed necessary abstractions through their engagement in visualization construction activities. The authors of this study argue that the students' active engagement in the visualization construction activities explains only one side of students' success. The other side can be explained through the instructional approach, constructionism in this case, used to design instruction. The conclusions and implications of this study can be used by researchers and

  8. Understanding the Problems of Learning Mathematics.

    Science.gov (United States)

    Semilla-Dube, Lilia

    1983-01-01

    A model is being developed to categorize problems in teaching and learning mathematics. Categories include problems due to language difficulties, lack of prerequisite knowledge, and those related to the affective domain. This paper calls on individuals to share teaching and learning episodes; those submitted will then be compiled and categorized.…

  9. Visual event-related potential studies supporting the validity of VARK learning styles' visual and read/write learners.

    Science.gov (United States)

    Thepsatitporn, Sarawin; Pichitpornchai, Chailerd

    2016-06-01

    The validity of learning styles needs supports of additional objective evidence. The identification of learning styles using subjective evidence from VARK questionnaires (where V is visual, A is auditory, R is read/write, and K is kinesthetic) combined with objective evidence from visual event-related potential (vERP) studies has never been investigated. It is questionable whether picture superiority effects exist in V learners and R learners. Thus, the present study aimed to investigate whether vERP could show the relationship between vERP components and VARK learning styles and to identify the existence of picture superiority effects in V learners and R learners. Thirty medical students (15 V learners and 15 R learners) performed recognition tasks with vERP and an intermediate-term memory (ITM) test. The results of within-group comparisons showed that pictures elicited larger P200 amplitudes than words at the occipital 2 site (P < 0.05) in V learners and at the occipital 1 and 2 sites (P < 0.05) in R learners. The between-groups comparison showed that P200 amplitudes elicited by pictures in V learners were larger than those of R learners at the parietal 4 site (P < 0.05). The ITM test result showed that a picture set showed distinctively more correct responses than that of a word set for both V learners (P < 0.001) and R learners (P < 0.01). In conclusion, the result indicated that the P200 amplitude at the parietal 4 site could be used to objectively distinguish V learners from R learners. A lateralization existed to the right brain (occipital 2 site) in V learners. The ITM test demonstrated the existence of picture superiority effects in both learners. The results revealed the first objective electrophysiological evidence partially supporting the validity of the subjective psychological VARK questionnaire study. Copyright © 2016 The American Physiological Society.

  10. Facilitating Problem Framing in Project-Based Learning

    Science.gov (United States)

    Svihla, Vanessa; Reeve, Richard

    2016-01-01

    While problem solving is a relatively well understood process, problem framing is less well understood, particularly with regard to supporting students to learn as they frame problems. Project-based learning classrooms are an ideal setting to investigate how teachers facilitate this process. Using participant observation, this study investigated…

  11. Computer Use and Vision-Related Problems Among University Students In Ajman, United Arab Emirate

    OpenAIRE

    Shantakumari, N; Eldeeb, R; Sreedharan, J; Gopal, K

    2014-01-01

    Background: The extensive use of computers as medium of teaching and learning in universities necessitates introspection into the extent of computer related health disorders among student population. Aim: This study was undertaken to assess the pattern of computer usage and related visual problems, among University students in Ajman, United Arab Emirates. Materials and Methods: A total of 500 Students studying in Gulf Medical University, Ajman and Ajman University of Science and Technology we...

  12. Creative thinking level of students with high capability in relations and functions by problem-based learning

    Science.gov (United States)

    Nurdyani, F.; Slamet, I.; Sujadi, I.

    2018-03-01

    This research was conducted in order to describe the creative thinking level of students with high capability in relations and functions with Problem Based Learning. The subjects of the research were students with high capability grade VIII at SMPIT Ibnu Abbas Klaten. This research is an qualitative descriptive research. The data were collected using observation, tests and interviews. The result showed that the creative thinking level of students with high capability in relations and functions by Problem Based Learning was at level 4 or very creative because students were able to demonstrate fluency, flexibility, and novelty.

  13. Advanced prototyping tools for project- and problem-based learning

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Bech, Michael Møller; Holm, Allan J.

    2002-01-01

    A new approach in prototyping for project- and problem-based learning is achieved by using the new Total Development Environment concept introduced by dSPACE that allows a full visual block-oriented programming of dynamic real-time systems to be achieved  using the Matlab/Simulink environment...

  14. Visual statistical learning is related to natural language ability in adults: An ERP study.

    Science.gov (United States)

    Daltrozzo, Jerome; Emerson, Samantha N; Deocampo, Joanne; Singh, Sonia; Freggens, Marjorie; Branum-Martin, Lee; Conway, Christopher M

    2017-03-01

    Statistical learning (SL) is believed to enable language acquisition by allowing individuals to learn regularities within linguistic input. However, neural evidence supporting a direct relationship between SL and language ability is scarce. We investigated whether there are associations between event-related potential (ERP) correlates of SL and language abilities while controlling for the general level of selective attention. Seventeen adults completed tests of visual SL, receptive vocabulary, grammatical ability, and sentence completion. Response times and ERPs showed that SL is related to receptive vocabulary and grammatical ability. ERPs indicated that the relationship between SL and grammatical ability was independent of attention while the association between SL and receptive vocabulary depended on attention. The implications of these dissociative relationships in terms of underlying mechanisms of SL and language are discussed. These results further elucidate the cognitive nature of the links between SL mechanisms and language abilities. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Visual relations children find easy and difficult to process in figural analogies.

    Science.gov (United States)

    Stevenson, Claire E; Alberto, Rosa A; van den Boom, Max A; de Boeck, Paul A L

    2014-01-01

    Analogical reasoning, the ability to learn about novel phenomena by relating it to structurally similar knowledge, develops with great variability in children. Furthermore, the development of analogical reasoning coincides with greater working memory efficiency and increasing knowledge of the entities and relations present in analogy problems. In figural matrices, a classical form of analogical reasoning assessment, some features, such as color, appear easier for children to encode and infer than others, such as orientation. Yet, few studies have structurally examined differences in the difficulty of visual relations across different age-groups. This cross-sectional study of figural analogical reasoning examined which underlying rules in figural analogies were easier or more difficult for children to correctly process. School children (N = 1422, M = 7.0 years, SD = 21 months, range 4.5-12.5 years) were assessed in analogical reasoning using classical figural matrices and memory measures. The visual relations the children had to induce and apply concerned the features: animal, color, orientation, position, quantity and size. The role of age and memory span on the children's ability to correctly process each type of relation was examined using explanatory item response theory models. The results showed that with increasing age and/or greater memory span all visual relations were processed more accurately. The "what" visual relations animal, color, quantity and size were easiest, whereas the "where" relations orientation and position were most difficult. However, the "where" visual relations became relatively easier with age and increased memory efficiency. The implications are discussed in terms of the development of visual processing in object recognition vs. position and motion encoding in the ventral ("what") and dorsal ("where") pathways respectively.

  16. The effect of learning on the function of monkey extrastriate visual cortex.

    Directory of Open Access Journals (Sweden)

    Gregor Rainer

    2004-02-01

    Full Text Available One of the most remarkable capabilities of the adult brain is its ability to learn and continuously adapt to an ever-changing environment. While many studies have documented how learning improves the perception and identification of visual stimuli, relatively little is known about how it modifies the underlying neural mechanisms. We trained monkeys to identify natural images that were degraded by interpolation with visual noise. We found that learning led to an improvement in monkeys' ability to identify these indeterminate visual stimuli. We link this behavioral improvement to a learning-dependent increase in the amount of information communicated by V4 neurons. This increase was mediated by a specific enhancement in neural activity. Our results reveal a mechanism by which learning increases the amount of information that V4 neurons are able to extract from the visual environment. This suggests that V4 plays a key role in resolving indeterminate visual inputs by coordinated interaction between bottom-up and top-down processing streams.

  17. Handwriting generates variable visual input to facilitate symbol learning

    Science.gov (United States)

    Li, Julia X.; James, Karin H.

    2015-01-01

    Recent research has demonstrated that handwriting practice facilitates letter categorization in young children. The present experiments investigated why handwriting practice facilitates visual categorization by comparing two hypotheses: That handwriting exerts its facilitative effect because of the visual-motor production of forms, resulting in a direct link between motor and perceptual systems, or because handwriting produces variable visual instances of a named category in the environment that then changes neural systems. We addressed these issues by measuring performance of 5 year-old children on a categorization task involving novel, Greek symbols across 6 different types of learning conditions: three involving visual-motor practice (copying typed symbols independently, tracing typed symbols, tracing handwritten symbols) and three involving visual-auditory practice (seeing and saying typed symbols of a single typed font, of variable typed fonts, and of handwritten examples). We could therefore compare visual-motor production with visual perception both of variable and similar forms. Comparisons across the six conditions (N=72) demonstrated that all conditions that involved studying highly variable instances of a symbol facilitated symbol categorization relative to conditions where similar instances of a symbol were learned, regardless of visual-motor production. Therefore, learning perceptually variable instances of a category enhanced performance, suggesting that handwriting facilitates symbol understanding by virtue of its environmental output: supporting the notion of developmental change though brain-body-environment interactions. PMID:26726913

  18. Summarize to learn: summarization and visualization of text for ubiquitous learning

    DEFF Research Database (Denmark)

    Chongtay, Rocio; Last, Mark; Verbeke, Mathias

    2013-01-01

    Visualizations can stand in many relations to texts – and, as research into learning with pictures has shown, they can become particularly valuable when they transform the contents of the text (rather than just duplicate its message or structure it). But what kinds of transformations can...... be particularly helpful in the learning process? In this paper, we argue that interacting with, and creating, summaries of texts is a key transformation technique, and we investigate how textual and graphical summarization approaches, as well as automatic and manual summarization, can complement one another...... to support effective learning....

  19. Effects of regular aerobic exercise on visual perceptual learning.

    Science.gov (United States)

    Connell, Charlotte J W; Thompson, Benjamin; Green, Hayden; Sullivan, Rachel K; Gant, Nicholas

    2017-12-02

    This study investigated the influence of five days of moderate intensity aerobic exercise on the acquisition and consolidation of visual perceptual learning using a motion direction discrimination (MDD) task. The timing of exercise relative to learning was manipulated by administering exercise either before or after perceptual training. Within a matched-subjects design, twenty-seven healthy participants (n = 9 per group) completed five consecutive days of perceptual training on a MDD task under one of three interventions: no exercise, exercise before the MDD task, or exercise after the MDD task. MDD task accuracy improved in all groups over the five-day period, but there was a trend for impaired learning when exercise was performed before visual perceptual training. MDD task accuracy (mean ± SD) increased in exercise before by 4.5 ± 6.5%; exercise after by 11.8 ± 6.4%; and no exercise by 11.3 ± 7.2%. All intervention groups displayed similar MDD threshold reductions for the trained and untrained motion axes after training. These findings suggest that moderate daily exercise does not enhance the rate of visual perceptual learning for an MDD task or the transfer of learning to an untrained motion axis. Furthermore, exercise performed immediately prior to a visual perceptual learning task may impair learning. Further research with larger groups is required in order to better understand these effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The role of visual representation in physics learning: dynamic versus static visualization

    Science.gov (United States)

    Suyatna, Agus; Anggraini, Dian; Agustina, Dina; Widyastuti, Dini

    2017-11-01

    This study aims to examine the role of visual representation in physics learning and to compare the learning outcomes of using dynamic and static visualization media. The study was conducted using quasi-experiment with Pretest-Posttest Control Group Design. The samples of this research are students of six classes at State Senior High School in Lampung Province. The experimental class received a learning using dynamic visualization and control class using static visualization media. Both classes are given pre-test and post-test with the same instruments. Data were tested with N-gain analysis, normality test, homogeneity test and mean difference test. The results showed that there was a significant increase of mean (N-Gain) learning outcomes (p physical phenomena and requires long-term observation.

  1. Exploring Multi-Modal and Structured Representation Learning for Visual Image and Video Understanding

    OpenAIRE

    Xu, Dan

    2018-01-01

    As the explosive growth of the visual data, it is particularly important to develop intelligent visual understanding techniques for dealing with a large amount of data. Many efforts have been made in recent years to build highly effective and large-scale visual processing algorithms and systems. One of the core aspects in the research line is how to learn robust representations to better describe the data. In this thesis we study the problem of visual image and video understanding and specifi...

  2. The Examination of the Relation between Teacher Candidates' Problem Solving Appraisal and Utilization of Motivated Strategies for Learning

    Science.gov (United States)

    Turgut, Ozden; Ocak, Gurbuz

    2017-01-01

    This study examines the relation between teacher candidates' problem solving appraisal and utilization of motivated strategies for learning. The study has been carried out with 416 teacher candidates. A correlation has been used between problem solving appraisal and utilization of motivated strategies for learning. Besides, regression analysis has…

  3. Visual Hybrid Development Learning System (VHDLS) framework for children with autism.

    Science.gov (United States)

    Banire, Bilikis; Jomhari, Nazean; Ahmad, Rodina

    2015-10-01

    The effect of education on children with autism serves as a relative cure for their deficits. As a result of this, they require special techniques to gain their attention and interest in learning as compared to typical children. Several studies have shown that these children are visual learners. In this study, we proposed a Visual Hybrid Development Learning System (VHDLS) framework that is based on an instructional design model, multimedia cognitive learning theory, and learning style in order to guide software developers in developing learning systems for children with autism. The results from this study showed that the attention of children with autism increased more with the proposed VHDLS framework.

  4. Problem Based Learning

    DEFF Research Database (Denmark)

    de Graaff, Erik; Guerra, Aida

    , the key principles remain the same everywhere. Graaff & Kolmos (2003) identify the main PBL principles as follows: 1. Problem orientation 2. Project organization through teams or group work 3. Participant-directed 4. Experiental learning 5. Activity-based learning 6. Interdisciplinary learning and 7...... model and in general problem based and project based learning. We apply the principle of teach as you preach. The poster aims to outline the visitors’ workshop programme showing the results of some recent evaluations.......Problem-Based Learning (PBL) is an innovative method to organize the learning process in such a way that the students actively engage in finding answers by themselves. During the past 40 years PBL has evolved and diversified resulting in a multitude in variations in models and practices. However...

  5. Handwriting generates variable visual output to facilitate symbol learning.

    Science.gov (United States)

    Li, Julia X; James, Karin H

    2016-03-01

    Recent research has demonstrated that handwriting practice facilitates letter categorization in young children. The present experiments investigated why handwriting practice facilitates visual categorization by comparing 2 hypotheses: that handwriting exerts its facilitative effect because of the visual-motor production of forms, resulting in a direct link between motor and perceptual systems, or because handwriting produces variable visual instances of a named category in the environment that then changes neural systems. We addressed these issues by measuring performance of 5-year-old children on a categorization task involving novel, Greek symbols across 6 different types of learning conditions: 3 involving visual-motor practice (copying typed symbols independently, tracing typed symbols, tracing handwritten symbols) and 3 involving visual-auditory practice (seeing and saying typed symbols of a single typed font, of variable typed fonts, and of handwritten examples). We could therefore compare visual-motor production with visual perception both of variable and similar forms. Comparisons across the 6 conditions (N = 72) demonstrated that all conditions that involved studying highly variable instances of a symbol facilitated symbol categorization relative to conditions where similar instances of a symbol were learned, regardless of visual-motor production. Therefore, learning perceptually variable instances of a category enhanced performance, suggesting that handwriting facilitates symbol understanding by virtue of its environmental output: supporting the notion of developmental change though brain-body-environment interactions. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. Learning STEM Through Integrative Visual Representations

    Science.gov (United States)

    Virk, Satyugjit Singh

    Previous cognitive models of memory have not comprehensively taken into account the internal cognitive load of chunking isolated information and have emphasized the external cognitive load of visual presentation only. Under the Virk Long Term Working Memory Multimedia Model of cognitive load, drawing from the Cowan model, students presented with integrated animations of the key neural signal transmission subcomponents where the interrelationships between subcomponents are visually and verbally explicit, were hypothesized to perform significantly better on free response and diagram labeling questions, than students presented with isolated animations of these subcomponents. This is because the internal attentional cognitive load of chunking these concepts is greatly reduced and hence the overall cognitive load is less for the integrated visuals group than the isolated group, despite the higher external load for the integrated group of having the interrelationships between subcomponents presented explicitly. Experiment 1 demonstrated that integrating the subcomponents of the neuron significantly enhanced comprehension of the interconnections between cellular subcomponents and approached significance for enhancing comprehension of the layered molecular correlates of the cellular structures and their interconnections. Experiment 2 corrected time on task confounds from Experiment 1 and focused on the cellular subcomponents of the neuron only. Results from the free response essay subcomponent subscores did demonstrate significant differences in favor of the integrated group as well as some evidence from the diagram labeling section. Results from free response, short answer and What-If (problem solving), and diagram labeling detailed interrelationship subscores demonstrated the integrated group did indeed learn the extra material they were presented with. This data demonstrating the integrated group learned the extra material they were presented with provides some initial

  7. Learning visual balance from large-scale datasets of aesthetically highly rated images

    Science.gov (United States)

    Jahanian, Ali; Vishwanathan, S. V. N.; Allebach, Jan P.

    2015-03-01

    The concept of visual balance is innate for humans, and influences how we perceive visual aesthetics and cognize harmony. Although visual balance is a vital principle of design and taught in schools of designs, it is barely quantified. On the other hand, with emergence of automantic/semi-automatic visual designs for self-publishing, learning visual balance and computationally modeling it, may escalate aesthetics of such designs. In this paper, we present how questing for understanding visual balance inspired us to revisit one of the well-known theories in visual arts, the so called theory of "visual rightness", elucidated by Arnheim. We define Arnheim's hypothesis as a design mining problem with the goal of learning visual balance from work of professionals. We collected a dataset of 120K images that are aesthetically highly rated, from a professional photography website. We then computed factors that contribute to visual balance based on the notion of visual saliency. We fitted a mixture of Gaussians to the saliency maps of the images, and obtained the hotspots of the images. Our inferred Gaussians align with Arnheim's hotspots, and confirm his theory. Moreover, the results support the viability of the center of mass, symmetry, as well as the Rule of Thirds in our dataset.

  8. Perceptual Learning in Children With Visual Impairment Improves Near Visual Acuity

    NARCIS (Netherlands)

    Huurneman, Bianca; Boonstra, F. Nienke; Cox, Ralf F. A.; van Rens, Ger; Cillessen, Antonius H. N.

    PURPOSE. This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four-to nine-year-old children with visual impairment. METHODS. Participants were 45 children with visual impairment and 29 children with normal vision. Children

  9. Perceptual Learning in Children With Visual Impairment Improves Near Visual Acuity

    NARCIS (Netherlands)

    Huurneman, B.; Boonstra, F.N.; Cox, R.F.A.; van Rens, G.H.M.B.; Cillessen, A.H.N.

    2013-01-01

    Purpose. This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four- to nine-year-old children with visual impairment. Methods. Participants were 45 children with visual impairment and 29 children with normal vision. Children

  10. Perceptual learning in children with visual impairment improves near visual acuity

    NARCIS (Netherlands)

    Huurneman, B.; Boonstra, F.N.; Cox, R.F.; Rens, G. van; Cillessen, A.H.

    2013-01-01

    PURPOSE: This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four- to nine-year-old children with visual impairment. METHODS: Participants were 45 children with visual impairment and 29 children with normal vision. Children

  11. Perceptual Learning in Children With Visual Impairment Improves Near Visual Acuity

    NARCIS (Netherlands)

    Huurneman, B.; Boonstra, F.N.; Cox, R.F.A.; Rens, G.H.M.B. van; Cillessen, A.H.N.

    2013-01-01

    PURPOSE. This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four-to nine-year-old children with visual impairment. METHODS. Participants were 45 children with visual impairment and 29 children with normal vision. Children

  12. "The Child's World": a creative and visual trigger to stimulate student enquiry in a problem based learning module.

    Science.gov (United States)

    Barron, Carol; Lambert, Veronica; Conlon, Joy; Harrington, Tracey

    2008-11-01

    Despite the abundance of literature on problem based learning (PBL) [Murray, I., Savin-Baden, M., 2000. Staff development in problem-based learning. Teaching in Higher Education 5 (1), 107-126; Johnson, A.K., Tinning, R.S., 2001. Meeting the challenge of problem-based learning: developing the facilitators. Nurse Education Today 21 (3), 161-169; McCourt, C., Thomas, G., 2001. Evaluation of a problem based curriculum in midwifery. Midwifery 17 (4), 323-331; Cooke, M., Moyle, K., 2002. Students' evaluation of problem-based learning. Nurse Education Today 22, 330-339; Haith-Cooper, M., 2003a. An exploration of tutors' experiences of facilitating problem-based learning. Part 1--an educational research methodology combining innovation and philosophical tradition. Nurse Education Today 23, 58-64; Haith-Cooper, M., 2003b. An exploration of tutor' experiences of facilitating problem-based learning. Part 2--implications for the facilitation of problem based learning. Nurse Education Today 23, 65-75; Rowan, C.J., Mc Court, C., Beake, S., 2007. Problem based learning in midwifery--The teacher's perspective. Nurse Education Today 27, 131-138; Rowan, C.J., Mc Court, C., Beake, S., 2008. Problem based learning in midwifery--The students' perspective. Nurse Education Today 28, 93-99] few studies focus on describing "triggers", the process involved in their development and their evaluation from students' perspective. It is clearly documented that well designed, open ended, real life and challenging "triggers" are key to the success of PBL implementation [Roberts, D., Ousey, K., 2004. Problem based learning: developing the triggers. Experiences from a first wave site. Nurse Education in Practice 4, 154-158, Gibson, I., 2005. Designing projects for learning. In: Barrett, T., Mac Labhrainn, I., Fallon, H., (Eds.), Handbook of Enquiry and Problem-based Learning: Irish Case Studies and International Perspectives. AISHE & CELT: NUI Galway. , Barrett, T., 2005. Understanding problem

  13. Selective transfer of visual working memory training on Chinese character learning.

    Science.gov (United States)

    Opitz, Bertram; Schneiders, Julia A; Krick, Christoph M; Mecklinger, Axel

    2014-01-01

    Previous research has shown a systematic relationship between phonological working memory capacity and second language proficiency for alphabetic languages. However, little is known about the impact of working memory processes on second language learning in a non-alphabetic language such as Mandarin Chinese. Due to the greater complexity of the Chinese writing system we expect that visual working memory rather than phonological working memory exerts a unique influence on learning Chinese characters. This issue was explored in the present experiment by comparing visual working memory training with an active (auditory working memory training) control condition and a passive, no training control condition. Training induced modulations in language-related brain networks were additionally examined using functional magnetic resonance imaging in a pretest-training-posttest design. As revealed by pre- to posttest comparisons and analyses of individual differences in working memory training gains, visual working memory training led to positive transfer effects on visual Chinese vocabulary learning compared to both control conditions. In addition, we found sustained activation after visual working memory training in the (predominantly visual) left infero-temporal cortex that was associated with behavioral transfer. In the control conditions, activation either increased (active control condition) or decreased (passive control condition) without reliable behavioral transfer effects. This suggests that visual working memory training leads to more efficient processing and more refined responses in brain regions involved in visual processing. Furthermore, visual working memory training boosted additional activation in the precuneus, presumably reflecting mental image generation of the learned characters. We, therefore, suggest that the conjoint activity of the mid-fusiform gyrus and the precuneus after visual working memory training reflects an interaction of working memory and

  14. Learning about Locomotion Patterns from Visualizations: Effects of Presentation Format and Realism

    Science.gov (United States)

    Imhof, Birgit; Scheiter, Katharina; Gerjets, Peter

    2011-01-01

    The rapid development of computer graphics technology has made possible an easy integration of dynamic visualizations into computer-based learning environments. This study examines the relative effectiveness of dynamic visualizations, compared either to sequentially or simultaneously presented static visualizations. Moreover, the degree of realism…

  15. Visual problems associated with traumatic brain injury.

    Science.gov (United States)

    Armstrong, Richard A

    2018-02-28

    Traumatic brain injury (TBI) and its associated concussion are major causes of disability and death. All ages can be affected but children, young adults and the elderly are particularly susceptible. A decline in mortality has resulted in many more individuals living with a disability caused by TBI including those affecting vision. This review describes: (1) the major clinical and pathological features of TBI; (2) the visual signs and symptoms associated with the disorder; and (3) discusses the assessment of quality of life and visual rehabilitation of the patient. Defects in primary vision such as visual acuity and visual fields, eye movement including vergence, saccadic and smooth pursuit movements, and in more complex aspects of vision involving visual perception, motion vision ('akinopsia'), and visuo-spatial function have all been reported in TBI. Eye movement dysfunction may be an early sign of TBI. Hence, TBI can result in a variety of visual problems, many patients exhibiting multiple visual defects in combination with a decline in overall health. Patients with chronic dysfunction following TBI may require occupational, vestibular, cognitive and other forms of physical therapy. Such patients may also benefit from visual rehabilitation, including reading-related oculomotor training and the prescribing of spectacles with a variety of tints and prism combinations. © 2018 Optometry Australia.

  16. Anodal tDCS to V1 blocks visual perceptual learning consolidation.

    Science.gov (United States)

    Peters, Megan A K; Thompson, Benjamin; Merabet, Lotfi B; Wu, Allan D; Shams, Ladan

    2013-06-01

    This study examined the effects of visual cortex transcranial direct current stimulation (tDCS) on visual processing and learning. Participants performed a contrast detection task on two consecutive days. Each session consisted of a baseline measurement followed by measurements made during active or sham stimulation. On the first day, one group received anodal stimulation to primary visual cortex (V1), while another received cathodal stimulation. Stimulation polarity was reversed for these groups on the second day. The third (control) group of subjects received sham stimulation on both days. No improvements or decrements in contrast sensitivity relative to the same-day baseline were observed during real tDCS, nor was any within-session learning trend observed. However, task performance improved significantly from Day 1 to Day 2 for the participants who received cathodal tDCS on Day 1 and for the sham group. No such improvement was found for the participants who received anodal stimulation on Day 1, indicating that anodal tDCS blocked overnight consolidation of visual learning, perhaps through engagement of inhibitory homeostatic plasticity mechanisms or alteration of the signal-to-noise ratio within stimulated cortex. These results show that applying tDCS to the visual cortex can modify consolidation of visual learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Tracks to a Medical Diagnosis: Expertise Differences in Visual Problem Solving

    NARCIS (Netherlands)

    Jaarsma, Thomas; Boshuizen, Els; Jarodzka, Halszka; Nap, Marius; Verboon, Peter; Van Merriënboer, Jeroen

    2018-01-01

    This study focuses on the visual problem-solving process of clinical pathologists. Its aim is to find expertise-related differences in the temporal arrangement of this process, with a special focus on the orientation phase. A theoretical model of the visual diagnostic process of medical specialists

  18. Computer-related vision problems in Osogbo, south-western Nigeria ...

    African Journals Online (AJOL)

    Widespread use of computers for office work and e-learning has resulted in increased visual demands among computer users. The increased visual demands have led to development of ocular complaints and discomfort among users. The objective of this study is to determine the prevalence of computer related eye ...

  19. Identification of effective visual problem solving strategies in a complex visual domain

    NARCIS (Netherlands)

    Van Meeuwen, Ludo; Jarodzka, Halszka; Brand-Gruwel, Saskia; Kirschner, Paul A.; De Bock, Jeano; Van Merriënboer, Jeroen

    2018-01-01

    Students in complex visual domains must acquire visual problem solving strategies that allow them to make fast decisions and come up with good solutions to real-time problems. In this study, 31 air traffic controllers at different levels of expertise (novice, intermediate, expert) were confronted

  20. Students’ Mathematical Problem-Solving Abilities Through The Application of Learning Models Problem Based Learning

    Science.gov (United States)

    Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.

    2018-04-01

    One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.

  1. You see what you have learned. Evidence for an interrelation of associative learning and visual selective attention.

    Science.gov (United States)

    Feldmann-Wüstefeld, Tobias; Uengoer, Metin; Schubö, Anna

    2015-11-01

    Besides visual salience and observers' current intention, prior learning experience may influence deployment of visual attention. Associative learning models postulate that observers pay more attention to stimuli previously experienced as reliable predictors of specific outcomes. To investigate the impact of learning experience on deployment of attention, we combined an associative learning task with a visual search task and measured event-related potentials of the EEG as neural markers of attention deployment. In the learning task, participants categorized stimuli varying in color/shape with only one dimension being predictive of category membership. In the search task, participants searched a shape target while disregarding irrelevant color distractors. Behavioral results showed that color distractors impaired performance to a greater degree when color rather than shape was predictive in the learning task. Neurophysiological results show that the amplified distraction was due to differential attention deployment (N2pc). Experiment 2 showed that when color was predictive for learning, color distractors captured more attention in the search task (ND component) and more suppression of color distractor was required (PD component). The present results thus demonstrate that priority in visual attention is biased toward predictive stimuli, which allows learning experience to shape selection. We also show that learning experience can overrule strong top-down control (blocked tasks, Experiment 3) and that learning experience has a longer-term effect on attention deployment (tasks on two successive days, Experiment 4). © 2015 Society for Psychophysiological Research.

  2. Selective Spatial Working Memory Impairment in a Group of Children with Mathematics Learning Disabilities and Poor Problem-Solving Skills

    Science.gov (United States)

    Passolunghi, Maria Chiara; Mammarella, Irene Cristina

    2012-01-01

    This study examines visual and spatial working memory skills in 35 third to fifth graders with both mathematics learning disabilities (MLD) and poor problem-solving skills and 35 of their peers with typical development (TD) on tasks involving both low and high attentional control. Results revealed that children with MLD, relative to TD children,…

  3. Activity-Centered Domain Characterization for Problem-Driven Scientific Visualization.

    Science.gov (United States)

    Marai, G Elisabeta

    2018-01-01

    Although visualization design models exist in the literature in the form of higher-level methodological frameworks, these models do not present a clear methodological prescription for the domain characterization step. This work presents a framework and end-to-end model for requirements engineering in problem-driven visualization application design. The framework and model are based on the activity-centered design paradigm, which is an enhancement of human-centered design. The proposed activity-centered approach focuses on user tasks and activities, and allows an explicit link between the requirements engineering process with the abstraction stage-and its evaluation-of existing, higher-level visualization design models. In a departure from existing visualization design models, the resulting model: assigns value to a visualization based on user activities; ranks user tasks before the user data; partitions requirements in activity-related capabilities and nonfunctional characteristics and constraints; and explicitly incorporates the user workflows into the requirements process. A further merit of this model is its explicit integration of functional specifications, a concept this work adapts from the software engineering literature, into the visualization design nested model. A quantitative evaluation using two sets of interdisciplinary projects supports the merits of the activity-centered model. The result is a practical roadmap to the domain characterization step of visualization design for problem-driven data visualization. Following this domain characterization model can help remove a number of pitfalls that have been identified multiple times in the visualization design literature.

  4. Learning Visualizations by Analogy: Promoting Visual Literacy through Visualization Morphing.

    Science.gov (United States)

    Ruchikachorn, Puripant; Mueller, Klaus

    2015-09-01

    We propose the concept of teaching (and learning) unfamiliar visualizations by analogy, that is, demonstrating an unfamiliar visualization method by linking it to another more familiar one, where the in-betweens are designed to bridge the gap of these two visualizations and explain the difference in a gradual manner. As opposed to a textual description, our morphing explains an unfamiliar visualization through purely visual means. We demonstrate our idea by ways of four visualization pair examples: data table and parallel coordinates, scatterplot matrix and hyperbox, linear chart and spiral chart, and hierarchical pie chart and treemap. The analogy is commutative i.e. any member of the pair can be the unfamiliar visualization. A series of studies showed that this new paradigm can be an effective teaching tool. The participants could understand the unfamiliar visualization methods in all of the four pairs either fully or at least significantly better after they observed or interacted with the transitions from the familiar counterpart. The four examples suggest how helpful visualization pairings be identified and they will hopefully inspire other visualization morphings and associated transition strategies to be identified.

  5. The 50s cliff: a decline in perceptuo-motor learning, not a deficit in visual motion perception.

    Science.gov (United States)

    Ren, Jie; Huang, Shaochen; Zhang, Jiancheng; Zhu, Qin; Wilson, Andrew D; Snapp-Childs, Winona; Bingham, Geoffrey P

    2015-01-01

    Previously, we measured perceptuo-motor learning rates across the lifespan and found a sudden drop in learning rates between ages 50 and 60, called the "50s cliff." The task was a unimanual visual rhythmic coordination task in which participants used a joystick to oscillate one dot in a display in coordination with another dot oscillated by a computer. Participants learned to produce a coordination with a 90° relative phase relation between the dots. Learning rates for participants over 60 were half those of younger participants. Given existing evidence for visual motion perception deficits in people over 60 and the role of visual motion perception in the coordination task, it remained unclear whether the 50s cliff reflected onset of this deficit or a genuine decline in perceptuo-motor learning. The current work addressed this question. Two groups of 12 participants in each of four age ranges (20s, 50s, 60s, 70s) learned to perform a bimanual coordination of 90° relative phase. One group trained with only haptic information and the other group with both haptic and visual information about relative phase. Both groups were tested in both information conditions at baseline and post-test. If the 50s cliff was caused by an age dependent deficit in visual motion perception, then older participants in the visual group should have exhibited less learning than those in the haptic group, which should not exhibit the 50s cliff, and older participants in both groups should have performed less well when tested with visual information. Neither of these expectations was confirmed by the results, so we concluded that the 50s cliff reflects a genuine decline in perceptuo-motor learning with aging, not the onset of a deficit in visual motion perception.

  6. Students’ thinking preferences in solving mathematics problems based on learning styles: a comparison of paper-pencil and geogebra

    Science.gov (United States)

    Farihah, Umi

    2018-04-01

    The purpose of this study was to analyze students’ thinking preferences in solving mathematics problems using paper pencil comparing to geogebra based on their learning styles. This research employed a qualitative descriptive study. The subjects of this research was six of eighth grade students of Madrasah Tsanawiyah Negeri 2 Trenggalek, East Java Indonesia academic year 2015-2016 with their difference learning styles; two visual students, two auditory students, and two kinesthetic students.. During the interview, the students presented the Paper and Pencil-based Task (PBTs) and the Geogebra-based Task (GBTs). By investigating students’ solution methods and the representation in solving the problems, the researcher compared their visual and non-visual thinking preferences in solving mathematics problems while they were using Geogebra and without Geogebra. Based on the result of research analysis, it was shown that the comparison between students’ PBTs and GBTs solution either visual, auditory, or kinesthetic represented how Geogebra can influence their solution method. By using Geogebra, they prefer using visual method while presenting GBTs to using non-visual method.

  7. Magnetic stimulation of visual cortex impairs perceptual learning.

    Science.gov (United States)

    Baldassarre, Antonello; Capotosto, Paolo; Committeri, Giorgia; Corbetta, Maurizio

    2016-12-01

    The ability to learn and process visual stimuli more efficiently is important for survival. Previous neuroimaging studies have shown that perceptual learning on a shape identification task differently modulates activity in both frontal-parietal cortical regions and visual cortex (Sigman et al., 2005;Lewis et al., 2009). Specifically, fronto-parietal regions (i.e. intra parietal sulcus, pIPS) became less activated for trained as compared to untrained stimuli, while visual regions (i.e. V2d/V3 and LO) exhibited higher activation for familiar shape. Here, after the intensive training, we employed transcranial magnetic stimulation over both visual occipital and parietal regions, previously shown to be modulated, to investigate their causal role in learning the shape identification task. We report that interference with V2d/V3 and LO increased reaction times to learned stimuli as compared to pIPS and Sham control condition. Moreover, the impairment observed after stimulation over the two visual regions was positive correlated. These results strongly support the causal role of the visual network in the control of the perceptual learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Deep learning for visual understanding

    NARCIS (Netherlands)

    Guo, Y.

    2017-01-01

    With the dramatic growth of the image data on the web, there is an increasing demand of the algorithms capable of understanding the visual information automatically. Deep learning, served as one of the most significant breakthroughs, has brought revolutionary success in diverse visual applications,

  9. Geometric Hypergraph Learning for Visual Tracking

    OpenAIRE

    Du, Dawei; Qi, Honggang; Wen, Longyin; Tian, Qi; Huang, Qingming; Lyu, Siwei

    2016-01-01

    Graph based representation is widely used in visual tracking field by finding correct correspondences between target parts in consecutive frames. However, most graph based trackers consider pairwise geometric relations between local parts. They do not make full use of the target's intrinsic structure, thereby making the representation easily disturbed by errors in pairwise affinities when large deformation and occlusion occur. In this paper, we propose a geometric hypergraph learning based tr...

  10. Learning of grammar-like visual sequences by adults with and without language-learning disabilities.

    Science.gov (United States)

    Aguilar, Jessica M; Plante, Elena

    2014-08-01

    Two studies examined learning of grammar-like visual sequences to determine whether a general deficit in statistical learning characterizes this population. Furthermore, we tested the hypothesis that difficulty in sustaining attention during the learning task might account for differences in statistical learning. In Study 1, adults with normal language (NL) or language-learning disability (LLD) were familiarized with the visual artificial grammar and then tested using items that conformed or deviated from the grammar. In Study 2, a 2nd sample of adults with NL and LLD were presented auditory word pairs with weak semantic associations (e.g., groom + clean) along with the visual learning task. Participants were instructed to attend to visual sequences and to ignore the auditory stimuli. Incidental encoding of these words would indicate reduced attention to the primary task. In Studies 1 and 2, both groups demonstrated learning and generalization of the artificial grammar. In Study 2, neither the NL nor the LLD group appeared to encode the words presented during the learning phase. The results argue against a general deficit in statistical learning for individuals with LLD and demonstrate that both NL and LLD learners can ignore extraneous auditory stimuli during visual learning.

  11. Visual and Verbal Learning in a Genetic Metabolic Disorder

    Science.gov (United States)

    Spilkin, Amy M.; Ballantyne, Angela O.; Trauner, Doris A.

    2009-01-01

    Visual and verbal learning in a genetic metabolic disorder (cystinosis) were examined in the following three studies. The goal of Study I was to provide a normative database and establish the reliability and validity of a new test of visual learning and memory (Visual Learning and Memory Test; VLMT) that was modeled after a widely used test of…

  12. Digital media Experiences for Visual Learning

    DEFF Research Database (Denmark)

    Buhl, Mie

    2013-01-01

    for new tools and new theoretical approaches with which to understand them. the article argues that the current phase of social practices and technological development makes it difficult to disitnguish between experience with digital media and mediated experiences, because of the use of renegotiation og......Visual learning is a topic for didactic studies in all levels of educaion, brought about by an increasing use of digital meida- digital media give rise to discussions of how learning expereienes come about from various media ressources that generate new learning situations. new situations call...... about by the nature of diverse digital artefacts, 3. the learning potentials in using mobils devices for integrating the body in visual perception processes....

  13. Learning Sparse Visual Representations with Leaky Capped Norm Regularizers

    OpenAIRE

    Wangni, Jianqiao; Lin, Dahua

    2017-01-01

    Sparsity inducing regularization is an important part for learning over-complete visual representations. Despite the popularity of $\\ell_1$ regularization, in this paper, we investigate the usage of non-convex regularizations in this problem. Our contribution consists of three parts. First, we propose the leaky capped norm regularization (LCNR), which allows model weights below a certain threshold to be regularized more strongly as opposed to those above, therefore imposes strong sparsity and...

  14. Real-world visual statistics and infants' first-learned object names.

    Science.gov (United States)

    Clerkin, Elizabeth M; Hart, Elizabeth; Rehg, James M; Yu, Chen; Smith, Linda B

    2017-01-05

    We offer a new solution to the unsolved problem of how infants break into word learning based on the visual statistics of everyday infant-perspective scenes. Images from head camera video captured by 8 1/2 to 10 1/2 month-old infants at 147 at-home mealtime events were analysed for the objects in view. The images were found to be highly cluttered with many different objects in view. However, the frequency distribution of object categories was extremely right skewed such that a very small set of objects was pervasively present-a fact that may substantially reduce the problem of referential ambiguity. The statistical structure of objects in these infant egocentric scenes differs markedly from that in the training sets used in computational models and in experiments on statistical word-referent learning. Therefore, the results also indicate a need to re-examine current explanations of how infants break into word learning.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).

  15. Learning strategy preferences, verbal-visual cognitive styles, and multimedia preferences for continuing engineering education instructional design

    Science.gov (United States)

    Baukal, Charles Edward, Jr.

    A literature search revealed very little information on how to teach working engineers, which became the motivation for this research. Effective training is important for many reasons such as preventing accidents, maximizing fuel efficiency, minimizing pollution emissions, and reducing equipment downtime. The conceptual framework for this study included the development of a new instructional design framework called the Multimedia Cone of Abstraction (MCoA). This was developed by combining Dale's Cone of Experience and Mayer's Cognitive Theory of Multimedia Learning. An anonymous survey of 118 engineers from a single Midwestern manufacturer was conducted to determine their demographics, learning strategy preferences, verbal-visual cognitive styles, and multimedia preferences. The learning strategy preference profile and verbal-visual cognitive styles of the sample were statistically significantly different than the general population. The working engineers included more Problem Solvers and were much more visually-oriented than the general population. To study multimedia preferences, five of the seven levels in the MCoA were used. Eight types of multimedia were compared in four categories (types in parantheses): text (text and narration), static graphics (drawing and photograph), non-interactive dynamic graphics (animation and video), and interactive dynamic graphics (simulated virtual reality and real virtual reality). The first phase of the study examined multimedia preferences within a category. Participants compared multimedia types in pairs on dual screens using relative preference, rating, and ranking. Surprisingly, the more abstract multimedia (text, drawing, animation, and simulated virtual reality) were preferred in every category to the more concrete multimedia (narration, photograph, video, and real virtual reality), despite the fact that most participants had relatively little prior subject knowledge. However, the more abstract graphics were only slightly

  16. Robust Subjective Visual Property Prediction from Crowdsourced Pairwise Labels.

    Science.gov (United States)

    Fu, Yanwei; Hospedales, Timothy M; Xiang, Tao; Xiong, Jiechao; Gong, Shaogang; Wang, Yizhou; Yao, Yuan

    2016-03-01

    The problem of estimating subjective visual properties from image and video has attracted increasing interest. A subjective visual property is useful either on its own (e.g. image and video interestingness) or as an intermediate representation for visual recognition (e.g. a relative attribute). Due to its ambiguous nature, annotating the value of a subjective visual property for learning a prediction model is challenging. To make the annotation more reliable, recent studies employ crowdsourcing tools to collect pairwise comparison labels. However, using crowdsourced data also introduces outliers. Existing methods rely on majority voting to prune the annotation outliers/errors. They thus require a large amount of pairwise labels to be collected. More importantly as a local outlier detection method, majority voting is ineffective in identifying outliers that can cause global ranking inconsistencies. In this paper, we propose a more principled way to identify annotation outliers by formulating the subjective visual property prediction task as a unified robust learning to rank problem, tackling both the outlier detection and learning to rank jointly. This differs from existing methods in that (1) the proposed method integrates local pairwise comparison labels together to minimise a cost that corresponds to global inconsistency of ranking order, and (2) the outlier detection and learning to rank problems are solved jointly. This not only leads to better detection of annotation outliers but also enables learning with extremely sparse annotations.

  17. Learning from Balance Sheet Visualization

    Science.gov (United States)

    Tanlamai, Uthai; Soongswang, Oranuj

    2011-01-01

    This exploratory study examines alternative visuals and their effect on the level of learning of balance sheet users. Executive and regular classes of graduate students majoring in information technology in business were asked to evaluate the extent of acceptance and enhanced capability of these alternative visuals toward their learning…

  18. Studying Visual Displays: How to Instructionally Support Learning

    Science.gov (United States)

    Renkl, Alexander; Scheiter, Katharina

    2017-01-01

    Visual displays are very frequently used in learning materials. Although visual displays have great potential to foster learning, they also pose substantial demands on learners so that the actual learning outcomes are often disappointing. In this article, we pursue three main goals. First, we identify the main difficulties that learners have when…

  19. Issues and Problems in Malaysian Contemporary Visual Arts

    Directory of Open Access Journals (Sweden)

    Mohamad Faizuan Mat

    2016-06-01

    Full Text Available In Malaysia, there is a question in term of intellectualism activities in the context of visual epistemology. Therefore, this paper revealed the problems that linger in the Malaysian contemporary visual art scene. In fact, Malaysian contemporary artists appear to have insufficient intellectualism values and less discourse activities. The lacks of scholars in the field of visual arts create a gap in the visual arts scene in Malaysia. The question of this study was to uncover the main problems in Malaysian visual arts that led to the problem of art intellectual development. In addition, this paper presents the awareness of the valuable contributions in the intellectual development that able to enhance the communication in the art object.Keywords: art knowledge; art object; contemporary art; interpretation; perception;

  20. iSee: Teaching Visual Learning in an Organic Virtual Learning Environment

    Science.gov (United States)

    Han, Hsiao-Cheng

    2017-01-01

    This paper presents a three-year participatory action research project focusing on the graduate level course entitled Visual Learning in 3D Animated Virtual Worlds. The purpose of this research was to understand "How the virtual world processes of observing and creating can best help students learn visual theories". The first cycle of…

  1. Motor learning and working memory in children born preterm: a systematic review.

    Science.gov (United States)

    Jongbloed-Pereboom, Marjolein; Janssen, Anjo J W M; Steenbergen, Bert; Nijhuis-van der Sanden, Maria W G

    2012-04-01

    Children born preterm have a higher risk for developing motor, cognitive, and behavioral problems. Motor problems can occur in combination with working memory problems, and working memory is important for explicit learning of motor skills. The relation between motor learning and working memory has never been reviewed. The goal of this review was to provide an overview of motor learning, visual working memory and the role of working memory on motor learning in preterm children. A systematic review conducted in four databases identified 38 relevant articles, which were evaluated for methodological quality. Only 4 of 38 articles discussed motor learning in preterm children. Thirty-four studies reported on visual working memory; preterm birth affected performance on visual working memory tests. Information regarding motor learning and the role of working memory on the different components of motor learning was not available. Future research should address this issue. Insight in the relation between motor learning and visual working memory may contribute to the development of evidence based intervention programs for children born preterm. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Differential learning and memory performance in OEF/OIF veterans for verbal and visual material.

    Science.gov (United States)

    Sozda, Christopher N; Muir, James J; Springer, Utaka S; Partovi, Diana; Cole, Michael A

    2014-05-01

    Memory complaints are particularly salient among veterans who experience combat-related mild traumatic brain injuries and/or trauma exposure, and represent a primary barrier to successful societal reintegration and everyday functioning. Anecdotally within clinical practice, verbal learning and memory performance frequently appears differentially reduced versus visual learning and memory scores. We sought to empirically investigate the robustness of a verbal versus visual learning and memory discrepancy and to explore potential mechanisms for a verbal/visual performance split. Participants consisted of 103 veterans with reported history of mild traumatic brain injuries returning home from U.S. military Operations Enduring Freedom and Iraqi Freedom referred for outpatient neuropsychological evaluation. Findings indicate that visual learning and memory abilities were largely intact while verbal learning and memory performance was significantly reduced in comparison, residing at approximately 1.1 SD below the mean for verbal learning and approximately 1.4 SD below the mean for verbal memory. This difference was not observed in verbal versus visual fluency performance, nor was it associated with estimated premorbid verbal abilities or traumatic brain injury history. In our sample, symptoms of depression, but not posttraumatic stress disorder, were significantly associated with reduced composite verbal learning and memory performance. Verbal learning and memory performance may benefit from targeted treatment of depressive symptomatology. Also, because visual learning and memory functions may remain intact, these might be emphasized when applying neurocognitive rehabilitation interventions to compensate for observed verbal learning and memory difficulties.

  3. The mental health of UK ex-servicemen with a combat-related or a non-combat-related visual impairment: does the cause of visual impairment matter?

    Science.gov (United States)

    Stevelink, Sharon A M; Malcolm, Estelle M; Gill, Pashyca C; Fear, Nicola T

    2015-08-01

    Since the start of the conflicts in Iraq and Afghanistan, the numbers of young service personnel who have sustained a combat-related visual impairment have increased. This cross-sectional study examined the mental well-being of ex-servicemen (aged 22-55 years) with a visual impairment and determined if the mental health of those with a combat-related visual impairment differed from those whose visual impairment is not combat-related. Male ex-service personnel with a visual impairment completed a telephone interview assessing the presence of depressive symptomatology, probable anxiety disorder, post-traumatic stress disorder (PTSD) symptomatology and alcohol misuse. Data were analysed using descriptive statistics. 77 participants were included in the study, reflecting a response rate of 76.2%. Of those with complete data (n=74), 20 ex-servicemen had a combat-related visual impairment. Among ex-service personnel with a combat-related visual impairment, 10.0% (95% CI 0 to 23.2) screened positive for a probable depression, 25.0% (95% CI 6.0 to 44.0) for probable anxiety and 10.0% (95% CI 0 to 23.2) for probable PTSD. The prevalence of probable depression and probable PTSD differed among those with a non-combat-related visual impairment, namely 18.5% (95% CI 8.1 to 28.9) and 16.7% (95% CI 6.8 to 26.7), respectively. Probable anxiety was 18.5% (95% CI 8.1 to 28.9) among non-combat-related visually impaired ex-service personnel. 45.0% (95% CI 23.2 to 66.8) of combat-related visually impaired personnel reported hazardous drinking, compared with 20.4% (95% CI 9.7 to 31.2) of those with a non-combat-related visual impairment. Mental health problems were prevalent among visually impaired younger ex-servicemen. No statistically significant differences were found in the prevalence of mental health problems among ex-servicemen with a combat-related visual impairment compared with those with a non-combat-related visual impairment. Published by the BMJ Publishing Group Limited

  4. Analysis of the critical thinking process of junior high school students in solving geometric problems by utilizing the v-a-k learning styles model

    Science.gov (United States)

    Hananto, R. B.; Kusmayadi, T. A.; Riyadi

    2018-05-01

    The research aims to identify the critical thinking process of students in solving geometry problems. The geometry problem selected in this study was the building of flat side room (cube). The critical thinking process was implemented to visual, auditory and kinesthetic learning styles. This research was a descriptive analysis research using qualitative method. The subjects of this research were 3 students selected by purposive sampling consisting of visual, auditory, and kinesthetic learning styles. Data collection was done through test, interview, and observation. The results showed that the students' critical thinking process in identifying and defining steps for each learning style were similar in solving problems. The critical thinking differences were seen in enumerate, analyze, list, and self-correct steps. It was also found that critical thinking process of students with kinesthetic learning style was better than visual and auditory learning styles.

  5. Benefits of visualization in the mammography problem

    DEFF Research Database (Denmark)

    Khan, Azam; Breslav, Simon; Glueck, Michael

    2015-01-01

    Abstract Trying to make a decision between two outcomes, when there is some level of uncertainty, is inherently difficult because it involves probabilistic reasoning. Previous studies have shown that most people do not correctly apply Bayesian inference to solve probabilistic problems for decision...... making under uncertainty. In an effort to improve decision making with Bayesian problems, previous work has studied supplementing the textual description of problems with visualizations, such as graphs and charts. However, results have been varied and generally indicate that visualization...

  6. Problem representation and mathematical problem solving of students of varying math ability.

    Science.gov (United States)

    Krawec, Jennifer L

    2014-01-01

    The purpose of this study was to examine differences in math problem solving among students with learning disabilities (LD, n = 25), low-achieving students (LA, n = 30), and average-achieving students (AA, n = 29). The primary interest was to analyze the processes students use to translate and integrate problem information while solving problems. Paraphrasing, visual representation, and problem-solving accuracy were measured in eighth grade students using a researcher-modified version of the Mathematical Processing Instrument. Results indicated that both students with LD and LA students struggled with processing but that students with LD were significantly weaker than their LA peers in paraphrasing relevant information. Paraphrasing and visual representation accuracy each accounted for a statistically significant amount of variance in problem-solving accuracy. Finally, the effect of visual representation of relevant information on problem-solving accuracy was dependent on ability; specifically, for students with LD, generating accurate visual representations was more strongly related to problem-solving accuracy than for AA students. Implications for instruction for students with and without LD are discussed.

  7. Cognitive Strategies for Learning from Static and Dynamic Visuals.

    Science.gov (United States)

    Lewalter, D.

    2003-01-01

    Studied the effects of including static or dynamic visuals in an expository text on a learning outcome and the use of learning strategies when working with these visuals. Results for 60 undergraduates for both types of illustration indicate different frequencies in the use of learning strategies relevant for the learning outcome. (SLD)

  8. Impact of audio-visual storytelling in simulation learning experiences of undergraduate nursing students.

    Science.gov (United States)

    Johnston, Sandra; Parker, Christina N; Fox, Amanda

    2017-09-01

    Use of high fidelity simulation has become increasingly popular in nursing education to the extent that it is now an integral component of most nursing programs. Anecdotal evidence suggests that students have difficulty engaging with simulation manikins due to their unrealistic appearance. Introduction of the manikin as a 'real patient' with the use of an audio-visual narrative may engage students in the simulated learning experience and impact on their learning. A paucity of literature currently exists on the use of audio-visual narratives to enhance simulated learning experiences. This study aimed to determine if viewing an audio-visual narrative during a simulation pre-brief altered undergraduate nursing student perceptions of the learning experience. A quasi-experimental post-test design was utilised. A convenience sample of final year baccalaureate nursing students at a large metropolitan university. Participants completed a modified version of the Student Satisfaction with Simulation Experiences survey. This 12-item questionnaire contained questions relating to the ability to transfer skills learned in simulation to the real clinical world, the realism of the simulation and the overall value of the learning experience. Descriptive statistics were used to summarise demographic information. Two tailed, independent group t-tests were used to determine statistical differences within the categories. Findings indicated that students reported high levels of value, realism and transferability in relation to the viewing of an audio-visual narrative. Statistically significant results (t=2.38, psimulation to clinical practice. The subgroups of age and gender although not significant indicated some interesting results. High satisfaction with simulation was indicated by all students in relation to value and realism. There was a significant finding in relation to transferability on knowledge and this is vital to quality educational outcomes. Copyright © 2017. Published by

  9. Problem-based learning on quantitative analytical chemistry course

    Science.gov (United States)

    Fitri, Noor

    2017-12-01

    This research applies problem-based learning method on chemical quantitative analytical chemistry, so called as "Analytical Chemistry II" course, especially related to essential oil analysis. The learning outcomes of this course include aspects of understanding of lectures, the skills of applying course materials, and the ability to identify, formulate and solve chemical analysis problems. The role of study groups is quite important in improving students' learning ability and in completing independent tasks and group tasks. Thus, students are not only aware of the basic concepts of Analytical Chemistry II, but also able to understand and apply analytical concepts that have been studied to solve given analytical chemistry problems, and have the attitude and ability to work together to solve the problems. Based on the learning outcome, it can be concluded that the problem-based learning method in Analytical Chemistry II course has been proven to improve students' knowledge, skill, ability and attitude. Students are not only skilled at solving problems in analytical chemistry especially in essential oil analysis in accordance with local genius of Chemistry Department, Universitas Islam Indonesia, but also have skilled work with computer program and able to understand material and problem in English.

  10. The Problem with Templates: Learning from Organic Gang-Related Violence Reduction

    Directory of Open Access Journals (Sweden)

    Dennis Rodgers

    2015-10-01

    Full Text Available This article considers what demobilisation, disarmament, and reintegration (DDR programmes might learn from research on gangs and the problems associated with government-instituted ‘wars on gangs’ putatively aimed at reducing or fighting gang-related violence. It begins by considering interventions associated with the global war on gangs, and compares their underlying premises and practices with those of DDR programmes while highlighting how both are plagued with problems associated with drawing on de-contextualized templates. Drawing on long-term ethnographic research carried out in Nicaragua and South Africa, the article then goes on to explore why individuals leave gangs, focusing in particular on the more organic processes that deplete gangs of their members, as well as the consequences that the different possible occupational trajectories of ex-gang members can have for patterns of violence. These offer a number of potential lessons for DDR programmes, particularly with regard to reducing violence in a realistic and sustainable manner.

  11. Motor sequence learning occurs despite disrupted visual and proprioceptive feedback

    Directory of Open Access Journals (Sweden)

    Boyd Lara A

    2008-07-01

    Full Text Available Abstract Background Recent work has demonstrated the importance of proprioception for the development of internal representations of the forces encountered during a task. Evidence also exists for a significant role for proprioception in the execution of sequential movements. However, little work has explored the role of proprioceptive sensation during the learning of continuous movement sequences. Here, we report that the repeated segment of a continuous tracking task can be learned despite peripherally altered arm proprioception and severely restricted visual feedback regarding motor output. Methods Healthy adults practiced a continuous tracking task over 2 days. Half of the participants experienced vibration that altered proprioception of shoulder flexion/extension of the active tracking arm (experimental condition and half experienced vibration of the passive resting arm (control condition. Visual feedback was restricted for all participants. Retention testing was conducted on a separate day to assess motor learning. Results Regardless of vibration condition, participants learned the repeated segment demonstrated by significant improvements in accuracy for tracking repeated as compared to random continuous movement sequences. Conclusion These results suggest that with practice, participants were able to use residual afferent information to overcome initial interference of tracking ability related to altered proprioception and restricted visual feedback to learn a continuous motor sequence. Motor learning occurred despite an initial interference of tracking noted during acquisition practice.

  12. (Re)Constructing the Wicked Problem Through the Visual and the Verbal

    DEFF Research Database (Denmark)

    Holm Jacobsen, Peter; Harty, Chris; Tryggestad, Kjell

    2016-01-01

    Wicked problems are open ended and complex societal problems. There is a lack of empirical research into the dynamics and mechanisms that (re) construct problems to become wicked. This paper builds on an ethnographic study of a dialogue-based architect competition to do just that. The competition...... processes creates new knowledge and insights, but at the same time present new problems related to the ongoing verbal feedback. The design problem being (re) constructed appears as Heracles' fight with Hydra: Every time Heracles cut of a head, two new heads grow back. The paper contributes to understanding...... the relationship between the visual and the verbal (dialogue) in complex design processes in the early phases of large construction projects, and how the dynamic interplay between the design visualization and verbal dialogue develops before the competition produces, or negotiates, “a "winning design”....

  13. Learning QlikView data visualization

    CERN Document Server

    Pover, Karl

    2013-01-01

    A practical and fast-paced guide that gives you all the information you need to start developing charts from your data.Learning QlikView Data Visualization is for anybody interested in performing powerful data analysis and crafting insightful data visualization, independent of any previous knowledge of QlikView. Experience with spreadsheet software will help you understand QlikView functions.

  14. Occupational Therapy Interventions Effect on Visual-Motor Skills in Children with Learning Disorders

    Directory of Open Access Journals (Sweden)

    Batoul Mandani

    2007-07-01

    Full Text Available Objective: Visual-motor skill is a part of visual perception which can integrate visual processing skills to fine movements. Visual-motor dysfunction is often to cause problems in copying and writing. The purpose of this study is investigation of occupational therapy interventions effect on the visual-motor skill in children with learning disorders. Materials & Methods: In this interventional and experimental study, 23 students with learning disorders (2nd, 3rd, 4th grade were selected and they were divided (through Randomized Block Method into two groups, 11 persons as intervention group and the others as the control group (12 people. Both groups were administered the “Test of Visual-Motor Skills- Revised” (TVMS-R. Then case group received occupational therapy interventions for 16 sessions and two groups were administered by TVMS-R again. Data was analyzed by using paired T-test and independent T-test. Results: Total mark of TVMS-R demonstrated statistically significant difference in visual-motor skills between case and control groups (P<0/001. This test has 8 categories. Total mark of 1, 3,4,6,8 categories demonstrated that occupational therapy had significant effect on visual analysis skills (P<0/005. Total mark of 2, 5, 7 categories demonstrated that occupational therapy had significant effect on visual-spatial skills (P<0/001. Conclusion: Occupational therapy interventions had significant effect on the visual-motor skills and its items (visual-spatial, visual analysis, visual-motor integration and eye fixation skills.

  15. Dimensions of problem based learning

    DEFF Research Database (Denmark)

    Nielsen, Jørgen Lerche; Andreasen, Lars Birch

    2013-01-01

    The article contributes to the literature on problem based learning and problem-oriented project work, building on and reflecting the experiences of the authors through decades of work with problem-oriented project pedagogy. The article explores different dimensions of problem based learning such...... and Learning (MIL). We discuss changes in the roles of the teachers as supervisors within this learning environment, and we explore the involvement of students as active participants and co-designers of how course and project activities unfold....

  16. Visual Descriptor Learning for Predicting Grasping Affordances

    DEFF Research Database (Denmark)

    Thomsen, Mikkel Tang

    2016-01-01

    by the task of grasping unknown objects given visual sensor information. The contributions from this thesis stem from three works that all relate to the task of grasping unknown objects but with particular focus on the visual representation part of the problem. First an investigation of a visual feature space...... consisting of surface features was performed. Dimensions in the visual space were varied and the effects were evaluated with the task of grasping unknown object. The evaluation was performed using a novel probabilistic grasp prediction approach based on neighbourhood analysis. The resulting success......-rates for predicting grasps were between 75% and 90% depending on the object class. The investigations also provided insights into the importance of selecting a proper visual feature space when utilising it for predicting affordances. As a consequence of the gained insights, a semi-local surface feature, the Sliced...

  17. Visual Hybrid Development Learning System (VHDLS) Framework for Children with Autism

    Science.gov (United States)

    Banire, Bilikis; Jomhari, Nazean; Ahmad, Rodina

    2015-01-01

    The effect of education on children with autism serves as a relative cure for their deficits. As a result of this, they require special techniques to gain their attention and interest in learning as compared to typical children. Several studies have shown that these children are visual learners. In this study, we proposed a Visual Hybrid…

  18. Learning Building Layouts with Non-geometric Visual Information: The Effects of Visual Impairment and Age

    Science.gov (United States)

    Kalia, Amy A.; Legge, Gordon E.; Giudice, Nicholas A.

    2009-01-01

    Previous studies suggest that humans rely on geometric visual information (hallway structure) rather than non-geometric visual information (e.g., doors, signs and lighting) for acquiring cognitive maps of novel indoor layouts. This study asked whether visual impairment and age affect reliance on non-geometric visual information for layout learning. We tested three groups of participants—younger (sighted, older (50–70 years) normally sighted, and low vision (people with heterogeneous forms of visual impairment ranging in age from 18–67). Participants learned target locations in building layouts using four presentation modes: a desktop virtual environment (VE) displaying only geometric cues (Sparse VE), a VE displaying both geometric and non-geometric cues (Photorealistic VE), a Map, and a Real building. Layout knowledge was assessed by map drawing and by asking participants to walk to specified targets in the real space. Results indicate that low-vision and older normally-sighted participants relied on additional non-geometric information to accurately learn layouts. In conclusion, visual impairment and age may result in reduced perceptual and/or memory processing that makes it difficult to learn layouts without non-geometric visual information. PMID:19189732

  19. Repetitive Transcranial Direct Current Stimulation Induced Excitability Changes of Primary Visual Cortex and Visual Learning Effects-A Pilot Study.

    Science.gov (United States)

    Sczesny-Kaiser, Matthias; Beckhaus, Katharina; Dinse, Hubert R; Schwenkreis, Peter; Tegenthoff, Martin; Höffken, Oliver

    2016-01-01

    Studies on noninvasive motor cortex stimulation and motor learning demonstrated cortical excitability as a marker for a learning effect. Transcranial direct current stimulation (tDCS) is a non-invasive tool to modulate cortical excitability. It is as yet unknown how tDCS-induced excitability changes and perceptual learning in visual cortex correlate. Our study aimed to examine the influence of tDCS on visual perceptual learning in healthy humans. Additionally, we measured excitability in primary visual cortex (V1). We hypothesized that anodal tDCS would improve and cathodal tDCS would have minor or no effects on visual learning. Anodal, cathodal or sham tDCS were applied over V1 in a randomized, double-blinded design over four consecutive days (n = 30). During 20 min of tDCS, subjects had to learn a visual orientation-discrimination task (ODT). Excitability parameters were measured by analyzing paired-stimulation behavior of visual-evoked potentials (ps-VEP) and by measuring phosphene thresholds (PTs) before and after the stimulation period of 4 days. Compared with sham-tDCS, anodal tDCS led to an improvement of visual discrimination learning (p learning effect. For cathodal tDCS, no significant effects on learning or on excitability could be seen. Our results showed that anodal tDCS over V1 resulted in improved visual perceptual learning and increased cortical excitability. tDCS is a promising tool to alter V1 excitability and, hence, perceptual visual learning.

  20. Problem-based learning and radiology

    International Nuclear Information System (INIS)

    Thurley, P.; Dennick, R.

    2008-01-01

    The Royal College of Radiologists recently published documents setting out guidelines to improve the teaching of radiology to medical students. These included recommendations that clinicians who teach radiology should be aware of newer educational techniques, such as problem-based learning, and should be involved in the development of curricula and assessment in medical schools. This review aims to introduce the educational theories behind problem-based learning and describe how a problem-based learning tutorial is run. The relevance of problem-based learning to radiology and the potential advantages and disadvantages are discussed

  1. Multisensory training can promote or impede visual perceptual learning of speech stimuli: visual-tactile vs. visual-auditory training.

    Science.gov (United States)

    Eberhardt, Silvio P; Auer, Edward T; Bernstein, Lynne E

    2014-01-01

    In a series of studies we have been investigating how multisensory training affects unisensory perceptual learning with speech stimuli. Previously, we reported that audiovisual (AV) training with speech stimuli can promote auditory-only (AO) perceptual learning in normal-hearing adults but can impede learning in congenitally deaf adults with late-acquired cochlear implants. Here, impeder and promoter effects were sought in normal-hearing adults who participated in lipreading training. In Experiment 1, visual-only (VO) training on paired associations between CVCVC nonsense word videos and nonsense pictures demonstrated that VO words could be learned to a high level of accuracy even by poor lipreaders. In Experiment 2, visual-auditory (VA) training in the same paradigm but with the addition of synchronous vocoded acoustic speech impeded VO learning of the stimuli in the paired-associates paradigm. In Experiment 3, the vocoded AO stimuli were shown to be less informative than the VO speech. Experiment 4 combined vibrotactile speech stimuli with the visual stimuli during training. Vibrotactile stimuli were shown to promote visual perceptual learning. In Experiment 5, no-training controls were used to show that training with visual speech carried over to consonant identification of untrained CVCVC stimuli but not to lipreading words in sentences. Across this and previous studies, multisensory training effects depended on the functional relationship between pathways engaged during training. Two principles are proposed to account for stimulus effects: (1) Stimuli presented to the trainee's primary perceptual pathway will impede learning by a lower-rank pathway. (2) Stimuli presented to the trainee's lower rank perceptual pathway will promote learning by a higher-rank pathway. The mechanisms supporting these principles are discussed in light of multisensory reverse hierarchy theory (RHT).

  2. Learning feedback and feedforward control in a mirror-reversed visual environment.

    Science.gov (United States)

    Kasuga, Shoko; Telgen, Sebastian; Ushiba, Junichi; Nozaki, Daichi; Diedrichsen, Jörn

    2015-10-01

    When we learn a novel task, the motor system needs to acquire both feedforward and feedback control. Currently, little is known about how the learning of these two mechanisms relate to each other. In the present study, we tested whether feedforward and feedback control need to be learned separately, or whether they are learned as common mechanism when a new control policy is acquired. Participants were trained to reach to two lateral and one central target in an environment with mirror (left-right)-reversed visual feedback. One group was allowed to make online movement corrections, whereas the other group only received visual information after the end of the movement. Learning of feedforward control was assessed by measuring the accuracy of the initial movement direction to lateral targets. Feedback control was measured in the responses to sudden visual perturbations of the cursor when reaching to the central target. Although feedforward control improved in both groups, it was significantly better when online corrections were not allowed. In contrast, feedback control only adaptively changed in participants who received online feedback and remained unchanged in the group without online corrections. Our findings suggest that when a new control policy is acquired, feedforward and feedback control are learned separately, and that there may be a trade-off in learning between feedback and feedforward controllers. Copyright © 2015 the American Physiological Society.

  3. Assessment of Psychological and Psycho-physiological Problems Among Visually Impaired Adolescents.

    Science.gov (United States)

    Bhuvaneswari, Mohanraj; Immanuel Selvaraj, Chinnadurai; Selvaraj, Balakrishnan; Srinivasan, Thiruvengadam

    2016-03-01

    Visual impairment tends to evoke more discomfiture than any other disability. Primarily, the biggest issue may be that blindness is visible. Furthermore, visual impairment develops serious medical, psychological, social and economic problems. The focus of the current study was to investigate the psychological and psycho physiological problems of visually impaired adolescent students. Purposive sampling was adopted to select 150 visually impaired students (71 males and 72 females) from five schools in Coimbatore city of the Tamil Nadu state, India. Anxiety, frustration, aggression and social and personal adjustment levels of the visually impaired students were measured in this study using Taylor's manifest anxiety scale, frustration test, aggression scale and the adolescent adjustment inventory, respectively. Anxiety (χ(2) = 185.66, P = 0 at P < 0.01), frustration (χ(2) = 167.23, P = 0 at P < 0.01) and aggression (χ(2) = 57.66, P = 0 at P < 0.01) were significantly related to adjustment among visually impaired students. The adjustment score had a significant positive correlation with anxiety (r = 0.919, P = 0 at P < 0.01), frustration (r = 0.887, P = 0 at P < 0.01) and aggression levels (r = 0.664, P = 0 at P < 0.01), anxiety was significantly correlated with frustration (r = 0. 961, P = 0 at P < 0.01) and aggression levels (r = 0.727, P < 0.01) and frustration was significantly correlated with aggression level (r = 0. 637, P = 0 at P < 0.01) of visually impaired adolescents. There was a positive relationship between psycho-physiological disorders and anxiety frustration, aggression and adjustment among visually impaired students. Visually impaired students exhibited significant levels of psychological and psycho-physiological problems.

  4. Formation of 17-18 yrs age girl students’ visual performance by means of visual training at stage of adaptation to learning loads

    Directory of Open Access Journals (Sweden)

    Bondarenko S.V.

    2015-04-01

    Full Text Available Purpose: substantiation of health related training influence of basketball and volleyball elements on functional state of 1 st year students’ visual analyzers in period of adaptation to learning loads with expressed visual component. Material: in experiment 29 students of 17-18 year age without visual pathologies participated. Indicators of visual performance were determined by correction table of Tagayeva and processed by Weston methodic. Accommodative function was tested by method of mechanical proximetry. Results: the authors worked out and tested two programs of visual training. Influence of visual trainings on visual performance’s main components (quickness, quality, integral indicators was studied as well as eye’s accommodative function (by dynamic of position of the nearest point of clear vision. Conclusions: Application of visual trainings at physical education classes permits to improve indicators of visual analyzer’s performance as well as minimize negative influence of intensive learning loads on eye’ accommodative function.

  5. A deep learning / neuroevolution hybrid for visual control

    DEFF Research Database (Denmark)

    Poulsen, Andreas Precht; Thorhauge, Mark; Funch, Mikkel Hvilshj

    2017-01-01

    This paper presents a deep learning / neuroevolution hybrid approach called DLNE, which allows FPS bots to learn to aim & shoot based only on high-dimensional raw pixel input. The deep learning component is responsible for visual recognition and translating raw pixels to compact feature...... representations, while the evolving network takes those features as inputs to infer actions. The results suggest that combining deep learning and neuroevolution in a hybrid approach is a promising research direction that could make complex visual domains directly accessible to networks trained through evolution....

  6. Visual, Algebraic and Mixed Strategies in Visually Presented Linear Programming Problems.

    Science.gov (United States)

    Shama, Gilli; Dreyfus, Tommy

    1994-01-01

    Identified and classified solution strategies of (n=49) 10th-grade students who were presented with linear programming problems in a predominantly visual setting in the form of a computerized game. Visual strategies were developed more frequently than either algebraic or mixed strategies. Appendix includes questionnaires. (Contains 11 references.)…

  7. Visual dysfunction, neurodegenerative diseases, and aging.

    Science.gov (United States)

    Jackson, Gregory R; Owsley, Cynthia

    2003-08-01

    The four most common sight-threatening conditions in older adults in North America are cataract, ARM, glaucoma, and diabetic retinopathy. Even in their moderate stages, these conditions cause visual sensory impairments and reductions in health-related quality of life, including difficulties in daily tasks and psychosocial problems. Many older adults are free from these conditions, yet still experience a variety of visual perceptual problems resulting from aging-related changes in the optics of the eye and degeneration of the visual neural pathways. These problems consist of impairments in visual acuity, contrast sensitivity, color discrimination, temporal sensitivity, motion perception, peripheral visual field sensitivity, and visual processing speed. PD causes a progressive loss of dopaminergic cells predominantly in the retina and possibly in other areas of the visual system. This retinal dopamine deficiency produces selective spatial-temporal abnormalities in retinal ganglion cell function, probably arising from altered receptive field organization in the PD retina. The cortical degeneration characteristics of AD, including neurofibrillary tangles and neuritic plaques, also are present in the visual cortical areas, especially in the visual association areas. The most prominent electrophysiologic change in AD is a delay in the P2 component of the flash VEP. Deficits in higher-order visual abilities typically are compromised in AD, including problems with visual attention, perceiving structure from motion, visual memory, visual learning, reading, and object and face perception. There have been reports of a visual variant of AD in which these types of visual problems are the initial and most prominent signs of the disease. Visual sensory impairments (e.g., contrast sensitivity or achromatopsia) also have been reported but are believed more reflective of cortical disturbances than of AD-associated optic neuropathy.

  8. Characteristics of Problem-Based Learning

    DEFF Research Database (Denmark)

    Kolmos, Anette

    2003-01-01

    Problem BAsed LEarning (PBL) is widely regarded as a successful and innovative method for engineering education. The article highlights the Dutch approach of directing the learning process throuogh problem analysis and the Danish model of project-organised learning...

  9. Relativity of Visual Communication

    Directory of Open Access Journals (Sweden)

    Arto Mutanen

    2016-03-01

    Full Text Available Communication is sharing and conveying information. In visual communication especially visual messages have to be formulated and interpreted. The interpretation is relative to a method of information presentation method which is human construction. This holds also in the case of visual languages. The notions of syntax and semantics for visual languages are not so well founded as they are for natural languages. Visual languages are both syntactically and semantically dense. The density is connected to the compositionality of the (pictorial languages. In the paper Charles Sanders Peirce’s theory of signs will be used in characterizing visual languages. This allows us to relate visual languages to natural languages. The foundation of information presentation methods for visual languages is the logic of perception, but only if perception is understood as propositional perception. This allows us to understand better the relativity of information presentation methods, and hence to evaluate the cultural relativity of visual communication.

  10. Visual variability affects early verb learning.

    Science.gov (United States)

    Twomey, Katherine E; Lush, Lauren; Pearce, Ruth; Horst, Jessica S

    2014-09-01

    Research demonstrates that within-category visual variability facilitates noun learning; however, the effect of visual variability on verb learning is unknown. We habituated 24-month-old children to a novel verb paired with an animated star-shaped actor. Across multiple trials, children saw either a single action from an action category (identical actions condition, for example, travelling while repeatedly changing into a circle shape) or multiple actions from that action category (variable actions condition, for example, travelling while changing into a circle shape, then a square shape, then a triangle shape). Four test trials followed habituation. One paired the habituated verb with a new action from the habituated category (e.g., 'dacking' + pentagon shape) and one with a completely novel action (e.g., 'dacking' + leg movement). The others paired a new verb with a new same-category action (e.g., 'keefing' + pentagon shape), or a completely novel category action (e.g., 'keefing' + leg movement). Although all children discriminated novel verb/action pairs, children in the identical actions condition discriminated trials that included the completely novel verb, while children in the variable actions condition discriminated the out-of-category action. These data suggest that - as in noun learning - visual variability affects verb learning and children's ability to form action categories. © 2014 The British Psychological Society.

  11. Errors of Students Learning With React Strategy in Solving the Problems of Mathematical Representation Ability

    Directory of Open Access Journals (Sweden)

    Delsika Pramata Sari

    2017-06-01

    Full Text Available The purpose of this study was to investigate the errors experienced by students learning with REACT strategy and traditional learning in solving problems of mathematical representation ability. This study used quasi experimental pattern with static-group comparison design. The subjects of this study were 47 eighth grade students of junior high school in Bandung consisting of two samples. The instrument used was a test to measure students' mathematical representation ability. The reliability coefficient about the mathematical representation ability was 0.56. The most prominent errors of mathematical representation ability of students learning with REACT strategy and traditional learning, was on indicator that solving problem involving arithmetic symbols (symbolic representation. In addition, errors were also experienced by many students with traditional learning on the indicator of making the image of a real world situation to clarify the problem and facilitate its completion (visual representation.

  12. Decoding the future from past experience: learning shapes predictions in early visual cortex.

    Science.gov (United States)

    Luft, Caroline D B; Meeson, Alan; Welchman, Andrew E; Kourtzi, Zoe

    2015-05-01

    Learning the structure of the environment is critical for interpreting the current scene and predicting upcoming events. However, the brain mechanisms that support our ability to translate knowledge about scene statistics to sensory predictions remain largely unknown. Here we provide evidence that learning of temporal regularities shapes representations in early visual cortex that relate to our ability to predict sensory events. We tested the participants' ability to predict the orientation of a test stimulus after exposure to sequences of leftward- or rightward-oriented gratings. Using fMRI decoding, we identified brain patterns related to the observers' visual predictions rather than stimulus-driven activity. Decoding of predicted orientations following structured sequences was enhanced after training, while decoding of cued orientations following exposure to random sequences did not change. These predictive representations appear to be driven by the same large-scale neural populations that encode actual stimulus orientation and to be specific to the learned sequence structure. Thus our findings provide evidence that learning temporal structures supports our ability to predict future events by reactivating selective sensory representations as early as in primary visual cortex. Copyright © 2015 the American Physiological Society.

  13. Problem-based and project-oriented learning

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Teodorescu, Remus; Chen, Zhe

    2005-01-01

    . Generally, the content of the curriculum should be more expanded without extra study time. This paper presents a teaching approach, which makes it possible very fast for the students to obtain in-depth skills into new research areas, and this method is the problem-oriented and project-based learning....... In this paper the necessary skills for power electronic engineers are outlined that is followed up by a description on how the problem-oriented and project-based learning are implemented. A complete curriculum in power electronics and drives at Aalborg University is presented where different power electronics...... related projects at different study levels also are presented....

  14. What Is the Problem in Problem-Based Learning in Higher Education Mathematics

    Science.gov (United States)

    Dahl, Bettina

    2018-01-01

    Problem and Project-Based Learning (PBL) emphasise collaborate work on problems relevant to society and emphases the relation between theory and practice. PBL fits engineering students as preparation for their future professions but what about mathematics? Mathematics is not just applied mathematics, but it is also a body of abstract knowledge…

  15. Mapping Students Use of Technologies in Problem Based Learning Environments

    DEFF Research Database (Denmark)

    Rongbutsri, Nikorn; Khalid, Md. Saifuddin; Ryberg, Thomas

    2011-01-01

    This paper aims to understand how students use technology to enhance their learning in problem-based learning environments. The research methodology is based on both qualitative and quantitative studies. The results are based on students’ interviews, a survey and students’ reflections in course......-related blog posts; they show that students have positive perceptions toward using technologies in problem-based learning environments....

  16. Benefits of stimulus congruency for multisensory facilitation of visual learning.

    Directory of Open Access Journals (Sweden)

    Robyn S Kim

    Full Text Available BACKGROUND: Studies of perceptual learning have largely focused on unisensory stimuli. However, multisensory interactions are ubiquitous in perception, even at early processing stages, and thus can potentially play a role in learning. Here, we examine the effect of auditory-visual congruency on visual learning. METHODOLOGY/PRINCIPLE FINDINGS: Subjects were trained over five days on a visual motion coherence detection task with either congruent audiovisual, or incongruent audiovisual stimuli. Comparing performance on visual-only trials, we find that training with congruent audiovisual stimuli produces significantly better learning than training with incongruent audiovisual stimuli or with only visual stimuli. CONCLUSIONS/SIGNIFICANCE: This advantage from stimulus congruency during training suggests that the benefits of multisensory training may result from audiovisual interactions at a perceptual rather than cognitive level.

  17. The relevance of visual information on learning sounds in infancy

    NARCIS (Netherlands)

    ter Schure, S.M.M.

    2016-01-01

    Newborn infants are sensitive to combinations of visual and auditory speech. Does this ability to match sounds and sights affect how infants learn the sounds of their native language? And are visual articulations the only type of visual information that can influence sound learning? This

  18. Vision-related problems among the workers engaged in jewellery manufacturing.

    Science.gov (United States)

    Salve, Urmi Ravindra

    2015-01-01

    American Optometric Association defines Computer Vision Syndrome (CVS) as "complex of eye and vision problems related to near work which are experienced during or related to computer use." This happens when visual demand of the tasks exceeds the visual ability of the users. Even though problems were initially attributed to computer-related activities subsequently similar problems are also reported while carrying any near point task. Jewellery manufacturing activities involves precision designs, setting the tiny metals and stones which requires high visual attention and mental concentration and are often near point task. It is therefore expected that the workers engaged in jewellery manufacturing may also experience symptoms like CVS. Keeping the above in mind, this study was taken up (1) To identify the prevalence of symptoms like CVS among the workers of the jewellery manufacturing and compare the same with the workers working at computer workstation and (2) To ascertain whether such symptoms have any permanent vision-related problems. Case control study. The study was carried out in Zaveri Bazaar region and at an IT-enabled organization in Mumbai. The study involved the identification of symptoms of CVS using a questionnaire of Eye Strain Journal, opthalmological check-ups and measurement of Spontaneous Eye Blink rate. The data obtained from the jewellery manufacturing was compared with the data of the subjects engaged in computer work and with the data available in the literature. A comparative inferential statistics was used. Results showed that visual demands of the task carried out in jewellery manufacturing were much higher than that of carried out in computer-related work.

  19. Concrete and abstract visualizations in history learning tasks

    NARCIS (Netherlands)

    Prangsma, M.E.; van Boxtel, C.A.M.; Kanselaar, G.; Kirschner, P.A.

    2009-01-01

    Background: History learning requires that students understand historical phenomena, abstract concepts and the relations between them. Students have problems grasping, using and relating complex historical developments and structures. Aims: A study was conducted to determine the effects of tasks

  20. Learning of arbitrary association between visual and auditory novel stimuli in adults: the "bond effect" of haptic exploration.

    Directory of Open Access Journals (Sweden)

    Benjamin Fredembach

    Full Text Available BACKGROUND: It is well-known that human beings are able to associate stimuli (novel or not perceived in their environment. For example, this ability is used by children in reading acquisition when arbitrary associations between visual and auditory stimuli must be learned. The studies tend to consider it as an "implicit" process triggered by the learning of letter/sound correspondences. The study described in this paper examined whether the addition of the visuo-haptic exploration would help adults to learn more effectively the arbitrary association between visual and auditory novel stimuli. METHODOLOGY/PRINCIPAL FINDINGS: Adults were asked to learn 15 new arbitrary associations between visual stimuli and their corresponding sounds using two learning methods which differed according to the perceptual modalities involved in the exploration of the visual stimuli. Adults used their visual modality in the "classic" learning method and both their visual and haptic modalities in the "multisensory" learning one. After both learning methods, participants showed a similar above-chance ability to recognize the visual and auditory stimuli and the audio-visual associations. However, the ability to recognize the visual-auditory associations was better after the multisensory method than after the classic one. CONCLUSION/SIGNIFICANCE: This study revealed that adults learned more efficiently the arbitrary association between visual and auditory novel stimuli when the visual stimuli were explored with both vision and touch. The results are discussed from the perspective of how they relate to the functional differences of the manual haptic modality and the hypothesis of a "haptic bond" between visual and auditory stimuli.

  1. Public Computer Assisted Learning Facilities for Children with Visual Impairment: Universal Design for Inclusive Learning

    Science.gov (United States)

    Siu, Kin Wai Michael; Lam, Mei Seung

    2012-01-01

    Although computer assisted learning (CAL) is becoming increasingly popular, people with visual impairment face greater difficulty in accessing computer-assisted learning facilities. This is primarily because most of the current CAL facilities are not visually impaired friendly. People with visual impairment also do not normally have access to…

  2. Tiger salamanders' (Ambystoma tigrinum) response learning and usage of visual cues.

    Science.gov (United States)

    Kundey, Shannon M A; Millar, Roberto; McPherson, Justin; Gonzalez, Maya; Fitz, Aleyna; Allen, Chadbourne

    2016-05-01

    We explored tiger salamanders' (Ambystoma tigrinum) learning to execute a response within a maze as proximal visual cue conditions varied. In Experiment 1, salamanders learned to turn consistently in a T-maze for reinforcement before the maze was rotated. All learned the initial task and executed the trained turn during test, suggesting that they learned to demonstrate the reinforced response during training and continued to perform it during test. In a second experiment utilizing a similar procedure, two visual cues were placed consistently at the maze junction. Salamanders were reinforced for turning towards one cue. Cue placement was reversed during test. All learned the initial task, but executed the trained turn rather than turning towards the visual cue during test, evidencing response learning. In Experiment 3, we investigated whether a compound visual cue could control salamanders' behaviour when it was the only cue predictive of reinforcement in a cross-maze by varying start position and cue placement. All learned to turn in the direction indicated by the compound visual cue, indicating that visual cues can come to control their behaviour. Following training, testing revealed that salamanders attended to stimuli foreground over background features. Overall, these results suggest that salamanders learn to execute responses over learning to use visual cues but can use visual cues if required. Our success with this paradigm offers the potential in future studies to explore salamanders' cognition further, as well as to shed light on how features of the tiger salamanders' life history (e.g. hibernation and metamorphosis) impact cognition.

  3. [Associative Learning between Orientation and Color in Early Visual Areas].

    Science.gov (United States)

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2017-08-01

    Associative learning is an essential neural phenomenon where the contingency of different items increases after training. Although associative learning has been found to occur in many brain regions, there is no clear evidence that associative learning of visual features occurs in early visual areas. Here, we developed an associative decoded functional magnetic resonance imaging (fMRI) neurofeedback (A-DecNef) to determine whether associative learning of color and orientation can be induced in early visual areas. During the three days' training, A-DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was simultaneously, physically presented to participants. Consequently, participants' perception of "red" was significantly more frequently than that of "green" in an achromatic vertical grating. This effect was also observed 3 to 5 months after training. These results suggest that long-term associative learning of two different visual features such as color and orientation, was induced most likely in early visual areas. This newly extended technique that induces associative learning may be used as an important tool for understanding and modifying brain function, since associations are fundamental and ubiquitous with respect to brain function.

  4. Problem Solving Reasoning and Problem Based Instruction in Geometry Learning

    Science.gov (United States)

    Sulistyowati, F.; Budiyono, B.; Slamet, I.

    2017-09-01

    This research aims to analyze the comparison Problem Solving Reasoning (PSR) and Problem Based Instruction (PBI) on problem solving and mathematical communication abilities viewed from Self-Regulated Learning (SRL). Learning was given to grade 8th junior high school students. This research uses quasi experimental method, and then with descriptive analysis. Data were analyzed using two-ways multivariate analysis of variance (MANOVA) and one-way analysis of variance (ANOVA) with different cells. The result of data analysis were learning model gives different effect, level of SRL gives the same effect, and there is no interaction between the learning model with the SRL on the problem solving and mathematical communication abilities. The t-test statistic was used to find out more effective learning model. Based on the test, regardless of the level of SRL, PSR is more effective than PBI for problemsolving ability. The result of descriptive analysis was PSR had the advantage in creating learning that optimizing the ability of learners in reasoning to solve a mathematical problem. Consequently, the PSR is the right learning model to be applied in the classroom to improve problem solving ability of learners.

  5. Visual problems in young adults due to computer use.

    Science.gov (United States)

    Moschos, M M; Chatziralli, I P; Siasou, G; Papazisis, L

    2012-04-01

    Computer use can cause visual problems. The purpose of our study was to evaluate visual problems due to computer use in young adults. Participants in our study were 87 adults, 48 male and 39 female, mean aged 31.3 years old (SD 7.6). All the participants completed a questionnaire regarding visual problems detected after computer use. The mean daily use of computers was 3.2 hours (SD 2.7). 65.5 % of the participants complained for dry eye, mainly after more than 2.5 hours of computer use. 32 persons (36.8 %) had a foreign body sensation in their eyes, while 15 participants (17.2 %) complained for blurred vision which caused difficulties in driving, after 3.25 hours of continuous computer use. 10.3 % of the participants sought medical advice for their problem. There was a statistically significant correlation between the frequency of visual problems and the duration of computer use (p = 0.021). 79.3 % of the participants use artificial tears during or after long use of computers, so as not to feel any ocular discomfort. The main symptom after computer use in young adults was dry eye. All visual problems associated with the duration of computer use. Artificial tears play an important role in the treatment of ocular discomfort after computer use. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Using Complex Auditory-Visual Samples to Produce Emergent Relations in Children with Autism

    Science.gov (United States)

    Groskreutz, Nicole C.; Karsina, Allen; Miguel, Caio F.; Groskreutz, Mark P.

    2010-01-01

    Six participants with autism learned conditional relations between complex auditory-visual sample stimuli (dictated words and pictures) and simple visual comparisons (printed words) using matching-to-sample training procedures. Pre- and posttests examined potential stimulus control by each element of the complex sample when presented individually…

  7. Visual Learning Induces Changes in Resting-State fMRI Multivariate Pattern of Information.

    Science.gov (United States)

    Guidotti, Roberto; Del Gratta, Cosimo; Baldassarre, Antonello; Romani, Gian Luca; Corbetta, Maurizio

    2015-07-08

    When measured with functional magnetic resonance imaging (fMRI) in the resting state (R-fMRI), spontaneous activity is correlated between brain regions that are anatomically and functionally related. Learning and/or task performance can induce modulation of the resting synchronization between brain regions. Moreover, at the neuronal level spontaneous brain activity can replay patterns evoked by a previously presented stimulus. Here we test whether visual learning/task performance can induce a change in the patterns of coded information in R-fMRI signals consistent with a role of spontaneous activity in representing task-relevant information. Human subjects underwent R-fMRI before and after perceptual learning on a novel visual shape orientation discrimination task. Task-evoked fMRI patterns to trained versus novel stimuli were recorded after learning was completed, and before the second R-fMRI session. Using multivariate pattern analysis on task-evoked signals, we found patterns in several cortical regions, as follows: visual cortex, V3/V3A/V7; within the default mode network, precuneus, and inferior parietal lobule; and, within the dorsal attention network, intraparietal sulcus, which discriminated between trained and novel visual stimuli. The accuracy of classification was strongly correlated with behavioral performance. Next, we measured multivariate patterns in R-fMRI signals before and after learning. The frequency and similarity of resting states representing the task/visual stimuli states increased post-learning in the same cortical regions recruited by the task. These findings support a representational role of spontaneous brain activity. Copyright © 2015 the authors 0270-6474/15/359786-13$15.00/0.

  8. Learning and Prediction of Slip from Visual Information

    Science.gov (United States)

    Angelova, Anelia; Matthies, Larry; Helmick, Daniel; Perona, Pietro

    2007-01-01

    This paper presents an approach for slip prediction from a distance for wheeled ground robots using visual information as input. Large amounts of slippage which can occur on certain surfaces, such as sandy slopes, will negatively affect rover mobility. Therefore, obtaining information about slip before entering such terrain can be very useful for better planning and avoiding these areas. To address this problem, terrain appearance and geometry information about map cells are correlated to the slip measured by the rover while traversing each cell. This relationship is learned from previous experience, so slip can be predicted remotely from visual information only. The proposed method consists of terrain type recognition and nonlinear regression modeling. The method has been implemented and tested offline on several off-road terrains including: soil, sand, gravel, and woodchips. The final slip prediction error is about 20%. The system is intended for improved navigation on steep slopes and rough terrain for Mars rovers.

  9. Problem-based learning

    NARCIS (Netherlands)

    Loyens, Sofie; Kirschner, Paul A.; Paas, Fred

    2010-01-01

    Loyens, S. M. M., Kirschner, P. A., & Paas, F. (2011). Problem-based learning. In S. Graham (Editor-in-Chief), A. Bus, S. Major, & L. Swanson (Associate Editors), APA educational psychology handbook: Vol. 3. Application to learning and teaching (pp. 403-425). Washington, DC: American Psychological

  10. Age-related sensitive periods influence visual language discrimination in adults.

    Science.gov (United States)

    Weikum, Whitney M; Vouloumanos, Athena; Navarra, Jordi; Soto-Faraco, Salvador; Sebastián-Gallés, Núria; Werker, Janet F

    2013-01-01

    Adults as well as infants have the capacity to discriminate languages based on visual speech alone. Here, we investigated whether adults' ability to discriminate languages based on visual speech cues is influenced by the age of language acquisition. Adult participants who had all learned English (as a first or second language) but did not speak French were shown faces of bilingual (French/English) speakers silently reciting sentences in either language. Using only visual speech information, adults who had learned English from birth or as a second language before the age of 6 could discriminate between French and English significantly better than chance. However, adults who had learned English as a second language after age 6 failed to discriminate these two languages, suggesting that early childhood exposure is crucial for using relevant visual speech information to separate languages visually. These findings raise the possibility that lowered sensitivity to non-native visual speech cues may contribute to the difficulties encountered when learning a new language in adulthood.

  11. Problem solving based learning model with multiple representations to improve student's mental modelling ability on physics

    Science.gov (United States)

    Haili, Hasnawati; Maknun, Johar; Siahaan, Parsaoran

    2017-08-01

    Physics is a lessons that related to students' daily experience. Therefore, before the students studying in class formally, actually they have already have a visualization and prior knowledge about natural phenomenon and could wide it themselves. The learning process in class should be aimed to detect, process, construct, and use students' mental model. So, students' mental model agree with and builds in the right concept. The previous study held in MAN 1 Muna informs that in learning process the teacher did not pay attention students' mental model. As a consequence, the learning process has not tried to build students' mental modelling ability (MMA). The purpose of this study is to describe the improvement of students' MMA as a effect of problem solving based learning model with multiple representations approach. This study is pre experimental design with one group pre post. It is conducted in XI IPA MAN 1 Muna 2016/2017. Data collection uses problem solving test concept the kinetic theory of gasses and interview to get students' MMA. The result of this study is clarification students' MMA which is categorized in 3 category; High Mental Modelling Ability (H-MMA) for 7Mental Modelling Ability (M-MMA) for 3Mental Modelling Ability (L-MMA) for 0 ≤ x ≤ 3 score. The result shows that problem solving based learning model with multiple representations approach can be an alternative to be applied in improving students' MMA.

  12. Audiovisual Association Learning in the Absence of Primary Visual Cortex.

    Science.gov (United States)

    Seirafi, Mehrdad; De Weerd, Peter; Pegna, Alan J; de Gelder, Beatrice

    2015-01-01

    Learning audiovisual associations is mediated by the primary cortical areas; however, recent animal studies suggest that such learning can take place even in the absence of the primary visual cortex. Other studies have demonstrated the involvement of extra-geniculate pathways and especially the superior colliculus (SC) in audiovisual association learning. Here, we investigated such learning in a rare human patient with complete loss of the bilateral striate cortex. We carried out an implicit audiovisual association learning task with two different colors of red and purple (the latter color known to minimally activate the extra-genicular pathway). Interestingly, the patient learned the association between an auditory cue and a visual stimulus only when the unseen visual stimulus was red, but not when it was purple. The current study presents the first evidence showing the possibility of audiovisual association learning in humans with lesioned striate cortex. Furthermore, in line with animal studies, it supports an important role for the SC in audiovisual associative learning.

  13. Effects of Computer-Based Visual Representation on Mathematics Learning and Cognitive Load

    Science.gov (United States)

    Yung, Hsin I.; Paas, Fred

    2015-01-01

    Visual representation has been recognized as a powerful learning tool in many learning domains. Based on the assumption that visual representations can support deeper understanding, we examined the effects of visual representations on learning performance and cognitive load in the domain of mathematics. An experimental condition with visual…

  14. Perceptual learning increases the strength of the earliest signals in visual cortex.

    Science.gov (United States)

    Bao, Min; Yang, Lin; Rios, Cristina; He, Bin; Engel, Stephen A

    2010-11-10

    Training improves performance on most visual tasks. Such perceptual learning can modify how information is read out from, and represented in, later visual areas, but effects on early visual cortex are controversial. In particular, it remains unknown whether learning can reshape neural response properties in early visual areas independent from feedback arising in later cortical areas. Here, we tested whether learning can modify feedforward signals in early visual cortex as measured by the human electroencephalogram. Fourteen subjects were trained for >24 d to detect a diagonal grating pattern in one quadrant of the visual field. Training improved performance, reducing the contrast needed for reliable detection, and also reliably increased the amplitude of the earliest component of the visual evoked potential, the C1. Control orientations and locations showed smaller effects of training. Because the C1 arises rapidly and has a source in early visual cortex, our results suggest that learning can increase early visual area response through local receptive field changes without feedback from later areas.

  15. Learning semantic and visual similarity for endomicroscopy video retrieval.

    Science.gov (United States)

    Andre, Barbara; Vercauteren, Tom; Buchner, Anna M; Wallace, Michael B; Ayache, Nicholas

    2012-06-01

    Content-based image retrieval (CBIR) is a valuable computer vision technique which is increasingly being applied in the medical community for diagnosis support. However, traditional CBIR systems only deliver visual outputs, i.e., images having a similar appearance to the query, which is not directly interpretable by the physicians. Our objective is to provide a system for endomicroscopy video retrieval which delivers both visual and semantic outputs that are consistent with each other. In a previous study, we developed an adapted bag-of-visual-words method for endomicroscopy retrieval, called "Dense-Sift," that computes a visual signature for each video. In this paper, we present a novel approach to complement visual similarity learning with semantic knowledge extraction, in the field of in vivo endomicroscopy. We first leverage a semantic ground truth based on eight binary concepts, in order to transform these visual signatures into semantic signatures that reflect how much the presence of each semantic concept is expressed by the visual words describing the videos. Using cross-validation, we demonstrate that, in terms of semantic detection, our intuitive Fisher-based method transforming visual-word histograms into semantic estimations outperforms support vector machine (SVM) methods with statistical significance. In a second step, we propose to improve retrieval relevance by learning an adjusted similarity distance from a perceived similarity ground truth. As a result, our distance learning method allows to statistically improve the correlation with the perceived similarity. We also demonstrate that, in terms of perceived similarity, the recall performance of the semantic signatures is close to that of visual signatures and significantly better than those of several state-of-the-art CBIR methods. The semantic signatures are thus able to communicate high-level medical knowledge while being consistent with the low-level visual signatures and much shorter than them

  16. Causes of learning problems in primary school students

    Directory of Open Access Journals (Sweden)

    Mirkov Snežana I.

    2003-01-01

    Full Text Available Investigations were conducted on learning problems using the sample of eighth-grade students of primary school (N=335. The respondents opted for one or more than seven offered statements related to: insufficient previous knowledge, insufficient studying, teaching contents (extensive, difficult unintelligible, textbook and teacher’s method of presenting the contents. On the basis of the results obtained, one-third of students have problems in mastering teaching contents of foreign language, physics and chemistry, and about one-fourth in mastering those of history and mathematics. All the mentioned causes of problems are present in varying degrees in some school subjects. The causes of learning problems are markedly present in a larger number of school subjects and they are related to some characteristics of teaching contents. Respondents point out, to a large extent, that teaching contents of technical education are uninteresting. In addition, students’ responses indicate that it is necessary to improve the method for mastering the teaching contents in various school subjects i.e. methods applied in the teaching process. Subjective causes, as pointed out by students, are connected with some of the subjects they have characterized as the most difficult. Unintelligible textbook is stressed to the lowest extent as a cause of learning problems compared to other causes stated for the majority of school subjects.

  17. Comparing Problem-Based Learning Students to Students in a Lecture-Based Curriculum: Learning Strategies and the Relation with Self-Study Time

    Science.gov (United States)

    Wijnen, Marit; Loyens, Sofie M. M.; Smeets, Guus; Kroeze, Maarten; van der Molen, Henk

    2017-01-01

    In educational theory, deep processing (i.e., connecting different study topics together) and self-regulation (i.e., taking control over one's own learning process) are considered effective learning strategies. These learning strategies can be influenced by the learning environment. Problem-based learning (PBL), a student-centered educational…

  18. In Light of Visual Arts – A knowledge transfer partnership project as experiential learning

    Directory of Open Access Journals (Sweden)

    Ming-hoi Lai

    2013-10-01

    Full Text Available Knowledge transfer between universities and the commercial sector is becoming more prevalent, and different processes have been adopted to facilitate the transfer of knowledge. The ‘In Light of Visual Arts’ project aimed to facilitate knowledge exchange in relation to an innovative concept, the ‘eco-philosophy of light’, between the lighting industry and the arts and cultural sector through an Informal Learning approach. Young visual artists, light designers and lighting technicians were encouraged to explore and exchange experiences in the areas of visual communication, art appreciation and art archiving to create practical lighting solutions. This project offers a feasible framework for the enhancement of artistic training through knowledge sharing, for the benefit of the participants themselves and, in turn, academia, industry and the community. Keywords: informal learning, experiential learning, knowledge transfer, art education, interdisciplinary study

  19. Individual personality differences in goats predict their performance in visual learning and non-associative cognitive tasks.

    Science.gov (United States)

    Nawroth, Christian; Prentice, Pamela M; McElligott, Alan G

    2017-01-01

    Variation in common personality traits, such as boldness or exploration, is often associated with risk-reward trade-offs and behavioural flexibility. To date, only a few studies have examined the effects of consistent behavioural traits on both learning and cognition. We investigated whether certain personality traits ('exploration' and 'sociability') of individuals were related to cognitive performance, learning flexibility and learning style in a social ungulate species, the goat (Capra hircus). We also investigated whether a preference for feature cues rather than impaired learning abilities can explain performance variation in a visual discrimination task. We found that personality scores were consistent across time and context. Less explorative goats performed better in a non-associative cognitive task, in which subjects had to follow the trajectory of a hidden object (i.e. testing their ability for object permanence). We also found that less sociable subjects performed better compared to more sociable goats in a visual discrimination task. Good visual learning performance was associated with a preference for feature cues, indicating personality-dependent learning strategies in goats. Our results suggest that personality traits predict the outcome in visual discrimination and non-associative cognitive tasks in goats and that impaired performance in a visual discrimination tasks does not necessarily imply impaired learning capacities, but rather can be explained by a varying preference for feature cues. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Deep generative learning of location-invariant visual word recognition

    Science.gov (United States)

    Di Bono, Maria Grazia; Zorzi, Marco

    2013-01-01

    It is widely believed that orthographic processing implies an approximate, flexible coding of letter position, as shown by relative-position and transposition priming effects in visual word recognition. These findings have inspired alternative proposals about the representation of letter position, ranging from noisy coding across the ordinal positions to relative position coding based on open bigrams. This debate can be cast within the broader problem of learning location-invariant representations of written words, that is, a coding scheme abstracting the identity and position of letters (and combinations of letters) from their eye-centered (i.e., retinal) locations. We asked whether location-invariance would emerge from deep unsupervised learning on letter strings and what type of intermediate coding would emerge in the resulting hierarchical generative model. We trained a deep network with three hidden layers on an artificial dataset of letter strings presented at five possible retinal locations. Though word-level information (i.e., word identity) was never provided to the network during training, linear decoding from the activity of the deepest hidden layer yielded near-perfect accuracy in location-invariant word recognition. Conversely, decoding from lower layers yielded a large number of transposition errors. Analyses of emergent internal representations showed that word selectivity and location invariance increased as a function of layer depth. Word-tuning and location-invariance were found at the level of single neurons, but there was no evidence for bigram coding. Finally, the distributed internal representation of words at the deepest layer showed higher similarity to the representation elicited by the two exterior letters than by other combinations of two contiguous letters, in agreement with the hypothesis that word edges have special status. These results reveal that the efficient coding of written words—which was the model's learning objective

  1. Deep generative learning of location-invariant visual word recognition.

    Science.gov (United States)

    Di Bono, Maria Grazia; Zorzi, Marco

    2013-01-01

    It is widely believed that orthographic processing implies an approximate, flexible coding of letter position, as shown by relative-position and transposition priming effects in visual word recognition. These findings have inspired alternative proposals about the representation of letter position, ranging from noisy coding across the ordinal positions to relative position coding based on open bigrams. This debate can be cast within the broader problem of learning location-invariant representations of written words, that is, a coding scheme abstracting the identity and position of letters (and combinations of letters) from their eye-centered (i.e., retinal) locations. We asked whether location-invariance would emerge from deep unsupervised learning on letter strings and what type of intermediate coding would emerge in the resulting hierarchical generative model. We trained a deep network with three hidden layers on an artificial dataset of letter strings presented at five possible retinal locations. Though word-level information (i.e., word identity) was never provided to the network during training, linear decoding from the activity of the deepest hidden layer yielded near-perfect accuracy in location-invariant word recognition. Conversely, decoding from lower layers yielded a large number of transposition errors. Analyses of emergent internal representations showed that word selectivity and location invariance increased as a function of layer depth. Word-tuning and location-invariance were found at the level of single neurons, but there was no evidence for bigram coding. Finally, the distributed internal representation of words at the deepest layer showed higher similarity to the representation elicited by the two exterior letters than by other combinations of two contiguous letters, in agreement with the hypothesis that word edges have special status. These results reveal that the efficient coding of written words-which was the model's learning objective

  2. Deep generative learning of location-invariant visual word recognition

    Directory of Open Access Journals (Sweden)

    Maria Grazia eDi Bono

    2013-09-01

    Full Text Available It is widely believed that orthographic processing implies an approximate, flexible coding of letter position, as shown by relative-position and transposition priming effects in visual word recognition. These findings have inspired alternative proposals about the representation of letter position, ranging from noisy coding across the ordinal positions to relative position coding based on open bigrams. This debate can be cast within the broader problem of learning location-invariant representations of written words, that is, a coding scheme abstracting the identity and position of letters (and combinations of letters from their eye-centred (i.e., retinal locations. We asked whether location-invariance would emerge from deep unsupervised learning on letter strings and what type of intermediate coding would emerge in the resulting hierarchical generative model. We trained a deep network with three hidden layers on an artificial dataset of letter strings presented at five possible retinal locations. Though word-level information (i.e., word identity was never provided to the network during training, linear decoding from the activity of the deepest hidden layer yielded near-perfect accuracy in location-invariant word recognition. Conversely, decoding from lower layers yielded a large number of transposition errors. Analyses of emergent internal representations showed that word selectivity and location invariance increased as a function of layer depth. Conversely, there was no evidence for bigram coding. Finally, the distributed internal representation of words at the deepest layer showed higher similarity to the representation elicited by the two exterior letters than by other combinations of two contiguous letters, in agreement with the hypothesis that word edges have special status. These results reveal that the efficient coding of written words – which was the model’s learning objective – is largely based on letter-level information.

  3. Learning style preferences and their influence on students' problem solving in kinematics observed by eye-tracking method

    Science.gov (United States)

    Kekule, Martina

    2017-01-01

    The article presents eye-tracking method and its using for observing students when they solve problems from kinematics. Particularly, multiple-choice items in TUG-K test by Robert Beichner. Moreover, student's preference for visual way of learning as a possible influential aspect is proofed and discussed. Learning Style Inventory by Dunn, Dunn&Price was administered to students in order to find out their preferences. More than 20 high school and college students about 20 years old took part in the research. Preferred visual way of learning in contrast to the other ways of learning (audio, tactile, kinesthetic) shows very slight correlation with the total score of the test, none correlation with the average fixation duration and slight correlation with average fixation count on a task and average total visit duration on a task.

  4. LEARNING STYLES AND STUDENTS’ PERFORMANCE IN DESIGN PROBLEM SOLVING

    Directory of Open Access Journals (Sweden)

    Elçin Tezel

    2010-07-01

    Full Text Available Design curricula and all core design studio courses are prepared for performance attainment by giving theoretical and professional training. However students’ performance may be affected by both the constraints set on a design problem, and their learning styles. This study explores the performance of interior architectural students in relation to their learning styles (as proposed by Kolb’s Experiential Learning Theory, and different types of constraints set on design problems. Design performance, measured as conceptual development, form and spatial configuration, structural innovation and ergonomics, and craftsmanship, was found to change throughout the two bipolar continuum of the learning cycle with regard to two design conditions characterized by different types of constraint use.

  5. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems

    Directory of Open Access Journals (Sweden)

    Martine Baars

    2017-08-01

    Full Text Available Self-regulated learning (SRL skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale, motivation (i.e., autonomous and controlled motivation, mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels. In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.

  6. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems.

    Science.gov (United States)

    Baars, Martine; Wijnia, Lisette; Paas, Fred

    2017-01-01

    Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.

  7. Deep learning with convolutional neural networks for EEG decoding and visualization.

    Science.gov (United States)

    Schirrmeister, Robin Tibor; Springenberg, Jost Tobias; Fiederer, Lukas Dominique Josef; Glasstetter, Martin; Eggensperger, Katharina; Tangermann, Michael; Hutter, Frank; Burgard, Wolfram; Ball, Tonio

    2017-11-01

    Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end-to-end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end-to-end EEG analysis, but a better understanding of how to design and train ConvNets for end-to-end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task-related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG-based brain mapping. Hum Brain Mapp 38:5391-5420, 2017. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  8. Deep learning with convolutional neural networks for EEG decoding and visualization

    Science.gov (United States)

    Springenberg, Jost Tobias; Fiederer, Lukas Dominique Josef; Glasstetter, Martin; Eggensperger, Katharina; Tangermann, Michael; Hutter, Frank; Burgard, Wolfram; Ball, Tonio

    2017-01-01

    Abstract Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end‐to‐end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end‐to‐end EEG analysis, but a better understanding of how to design and train ConvNets for end‐to‐end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task‐related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG‐based brain mapping. Hum Brain Mapp 38:5391–5420, 2017. © 2017 Wiley Periodicals, Inc. PMID:28782865

  9. Time course influences transfer of visual perceptual learning across spatial location.

    Science.gov (United States)

    Larcombe, S J; Kennard, C; Bridge, H

    2017-06-01

    Visual perceptual learning describes the improvement of visual perception with repeated practice. Previous research has established that the learning effects of perceptual training may be transferable to untrained stimulus attributes such as spatial location under certain circumstances. However, the mechanisms involved in transfer have not yet been fully elucidated. Here, we investigated the effect of altering training time course on the transferability of learning effects. Participants were trained on a motion direction discrimination task or a sinusoidal grating orientation discrimination task in a single visual hemifield. The 4000 training trials were either condensed into one day, or spread evenly across five training days. When participants were trained over a five-day period, there was transfer of learning to both the untrained visual hemifield and the untrained task. In contrast, when the same amount of training was condensed into a single day, participants did not show any transfer of learning. Thus, learning time course may influence the transferability of perceptual learning effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Rethinking the lecture: the application of problem based learning methods to atypical contexts.

    Science.gov (United States)

    Rogal, Sonya M M; Snider, Paul D

    2008-05-01

    Problem based learning is a teaching and learning strategy that uses a problematic stimulus as a means of motivating and directing students to develop and acquire knowledge. Problem based learning is a strategy that is typically used with small groups attending a series of sessions. This article describes the principles of problem based learning and its application in atypical contexts; large groups attending discrete, stand-alone sessions. The principles of problem based learning are based on Socratic teaching, constructivism and group facilitation. To demonstrate the application of problem based learning in an atypical setting, this article focuses on the graduate nurse intake from a teaching hospital. The groups are relatively large and meet for single day sessions. The modified applications of problem based learning to meet the needs of atypical groups are described. This article contains a step by step guide of constructing a problem based learning package for large, single session groups. Nurse educators facing similar groups will find they can modify problem based learning to suit their teaching context.

  11. Role-playing in the problem-based learning class.

    Science.gov (United States)

    Chan, Zenobia C Y

    2012-01-01

    Learning and teaching have been conceptualized and executed in many styles, such as self-learning, peer learning, and interaction between the learner and mentor. Today, openness to alternative ideas and embracing innovative approaches in nursing education are encouraged in order to meet students' learning interests and needs, and to address ever-changing healthcare requests. Problem-based learning has been widely adopted in nursing education, with various positive effects on students' learning, such as motivated learning, team work, problem-solving skills and critical thinking. Role-plays have been demonstrated as an effective learning strategy that includes an active and experiential feature that facilitates students' autonomy in their health-related learning. However, there is a lack of discussion of whether and how role-play can be used in problem-based learning (PBL). This paper shows the development of a classroom-based innovation using role-play in the PBL class for higher diploma year-one nurse students (a total of 20 students, five per group). This paper consists of five sections: a) the literature on PBL and nurse education, and role-plays as the innovation; b) the PBL case scenario with the illustration of the two role-play scripts, c) student evaluation on role-play in the PBL class; d) discussions on both achievements and limitations of this innovation, and e) the conclusion. It is hoped that this paper will be an example to other nurse educators who are keen on exploring interactive and student-driven learning and teaching strategies in the PBL class. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Environmental influences on neural systems of relational complexity

    Directory of Open Access Journals (Sweden)

    Layne eKalbfleisch

    2013-09-01

    Full Text Available Constructivist learning theory contends that we construct knowledge by experience and that environmental context influences learning. To explore this principle, we examined the cognitive process relational complexity (RC, defined as the number of visual dimensions considered during problem solving on a matrix reasoning task and a well-documented measure of mature reasoning capacity. We sought to determine how the visual environment influences RC by examining the influence of color and visual contrast on RC in a neuroimaging task. To specify the contributions of sensory demand and relational integration to reasoning, our participants performed a non-verbal matrix task comprised of color, no-color line, or black-white visual contrast conditions parametrically varied by complexity (relations 0, 1, 2. The use of matrix reasoning is ecologically valid for its psychometric relevance and for its potential to link the processing of psychophysically specific visual properties with various levels of relational complexity during reasoning. The role of these elements is important because matrix tests assess intellectual aptitude based on these seemingly context-less exercises. This experiment is a first step toward examining the psychophysical underpinnings of performance on these types of problems. The importance of this is increased in light of recent evidence that intelligence can be linked to visual discrimination. We submit three main findings. First, color and black-white visual contrast add demand at a basic sensory level, but contributions from color and from black-white visual contrast are dissociable in cortex such that color engages a reasoning heuristic and black-white visual contrast engages a sensory heuristic. Second, color supports contextual sense-making by boosting salience resulting in faster problem solving. Lastly, when visual complexity reaches 2-relations, color and visual contrast relinquish salience to other dimensions of problem

  13. Qualitative and quantitative analysis of the students’ perceptions to the use of 3D electronic models in problem-based learning

    Directory of Open Access Journals (Sweden)

    Hai Ming Wong

    2017-06-01

    Full Text Available Faculty of Dentistry of the University of Hong Kong has introduced innovative blended problem-based learning (PBL with the aid of 3D electronic models (e-models to Bachelor of Dental Surgery (BDS curriculum. Statistical results of pre- and post-semester questionnaire surveys illustrated compatibility of e-models in PBL settings. The students’ importance ratings of two objectives “Complete assigned tasks on time” and “Active listener”, and twenty-two facilitator evaluation items including critical thinking and group problem-solving skills had increased significantly. The students’ PBL preparation behavior, attentions to problem understanding, problem analysis, and learning resource quality were also found to be related to online support of e-models and its software. Qualitative analysis of open-ended questions with visual text analytic software “Leximancer” improved validity of statistical results. Using e-model functions in treatment planning, problem analysis and giving instructions provided a method of informative communication. Therefore, it is critical for the faculty to continuously provide facilitator training and quality online e-model resources to the students.

  14. HD-MTL: Hierarchical Deep Multi-Task Learning for Large-Scale Visual Recognition.

    Science.gov (United States)

    Fan, Jianping; Zhao, Tianyi; Kuang, Zhenzhong; Zheng, Yu; Zhang, Ji; Yu, Jun; Peng, Jinye

    2017-02-09

    In this paper, a hierarchical deep multi-task learning (HD-MTL) algorithm is developed to support large-scale visual recognition (e.g., recognizing thousands or even tens of thousands of atomic object classes automatically). First, multiple sets of multi-level deep features are extracted from different layers of deep convolutional neural networks (deep CNNs), and they are used to achieve more effective accomplishment of the coarseto- fine tasks for hierarchical visual recognition. A visual tree is then learned by assigning the visually-similar atomic object classes with similar learning complexities into the same group, which can provide a good environment for determining the interrelated learning tasks automatically. By leveraging the inter-task relatedness (inter-class similarities) to learn more discriminative group-specific deep representations, our deep multi-task learning algorithm can train more discriminative node classifiers for distinguishing the visually-similar atomic object classes effectively. Our hierarchical deep multi-task learning (HD-MTL) algorithm can integrate two discriminative regularization terms to control the inter-level error propagation effectively, and it can provide an end-to-end approach for jointly learning more representative deep CNNs (for image representation) and more discriminative tree classifier (for large-scale visual recognition) and updating them simultaneously. Our incremental deep learning algorithms can effectively adapt both the deep CNNs and the tree classifier to the new training images and the new object classes. Our experimental results have demonstrated that our HD-MTL algorithm can achieve very competitive results on improving the accuracy rates for large-scale visual recognition.

  15. Are marketing students in control in problem-based learning?

    NARCIS (Netherlands)

    Geitz, Gerry; Joosten-ten Brinke, Desirée; Kirschner, Paul A.

    2018-01-01

    This study investigated to what extent self-efficacy, learning behavior, and performance outcomes relate to each other and how they can be positively influenced by students asking for and seeking feedback within a problem-based learning (PBL) environment in order to meet today’s requirements of

  16. Visual Pretraining for Deep Q-Learning

    OpenAIRE

    Sandven, Torstein

    2016-01-01

    Recent advances in reinforcement learning enable computers to learn human level polices for Atari 2600 games. This is done by training a convolutional neural network to play based on screenshots and in-game rewards. The network is referred to as a deep Q-network (DQN). The main disadvantage to this approach is a long training time. A computer will typically learn for approximately one week. In this time it processes 38 days of game play. This thesis explores the possibility of using visual pr...

  17. Facilitating role of 3D multimodal visualization and learning rehearsal in memory recall.

    Science.gov (United States)

    Do, Phuong T; Moreland, John R

    2014-04-01

    The present study investigated the influence of 3D multimodal visualization and learning rehearsal on memory recall. Participants (N = 175 college students ranging from 21 to 25 years) were assigned to different training conditions and rehearsal processes to learn a list of 14 terms associated with construction of a wood-frame house. They then completed a memory test determining their cognitive ability to free recall the definitions of the 14 studied terms immediately after training and rehearsal. The audiovisual modality training condition was associated with the highest accuracy, and the visual- and auditory-modality conditions with lower accuracy rates. The no-training condition indicated little learning acquisition. A statistically significant increase in performance accuracy for the audiovisual condition as a function of rehearsal suggested the relative importance of rehearsal strategies in 3D observational learning. Findings revealed the potential application of integrating virtual reality and cognitive sciences to enhance learning and teaching effectiveness.

  18. Visual one-shot learning as an 'anti-camouflage device': a novel morphing paradigm.

    Science.gov (United States)

    Ishikawa, Tetsuo; Mogi, Ken

    2011-09-01

    Once people perceive what is in the hidden figure such as Dallenbach's cow and Dalmatian, they seldom seem to come back to the previous state when they were ignorant of the answer. This special type of learning process can be accomplished in a short time, with the effect of learning lasting for a long time (visual one-shot learning). Although it is an intriguing cognitive phenomenon, the lack of the control of difficulty of stimuli presented has been a problem in research. Here we propose a novel paradigm to create new hidden figures systematically by using a morphing technique. Through gradual changes from a blurred and binarized two-tone image to a blurred grayscale image of the original photograph including objects in a natural scene, spontaneous one-shot learning can occur at a certain stage of morphing when a sufficient amount of information is restored to the degraded image. A negative correlation between confidence levels and reaction times is observed, giving support to the fluency theory of one-shot learning. The correlation between confidence ratings and correct recognition rates indicates that participants had an accurate introspective ability (metacognition). The learning effect could be tested later by verifying whether or not the target object was recognized quicker in the second exposure. The present method opens a way for a systematic production of "good" hidden figures, which can be used to demystify the nature of visual one-shot learning.

  19. Comparison of Auditory/Visual and Visual/Motor Practice on the Spelling Accuracy of Learning Disabled Children.

    Science.gov (United States)

    Aleman, Cheryl; And Others

    1990-01-01

    Compares auditory/visual practice to visual/motor practice in spelling with seven elementary school learning-disabled students enrolled in a resource room setting. Finds that the auditory/visual practice was superior to the visual/motor practice on the weekly spelling performance for all seven students. (MG)

  20. Looking at the ventriloquist: visual outcome of eye movements calibrates sound localization.

    Directory of Open Access Journals (Sweden)

    Daniel S Pages

    Full Text Available A general problem in learning is how the brain determines what lesson to learn (and what lessons not to learn. For example, sound localization is a behavior that is partially learned with the aid of vision. This process requires correctly matching a visual location to that of a sound. This is an intrinsically circular problem when sound location is itself uncertain and the visual scene is rife with possible visual matches. Here, we develop a simple paradigm using visual guidance of sound localization to gain insight into how the brain confronts this type of circularity. We tested two competing hypotheses. 1: The brain guides sound location learning based on the synchrony or simultaneity of auditory-visual stimuli, potentially involving a Hebbian associative mechanism. 2: The brain uses a 'guess and check' heuristic in which visual feedback that is obtained after an eye movement to a sound alters future performance, perhaps by recruiting the brain's reward-related circuitry. We assessed the effects of exposure to visual stimuli spatially mismatched from sounds on performance of an interleaved auditory-only saccade task. We found that when humans and monkeys were provided the visual stimulus asynchronously with the sound but as feedback to an auditory-guided saccade, they shifted their subsequent auditory-only performance toward the direction of the visual cue by 1.3-1.7 degrees, or 22-28% of the original 6 degree visual-auditory mismatch. In contrast when the visual stimulus was presented synchronously with the sound but extinguished too quickly to provide this feedback, there was little change in subsequent auditory-only performance. Our results suggest that the outcome of our own actions is vital to localizing sounds correctly. Contrary to previous expectations, visual calibration of auditory space does not appear to require visual-auditory associations based on synchrony/simultaneity.

  1. An Interactive Approach to Learning and Teaching in Visual Arts Education

    Science.gov (United States)

    Tomljenovic, Zlata

    2015-01-01

    The present research focuses on modernising the approach to learning and teaching the visual arts in teaching practice, as well as examining the performance of an interactive approach to learning and teaching in visual arts classes with the use of a combination of general and specific (visual arts) teaching methods. The study uses quantitative…

  2. A visual approach for modeling spatiotemporal relations

    NARCIS (Netherlands)

    R.L. Guimarães (Rodrigo); C.S.S. Neto; L.F.G. Soares

    2008-01-01

    htmlabstractTextual programming languages have proven to be difficult to learn and to use effectively for many people. For this sake, visual tools can be useful to abstract the complexity of such textual languages, minimizing the specification efforts. In this paper we present a visual approach for

  3. Visual Perceptual Learning and its Specificity and Transfer: A New Perspective

    Directory of Open Access Journals (Sweden)

    Cong Yu

    2011-05-01

    Full Text Available Visual perceptual learning is known to be location and orientation specific, and is thus assumed to reflect the neuronal plasticity in the early visual cortex. However, in recent studies we created “Double training” and “TPE” procedures to demonstrate that these “fundamental” specificities of perceptual learning are in some sense artifacts and that learning can completely transfer to a new location or orientation. We proposed a rule-based learning theory to reinterpret perceptual learning and its specificity and transfer: A high-level decision unit learns the rules of performing a visual task through training. However, the learned rules cannot be applied to a new location or orientation automatically because the decision unit cannot functionally connect to new visual inputs with sufficient strength because these inputs are unattended or even suppressed during training. It is double training and TPE training that reactivate these new inputs, so that the functional connections can be strengthened to enable rule application and learning transfer. Currently we are investigating the properties of perceptual learning free from the bogus specificities, and the results provide some preliminary but very interesting insights into how training reshapes the functional connections between the high-level decision units and sensory inputs in the brain.

  4. Problem Solving Model for Science Learning

    Science.gov (United States)

    Alberida, H.; Lufri; Festiyed; Barlian, E.

    2018-04-01

    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  5. Enhanced attentional gain as a mechanism for generalized perceptual learning in human visual cortex.

    Science.gov (United States)

    Byers, Anna; Serences, John T

    2014-09-01

    Learning to better discriminate a specific visual feature (i.e., a specific orientation in a specific region of space) has been associated with plasticity in early visual areas (sensory modulation) and with improvements in the transmission of sensory information from early visual areas to downstream sensorimotor and decision regions (enhanced readout). However, in many real-world scenarios that require perceptual expertise, observers need to efficiently process numerous exemplars from a broad stimulus class as opposed to just a single stimulus feature. Some previous data suggest that perceptual learning leads to highly specific neural modulations that support the discrimination of specific trained features. However, the extent to which perceptual learning acts to improve the discriminability of a broad class of stimuli via the modulation of sensory responses in human visual cortex remains largely unknown. Here, we used functional MRI and a multivariate analysis method to reconstruct orientation-selective response profiles based on activation patterns in the early visual cortex before and after subjects learned to discriminate small offsets in a set of grating stimuli that were rendered in one of nine possible orientations. Behavioral performance improved across 10 training sessions, and there was a training-related increase in the amplitude of orientation-selective response profiles in V1, V2, and V3 when orientation was task relevant compared with when it was task irrelevant. These results suggest that generalized perceptual learning can lead to modified responses in the early visual cortex in a manner that is suitable for supporting improved discriminability of stimuli drawn from a large set of exemplars. Copyright © 2014 the American Physiological Society.

  6. Visual recognition and inference using dynamic overcomplete sparse learning.

    Science.gov (United States)

    Murray, Joseph F; Kreutz-Delgado, Kenneth

    2007-09-01

    We present a hierarchical architecture and learning algorithm for visual recognition and other visual inference tasks such as imagination, reconstruction of occluded images, and expectation-driven segmentation. Using properties of biological vision for guidance, we posit a stochastic generative world model and from it develop a simplified world model (SWM) based on a tractable variational approximation that is designed to enforce sparse coding. Recent developments in computational methods for learning overcomplete representations (Lewicki & Sejnowski, 2000; Teh, Welling, Osindero, & Hinton, 2003) suggest that overcompleteness can be useful for visual tasks, and we use an overcomplete dictionary learning algorithm (Kreutz-Delgado, et al., 2003) as a preprocessing stage to produce accurate, sparse codings of images. Inference is performed by constructing a dynamic multilayer network with feedforward, feedback, and lateral connections, which is trained to approximate the SWM. Learning is done with a variant of the back-propagation-through-time algorithm, which encourages convergence to desired states within a fixed number of iterations. Vision tasks require large networks, and to make learning efficient, we take advantage of the sparsity of each layer to update only a small subset of elements in a large weight matrix at each iteration. Experiments on a set of rotated objects demonstrate various types of visual inference and show that increasing the degree of overcompleteness improves recognition performance in difficult scenes with occluded objects in clutter.

  7. Prior Visual Experience Modulates Learning of Sound Localization Among Blind Individuals.

    Science.gov (United States)

    Tao, Qian; Chan, Chetwyn C H; Luo, Yue-Jia; Li, Jian-Jun; Ting, Kin-Hung; Lu, Zhong-Lin; Whitfield-Gabrieli, Susan; Wang, Jun; Lee, Tatia M C

    2017-05-01

    Cross-modal learning requires the use of information from different sensory modalities. This study investigated how the prior visual experience of late blind individuals could modulate neural processes associated with learning of sound localization. Learning was realized by standardized training on sound localization processing, and experience was investigated by comparing brain activations elicited from a sound localization task in individuals with (late blind, LB) and without (early blind, EB) prior visual experience. After the training, EB showed decreased activation in the precuneus, which was functionally connected to a limbic-multisensory network. In contrast, LB showed the increased activation of the precuneus. A subgroup of LB participants who demonstrated higher visuospatial working memory capabilities (LB-HVM) exhibited an enhanced precuneus-lingual gyrus network. This differential connectivity suggests that visuospatial working memory due to the prior visual experience gained via LB-HVM enhanced learning of sound localization. Active visuospatial navigation processes could have occurred in LB-HVM compared to the retrieval of previously bound information from long-term memory for EB. The precuneus appears to play a crucial role in learning of sound localization, disregarding prior visual experience. Prior visual experience, however, could enhance cross-modal learning by extending binding to the integration of unprocessed information, mediated by the cognitive functions that these experiences develop.

  8. CLASSIFICATION OF TRAFFIC RELATED SHORT TEXTS TO ANALYSE ROAD PROBLEMS IN URBAN AREAS

    Directory of Open Access Journals (Sweden)

    A. M. M. Saldana-Perez

    2017-09-01

    Full Text Available The Volunteer Geographic Information (VGI can be used to understand the urban dynamics. In the classification of traffic related short texts to analyze road problems in urban areas, a VGI data analysis is done over a social media’s publications, in order to classify traffic events at big cities that modify the movement of vehicles and people through the roads, such as car accidents, traffic and closures. The classification of traffic events described in short texts is done by applying a supervised machine learning algorithm. In the approach users are considered as sensors which describe their surroundings and provide their geographic position at the social network. The posts are treated by a text mining process and classified into five groups. Finally, the classified events are grouped in a data corpus and geo-visualized in the study area, to detect the places with more vehicular problems.

  9. Classification of Traffic Related Short Texts to Analyse Road Problems in Urban Areas

    Science.gov (United States)

    Saldana-Perez, A. M. M.; Moreno-Ibarra, M.; Tores-Ruiz, M.

    2017-09-01

    The Volunteer Geographic Information (VGI) can be used to understand the urban dynamics. In the classification of traffic related short texts to analyze road problems in urban areas, a VGI data analysis is done over a social media's publications, in order to classify traffic events at big cities that modify the movement of vehicles and people through the roads, such as car accidents, traffic and closures. The classification of traffic events described in short texts is done by applying a supervised machine learning algorithm. In the approach users are considered as sensors which describe their surroundings and provide their geographic position at the social network. The posts are treated by a text mining process and classified into five groups. Finally, the classified events are grouped in a data corpus and geo-visualized in the study area, to detect the places with more vehicular problems.

  10. Development of an Android-based Learning Media Application for Visually Impaired Students

    Directory of Open Access Journals (Sweden)

    Nurul Azmi

    2017-06-01

    Full Text Available This research aims to develop the English for Disability (EFORD application, on Android-based learning english media for Visually Impaired students and determine its based this on assessment of matter expert, media expert, special needs teacher and students. The research method adopted in this research is Research and Development (R&D. The development of this application through five phases: (1 Analysis of problems, through observation and interviews. (2 Collecting information as product planning / analysis of the needs of the media as required of blind children. (3 The design phase of products such as the manufacture of flow and storyboard navigation map.(4 Design validation phase form of an expert assessment of the media is developed. (5 testing products phase, such as assessment of the application by blind students. The results of this research is EFORD application which is feasible to be used as English learning media for visual impairment application based on assessment: 1Media expert it's obtained a percentage scored 95%, include for very worthy category, 2Subject matter, expert its obtained percentage scored 75% include for worthy category and 3 Special needs teacher it's obtained a percentage scored 83% include for very worthy category. Upon demonstration, students indicated the positive response of ≥ 70% in each indicator. Therefore English learning media with Android based application English for Disability (EFORD is very feasible to be used as an English learning media especially grammar and speaking English content for students of visual impairment for a number of reasons. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  11. Dynamic functional brain networks involved in simple visual discrimination learning.

    Science.gov (United States)

    Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis

    2014-10-01

    Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Dictionary learning in visual computing

    CERN Document Server

    Zhang, Qiang

    2015-01-01

    The last few years have witnessed fast development on dictionary learning approaches for a set of visual computing tasks, largely due to their utilization in developing new techniques based on sparse representation. Compared with conventional techniques employing manually defined dictionaries, such as Fourier Transform and Wavelet Transform, dictionary learning aims at obtaining a dictionary adaptively from the data so as to support optimal sparse representation of the data. In contrast to conventional clustering algorithms like K-means, where a data point is associated with only one cluster c

  13. How learning might strengthen existing visual object representations in human object-selective cortex.

    Science.gov (United States)

    Brants, Marijke; Bulthé, Jessica; Daniels, Nicky; Wagemans, Johan; Op de Beeck, Hans P

    2016-02-15

    Visual object perception is an important function in primates which can be fine-tuned by experience, even in adults. Which factors determine the regions and the neurons that are modified by learning is still unclear. Recently, it was proposed that the exact cortical focus and distribution of learning effects might depend upon the pre-learning mapping of relevant functional properties and how this mapping determines the informativeness of neural units for the stimuli and the task to be learned. From this hypothesis we would expect that visual experience would strengthen the pre-learning distributed functional map of the relevant distinctive object properties. Here we present a first test of this prediction in twelve human subjects who were trained in object categorization and differentiation, preceded and followed by a functional magnetic resonance imaging session. Specifically, training increased the distributed multi-voxel pattern information for trained object distinctions in object-selective cortex, resulting in a generalization from pre-training multi-voxel activity patterns to after-training activity patterns. Simulations show that the increased selectivity combined with the inter-session generalization is consistent with a training-induced strengthening of a pre-existing selectivity map. No training-related neural changes were detected in other regions. In sum, training to categorize or individuate objects strengthened pre-existing representations in human object-selective cortex, providing a first indication that the neuroanatomical distribution of learning effects depends upon the pre-learning mapping of visual object properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. No evidence for visual context-dependency of olfactory learning in Drosophila

    Science.gov (United States)

    Yarali, Ayse; Mayerle, Moritz; Nawroth, Christian; Gerber, Bertram

    2008-08-01

    How is behaviour organised across sensory modalities? Specifically, we ask concerning the fruit fly Drosophila melanogaster how visual context affects olfactory learning and recall and whether information about visual context is getting integrated into olfactory memory. We find that changing visual context between training and test does not deteriorate olfactory memory scores, suggesting that these olfactory memories can drive behaviour despite a mismatch of visual context between training and test. Rather, both the establishment and the recall of olfactory memory are generally facilitated by light. In a follow-up experiment, we find no evidence for learning about combinations of odours and visual context as predictors for reinforcement even after explicit training in a so-called biconditional discrimination task. Thus, a ‘true’ interaction between visual and olfactory modalities is not evident; instead, light seems to influence olfactory learning and recall unspecifically, for example by altering motor activity, alertness or olfactory acuity.

  15. Identification of Quality Visual-Based Learning Material for Technology Education

    Science.gov (United States)

    Katsioloudis, Petros

    2010-01-01

    It is widely known that the use of visual technology enhances learning by providing a better understanding of the topic as well as motivating students. If all visual-based learning materials (tables, figures, photos, etc.) were equally effective in facilitating student achievement of all kinds of educational objectives, there would virtually be no…

  16. Supporting Fieldwork Learning by Visual Documentation and Reflection

    DEFF Research Database (Denmark)

    Saltofte, Margit

    2017-01-01

    Photos can be used as a supplements to written fieldnotes and as a sources for mediating reflection during fieldwork and analysis. As part of a field diary, photos can support the recall of experiences and a reflective distance to the events. Photography, as visual representation, can also lead...... to reflection on learning and knowledge production in the process of learning how to conduct fieldwork. Pictures can open the way for abstractions and hidden knowledge, which might otherwise be difficult to formulate in words. However, writing and written field notes cannot be fully replaced by photos...... the role played by photos in their learning process. For students, photography is an everyday documentation form that can support their memory of field experience and serve as a vehicle for the analysis of data. The article discusses how photos and visual representations support fieldwork learning...

  17. Gender Differences in Solving Mathematics Problems among Two-Year College Students in a Developmental Algebra Class and Related Factors.

    Science.gov (United States)

    Schonberger, Ann K.

    A study was conducted at the University of Maine at Orono (UMO) to examine gender differences with respect to mathematical problem-solving ability, visual spatial ability, abstract reasoning ability, field independence/dependence, independent learning style, and developmental problem-solving ability (i.e., formal reasoning ability). Subjects…

  18. Learning of Grammar-Like Visual Sequences by Adults with and without Language-Learning Disabilities

    Science.gov (United States)

    Aguilar, Jessica M.; Plante, Elena

    2014-01-01

    Purpose: Two studies examined learning of grammar-like visual sequences to determine whether a general deficit in statistical learning characterizes this population. Furthermore, we tested the hypothesis that difficulty in sustaining attention during the learning task might account for differences in statistical learning. Method: In Study 1,…

  19. Differentiating Visual from Response Sequencing during Long-term Skill Learning.

    Science.gov (United States)

    Lynch, Brighid; Beukema, Patrick; Verstynen, Timothy

    2017-01-01

    The dual-system model of sequence learning posits that during early learning there is an advantage for encoding sequences in sensory frames; however, it remains unclear whether this advantage extends to long-term consolidation. Using the serial RT task, we set out to distinguish the dynamics of learning sequential orders of visual cues from learning sequential responses. On each day, most participants learned a new mapping between a set of symbolic cues and responses made with one of four fingers, after which they were exposed to trial blocks of either randomly ordered cues or deterministic ordered cues (12-item sequence). Participants were randomly assigned to one of four groups (n = 15 per group): Visual sequences (same sequence of visual cues across training days), Response sequences (same order of key presses across training days), Combined (same serial order of cues and responses on all training days), and a Control group (a novel sequence each training day). Across 5 days of training, sequence-specific measures of response speed and accuracy improved faster in the Visual group than any of the other three groups, despite no group differences in explicit awareness of the sequence. The two groups that were exposed to the same visual sequence across days showed a marginal improvement in response binding that was not found in the other groups. These results indicate that there is an advantage, in terms of rate of consolidation across multiple days of training, for learning sequences of actions in a sensory representational space, rather than as motoric representations.

  20. Comparing problem-based learning students to students in a lecture-based curriculum: learning strategies and the relation with self-study time

    OpenAIRE

    Wijnen, Marit; Loyens, Sofie; Smeets, Guus; Kroeze, Maarten; Molen, Henk

    2017-01-01

    textabstractIn educational theory, deep processing (i.e., connecting different study topics together) and self-regulation (i.e., taking control over one’s own learning process) are considered effective learning strategies. These learning strategies can be influenced by the learning environment. Problem-based learning (PBL), a student-centered educational method, is believed to stimulate the use of these effective learning strategies. Several aspects of PBL such as discussions of real-life pro...

  1. Learning Programming Technique through Visual Programming Application as Learning Media with Fuzzy Rating

    Science.gov (United States)

    Buditjahjanto, I. G. P. Asto; Nurlaela, Luthfiyah; Ekohariadi; Riduwan, Mochamad

    2017-01-01

    Programming technique is one of the subjects at Vocational High School in Indonesia. This subject contains theory and application of programming utilizing Visual Programming. Students experience some difficulties to learn textual learning. Therefore, it is necessary to develop media as a tool to transfer learning materials. The objectives of this…

  2. Effect of task-related continuous auditory feedback during learning of tracking motion exercises

    Directory of Open Access Journals (Sweden)

    Rosati Giulio

    2012-10-01

    Full Text Available Abstract Background This paper presents the results of a set of experiments in which we used continuous auditory feedback to augment motor training exercises. This feedback modality is mostly underexploited in current robotic rehabilitation systems, which usually implement only very basic auditory interfaces. Our hypothesis is that properly designed continuous auditory feedback could be used to represent temporal and spatial information that could in turn, improve performance and motor learning. Methods We implemented three different experiments on healthy subjects, who were asked to track a target on a screen by moving an input device (controller with their hand. Different visual and auditory feedback modalities were envisaged. The first experiment investigated whether continuous task-related auditory feedback can help improve performance to a greater extent than error-related audio feedback, or visual feedback alone. In the second experiment we used sensory substitution to compare different types of auditory feedback with equivalent visual feedback, in order to find out whether mapping the same information on a different sensory channel (the visual channel yielded comparable effects with those gained in the first experiment. The final experiment applied a continuously changing visuomotor transformation between the controller and the screen and mapped kinematic information, computed in either coordinate system (controller or video, to the audio channel, in order to investigate which information was more relevant to the user. Results Task-related audio feedback significantly improved performance with respect to visual feedback alone, whilst error-related feedback did not. Secondly, performance in audio tasks was significantly better with respect to the equivalent sensory-substituted visual tasks. Finally, with respect to visual feedback alone, video-task-related sound feedback decreased the tracking error during the learning of a novel

  3. Conditions for the Effectiveness of Multiple Visual Representations in Enhancing STEM Learning

    Science.gov (United States)

    Rau, Martina A.

    2017-01-01

    Visual representations play a critical role in enhancing science, technology, engineering, and mathematics (STEM) learning. Educational psychology research shows that adding visual representations to text can enhance students' learning of content knowledge, compared to text-only. But should students learn with a single type of visual…

  4. Relativity of Visual Communication

    OpenAIRE

    Arto Mutanen

    2016-01-01

    Communication is sharing and conveying information. In visual communication especially visual messages have to be formulated and interpreted. The interpretation is relative to a method of information presentation method which is human construction. This holds also in the case of visual languages. The notions of syntax and semantics for visual languages are not so well founded as they are for natural languages. Visual languages are both syntactically and semantically dense. The density is conn...

  5. Relationships between Fine-Motor, Visual-Motor, and Visual Perception Scores and Handwriting Legibility and Speed

    Science.gov (United States)

    Klein, Sheryl; Guiltner, Val; Sollereder, Patti; Cui, Ying

    2011-01-01

    Occupational therapists assess fine motor, visual motor, visual perception, and visual skill development, but knowledge of the relationships between scores on sensorimotor performance measures and handwriting legibility and speed is limited. Ninety-nine students in grades three to six with learning and/or behavior problems completed the Upper-Limb…

  6. Learned image representations for visual recognition

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo

    This thesis addresses the problem of extracting image structures for representing images effectively in order to solve visual recognition tasks. Problems from diverse research areas (medical imaging, material science and food processing) have motivated large parts of the methodological development...

  7. eLearning techniques supporting problem based learning in clinical simulation.

    Science.gov (United States)

    Docherty, Charles; Hoy, Derek; Topp, Helena; Trinder, Kathryn

    2005-08-01

    This paper details the results of the first phase of a project using eLearning to support students' learning within a simulated environment. The locus was a purpose built clinical simulation laboratory (CSL) where the School's philosophy of problem based learning (PBL) was challenged through lecturers using traditional teaching methods. a student-centred, problem based approach to the acquisition of clinical skills that used high quality learning objects embedded within web pages, substituting for lecturers providing instruction and demonstration. This encouraged student nurses to explore, analyse and make decisions within the safety of a clinical simulation. Learning was facilitated through network communications and reflection on video performances of self and others. Evaluations were positive, students demonstrating increased satisfaction with PBL, improved performance in exams, and increased self-efficacy in the performance of nursing activities. These results indicate that eLearning techniques can help students acquire clinical skills in the safety of a simulated environment within the context of a problem based learning curriculum.

  8. Computer use and vision-related problems among university students in ajman, United arab emirate.

    Science.gov (United States)

    Shantakumari, N; Eldeeb, R; Sreedharan, J; Gopal, K

    2014-03-01

    The extensive use of computers as medium of teaching and learning in universities necessitates introspection into the extent of computer related health disorders among student population. This study was undertaken to assess the pattern of computer usage and related visual problems, among University students in Ajman, United Arab Emirates. A total of 500 Students studying in Gulf Medical University, Ajman and Ajman University of Science and Technology were recruited into this study. Demographic characteristics, pattern of usage of computers and associated visual symptoms were recorded in a validated self-administered questionnaire. Chi-square test was used to determine the significance of the observed differences between the variables. The level of statistical significance was at P computer users were headache - 53.3% (251/471), burning sensation in the eyes - 54.8% (258/471) and tired eyes - 48% (226/471). Female students were found to be at a higher risk. Nearly 72% of students reported frequent interruption of computer work. Headache caused interruption of work in 43.85% (110/168) of the students while tired eyes caused interruption of work in 43.5% (98/168) of the students. When the screen was viewed at distance more than 50 cm, the prevalence of headaches decreased by 38% (50-100 cm - OR: 0.62, 95% of the confidence interval [CI]: 0.42-0.92). Prevalence of tired eyes increased by 89% when screen filters were not used (OR: 1.894, 95% CI: 1.065-3.368). High prevalence of vision related problems was noted among university students. Sustained periods of close screen work without screen filters were found to be associated with occurrence of the symptoms and increased interruptions of work of the students. There is a need to increase the ergonomic awareness among students and corrective measures need to be implemented to reduce the impact of computer related vision problems.

  9. Supramodal processing optimizes visual perceptual learning and plasticity.

    Science.gov (United States)

    Zilber, Nicolas; Ciuciu, Philippe; Gramfort, Alexandre; Azizi, Leila; van Wassenhove, Virginie

    2014-06-01

    Multisensory interactions are ubiquitous in cortex and it has been suggested that sensory cortices may be supramodal i.e. capable of functional selectivity irrespective of the sensory modality of inputs (Pascual-Leone and Hamilton, 2001; Renier et al., 2013; Ricciardi and Pietrini, 2011; Voss and Zatorre, 2012). Here, we asked whether learning to discriminate visual coherence could benefit from supramodal processing. To this end, three groups of participants were briefly trained to discriminate which of a red or green intermixed population of random-dot-kinematograms (RDKs) was most coherent in a visual display while being recorded with magnetoencephalography (MEG). During training, participants heard no sound (V), congruent acoustic textures (AV) or auditory noise (AVn); importantly, congruent acoustic textures shared the temporal statistics - i.e. coherence - of visual RDKs. After training, the AV group significantly outperformed participants trained in V and AVn although they were not aware of their progress. In pre- and post-training blocks, all participants were tested without sound and with the same set of RDKs. When contrasting MEG data collected in these experimental blocks, selective differences were observed in the dynamic pattern and the cortical loci responsive to visual RDKs. First and common to all three groups, vlPFC showed selectivity to the learned coherence levels whereas selectivity in visual motion area hMT+ was only seen for the AV group. Second and solely for the AV group, activity in multisensory cortices (mSTS, pSTS) correlated with post-training performances; additionally, the latencies of these effects suggested feedback from vlPFC to hMT+ possibly mediated by temporal cortices in AV and AVn groups. Altogether, we interpret our results in the context of the Reverse Hierarchy Theory of learning (Ahissar and Hochstein, 2004) in which supramodal processing optimizes visual perceptual learning by capitalizing on sensory

  10. Short-term perceptual learning in visual conjunction search.

    Science.gov (United States)

    Su, Yuling; Lai, Yunpeng; Huang, Wanyi; Tan, Wei; Qu, Zhe; Ding, Yulong

    2014-08-01

    Although some studies showed that training can improve the ability of cross-dimension conjunction search, less is known about the underlying mechanism. Specifically, it remains unclear whether training of visual conjunction search can successfully bind different features of separated dimensions into a new function unit at early stages of visual processing. In the present study, we utilized stimulus specificity and generalization to provide a new approach to investigate the mechanisms underlying perceptual learning (PL) in visual conjunction search. Five experiments consistently showed that after 40 to 50 min of training of color-shape/orientation conjunction search, the ability to search for a certain conjunction target improved significantly and the learning effects did not transfer to a new target that differed from the trained target in both color and shape/orientation features. However, the learning effects were not strictly specific. In color-shape conjunction search, although the learning effect could not transfer to a same-shape different-color target, it almost completely transferred to a same-color different-shape target. In color-orientation conjunction search, the learning effect partly transferred to a new target that shared same color or same orientation with the trained target. Moreover, the sum of transfer effects for the same color target and the same orientation target in color-orientation conjunction search was algebraically equivalent to the learning effect for trained target, showing an additive transfer effect. The different transfer patterns in color-shape and color-orientation conjunction search learning might reflect the different complexity and discriminability between feature dimensions. These results suggested a feature-based attention enhancement mechanism rather than a unitization mechanism underlying the short-term PL of color-shape/orientation conjunction search.

  11. Studies of Visual Attention in Physics Problem Solving

    Science.gov (United States)

    Madsen, Adrian M.

    2013-01-01

    The work described here represents an effort to understand and influence visual attention while solving physics problems containing a diagram. Our visual system is guided by two types of processes--top-down and bottom-up. The top-down processes are internal and determined by ones prior knowledge and goals. The bottom-up processes are external and…

  12. Gesturing during mental problem solving reduces eye movements, especially for individuals with lower visual working memory capacity.

    Science.gov (United States)

    Pouw, Wim T J L; Mavilidi, Myrto-Foteini; van Gog, Tamara; Paas, Fred

    2016-08-01

    Non-communicative hand gestures have been found to benefit problem-solving performance. These gestures seem to compensate for limited internal cognitive capacities, such as visual working memory capacity. Yet, it is not clear how gestures might perform this cognitive function. One hypothesis is that gesturing is a means to spatially index mental simulations, thereby reducing the need for visually projecting the mental simulation onto the visual presentation of the task. If that hypothesis is correct, less eye movements should be made when participants gesture during problem solving than when they do not gesture. We therefore used mobile eye tracking to investigate the effect of co-thought gesturing and visual working memory capacity on eye movements during mental solving of the Tower of Hanoi problem. Results revealed that gesturing indeed reduced the number of eye movements (lower saccade counts), especially for participants with a relatively lower visual working memory capacity. Subsequent problem-solving performance was not affected by having (not) gestured during the mental solving phase. The current findings suggest that our understanding of gestures in problem solving could be improved by taking into account eye movements during gesturing.

  13. Visual paired-associate learning: in search of material-specific effects in adult patients who have undergone temporal lobectomy.

    Science.gov (United States)

    Smith, Mary Lou; Bigel, Marla; Miller, Laurie A

    2011-02-01

    The mesial temporal lobes are important for learning arbitrary associations. It has previously been demonstrated that left mesial temporal structures are involved in learning word pairs, but it is not yet known whether comparable lesions in the right temporal lobe impair visually mediated associative learning. Patients who had undergone left (n=16) or right (n=18) temporal lobectomy for relief of intractable epilepsy and healthy controls (n=13) were administered two paired-associate learning tasks assessing their learning and memory of pairs of abstract designs or pairs of symbols in unique locations. Both patient groups had deficits in learning the designs, but only the right temporal group was impaired in recognition. For the symbol location task, differences were not found in learning, but again a recognition deficit was found for the right temporal group. The findings implicate the mesial temporal structures in relational learning. They support a material-specific effect for recognition but not for learning and recall of arbitrary visual and visual-spatial associative information. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Visual Perceptual Echo Reflects Learning of Regularities in Rapid Luminance Sequences.

    Science.gov (United States)

    Chang, Acer Y-C; Schwartzman, David J; VanRullen, Rufin; Kanai, Ryota; Seth, Anil K

    2017-08-30

    A novel neural signature of active visual processing has recently been described in the form of the "perceptual echo", in which the cross-correlation between a sequence of randomly fluctuating luminance values and occipital electrophysiological signals exhibits a long-lasting periodic (∼100 ms cycle) reverberation of the input stimulus (VanRullen and Macdonald, 2012). As yet, however, the mechanisms underlying the perceptual echo and its function remain unknown. Reasoning that natural visual signals often contain temporally predictable, though nonperiodic features, we hypothesized that the perceptual echo may reflect a periodic process associated with regularity learning. To test this hypothesis, we presented subjects with successive repetitions of a rapid nonperiodic luminance sequence, and examined the effects on the perceptual echo, finding that echo amplitude linearly increased with the number of presentations of a given luminance sequence. These data suggest that the perceptual echo reflects a neural signature of regularity learning.Furthermore, when a set of repeated sequences was followed by a sequence with inverted luminance polarities, the echo amplitude decreased to the same level evoked by a novel stimulus sequence. Crucially, when the original stimulus sequence was re-presented, the echo amplitude returned to a level consistent with the number of presentations of this sequence, indicating that the visual system retained sequence-specific information, for many seconds, even in the presence of intervening visual input. Altogether, our results reveal a previously undiscovered regularity learning mechanism within the human visual system, reflected by the perceptual echo. SIGNIFICANCE STATEMENT How the brain encodes and learns fast-changing but nonperiodic visual input remains unknown, even though such visual input characterizes natural scenes. We investigated whether the phenomenon of "perceptual echo" might index such learning. The perceptual echo is a

  15. Análise de erros ortográficos em diferentes problemas de aprendizagem Analyzing typical orthographic mistakes related to different learning problems

    Directory of Open Access Journals (Sweden)

    Jaime Luiz Zorzi

    2009-09-01

    learning problems, check if the types of produced mistakes are those found in the learning that is considered normal and analyze if orthographic or phonological nature problems prevail in each disorder. METHODS: the writing of 64 subjects was evaluated by the Laboratory of Learning Disabilities of the Neurology Department of UNICAMP and diagnosed as showing some type of learning problem. Deficit of Attention / Hyperactivity disorder (28; School Difficulties (13; Learning Disabilities (7; Dyslexia (3; Associated Disorders (5 and Inconclusive Diagnosis (9. The ages varied between 8;2 and 13;4 years, with a 10;6 year-old average. Only subjects in alphabetical writing level without any type of intellectual deficit were included. The found mistakes were classified in eleven categories and quantified for ends of statistical analysis. RESULTS: the spelling mistakes found in each problem type correspond to those observed in children without learning complaint. The spelling mistakes through Multiple Representations, Omission of letters and Orality, are respectively, the three most frequent types in the cases Deficit of Attention and Hyperactivity disorder, School Difficulties, Associated Disorders and Unknown Diagnosis. In the Disturbance of Learning the sequence is of Multiple Representations, Omission, Other Mistakes and Voiced/Unvoiced mistakes. In the dyslexia we note the sequence of Multiple Representations, Orality, Omission and Other Mistakes. There is a trend, in each problem type, to the prevalence of orthographic nature mistakes, although with no statistically significant difference in relation to the phonological nature mistakes. CONCLUSION: the orthographic nature mistakes are the most frequent, although, there is no significant difference, in each group, in relation to the phonological nature mistakes. With contrary trend, the visual-spatial mistakes have low occurrence in general, which shows that the difficulty concerning all groups has fundamentally a linguistic

  16. Unimodal Learning Enhances Crossmodal Learning in Robotic Audio-Visual Tracking

    DEFF Research Database (Denmark)

    Shaikh, Danish; Bodenhagen, Leon; Manoonpong, Poramate

    2017-01-01

    Crossmodal sensory integration is a fundamental feature of the brain that aids in forming an coherent and unified representation of observed events in the world. Spatiotemporally correlated sensory stimuli brought about by rich sensorimotor experiences drive the development of crossmodal integrat...... a non-holonomic robotic agent towards a moving audio-visual target. Simulation results demonstrate that unimodal learning enhances crossmodal learning and improves both the overall accuracy and precision of multisensory orientation response....

  17. Unimodal Learning Enhances Crossmodal Learning in Robotic Audio-Visual Tracking

    DEFF Research Database (Denmark)

    Shaikh, Danish; Bodenhagen, Leon; Manoonpong, Poramate

    2018-01-01

    Crossmodal sensory integration is a fundamental feature of the brain that aids in forming an coherent and unified representation of observed events in the world. Spatiotemporally correlated sensory stimuli brought about by rich sensorimotor experiences drive the development of crossmodal integrat...... a non-holonomic robotic agent towards a moving audio-visual target. Simulation results demonstrate that unimodal learning enhances crossmodal learning and improves both the overall accuracy and precision of multisensory orientation response....

  18. Java problem-based learning

    Directory of Open Access Journals (Sweden)

    Goran P, Šimić

    2012-01-01

    Full Text Available The paper describes the self-directed problem-based learning system (PBL named Java PBL. The expert module is the kernel of Java PBL. It involves a specific domain model, a problem generator and a solution generator. The overall system architecture is represented in the paper. Java PBL can act as the stand-alone system, but it is also designed to provide support to learning management systems (LMSs. This is provided by a modular design of the system. An LMS can offer the declarative knowledge only. Java PBL offers the procedural knowledge and the progress of the learner programming skills. The free navigation, unlimited numbers of problems and recommendations represent the main pedagogical strategies and tactics implemented into the system.

  19. Rapid learning in visual cortical networks.

    Science.gov (United States)

    Wang, Ye; Dragoi, Valentin

    2015-08-26

    Although changes in brain activity during learning have been extensively examined at the single neuron level, the coding strategies employed by cell populations remain mysterious. We examined cell populations in macaque area V4 during a rapid form of perceptual learning that emerges within tens of minutes. Multiple single units and LFP responses were recorded as monkeys improved their performance in an image discrimination task. We show that the increase in behavioral performance during learning is predicted by a tight coordination of spike timing with local population activity. More spike-LFP theta synchronization is correlated with higher learning performance, while high-frequency synchronization is unrelated with changes in performance, but these changes were absent once learning had stabilized and stimuli became familiar, or in the absence of learning. These findings reveal a novel mechanism of plasticity in visual cortex by which elevated low-frequency synchronization between individual neurons and local population activity accompanies the improvement in performance during learning.

  20. Binding of visual and spatial short-term memory in Williams syndrome and moderate learning disability.

    Science.gov (United States)

    Jarrold, Christopher; Phillips, Caroline; Baddeley, Alan D

    2007-04-01

    A main aim of this study was to test the claim that individuals with Williams syndrome have selectively impaired memory for spatial as opposed to visual information. The performance of 16 individuals with Williams syndrome (six males, 10 females; mean age 18y 7mo [SD 7y 6mo], range 9y 1mo-30y 7mo) on tests of short-term memory for item and location information was compared with that shown by individuals with moderate learning difficulties (12 males, four females; mean age 10y 3mo [SD 1y], range 8y 6mo-11y 7mo) and typically developing children (six males, 10 females; mean age 6y 8mo [SD 7mo], range 5y 10mo-7y 9mo) of an equivalent level of visuospatial ability. A second aim was to determine whether individuals had impaired ability to 'bind' visual spatial information when required to recall 'item in location' information. In contrast to previous findings, there was no evidence that individuals with Williams syndrome were more impaired in the spatial than the visual memory condition. However, individuals with both Williams syndrome and moderate learning difficulties showed impaired memory for item in location information, suggesting that problems of binding may be generally associated with learning disability.

  1. Students and Teachers as Developers of Visual Learning Designs with Augmented Reality for Visual Arts Education

    DEFF Research Database (Denmark)

    Buhl, Mie

    2017-01-01

    upon which to discuss the potential for reengineering the traditional role of the teacher/learning designer as the only supplier and the students as the receivers of digital learning designs in higher education. The discussion applies the actor-network theory and socio-material perspectives...... on education in order to enhance the meta-perspective of traditional teacher and student roles.......Abstract This paper reports on a project in which communication and digital media students collaborated with visual arts teacher students and their teacher trainer to develop visual digital designs for learning that involved Augmented Reality (AR) technology. The project exemplified a design...

  2. Curriculum Q-Learning for Visual Vocabulary Acquisition

    OpenAIRE

    Zaidi, Ahmed H.; Moore, Russell; Briscoe, Ted

    2017-01-01

    The structure of curriculum plays a vital role in our learning process, both as children and adults. Presenting material in ascending order of difficulty that also exploits prior knowledge can have a significant impact on the rate of learning. However, the notion of difficulty and prior knowledge differs from person to person. Motivated by the need for a personalised curriculum, we present a novel method of curriculum learning for vocabulary words in the form of visual prompts. We employ a re...

  3. The effect of discovery learning and problem-based learning on middle school students’ self-regulated learning

    Science.gov (United States)

    Miatun, A.; Muntazhimah

    2018-01-01

    The aim of this research was to determine the effect of learning models on mathematics achievement viewed from student’s self-regulated learning. The learning model compared were discovery learning and problem-based learning. The population was all students at the grade VIII of Junior High School in Boyolali regency. The samples were students of SMPN 4 Boyolali, SMPN 6 Boyolali, and SMPN 4 Mojosongo. The instruments used were mathematics achievement tests and self-regulated learning questionnaire. The data were analyzed using unbalanced two-ways Anova. The conclusion was as follows: (1) discovery learning gives better achievement than problem-based learning. (2) Achievement of students who have high self-regulated learning was better than students who have medium and low self-regulated learning. (3) For discovery learning, achievement of students who have high self-regulated learning was better than students who have medium and low self-regulated learning. For problem-based learning, students who have high and medium self-regulated learning have the same achievement. (4) For students who have high self-regulated learning, discovery learning gives better achievement than problem-based learning. Students who have medium and low self-regulated learning, both learning models give the same achievement.

  4. Mathematical visualization process of junior high school students in solving a contextual problem based on cognitive style

    Science.gov (United States)

    Utomo, Edy Setiyo; Juniati, Dwi; Siswono, Tatag Yuli Eko

    2017-08-01

    The aim of this research was to describe the mathematical visualization process of Junior High School students in solving contextual problems based on cognitive style. Mathematical visualization process in this research was seen from aspects of image generation, image inspection, image scanning, and image transformation. The research subject was the students in the eighth grade based on GEFT test (Group Embedded Figures Test) adopted from Within to determining the category of cognitive style owned by the students namely field independent or field dependent and communicative. The data collection was through visualization test in contextual problem and interview. The validity was seen through time triangulation. The data analysis referred to the aspect of mathematical visualization through steps of categorization, reduction, discussion, and conclusion. The results showed that field-independent and field-dependent subjects were difference in responding to contextual problems. The field-independent subject presented in the form of 2D and 3D, while the field-dependent subject presented in the form of 3D. Both of the subjects had different perception to see the swimming pool. The field-independent subject saw from the top, while the field-dependent subject from the side. The field-independent subject chose to use partition-object strategy, while the field-dependent subject chose to use general-object strategy. Both the subjects did transformation in an object rotation to get the solution. This research is reference to mathematical curriculum developers of Junior High School in Indonesia. Besides, teacher could develop the students' mathematical visualization by using technology media or software, such as geogebra, portable cabri in learning.

  5. MEMECAHKAN MASALAH GEOGRAFI MELALUI PROBLEM BASED LEARNING

    Directory of Open Access Journals (Sweden)

    Sujiono Sujiono

    2018-01-01

    Full Text Available This study aims to determine the effect of Problem Based Learning model on geography problem-solving sklills. This research model is quasi experiment with non-equivalent control group design. The subjects of the study were the students of XI IPS SMA Negeri 1 Pulau Laut Timur, academic year 2016/2017. The assessment instrument is an essay test based on an indicator of problem solving skills, ie (1 identifying problems; (2 formulate the problem; (3 finding alternative solutions; (4 choose alternative solutions; and (5 make conclusions. Data analysis using independent sample t-test model with 5% significance level. The results showed that there is an influence of PBL model on geography problem-solving sklills. The geography problem-solving skills of experimental class with PBL model is higher than control class with conventional model. Suggestion given, that is to make a plan of learning well and doing learning PBL on outdoor study.   Keywords Problem Based Learning, problem-solving skills, geography   http://dx.doi.org/10.17977/um022v2i22017p072

  6. Learner differences and learning outcomes in an introductory biochemistry class: attitude toward images, visual cognitive skills, and learning approach.

    Science.gov (United States)

    Milner, Rachel E

    2014-01-01

    The practice of using images in teaching is widespread, and in science education images are used so extensively that some have argued they are now the "main vehicle of communication" (C. Ferreira, A. Arroio Problems Educ. 21st Century 2009, 16, 48-53). Although this phenomenon is especially notable in the field of biochemistry, we know little about the role and importance of images in communicating concepts to students in the classroom. This study reports the development of a scale to assess students' attitude toward biochemical images, particularly their willingness and ability to use the images to support their learning. In addition, because it is argued that images are central in the communication of biochemical concepts, we investigated three "learner differences" which might impact learning outcomes in this kind of classroom environment: attitude toward images, visual cognitive skills, and learning approach. Overall, the students reported a positive attitude toward the images, the majority agreeing that they liked images and considered them useful. However, the participants also reported that verbal explanations were more important than images in helping them to understand the concepts. In keeping with this we found that there was no relationship between learning outcomes and the students' self-reported attitude toward images or visual cognitive skills. In contrast, learning outcomes were significantly correlated with the students' self-reported approach to learning. These findings suggest that images are not necessarily the main vehicle of communication in a biochemistry classroom and that verbal explanations and encouragement of a deep learning approach are important considerations in improving our pedagogical approach. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  7. Supporting learning skills in visual art classes: The benefits of teacher awareness

    Directory of Open Access Journals (Sweden)

    Helen Arov

    2017-09-01

    Full Text Available This study focused on middle school art teachers supporting the development of students learning skills, specifically their awareness of the framework of learning skills. It also looked at the relations between the teaching practices teachers use for supporting learning skills and students' learning motivation in art classes. The study combined qualitative and quantitative research methods. The class observations and interviews were conducted with ten Estonian middle school art teachers. One hundred and forty-eight students from the observed classes filled out the learning motivation questionnaire about their interest and achievement goals in visual arts. The study draws attention to the importance of teachers being aware of and valuing learning skills alongside subject specific knowledge, as it could enhance students autonomous motivation and support adaptive goal setting.

  8. Context generalization in Drosophila visual learning requires the mushroom bodies

    Science.gov (United States)

    Liu, Li; Wolf, Reinhard; Ernst, Roman; Heisenberg, Martin

    1999-08-01

    The world is permanently changing. Laboratory experiments on learning and memory normally minimize this feature of reality, keeping all conditions except the conditioned and unconditioned stimuli as constant as possible. In the real world, however, animals need to extract from the universe of sensory signals the actual predictors of salient events by separating them from non-predictive stimuli (context). In principle, this can be achieved ifonly those sensory inputs that resemble the reinforcer in theirtemporal structure are taken as predictors. Here we study visual learning in the fly Drosophila melanogaster, using a flight simulator,, and show that memory retrieval is, indeed, partially context-independent. Moreover, we show that the mushroom bodies, which are required for olfactory but not visual or tactile learning, effectively support context generalization. In visual learning in Drosophila, it appears that a facilitating effect of context cues for memory retrieval is the default state, whereas making recall context-independent requires additional processing.

  9. The Rhetoric of Multi-Display Learning Spaces: exploratory experiences in visual art disciplines

    Directory of Open Access Journals (Sweden)

    Brett Bligh

    2010-11-01

    Full Text Available Multi-Display Learning Spaces (MD-LS comprise technologies to allow the viewing of multiple simultaneous visual materials, modes of learning which encourage critical reflection upon these materials, and spatial configurations which afford interaction between learners and the materials in orchestrated ways. In this paper we provide an argument for the benefits of Multi-Display Learning Spaces in supporting complex, disciplinary reasoning within learning, focussing upon our experiences within postgraduate visual arts education. The importance of considering the affordances of the physical environment within education has been acknowledged by the recent attention given to Learning Spaces, yet within visual art disciplines the perception of visual material within a given space has long been seen as a key methodological consideration with implications for the identity of the discipline itself. We analyse the methodological, technological and spatial affordances of MD-LS to support learning, and discuss comparative viewing as a disciplinary method to structure visual analysis within the space which benefits from the simultaneous display of multiple partitions of visual evidence. We offer an analysis of the role of the teacher in authoring and orchestration and conclude by proposing a more general structure for what we term ‘multiple perspective learning’, in which the presentation of multiple pieces of visual evidence creates the conditions for complex argumentation within Higher Education.

  10. Learning temporal context shapes prestimulus alpha oscillations and improves visual discrimination performance.

    Science.gov (United States)

    Toosi, Tahereh; K Tousi, Ehsan; Esteky, Hossein

    2017-08-01

    Time is an inseparable component of every physical event that we perceive, yet it is not clear how the brain processes time or how the neuronal representation of time affects our perception of events. Here we asked subjects to perform a visual discrimination task while we changed the temporal context in which the stimuli were presented. We collected electroencephalography (EEG) signals in two temporal contexts. In predictable blocks stimuli were presented after a constant delay relative to a visual cue, and in unpredictable blocks stimuli were presented after variable delays relative to the visual cue. Four subsecond delays of 83, 150, 400, and 800 ms were used in the predictable and unpredictable blocks. We observed that predictability modulated the power of prestimulus alpha oscillations in the parieto-occipital sites: alpha power increased in the 300-ms window before stimulus onset in the predictable blocks compared with the unpredictable blocks. This modulation only occurred in the longest delay period, 800 ms, in which predictability also improved the behavioral performance of the subjects. Moreover, learning the temporal context shaped the prestimulus alpha power: modulation of prestimulus alpha power grew during the predictable block and correlated with performance enhancement. These results suggest that the brain is able to learn the subsecond temporal context of stimuli and use this to enhance sensory processing. Furthermore, the neural correlate of this temporal prediction is reflected in the alpha oscillations. NEW & NOTEWORTHY It is not well understood how the uncertainty in the timing of an external event affects its processing, particularly at subsecond scales. Here we demonstrate how a predictable timing scheme improves visual processing. We found that learning the predictable scheme gradually shaped the prestimulus alpha power. These findings indicate that the human brain is able to extract implicit subsecond patterns in the temporal context of

  11. Implementation of ICARE learning model using visualization animation on biotechnology course

    Science.gov (United States)

    Hidayat, Habibi

    2017-12-01

    ICARE is a learning model that directly ensure the students to actively participate in the learning process using animation media visualization. ICARE have five key elements of learning experience from children and adult that is introduction, connection, application, reflection and extension. The use of Icare system to ensure that participants have opportunity to apply what have been they learned. So that, the message delivered by lecture to students can be understood and recorded by students in a long time. Learning model that was deemed capable of improving learning outcomes and interest to learn in following learning process Biotechnology with applying the ICARE learning model using visualization animation. This learning model have been giving motivation to participate in the learning process and learning outcomes obtained becomes more increased than before. From the results of student learning in subjects Biotechnology by applying the ICARE learning model using Visualization Animation can improving study results of student from the average value of middle test amounted to 70.98 with the percentage of 75% increased value of final test to be 71.57 with the percentage of 68.63%. The interest to learn from students more increasing visits of student activities at each cycle, namely the first cycle obtained average value by 33.5 with enough category. The second cycle is obtained an average value of 36.5 to good category and third cycle the average value of 36.5 with a student activity to good category.

  12. ICT support for students’ collaboration in problem and project based learning

    DEFF Research Database (Denmark)

    Rongbutsri, Nikorn; Khalid, Md. Saifuddin; Ryberg, Thomas

    2011-01-01

    This paper reports and analyses quantitative and qualitative data from a study, which seeks a better understanding of how students use various technologies to support their project collaboration activities in a problem and project based learning environment. More generally the aim of the study......, and the present paper, is to shed light on students’ technology practices within higher education – particularly in relation to problem and project based learning....

  13. Impaired memory for material related to a problem solved prior to encoding: suppression at learning or interference at recall?

    Science.gov (United States)

    Kowalczyk, Marek

    2017-07-01

    Earlier research by the author revealed that material encoded incidentally in a speeded affective classification task and related to the demands of a divergent problem tends to be recalled worse in participants who solved the problem prior to encoding than in participants in the control, no-problem condition. The aim of the present experiment was to replicate this effect with a new, size-comparison orienting task, and to test for possible mechanisms of impaired recall. Participants either solved a problem before the orienting task or not, and classified each item in this task either once or three times. There was a reliable effect of impaired recall of problem-related items in the repetition condition, but not in the no-repetition condition. Solving the problem did not influence repetition priming for these items. These results support an account that attributes the impaired recall to inhibitory processes at learning and speak against a proactive interference explanation. However, they can be also accommodated by an account that refers to inefficient context cues and competitor interference at retrieval.

  14. Reframing Children’s Learning: Capturing the Practice of Articulation Done by Truku Children in a Visual Narrative Program

    Directory of Open Access Journals (Sweden)

    Huei-Hsuan Lin

    2015-06-01

    Full Text Available Grounded in a three-semester visual program in which a college team collaborated with Truku elementary students using photographs to explore their lives, this paper focuses on the ways that indigenous students constructed their learning experiences. The present study uses the concept of articulation to describe the process through which children connected their lives with their families and communities with the visual project taking place at school: As this visual project was aimed to infiltrate into the fabrics of children’s everyday lives, those who succeeded to negotiate with their guardians to gain full control over their after-school lives were able to incorporate the activities of photo-taking into their free time and engage in friendship-making activities. Additionally, students were raised to be involved in farming activities in which they learned by participating physically rather than listening to verbal explanations. Thus, this way of learning had been inscribed onto their bodies, moving between and sutured the worlds of school learning and community’s manual laboring. Lastly, this study found that students exuberated “groupness” as they negotiated their way with each other establishing their positions in the web of peer relations. Groupness embodied an articulated quality indicating the way that students were related to each other at school was inseparable from their relations after school. Educators need to be attuned to the dynamics of the groupness as it has been somewhat stable, yet open to change, and certainly impacted how students performed in various learning spaces, such as in the case of the visual program.

  15. Making perceptual learning practical to improve visual functions.

    Science.gov (United States)

    Polat, Uri

    2009-10-01

    Task-specific improvement in performance after training is well established. The finding that learning is stimulus-specific and does not transfer well between different stimuli, between stimulus locations in the visual field, or between the two eyes has been used to support the notion that neurons or assemblies of neurons are modified at the earliest stage of cortical processing. However, a debate regarding the proposed mechanism underlying perceptual learning is an ongoing issue. Nevertheless, generalization of a trained task to other functions is an important key, for both understanding the neural mechanisms and the practical value of the training. This manuscript describes a structured perceptual learning method that previously used (amblyopia, myopia) and a novel technique and results that were applied for presbyopia. In general, subjects were trained for contrast detection of Gabor targets under lateral masking conditions. Training improved contrast sensitivity and diminished the lateral suppression when it existed (amblyopia). The improvement was transferred to unrelated functions such as visual acuity. The new results of presbyopia show substantial improvement of the spatial and temporal contrast sensitivity, leading to improved processing speed of target detection as well as reaction time. Consequently, the subjects, who were able to eliminate the need for reading glasses, benefited. Thus, here we show that the transfer of functions indicates that the specificity of improvement in the trained task can be generalized by repetitive practice of target detection, covering a sufficient range of spatial frequencies and orientations, leading to an improvement in unrelated visual functions. Thus, perceptual learning can be a practical method to improve visual functions in people with impaired or blurred vision.

  16. Problem-Based Learning Approaches in Meteorology

    Science.gov (United States)

    Charlton-Perez, Andrew James

    2013-01-01

    Problem-Based Learning, despite recent controversies about its effectiveness, is used extensively as a teaching method throughout higher education. In meteorology, there has been little attempt to incorporate Problem-Based Learning techniques into the curriculum. Motivated by a desire to enhance the reflective engagement of students within a…

  17. Mirror reversal and visual rotation are learned and consolidated via separate mechanisms: recalibrating or learning de novo?

    Science.gov (United States)

    Telgen, Sebastian; Parvin, Darius; Diedrichsen, Jörn

    2014-10-08

    Motor learning tasks are often classified into adaptation tasks, which involve the recalibration of an existing control policy (the mapping that determines both feedforward and feedback commands), and skill-learning tasks, requiring the acquisition of new control policies. We show here that this distinction also applies to two different visuomotor transformations during reaching in humans: Mirror-reversal (left-right reversal over a mid-sagittal axis) of visual feedback versus rotation of visual feedback around the movement origin. During mirror-reversal learning, correct movement initiation (feedforward commands) and online corrections (feedback responses) were only generated at longer latencies. The earliest responses were directed into a nonmirrored direction, even after two training sessions. In contrast, for visual rotation learning, no dependency of directional error on reaction time emerged, and fast feedback responses to visual displacements of the cursor were immediately adapted. These results suggest that the motor system acquires a new control policy for mirror reversal, which initially requires extra processing time, while it recalibrates an existing control policy for visual rotations, exploiting established fast computational processes. Importantly, memory for visual rotation decayed between sessions, whereas memory for mirror reversals showed offline gains, leading to better performance at the beginning of the second session than in the end of the first. With shifts in time-accuracy tradeoff and offline gains, mirror-reversal learning shares common features with other skill-learning tasks. We suggest that different neuronal mechanisms underlie the recalibration of an existing versus acquisition of a new control policy and that offline gains between sessions are a characteristic of latter. Copyright © 2014 the authors 0270-6474/14/3413768-12$15.00/0.

  18. Towards The Deep Model : Understanding Visual Recognition Through Computational Models

    OpenAIRE

    Wang, Panqu

    2017-01-01

    Understanding how visual recognition is achieved in the human brain is one of the most fundamental questions in vision research. In this thesis I seek to tackle this problem from a neurocomputational modeling perspective. More specifically, I build machine learning-based models to simulate and explain cognitive phenomena related to human visual recognition, and I improve computational models using brain-inspired principles to excel at computer vision tasks.I first describe how a neurocomputat...

  19. Incorporating Problem-Based Learning in Physical Education Teacher Education

    Science.gov (United States)

    Hushman, Glenn; Napper-Owen, Gloria

    2011-01-01

    Problem-based learning (PBL) is an educational method that identifies a problem as a context for student learning. Critical-thinking skills, deductive reasoning, knowledge, and behaviors are developed as students learn how theory can be applied to practical settings. Problem-based learning encourages self-direction, lifelong learning, and sharing…

  20. Perceptual learning modifies the functional specializations of visual cortical areas.

    Science.gov (United States)

    Chen, Nihong; Cai, Peng; Zhou, Tiangang; Thompson, Benjamin; Fang, Fang

    2016-05-17

    Training can improve performance of perceptual tasks. This phenomenon, known as perceptual learning, is strongest for the trained task and stimulus, leading to a widely accepted assumption that the associated neuronal plasticity is restricted to brain circuits that mediate performance of the trained task. Nevertheless, learning does transfer to other tasks and stimuli, implying the presence of more widespread plasticity. Here, we trained human subjects to discriminate the direction of coherent motion stimuli. The behavioral learning effect substantially transferred to noisy motion stimuli. We used transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms underlying the transfer of learning. The TMS experiment revealed dissociable, causal contributions of V3A (one of the visual areas in the extrastriate visual cortex) and MT+ (middle temporal/medial superior temporal cortex) to coherent and noisy motion processing. Surprisingly, the contribution of MT+ to noisy motion processing was replaced by V3A after perceptual training. The fMRI experiment complemented and corroborated the TMS finding. Multivariate pattern analysis showed that, before training, among visual cortical areas, coherent and noisy motion was decoded most accurately in V3A and MT+, respectively. After training, both kinds of motion were decoded most accurately in V3A. Our findings demonstrate that the effects of perceptual learning extend far beyond the retuning of specific neural populations for the trained stimuli. Learning could dramatically modify the inherent functional specializations of visual cortical areas and dynamically reweight their contributions to perceptual decisions based on their representational qualities. These neural changes might serve as the neural substrate for the transfer of perceptual learning.

  1. The cerebellum and visual perceptual learning: evidence from a motion extrapolation task.

    Science.gov (United States)

    Deluca, Cristina; Golzar, Ashkan; Santandrea, Elisa; Lo Gerfo, Emanuele; Eštočinová, Jana; Moretto, Giuseppe; Fiaschi, Antonio; Panzeri, Marta; Mariotti, Caterina; Tinazzi, Michele; Chelazzi, Leonardo

    2014-09-01

    Visual perceptual learning is widely assumed to reflect plastic changes occurring along the cerebro-cortical visual pathways, including at the earliest stages of processing, though increasing evidence indicates that higher-level brain areas are also involved. Here we addressed the possibility that the cerebellum plays an important role in visual perceptual learning. Within the realm of motor control, the cerebellum supports learning of new skills and recalibration of motor commands when movement execution is consistently perturbed (adaptation). Growing evidence indicates that the cerebellum is also involved in cognition and mediates forms of cognitive learning. Therefore, the obvious question arises whether the cerebellum might play a similar role in learning and adaptation within the perceptual domain. We explored a possible deficit in visual perceptual learning (and adaptation) in patients with cerebellar damage using variants of a novel motion extrapolation, psychophysical paradigm. Compared to their age- and gender-matched controls, patients with focal damage to the posterior (but not the anterior) cerebellum showed strongly diminished learning, in terms of both rate and amount of improvement over time. Consistent with a double-dissociation pattern, patients with focal damage to the anterior cerebellum instead showed more severe clinical motor deficits, indicative of a distinct role of the anterior cerebellum in the motor domain. The collected evidence demonstrates that a pure form of slow-incremental visual perceptual learning is crucially dependent on the intact cerebellum, bearing the notion that the human cerebellum acts as a learning device for motor, cognitive and perceptual functions. We interpret the deficit in terms of an inability to fine-tune predictive models of the incoming flow of visual perceptual input over time. Moreover, our results suggest a strong dissociation between the role of different portions of the cerebellum in motor versus

  2. Problem-Based Learning: An Overview of its Process and Impact on Learning

    Directory of Open Access Journals (Sweden)

    Elaine H.J. Yew

    2016-12-01

    Full Text Available In this review, we provide an overview of the process of problem-based learning (PBL and the studies examining the effectiveness of PBL. We also discuss a number of naturalistic and empirical studies that have examined the process of PBL and how its various components impact students’ learning. We conclude that the studies comparing the relative effectiveness of PBL are generally consistent in demonstrating its superior efficacy for longer-term knowledge retention and in the application of knowledge. Studies on the process of PBL, however, are still inconclusive as to which component(s of PBL most significantly impact students’ learning, although causal studies have demonstrated that all the phases of PBL are necessary in influencing students’ learning outcomes.

  3. Real-Time Strategy Video Game Experience and Visual Perceptual Learning.

    Science.gov (United States)

    Kim, Yong-Hwan; Kang, Dong-Wha; Kim, Dongho; Kim, Hye-Jin; Sasaki, Yuka; Watanabe, Takeo

    2015-07-22

    Visual perceptual learning (VPL) is defined as long-term improvement in performance on a visual-perception task after visual experiences or training. Early studies have found that VPL is highly specific for the trained feature and location, suggesting that VPL is associated with changes in the early visual cortex. However, the generality of visual skills enhancement attributable to action video-game experience suggests that VPL can result from improvement in higher cognitive skills. If so, experience in real-time strategy (RTS) video-game play, which may heavily involve cognitive skills, may also facilitate VPL. To test this hypothesis, we compared VPL between RTS video-game players (VGPs) and non-VGPs (NVGPs) and elucidated underlying structural and functional neural mechanisms. Healthy young human subjects underwent six training sessions on a texture discrimination task. Diffusion-tensor and functional magnetic resonance imaging were performed before and after training. VGPs performed better than NVGPs in the early phase of training. White-matter connectivity between the right external capsule and visual cortex and neuronal activity in the right inferior frontal gyrus (IFG) and anterior cingulate cortex (ACC) were greater in VGPs than NVGPs and were significantly correlated with RTS video-game experience. In both VGPs and NVGPs, there was task-related neuronal activity in the right IFG, ACC, and striatum, which was strengthened after training. These results indicate that RTS video-game experience, associated with changes in higher-order cognitive functions and connectivity between visual and cognitive areas, facilitates VPL in early phases of training. The results support the hypothesis that VPL can occur without involvement of only visual areas. Significance statement: Although early studies found that visual perceptual learning (VPL) is associated with involvement of the visual cortex, generality of visual skills enhancement by action video-game experience

  4. Isolating Visual and Proprioceptive Components of Motor Sequence Learning in ASD.

    Science.gov (United States)

    Sharer, Elizabeth A; Mostofsky, Stewart H; Pascual-Leone, Alvaro; Oberman, Lindsay M

    2016-05-01

    In addition to defining impairments in social communication skills, individuals with autism spectrum disorder (ASD) also show impairments in more basic sensory and motor skills. Development of new skills involves integrating information from multiple sensory modalities. This input is then used to form internal models of action that can be accessed when both performing skilled movements, as well as understanding those actions performed by others. Learning skilled gestures is particularly reliant on integration of visual and proprioceptive input. We used a modified serial reaction time task (SRTT) to decompose proprioceptive and visual components and examine whether patterns of implicit motor skill learning differ in ASD participants as compared with healthy controls. While both groups learned the implicit motor sequence during training, healthy controls showed robust generalization whereas ASD participants demonstrated little generalization when visual input was constant. In contrast, no group differences in generalization were observed when proprioceptive input was constant, with both groups showing limited degrees of generalization. The findings suggest, when learning a motor sequence, individuals with ASD tend to rely less on visual feedback than do healthy controls. Visuomotor representations are considered to underlie imitative learning and action understanding and are thereby crucial to social skill and cognitive development. Thus, anomalous patterns of implicit motor learning, with a tendency to discount visual feedback, may be an important contributor in core social communication deficits that characterize ASD. Autism Res 2016, 9: 563-569. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  5. Learning invariance from natural images inspired by observations in the primary visual cortex.

    Science.gov (United States)

    Teichmann, Michael; Wiltschut, Jan; Hamker, Fred

    2012-05-01

    The human visual system has the remarkable ability to largely recognize objects invariant of their position, rotation, and scale. A good interpretation of neurobiological findings involves a computational model that simulates signal processing of the visual cortex. In part, this is likely achieved step by step from early to late areas of visual perception. While several algorithms have been proposed for learning feature detectors, only few studies at hand cover the issue of biologically plausible learning of such invariance. In this study, a set of Hebbian learning rules based on calcium dynamics and homeostatic regulations of single neurons is proposed. Their performance is verified within a simple model of the primary visual cortex to learn so-called complex cells, based on a sequence of static images. As a result, the learned complex-cell responses are largely invariant to phase and position.

  6. Learning a New Selection Rule in Visual and Frontal Cortex.

    Science.gov (United States)

    van der Togt, Chris; Stănişor, Liviu; Pooresmaeili, Arezoo; Albantakis, Larissa; Deco, Gustavo; Roelfsema, Pieter R

    2016-08-01

    How do you make a decision if you do not know the rules of the game? Models of sensory decision-making suggest that choices are slow if evidence is weak, but they may only apply if the subject knows the task rules. Here, we asked how the learning of a new rule influences neuronal activity in the visual (area V1) and frontal cortex (area FEF) of monkeys. We devised a new icon-selection task. On each day, the monkeys saw 2 new icons (small pictures) and learned which one was relevant. We rewarded eye movements to a saccade target connected to the relevant icon with a curve. Neurons in visual and frontal cortex coded the monkey's choice, because the representation of the selected curve was enhanced. Learning delayed the neuronal selection signals and we uncovered the cause of this delay in V1, where learning to select the relevant icon caused an early suppression of surrounding image elements. These results demonstrate that the learning of a new rule causes a transition from fast and random decisions to a more considerate strategy that takes additional time and they reveal the contribution of visual and frontal cortex to the learning process. © The Author 2016. Published by Oxford University Press.

  7. Enhanced learning of natural visual sequences in newborn chicks.

    Science.gov (United States)

    Wood, Justin N; Prasad, Aditya; Goldman, Jason G; Wood, Samantha M W

    2016-07-01

    To what extent are newborn brains designed to operate over natural visual input? To address this question, we used a high-throughput controlled-rearing method to examine whether newborn chicks (Gallus gallus) show enhanced learning of natural visual sequences at the onset of vision. We took the same set of images and grouped them into either natural sequences (i.e., sequences showing different viewpoints of the same real-world object) or unnatural sequences (i.e., sequences showing different images of different real-world objects). When raised in virtual worlds containing natural sequences, newborn chicks developed the ability to recognize familiar images of objects. Conversely, when raised in virtual worlds containing unnatural sequences, newborn chicks' object recognition abilities were severely impaired. In fact, the majority of the chicks raised with the unnatural sequences failed to recognize familiar images of objects despite acquiring over 100 h of visual experience with those images. Thus, newborn chicks show enhanced learning of natural visual sequences at the onset of vision. These results indicate that newborn brains are designed to operate over natural visual input.

  8. Visual memory and learning in extremely low-birth-weight/extremely preterm adolescents compared with controls: a geographic study.

    Science.gov (United States)

    Molloy, Carly S; Wilson-Ching, Michelle; Doyle, Lex W; Anderson, Vicki A; Anderson, Peter J

    2014-04-01

    Contemporary data on visual memory and learning in survivors born extremely preterm (EP; Visual learning and memory data were available for 221 (74.2%) EP/ELBW subjects and 159 (60.7%) controls. EP/ELBW adolescents exhibited significantly poorer performance across visual memory and learning variables compared with controls. Visual learning and delayed visual memory were particularly problematic and remained so after controlling for visual-motor integration and visual perception and excluding adolescents with neurosensory disability, and/or IQ visual memory and learning outcomes compared with controls, which cannot be entirely explained by poor visual perceptual or visual constructional skills or intellectual impairment.

  9. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams.

    Science.gov (United States)

    Rouinfar, Amy; Agra, Elise; Larson, Adam M; Rebello, N Sanjay; Loschky, Lester C

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants' attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants' verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers' attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions.

  10. Using E-Learning Portfolio Technology To Support Visual Art Learning

    Directory of Open Access Journals (Sweden)

    Greer Jones-Woodham

    2009-08-01

    Full Text Available Inspired by self-directed learning (SDL theories, this paper uses learning portfolios as a reflective practice to improve student learning and develop personal responsibility, growth and autonomy in learning in a Visual Arts course. Students use PowerPoint presentations to demonstrate their concepts by creating folders that are linked to e-portfolios on the University website. This paper establishes the role of learning e-portfolios to improve teaching and learning as a model of reflection, collaboration and documentation in the making of art as a self-directed process. These portfolios link students' creative thinking to their conceptual frameworks. They also establish a process of inquiry using journals to map students' processes through their reflections and peer feedback. This practice argues that learning e-portfolios in studio art not only depends on a set of objectives whose means are justified by an agreed end but also depends on a practice that engages students' reflection about their actions while in their art- making practice. Using the principles of the maker as the intuitive and reflective practitioner, the making as the process in which the learning e-portfolios communicate the process and conceptual frameworks of learning and the eventual product, and the made as evidence of that learning in light of progress made, this paper demonstrates that learning-in-action and reflecting-in and-on-action are driven by self-direction. With technology, students bring their learning context to bear with the use of SDL. Students' use of PowerPoint program technology in making their portfolios is systematic and builds on students' competencies as this process guides students' beliefs and actions about their work that is based on theory and concepts in response to a visual culture that is Trinidad and Tobago. Students' self–directed art-making process as a self directed learning, models the process of articulated learning. Communicating about

  11. Learning styles, academic achievement, and mental health problems among medical students in Thailand.

    Science.gov (United States)

    Paiboonsithiwong, Salilthip; Kunanitthaworn, Natchaya; Songtrijuck, Natchaphon; Wongpakaran, Nahathai; Wongpakaran, Tinakon

    2016-01-01

    This study aimed to investigate the prevalence of various learning styles among medical students and their correlations with academic achievement and mental health problems in these students. This study was conducted among 140 first-year medical students of Chiang Mai University, Thailand in 2014. The participants completed the visual-aural-read/write-kinesthetic (VARK) questionnaire, the results of which can be categorized into 4 modes, corresponding to how many of the 4 types are preferred by a respondent. The 10-item Perceived Stress Scale (PSS-10) and the 21-item Outcome Inventory (OI-21) were also used. The participants' demographic data, grade point average (GPA), and scores of all measurements are presented using simple statistics. Correlation and regression analysis were employed to analyze differences in the scores and to determine the associations among them. Sixty percent of the participants were female. The mean age was 18.86±0.74 years old. Quadmodal was found to be the most preferred VARK mode (43.6%). Unimodal, bimodal, and trimodal modes were preferred by 35%, 12.9%, and 18.6% of the participants, respectively. Among the strong unimodal learners, visual, aural, read/write, and kinesthetic preferences were reported by 4.3%, 7.1%, 11.4%, and 12.1% of participants, respectively. No difference was observed in the PSS-10, OI-anxiety, OI-depression, and OI-somatization scores according to the VARK modes, although a significant effect was found for OI-interpersonal (F=2.788, P=0.043). Moreover, neither VARK modes nor VARK types were correlated with GPA. The most preferred VARK learning style among medical students was quadmodal. Learning styles were not associated with GPA or mental health problems, except for interpersonal problems.

  12. Learning styles, academic achievement, and mental health problems among medical students in Thailand

    Directory of Open Access Journals (Sweden)

    Salilthip Paiboonsithiwong

    2016-10-01

    Full Text Available Purpose This study aimed to investigate the prevalence of various learning styles among medical students and their correlations with academic achievement and mental health problems in these students. Methods This study was conducted among 140 first-year medical students of Chiang Mai University, Thailand in 2014. The participants completed the visual-aural-read/write-kinesthetic (VARK questionnaire, the results of which can be categorized into 4 modes, corresponding to how many of the 4 types are preferred by a respondent. The 10-item Perceived Stress Scale (PSS-10 and the 21-item Outcome Inventory (OI-21 were also used. The participants’ demographic data, grade point average (GPA, and scores of all measurements are presented using simple statistics. Correlation and regression analysis were employed to analyze differences in the scores and to determine the associations among them. Results Sixty percent of the participants were female. The mean age was 18.86±0.74 years old. Quadmodal was found to be the most preferred VARK mode (43.6%. Unimodal, bimodal, and trimodal modes were preferred by 35%, 12.9%, and 18.6% of the participants, respectively. Among the strong unimodal learners, visual, aural, read/write, and kinesthetic preferences were reported by 4.3%, 7.1%, 11.4%, and 12.1% of participants, respectively. No difference was observed in the PSS-10, OI-anxiety, OI-depression, and OI-somatization scores according to the VARK modes, although a significant effect was found for OI-interpersonal (F=2.788, P=0.043. Moreover, neither VARK modes nor VARK types were correlated with GPA. Conclusion The most preferred VARK learning style among medical students was quadmodal. Learning styles were not associated with GPA or mental health problems, except for interpersonal problems.

  13. Relating Standardized Visual Perception Measures to Simulator Visual System Performance

    Science.gov (United States)

    Kaiser, Mary K.; Sweet, Barbara T.

    2013-01-01

    Human vision is quantified through the use of standardized clinical vision measurements. These measurements typically include visual acuity (near and far), contrast sensitivity, color vision, stereopsis (a.k.a. stereo acuity), and visual field periphery. Simulator visual system performance is specified in terms such as brightness, contrast, color depth, color gamut, gamma, resolution, and field-of-view. How do these simulator performance characteristics relate to the perceptual experience of the pilot in the simulator? In this paper, visual acuity and contrast sensitivity will be related to simulator visual system resolution, contrast, and dynamic range; similarly, color vision will be related to color depth/color gamut. Finally, we will consider how some characteristics of human vision not typically included in current clinical assessments could be used to better inform simulator requirements (e.g., relating dynamic characteristics of human vision to update rate and other temporal display characteristics).

  14. Problem based learning in acoustics at Aalborg University

    DEFF Research Database (Denmark)

    Hammershøi, Dorte; Ordoñez, Rodrigo Pizarro; Christensen, Flemming

    2010-01-01

    in the project work, or are defining for the candidate's professional profile. This presentation gives an overview of Problem Based Learning organized in groups in the M. Sc. in Acoustics program of Aalborg University. Examples of projects and course activities are presented to illustrate the relation...

  15. Visual Complaints and Eye Problems in Orchestral Musicians.

    Science.gov (United States)

    Beckers, Henny Jm; van Kooten-Noordzij, Marina Aw; de Crom, Ronald Mpc; Schouten, Jan Sag; Webers, Carroll Ab

    2016-09-01

    To study visual complaints and eye diseases among professional and amateur orchestral musicians in the Netherlands. In this observational study, members from professional and amateur symphony or wind orchestras were asked to complete a questionnaire collecting demographic data, musical, medical, and family history, and data on present visual complaints and/or eye diseases. Questions about playing in the orchestra were also asked. Data from 70 professionals and 48 amateurs showed that most musicians needed glasses or contact lenses for playing in the orchestra (61% of the professionals, 63% of the amateurs). A majority (66% of professionals, 71% of amateurs) had visited an ophthalmologist at least once during their lifetime, and 10% of the professionals and 23% of the amateurs were currently under treatment of an ophthalmologist. Visual complaints while playing in the orchestra were quite common and included poor lighting conditions, problems with reading small notes, blurred vision, tired eyes, and itching or burning eyes. Professional musicians especially reported adverse effects of eye complaints encountered in the orchestra for daily life; 35% got tired earlier and 33% felt that they could not adequately perform their tasks in the orchestra. The results show that visual complaints and eye problems probably are quite common among orchestral musicians and therefore warrant further interest and research.

  16. Learning unlearnable problems with perceptrons

    Science.gov (United States)

    Watkin, Timothy L. H.; Rau, Albrecht

    1992-03-01

    We study how well perceptrons learn to solve problems for which there is no perfect answer (the usual case), taking as examples a rule with a threshold, a rule in which the answer is not a monotonic function of the overlap between question and teacher, and a rule with many teachers (a ``hard'' unlearnable problem). In general there is a tendency for first-order transitions, even using spherical perceptrons, as networks compromise between conflicting requirements. Some existing learning schemes fail completely-occasionally even finding the worst possible solution; others are more successful. High-temperature learning seems more satisfactory than zero-temperature algorithms and avoids ``overlearning'' and ``overfitting,'' but care must be taken to avoid ``trapping'' in spurious free-energy minima. For some rules examples alone are not enough to learn from, and some prior information is required.

  17. What students learn in problem-based learning: a process analysis

    NARCIS (Netherlands)

    E.H.J. Yew (Elaine); H.G. Schmidt (Henk)

    2012-01-01

    textabstractThis study aimed to provide an account of how learning takes place in problem-based learning (PBL), and to identify the relationships between the learning-oriented activities of students with their learning outcomes. First, the verbal interactions and computer resources studied by nine

  18. Visual learning alters the spontaneous activity of the resting human brain: an fNIRS study.

    Science.gov (United States)

    Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan

    2014-01-01

    Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning.

  19. Learning Sorting Algorithms through Visualization Construction

    Science.gov (United States)

    Cetin, Ibrahim; Andrews-Larson, Christine

    2016-01-01

    Recent increased interest in computational thinking poses an important question to researchers: What are the best ways to teach fundamental computing concepts to students? Visualization is suggested as one way of supporting student learning. This mixed-method study aimed to (i) examine the effect of instruction in which students constructed…

  20. A process-based approach to characterizing the effect of acute alprazolam challenge on visual paired associate learning and memory in healthy older adults.

    Science.gov (United States)

    Pietrzak, Robert H; Scott, James Cobb; Harel, Brian T; Lim, Yen Ying; Snyder, Peter J; Maruff, Paul

    2012-11-01

    Alprazolam is a benzodiazepine that, when administered acutely, results in impairments in several aspects of cognition, including attention, learning, and memory. However, the profile (i.e., component processes) that underlie alprazolam-related decrements in visual paired associate learning has not been fully explored. In this double-blind, placebo-controlled, randomized cross-over study of healthy older adults, we used a novel, "process-based" computerized measure of visual paired associate learning to examine the effect of a single, acute 1-mg dose of alprazolam on component processes of visual paired associate learning and memory. Acute alprazolam challenge was associated with a large magnitude reduction in visual paired associate learning and memory performance (d = 1.05). Process-based analyses revealed significant increases in distractor, exploratory, between-search, and within-search error types. Analyses of percentages of each error type suggested that, relative to placebo, alprazolam challenge resulted in a decrease in the percentage of exploratory errors and an increase in the percentage of distractor errors, both of which reflect memory processes. Results of this study suggest that acute alprazolam challenge decreases visual paired associate learning and memory performance by reducing the strength of the association between pattern and location, which may reflect a general breakdown in memory consolidation, with less evidence of reductions in executive processes (e.g., working memory) that facilitate visual paired associate learning and memory. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Interactions between attention, context and learning in primary visual cortex.

    Science.gov (United States)

    Gilbert, C; Ito, M; Kapadia, M; Westheimer, G

    2000-01-01

    Attention in early visual processing engages the higher order, context dependent properties of neurons. Even at the earliest stages of visual cortical processing neurons play a role in intermediate level vision - contour integration and surface segmentation. The contextual influences mediating this process may be derived from long range connections within primary visual cortex (V1). These influences are subject to perceptual learning, and are strongly modulated by visuospatial attention, which is itself a learning dependent process. The attentional influences may involve interactions between feedback and horizontal connections in V1. V1 is therefore a dynamic and active processor, subject to top-down influences.

  2. The process of problem-based learning: what works and why.

    Science.gov (United States)

    Schmidt, Henk G; Rotgans, Jerome I; Yew, Elaine H J

    2011-08-01

    In this review, we portray the process of problem-based learning (PBL) as a cognitive endeavour whereby the learner constructs mental models relevant to problems. Two hypotheses are proposed to explain how learning is driven in PBL; an activation-elaboration hypothesis and a situational interest hypothesis. Research relevant to these hypotheses is discussed. In addition, research studying the effects of various support strategies used in PBL is reviewed. Finally, we summarise a number of recent studies in which a new 'micro-analytical' methodology was used to trace the process of PBL in the natural classroom setting. We conclude that there is considerable support for the idea that PBL works because it encourages the activation of prior knowledge in the small-group setting and provides opportunities for elaboration on that knowledge. These activities facilitate the comprehension of new information related to the problem and enhance its long-term memorability. In addition, there is evidence that problems arouse situational interest that drives learning. Flexible scaffolding provided by cognitively and socially congruent tutors also seems to be reasonably effective, as opposed to 'hard' scaffolding represented by, for instance, worksheets or questions added to problems. Small-group work protects against dropout and encourages students to study regularly. Initially, students do not study much beyond the learning issues generated; the development of personal agency in self-study needs time to develop. The extent of learning in PBL results from neither group collaboration only (the social constructivist point of view) nor individual knowledge acquisition only; both activities contribute equally to learning in PBL. © Blackwell Publishing Ltd 2011.

  3. A parametric visualization software for the assignment problem

    Directory of Open Access Journals (Sweden)

    Papamanthou Charalampos

    2005-01-01

    Full Text Available In this paper we present a parametric visualization software used to assist the teaching of the Network Primal Simplex Algorithm for the assignment problem (AP. The assignment problem is a special case of the balanced transportation problem. The main functions of the algorithm and design techniques are also presented. Through this process, we aim to underline the importance and necessity of using such educational methods in order to improve the teaching of Computer Algorithms.

  4. Age-related changes in contextual associative learning.

    Science.gov (United States)

    Luu, Trinh T; Pirogovsky, Eva; Gilbert, Paul E

    2008-01-01

    The hippocampus plays a critical role in processing contextual information. Although age-related changes in the hippocampus are well documented in humans, nonhuman primates, and rodents, few studies have examined contextual learning deficits in old rats. The present study investigated age-related differences in contextual associative learning in young (6 mo) and old (24 mo) rats using olfactory stimuli. Stimuli consisted of common odors mixed in sand and placed in clear plastic cups. Testing was conducted in two boxes that represented two different contexts (Context 1 and Context 2). The contexts varied based on environmental features of the box such as color (black vs. white), visual cues on the walls of the box, and flooring texture. Each rat was simultaneously presented with two cups, one filled with Odor A and one filled with Odor B in each context. In Context 1, the rat received a food reward for digging in the cup containing Odor A, but did not receive a food reward for digging in the cup containing Odor B. In Context 2, the rat was rewarded for digging in the cup containing Odor B, but did receive a reward for digging in the cup containing Odor A. Therefore, the rat learned to associate Context 1 with Odor A and Context 2 with Odor B. The rat was tested for eight days using the same odor problem throughout all days of testing. The results showed no significant difference between young and old rats on the first two days of testing; however, young rats significantly outperformed old rats on Day 3. Young rats continued to maintain superior performance compared to old rats on Days 4-8. The results suggest that aging results in functional impairments in brain regions that support memory for associations between specific cues and their respective context.

  5. Differential Effects of Music and Video Gaming During Breaks on Auditory and Visual Learning.

    Science.gov (United States)

    Liu, Shuyan; Kuschpel, Maxim S; Schad, Daniel J; Heinz, Andreas; Rapp, Michael A

    2015-11-01

    The interruption of learning processes by breaks filled with diverse activities is common in everyday life. This study investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on auditory versus visual memory performance. Young adults were exposed to breaks involving (a) open eyes resting, (b) listening to music, and (c) playing a video game, immediately after memorizing auditory versus visual stimuli. To assess learning performance, words were recalled directly after the break (an 8:30 minute delay) and were recalled and recognized again after 7 days. Based on linear mixed-effects modeling, it was found that playing the Angry Birds video game during a short learning break impaired long-term retrieval in auditory learning but enhanced long-term retrieval in visual learning compared with the music and rest conditions. These differential effects of video games on visual versus auditory learning suggest specific interference of common break activities on learning.

  6. Disciplinary Knots and Learning Problems in Waves Physics

    Science.gov (United States)

    Di Renzone, Simone; Frati, Serena; Montalbano, Vera

    An investigation on student understanding of waves is performed during an optional laboratory realized in informal extracurricular way with few, interested and talented pupils. The background and smart intuitions of students rendered the learning path very dynamic and ambitious. The activities started by investigating the basic properties of waves by means of a Shive wave machine. In order to make quantitative observed phenomena, the students used a camcorder and series of measures were obtained from the captured images. By checking the resulting data, it arose some learning difficulties especially in activities related to the laboratory. This experience was the starting point for a further analysis on disciplinary knots and learning problems in the physics of waves in order to elaborate a teaching-learning proposal on this topic.

  7. Beyond Problem-Based Learning: Using Dynamic PBL in Chemistry

    Science.gov (United States)

    Overton, Tina L.; Randles, Christopher A.

    2015-01-01

    This paper describes the development and implementation of a novel pedagogy, dynamic problem-based learning. The pedagogy utilises real-world problems that evolve throughout the problem-based learning activity and provide students with choice and different data sets. This new dynamic problem-based learning approach was utilised to teach…

  8. Independent Interactive Inquiry-Based Learning Modules Using Audio-Visual Instruction In Statistics

    OpenAIRE

    McDaniel, Scott N.; Green, Lisa

    2012-01-01

    Simulations can make complex ideas easier for students to visualize and understand. It has been shown that guidance in the use of these simulations enhances students’ learning. This paper describes the implementation and evaluation of the Independent Interactive Inquiry-based (I3) Learning Modules, which use existing open-source Java applets, combined with audio-visual instruction. Students are guided to discover and visualize important concepts in post-calculus and algebra-based courses in p...

  9. Common visual problems in children with disability.

    Science.gov (United States)

    Salt, Alison; Sargent, Jenefer

    2014-12-01

    Children with disability are at a substantially higher risk of visual impairment (VI) (10.5% compared with 0.16%) but also of ocular disorders of all types, including refractive errors and strabismus. The aetiology of VI in children with disability reflects that of the general population and includes cerebral VI, optic atrophy, as well as primary visual disorders such as retinal dystrophies and structural eye anomalies. VI and other potentially correctable ocular disorders may not be recognised without careful assessment and are frequently unidentified in children with complex needs. Although assessment may be more challenging than in other children, identifying these potential additional barriers to learning and development may be critical. There is a need to develop clearer guidelines, referral pathways and closer working between all professionals involved in the care of children with disability and visual disorders to improve our focus on the assessment of vision and outcomes for children with disability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Supervised Learning for Visual Pattern Classification

    Science.gov (United States)

    Zheng, Nanning; Xue, Jianru

    This chapter presents an overview of the topics and major ideas of supervised learning for visual pattern classification. Two prevalent algorithms, i.e., the support vector machine (SVM) and the boosting algorithm, are briefly introduced. SVMs and boosting algorithms are two hot topics of recent research in supervised learning. SVMs improve the generalization of the learning machine by implementing the rule of structural risk minimization (SRM). It exhibits good generalization even when little training data are available for machine training. The boosting algorithm can boost a weak classifier to a strong classifier by means of the so-called classifier combination. This algorithm provides a general way for producing a classifier with high generalization capability from a great number of weak classifiers.

  11. Age-Related Eye Diseases and Visual Impairment Among U.S. Adults

    Science.gov (United States)

    Chou, Chiu-Fang; Cotch, Mary Frances; Vitale, Susan; Zhang, Xinzhi; Klein, Ronald; Friedman, David S.; Klein, Barbara E.K.; Saaddine, Jinan B.

    2014-01-01

    Background Visual impairment is a common health-related disability in the U.S. The association between clinical measurements of age-related eye diseases and visual impairment in data from a national survey has not been reported. Purpose To examine common eye conditions and other correlates associated with visual impairment in the U.S. Methods Data from the 2005–2008 National Health and Nutrition Examination Survey of 5222 Americans aged ≥40 years were analyzed in 2012 for visual impairment (presenting distance visual acuity worse than 20/40 in the better-seeing eye), and visual impairment not due to refractive error (distance visual acuity worse than 20/40 after refraction). Diabetic retinopathy (DR) and age-related macular degeneration (AMD) were assessed from retinal fundus images; glaucoma was assessed from two successive frequency-doubling tests and a cup-to-disc ratio measurement. Results Prevalence of visual impairment and of visual impairment not due to refractive error was 7.5% (95% CI=6.9%, 8.1%) and 2.0% (1.7%, 2.3%), respectively. The prevalence of visual impairment not due to refractive error was significantly higher among people with AMD (2.2%) compared to those without AMD (0.8%), or with DR (3.5%) compared to those without DR (1.2%). Independent predictive factors of visual impairment not due to refractive error were AMD (OR=4.52, 95% CI=2.50, 8.17); increasing age (OR=1.09 per year, 95% CI=1.06, 1.13); and less than a high school education (OR=2.99, 95% CI=1.18, 7.55). Conclusions Visual impairment is a public health problem in the U.S. Visual impairment in two thirds of adults could be eliminated with refractive correction. Screening of the older population may identify adults at increased risk of visual impairment due to eye diseases. PMID:23790986

  12. Inverse Problems in Geodynamics Using Machine Learning Algorithms

    Science.gov (United States)

    Shahnas, M. H.; Yuen, D. A.; Pysklywec, R. N.

    2018-01-01

    During the past few decades numerical studies have been widely employed to explore the style of circulation and mixing in the mantle of Earth and other planets. However, in geodynamical studies there are many properties from mineral physics, geochemistry, and petrology in these numerical models. Machine learning, as a computational statistic-related technique and a subfield of artificial intelligence, has rapidly emerged recently in many fields of sciences and engineering. We focus here on the application of supervised machine learning (SML) algorithms in predictions of mantle flow processes. Specifically, we emphasize on estimating mantle properties by employing machine learning techniques in solving an inverse problem. Using snapshots of numerical convection models as training samples, we enable machine learning models to determine the magnitude of the spin transition-induced density anomalies that can cause flow stagnation at midmantle depths. Employing support vector machine algorithms, we show that SML techniques can successfully predict the magnitude of mantle density anomalies and can also be used in characterizing mantle flow patterns. The technique can be extended to more complex geodynamic problems in mantle dynamics by employing deep learning algorithms for putting constraints on properties such as viscosity, elastic parameters, and the nature of thermal and chemical anomalies.

  13. Reinforcement learning for dpm of embedded visual sensor nodes

    International Nuclear Information System (INIS)

    Khani, U.; Sadhayo, I. H.

    2014-01-01

    This paper proposes a RL (Reinforcement Learning) based DPM (Dynamic Power Management) technique to learn time out policies during a visual sensor node's operation which has multiple power/performance states. As opposed to the widely used static time out policies, our proposed DPM policy which is also referred to as OLTP (Online Learning of Time out Policies), learns to dynamically change the time out decisions in the different node states including the non-operational states. The selection of time out values in different power/performance states of a visual sensing platform is based on the workload estimates derived from a ML-ANN (Multi-Layer Artificial Neural Network) and an objective function given by weighted performance and power parameters. The DPM approach is also able to dynamically adjust the power-performance weights online to satisfy a given constraint of either power consumption or performance. Results show that the proposed learning algorithm explores the power-performance tradeoff with non-stationary workload and outperforms other DPM policies. It also performs the online adjustment of the tradeoff parameters in order to meet a user-specified constraint. (author)

  14. EFFECT OF PROBLEM BASED LEARNING AND MODEL CRITICAL THINKING ABILITY TO PROBLEM SOLVING SKILLS

    Directory of Open Access Journals (Sweden)

    Unita S. Zuliani Nasution

    2016-12-01

    Full Text Available The purposes of this research were to analyze the different between physic resolving problem ability by using problem based learning model and direct instruction model, the different of physic resolving problem ability between the students that have critical thinking ability upper the average and the students that have critical thinking ability under the average, and the interaction of problem based learning model toward critical thinking ability and students’ physic resolving problem ability. This research was quasy experimental research that use critical thinking ability tests and physic resolving problem ability tests as the instruments. Result of the research showed that the students’ physic resolving problem ability by using problem based learning model was better than by using direct instruction model, students’ physic resolving problem ability and critical thinking ability upper the average showed better different and result than students’ critical thinking ability under the average, besides there was an interaction between problem based learning model and critical thinking ability in improving students’ physic resolving problem ability.

  15. The relationships between problem characteristics, achievement-related behaviors, and academic achievement in problem-based learning

    NARCIS (Netherlands)

    N. Sockalingam (Nachamma); J.I. Rotgans (Jerome); H.G. Schmidt (Henk)

    2011-01-01

    textabstractThis study investigated the influence of five problem characteristics on students' achievement-related classroom behaviors and academic achievement. Data from 5,949 polytechnic students in PBL curricula across 170 courses were analyzed by means of path analysis. The five problem

  16. Visual artificial grammar learning in dyslexia : A meta-analysis

    NARCIS (Netherlands)

    van Witteloostuijn, Merel; Boersma, Paul; Wijnen, Frank; Rispens, Judith

    2017-01-01

    Background Literacy impairments in dyslexia have been hypothesized to be (partly) due to an implicit learning deficit. However, studies of implicit visual artificial grammar learning (AGL) have often yielded null results. Aims The aim of this study is to weigh the evidence collected thus far by

  17. Visual Attention for Solving Multiple-Choice Science Problem: An Eye-Tracking Analysis

    Science.gov (United States)

    Tsai, Meng-Jung; Hou, Huei-Tse; Lai, Meng-Lung; Liu, Wan-Yi; Yang, Fang-Ying

    2012-01-01

    This study employed an eye-tracking technique to examine students' visual attention when solving a multiple-choice science problem. Six university students participated in a problem-solving task to predict occurrences of landslide hazards from four images representing four combinations of four factors. Participants' responses and visual attention…

  18. Solution to reinforcement learning problems with artificial potential field

    Institute of Scientific and Technical Information of China (English)

    XIE Li-juan; XIE Guang-rong; CHEN Huan-wen; LI Xiao-li

    2008-01-01

    A novel method was designed to solve reinforcement learning problems with artificial potential field. Firstly a reinforcement learning problem was transferred to a path planning problem by using artificial potential field(APF), which was a very appropriate method to model a reinforcement learning problem. Secondly, a new APF algorithm was proposed to overcome the local minimum problem in the potential field methods with a virtual water-flow concept. The performance of this new method was tested by a gridworld problem named as key and door maze. The experimental results show that within 45 trials, good and deterministic policies are found in almost all simulations. In comparison with WIERING's HQ-learning system which needs 20 000 trials for stable solution, the proposed new method can obtain optimal and stable policy far more quickly than HQ-learning. Therefore, the new method is simple and effective to give an optimal solution to the reinforcement learning problem.

  19. The philosophical aspect of learning inverse problems of mathematical physics

    Directory of Open Access Journals (Sweden)

    Виктор Семенович Корнилов

    2018-12-01

    Full Text Available The article describes specific questions student learning inverse problems of mathematical physics. When teaching inverse problems of mathematical physics to the understanding of the students brought the information that the inverse problems of mathematical physics with a philosophical point of view are the problems of determining the unknown causes of known consequences, and the search for their solutions have great scientific and educational potential. The reasons are specified in the form of unknown coefficients, right side, initial conditions of the mathematical model of inverse problems, and as a consequence are functionals of the solution of this mathematical model. In the process of learning the inverse problems of mathematical physics focuses on the philosophical aspects of the phenomenon of information and identify cause-effect relations. It is emphasized that in the process of logical analysis applied and humanitarian character, students realize that information is always related to the fundamental philosophical questions that the analysis applied and the humanitarian aspects of the obtained results the inverse problem of mathematical physics allows students to make appropriate inferences about the studied process and to, ultimately, new information, to study its properties and understand its value. Philosophical understanding of the notion of information opens up to students a new methodological opportunities to comprehend the world and helps us to reinterpret existing science and philosophy of the theory related to the disclosure of the interrelationship of all phenomena of reality.

  20. Neurocognitive Problems in Children and Adolescents With Depression Using the CHC Theory and the WJ-III.

    Science.gov (United States)

    Basnet, Pravesh; Noggle, Chad A; Dean, Raymond S

    2015-01-01

    Depression has been commonly associated with both subjective complaints and objectively measured problems in cognition. Most commonly discussed in relation to the adult population, growing evidence has supported the idea that children and adolescents experience cognitive problems in relation to depression. The purpose of this study was to further examine the negative influence of depression on the cognitive functioning of children and adolescents. Additionally, the present study evaluated the sensitivity of the Woodcock-Johnson III Test of Cognitive Abilities (WJ-III-COG) and, in turn, the Cattell-Horn-Carroll (CHC) theory in measuring cognitive problems related to depression in children and adolescents. Participants included 420 children and adolescents aged 8 to 18 years old (M = 13.09, SD = 2.95) with a clinical diagnosis of depression. Comparisons were made against the normative mean. All participants completed 11 subtests of the WJ-III-COG including Visual-Auditory Learning, Spatial Relations, Sound Blending, Concept Formations, Visual Matching, Numbers Reversed, Auditory-Working Memory, Picture Recognition, Analysis Synthesis, Decision Speed, and Memory for Words. Children and adolescents with depression demonstrated significantly lower performance on subtests related to learning and memory (long-term retrieval), attentional capacity, working memory, reasoning, and processing speed. No problems were noted on subtests related to visual-spatial thinking and auditory processing. Findings suggested sensitivity of the WJ-III-COG and CHC theory in identifying cognitive problems associated with depression in children and adolescents.

  1. Correlation Filter Learning Toward Peak Strength for Visual Tracking.

    Science.gov (United States)

    Sui, Yao; Wang, Guanghui; Zhang, Li

    2018-04-01

    This paper presents a novel visual tracking approach to correlation filter learning toward peak strength of correlation response. Previous methods leverage all features of the target and the immediate background to learn a correlation filter. Some features, however, may be distractive to tracking, like those from occlusion and local deformation, resulting in unstable tracking performance. This paper aims at solving this issue and proposes a novel algorithm to learn the correlation filter. The proposed approach, by imposing an elastic net constraint on the filter, can adaptively eliminate those distractive features in the correlation filtering. A new peak strength metric is proposed to measure the discriminative capability of the learned correlation filter. It is demonstrated that the proposed approach effectively strengthens the peak of the correlation response, leading to more discriminative performance than previous methods. Extensive experiments on a challenging visual tracking benchmark demonstrate that the proposed tracker outperforms most state-of-the-art methods.

  2. Investigating Verbal and Visual Auditory Learning After Conformal Radiation Therapy for Childhood Ependymoma

    International Nuclear Information System (INIS)

    Di Pinto, Marcos; Conklin, Heather M.; Li Chenghong; Xiong Xiaoping; Merchant, Thomas E.

    2010-01-01

    Purpose: The primary objective of this study was to determine whether children with localized ependymoma experience a decline in verbal or visual-auditory learning after conformal radiation therapy (CRT). The secondary objective was to investigate the impact of age and select clinical factors on learning before and after treatment. Methods and Materials: Learning in a sample of 71 patients with localized ependymoma was assessed with the California Verbal Learning Test (CVLT-C) and the Visual-Auditory Learning Test (VAL). Learning measures were administered before CRT, at 6 months, and then yearly for a total of 5 years. Results: There was no significant decline on measures of verbal or visual-auditory learning after CRT; however, younger age, more surgeries, and cerebrospinal fluid shunting did predict lower scores at baseline. There were significant longitudinal effects (improved learning scores after treatment) among older children on the CVLT-C and children that did not receive pre-CRT chemotherapy on the VAL. Conclusion: There was no evidence of global decline in learning after CRT in children with localized ependymoma. Several important implications from the findings include the following: (1) identification of and differentiation among variables with transient vs. long-term effects on learning, (2) demonstration that children treated with chemotherapy before CRT had greater risk of adverse visual-auditory learning performance, and (3) establishment of baseline and serial assessment as critical in ascertaining necessary sensitivity and specificity for the detection of modest effects.

  3. Three visual techniques to enhance interprofessional learning.

    Science.gov (United States)

    Parsell, G; Gibbs, T; Bligh, J

    1998-07-01

    Many changes in the delivery of healthcare in the UK have highlighted the need for healthcare professionals to learn to work together as teams for the benefit of patients. Whatever the profession or level, whether for postgraduate education and training, continuing professional development, or for undergraduates, learners should have an opportunity to learn about and with, other healthcare practitioners in a stimulating and exciting way. Learning to understand how people think, feel, and react, and the parts they play at work, both as professionals and individuals, can only be achieved through sensitive discussion and exchange of views. Teaching and learning methods must provide opportunities for this to happen. This paper describes three small-group teaching techniques which encourage a high level of learner collaboration and team-working. Learning content is focused on real-life health-care issues and strong visual images are used to stimulate lively discussion and debate. Each description includes the learning objectives of each exercise, basic equipment and resources, and learning outcomes.

  4. Design of a Braille Learning Application for Visually Impaired Students in Bangladesh.

    Science.gov (United States)

    Nahar, Lutfun; Jaafar, Azizah; Ahamed, Eistiak; Kaish, A B M A

    2015-01-01

    Visually impaired students (VIS) are unable to get visual information, which has made their learning process complicated. This paper discusses the overall situation of VIS in Bangladesh and identifies major challenges that they are facing in getting education. The Braille system is followed to educate blind students in Bangladesh. However, lack of Braille based educational resources and technological solutions have made the learning process lengthy and complicated for VIS. As a developing country, Bangladesh cannot afford for the costly Braille related technological tools for VIS. Therefore, a mobile phone based Braille application, "mBRAILLE", for Android platform is designed to provide an easy Braille learning technology for VIS in Bangladesh. The proposed design is evaluated by experts in assistive technology for students with disabilities, and advanced learners of Braille. The application aims to provide a Bangla and English Braille learning platform for VIS. In this paper, we depict iterative (participatory) design of the application along with a preliminary evaluation with 5 blind subjects, and 1 sighted and 2 blind experts. The results show that the design scored an overall satisfaction level of 4.53 out of 5 by all respondents, indicating that our design is ready for the next step of development.

  5. Redefining "Learning" in Statistical Learning: What Does an Online Measure Reveal About the Assimilation of Visual Regularities?

    Science.gov (United States)

    Siegelman, Noam; Bogaerts, Louisa; Kronenfeld, Ofer; Frost, Ram

    2017-10-07

    From a theoretical perspective, most discussions of statistical learning (SL) have focused on the possible "statistical" properties that are the object of learning. Much less attention has been given to defining what "learning" is in the context of "statistical learning." One major difficulty is that SL research has been monitoring participants' performance in laboratory settings with a strikingly narrow set of tasks, where learning is typically assessed offline, through a set of two-alternative-forced-choice questions, which follow a brief visual or auditory familiarization stream. Is that all there is to characterizing SL abilities? Here we adopt a novel perspective for investigating the processing of regularities in the visual modality. By tracking online performance in a self-paced SL paradigm, we focus on the trajectory of learning. In a set of three experiments we show that this paradigm provides a reliable and valid signature of SL performance, and it offers important insights for understanding how statistical regularities are perceived and assimilated in the visual modality. This demonstrates the promise of integrating different operational measures to our theory of SL. © 2017 Cognitive Science Society, Inc.

  6. Concrete and abstract visualizations in history learning tasks

    NARCIS (Netherlands)

    Prangsma, Maaike; Van Boxtel, Carla; Kanselaar, Gellof; Kirschner, Paul A.

    2010-01-01

    Prangsma, M. E., Van Boxtel, C. A. M., Kanselaar, G., & Kirschner, P. A. (2009). Concrete and abstract visualizations in history learning tasks. British Journal of Educational Psychology, 79, 371-387.

  7. Supporting visual quality assessment with machine learning

    NARCIS (Netherlands)

    Gastaldo, P.; Zunino, R.; Redi, J.

    2013-01-01

    Objective metrics for visual quality assessment often base their reliability on the explicit modeling of the highly non-linear behavior of human perception; as a result, they may be complex and computationally expensive. Conversely, machine learning (ML) paradigms allow to tackle the quality

  8. Deep and surface learning in problem-based learning: a review of the literature

    NARCIS (Netherlands)

    D.H.J.M. Dolmans (Diana); S.M.M. Loyens (Sofie); Marcq, H. (Hélène); D. Gijbels (David)

    2016-01-01

    textabstractIn problem-based learning (PBL), implemented worldwide, students learn by discussing professionally relevant problems enhancing application and integration of knowledge, which is assumed to encourage students towards a deep learning approach in which students are intrinsically interested

  9. Deep and surface learning in problem-based learning: a review of the literature

    NARCIS (Netherlands)

    D.H.J.M. Dolmans (Diana); S.M.M. Loyens (Sofie); H. Marcq (Hélène); D. Gijbels (David)

    2015-01-01

    textabstractIn problem-based learning (PBL), implemented worldwide, students learn by discussing professionally relevant problems enhancing application and integration of knowledge, which is assumed to encourage students towards a deep learning approach in which students are intrinsically interested

  10. New Ideas on the Design of the Web-Based Learning System Oriented to Problem Solving from the Perspective of Question Chain and Learning Community

    Science.gov (United States)

    Zhang, Yin; Chu, Samuel K. W.

    2016-01-01

    In recent years, a number of models concerning problem solving systems have been put forward. However, many of them stress on technology and neglect the research of problem solving itself, especially the learning mechanism related to problem solving. In this paper, we analyze the learning mechanism of problem solving, and propose that when…

  11. Learning representation hierarchies by sharing visual features: a computational investigation of Persian character recognition with unsupervised deep learning.

    Science.gov (United States)

    Sadeghi, Zahra; Testolin, Alberto

    2017-08-01

    In humans, efficient recognition of written symbols is thought to rely on a hierarchical processing system, where simple features are progressively combined into more abstract, high-level representations. Here, we present a computational model of Persian character recognition based on deep belief networks, where increasingly more complex visual features emerge in a completely unsupervised manner by fitting a hierarchical generative model to the sensory data. Crucially, high-level internal representations emerging from unsupervised deep learning can be easily read out by a linear classifier, achieving state-of-the-art recognition accuracy. Furthermore, we tested the hypothesis that handwritten digits and letters share many common visual features: A generative model that captures the statistical structure of the letters distribution should therefore also support the recognition of written digits. To this aim, deep networks trained on Persian letters were used to build high-level representations of Persian digits, which were indeed read out with high accuracy. Our simulations show that complex visual features, such as those mediating the identification of Persian symbols, can emerge from unsupervised learning in multilayered neural networks and can support knowledge transfer across related domains.

  12. Learning Convolutional Text Representations for Visual Question Answering

    OpenAIRE

    Wang, Zhengyang; Ji, Shuiwang

    2017-01-01

    Visual question answering is a recently proposed artificial intelligence task that requires a deep understanding of both images and texts. In deep learning, images are typically modeled through convolutional neural networks, and texts are typically modeled through recurrent neural networks. While the requirement for modeling images is similar to traditional computer vision tasks, such as object recognition and image classification, visual question answering raises a different need for textual...

  13. Enhanced visual statistical learning in adults with autism

    Science.gov (United States)

    Roser, Matthew E.; Aslin, Richard N.; McKenzie, Rebecca; Zahra, Daniel; Fiser, József

    2014-01-01

    Individuals with autism spectrum disorder (ASD) are often characterized as having social engagement and language deficiencies, but a sparing of visuo-spatial processing and short-term memory, with some evidence of supra-normal levels of performance in these domains. The present study expanded on this evidence by investigating the observational learning of visuospatial concepts from patterns of covariation across multiple exemplars. Child and adult participants with ASD, and age-matched control participants, viewed multi-shape arrays composed from a random combination of pairs of shapes that were each positioned in a fixed spatial arrangement. After this passive exposure phase, a post-test revealed that all participant groups could discriminate pairs of shapes with high covariation from randomly paired shapes with low covariation. Moreover, learning these shape-pairs with high covariation was superior in adults with ASD than in age-matched controls, while performance in children with ASD was no different than controls. These results extend previous observations of visuospatial enhancement in ASD into the domain of learning, and suggest that enhanced visual statistical learning may have arisen from a sustained bias to attend to local details in complex arrays of visual features. PMID:25151115

  14. Using Problem-Based Learning in Accounting

    Science.gov (United States)

    Hansen, James D.

    2006-01-01

    In this article, the author describes the process of writing a problem-based learning (PBL) problem and shows how a typical end-of-chapter accounting problem can be converted to a PBL problem. PBL uses complex, real-world problems to motivate students to identify and research the concepts and principles they need to know to solve these problems.…

  15. Effects of problem-based learning vs. traditional lecture on Korean nursing students' critical thinking, problem-solving, and self-directed learning.

    Science.gov (United States)

    Choi, Eunyoung; Lindquist, Ruth; Song, Yeoungsuk

    2014-01-01

    Problem-based learning (PBL) is a method widely used in nursing education to develop students' critical thinking skills to solve practice problems independently. Although PBL has been used in nursing education in Korea for nearly a decade, few studies have examined its effects on Korean nursing students' learning outcomes, and few Korean studies have examined relationships among these outcomes. The objectives of this study are to examine outcome abilities including critical thinking, problem-solving, and self-directed learning of nursing students receiving PBL vs. traditional lecture, and to examine correlations among these outcome abilities. A quasi-experimental non-equivalent group pretest-posttest design was used. First-year nursing students (N=90) were recruited from two different junior colleges in two cities (GY and GJ) in South Korea. In two selected educational programs, one used traditional lecture methods, while the other used PBL methods. Standardized self-administered questionnaires of critical thinking, problem-solving, and self-directed learning abilities were administered before and at 16weeks (after instruction). Learning outcomes were significantly positively correlated, however outcomes were not statistically different between groups. Students in the PBL group improved across all abilities measured, while student scores in the traditional lecture group decreased in problem-solving and self-directed learning. Critical thinking was positively associated with problem-solving and self-directed learning (r=.71, and r=.50, respectively, plearning (r=.75, pLearning outcomes of PBL were not significantly different from traditional lecture in this small underpowered study, despite positive trends. Larger studies are recommended to study effects of PBL on critical student abilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Night-Time Vehicle Detection Algorithm Based on Visual Saliency and Deep Learning

    Directory of Open Access Journals (Sweden)

    Yingfeng Cai

    2016-01-01

    Full Text Available Night vision systems get more and more attention in the field of automotive active safety field. In this area, a number of researchers have proposed far-infrared sensor based night-time vehicle detection algorithm. However, existing algorithms have low performance in some indicators such as the detection rate and processing time. To solve this problem, we propose a far-infrared image vehicle detection algorithm based on visual saliency and deep learning. Firstly, most of the nonvehicle pixels will be removed with visual saliency computation. Then, vehicle candidate will be generated by using prior information such as camera parameters and vehicle size. Finally, classifier trained with deep belief networks will be applied to verify the candidates generated in last step. The proposed algorithm is tested in around 6000 images and achieves detection rate of 92.3% and processing time of 25 Hz which is better than existing methods.

  17. The Impact of Cultural Dimensions on Islamic Students’ Attitude Towards Problem-Based Learning

    Directory of Open Access Journals (Sweden)

    Esti Zaduqisti

    2016-06-01

    Full Text Available The current study aims to examine the impact of cultural dimensions (i.e., collectivism, power distance, uncertainty avoidance, and masculinity on students’ attitude towards problem-based learning. The design of the current study was a correlational survey, wherein participants were recruited by means of a convenient sampling. Inspection of a multiple regression analysis (N = 549 revealed that collectivism and masculinity positively corresponded with the attitudes. In particular, we found that that the higher the level of collectivism and masculinity, the more students supported the implementation of problem-based learning. In contrast, uncertainty avoidance was negatively related to the attitude in such a way that the higher this cultural dimension, the less students supported problem-based learning. Power distance was the only predictor that did not significantly predict students’ attitude towards problem-based learning. These findings overall suggest the importance of taking into account the characteristics of norms and values people hold within a country that might contribute to the success, feasibility, and  suitability of problem-based learning. Theoretical implications and study limitations of the current findings are discussed, as are practical strategies highlighting on how to deal with cultural potentials and pitfalls in an attempt to promote problem-based learning.

  18. Psychological Problems of Children with Learning Difficulties.

    Science.gov (United States)

    Shaughnessy, Michael F.; Scott, Patricia Carol

    The paper presents tips for parents of children with learning problems. It describes the emotional side effects of low achievement which may include low self-esteem, clinical depression, "learned helplessness," suicidal ideation, acting out behavior, low frustration tolerance, guilt feelings, interpersonal problems, withdrawal, running away,…

  19. Socio-cognitive profiles for visual learning in young and older adults

    Directory of Open Access Journals (Sweden)

    Julie eChristian

    2015-06-01

    Full Text Available It is common wisdom that practice makes perfect; but why do some adults learn better than others? Here, we investigate individuals’ cognitive and social profiles to test which variables account for variability in learning ability across the lifespan. In particular, we focused on visual learning using tasks that test the ability to inhibit distractors and select task-relevant features. We tested the ability of young and older adults to improve through training in the discrimination of visual global forms embedded in a cluttered background. Further, we used a battery of cognitive tasks and psycho-social measures to examine which of these variables predict training-induced improvement in perceptual tasks and may account for individual variability in learning ability. Using partial least squares regression modelling, we show that visual learning is influenced by cognitive (i.e. cognitive inhibition, attention and social (strategic and deep learning factors rather than an individual’s age alone. Further, our results show that independent of age, strong learners rely on cognitive factors such as attention, while weaker learners use more general cognitive strategies. Our findings suggest an important role for higher-cognitive circuits involving executive functions that contribute to our ability to improve in perceptual tasks after training across the lifespan.

  20. Tracing Trajectories of Audio-Visual Learning in the Infant Brain

    Science.gov (United States)

    Kersey, Alyssa J.; Emberson, Lauren L.

    2017-01-01

    Although infants begin learning about their environment before they are born, little is known about how the infant brain changes during learning. Here, we take the initial steps in documenting how the neural responses in the brain change as infants learn to associate audio and visual stimuli. Using functional near-infrared spectroscopy (fNRIS) to…

  1. Visual Access in Interpreter-Mediated Learning Situations for Deaf and Hard-of-Hearing High School Students Where an Artifact Is in Use

    Science.gov (United States)

    Thomassen, Gøril

    2016-01-01

    This article highlights interpreter-mediated learning situations for deaf high school students where such mediated artifacts as technical machines, models, and computer graphics are used by the teacher to illustrate his or her teaching. In these situations, the teacher’s situated gestures and utterances, and the artifacts will contribute independent pieces of information. However, the deaf student can only have his or her visual attention focused on one source at a time. The problem to be addressed is how the interpreter coordinates the mediation when it comes to deaf students’ visual orientation. The presented discourse analysis is based on authentic video recordings from inclusive learning situations in Norway. The theoretical framework consists of concepts of role, footing, and face-work (Goffman, E. (1959). The presentation of self in everyday life. London, UK: Penguin Books). The findings point out dialogical impediments to visual access in interpreter-mediated learning situations, and the article discusses the roles and responsibilities of teachers and educational interpreters. PMID:26681267

  2. Learning to associate orientation with color in early visual areas by associative decoded fMRI neurofeedback

    Science.gov (United States)

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-01-01

    Summary Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded functional magnetic resonance imaging (fMRI) neurofeedback, termed “DecNef” [9], we tested whether associative learning of color and orientation can be created in early visual areas. During three days' training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive “red” significantly more frequently than “green” in an achromatic vertical grating. This effect was also observed 3 to 5 months after the training. These results suggest that long-term associative learning of the two different visual features such as color and orientation was created most likely in early visual areas. This newly extended technique that induces associative learning is called “A(ssociative)-DecNef” and may be used as an important tool for understanding and modifying brain functions, since associations are fundamental and ubiquitous functions in the brain. PMID:27374335

  3. Learning to Associate Orientation with Color in Early Visual Areas by Associative Decoded fMRI Neurofeedback.

    Science.gov (United States)

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-07-25

    Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded fMRI neurofeedback termed "DecNef" [9], we tested whether associative learning of orientation and color can be created in early visual areas. During 3 days of training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive "red" significantly more frequently than "green" in an achromatic vertical grating. This effect was also observed 3-5 months after the training. These results suggest that long-term associative learning of two different visual features such as orientation and color was created, most likely in early visual areas. This newly extended technique that induces associative learning is called "A-DecNef," and it may be used as an important tool for understanding and modifying brain functions because associations are fundamental and ubiquitous functions in the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Adaptive learning in a compartmental model of visual cortex—how feedback enables stable category learning and refinement

    Science.gov (United States)

    Layher, Georg; Schrodt, Fabian; Butz, Martin V.; Neumann, Heiko

    2014-01-01

    The categorization of real world objects is often reflected in the similarity of their visual appearances. Such categories of objects do not necessarily form disjunct sets of objects, neither semantically nor visually. The relationship between categories can often be described in terms of a hierarchical structure. For instance, tigers and leopards build two separate mammalian categories, both of which are subcategories of the category Felidae. In the last decades, the unsupervised learning of categories of visual input stimuli has been addressed by numerous approaches in machine learning as well as in computational neuroscience. However, the question of what kind of mechanisms might be involved in the process of subcategory learning, or category refinement, remains a topic of active investigation. We propose a recurrent computational network architecture for the unsupervised learning of categorial and subcategorial visual input representations. During learning, the connection strengths of bottom-up weights from input to higher-level category representations are adapted according to the input activity distribution. In a similar manner, top-down weights learn to encode the characteristics of a specific stimulus category. Feedforward and feedback learning in combination realize an associative memory mechanism, enabling the selective top-down propagation of a category's feedback weight distribution. We suggest that the difference between the expected input encoded in the projective field of a category node and the current input pattern controls the amplification of feedforward-driven representations. Large enough differences trigger the recruitment of new representational resources and the establishment of additional (sub-) category representations. We demonstrate the temporal evolution of such learning and show how the proposed combination of an associative memory with a modulatory feedback integration successfully establishes category and subcategory representations

  5. Adaptive learning in a compartmental model of visual cortex - how feedback enables stable category learning and refinement

    Directory of Open Access Journals (Sweden)

    Georg eLayher

    2014-12-01

    Full Text Available The categorization of real world objects is often reflected in the similarity of their visual appearances. Such categories of objects do not necessarily form disjunct sets of objects, neither semantically nor visually. The relationship between categories can often be described in terms of a hierarchical structure. For instance, tigers and leopards build two separate mammalian categories, but both belong to the category of felines. In other words, tigers and leopards are subcategories of the category Felidae. In the last decades, the unsupervised learning of categories of visual input stimuli has been addressed by numerous approaches in machine learning as well as in the computational neurosciences. However, the question of what kind of mechanisms might be involved in the process of subcategory learning, or category refinement, remains a topic of active investigation. We propose a recurrent computational network architecture for the unsupervised learning of categorial and subcategorial visual input representations. During learning, the connection strengths of bottom-up weights from input to higher-level category representations are adapted according to the input activity distribution. In a similar manner, top-down weights learn to encode the characteristics of a specific stimulus category. Feedforward and feedback learning in combination realize an associative memory mechanism, enabling the selective top-down propagation of a category's feedback weight distribution. We suggest that the difference between the expected input encoded in the projective field of a category node and the current input pattern controls the amplification of feedforward-driven representations. Large enough differences trigger the recruitment of new representational resources and the establishment of (sub- category representations. We demonstrate the temporal evolution of such learning and show how the approach successully establishes category and subcategory

  6. Analysing the physics learning environment of visually impaired students in high schools

    Science.gov (United States)

    Toenders, Frank G. C.; de Putter-Smits, Lesley G. A.; Sanders, Wendy T. M.; den Brok, Perry

    2017-07-01

    Although visually impaired students attend regular high school, their enrolment in advanced science classes is dramatically low. In our research we evaluated the physics learning environment of a blind high school student in a regular Dutch high school. For visually impaired students to grasp physics concepts, time and additional materials to support the learning process are key. Time for teachers to develop teaching methods for such students is scarce. Suggestions for changes to the learning environment and of materials used are given.

  7. Investigative Primary Science: A Problem-Based Learning Approach

    Science.gov (United States)

    Etherington, Matthew B.

    2011-01-01

    This study reports on the success of using a problem-based learning approach (PBL) as a pedagogical mode of learning open inquiry science within a traditional four-year undergraduate elementary teacher education program. In 2010, a problem-based learning approach to teaching primary science replaced the traditional content driven syllabus. During…

  8. Efficacy of Simulation-Based Learning of Electronics Using Visualization and Manipulation

    Science.gov (United States)

    Chen, Yu-Lung; Hong, Yu-Ru; Sung, Yao-Ting; Chang, Kuo-En

    2011-01-01

    Software for simulation-based learning of electronics was implemented to help learners understand complex and abstract concepts through observing external representations and exploring concept models. The software comprises modules for visualization and simulative manipulation. Differences in learning performance of using the learning software…

  9. Right Hemisphere Dominance in Visual Statistical Learning

    Science.gov (United States)

    Roser, Matthew E.; Fiser, Jozsef; Aslin, Richard N.; Gazzaniga, Michael S.

    2011-01-01

    Several studies report a right hemisphere advantage for visuospatial integration and a left hemisphere advantage for inferring conceptual knowledge from patterns of covariation. The present study examined hemispheric asymmetry in the implicit learning of new visual feature combinations. A split-brain patient and normal control participants viewed…

  10. The Coordination Dynamics of Observational Learning: Relative Motion Direction and Relative Phase as Informational Content Linking Action-Perception to Action-Production.

    Science.gov (United States)

    Buchanan, John J

    2016-01-01

    The primary goal of this chapter is to merge together the visual perception perspective of observational learning and the coordination dynamics theory of pattern formation in perception and action. Emphasis is placed on identifying movement features that constrain and inform action-perception and action-production processes. Two sources of visual information are examined, relative motion direction and relative phase. The visual perception perspective states that the topological features of relative motion between limbs and joints remains invariant across an actor's motion and therefore are available for pickup by an observer. Relative phase has been put forth as an informational variable that links perception to action within the coordination dynamics theory. A primary assumption of the coordination dynamics approach is that environmental information is meaningful only in terms of the behavior it modifies. Across a series of single limb tasks and bimanual tasks it is shown that the relative motion and relative phase between limbs and joints is picked up through visual processes and supports observational learning of motor skills. Moreover, internal estimations of motor skill proficiency and competency are linked to the informational content found in relative motion and relative phase. Thus, the chapter links action to perception and vice versa and also links cognitive evaluations to the coordination dynamics that support action-perception and action-production processes.

  11. Problem-Based Learning and Learning Approach: Is There a Relationship?

    Science.gov (United States)

    Groves, Michele

    2005-01-01

    Aim: To assess the influence of a graduate-entry PBL (problem-based learning) curriculum on individual learning style; and to investigate the relationship between learning style, academic achievement and clinical reasoning skill. Method: Subjects were first-year medical students completed the Study Process Questionnaire at the commencement, and…

  12. Visual Literacy and Biochemistry Learning: The role of external representations

    Directory of Open Access Journals (Sweden)

    V.J.S.V. Santos

    2011-04-01

    Full Text Available Visual Literacy can bedefined as people’s ability to understand, use, think, learn and express themselves through external representations (ER in a given subject. This research aims to investigate the development of abilities of ERs reading and interpretation by students from a Biochemistry graduate course of theFederal University of São João Del-Rei. In this way, Visual Literacy level was  assessed using a questionnaire validatedin a previous educational research. This diagnosis questionnaire was elaborated according to six visual abilitiesidentified as essential for the study of the metabolic pathways. The initial statistical analysis of data collectedin this study was carried out using ANOVA method. Results obtained showed that the questionnaire used is adequate for the research and indicated that the level of Visual Literacy related to the metabolic processes increased significantly with the progress of the students in the graduation course. There was also an indication of a possible interference in the student’s performancedetermined by the cutoff punctuation in the university selection process.

  13. 'You see?' Teaching and learning how to interpret visual cues during surgery.

    Science.gov (United States)

    Cope, Alexandra C; Bezemer, Jeff; Kneebone, Roger; Lingard, Lorelei

    2015-11-01

    The ability to interpret visual cues is important in many medical specialties, including surgery, in which poor outcomes are largely attributable to errors of perception rather than poor motor skills. However, we know little about how trainee surgeons learn to make judgements in the visual domain. We explored how trainees learn visual cue interpretation in the operating room. A multiple case study design was used. Participants were postgraduate surgical trainees and their trainers. Data included observer field notes, and integrated video- and audio-recordings from 12 cases representing more than 11 hours of observation. A constant comparative methodology was used to identify dominant themes. Visual cue interpretation was a recurrent feature of trainer-trainee interactions and was achieved largely through the pedagogic mechanism of co-construction. Co-construction was a dialogic sequence between trainer and trainee in which they explored what they were looking at together to identify and name structures or pathology. Co-construction took two forms: 'guided co-construction', in which the trainer steered the trainee to see what the trainer was seeing, and 'authentic co-construction', in which neither trainer nor trainee appeared certain of what they were seeing and pieced together the information collaboratively. Whether the co-construction activity was guided or authentic appeared to be influenced by case difficulty and trainee seniority. Co-construction was shown to occur verbally, through discussion, and also through non-verbal exchanges in which gestures made with laparoscopic instruments contributed to the co-construction discourse. In the training setting, learning visual cue interpretation occurs in part through co-construction. Co-construction is a pedagogic phenomenon that is well recognised in the context of learning to interpret verbal information. In articulating the features of co-construction in the visual domain, this work enables the development of

  14. Lateralization of visual learning in the honeybee.

    Science.gov (United States)

    Letzkus, Pinar; Boeddeker, Norbert; Wood, Jeff T; Zhang, Shao-Wu; Srinivasan, Mandyam V

    2008-02-23

    Lateralization is a well-described phenomenon in humans and other vertebrates and there are interesting parallels across a variety of different vertebrate species. However, there are only a few studies of lateralization in invertebrates. In a recent report, we showed lateralization of olfactory learning in the honeybee (Apis mellifera). Here, we investigate lateralization of another sensory modality, vision. By training honeybees on a modified version of a visual proboscis extension reflex task, we find that bees learn a colour stimulus better with their right eye.

  15. Using "The West Wing" for Problem-Based Learning in Public Relations Courses

    Science.gov (United States)

    Smudde, Peter M.; Luecke, John R.

    2005-01-01

    Integrating "The West Wing" in public relations courses can effectively dramatize the concrete and abstract dimensions of public relations. In turn, students see public relations in action (albeit fictionally so) and learn much about it through structured lessons. From individual writing assignments about situations in "The West Wing," to the…

  16. Deep and Surface Learning in Problem-Based Learning: A Review of the Literature

    Science.gov (United States)

    Dolmans, Diana H. J. M.; Loyens, Sofie M. M.; Marcq, Hélène; Gijbels, David

    2016-01-01

    In problem-based learning (PBL), implemented worldwide, students learn by discussing professionally relevant problems enhancing application and integration of knowledge, which is assumed to encourage students towards a deep learning approach in which students are intrinsically interested and try to understand what is being studied. This review…

  17. Learning Visual Representations for Perception-Action Systems

    DEFF Research Database (Denmark)

    Piater, Justus; Jodogne, Sebastien; Detry, Renaud

    2011-01-01

    and RLJC, our second method learns structural object models for robust object detection and pose estimation by probabilistic inference. To these models, the method associates grasp experiences autonomously learned by trial and error. These experiences form a nonparametric representation of grasp success......We discuss vision as a sensory modality for systems that effect actions in response to perceptions. While the internal representations informed by vision may be arbitrarily complex, we argue that in many cases it is advantageous to link them rather directly to action via learned mappings....... These arguments are illustrated by two examples of our own work. First, our RLVC algorithm performs reinforcement learning directly on the visual input space. To make this very large space manageable, RLVC interleaves the reinforcement learner with a supervised classification algorithm that seeks to split...

  18. Learning from Dealing with Real World Problems

    Science.gov (United States)

    Akcay, Hakan

    2017-01-01

    The purpose of this article is to provide an example of using real world issues as tools for science teaching and learning. Using real world issues provides students with experiences in learning in problem-based environments and encourages them to apply their content knowledge to solving current and local problems.

  19. Problem Solving, Scaffolding and Learning

    Science.gov (United States)

    Lin, Shih-Yin

    2012-01-01

    Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…

  20. Reasons of the problems that academicians experience in management of teaching and learning process

    Directory of Open Access Journals (Sweden)

    Süleyman Göksoy

    2018-04-01

    Full Text Available The present research aims to examine the problems that academicians experience in management of teaching-learning process, to reveal the reasons of the problems and to develop solution suggestions. Case study design of qualitative research methods was used in this research and it includes 41 volunteer academicians. Structured interview form was used in data collection and the data were analyzed with content analysis. It was found that most of the problems academicians experience in management of teaching-learning process were related to students. They also had problems with classroom/course management. In management of teaching-learning processes of the academicians, problems were related to students, physical infrastructure, educational system and society/environment. It can be asserted that most of the problems can be solved if their reasons are determined and handled. Also it is suggested that incoming academicians who are new to academic life need to follow the regulations that includes student discipline regulations and the students need to be informed about the negative behaviors and their consequences at the beginning of the term.

  1. Metacognitive Confidence Increases with, but Does Not Determine, Visual Perceptual Learning.

    Science.gov (United States)

    Zizlsperger, Leopold; Kümmel, Florian; Haarmeier, Thomas

    2016-01-01

    While perceptual learning increases objective sensitivity, the effects on the constant interaction of the process of perception and its metacognitive evaluation have been rarely investigated. Visual perception has been described as a process of probabilistic inference featuring metacognitive evaluations of choice certainty. For visual motion perception in healthy, naive human subjects here we show that perceptual sensitivity and confidence in it increased with training. The metacognitive sensitivity-estimated from certainty ratings by a bias-free signal detection theoretic approach-in contrast, did not. Concomitant 3Hz transcranial alternating current stimulation (tACS) was applied in compliance with previous findings on effective high-low cross-frequency coupling subserving signal detection. While perceptual accuracy and confidence in it improved with training, there were no statistically significant tACS effects. Neither metacognitive sensitivity in distinguishing between their own correct and incorrect stimulus classifications, nor decision confidence itself determined the subjects' visual perceptual learning. Improvements of objective performance and the metacognitive confidence in it were rather determined by the perceptual sensitivity at the outset of the experiment. Post-decision certainty in visual perceptual learning was neither independent of objective performance, nor requisite for changes in sensitivity, but rather covaried with objective performance. The exact functional role of metacognitive confidence in human visual perception has yet to be determined.

  2. The role of visualization in learning from computer-based images

    Science.gov (United States)

    Piburn, Michael D.; Reynolds, Stephen J.; McAuliffe, Carla; Leedy, Debra E.; Birk, James P.; Johnson, Julia K.

    2005-05-01

    Among the sciences, the practice of geology is especially visual. To assess the role of spatial ability in learning geology, we designed an experiment using: (1) web-based versions of spatial visualization tests, (2) a geospatial test, and (3) multimedia instructional modules built around QuickTime Virtual Reality movies. Students in control and experimental sections were administered measures of spatial orientation and visualization, as well as a content-based geospatial examination. All subjects improved significantly in their scores on spatial visualization and the geospatial examination. There was no change in their scores on spatial orientation. A three-way analysis of variance, with the geospatial examination as the dependent variable, revealed significant main effects favoring the experimental group and a significant interaction between treatment and gender. These results demonstrate that spatial ability can be improved through instruction, that learning of geological content will improve as a result, and that differences in performance between the genders can be eliminated.

  3. Asymmetrical learning between a tactile and visual serial RT task

    NARCIS (Netherlands)

    Abrahamse, E.L.; van der Lubbe, Robert Henricus Johannes; Verwey, Willem B.

    2007-01-01

    According to many researchers, implicit learning in the serial reaction-time task is predominantly motor based and therefore should be independent of stimulus modality. Previous research on the task, however, has focused almost completely on the visual domain. Here we investigated sequence learning

  4. Problem-based Learning and Problem Finding Among University Graduate Students

    OpenAIRE

    Ankit, A, Ravankar; Shotaro, Imai; Michiyo, Shimamura; Go, Chiba; Taichi, Takasuka

    2017-01-01

    In recent years, problem-based learning (PBL) techniques have been gaining momentum in schools and university curricula around the world. The main advantage of the PBL method is that it promotes creative problem solving, improves cognition and enhances overall thought processes in learners. For most PBL-style programmes, problem solving is at the core, although the notion of problem discovery or problem finding is not seriously considered. In most cases, students are always presen...

  5. Visual-motor association learning in undergraduate students as a function of the autism-spectrum quotient.

    Science.gov (United States)

    Parkington, Karisa B; Clements, Rebecca J; Landry, Oriane; Chouinard, Philippe A

    2015-10-01

    We examined how performance on an associative learning task changes in a sample of undergraduate students as a function of their autism-spectrum quotient (AQ) score. The participants, without any prior knowledge of the Japanese language, learned to associate hiragana characters with button responses. In the novel condition, 50 participants learned visual-motor associations without any prior exposure to the stimuli's visual attributes. In the familiar condition, a different set of 50 participants completed a session in which they first became familiar with the stimuli's visual appearance prior to completing the visual-motor association learning task. Participants with higher AQ scores had a clear advantage in the novel condition; the amount of training required reaching learning criterion correlated negatively with AQ. In contrast, participants with lower AQ scores had a clear advantage in the familiar condition; the amount of training required to reach learning criterion correlated positively with AQ. An examination of how each of the AQ subscales correlated with these learning patterns revealed that abilities in visual discrimination-which is known to depend on the visual ventral-stream system-may have afforded an advantage in the novel condition for the participants with the higher AQ scores, whereas abilities in attention switching-which are known to require mechanisms in the prefrontal cortex-may have afforded an advantage in the familiar condition for the participants with the lower AQ scores.

  6. MO-E-18C-06: Enriching Medical Physics Education By Visualizing The Invisible

    International Nuclear Information System (INIS)

    Sprawls, P

    2014-01-01

    Purpose: To enhance the understanding of medical physics concepts and develop higher levels of learning relating to invisible physics phenomena such as radiation. To provide medical physics educators in all countries of the world with understanding of knowledge structures in the human brain, the different levels of learning, and the types of knowledge required for higher level functions such as problem solving, creative innovations, and applied clinical applications. To provide medical physics educators with an open access resource (tool) that they can use in their teaching activities to enrich and elevate the level of learning for their students, residents, etc. with respect to the invisible realm of medical physics. Methods: An experienced clinical medical physicist and educator has created and provided with open access three complementary web-based resources to achieve the purposes described above. One is a module focusing on the medical physics learning process with respect to mental knowledge structures, how they relate to outcomes and applications, and learning activities that are required to develop the required knowledge structures. The second is an extensive set of visuals that educators can use in their activities (classes, small group discussions, etc.) to visualize the invisible. The third is an interactive online simulation where learners can adjust factors and visually observe changes in x-radiation.These resources are available online at www.BLINDED FOR REVIEW . Results: Medical physics education, especially for non-physicists, is becoming much more interesting and useful especially with respect to invisible radiation. The global impact is that medical imaging professionals can be more effective in optimizing x-ray imaging procedures and risk management when they have knowledge levels that enhance problem solving, innovation, and creativity. Conclusion: Medical physics educators in all institutions can be much more effective and efficient in the

  7. MO-E-18C-06: Enriching Medical Physics Education By Visualizing The Invisible

    Energy Technology Data Exchange (ETDEWEB)

    Sprawls, P [Emory University and Sprawls Educational Foundation, Montreat, NC (United States)

    2014-06-15

    Purpose: To enhance the understanding of medical physics concepts and develop higher levels of learning relating to invisible physics phenomena such as radiation. To provide medical physics educators in all countries of the world with understanding of knowledge structures in the human brain, the different levels of learning, and the types of knowledge required for higher level functions such as problem solving, creative innovations, and applied clinical applications. To provide medical physics educators with an open access resource (tool) that they can use in their teaching activities to enrich and elevate the level of learning for their students, residents, etc. with respect to the invisible realm of medical physics. Methods: An experienced clinical medical physicist and educator has created and provided with open access three complementary web-based resources to achieve the purposes described above. One is a module focusing on the medical physics learning process with respect to mental knowledge structures, how they relate to outcomes and applications, and learning activities that are required to develop the required knowledge structures. The second is an extensive set of visuals that educators can use in their activities (classes, small group discussions, etc.) to visualize the invisible. The third is an interactive online simulation where learners can adjust factors and visually observe changes in x-radiation.These resources are available online at www.BLINDED FOR REVIEW . Results: Medical physics education, especially for non-physicists, is becoming much more interesting and useful especially with respect to invisible radiation. The global impact is that medical imaging professionals can be more effective in optimizing x-ray imaging procedures and risk management when they have knowledge levels that enhance problem solving, innovation, and creativity. Conclusion: Medical physics educators in all institutions can be much more effective and efficient in the

  8. Building effective learning experiences around visualizations: NASA Eyes on the Solar System and Infiniscope

    Science.gov (United States)

    Tamer, A. J. J.; Anbar, A. D.; Elkins-Tanton, L. T.; Klug Boonstra, S.; Mead, C.; Swann, J. L.; Hunsley, D.

    2017-12-01

    Advances in scientific visualization and public access to data have transformed science outreach and communication, but have yet to realize their potential impacts in the realm of education. Computer-based learning is a clear bridge between visualization and education, but creating high-quality learning experiences that leverage existing visualizations requires close partnerships among scientists, technologists, and educators. The Infiniscope project is working to foster such partnerships in order to produce exploration-driven learning experiences around NASA SMD data and images, leveraging the principles of ETX (Education Through eXploration). The visualizations inspire curiosity, while the learning design promotes improved reasoning skills and increases understanding of space science concepts. Infiniscope includes both a web portal to host these digital learning experiences, as well as a teaching network of educators using and modifying these experiences. Our initial efforts to enable student discovery through active exploration of the concepts associated with Small Worlds, Kepler's Laws, and Exoplanets led us to develop our own visualizations at Arizona State University. Other projects focused on Astrobiology and Mars geology led us to incorporate an immersive Virtual Field Trip platform into the Infiniscope portal in support of virtual exploration of scientifically significant locations. Looking to apply ETX design practices with other visualizations, our team at Arizona State partnered with the Jet Propulsion Lab to integrate the web-based version of NASA Eyes on the Eclipse within Smart Sparrow's digital learning platform in a proof-of-concept focused on the 2017 Eclipse. This goes a step beyond the standard features of "Eyes" by wrapping guided exploration, focused on a specific learning goal into standards-aligned lesson built around the visualization, as well as its distribution through Infiniscope and it's digital teaching network. Experience from this

  9. ICT-Supported Problem-Based Learning: Possibilities of Applying Problem-Based Learning from Primary School to Higher Education

    Directory of Open Access Journals (Sweden)

    Czékmán Balázs

    2016-06-01

    Full Text Available Problem Based Learning was originally created for medical students to better diagnose new illnesses; this methodology can be used in almost all the fields of education. Teachers can teach by appealing to students’ natural instincts to create, and they can improve the students’ performance in different disciplines. So, we can say that it is an easy way of the acquisition and integration of new knowledge. While the content and structure of PBL courses may differ, the general goals and learning objectives tend to be similar. It begins with the assumption that learning is an active, integrated, and constructive process influenced by social and contextual factors. The task of our paper is to show how Problem-Based Learning can be used from primary to university level education in teaching different subjects.

  10. Assessing learning preferences of dental students using visual, auditory, reading-writing, and kinesthetic questionnaire

    Directory of Open Access Journals (Sweden)

    Darshana Bennadi

    2015-01-01

    Full Text Available Introduction: Educators of the health care profession (teachers are committed in preparing future health care providers, but are facing many challenges in transmitting their ever expanding knowledge to the students. This study was done to focus on different learning styles among dental students. Aim: To assess different learning preferences among dental students. Materials and Methods: This is a descriptive cross-sectional questionnaire study using visual, auditory, reading-writing, and kinesthetic questionnaire among dental students. Results: Majority 75.8% of the students preferred multimodal learning style. Multimodal learning was common among clinical students. No statistical significant difference of learning styles in relation to gender (P > 0.05. Conclusion: In the present study, majority of students preferred multimodal learning preference. Knowledge about the learning style preference of different profession can help to enhance the teaching method for the students.

  11. Increase in MST activity correlates with visual motion learning: A functional MRI study of perceptual learning.

    Science.gov (United States)

    Larcombe, Stephanie J; Kennard, Chris; Bridge, Holly

    2018-01-01

    Repeated practice of a specific task can improve visual performance, but the neural mechanisms underlying this improvement in performance are not yet well understood. Here we trained healthy participants on a visual motion task daily for 5 days in one visual hemifield. Before and after training, we used functional magnetic resonance imaging (fMRI) to measure the change in neural activity. We also imaged a control group of participants on two occasions who did not receive any task training. While in the MRI scanner, all participants completed the motion task in the trained and untrained visual hemifields separately. Following training, participants improved their ability to discriminate motion direction in the trained hemifield and, to a lesser extent, in the untrained hemifield. The amount of task learning correlated positively with the change in activity in the medial superior temporal (MST) area. MST is the anterior portion of the human motion complex (hMT+). MST changes were localized to the hemisphere contralateral to the region of the visual field, where perceptual training was delivered. Visual areas V2 and V3a showed an increase in activity between the first and second scan in the training group, but this was not correlated with performance. The contralateral anterior hippocampus and bilateral dorsolateral prefrontal cortex (DLPFC) and frontal pole showed changes in neural activity that also correlated with the amount of task learning. These findings emphasize the importance of MST in perceptual learning of a visual motion task. Hum Brain Mapp 39:145-156, 2018. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  12. Attentional Modulation in Visual Cortex Is Modified during Perceptual Learning

    Science.gov (United States)

    Bartolucci, Marco; Smith, Andrew T.

    2011-01-01

    Practicing a visual task commonly results in improved performance. Often the improvement does not transfer well to a new retinal location, suggesting that it is mediated by changes occurring in early visual cortex, and indeed neuroimaging and neurophysiological studies both demonstrate that perceptual learning is associated with altered activity…

  13. Enhancement of Online Robotics Learning Using Real-Time 3D Visualization Technology

    Directory of Open Access Journals (Sweden)

    Richard Chiou

    2010-06-01

    Full Text Available This paper discusses a real-time e-Lab Learning system based on the integration of 3D visualization technology with a remote robotic laboratory. With the emergence and development of the Internet field, online learning is proving to play a significant role in the upcoming era. In an effort to enhance Internet-based learning of robotics and keep up with the rapid progression of technology, a 3- Dimensional scheme of viewing the robotic laboratory has been introduced in addition to the remote controlling of the robots. The uniqueness of the project lies in making this process Internet-based, and remote robot operated and visualized in 3D. This 3D system approach provides the students with a more realistic feel of the 3D robotic laboratory even though they are working remotely. As a result, the 3D visualization technology has been tested as part of a laboratory in the MET 205 Robotics and Mechatronics class and has received positive feedback by most of the students. This type of research has introduced a new level of realism and visual communications to online laboratory learning in a remote classroom.

  14. Contributions of Letter-Speech Sound Learning and Visual Print Tuning to Reading Improvement: Evidence from Brain Potential and Dyslexia Training Studies

    Directory of Open Access Journals (Sweden)

    Gorka Fraga González

    2017-01-01

    Full Text Available We use a neurocognitive perspective to discuss the contribution of learning letter-speech sound (L-SS associations and visual specialization in the initial phases of reading in dyslexic children. We review findings from associative learning studies on related cognitive skills important for establishing and consolidating L-SS associations. Then we review brain potential studies, including our own, that yielded two markers associated with reading fluency. Here we show that the marker related to visual specialization (N170 predicts word and pseudoword reading fluency in children who received additional practice in the processing of morphological word structure. Conversely, L-SS integration (indexed by mismatch negativity (MMN may only remain important when direct orthography to semantic conversion is not possible, such as in pseudoword reading. In addition, the correlation between these two markers supports the notion that multisensory integration facilitates visual specialization. Finally, we review the role of implicit learning and executive functions in audiovisual learning in dyslexia. Implications for remedial research are discussed and suggestions for future studies are presented.

  15. Neural Network Machine Learning and Dimension Reduction for Data Visualization

    Science.gov (United States)

    Liles, Charles A.

    2014-01-01

    Neural network machine learning in computer science is a continuously developing field of study. Although neural network models have been developed which can accurately predict a numeric value or nominal classification, a general purpose method for constructing neural network architecture has yet to be developed. Computer scientists are often forced to rely on a trial-and-error process of developing and improving accurate neural network models. In many cases, models are constructed from a large number of input parameters. Understanding which input parameters have the greatest impact on the prediction of the model is often difficult to surmise, especially when the number of input variables is very high. This challenge is often labeled the "curse of dimensionality" in scientific fields. However, techniques exist for reducing the dimensionality of problems to just two dimensions. Once a problem's dimensions have been mapped to two dimensions, it can be easily plotted and understood by humans. The ability to visualize a multi-dimensional dataset can provide a means of identifying which input variables have the highest effect on determining a nominal or numeric output. Identifying these variables can provide a better means of training neural network models; models can be more easily and quickly trained using only input variables which appear to affect the outcome variable. The purpose of this project is to explore varying means of training neural networks and to utilize dimensional reduction for visualizing and understanding complex datasets.

  16. Problem Based Learning - Linking Students and Industry

    DEFF Research Database (Denmark)

    Fink, Flemming K.

    2006-01-01

    WG2_G4 Problem based learning – linking students and industry: a case study from Aalborg, Denmark Flemming K. Flink ELITE Aalborg University In Aalborg University, Denmark, all study programmes are organised around inter-disciplinary project work in groups. Up to 50% of the study work is problem-...... is essentially problem solving. The presentation looks into on campus POPBL and the Facilitated Work Based Learning (FBL) for continuing education. It also presents case examples of POPBL work....

  17. Audiovisual Association Learning in the Absence of Primary Visual Cortex

    OpenAIRE

    Seirafi, Mehrdad; De Weerd, Peter; Pegna, Alan J.; de Gelder, Beatrice

    2016-01-01

    Learning audiovisual associations is mediated by the primary cortical areas; however, recent animal studies suggest that such learning can take place even in the absence of the primary visual cortex. Other studies have demonstrated the involvement of extra-geniculate pathways and especially the superior colliculus (SC) in audiovisual association learning. Here, we investigated such learning in a rare human patient with complete loss of the bilateral striate cortex. We carried out an implicit ...

  18. Evaluation of a four month rehabilitation program for stroke patients with balance problems and binocular visual dysfunction.

    Science.gov (United States)

    Schow, Trine; Harris, Paul; Teasdale, Thomas William; Rasmussen, Morten Arendt

    2016-04-06

    Balance problems and binocular visual dysfunction (BVD) are common problems after stroke, however evidence of an effective rehabilitation method are limited. To evaluate the effect of a four-month rehabilitation program for individuals with balance problems and BVD after a stroke. About 40 sessions of 1.5 hours duration over four months with visual therapy and balance rehabilitation, was provided to all 29 participants, aged 18-67 years, in groups of 7-8 individuals. Several measures for BVD, balance, gait, Health Related Quality Of Life (HRQoL) and functional recovery were used at baseline, at the end of training and at a six-month follow up (FU). We found significant improvements in stereopsis, vergence, saccadic movements, burden of binocular visual symptoms, balance and gait speed, fatigue, HRQoL and functional recovery. Moreover, 60% of the participants were in employment at the six-month FU, compared to only 23% before training. All improvements were sustained at the six-month FU. Although a control group is lacking, the evidence suggests that the positive improvement is a result of the combined visual and balance training. The combination of balance and visual training appears to facilitate changes at a multimodal level affecting several functions important in daily life.

  19. Learning effects of dynamic postural control by auditory biofeedback versus visual biofeedback training.

    Science.gov (United States)

    Hasegawa, Naoya; Takeda, Kenta; Sakuma, Moe; Mani, Hiroki; Maejima, Hiroshi; Asaka, Tadayoshi

    2017-10-01

    Augmented sensory biofeedback (BF) for postural control is widely used to improve postural stability. However, the effective sensory information in BF systems of motor learning for postural control is still unknown. The purpose of this study was to investigate the learning effects of visual versus auditory BF training in dynamic postural control. Eighteen healthy young adults were randomly divided into two groups (visual BF and auditory BF). In test sessions, participants were asked to bring the real-time center of pressure (COP) in line with a hidden target by body sway in the sagittal plane. The target moved in seven cycles of sine curves at 0.23Hz in the vertical direction on a monitor. In training sessions, the visual and auditory BF groups were required to change the magnitude of a visual circle and a sound, respectively, according to the distance between the COP and target in order to reach the target. The perceptual magnitudes of visual and auditory BF were equalized according to Stevens' power law. At the retention test, the auditory but not visual BF group demonstrated decreased postural performance errors in both the spatial and temporal parameters under the no-feedback condition. These findings suggest that visual BF increases the dependence on visual information to control postural performance, while auditory BF may enhance the integration of the proprioceptive sensory system, which contributes to motor learning without BF. These results suggest that auditory BF training improves motor learning of dynamic postural control. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Picasso: A Modular Framework for Visualizing the Learning Process of Neural Network Image Classifiers

    Directory of Open Access Journals (Sweden)

    Ryan Henderson

    2017-09-01

    Full Text Available Picasso is a free open-source (Eclipse Public License web application written in Python for rendering standard visualizations useful for analyzing convolutional neural networks. Picasso ships with occlusion maps and saliency maps, two visualizations which help reveal issues that evaluation metrics like loss and accuracy might hide: for example, learning a proxy classification task. Picasso works with the Tensorflow deep learning framework, and Keras (when the model can be loaded into the Tensorflow backend. Picasso can be used with minimal configuration by deep learning researchers and engineers alike across various neural network architectures. Adding new visualizations is simple: the user can specify their visualization code and HTML template separately from the application code.

  1. Fourth Issue of the Journal of Problem Based Learning in Higher Education

    DEFF Research Database (Denmark)

    Davidsen, Jacob; Ryberg, Thomas

    2015-01-01

    We are pleased to introduce the fourth issue of the Journal of Problem Based Learning in Higher Education. Current issue is composed of five research papers and two PBL cases. These address different aspects of PBL in higher education as and represent an international experiences and knowledge...... with contributions from Brazil, Denmark, Germany and Morocco. The first three papers and the two cases touch upon the role of the teacher in facilitating problem based learning processes. These papers address the complex questions of how teachers can actually implement and teach PBL to students. The fourth paper...... a diverse set of aspects related to research in Problem Based Learning: teachers and supervisors roles, implementation of PBL curricular, assessment formats supporting PBL and new advances in combining technology and PBL....

  2. Can Visual Illusions Be Used to Facilitate Sport Skill Learning?

    Science.gov (United States)

    Cañal-Bruland, Rouwen; van der Meer, Yor; Moerman, Jelle

    2016-01-01

    Recently it has been reported that practicing putting with visual illusions that make the hole appear larger than it actually is leads to longer-lasting performance improvements. Interestingly, from a motor control and learning perspective, it may be possible to actually predict the opposite to occur, as facing a smaller appearing target should enforce performers to be more precise. To test this idea the authors invited participants to practice an aiming task (i.e., a marble-shooting task) with either a visual illusion that made the target appear larger or a visual illusion that made the target appear smaller. They applied a pre-post test design, included a control group training without any illusory effects and increased the amount of practice to 450 trials. In contrast to earlier reports, the results revealed that the group that trained with the visual illusion that made the target look smaller improved performance from pre- to posttest, whereas the group practicing with visual illusions that made the target appear larger did not show any improvements. Notably, also the control group improved from pre- to posttest. The authors conclude that more research is needed to improve our understanding of whether and how visual illusions may be useful training tools for sport skill learning.

  3. Relation between visual function index and falls-related factors in patients with age-related cataract

    Directory of Open Access Journals (Sweden)

    Mei-Na Huang

    2016-01-01

    Full Text Available AIM:To investigate the relation between vision function index and falls-related factors in patients with age-related cataract.METHODS:Ninety-six patients with age-related cataract were interviewed using a seven-item visual function questionnaire(VF-7, then classified into poor, moderate, or good visual function group. The differences of the three groups on visual acuity, balance and mobility function, cognition, depressive symptoms, self-reported fear of falling were analyzed. RESULTS:The patients in poor visual function group had older age, tendency to depression, was more afraid of falling, compared with groups with higher score in VF-7, and they had worse visual acuity, performed worse on all balance and mobility tests. CONCLUSION:Poor visual function is related to worse visual acuity, weaker balance and mobility performance in patients with age-related cataract. The VF-7, as a simple and convenient self-reported method, can be used as a falling risk monitoring in patients with age-related cataract.

  4. Teaching Problem Based Learning as Blended Learning

    DEFF Research Database (Denmark)

    Kolbæk, Ditte; Nortvig, Anne-Mette

    2018-01-01

    Problem-based and project organized learning (PBL) was originally developed for collaboration between physically present students, but political decisions at many universities require that collaboration, dialogues, and other PBL activities take place online as well. With a theoretical point...... of departure in Dewey and a methodological point of departure in netnography, this study focuses on an online module at Aalborg University where teaching is based on PBL. With the research question ‘How can teachers design for PBL online,’ this study explores the teacher’s role in a six weeks’ blended learning...... program, and we present suggestions for designs for blended learning PBL based on case studies from two PBL courses...

  5. Using Visualization to Motivate Student Participation in Collaborative Online Learning Environments

    Science.gov (United States)

    Jin, Sung-Hee

    2017-01-01

    Online participation in collaborative online learning environments is instrumental in motivating students to learn and promoting their learning satisfaction, but there has been little research on the technical supports for motivating students' online participation. The purpose of this study was to develop a visualization tool to motivate learners…

  6. Images in Language: Metaphors and Metamorphoses. Visual Learning. Volume 1

    Science.gov (United States)

    Benedek, Andras, Ed.; Nyiri, Kristof, Ed.

    2011-01-01

    Learning and teaching are faced with radically new challenges in today's rapidly changing world and its deeply transformed communicational environment. We are living in an era of images. Contemporary visual technology--film, video, interactive digital media--is promoting but also demanding a new approach to education: the age of visual learning…

  7. Examining the direct and indirect effects of visual-verbal paired associate learning on Chinese word reading.

    Science.gov (United States)

    Georgiou, George; Liu, Cuina; Xu, Shiyang

    2017-08-01

    Associative learning, traditionally measured with paired associate learning (PAL) tasks, has been found to predict reading ability in several languages. However, it remains unclear whether it also predicts word reading in Chinese, which is known for its ambiguous print-sound correspondences, and whether its effects are direct or indirect through the effects of other reading-related skills such as phonological awareness and rapid naming. Thus, the purpose of this study was to examine the direct and indirect effects of visual-verbal PAL on word reading in an unselected sample of Chinese children followed from the second to the third kindergarten year. A sample of 141 second-year kindergarten children (71 girls and 70 boys; mean age=58.99months, SD=3.17) were followed for a year and were assessed at both times on measures of visual-verbal PAL, rapid naming, and phonological awareness. In the third kindergarten year, they were also assessed on word reading. The results of path analysis showed that visual-verbal PAL exerted a significant direct effect on word reading that was independent of the effects of phonological awareness and rapid naming. However, it also exerted significant indirect effects through phonological awareness. Taken together, these findings suggest that variations in cross-modal associative learning (as measured by visual-verbal PAL) place constraints on the development of word recognition skills irrespective of the characteristics of the orthography children are learning to read. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Basic Visual Disciplines in Heritage Conservation: Outline of Selected Perspectives in Teaching and Learning

    Science.gov (United States)

    Lobovikov-Katz, A.

    2017-08-01

    Acknowledgement of the value of a basic freehand sketch by the information and communication community of researchers and developers brought about the advanced developments for the use of sketches as free input to complicated processes of computerized visualization, so as to make them more widely accessible. However, a sharp reduction and even exclusion of this and other basic visual disciplines from education in sciences, technology, engineering and architecture dramatically reduces the number of future users of such applications. The unique needs of conservation of cultural heritage pose specific challenges as well as encourage the formulation of innovative development tasks in related areas of information and communication technologies (ICT). This paper claims that the introduction of basic visual disciplines to both communities is essential to the effectiveness of integration of heritage conservation needs and the advanced ICT development of conservation value, and beyond. It provides an insight into the challenges and advantages of introducing these subjects in a relevant educational context, presents some examples of their teaching and learning in the modern environment, including e-learning, and sketches perspectives to their application.

  9. Correction of Visual Perception Based on Neuro-Fuzzy Learning for the Humanoid Robot TEO

    Directory of Open Access Journals (Sweden)

    Juan Hernandez-Vicen

    2018-03-01

    Full Text Available New applications related to robotic manipulation or transportation tasks, with or without physical grasping, are continuously being developed. To perform these activities, the robot takes advantage of different kinds of perceptions. One of the key perceptions in robotics is vision. However, some problems related to image processing makes the application of visual information within robot control algorithms difficult. Camera-based systems have inherent errors that affect the quality and reliability of the information obtained. The need of correcting image distortion slows down image parameter computing, which decreases performance of control algorithms. In this paper, a new approach to correcting several sources of visual distortions on images in only one computing step is proposed. The goal of this system/algorithm is the computation of the tilt angle of an object transported by a robot, minimizing image inherent errors and increasing computing speed. After capturing the image, the computer system extracts the angle using a Fuzzy filter that corrects at the same time all possible distortions, obtaining the real angle in only one processing step. This filter has been developed by the means of Neuro-Fuzzy learning techniques, using datasets with information obtained from real experiments. In this way, the computing time has been decreased and the performance of the application has been improved. The resulting algorithm has been tried out experimentally in robot transportation tasks in the humanoid robot TEO (Task Environment Operator from the University Carlos III of Madrid.

  10. Effectiveness of discovery learning model on mathematical problem solving

    Science.gov (United States)

    Herdiana, Yunita; Wahyudin, Sispiyati, Ririn

    2017-08-01

    This research is aimed to describe the effectiveness of discovery learning model on mathematical problem solving. This research investigate the students' problem solving competency before and after learned by using discovery learning model. The population used in this research was student in grade VII in one of junior high school in West Bandung Regency. From nine classes, class VII B were randomly selected as the sample of experiment class, and class VII C as control class, which consist of 35 students every class. The method in this research was quasi experiment. The instrument in this research is pre-test, worksheet and post-test about problem solving of mathematics. Based on the research, it can be conclude that the qualification of problem solving competency of students who gets discovery learning model on level 80%, including in medium category and it show that discovery learning model effective to improve mathematical problem solving.

  11. Managing the Complexity of Design Problems through Studio-Based Learning

    Science.gov (United States)

    Cennamo, Katherine; Brandt, Carol; Scott, Brigitte; Douglas, Sarah; McGrath, Margarita; Reimer, Yolanda; Vernon, Mitzi

    2011-01-01

    The ill-structured nature of design problems makes them particularly challenging for problem-based learning. Studio-based learning (SBL), however, has much in common with problem-based learning and indeed has a long history of use in teaching students to solve design problems. The purpose of this ethnographic study of an industrial design class,…

  12. Effects of Visual Feedback Distortion on Gait Adaptation: Comparison of Implicit Visual Distortion Versus Conscious Modulation on Retention of Motor Learning.

    Science.gov (United States)

    Kim, Seung-Jae; Ogilvie, Mitchell; Shimabukuro, Nathan; Stewart, Trevor; Shin, Joon-Ho

    2015-09-01

    Visual feedback can be used during gait rehabilitation to improve the efficacy of training. We presented a paradigm called visual feedback distortion; the visual representation of step length was manipulated during treadmill walking. Our prior work demonstrated that an implicit distortion of visual feedback of step length entails an unintentional adaptive process in the subjects' spatial gait pattern. Here, we investigated whether the implicit visual feedback distortion, versus conscious correction, promotes efficient locomotor adaptation that relates to greater retention of a task. Thirteen healthy subjects were studied under two conditions: (1) we implicitly distorted the visual representation of their gait symmetry over 14 min, and (2) with help of visual feedback, subjects were told to walk on the treadmill with the intent of attaining the gait asymmetry observed during the first implicit trial. After adaptation, the visual feedback was removed while subjects continued walking normally. Over this 6-min period, retention of preserved asymmetric pattern was assessed. We found that there was a greater retention rate during the implicit distortion trial than that of the visually guided conscious modulation trial. This study highlights the important role of implicit learning in the context of gait rehabilitation by demonstrating that training with implicit visual feedback distortion may produce longer lasting effects. This suggests that using visual feedback distortion could improve the effectiveness of treadmill rehabilitation processes by influencing the retention of motor skills.

  13. The effect of haptic guidance and visual feedback on learning a complex tennis task.

    Science.gov (United States)

    Marchal-Crespo, Laura; van Raai, Mark; Rauter, Georg; Wolf, Peter; Riener, Robert

    2013-11-01

    While haptic guidance can improve ongoing performance of a motor task, several studies have found that it ultimately impairs motor learning. However, some recent studies suggest that the haptic demonstration of optimal timing, rather than movement magnitude, enhances learning in subjects trained with haptic guidance. Timing of an action plays a crucial role in the proper accomplishment of many motor skills, such as hitting a moving object (discrete timing task) or learning a velocity profile (time-critical tracking task). The aim of the present study is to evaluate which feedback conditions-visual or haptic guidance-optimize learning of the discrete and continuous elements of a timing task. The experiment consisted in performing a fast tennis forehand stroke in a virtual environment. A tendon-based parallel robot connected to the end of a racket was used to apply haptic guidance during training. In two different experiments, we evaluated which feedback condition was more adequate for learning: (1) a time-dependent discrete task-learning to start a tennis stroke and (2) a tracking task-learning to follow a velocity profile. The effect that the task difficulty and subject's initial skill level have on the selection of the optimal training condition was further evaluated. Results showed that the training condition that maximizes learning of the discrete time-dependent motor task depends on the subjects' initial skill level. Haptic guidance was especially suitable for less-skilled subjects and in especially difficult discrete tasks, while visual feedback seems to benefit more skilled subjects. Additionally, haptic guidance seemed to promote learning in a time-critical tracking task, while visual feedback tended to deteriorate the performance independently of the task difficulty and subjects' initial skill level. Haptic guidance outperformed visual feedback, although additional studies are needed to further analyze the effect of other types of feedback visualization on

  14. Problem Based Learning for engineering.

    Science.gov (United States)

    Kumar, Dinesh; Radcliffe, Pj

    2017-07-01

    the role of Problem Based Learning (PBL) is relative clear in domains such as medicine but its efficacy in engineering is as yet less certain. To clarify the role of PBL in engineering, a 3 day workshop was conducted for senior Brazilian engineering academics where they were given the theory and then an immersive PBL experience. One major purpose for running this workshop was for them to identify suitable courses where PBL could be considered. During this workshop, they were split in teams and given a diverse range of problems. At the conclusion of the workshop, a quantifiable survey was conducted and the results show that PBL can deliver superior educational outcomes providing the student group is drawn from the top 5% of the year 12 students, and that significantly higher resources are made available. Thus, any proposed PBL program in engineering must be able to demonstrate that it can meet these requirements before it can move forward to implementation.

  15. [E-learning and problem based learning integration in cardiology education].

    Science.gov (United States)

    Gürpinar, Erol; Zayim, Neşe; Başarici, Ibrahim; Gündüz, Filiz; Asar, Mevlüt; Oğuz, Nurettin

    2009-06-01

    The aim of this study was to determine students' satisfaction with an e-learning environment which is developed to support classical problem-based learning (PBL) in medical education and its effect on academic achievement. In this cross-sectional study, students were provided with a web-based learning environment including learning materials related to objectives of the subject of PBL module, which could be used during independent study period. The study group comprised of all of the second year students (164 students) of Akdeniz University, Medical Faculty, during 2007-2008 education period. In order to gather data about students' satisfaction with learning environment, a questionnaire was administered to the students. Comparison of students' academic achievement was based on their performance score in PBL exam. Statistical analyses were performed using unpaired t test and Mann Whitney U test. Findings indicated that 72.6% of the students used e-learning practice. There is no statistically significant difference between mean PBL performance scores of users and non-users of e-learning practice (103.58 vs. 100.88) (t=-0.998, p=0.320). It is found that frequent users of e-learning application had statistically significant higher scores than non-frequent users (106.28 vs. 100.59) (t=-2.373, p=0.01). In addition, 72.6% of the students declared they were satisfied with the application. Our study demonstrated that the most of the students use e-learning application and are satisfied with it. In addition, it is observed that e-learning application positively affects the academic achievement of the students. This study gains special importance by providing contribution to limited literature in the area of instructional technology in PBL and Cardiology teaching.

  16. EFFECT OF PROBLEM BASED LEARNING IN COMPARISION WITH LECTURE BASED LEARNING IN FORENSIC MEDICINE

    Directory of Open Access Journals (Sweden)

    Padmakumar

    2015-09-01

    Full Text Available BACKGROUND: Problem based learning (PBL is an approach to learning and instruction in which students tackle problems in small groups under the supervision of a teacher. This style of learning assumed to foster increased retention of knowledge, improve student’s gene ral problem solving skills, enhance integration of basic science concepts in to clinical problems, foster the development of self - directed learning skills and strengthen student’s intrinsic motivation. AIM: The study was conducted to compare the effect of Problem based learning in comparison with lecture based learning. SETTING: A cross - sectional study was conducted among 2nd year MBBS students of Jubilee Mission Medical College and Research Institute, Thrissur during the period of December 2014 to March 20 15. METHODOLOGY: The batch is divided into two groups (A & B, 45 in each group. By using PBL method, blunt force injuries were taught to Group - A and sharp weapon injuries to group - B. By using lecture based learning (LBL method blunt force injuries were t aught to Group - B and sharp weapon injuries to group - A. At the end of the session a test in the form of MCQ was conducted on the students to evaluate their learning outcome. OBSERVATION AND RESU LTS: In session I, the average test score of LBL group was 8.16 and PBL group was 12. The difference was statistically significant. In session - II also 45 students has participated each in LBL and PBL classes. The average of test score of LBL group was 7.267 and PBL was 11.289, which was highly significant statistical ly . CONCLUSION: Study has proven that problem based learning is an effective teaching learning method when compared to conventional lecture based learning.

  17. Learning Styles of Medical Students Change in Relation to Time

    Science.gov (United States)

    Gurpinar, Erol; Bati, Hilal; Tetik, Cihat

    2011-01-01

    The aim of the present study was to investigate if any changes exist in the learning styles of medical students over time and in relation to different curriculum models with these learning styles. This prospective cohort study was conducted in three different medical faculties, which implement problem-based learning (PBL), hybrid, and integrated…

  18. Pre-Service Visual Art Teachers' Perceptions of Assessment in Online Learning

    Science.gov (United States)

    Allen, Jeanne Maree; Wright, Suzie; Innes, Maureen

    2014-01-01

    This paper reports on a study conducted into how one cohort of Master of Teaching pre-service visual art teachers perceived their learning in a fully online learning environment. Located in an Australian urban university, this qualitative study provided insights into a number of areas associated with higher education online learning, including…

  19. Associative learning in baboons (Papio papio) and humans (Homo sapiens): species differences in learned attention to visual features.

    Science.gov (United States)

    Fagot, J; Kruschke, J K; Dépy, D; Vauclair, J

    1998-10-01

    We examined attention shifting in baboons and humans during the learning of visual categories. Within a conditional matching-to-sample task, participants of the two species sequentially learned two two-feature categories which shared a common feature. Results showed that humans encoded both features of the initially learned category, but predominantly only the distinctive feature of the subsequently learned category. Although baboons initially encoded both features of the first category, they ultimately retained only the distinctive features of each category. Empirical data from the two species were analyzed with the 1996 ADIT connectionist model of Kruschke. ADIT fits the baboon data when the attentional shift rate is zero, and the human data when the attentional shift rate is not zero. These empirical and modeling results suggest species differences in learned attention to visual features.

  20. Visual research in clinical education.

    Science.gov (United States)

    Bezemer, Jeff

    2017-01-01

    The aim of this paper is to explore what might be gained from collecting and analysing visual data, such as photographs, scans, drawings, video and screen recordings, in clinical educational research. Its focus is on visual research that looks at teaching and learning 'as it naturally occurs' in the work place, in simulation centres and other sites, and also involves the collection and analysis of visual learning materials circulating in these sites. With the ubiquity of digital recording devices, video data and visual learning materials are now relatively cheap to collect. Compared to other domains of education research visual materials are not widely used in clinical education research. The paper sets out to identify and reflect on the possibilities for visual research using examples from an ethnographic study on surgical and inter-professional learning in the operating theatres of a London hospital. The paper shows how visual research enables recognition, analysis and critical evaluation of (1) the hidden curriculum, such as the meanings implied by embodied, visible actions of clinicians; (2) the ways in which clinical teachers design multimodal learning environments using a range of modes of communication available to them, combining, for instance, gesture and speech; (3) the informal assessment of clinical skills, and the intricate relation between trainee performance and supervisor feedback; (4) the potentialities and limitations of different visual learning materials, such as textbooks and videos, for representing medical knowledge. The paper concludes with theoretical and methodological reflections on what can be made visible, and therefore available for analysis, explanation and evaluation if visual materials are used for clinical education research, and what remains unaccounted for if written language remains the dominant mode in the research cycle. Opportunities for quantitative analysis and ethical implications are also discussed. © 2016 John Wiley

  1. Acquiring skill at medical image inspection: learning localized in early visual processes

    Science.gov (United States)

    Sowden, Paul T.; Davies, Ian R. L.; Roling, Penny; Watt, Simon J.

    1997-04-01

    Acquisition of the skill of medical image inspection could be due to changes in visual search processes, 'low-level' sensory learning, and higher level 'conceptual learning.' Here, we report two studies that investigate the extent to which learning in medical image inspection involves low- level learning. Early in the visual processing pathway cells are selective for direction of luminance contrast. We exploit this in the present studies by using transfer across direction of contrast as a 'marker' to indicate the level of processing at which learning occurs. In both studies twelve observers trained for four days at detecting features in x- ray images (experiment one equals discs in the Nijmegen phantom, experiment two equals micro-calcification clusters in digitized mammograms). Half the observers examined negative luminance contrast versions of the images and the remainder examined positive contrast versions. On the fifth day, observers swapped to inspect their respective opposite contrast images. In both experiments leaning occurred across sessions. In experiment one, learning did not transfer across direction of luminance contrast, while in experiment two there was only partial transfer. These findings are consistent with the contention that some of the leaning was localized early in the visual processing pathway. The implications of these results for current medical image inspection training schedules are discussed.

  2. Problem Posing with Realistic Mathematics Education Approach in Geometry Learning

    Science.gov (United States)

    Mahendra, R.; Slamet, I.; Budiyono

    2017-09-01

    One of the difficulties of students in the learning of geometry is on the subject of plane that requires students to understand the abstract matter. The aim of this research is to determine the effect of Problem Posing learning model with Realistic Mathematics Education Approach in geometry learning. This quasi experimental research was conducted in one of the junior high schools in Karanganyar, Indonesia. The sample was taken using stratified cluster random sampling technique. The results of this research indicate that the model of Problem Posing learning with Realistic Mathematics Education Approach can improve students’ conceptual understanding significantly in geometry learning especially on plane topics. It is because students on the application of Problem Posing with Realistic Mathematics Education Approach are become to be active in constructing their knowledge, proposing, and problem solving in realistic, so it easier for students to understand concepts and solve the problems. Therefore, the model of Problem Posing learning with Realistic Mathematics Education Approach is appropriately applied in mathematics learning especially on geometry material. Furthermore, the impact can improve student achievement.

  3. Facilitating Adoption of Web Tools for Problem and Project Based Learning Activities

    DEFF Research Database (Denmark)

    Khalid, Md. Saifuddin; Rongbutsri, Nikorn; Buus, Lillian

    2012-01-01

    and project based learning. In the area of problem and project based learning, facilitation is the core term and the teacher often has the role as facilitator or moderator instead of a teacher teaching. Technology adoption for learning activities needs facilitation, which is mostly absent. Sustainable......This paper builds on research directions from ‘activity theory’ and ‘learning design’ to provide ‘facilitation’ for students standing within decision making related to selection of web 2.0 tools and university provided web-based applications for supporting students activities within problem...... adoption might be facilitated based on tool appropriation with activities associated with courses and projects. Our mapping of different tools in a framework is reported based on interviews, observations, narratives and survey. A direction towards facilitation process for adoption is discussed as part...

  4. Discovery learning model with geogebra assisted for improvement mathematical visual thinking ability

    Science.gov (United States)

    Juandi, D.; Priatna, N.

    2018-05-01

    The main goal of this study is to improve the mathematical visual thinking ability of high school student through implementation the Discovery Learning Model with Geogebra Assisted. This objective can be achieved through study used quasi-experimental method, with non-random pretest-posttest control design. The sample subject of this research consist of 62 senior school student grade XI in one of school in Bandung district. The required data will be collected through documentation, observation, written tests, interviews, daily journals, and student worksheets. The results of this study are: 1) Improvement students Mathematical Visual Thinking Ability who obtain learning with applied the Discovery Learning Model with Geogebra assisted is significantly higher than students who obtain conventional learning; 2) There is a difference in the improvement of students’ Mathematical Visual Thinking ability between groups based on prior knowledge mathematical abilities (high, medium, and low) who obtained the treatment. 3) The Mathematical Visual Thinking Ability improvement of the high group is significantly higher than in the medium and low groups. 4) The quality of improvement ability of high and low prior knowledge is moderate category, in while the quality of improvement ability in the high category achieved by student with medium prior knowledge.

  5. Smart-system of distance learning of visually impaired people based on approaches of artificial intelligence

    Science.gov (United States)

    Samigulina, Galina A.; Shayakhmetova, Assem S.

    2016-11-01

    Research objective is the creation of intellectual innovative technology and information Smart-system of distance learning for visually impaired people. The organization of the available environment for receiving quality education for visually impaired people, their social adaptation in society are important and topical issues of modern education.The proposed Smart-system of distance learning for visually impaired people can significantly improve the efficiency and quality of education of this category of people. The scientific novelty of proposed Smart-system is using intelligent and statistical methods of processing multi-dimensional data, and taking into account psycho-physiological characteristics of perception and awareness learning information by visually impaired people.

  6. Mobile Learning for Higher Education in Problem-Based Learning Environments

    DEFF Research Database (Denmark)

    Rongbutsri, Nikorn

    2011-01-01

    This paper describes the PhD project on Mobile Learning for Higher Education in Problem-Based Learning Environment which aims to understand how students gain benefit from using mobile devices in the aspect of project work collaboration. It demonstrates research questions, theoretical perspective...

  7. An e-learning approach to informed problem solving

    Directory of Open Access Journals (Sweden)

    Georg Weichhart

    2012-06-01

    Full Text Available When taking into account individualized learning processes not only content and interaction facilities need to be re-considered, but also the design of learning processes per se. Besides explicitness of learning objectives, interactive means of education need to enable intertwining content and communication elements as basic elements of active learning in a flexible way while preserving a certain structure of the learning process. Intelligibility Catchers are a theoretically grounded framework to enable such individualized processes. It allows learners and teachers agreeing and determining a desired learning outcome in written form. This type of e-learning contract enables students to individually explore content and participate in social interactions, while being guided by a transparent learning process structure. The developed implementation empowers learners in terms of creative problem-solving capabilities, and requires adaptation of classroom situations. The framework and its supporting semantic e-learning environment not only enables diverse learning and problem solving processes, but also supports the collaborative construction of e-learning contracts.

  8. Visual Access in Interpreter-Mediated Learning Situations for Deaf and Hard-of-Hearing High School Students Where an Artifact Is in Use.

    Science.gov (United States)

    Berge, Sigrid Slettebakk; Thomassen, Gøril

    2016-04-01

    This article highlights interpreter-mediated learning situations for deaf high school students where such mediated artifacts as technical machines, models, and computer graphics are used by the teacher to illustrate his or her teaching. In these situations, the teacher's situated gestures and utterances, and the artifacts will contribute independent pieces of information. However, the deaf student can only have his or her visual attention focused on one source at a time. The problem to be addressed is how the interpreter coordinates the mediation when it comes to deaf students' visual orientation. The presented discourse analysis is based on authentic video recordings from inclusive learning situations in Norway. The theoretical framework consists of concepts of role, footing, and face-work (Goffman, E. (1959). The presentation of self in everyday life. London, UK: Penguin Books). The findings point out dialogical impediments to visual access in interpreter-mediated learning situations, and the article discusses the roles and responsibilities of teachers and educational interpreters. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Implementation of modified team-based learning within a problem based learning medical curriculum: a focus group study.

    Science.gov (United States)

    Burgess, Annette; Roberts, Chris; Ayton, Tom; Mellis, Craig

    2018-04-10

    While Problem Based Learning (PBL) has long been established internationally, Team-based learning (TBL) is a relatively new pedagogy in medical curricula. Both PBL and TBL are designed to facilitate a learner-centred approach, where students, in interactive small groups, use peer-assisted learning to solve authentic, professionally relevant problems. Differences, however, exist between PBL and TBL in terms of preparation requirements, group numbers, learning strategies, and class structure. Although there are many similarities and some differences between PBL and TBL, both rely on constructivist learning theory to engage and motivate students in their learning. The aim of our study was to qualitatively explore students' perceptions of having their usual PBL classes run in TBL format. In 2014, two iterations in a hybrid PBL curriculum were converted to TBL format, with two PBL groups of 10 students each, being combined to form one TBL class of 20, split into four groups of five students. At the completion of two TBL sessions, all students were invited to attend one of two focus groups, with 14 attending. Thematic analysis was used to code and categorise the data into themes, with constructivist theory used as a conceptual framework to identify recurrent themes. Four key themes emerged; guided learning, problem solving, collaborative learning, and critical reflection. Although structured, students were attracted to the active and collaborative approach of TBL. They perceived the key advantages of TBL to include the smaller group size, the preparatory Readiness Assurance Testing process, facilitation by a clinician, an emphasis on basic science concepts, and immediate feedback. The competitiveness of TBL was seen as a spur to learning. These elements motivated students to prepare, promoted peer assisted teaching and learning, and focussed team discussion. An important advantage of PBL over TBL, was the opportunity for adequate clinical reasoning within the problem

  10. Learning of Rule Ensembles for Multiple Attribute Ranking Problems

    Science.gov (United States)

    Dembczyński, Krzysztof; Kotłowski, Wojciech; Słowiński, Roman; Szeląg, Marcin

    In this paper, we consider the multiple attribute ranking problem from a Machine Learning perspective. We propose two approaches to statistical learning of an ensemble of decision rules from decision examples provided by the Decision Maker in terms of pairwise comparisons of some objects. The first approach consists in learning a preference function defining a binary preference relation for a pair of objects. The result of application of this function on all pairs of objects to be ranked is then exploited using the Net Flow Score procedure, giving a linear ranking of objects. The second approach consists in learning a utility function for single objects. The utility function also gives a linear ranking of objects. In both approaches, the learning is based on the boosting technique. The presented approaches to Preference Learning share good properties of the decision rule preference model and have good performance in the massive-data learning problems. As Preference Learning and Multiple Attribute Decision Aiding share many concepts and methodological issues, in the introduction, we review some aspects bridging these two fields. To illustrate the two approaches proposed in this paper, we solve with them a toy example concerning the ranking of a set of cars evaluated by multiple attributes. Then, we perform a large data experiment on real data sets. The first data set concerns credit rating. Since recent research in the field of Preference Learning is motivated by the increasing role of modeling preferences in recommender systems and information retrieval, we chose two other massive data sets from this area - one comes from movie recommender system MovieLens, and the other concerns ranking of text documents from 20 Newsgroups data set.

  11. The Use of Open-Ended Problem-Based Learning Scenarios in an Interdisciplinary Biotechnology Class: Evaluation of a Problem-Based Learning Course Across Three Years

    Directory of Open Access Journals (Sweden)

    Todd R. Steck

    2012-02-01

    Full Text Available Use of open-ended Problem-Based Learning (PBL in biology classrooms has been limited by the difficulty in designing problem scenarios such that the content learned in a course can be predicted and controlled, the lack of familiarity of this method of instruction by faculty, and the difficulty in assessment. Here we present the results of a study in which we developed a team-based interdisciplinary course that combined the fields of biology and civil engineering across three years. We used PBL scenarios as the only learning tool, wrote the problem scenarios, and developed the means to assess these courses and the results of that assessment. Our data indicates that PBL changed students’ perception of their learning in content knowledge and promoted a change in students’ learning styles. Although no  statistically significant improvement in problem-solving skills and critical thinking skills was observed, students reported substantial changes in their problem-based learning strategies and critical thinking skills.

  12. Mobile Guide System Using Problem-Solving Strategy for Museum Learning: A Sequential Learning Behavioural Pattern Analysis

    Science.gov (United States)

    Sung, Y.-T.; Hou, H.-T.; Liu, C.-K.; Chang, K.-E.

    2010-01-01

    Mobile devices have been increasingly utilized in informal learning because of their high degree of portability; mobile guide systems (or electronic guidebooks) have also been adopted in museum learning, including those that combine learning strategies and the general audio-visual guide systems. To gain a deeper understanding of the features and…

  13. Making Connections among Multiple Visual Representations: How Do Sense-Making Skills and Perceptual Fluency Relate to Learning of Chemistry Knowledge?

    Science.gov (United States)

    Rau, Martina A.

    2018-01-01

    To learn content knowledge in science, technology, engineering, and math domains, students need to make connections among visual representations. This article considers two kinds of connection-making skills: (1) "sense-making skills" that allow students to verbally explain mappings among representations and (2) "perceptual…

  14. Learning Grasp Strategies Composed of Contact Relative Motions

    Science.gov (United States)

    Platt, Robert, Jr.

    2007-01-01

    Of central importance to grasp synthesis algorithms are the assumptions made about the object to be grasped and the sensory information that is available. Many approaches avoid the issue of sensing entirely by assuming that complete information is available. In contrast, this paper proposes an approach to grasp synthesis expressed in terms of units of control that simultaneously change the contact configuration and sense information about the object and the relative manipulator-object pose. These units of control, known as contact relative motions (CRMs), allow the grasp synthesis problem to be recast as an optimal control problem where the goal is to find a strategy for executing CRMs that leads to a grasp in the shortest number of steps. An experiment is described that uses Robonaut, the NASA-JSC space humanoid, to show that CRMs are a viable means of synthesizing grasps. However, because of the limited amount of information that a single CRM can sense, the optimal control problem may be partially observable. This paper proposes expressing the problem as a k-order Markov Decision Process (MDP) and solving it using Reinforcement Learning. This approach is tested in a simulation of a two-contact manipulator that learns to grasp an object. Grasp strategies learned in simulation are tested on the physical Robonaut platform and found to lead to grasp configurations consistently.

  15. Posttraining transcranial magnetic stimulation of striate cortex disrupts consolidation early in visual skill learning.

    Science.gov (United States)

    De Weerd, Peter; Reithler, Joel; van de Ven, Vincent; Been, Marin; Jacobs, Christianne; Sack, Alexander T

    2012-02-08

    Practice-induced improvements in skilled performance reflect "offline " consolidation processes extending beyond daily training sessions. According to visual learning theories, an early, fast learning phase driven by high-level areas is followed by a late, asymptotic learning phase driven by low-level, retinotopic areas when higher resolution is required. Thus, low-level areas would not contribute to learning and offline consolidation until late learning. Recent studies have challenged this notion, demonstrating modified responses to trained stimuli in primary visual cortex (V1) and offline activity after very limited training. However, the behavioral relevance of modified V1 activity for offline consolidation of visual skill memory in V1 after early training sessions remains unclear. Here, we used neuronavigated transcranial magnetic stimulation (TMS) directed to a trained retinotopic V1 location to test for behaviorally relevant consolidation in human low-level visual cortex. Applying TMS to the trained V1 location within 45 min of the first or second training session strongly interfered with learning, as measured by impaired performance the next day. The interference was conditional on task context and occurred only when training in the location targeted by TMS was followed by training in a second location before TMS. In this condition, high-level areas may become coupled to the second location and uncoupled from the previously trained low-level representation, thereby rendering consolidation vulnerable to interference. Our data show that, during the earliest phases of skill learning in the lowest-level visual areas, a behaviorally relevant form of consolidation exists of which the robustness is controlled by high-level, contextual factors.

  16. Using isomorphic problems to learn introductory physics

    Directory of Open Access Journals (Sweden)

    Shih-Yin Lin

    2011-08-01

    Full Text Available In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the recitation in which they had to first learn from a solved problem provided and take advantage of what they learned from it to solve another problem (which we call the quiz problem which was isomorphic. Previous research suggests that the multiple-concept quiz problem is challenging for introductory students. Students in different recitation classes received different interventions in order to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. We also conducted think-aloud interviews with four introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. We found that most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem. However, they were not necessarily able to apply the principles correctly. Research suggests that more scaffolding is needed to help students in applying these principles appropriately. We outline a few possible strategies for future investigation.

  17. Using isomorphic problems to learn introductory physics

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2011-12-01

    In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the recitation in which they had to first learn from a solved problem provided and take advantage of what they learned from it to solve another problem (which we call the quiz problem) which was isomorphic. Previous research suggests that the multiple-concept quiz problem is challenging for introductory students. Students in different recitation classes received different interventions in order to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. We also conducted think-aloud interviews with four introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. We found that most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem. However, they were not necessarily able to apply the principles correctly. Research suggests that more scaffolding is needed to help students in applying these principles appropriately. We outline a few possible strategies for future investigation.

  18. Development of a visual tool to analyze interactions in forums in an e-learning environment

    Directory of Open Access Journals (Sweden)

    Cláudio Filipe Tereso

    2016-12-01

    Full Text Available This article presents VAFAE – Forum Access Visualization on a Distance Learning Environment, a web tool that visually maps Universidade Aberta’s (UAb students’ interaction with a course available on the e-learning platform. Raw data is extracted from the log files that are then transformed to obtain the necessary format. Next, different visualization techniques are applied with the aim of improving and streamlining the underlying information. In a more specific way, VAFAE aims at helping teachers to better understand the level and quality of the interaction of the students with the modules of the learning units in UAb’s distance learning environment.

  19. Keefektifan setting TPS dalam pendekatan discovery learning dan problem-based learning pada pembelajaran materi lingkaran SMP

    Directory of Open Access Journals (Sweden)

    Rahmi Hidayati

    2017-05-01

    The purpose of this study was to describe the effectiveness of setting Think Pair Share (TPS in the approach to discovery learning and problem-based learning in terms of student achievement, mathematical communication skills, and interpersonal skills of the student.  This study was a quasi-experimental study using the pretest-posttest nonequivalent group design. The research population comprised all Year VIII students of SMP Negeri 1 Yogyakarta. The research sample was randomly selected from eight classes, two classes were elected. The instrument used in this study is the learning achievement test, a test of mathematical communication skills, and interpersonal skills student questionnaires. To test the effectiveness of setting Think Pair Share (TPS in the approach to discovery learning and problem-based learning, the one sample t-test was carried out. Then, to investigate the difference in effectiveness between the setting Think Pair Share (TPS in the approach to discovery learning and problem-based learning, the Multivariate Analysis of Variance (MANOVA was carried out. The research findings indicate that the setting TPS discovery approach to learning and problem-based approach to learning (PBL is effective in terms of learning achievement, mathematical communication skills, and interpersonal skills of the students. No difference in effectiveness between setting TPS discovery approach to learning and problem-based learning (PBL in terms of learning achievement, mathematical communication skills, and interpersonal skills of the students. Keywords: TPS setting in discovery learning approach, in problem-based learning, academic achievement, mathematical communication skills, and interpersonal skills of the student

  20. Achievement of learning outcome after implemented physical modules based on problem based learning

    Science.gov (United States)

    Isna, R.; Masykuri, M.; Sukarmin

    2018-03-01

    Implementation of Problem BasedLearning (PBL) modules can grow the students' thinking skills to solve the problems in daily life and equip the students into higher education levels. The purpose of this research is to know the achievement of learning outcome after implementation physics module based on PBL in Newton,s Law of Gravity. This research method use the experimental method with posttest only group design. To know the achievement of student learning outcomes was analyzed using t test through application of SPSS 18. Based on research result, it is found that the average of student learning outcomes after appliying physics module based on PBL has reached the minimal exhaustiveness criteria. In addition, students' scientific attitudes also improved at each meeting. Presentation activities which contained at learning sync are also able to practice speaking skills and broaden their knowledge. Looking at some shortcomings during the study, it is suggested the issues raised into learning should be a problem close to the life of students so that, the students are more active and enthusiastic in following the learning of physics.

  1. Visual Supports for the Learning Disabled: A Handbook for Educators

    Science.gov (United States)

    Sells, Leighan

    2013-01-01

    A large percent of the population is affected by learning disabilities, which significantly impacts individuals and families. Much research has been done to identify effective ways to best help the students with learning disabilities. One of the more promising strategies is the use of visual supports to enhance these students' understanding…

  2. A qualitative inquiry into the effects of visualization on high school chemistry students' learning process of molecular structure

    Science.gov (United States)

    Deratzou, Susan

    This research studies the process of high school chemistry students visualizing chemical structures and its role in learning chemical bonding and molecular structure. Minimal research exists with high school chemistry students and more research is necessary (Gabel & Sherwood, 1980; Seddon & Moore, 1986; Seddon, Tariq, & Dos Santos Veiga, 1984). Using visualization tests (Ekstrom, French, Harman, & Dermen, 1990a), a learning style inventory (Brown & Cooper, 1999), and observations through a case study design, this study found visual learners performed better, but needed more practice and training. Statistically, all five pre- and post-test visualization test comparisons were highly significant in the two-tailed t-test (p > .01). The research findings are: (1) Students who tested high in the Visual (Language and/or Numerical) and Tactile Learning Styles (and Social Learning) had an advantage. Students who learned the chemistry concepts more effectively were better at visualizing structures and using molecular models to enhance their knowledge. (2) Students showed improvement in learning after visualization practice. Training in visualization would improve students' visualization abilities and provide them with a way to think about these concepts. (3) Conceptualization of concepts indicated that visualizing ability was critical and that it could be acquired. Support for this finding was provided by pre- and post-Visualization Test data with a highly significant t-test. (4) Various molecular animation programs and websites were found to be effective. (5) Visualization and modeling of structures encompassed both two- and three-dimensional space. The Visualization Test findings suggested that the students performed better with basic rotation of structures as compared to two- and three-dimensional objects. (6) Data from observations suggest that teaching style was an important factor in student learning of molecular structure. (7) Students did learn the chemistry concepts

  3. On a new visualization tool for quantum systems and on a time-optimal control problem for quantum gates

    International Nuclear Information System (INIS)

    Garon, Ariane

    2014-01-01

    Since the foundations of quantum physics have been laid, our knowledge of it never ceased to grow and this field of science naturally split into diverse specialized branches. The first part of this thesis focuses on a problem which concerns all branches of quantum physics, which is the visualization of quantum systems. The non-intuitive aspect of quantum physics justifies a shared desire to visualize quantum systems. In the present work, we develop a method to visualize any operators in these systems, including in particular state operators (density matrices), Hamiltonians and propagators. The method, referred to as DROPS (Discrete Representation of spin OPeratorS), is based on a generalization of Wigner representations, presented in this document. The resulting visualization of an operator A is called its DROPS representation or visualization. We demonstrate its intuitive character by illustrating a series of concepts in nuclear magnetic resonance (NMR) spectroscopy for systems consisting of two spin-1/2 particles. The second part of this thesis is concerned with a problem of optimal control which finds applications in the fields of NMR spectroscopy, medical imagery and quantum computing, to cite a few. The problem of creating a propagator in the shortest amount of time is considered, and the results are extended to solve the closely related problem of creating rotations in the smallest amount of time. The approach used here differs from the previous results on the subject by solving the problem using the Pontryagin's maximum principle and by its detailed consideration of singular controls and trajectories.

  4. Is blended learning and problem-based learning course design suited to develop future public health leaders? An explorative European study.

    Science.gov (United States)

    Könings, Karen D; de Jong, Nynke; Lohrmann, Christa; Sumskas, Linas; Smith, Tony; O'Connor, Stephen J; Spanjers, Ingrid A E; Van Merriënboer, Jeroen J G; Czabanowska, Katarzyna

    2018-01-01

    Public health leaders are confronted with complex problems, and developing effective leadership competencies is essential. The teaching of leadership is still not common in public health training programs around the world. A reconceptualization of professional training is needed and can benefit from innovative educational approaches. Our aim was to explore learners' perceptions of the effectiveness and appeal of a public health leadership course using problem-based, blended learning methods that used virtual learning environment technologies. In this cross-sectional evaluative study, the Self-Assessment Instrument of Competencies for Public Health Leaders was administered before and after an online, blended-learning, problem-based (PBL) leadership course. An evaluation questionnaire was also used to measure perceptions of blended learning, problem-based learning, and tutor functioning among 19 public health professionals from The Netherlands ( n  = 8), Lithuania ( n  = 5), and Austria ( n  = 6).Participants showed overall satisfaction and knowledge gains related to public health leadership competencies in six of eight measured areas, especially Political Leadership and Systems Thinking. Some perceptions of blended learning and PBL varied between the institutions. This might have been caused by lack of experience of the educational approaches, differing professional backgrounds, inexperience of communicating in the online setting, and different expectations towards the course. Blended, problem-based learning might be an effective way to develop leadership competencies among public health professionals in international and interdisciplinary context.

  5. Problem-Based Learning in Formal and Informal Learning Environments

    Science.gov (United States)

    Shimic, Goran; Jevremovic, Aleksandar

    2012-01-01

    Problem-based learning (PBL) is a student-centered instructional strategy in which students solve problems and reflect on their experiences. Different domains need different approaches in the design of PBL systems. Therefore, we present one case study in this article: A Java Programming PBL. The application is developed as an additional module for…

  6. Communicating Science Concepts to Individuals with Visual Impairments Using Short Learning Modules

    Science.gov (United States)

    Stender, Anthony S.; Newell, Ryan; Villarreal, Eduardo; Swearer, Dayne F.; Bianco, Elisabeth; Ringe, Emilie

    2016-01-01

    Of the 6.7 million individuals in the United States who are visually impaired, 63% are unemployed, and 59% have not attained an education beyond a high school diploma. Providing a basic science education to children and adults with visual disabilities can be challenging because most scientific learning relies on visual demonstrations. Creating…

  7. Collaborative Learning in Problem Solving: A Case Study in Metacognitive Learning

    Directory of Open Access Journals (Sweden)

    Shelly L. Wismath

    2015-12-01

    Full Text Available Problem solving and collaborative communication are among the key 21st century skills educators want students to develop. This paper presents results from a study of the collaborative work patterns of 133 participants from a university level course designed to develop transferable problem-solving skills. Most of the class time in this course was spent on actually solving puzzles, with minimal direct instruction; students were allowed to work either independently or in small groups of two or more, as they preferred, and to move back and forth between these two modalities as they wished. A distinctive student-driven pattern blending collaborative and independent endeavour was observed, consistently over four course offerings in four years. We discuss a number of factors which appear to be related to this variable pattern of independent and collaborative enterprise, including the thinking and learning styles of the individuals, the preference of the individuals, the types of problems being worked on, and the stage in a given problem at which students were working. We also consider implications of these factors for the teaching of problem solving, arguing that the development of collaborative problem solving abilities is an important metacognitive skill.

  8. Developing a Blended Learning-Based Method for Problem-Solving in Capability Learning

    Science.gov (United States)

    Dwiyogo, Wasis D.

    2018-01-01

    The main objectives of the study were to develop and investigate the implementation of blended learning based method for problem-solving. Three experts were involved in the study and all three had stated that the model was ready to be applied in the classroom. The implementation of the blended learning-based design for problem-solving was…

  9. Contributions of Letter-Speech Sound Learning and Visual Print Tuning to Reading Improvement: Evidence from Brain Potential and Dyslexia Training Studies

    NARCIS (Netherlands)

    Fraga González, G.; Žarić, G.; Tijms, J.; Bonte, M.; van der Molen, M.W.

    We use a neurocognitive perspective to discuss the contribution of learning letter-speech sound (L-SS) associations and visual specialization in the initial phases of reading in dyslexic children. We review findings from associative learning studies on related cognitive skills important for

  10. High-resolution Self-Organizing Maps for advanced visualization and dimension reduction.

    Science.gov (United States)

    Saraswati, Ayu; Nguyen, Van Tuc; Hagenbuchner, Markus; Tsoi, Ah Chung

    2018-05-04

    Kohonen's Self Organizing feature Map (SOM) provides an effective way to project high dimensional input features onto a low dimensional display space while preserving the topological relationships among the input features. Recent advances in algorithms that take advantages of modern computing hardware introduced the concept of high resolution SOMs (HRSOMs). This paper investigates the capabilities and applicability of the HRSOM as a visualization tool for cluster analysis and its suitabilities to serve as a pre-processor in ensemble learning models. The evaluation is conducted on a number of established benchmarks and real-world learning problems, namely, the policeman benchmark, two web spam detection problems, a network intrusion detection problem, and a malware detection problem. It is found that the visualization resulted from an HRSOM provides new insights concerning these learning problems. It is furthermore shown empirically that broad benefits from the use of HRSOMs in both clustering and classification problems can be expected. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Problem-Based Learning in Social Work Education

    DEFF Research Database (Denmark)

    Monrad, Merete; Mølholt, Anne-Kirstine

    2017-01-01

    ’ experiences of PBL. In this article we address this gap by exploring experiences of learning and learning preferences among master’s-level students in a Danish social work education setting where extensive problem-based project work is used. We find a discrepancy between students’ preferred learning and when...

  12. Spelling pronunciation and visual preview both facilitate learning to spell irregular words.

    Science.gov (United States)

    Hilte, Maartje; Reitsma, Pieter

    2006-12-01

    Spelling pronunciations are hypothesized to be helpful in building up relatively stable phonologically underpinned orthographic representations, particularly for learning words with irregular phoneme-grapheme correspondences. In a four-week computer-based training, the efficacy of spelling pronunciations and previewing the spelling patterns on learning to spell loan words in Dutch, originating from French and English, was examined in skilled and less skilled spellers with varying ages. Reading skills were taken into account. Overall, compared to normal pronunciation, spelling pronunciation facilitated the learning of the correct spelling of irregular words, but it appeared to be no more effective than previewing. Differences between training conditions appeared to fade with older spellers. Less skilled young spellers seemed to profit more from visual examination of the word as compared to practice with spelling pronunciations. The findings appear to indicate that spelling pronunciation and allowing a preview can both be effective ways to learn correct spellings of orthographically unpredictable words, irrespective of age or spelling ability.

  13. Accurate or assumed: visual learning in children with ASD.

    Science.gov (United States)

    Trembath, David; Vivanti, Giacomo; Iacono, Teresa; Dissanayake, Cheryl

    2015-10-01

    Children with autism spectrum disorder (ASD) are often described as visual learners. We tested this assumption in an experiment in which 25 children with ASD, 19 children with global developmental delay (GDD), and 17 typically developing (TD) children were presented a series of videos via an eye tracker in which an actor instructed them to manipulate objects in speech-only and speech + pictures conditions. We found no group differences in visual attention to the stimuli. The GDD and TD groups performed better when pictures were available, whereas the ASD group did not. Performance of children with ASD and GDD was positively correlated with visual attention and receptive language. We found no evidence of a prominent visual learning style in the ASD group.

  14. Effects of cooperative and problem-solving learning strategies on ...

    African Journals Online (AJOL)

    Learning is internalised faster and better when students are given opportunity to interact with one another in small groups; when topics are structured to solve real life problems, studying becomes fun and learning is facilitated and internalised; students learn better when a problem is used as a starting point for new ...

  15. Problem-Based Educational Game Becomes Student-Centered Learning Environment

    Science.gov (United States)

    Rodkroh, Pornpimon; Suwannatthachote, Praweenya; Kaemkate, Wannee

    2013-01-01

    Problem-based educational games are able to provide a fun and motivating environment for teaching and learning of certain subjects. However, most educational game models do not address the learning elements of problem-based educational games. This study aims to synthesize and to propose the important elements to facilitate the learning process and…

  16. Visual-Motor Learning Using Haptic Devices: How Best to Train Surgeons?

    Directory of Open Access Journals (Sweden)

    Oscar Giles

    2012-05-01

    Full Text Available Laparoscopic surgery has revolutionised medicine but requires surgeons to learn new visual-motor mappings. The optimal method for training surgeons is unknown. For instance, it may be easier to learn planar movements when training is constrained to a plane, since this forces the surgeon to develop an appropriate perceptual-motor map. In contrast, allowing the surgeon to move without constraints could improve performance because this provides greater experience of the control dynamics of the device. In order to test between these alternatives, we created an experimental tool that connected a commercially available robotic arm with specialised software that presents visual stimuli and objectively records kinematics. Participants were given the task of generating a series of aiming movements to move a visual cursor to a series of targets. The actions required movement along a horizontal plane, whereas the visual display was a screen positioned perpendicular to this plane (ie, vertically. One group (n=8 received training where the force field constrained their movement to the correct plane of action, whilst a second group (n=8 trained without constraints. On test trials (after training the unconstrained group showed better performance, as indexed by reduced movement duration and reduced path length. These results show that participants who explored the entire action space had an advantage, which highlights the importance of experiencing the full dynamics of a control device and the action space when learning a new visual-motor mapping.

  17. Improvement of The Ability of Junior High School Students Thinking Through Visual Learning Assisted Geo gbra Tutorial

    Science.gov (United States)

    Elvi, M.; Nurjanah

    2017-02-01

    This research is distributed on the issue of the lack of visual thinking ability is a must-have basic ability of students in learning geometry. The purpose of this research is to investigate and elucide: 1) the enhancement of visual thinking ability of students to acquire learning assisted with geogebra tutorial learning: 2) the increase in visual thinking ability of students who obtained a model of learning assisted with geogebra and students who obtained a regular study of KAM (high, medium, and low). This research population is grade VII in Bandung Junior High School. The instruments used to collect data in this study consisted of instruments of the test and the observation sheet. The data obtained were analyzed using the test average difference i.e. Test-t and ANOVA Test one line to two lines. The results showed that: 1) the attainment and enhancement of visual thinking ability of students to acquire learning assisted geogebra tutorial better than students who acquire learning; 2) there may be differences of visual upgrade thinking students who acquire the learning model assisted with geogebra tutorial earn regular learning of KAM (high, medium and low).

  18. Improving mathematical problem solving ability through problem-based learning and authentic assessment for the students of Bali State Polytechnic

    Science.gov (United States)

    Darma, I. K.

    2018-01-01

    This research is aimed at determining: 1) the differences of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) the differences of mathematical problem solving ability between the students facilitated with authentic and conventional assessment model, and 3) interaction effect between learning and assessment model on mathematical problem solving. The research was conducted in Bali State Polytechnic, using the 2x2 experiment factorial design. The samples of this research were 110 students. The data were collected using a theoretically and empirically-validated test. Instruments were validated by using Aiken’s approach of technique content validity and item analysis, and then analyzed using anova stylistic. The result of the analysis shows that the students facilitated with problem-based learning and authentic assessment models get the highest score average compared to the other students, both in the concept understanding and mathematical problem solving. The result of hypothesis test shows that, significantly: 1) there is difference of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) there is difference of mathematical problem solving ability between the students facilitated with authentic assessment model and conventional assessment model, and 3) there is interaction effect between learning model and assessment model on mathematical problem solving. In order to improve the effectiveness of mathematics learning, collaboration between problem-based learning model and authentic assessment model can be considered as one of learning models in class.

  19. Learning and interactivity in solving a transformation problem.

    Science.gov (United States)

    Guthrie, Lisa G; Vallée-Tourangeau, Frédéric; Vallée-Tourangeau, Gaëlle; Howard, Chelsea

    2015-07-01

    Outside the psychologist's laboratory, thinking proceeds on the basis of a great deal of interaction with artefacts that are recruited to augment problem-solving skills. The role of interactivity in problem solving was investigated using a river-crossing problem. In Experiment 1A, participants completed the same problem twice, once in a low interactivity condition, and once in a high interactivity condition (with order counterbalanced across participants). Learning, as gauged in terms of latency to completion, was much more pronounced when the high interactivity condition was experienced second. When participants first completed the task in the high interactivity condition, transfer to the low interactivity condition during the second attempt was limited; Experiment 1B replicated this pattern of results. Participants thus showed greater facility to transfer their experience of completing the problem from a low to a high interactivity condition. Experiment 2 was designed to determine the amount of learning in a low and high interactivity condition; in this experiment participants completed the problem twice, but level of interactivity was manipulated between subjects. Learning was evident in both the low and high interactivity groups, but latency per move was significantly faster in the high interactivity group, in both presentations. So-called problem isomorphs instantiated in different task ecologies draw upon different skills and abilities; a distributed cognition analysis may provide a fruitful perspective on learning and transfer.

  20. Problem Solving and Learning

    Science.gov (United States)

    Singh, Chandralekha

    2009-07-01

    One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.

  1. Distance learning, problem based learning and dynamic knowledge networks.

    Science.gov (United States)

    Giani, U; Martone, P

    1998-06-01

    This paper is an attempt to develop a distance learning model grounded upon a strict integration of problem based learning (PBL), dynamic knowledge networks (DKN) and web tools, such as hypermedia documents, synchronous and asynchronous communication facilities, etc. The main objective is to develop a theory of distance learning based upon the idea that learning is a highly dynamic cognitive process aimed at connecting different concepts in a network of mutually supporting concepts. Moreover, this process is supposed to be the result of a social interaction that has to be facilitated by the web. The model was tested by creating a virtual classroom of medical and nursing students and activating a learning session on the concept of knowledge representation in health sciences.

  2. Looking to Learn: The Effects of Visual Guidance on Observational Learning of the Golf Swing.

    Science.gov (United States)

    D'Innocenzo, Giorgia; Gonzalez, Claudia C; Williams, A Mark; Bishop, Daniel T

    2016-01-01

    Skilled performers exhibit more efficient gaze patterns than less-skilled counterparts do and they look more frequently at task-relevant regions than at superfluous ones. We examine whether we may guide novices' gaze towards relevant regions during action observation in order to facilitate their learning of a complex motor skill. In a Pre-test-Post-test examination of changes in their execution of the full golf swing, 21 novices viewed one of three videos at intervention: i) a skilled golfer performing 10 swings (Free Viewing, FV); ii) the same video with transient colour cues superimposed to highlight key features of the setup (Visual Guidance; VG); iii) or a History of Golf video (Control). Participants in the visual guidance group spent significantly more time looking at cued areas than did the other two groups, a phenomenon that persisted after the cues had been removed. Moreover, the visual guidance group improved their swing execution at Post-test and on a Retention test one week later. Our results suggest that visual guidance to cued areas during observational learning of complex motor skills may accelerate acquisition of the skill.

  3. Effect of Worksheet Scaffolds on Student Learning in Problem-Based Learning

    Science.gov (United States)

    Choo, Serene S. Y.; Rotgans, Jerome I.; Yew, Elaine H. J.; Schmidt, Henk G.

    2011-01-01

    The purpose of this study was to investigate the effect of worksheets as a scaffolding tool on students' learning achievement in a problem-based learning (PBL) environment. Seventeen PBL classes (N = 241) were randomly assigned to two experimental groups--one with a worksheet provided and the other without. Students' learning of the topic at hand…

  4. Brain signal complexity rises with repetition suppression in visual learning.

    Science.gov (United States)

    Lafontaine, Marc Philippe; Lacourse, Karine; Lina, Jean-Marc; McIntosh, Anthony R; Gosselin, Frédéric; Théoret, Hugo; Lippé, Sarah

    2016-06-21

    Neuronal activity associated with visual processing of an unfamiliar face gradually diminishes when it is viewed repeatedly. This process, known as repetition suppression (RS), is involved in the acquisition of familiarity. Current models suggest that RS results from interactions between visual information processing areas located in the occipito-temporal cortex and higher order areas, such as the dorsolateral prefrontal cortex (DLPFC). Brain signal complexity, which reflects information dynamics of cortical networks, has been shown to increase as unfamiliar faces become familiar. However, the complementarity of RS and increases in brain signal complexity have yet to be demonstrated within the same measurements. We hypothesized that RS and brain signal complexity increase occur simultaneously during learning of unfamiliar faces. Further, we expected alteration of DLPFC function by transcranial direct current stimulation (tDCS) to modulate RS and brain signal complexity over the occipito-temporal cortex. Participants underwent three tDCS conditions in random order: right anodal/left cathodal, right cathodal/left anodal and sham. Following tDCS, participants learned unfamiliar faces, while an electroencephalogram (EEG) was recorded. Results revealed RS over occipito-temporal electrode sites during learning, reflected by a decrease in signal energy, a measure of amplitude. Simultaneously, as signal energy decreased, brain signal complexity, as estimated with multiscale entropy (MSE), increased. In addition, prefrontal tDCS modulated brain signal complexity over the right occipito-temporal cortex during the first presentation of faces. These results suggest that although RS may reflect a brain mechanism essential to learning, complementary processes reflected by increases in brain signal complexity, may be instrumental in the acquisition of novel visual information. Such processes likely involve long-range coordinated activity between prefrontal and lower order visual

  5. Audiovisual Blindsight: Audiovisual learning in the absence of primary visual cortex

    OpenAIRE

    Mehrdad eSeirafi; Peter eDe Weerd; Alan J Pegna; Beatrice ede Gelder

    2016-01-01

    Learning audiovisual associations is mediated by the primary cortical areas; however, recent animal studies suggest that such learning can take place even in the absence of the primary visual cortex. Other studies have demonstrated the involvement of extra-geniculate pathways and especially the superior colliculus (SC) in audiovisual association learning. Here, we investigated such learning in a rare human patient with complete loss of the bilateral striate cortex. We carried out an implicit...

  6. Measuring the influence of Cooperative Learning and Project Based Learning on problem solvin skill.

    OpenAIRE

    García Martín, Javier; Pérez Martínez, Jorge Enrique

    2011-01-01

    The aim of this study is to evaluate the effects obtained after applying two active learning methodologies (cooperative learning and project based learning) to the achievement of the competence problem solving. This study was carried out at the Technical University of Madrid, where these methodologies were applied to two Operating Systems courses. The first hypothesis tested was whether the implementation of active learning methodologies favours the achievement of ?problem solving?. The secon...

  7. Perceptual Learning in Children With Infantile Nystagmus: Effects on Visual Performance.

    Science.gov (United States)

    Huurneman, Bianca; Boonstra, F Nienke; Goossens, Jeroen

    2016-08-01

    To evaluate whether computerized training with a crowded or uncrowded letter-discrimination task reduces visual impairment (VI) in 6- to 11-year-old children with infantile nystagmus (IN) who suffer from increased foveal crowding, reduced visual acuity, and reduced stereopsis. Thirty-six children with IN were included. Eighteen had idiopathic IN and 18 had oculocutaneous albinism. These children were divided in two training groups matched on age and diagnosis: a crowded training group (n = 18) and an uncrowded training group (n = 18). Training occurred two times per week during 5 weeks (3500 trials per training). Eleven age-matched children with normal vision were included to assess baseline differences in task performance and test-retest learning. Main outcome measures were task-specific performance, distance and near visual acuity (DVA and NVA), intensity and extent of (foveal) crowding at 5 m and 40 cm, and stereopsis. Training resulted in task-specific improvements. Both training groups also showed uncrowded and crowded DVA improvements (0.10 ± 0.02 and 0.11 ± 0.02 logMAR) and improved stereopsis (670 ± 249″). Crowded NVA improved only in the crowded training group (0.15 ± 0.02 logMAR), which was also the only group showing a reduction in near crowding intensity (0.08 ± 0.03 logMAR). Effects were not due to test-retest learning. Perceptual learning with or without distractors reduces the extent of crowding and improves visual acuity in children with IN. Training with distractors improves near vision more than training with single optotypes. Perceptual learning also transfers to DVA and NVA under uncrowded and crowded conditions and even stereopsis. Learning curves indicated that improvements may be larger after longer training.

  8. [The application of new technologies to solving maths problems for students with learning disabilities: the 'underwater school'].

    Science.gov (United States)

    Miranda-Casas, A; Marco-Taverner, R; Soriano-Ferrer, M; Melià de Alba, A; Simó-Casañ, P

    2008-01-01

    Different procedures have demonstrated efficacy to teach cognitive and metacognitive strategies to problem solving in mathematics. Some studies have used computer-based problem solving instructional programs. To analyze in students with learning disabilities the efficacy of a cognitive strategies training for problem solving, with three instructional delivery formats: a teacher-directed program (T-D), a computer-assisted instructional (CAI) program, and a combined program (T-D + CAI). Forty-four children with mathematics learning disabilities, between 8 and 10 years old participated in this study. The children were randomly assigned to one of the three instructional formats and a control group without cognitive strategies training. In the three instructional conditions which were compared all the students learnt problems solving linguistic and visual cognitive strategies trough the self-instructional procedure. Several types of measurements were used for analysing the possible differential efficacy of the three instructional methods implemented: solving problems tests, marks in mathematics, internal achievement responsibility scale, and school behaviours teacher ratings. Our findings show that the T-D training group and the T-D + CAI group improved significantly on math word problem solving and on marks in Maths from pre- to post-testing. In addition, the results indicated that the students of the T-D + CAI group solved more real-life problems and developed more internal attributions compared to both control and CAI groups. Finally, with regard to school behaviours, improvements in school adjustment and learning problems were observed in the students of the group with a combined instructional format (T-D + CAI).

  9. A new evolutionary algorithm with LQV learning for combinatorial problems optimization

    International Nuclear Information System (INIS)

    Machado, Marcelo Dornellas; Schirru, Roberto

    2000-01-01

    Genetic algorithms are biologically motivated adaptive systems which have been used, with good results, for combinatorial problems optimization. In this work, a new learning mode, to be used by the population-based incremental learning algorithm, has the aim to build a new evolutionary algorithm to be used in optimization of numerical problems and combinatorial problems. This new learning mode uses a variable learning rate during the optimization process, constituting a process known as proportional reward. The development of this new algorithm aims its application in the optimization of reload problem of PWR nuclear reactors, in order to increase the useful life of the nuclear fuel. For the test, two classes of problems are used: numerical problems and combinatorial problems. Due to the fact that the reload problem is a combinatorial problem, the major interest relies on the last class. The results achieved with the tests indicate the applicability of the new learning mode, showing its potential as a developing tool in the solution of reload problem. (author)

  10. Deep Learning in Visual Computing and Signal Processing

    OpenAIRE

    Xie, Danfeng; Zhang, Lei; Bai, Li

    2017-01-01

    Deep learning is a subfield of machine learning, which aims to learn a hierarchy of features from input data. Nowadays, researchers have intensively investigated deep learning algorithms for solving challenging problems in many areas such as image classification, speech recognition, signal processing, and natural language processing. In this study, we not only review typical deep learning algorithms in computer vision and signal processing but also provide detailed information on how to apply...

  11. The Effect of Problem Based Learning (PBL) Instruction on Students' Motivation and Problem Solving Skills of Physics

    Science.gov (United States)

    Argaw, Aweke Shishigu; Haile, Beyene Bashu; Ayalew, Beyene Tesfaw; Kuma, Shiferaw Gadisa

    2017-01-01

    Through the learning of physics, students will acquire problem solving skills which are relevant to their daily life. Determining the best way in which students learn physics takes a priority in physics education. The goal of the present study was to determine the effect of problem based learning strategy on students' problem solving skills and…

  12. Imprinting modulates processing of visual information in the visual wulst of chicks

    Directory of Open Access Journals (Sweden)

    Uchimura Motoaki

    2006-11-01

    Full Text Available Abstract Background Imprinting behavior is one form of learning and memory in precocial birds. With the aim of elucidating of the neural basis for visual imprinting, we focused on visual information processing. Results A lesion in the visual wulst, which is similar functionally to the mammalian visual cortex, caused anterograde amnesia in visual imprinting behavior. Since the color of an object was one of the important cues for imprinting, we investigated color information processing in the visual wulst. Intrinsic optical signals from the visual wulst were detected in the early posthatch period and the peak regions of responses to red, green, and blue were spatially organized from the caudal to the nasal regions in dark-reared chicks. This spatial representation of color recognition showed plastic changes, and the response pattern along the antero-posterior axis of the visual wulst altered according to the color the chick was imprinted to. Conclusion These results indicate that the thalamofugal pathway is critical for learning the imprinting stimulus and that the visual wulst shows learning-related plasticity and may relay processed visual information to indicate the color of the imprint stimulus to the memory storage region, e.g., the intermediate medial mesopallium.

  13. Aversive learning shapes neuronal orientation tuning in human visual cortex.

    Science.gov (United States)

    McTeague, Lisa M; Gruss, L Forest; Keil, Andreas

    2015-07-28

    The responses of sensory cortical neurons are shaped by experience. As a result perceptual biases evolve, selectively facilitating the detection and identification of sensory events that are relevant for adaptive behaviour. Here we examine the involvement of human visual cortex in the formation of learned perceptual biases. We use classical aversive conditioning to associate one out of a series of oriented gratings with a noxious sound stimulus. After as few as two grating-sound pairings, visual cortical responses to the sound-paired grating show selective amplification. Furthermore, as learning progresses, responses to the orientations with greatest similarity to the sound-paired grating are increasingly suppressed, suggesting inhibitory interactions between orientation-selective neuronal populations. Changes in cortical connectivity between occipital and fronto-temporal regions mirror the changes in visuo-cortical response amplitudes. These findings suggest that short-term behaviourally driven retuning of human visual cortical neurons involves distal top-down projections as well as local inhibitory interactions.

  14. Sparse representation, modeling and learning in visual recognition theory, algorithms and applications

    CERN Document Server

    Cheng, Hong

    2015-01-01

    This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: provides a thorough introduction to the fundamentals of sparse representation, modeling and learning, and the application of these techniques in visual recognition; describes sparse recovery approaches, robust and efficient sparse represen

  15. Using standardized patients versus video cases for representing clinical problems in problem-based learning.

    Science.gov (United States)

    Yoon, Bo Young; Choi, Ikseon; Choi, Seokjin; Kim, Tae-Hee; Roh, Hyerin; Rhee, Byoung Doo; Lee, Jong-Tae

    2016-06-01

    The quality of problem representation is critical for developing students' problem-solving abilities in problem-based learning (PBL). This study investigates preclinical students' experience with standardized patients (SPs) as a problem representation method compared to using video cases in PBL. A cohort of 99 second-year preclinical students from Inje University College of Medicine (IUCM) responded to a Likert scale questionnaire on their learning experiences after they had experienced both video cases and SPs in PBL. The questionnaire consisted of 14 items with eight subcategories: problem identification, hypothesis generation, motivation, collaborative learning, reflective thinking, authenticity, patient-doctor communication, and attitude toward patients. The results reveal that using SPs led to the preclinical students having significantly positive experiences in boosting patient-doctor communication skills; the perceived authenticity of their clinical situations; development of proper attitudes toward patients; and motivation, reflective thinking, and collaborative learning when compared to using video cases. The SPs also provided more challenges than the video cases during problem identification and hypotheses generation. SPs are more effective than video cases in delivering higher levels of authenticity in clinical problems for PBL. The interaction with SPs engages preclinical students in deeper thinking and discussion; growth of communication skills; development of proper attitudes toward patients; and motivation. Considering the higher cost of SPs compared with video cases, SPs could be used most advantageously during the preclinical period in the IUCM curriculum.

  16. Behind Mathematical Learning Disabilities: What about Visual Perception and Motor Skills?

    Science.gov (United States)

    Pieters, Stefanie; Desoete, Annemie; Roeyers, Herbert; Vanderswalmen, Ruth; Van Waelvelde, Hilde

    2012-01-01

    In a sample of 39 children with mathematical learning disabilities (MLD) and 106 typically developing controls belonging to three control groups of three different ages, we found that visual perception, motor skills and visual-motor integration explained a substantial proportion of the variance in either number fact retrieval or procedural…

  17. Learning Matlab a problem solving approach

    CERN Document Server

    Gander, Walter

    2015-01-01

    This comprehensive and stimulating introduction to Matlab, a computer language now widely used for technical computing, is based on an introductory course held at Qian Weichang College, Shanghai University, in the fall of 2014.  Teaching and learning a substantial programming language aren’t always straightforward tasks. Accordingly, this textbook is not meant to cover the whole range of this high-performance technical programming environment, but to motivate first- and second-year undergraduate students in mathematics and computer science to learn Matlab by studying representative problems, developing algorithms and programming them in Matlab. While several topics are taken from the field of scientific computing, the main emphasis is on programming. A wealth of examples are completely discussed and solved, allowing students to learn Matlab by doing: by solving problems, comparing approaches and assessing the proposed solutions.

  18. Methodological Strategies for Studying the Process of Learning, Memory and Visual Literacy.

    Science.gov (United States)

    Randhawa, Bikkar S.; Hunt, Dennis

    An attempt is made to discuss current models of information processing, learning, and development, thereby suggesting adequate methodological strategies for research in visual literacy. It is maintained that development is a cumulative process of learning, and that learning and memory are the result of new knowledge, sensations, etc. over a short…

  19. Differences in visual attention between those who correctly and incorrectly answer physics problems

    Directory of Open Access Journals (Sweden)

    N. Sanjay Rebello1

    2012-05-01

    Full Text Available This study investigated how visual attention differed between those who correctly versus incorrectly answered introductory physics problems. We recorded eye movements of 24 individuals on six different conceptual physics problems where the necessary information to solve the problem was contained in a diagram. The problems also contained areas consistent with a novicelike response and areas of high perceptual salience. Participants ranged from those who had only taken one high school physics course to those who had completed a Physics Ph.D. We found that participants who answered correctly spent a higher percentage of time looking at the relevant areas of the diagram, and those who answered incorrectly spent a higher percentage of time looking in areas of the diagram consistent with a novicelike answer. Thus, when solving physics problems, top-down processing plays a key role in guiding visual selective attention either to thematically relevant areas or novicelike areas depending on the accuracy of a student’s physics knowledge. This result has implications for the use of visual cues to redirect individuals’ attention to relevant portions of the diagrams and may potentially influence the way they reason about these problems.

  20. Producing and scrounging during Problem Based Learning

    Directory of Open Access Journals (Sweden)

    William L. Vickery

    2013-08-01

    Full Text Available When problem based learning occurs in a social context it is open to a common social behaviour, scrounging. In the animal behaviour literature, scroungers do not attempt to find resources themselves but rather exploit resources found by other group members (referred to as producers. We know from studies of animal behaviour (including humans that scrounging can be expected whenever animals exploit resources in groups. We also know that scrounging can have deleterious effects on the group. We can expect scrounging to occur during social learning because the exchange of information (which I will consider here as a resource is essential to social learning. This exchange can be seen as each individual scrounging from the other members of the group whenever the individual learns from the work of others. However, there is a danger if some individuals learn mostly through their own efforts while others indulge in “social loafing” relying heavily on colleagues to provide knowledge. Here I propose that game theory models developed to analyse feeding in animal societies may also apply to social learning. We know from studies of birds feeding in groups that scrounging behaviour depends on the extent to which resources can be shared. Further, when scrounging is prevalent groups tend to obtain fewer resources. By contrast, in social learning we attempt to facilitate sharing of knowledge. We thus encourage scrounging and run the risk of reducing learning within study groups. Here I analyse the role of scrounging in problem based learning. I argue that scrounging is inherent and necessary to any social learning process. However, it can have perverse effects if the acquisition of facts rather than understanding comes to dominate learning objectives. Further, disparities among individuals within a group can lead certain individuals to specialise in scrounging thus undermining the functioning of the group. I suggest that motivation, problem structure

  1. Innovative teaching: Using multimedia in a problem-based learning environment

    Directory of Open Access Journals (Sweden)

    Mai Neo

    2001-10-01

    Full Text Available Presently, traditional educational approaches have resulted in a mismatch between what is taught to the students and what the industry needs. As such, many institutions are moving towards problem-based learning as a solution to producing graduates who are creative, can think critically and analytically, and are able to solve problems. In this paper, we focus on using multimedia technology as an innovative teaching and learning strategy in a problem-based learning environment by giving the students a multimedia project to train them in this skill set. The purpose of this project was to access the students’ skills in framing and solving problems using multimedia technologies. The students worked in groups and each group had to pick a topic for their project, develop, design and present it in a CD-ROM. They were then surveyed on their attitudes toward the project and their skills as a team. Results showed that the students were very positive toward the project, enjoyed teamwork, able to think critically and became active participants in their learning process. Therefore, multimedia-oriented projects, like many other problem-based learning solutions, can be used alternatively as an innovative and effective tool in a problem-based learning environment for the acquisition of problem-solving skills.

  2. Problem- and case-based learning in science: an introduction to distinctions, values, and outcomes.

    Science.gov (United States)

    Allchin, Douglas

    2013-01-01

    Case-based learning and problem-based learning have demonstrated great promise in reforming science education. Yet an instructor, in newly considering this suite of interrelated pedagogical strategies, faces a number of important instructional choices. Different features and their related values and learning outcomes are profiled here, including: the level of student autonomy; instructional focus on content, skills development, or nature-of-science understanding; the role of history, or known outcomes; scope, clarity, and authenticity of problems provided to students; extent of collaboration; complexity, in terms of number of interpretive perspectives; and, perhaps most importantly, the role of applying versus generating knowledge.

  3. Instructional Television: Visual Production Techniques and Learning Comprehension.

    Science.gov (United States)

    Silbergleid, Michael Ian

    The purpose of this study was to determine if increasing levels of complexity in visual production techniques would increase the viewer's learning comprehension and the degree of likeness expressed for a college level instructional television program. A total of 119 mass communications students at the University of Alabama participated in the…

  4. Motivating programming students by Problem Based Learning and LEGO robots

    DEFF Research Database (Denmark)

    Lykke, Marianne; Coto Chotto, Mayela; Mora, Sonia

    2014-01-01

    . For this reason the school is focusing on different teaching methods to help their students master these skills. This paper introduces an experimental, controlled comparison study of three learning designs, involving a problem based learning (PBL) approach in connection with the use of LEGO Mindstorms to improve...... students programming skills and motivation for learning in an introductory programming course. The paper reports the results related with one of the components of the study - the experiential qualities of the three learning designs. The data were collected through a questionnaire survey with 229 students...... from three groups exposed to different learning designs and through six qualitative walk-alongs collecting data from these groups by informal interviews and observations. Findings from the three studies were discussed in three focus group interviews with 10 students from the three experimental groups....

  5. Early Foundations for Mathematics Learning and Their Relations to Learning Disabilities.

    Science.gov (United States)

    Geary, David C

    2013-02-01

    Children's quantitative competencies upon entry into school can have lifelong consequences. Children who start behind generally stay behind, and mathematical skills at school completion influence employment prospects and wages in adulthood. I review the current debate over whether early quantitative learning is supported by (a) an inherent system for representing approximate magnitudes, (b) an attentional-control system that enables explicit processing of quantitative symbols, such as Arabic numerals, or (c) the logical problem-solving abilities that facilitate learning of the relations among numerals. Studies of children with mathematical learning disabilities and difficulties have suggested that each of these competencies may be involved, but to different degrees and at different points in the learning process. Clarifying how and when these competencies facilitate early quantitative learning and developing interventions to address their impact on children have the potential to yield substantial benefits for individuals and for society.

  6. Deficits in visual short-term memory binding in children at risk of non-verbal learning disabilities.

    Science.gov (United States)

    Garcia, Ricardo Basso; Mammarella, Irene C; Pancera, Arianna; Galera, Cesar; Cornoldi, Cesare

    2015-01-01

    It has been hypothesized that learning disabled children meet short-term memory (STM) problems especially when they must bind different types of information, however the hypothesis has not been systematically tested. This study assessed visual STM for shapes and colors and the binding of shapes and colors, comparing a group of children (aged between 8 and 10 years) at risk of non-verbal learning disabilities (NLD) with a control group of children matched for general verbal abilities, age, gender, and socioeconomic level. Results revealed that groups did not differ in retention of either shapes or colors, but children at risk of NLD were poorer than controls in memory for shape-color bindings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Robust visual tracking via structured multi-task sparse learning

    KAUST Repository

    Zhang, Tianzhu

    2012-11-09

    In this paper, we formulate object tracking in a particle filter framework as a structured multi-task sparse learning problem, which we denote as Structured Multi-Task Tracking (S-MTT). Since we model particles as linear combinations of dictionary templates that are updated dynamically, learning the representation of each particle is considered a single task in Multi-Task Tracking (MTT). By employing popular sparsity-inducing lp,q mixed norms (specifically p∈2,∞ and q=1), we regularize the representation problem to enforce joint sparsity and learn the particle representations together. As compared to previous methods that handle particles independently, our results demonstrate that mining the interdependencies between particles improves tracking performance and overall computational complexity. Interestingly, we show that the popular L1 tracker (Mei and Ling, IEEE Trans Pattern Anal Mach Intel 33(11):2259-2272, 2011) is a special case of our MTT formulation (denoted as the L11 tracker) when p=q=1. Under the MTT framework, some of the tasks (particle representations) are often more closely related and more likely to share common relevant covariates than other tasks. Therefore, we extend the MTT framework to take into account pairwise structural correlations between particles (e.g. spatial smoothness of representation) and denote the novel framework as S-MTT. The problem of learning the regularized sparse representation in MTT and S-MTT can be solved efficiently using an Accelerated Proximal Gradient (APG) method that yields a sequence of closed form updates. As such, S-MTT and MTT are computationally attractive. We test our proposed approach on challenging sequences involving heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that S-MTT is much better than MTT, and both methods consistently outperform state-of-the-art trackers. © 2012 Springer Science+Business Media New York.

  8. Supporting Multimedia Learning with Visual Signalling and Animated Pedagogical Agent: Moderating Effects of Prior Knowledge

    Science.gov (United States)

    Johnson, A. M.; Ozogul, G.; Reisslein, M.

    2015-01-01

    An experiment examined the effects of visual signalling to relevant information in multiple external representations and the visual presence of an animated pedagogical agent (APA). Students learned electric circuit analysis using a computer-based learning environment that included Cartesian graphs, equations and electric circuit diagrams. The…

  9. Solving Wicked Problems through Action Learning

    Science.gov (United States)

    Crul, Liselore

    2014-01-01

    This account of practice outlines the Oxyme Action Learning Program which was conducted as part of the Management Challenge in my final year of the MSc in Coaching and Behavioral Change at Henley Business School. The central research questions were: (1) how action learning can help to solve wicked problems and (2) what the effect of an action…

  10. The Effect of a Computerized Visual Perception and Visual-Motor Integration Training Program on Improving Chinese Handwriting of Children with Handwriting Difficulties

    Science.gov (United States)

    Poon, K. W.; Li-Tsang, C. W .P.; Weiss, T. P. L.; Rosenblum, S.

    2010-01-01

    This study aimed to investigate the effect of a computerized visual perception and visual-motor integration training program to enhance Chinese handwriting performance among children with learning difficulties, particularly those with handwriting problems. Participants were 26 primary-one children who were assessed by educational psychologists and…

  11. Visual nesting system for irregular cutting-stock problem based on rubber band packing algorithm

    Directory of Open Access Journals (Sweden)

    Xiaoping Liao

    2016-05-01

    Full Text Available This article deals with the packing problem of irregular items allocated into a rectangular sheet to minimize the waste. Conventional solution is not visual during the packing process. It obtains a reasonable and relatively satisfactory solution between the nesting time and nesting solution. This article adopts a physical method that uses rubber band packing algorithm to simulate a rubber band wrapping those packing irregular items. The simulation shows a visual and fast packing process. The resultant rubber band force is applied in the packing items to translate, rotate, and slide them to make the area decrease and obtain a high packing density. An improved analogy QuickHull algorithm is presented to obtain extreme points of rubber band convex hull. An adaptive module could set a variable rubber band force and a variable time step to make a proper convergence and no intersection. A quick convex decomposition method is used to solve the problem of concave polygon. A plural vector expression approach is adopted to calculate the resultant vector of the rubber band force. Several cases are compared with the benchmark problems to prove rubber band packing algorithm performance.

  12. A boosting framework for visuality-preserving distance metric learning and its application to medical image retrieval.

    Science.gov (United States)

    Yang, Liu; Jin, Rong; Mummert, Lily; Sukthankar, Rahul; Goode, Adam; Zheng, Bin; Hoi, Steven C H; Satyanarayanan, Mahadev

    2010-01-01

    Similarity measurement is a critical component in content-based image retrieval systems, and learning a good distance metric can significantly improve retrieval performance. However, despite extensive study, there are several major shortcomings with the existing approaches for distance metric learning that can significantly affect their application to medical image retrieval. In particular, "similarity" can mean very different things in image retrieval: resemblance in visual appearance (e.g., two images that look like one another) or similarity in semantic annotation (e.g., two images of tumors that look quite different yet are both malignant). Current approaches for distance metric learning typically address only one goal without consideration of the other. This is problematic for medical image retrieval where the goal is to assist doctors in decision making. In these applications, given a query image, the goal is to retrieve similar images from a reference library whose semantic annotations could provide the medical professional with greater insight into the possible interpretations of the query image. If the system were to retrieve images that did not look like the query, then users would be less likely to trust the system; on the other hand, retrieving images that appear superficially similar to the query but are semantically unrelated is undesirable because that could lead users toward an incorrect diagnosis. Hence, learning a distance metric that preserves both visual resemblance and semantic similarity is important. We emphasize that, although our study is focused on medical image retrieval, the problem addressed in this work is critical to many image retrieval systems. We present a boosting framework for distance metric learning that aims to preserve both visual and semantic similarities. The boosting framework first learns a binary representation using side information, in the form of labeled pairs, and then computes the distance as a weighted Hamming

  13. Interlocking Toy Building Blocks as Hands-On Learning Modules for Blind and Visually Impaired Chemistry Students

    Science.gov (United States)

    Melaku, Samuel; Schreck, James O.; Griffin, Kameron; Dabke, Rajeev B.

    2016-01-01

    Interlocking toy building blocks (e.g., Lego) as chemistry learning modules for blind and visually impaired (BVI) students in high school and undergraduate introductory or general chemistry courses are presented. Building blocks were assembled on a baseplate to depict the relative changes in the periodic properties of elements. Modules depicting…

  14. Effects of conventional and problem-based learning on clinical and general competencies and career development

    NARCIS (Netherlands)

    Cohen-Schotanus, Janke; Muijtjens, Arno M. M.; Schonrock-Adema, Johanna; Geertsma, Jelle; van der Vleuten, Cees P. M.

    OBJECTIVE: To test hypotheses regarding the longitudinal effects of problem-based learning (PBL) and conventional learning relating to students' appreciation of the curriculum, self-assessment of general competencies, summative assessment of clinical competence and indicators of career development.

  15. EdgeMaps: visualizing explicit and implicit relations

    Science.gov (United States)

    Dörk, Marian; Carpendale, Sheelagh; Williamson, Carey

    2011-01-01

    In this work, we introduce EdgeMaps as a new method for integrating the visualization of explicit and implicit data relations. Explicit relations are specific connections between entities already present in a given dataset, while implicit relations are derived from multidimensional data based on shared properties and similarity measures. Many datasets include both types of relations, which are often difficult to represent together in information visualizations. Node-link diagrams typically focus on explicit data connections, while not incorporating implicit similarities between entities. Multi-dimensional scaling considers similarities between items, however, explicit links between nodes are not displayed. In contrast, EdgeMaps visualize both implicit and explicit relations by combining and complementing spatialization and graph drawing techniques. As a case study for this approach we chose a dataset of philosophers, their interests, influences, and birthdates. By introducing the limitation of activating only one node at a time, interesting visual patterns emerge that resemble the aesthetics of fireworks and waves. We argue that the interactive exploration of these patterns may allow the viewer to grasp the structure of a graph better than complex node-link visualizations.

  16. Perceptual category learning and visual processing: An exercise in computational cognitive neuroscience.

    Science.gov (United States)

    Cantwell, George; Riesenhuber, Maximilian; Roeder, Jessica L; Ashby, F Gregory

    2017-05-01

    The field of computational cognitive neuroscience (CCN) builds and tests neurobiologically detailed computational models that account for both behavioral and neuroscience data. This article leverages a key advantage of CCN-namely, that it should be possible to interface different CCN models in a plug-and-play fashion-to produce a new and biologically detailed model of perceptual category learning. The new model was created from two existing CCN models: the HMAX model of visual object processing and the COVIS model of category learning. Using bitmap images as inputs and by adjusting only a couple of learning-rate parameters, the new HMAX/COVIS model provides impressively good fits to human category-learning data from two qualitatively different experiments that used different types of category structures and different types of visual stimuli. Overall, the model provides a comprehensive neural and behavioral account of basal ganglia-mediated learning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. ICT in Problem- and Project-based Learning

    DEFF Research Database (Denmark)

    Andreasen, Lars Birch; Lerche Nielsen, Jørgen

    2012-01-01

    The paper discusses how teaching and learning practices at universities can implement new information technologies, inspired by the traditions of problem- and project-based learning. The changing roles in the teacher-student relationship, and students’ development of information literacy are disc...

  18. The effects of short-term and long-term learning on the responses of lateral intraparietal neurons to visually presented objects.

    Science.gov (United States)

    Sigurdardottir, Heida M; Sheinberg, David L

    2015-07-01

    The lateral intraparietal area (LIP) is thought to play an important role in the guidance of where to look and pay attention. LIP can also respond selectively to differently shaped objects. We sought to understand to what extent short-term and long-term experience with visual orienting determines the responses of LIP to objects of different shapes. We taught monkeys to arbitrarily associate centrally presented objects of various shapes with orienting either toward or away from a preferred spatial location of a neuron. The training could last for less than a single day or for several months. We found that neural responses to objects are affected by such experience, but that the length of the learning period determines how this neural plasticity manifests. Short-term learning affects neural responses to objects, but these effects are only seen relatively late after visual onset; at this time, the responses to newly learned objects resemble those of familiar objects that share their meaning or arbitrary association. Long-term learning affects the earliest bottom-up responses to visual objects. These responses tend to be greater for objects that have been associated with looking toward, rather than away from, LIP neurons' preferred spatial locations. Responses to objects can nonetheless be distinct, although they have been similarly acted on in the past and will lead to the same orienting behavior in the future. Our results therefore indicate that a complete experience-driven override of LIP object responses may be difficult or impossible. We relate these results to behavioral work on visual attention.

  19. Statistical learning problem of artificial neural network to control roofing process

    Directory of Open Access Journals (Sweden)

    Lapidus Azariy

    2017-01-01

    Full Text Available Now software developed on the basis of artificial neural networks (ANN has been actively implemented in construction companies to support decision-making in organization and management of construction processes. ANN learning is the main stage of its development. A key question for supervised learning is how many number of training examples we need to approximate the true relationship between network inputs and output with the desired accuracy. Also designing of ANN architecture is related to learning problem known as “curse of dimensionality”. This problem is important for the study of construction process management because of the difficulty to get training data from construction sites. In previous studies the authors have designed a 4-layer feedforward ANN with a unit model of 12-5-4-1 to approximate estimation and prediction of roofing process. This paper presented the statistical learning side of created ANN with simple-error-minimization algorithm. The sample size to efficient training and the confidence interval of network outputs defined. In conclusion the authors predicted successful ANN learning in a large construction business company within a short space of time.

  20. Principal component analysis study of visual and verbal metaphoric comprehension in children with autism and learning disabilities.

    Science.gov (United States)

    Mashal, Nira; Kasirer, Anat

    2012-01-01

    This research extends previous studies regarding the metaphoric competence of autistic and learning disable children on different measures of visual and verbal non-literal language comprehension, as well as cognitive abilities that include semantic knowledge, executive functions, similarities, and reading fluency. Thirty seven children with autism (ASD), 20 children with learning disabilities (LD), and 21 typically developed (TD) children participated in the study. Principal components analysis was used to examine the interrelationship among the various tests in each group. Results showed different patterns in the data according to group. In particular, the results revealed that there is no dichotomy between visual and verbal metaphors in TD children but rather metaphor are classified according to their familiarity level. In the LD group visual metaphors were classified independently of the verbal metaphors. Verbal metaphoric understanding in the ASD group resembled the LD group. In addition, our results revealed the relative weakness of the ASD and LD children in suppressing irrelevant information. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. From a Gloss to a Learning Tool: Does Visual Aids Enhance Better Sentence Comprehension?

    Science.gov (United States)

    Sato, Takeshi; Suzuki, Akio

    2012-01-01

    The aim of this study is to optimize CALL environments as a learning tool rather than a gloss, focusing on the learning of polysemous words which refer to spatial relationship between objects. A lot of research has already been conducted to examine the efficacy of visual glosses while reading L2 texts and has reported that visual glosses can be…

  2. Development and Design of Problem Based Learning Game-Based Courseware

    Science.gov (United States)

    Chang, Chiung-Sui; Chen, Jui-Fa; Chen, Fei-Ling

    2015-01-01

    In an educational environment, instructors would always think of ways to provide students with motivational learning materials and efficient learning strategies. Hence, many researchers have proposed that students' problem-solving ability enhances their learning. Problem-solving ability plays an important role for users in dealing with problems…

  3. Contextual Cueing: Implicit Learning and Memory of Visual Context Guides Spatial Attention.

    Science.gov (United States)

    Chun, Marvin M.; Jiang, Yuhong

    1998-01-01

    Six experiments involving a total of 112 college students demonstrate that a robust memory for visual context exists to guide spatial attention. Results show how implicit learning and memory of visual context can guide spatial attention toward task-relevant aspects of a scene. (SLD)

  4. Analysing the physics learning environment of visually impaired students in high schools

    NARCIS (Netherlands)

    Toenders, F.G.C.; de Putter - Smits, L.G.A.; Sanders, W.T.M.; den Brok, P.J.

    2017-01-01

    Although visually impaired students attend regular high school, their enrolment in advanced science classes is dramatically low. In our research we evaluated the physics learning environment of a blind high school student in a regular Dutch high school. For visually impaired students to grasp

  5. Deep Learning towards Expertise Development in a Visualization-Based Learning Environment

    Science.gov (United States)

    Yuan, Bei; Wang, Minhong; Kushniruk, Andre W.; Peng, Jun

    2017-01-01

    With limited problem-solving capability and practical experience, novices have difficulties developing expert-like performance. It is important to make the complex problem-solving process visible to learners and provide them with necessary help throughout the process. This study explores the design and effects of a model-based learning approach…

  6. A real-time articulatory visual feedback approach with target presentation for second language pronunciation learning.

    Science.gov (United States)

    Suemitsu, Atsuo; Dang, Jianwu; Ito, Takayuki; Tiede, Mark

    2015-10-01

    Articulatory information can support learning or remediating pronunciation of a second language (L2). This paper describes an electromagnetic articulometer-based visual-feedback approach using an articulatory target presented in real-time to facilitate L2 pronunciation learning. This approach trains learners to adjust articulatory positions to match targets for a L2 vowel estimated from productions of vowels that overlap in both L1 and L2. Training of Japanese learners for the American English vowel /æ/ that included visual training improved its pronunciation regardless of whether audio training was also included. Articulatory visual feedback is shown to be an effective method for facilitating L2 pronunciation learning.

  7. DLNE: A hybridization of deep learning and neuroevolution for visual control

    DEFF Research Database (Denmark)

    Poulsen, Andreas Precht; Thorhauge, Mark; Funch, Mikkel Hvilshj

    2017-01-01

    This paper investigates the potential of combining deep learning and neuroevolution to create a bot for a simple first person shooter (FPS) game capable of aiming and shooting based on high-dimensional raw pixel input. The deep learning component is responsible for visual recognition...... on evolution, and (3) how well they allow the deep network and evolved network to interface with each other. Overall, the results suggest that combining deep learning and neuroevolution in a hybrid approach is a promising research direction that could make complex visual domains directly accessible to networks...... and translating raw pixels to compact feature representations, while the evolving network takes those features as inputs to infer actions. Two types of feature representations are evaluated in terms of (1) how precise they allow the deep network to recognize the position of the enemy, (2) their effect...

  8. An Educational Approach to Problem-based Learning

    Directory of Open Access Journals (Sweden)

    Nan-Chieh Chen

    2008-03-01

    Full Text Available This paper provides an analysis of the educational framework of problem-based learning (PBL. As known and used, PBL finds its root in the Structuralism and Pragmatism schools of philosophy. In this paper, the three main requirements of PBL, namely learning by doing, learning in context, and focusing on the student, are discussed within the context of these two schools of thought. Given these attributes, PBL also seems ideally suited for use in learning bioethics.

  9. Machine learning for evolution strategies

    CERN Document Server

    Kramer, Oliver

    2016-01-01

    This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.

  10. Effects of visual feedback-induced variability on motor learning of handrim wheelchair propulsion.

    Science.gov (United States)

    Leving, Marika T; Vegter, Riemer J K; Hartog, Johanneke; Lamoth, Claudine J C; de Groot, Sonja; van der Woude, Lucas H V

    2015-01-01

    It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process. 17 Participants received visual feedback-based practice (feedback group) and 15 participants received regular practice (natural learning group). Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block) and optimize it in the prescribed direction (2nd 4-min block). To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability. The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group. These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not always appear

  11. Effects of visual feedback-induced variability on motor learning of handrim wheelchair propulsion.

    Directory of Open Access Journals (Sweden)

    Marika T Leving

    Full Text Available It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process.17 Participants received visual feedback-based practice (feedback group and 15 participants received regular practice (natural learning group. Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block and optimize it in the prescribed direction (2nd 4-min block. To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability.The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group.These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not

  12. Robust visual tracking via multi-task sparse learning

    KAUST Repository

    Zhang, Tianzhu

    2012-06-01

    In this paper, we formulate object tracking in a particle filter framework as a multi-task sparse learning problem, which we denote as Multi-Task Tracking (MTT). Since we model particles as linear combinations of dictionary templates that are updated dynamically, learning the representation of each particle is considered a single task in MTT. By employing popular sparsity-inducing p, q mixed norms (p D; 1), we regularize the representation problem to enforce joint sparsity and learn the particle representations together. As compared to previous methods that handle particles independently, our results demonstrate that mining the interdependencies between particles improves tracking performance and overall computational complexity. Interestingly, we show that the popular L 1 tracker [15] is a special case of our MTT formulation (denoted as the L 11 tracker) when p q 1. The learning problem can be efficiently solved using an Accelerated Proximal Gradient (APG) method that yields a sequence of closed form updates. As such, MTT is computationally attractive. We test our proposed approach on challenging sequences involving heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that MTT methods consistently outperform state-of-the-art trackers. © 2012 IEEE.

  13. From phonemes to images : levels of representation in a recurrent neural model of visually-grounded language learning

    NARCIS (Netherlands)

    Gelderloos, L.J.; Chrupala, Grzegorz

    2016-01-01

    We present a model of visually-grounded language learning based on stacked gated recurrent neural networks which learns to predict visual features given an image description in the form of a sequence of phonemes. The learning task resembles that faced by human language learners who need to discover

  14. Using an isomorphic problem pair to learn introductory physics: Transferring from a two-step problem to a three-step problem

    Directory of Open Access Journals (Sweden)

    Shih-Yin Lin

    2013-10-01

    Full Text Available In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. 382 students from a calculus-based and an algebra-based introductory physics course were administered a quiz in the recitation in which they had to learn from a solved problem provided and take advantage of what they learned from it to solve another isomorphic problem (which we call the quiz problem. The solved problem provided has two subproblems while the quiz problem has three subproblems, which is known from previous research to be challenging for introductory students. In addition to the solved problem, students also received extra scaffolding supports that were intended to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. The data analysis suggests that students had great difficulty in transferring what they learned from a two-step problem to a three-step problem. Although most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem, they were not necessarily able to apply the principles correctly. We also conducted think-aloud interviews with six introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. The interviews suggest that students often superficially mapped the principles employed in the solved problem to the quiz problem without necessarily understanding the governing conditions underlying each principle and examining the applicability of the principle in the new situation in an in-depth manner. Findings suggest that more scaffolding is needed to help students in transferring from a two-step problem to a three-step problem and applying the physics principles appropriately. We outline a few

  15. Using an isomorphic problem pair to learn introductory physics: Transferring from a two-step problem to a three-step problem

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2013-12-01

    In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. 382 students from a calculus-based and an algebra-based introductory physics course were administered a quiz in the recitation in which they had to learn from a solved problem provided and take advantage of what they learned from it to solve another isomorphic problem (which we call the quiz problem). The solved problem provided has two subproblems while the quiz problem has three subproblems, which is known from previous research to be challenging for introductory students. In addition to the solved problem, students also received extra scaffolding supports that were intended to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. The data analysis suggests that students had great difficulty in transferring what they learned from a two-step problem to a three-step problem. Although most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem, they were not necessarily able to apply the principles correctly. We also conducted think-aloud interviews with six introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. The interviews suggest that students often superficially mapped the principles employed in the solved problem to the quiz problem without necessarily understanding the governing conditions underlying each principle and examining the applicability of the principle in the new situation in an in-depth manner. Findings suggest that more scaffolding is needed to help students in transferring from a two-step problem to a three-step problem and applying the physics principles appropriately. We outline a few possible strategies

  16. Collaborative Visualization Project: shared-technology learning environments for science learning

    Science.gov (United States)

    Pea, Roy D.; Gomez, Louis M.

    1993-01-01

    Project-enhanced science learning (PESL) provides students with opportunities for `cognitive apprenticeships' in authentic scientific inquiry using computers for data-collection and analysis. Student teams work on projects with teacher guidance to develop and apply their understanding of science concepts and skills. We are applying advanced computing and communications technologies to augment and transform PESL at-a-distance (beyond the boundaries of the individual school), which is limited today to asynchronous, text-only networking and unsuitable for collaborative science learning involving shared access to multimedia resources such as data, graphs, tables, pictures, and audio-video communication. Our work creates user technology (a Collaborative Science Workbench providing PESL design support and shared synchronous document views, program, and data access; a Science Learning Resource Directory for easy access to resources including two-way video links to collaborators, mentors, museum exhibits, media-rich resources such as scientific visualization graphics), and refine enabling technologies (audiovisual and shared-data telephony, networking) for this PESL niche. We characterize participation scenarios for using these resources and we discuss national networked access to science education expertise.

  17. Similarity relations in visual search predict rapid visual categorization

    Science.gov (United States)

    Mohan, Krithika; Arun, S. P.

    2012-01-01

    How do we perform rapid visual categorization?It is widely thought that categorization involves evaluating the similarity of an object to other category items, but the underlying features and similarity relations remain unknown. Here, we hypothesized that categorization performance is based on perceived similarity relations between items within and outside the category. To this end, we measured the categorization performance of human subjects on three diverse visual categories (animals, vehicles, and tools) and across three hierarchical levels (superordinate, basic, and subordinate levels among animals). For the same subjects, we measured their perceived pair-wise similarities between objects using a visual search task. Regardless of category and hierarchical level, we found that the time taken to categorize an object could be predicted using its similarity to members within and outside its category. We were able to account for several classic categorization phenomena, such as (a) the longer times required to reject category membership; (b) the longer times to categorize atypical objects; and (c) differences in performance across tasks and across hierarchical levels. These categorization times were also accounted for by a model that extracts coarse structure from an image. The striking agreement observed between categorization and visual search suggests that these two disparate tasks depend on a shared coarse object representation. PMID:23092947

  18. Promoting Visualization Skills through Deconstruction Using Physical Models and a Visualization Activity Intervention

    Science.gov (United States)

    Schiltz, Holly Kristine

    Visualization skills are important in learning chemistry, as these skills have been shown to correlate to high ability in problem solving. Students' understanding of visual information and their problem-solving processes may only ever be accessed indirectly: verbalization, gestures, drawings, etc. In this research, deconstruction of complex visual concepts was aligned with the promotion of students' verbalization of visualized ideas to teach students to solve complex visual tasks independently. All instructional tools and teaching methods were developed in accordance with the principles of the theoretical framework, the Modeling Theory of Learning: deconstruction of visual representations into model components, comparisons to reality, and recognition of students' their problemsolving strategies. Three physical model systems were designed to provide students with visual and tangible representations of chemical concepts. The Permanent Reflection Plane Demonstration provided visual indicators that students used to support or invalidate the presence of a reflection plane. The 3-D Coordinate Axis system provided an environment that allowed students to visualize and physically enact symmetry operations in a relevant molecular context. The Proper Rotation Axis system was designed to provide a physical and visual frame of reference to showcase multiple symmetry elements that students must identify in a molecular model. Focus groups of students taking Inorganic chemistry working with the physical model systems demonstrated difficulty documenting and verbalizing processes and descriptions of visual concepts. Frequently asked student questions were classified, but students also interacted with visual information through gestures and model manipulations. In an effort to characterize how much students used visualization during lecture or recitation, we developed observation rubrics to gather information about students' visualization artifacts and examined the effect instructors

  19. The Film as Visual Aided Learning Tool in Classroom Management Course

    Science.gov (United States)

    Altinay Gazi, Zehra; Altinay Aksal, Fahriye

    2011-01-01

    This research aims to investigate the impact of the visual aided learning on pre-service teachers' co-construction of subject matter knowledge in teaching practice. The study revealed the examination of film as an active cognizing and learning tool in classroom management course within teacher education programme. Within the framework of action…

  20. Visual Learning: A Learner Centered Approach to Enhance English Language Teaching

    Science.gov (United States)

    Philominraj, Andrew; Jeyabalan, David; Vidal-Silva, Christian

    2017-01-01

    This article presents an empirical study carried out among the students of higher secondary schools to find out how English language learning occurs naturally in an environment where learners are encouraged by an appropriate method such as visual learning. The primary data was collected from 504 students with different pretested questionnaires. A…

  1. Problem-Based Learning to Foster Deep Learning in Preservice Geography Teacher Education

    Science.gov (United States)

    Golightly, Aubrey; Raath, Schalk

    2015-01-01

    In South Africa, geography education students' approach to deep learning has received little attention. Therefore the purpose of this one-shot experimental case study was to evaluate the extent to which first-year geography education students used deep or surface learning in an embedded problem-based learning (PBL) format. The researchers measured…

  2. Effect of worksheet scaffolds on student learning in problem-based learning

    NARCIS (Netherlands)

    S.S.Y. Choo (Serene); J.I. Rotgans (Jerome); E.H.J. Yew (Elaine); H.G. Schmidt (Henk)

    2011-01-01

    textabstractThe purpose of this study was to investigate the effect of worksheets as a scaffolding tool on students' learning achievement in a problem-based learning (PBL) environment. Seventeen PBL classes (N = 241) were randomly assigned to two experimental groups-one with a worksheet provided and

  3. The effectiveness of problem-based learning on students’ problem solving ability in vector analysis course

    Science.gov (United States)

    Mushlihuddin, R.; Nurafifah; Irvan

    2018-01-01

    The student’s low ability in mathematics problem solving proved to the less effective of a learning process in the classroom. Effective learning was a learning that affects student’s math skills, one of which is problem-solving abilities. Problem-solving capability consisted of several stages: understanding the problem, planning the settlement, solving the problem as planned, re-examining the procedure and the outcome. The purpose of this research was to know: (1) was there any influence of PBL model in improving ability Problem solving of student math in a subject of vector analysis?; (2) was the PBL model effective in improving students’ mathematical problem-solving skills in vector analysis courses? This research was a quasi-experiment research. The data analysis techniques performed from the test stages of data description, a prerequisite test is the normality test, and hypothesis test using the ANCOVA test and Gain test. The results showed that: (1) there was an influence of PBL model in improving students’ math problem-solving abilities in vector analysis courses; (2) the PBL model was effective in improving students’ problem-solving skills in vector analysis courses with a medium category.

  4. It's Not a Math Lesson--We're Learning to Draw! Teachers' Use of Visual Representations in Instructing Word Problem Solving in Sixth Grade of Elementary School

    Science.gov (United States)

    Boonen, Anton J. H.; Reed, Helen C.; Schoonenboom, Judith; Jolles, Jelle

    2016-01-01

    Non-routine word problem solving is an essential feature of the mathematical development of elementary school students worldwide. Many students experience difficulties in solving these problems due to erroneous problem comprehension. These difficulties could be alleviated by instructing students how to use visual representations that clarify the…

  5. Problem based learning in medical education: theory, rationale, process and implications for pakistan.

    Science.gov (United States)

    Baig, Lubna A

    2006-09-01

    Historically, lectures were the medium to transfer cognitive information to the learners in medical education. Apprenticeship training, labs, bedside teaching, tutorials etc. were used to impart psychomotor and affective skills. It was assumed that the learner will assimilate all this knowledge and will be competent to apply this learning in practical life. Problem-based learning (PBL) emerged due to problems in building the appropriate competencies in the medical graduates and is a relatively newer mode of transfer of knowledge. This paper will deal with problem-based learning which took the world with storm in the 80's and most institutions in the world started using different variants of PBL. This paper attempts to define and explore the theoretical basis and historical background of PBL. The paper will systematically review literature and argue about the advantages and disadvantages of PBL and the implications of its implementation in Pakistan.

  6. Differences in Visual Attention between Those Who Correctly and Incorrectly Answer Physics Problems

    Science.gov (United States)

    Madsen, Adrian M.; Larson, Adam M.; Loschky, Lester C.; Rebello, N. Sanjay

    2012-01-01

    This study investigated how visual attention differed between those who correctly versus incorrectly answered introductory physics problems. We recorded eye movements of 24 individuals on six different conceptual physics problems where the necessary information to solve the problem was contained in a diagram. The problems also contained areas…

  7. Problem-Based Learning: Exploiting Knowledge of How People Learn to Promote Effective Learning

    Science.gov (United States)

    Wood, E. J.

    2004-01-01

    There is much information from educational psychology studies on how people learn. The thesis of this paper is that we should use this information to guide the ways in which we teach rather than blindly using our traditional methods. In this context, problem-based learning (PBL), as a method of teaching widely used in medical schools but…

  8. A mouse model of visual perceptual learning reveals alterations in neuronal coding and dendritic spine density in the visual cortex

    Directory of Open Access Journals (Sweden)

    Yan eWang

    2016-03-01

    Full Text Available Visual perceptual learning (VPL can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS and a 55% gain in visual acuity (VA. Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1 than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL.

  9. A Mouse Model of Visual Perceptual Learning Reveals Alterations in Neuronal Coding and Dendritic Spine Density in the Visual Cortex.

    Science.gov (United States)

    Wang, Yan; Wu, Wei; Zhang, Xian; Hu, Xu; Li, Yue; Lou, Shihao; Ma, Xiao; An, Xu; Liu, Hui; Peng, Jing; Ma, Danyi; Zhou, Yifeng; Yang, Yupeng

    2016-01-01

    Visual perceptual learning (VPL) can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF) for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS) and a 55% gain in visual acuity (VA). Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1) than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL.

  10. Problem based learning - A brief review

    Science.gov (United States)

    Nunes, Sandra; Oliveira, Teresa A.; Oliveira, Amílcar

    2017-07-01

    Teaching is a complex mission that requires not only the theoretical knowledge transmission, but furthermore requires to provide the students the necessary skills for solving real problems in their respective professional activities where complex issues and problems must be frequently faced. Over more than twenty years we have been experiencing an increase in scholar failure in the scientific area of mathematics, which means that Teaching Mathematics and related areas can be even a more complex and hard task. Scholar failure is a complex phenomenon that depends on various factors as social factors, scholar factors or biophysical factors. After numerous attempts made in order to reduce scholar failure our goal in this paper is to understand the role of "Problem Based Learning" and how this methodology can contribute to the solution of both: increasing mathematical courses success and increasing skills in the near future professionals in Portugal. Before designing a proposal for applying this technique in our institutions, we decided to conduct a survey to provide us with the necessary information about and the respective advantages and disadvantages of this methodology, so this is the brief review aim.

  11. Visual and olfactory associative learning in the malaria vector Anopheles gambiae sensu stricto

    Directory of Open Access Journals (Sweden)

    Chilaka Nora

    2012-01-01

    Full Text Available Abstract Background Memory and learning are critical aspects of the ecology of insect vectors of human pathogens because of their potential effects on contacts between vectors and their hosts. Despite this epidemiological importance, there have been only a limited number of studies investigating associative learning in insect vector species and none on Anopheline mosquitoes. Methods A simple behavioural assays was developed to study visual and olfactory associative learning in Anopheles gambiae, the main vector of malaria in Africa. Two contrasted membrane qualities or levels of blood palatability were used as reinforcing stimuli for bi-directional conditioning during blood feeding. Results Under such experimental conditions An. gambiae females learned very rapidly to associate visual (chequered and white patterns and olfactory cues (presence and absence of cheese or Citronella smell with the reinforcing stimuli (bloodmeal quality and remembered the association for up to three days. Associative learning significantly increased with the strength of the conditioning stimuli used. Importantly, learning sometimes occurred faster when a positive reinforcing stimulus (palatable blood was associated with an innately preferred cue (such as a darker visual pattern. However, the use of too attractive a cue (e.g. Shropshire cheese smell was counter-productive and decreased learning success. Conclusions The results address an important knowledge gap in mosquito ecology and emphasize the role of associative memory for An. gambiae's host finding and blood-feeding behaviour with important potential implications for vector control.

  12. Learning problem-solving skills in a distance education physics course

    Science.gov (United States)

    Rampho, G. J.; Ramorola, M. Z.

    2017-10-01

    In this paper we present the results of a study on the effectiveness of combinations of delivery modes of distance education in learning problem-solving skills in a distance education introductory physics course. A problem-solving instruction with the explicit teaching of a problem-solving strategy and worked-out examples were implemented in the course. The study used the ex post facto research design with stratified sampling to investigate the effect of the learning of a problem-solving strategy on the problem-solving performance. The number of problems attempted and the mean frequency of using a strategy in solving problems in the three course presentation modes were compared. The finding of the study indicated that combining the different course presentation modes had no statistically significant effect in the learning of problem-solving skills in the distance education course.

  13. Gendered practices of constructing an engineering identity in a problem-based learning environment

    DEFF Research Database (Denmark)

    Du, Xiangyun

    2006-01-01

    of an engineering identity with masculinity and the culturally defined engineering competencies leads to different learning experiences for male and female students. The nature of hard-core engineering subjects, based on male interests, privileges men and acts as a barrier to women. The masculine culture......This article examines the learning experiences of engineering students of both genders in a problem-based and project-organized learning environment (PBL) at a Danish university. This study relates an amalgam of theories on learning and gender to the context of engineering education. Based on data...

  14. Gains following perceptual learning are closely linked to the initial visual acuity.

    Science.gov (United States)

    Yehezkel, Oren; Sterkin, Anna; Lev, Maria; Levi, Dennis M; Polat, Uri

    2016-04-28

    The goal of the present study was to evaluate the dependence of perceptual learning gains on initial visual acuity (VA), in a large sample of subjects with a wide range of VAs. A large sample of normally sighted and presbyopic subjects (N = 119; aged 40 to 63) with a wide range of uncorrected near visual acuities (VA, -0.12 to 0.8 LogMAR), underwent perceptual learning. Training consisted of detecting briefly presented Gabor stimuli under spatial and temporal masking conditions. Consistent with previous findings, perceptual learning induced a significant improvement in near VA and reading speed under conditions of limited exposure duration. Our results show that the improvements in VA and reading speed observed following perceptual learning are closely linked to the initial VA, with only a minor fraction of the observed improvement that may be attributed to the additional sessions performed by those with the worse VA.

  15. Mobility scooter driving ability in visually impaired individuals.

    Science.gov (United States)

    Cordes, Christina; Heutink, Joost; Brookhuis, Karel A; Brouwer, Wiebo H; Melis-Dankers, Bart J M

    2018-06-01

    To investigate how well visually impaired individuals can learn to use mobility scooters and which parts of the driving task deserve special attention. A mobility scooter driving skill test was developed to compare driving skills (e.g. reverse driving, turning) between 48 visually impaired (very low visual acuity = 14, low visual acuity = 10, peripheral field defects = 11, multiple visual impairments = 13) and 37 normal-sighted controls without any prior experience with mobility scooters. Performance on this test was rated on a three-point scale. Furthermore, the number of extra repetitions on the different elements were noted. Results showed that visually impaired participants were able to gain sufficient driving skills to be able to use mobility scooters. Participants with visual field defects combined with low visual acuity showed most problems learning different skills and needed more training. Reverse driving and stopping seemed to be most difficult. The present findings suggest that visually impaired individuals are able to learn to drive mobility scooters. Mobility scooter allocators should be aware that these individuals might need more training on certain elements of the driving task. Implications for rehabilitation Visual impairments do not necessarily lead to an inability to acquire mobility scooter driving skills. Individuals with peripheral field defects (especially in combination with reduced visual acuity) need more driving ability training compared to normal-sighted people - especially to accomplish reversing. Individual assessment of visually impaired people is recommended, since participants in this study showed a wide variation in ability to learn driving a mobility scooter.

  16. Density of Visual Input Enhancement and Grammar Learning: A Research Proposal

    Science.gov (United States)

    Tran, Thu Hoang

    2009-01-01

    Research in the field of second language acquisition (SLA) has been done to ascertain the effectiveness of visual input enhancement (VIE) on grammar learning. However, one issue remains unexplored: the effects of VIE density on grammar learning. This paper presents a research proposal to investigate the effects of the density of VIE on English…

  17. Infants' statistical learning: 2- and 5-month-olds' segmentation of continuous visual sequences.

    Science.gov (United States)

    Slone, Lauren Krogh; Johnson, Scott P

    2015-05-01

    Past research suggests that infants have powerful statistical learning abilities; however, studies of infants' visual statistical learning offer differing accounts of the developmental trajectory of and constraints on this learning. To elucidate this issue, the current study tested the hypothesis that young infants' segmentation of visual sequences depends on redundant statistical cues to segmentation. A sample of 20 2-month-olds and 20 5-month-olds observed a continuous sequence of looming shapes in which unit boundaries were defined by both transitional probability and co-occurrence frequency. Following habituation, only 5-month-olds showed evidence of statistically segmenting the sequence, looking longer to a statistically improbable shape pair than to a probable pair. These results reaffirm the power of statistical learning in infants as young as 5 months but also suggest considerable development of statistical segmentation ability between 2 and 5 months of age. Moreover, the results do not support the idea that infants' ability to segment visual sequences based on transitional probabilities and/or co-occurrence frequencies is functional at the onset of visual experience, as has been suggested previously. Rather, this type of statistical segmentation appears to be constrained by the developmental state of the learner. Factors contributing to the development of statistical segmentation ability during early infancy, including memory and attention, are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Perceptual learning of basic visual features remains task specific with Training-Plus-Exposure (TPE) training.

    Science.gov (United States)

    Cong, Lin-Juan; Wang, Ru-Jie; Yu, Cong; Zhang, Jun-Yun

    2016-01-01

    Visual perceptual learning is known to be specific to the trained retinal location, feature, and task. However, location and feature specificity can be eliminated by double-training or TPE training protocols, in which observers receive additional exposure to the transfer location or feature dimension via an irrelevant task besides the primary learning task Here we tested whether these new training protocols could even make learning transfer across different tasks involving discrimination of basic visual features (e.g., orientation and contrast). Observers practiced a near-threshold orientation (or contrast) discrimination task. Following a TPE training protocol, they also received exposure to the transfer task via performing suprathreshold contrast (or orientation) discrimination in alternating blocks of trials in the same sessions. The results showed no evidence for significant learning transfer to the untrained near-threshold contrast (or orientation) discrimination task after discounting the pretest effects and the suprathreshold practice effects. These results thus do not support a hypothetical task-independent component in perceptual learning of basic visual features. They also set the boundary of the new training protocols in their capability to enable learning transfer.

  19. Learning via problem solving in mathematics education

    Directory of Open Access Journals (Sweden)

    Piet Human

    2009-09-01

    Full Text Available Three forms of mathematics education at school level are distinguished: direct expository teaching with an emphasis on procedures, with the expectation that learners will at some later stage make logical and functional sense of what they have learnt and practised (the prevalent form, mathematically rigorous teaching in terms of fundamental mathematical concepts, as in the so-called “modern mathematics” programmes of the sixties, teaching and learning in the context of engaging with meaningful problems and focused both on learning to become good problem solvers (teaching for problem solving andutilising problems as vehicles for the development of mathematical knowledge andproficiency by learners (problem-centred learning, in conjunction with substantialteacher-led social interaction and mathematical discourse in classrooms.Direct expository teaching of mathematical procedures dominated in school systems after World War II, and was augmented by the “modern mathematics” movement in the period 1960-1970. The latter was experienced as a major failure, and was soon abandoned. Persistent poor outcomes of direct expository procedural teaching of mathematics for the majority of learners, as are still being experienced in South Africa, triggered a world-wide movement promoting teaching mathematics for and via problem solving in the seventies and eighties of the previous century. This movement took the form of a variety of curriculum experiments in which problem solving was the dominant classroom activity, mainly in the USA, Netherlands, France and South Africa. While initially focusing on basic arithmetic (computation with whole numbers and elementary calculus, the problem-solving movement started to address other mathematical topics (for example, elementary statistics, algebra, differential equations around the turn of the century. The movement also spread rapidly to other countries, including Japan, Singapore and Australia. Parallel with the

  20. Collaborative mining and transfer learning for relational data

    Science.gov (United States)

    Levchuk, Georgiy; Eslami, Mohammed

    2015-06-01

    Many of the real-world problems, - including human knowledge, communication, biological, and cyber network analysis, - deal with data entities for which the essential information is contained in the relations among those entities. Such data must be modeled and analyzed as graphs, with attributes on both objects and relations encode and differentiate their semantics. Traditional data mining algorithms were originally designed for analyzing discrete objects for which a set of features can be defined, and thus cannot be easily adapted to deal with graph data. This gave rise to the relational data mining field of research, of which graph pattern learning is a key sub-domain [11]. In this paper, we describe a model for learning graph patterns in collaborative distributed manner. Distributed pattern learning is challenging due to dependencies between the nodes and relations in the graph, and variability across graph instances. We present three algorithms that trade-off benefits of parallelization and data aggregation, compare their performance to centralized graph learning, and discuss individual benefits and weaknesses of each model. Presented algorithms are designed for linear speedup in distributed computing environments, and learn graph patterns that are both closer to ground truth and provide higher detection rates than centralized mining algorithm.